

Master’s Thesis

LUVIT for mobile platforms

By

Anders Forslund and Christian Veinfors

Department of Electrical and Information Technology

Faculty of Engineering, LTH, Lund University

SE-221 00 Lund, Sweden

2

Abstract
Luvit is a web based learning management system used by about one

hundred companies, authorities, organizations and universities in seven

different countries. The purpose of this project was to examine and develop

a solution that worked well on mobile devices such as mobile phones and

tablets.

The first part of this thesis investigates what kind of solution is best suited

for Luvit. A mobile web based one that works on several platforms or an

application that is developed in the native language of the device. The main

reason for choosing a web solution is that it is easy to maintain since there

is only one single application. The main advantages of native solutions are

their superior performance and that they have access to more hardware

functionality.

Different web based solutions were tested and compared against each other.

With the help of developing prototypes the choice was made to develop

Luvit Mobile using the JavaScript frameworks Sencha Touch and

PhoneGap.

In the second part of the thesis the application was developed using these

frameworks. Sencha Touch was used to build the application so that it

looked like a native one. PhoneGap was used to wrap the application and

compile/deploy it on different platforms such as Android and iOS. This

makes it feel like a real application and not a web based one.

3

Acknowledgments

This Master’s thesis would not exist without the support and guidance of

Rickard Nygren, CEO at Grade, and our supervisor Christian Nyberg,

associate professor at LTH. We would also like to thank Stefan Larsson and

Anna Johansson at Grade for their help.

4

Table of Contents

ABSTRACT ... 2

ACKNOWLEDGMENTS ... 3

TABLE OF CONTENTS .. 4

1 INTRODUCTION ... 6

2 ABOUT GRADE AND LUVIT ... 8

2.1 PARTS OF LUVIT .. 8
2.2 UNDER THE HOOD ... 9

3 INTRODUCTION OF THE FRAMEWORKS ... 11

3.1 WHY WEB BASED MOBILE APPLICATIONS .. 11
3.2 SENCHA TOUCH .. 12
3.3 JQUERY MOBILE ... 13
3.4 TITANIUM MOBILE .. 14
3.5 PHONEGAP .. 14

4 COMPARISON OF THE FRAMEWORKS .. 16

4.1 INTERCHANGE OF DATA .. 16
4.2 SENCHA TOUCH .. 19

4.2.1 Getting started ... 19
4.2.2 Developing the prototype ... 20
4.2.3 Performance and appearance .. 23
4.2.4 Functionality ... 25
4.2.5 Developing in the framework ... 26

4.3 JQUERY MOBILE ... 27
4.3.1 Getting started ... 28
4.3.2 Developing the prototype ... 29
4.3.3 Performance and appearance .. 31
4.3.4 Functionality ... 32
4.3.5 Developing in the framework ... 33

4.4 TITANIUM MOBILE .. 33
4.4.1 Getting started ... 34
4.4.2 Performance ... 34
4.4.3 Difficulties ... 34

4.5 PHONEGAP .. 35
4.5.1 Getting started ... 35
4.5.2 Developing the prototype ... 35

4.6 CONCLUSIONS .. 37
4.6.1 Performance ... 37
4.6.2 Functionality ... 37
4.6.3 Final decision .. 38

5

4.6.4 Tools ... 38

5 REQUIREMENTS SPECIFICATION .. 40

6 RESULTS ... 42

6.1 APPLICATION STRUCTURE OF THE FRONT-END ... 42
6.2 THE BACK-END .. 44
6.3 ENCOUNTERED PROBLEMS .. 46

6.3.1 Downloading on Android .. 46
6.3.2 Embedding files in Sencha Touch .. 47

6.4 PERFORMANCE ... 48
6.5 FINAL RESULT ... 50

7 CONCLUSIONS.. 51

7.1 DISCUSSION ... 51
7.1.1 Native versus web based .. 52

7.2 FUTURE WORK .. 53

REFERENCES ... 54

LIST OF ACRONYMS .. 56

6

CHAPTER 1

1 Introduction

In 1997 a learning management system called Luvit [1] was created. It is

today used by approximately one hundred companies, authorities,

organizations and universities in seven different countries. Luvit was a

result of a project initiated by system developers and teachers at Lund

University because they needed a tool for distance learning [3]. In 1998 the

company Luvit AB was started.

Three years earlier, in 1995, the company Grade was started [2]. They

worked mainly with a course development tool called Composer and a

small learning management system called Maestro.

Luvit AB and Grade merged in 2008 and became just Grade. They scrapped

Maestro and decided to concentrate only on the Luvit Learning

Management System (LMS). Grade is today a subsidiary of the company

Avensia Innovation and has offices in Lund and Stockholm.

There are several competing LMS to Luvit, for instance PingPong, E-gate

and It’s Learning. The latter one is the only one that offers mobile solution.

It has limited functionality and lacks more advanced features.

The use of modern mobile devices, such as smart phones and tablet

computers has increased significantly in the recent years. Consequently, the

demand for mobile friendly web applications has grown larger. With bigger

displays, better hardware and more sophisticated software, the potential for

web solutions is better than ever before.

Because of this, there is now a suitable opportunity for Luvit to take the

step into the mobile world. Regular Luvit is not very user-friendly on small

devices, mainly because of the huge amount of functionality and

information that doesn’t work well on small screens. The availability of the

7

learning system would increase a lot with a mobile version since many

people today have access to handheld devices with an Internet-connection.

This master’s thesis consists of two parts. In the first, different tools and

frameworks will be examined and compared with each other to find the

most appropriate solution according to performance, functionality,

documentation and platform support. In the first part (chapter 3-4), different

web based solutions will be examined to see if they measure up with native

solutions. The second part (chapter 5-6) will be to develop the actual

application based on the results in the first part. The development

methodology that will be used for this project is inspired by eXtreme

Programming
1
 (XP). Requirements will be added as the project progresses

so the development has to be carried out iteratively. Also, pair

programming will be used when more difficult tasks are developed.

1
 eXtreme Programming is a methodology that has been used by the authors of this thesis

during the education at Lunds Tekniska Högskola in different courses.

8

CHAPTER 2

2 About Grade and Luvit

2.1 Parts of Luvit

Luvit consists of three different parts; Luvit Portal, Luvit Education and

Luvit Administration.

Portal is the first view the user sees after logging in to the system. An

overview is shown of the different courses and study programs the user is

participating in. It is also possible to communicate with other course

participants, view the calendar and read the latest news.

Education is where the actual course takes place. Here, the course material

is presented, users can communicate/collaborate with each other,

assignments can be handed in and much more. This is the part in which a

typical user spends most of the time in Luvit and actually does most of the

work.

Administration is an administrative tool for managing courses and users in

Luvit. Here, it is also possible to manage which menus and functions that

are shown in Education and Portal.

In this thesis, the authors will only concentrate on Luvit Education.

9

Figure 1: Start screen in an example course in Luvit Education

2.2 Under the hood

Luvit is a web-based system. It was from the beginning built in Active

Server Pages with COM-components developed in Visual Basic. In 2005

the system was entirely re-designed.

Today, the front-end interface is built with HTML, CSS and JavaScript.

This means that it works on all platforms that have a modern web browser,

like Windows, Linux and Mac systems.

The back-end is built with Microsoft technology. ASP.NET is used with the

language C# which communicates with a database built in Microsoft SQL

Server.

10

Figure 2: Software design of Luvit

11

CHAPTER 3

3 Introduction of the frameworks

3.1 Why web based mobile applications

There are two ways of building a mobile application. One approach is to

develop in the native language of the device. The other way is to make a

web based solution that works for different devices and platforms [4].

A mobile web application is not installed on the device but is instead

reached from a web browser as opposed to native applications. Native

applications also have access to a phone’s hardware and core functionality,

like GPS, camera and vibrator.

There are many advantages of web applications. One is that the developers

only have to maintain and develop one application that works for several

platforms. The availability of the application is better because it is directly

reachable from any device that has a web browser. Also, as a web

developer it is easier to get into the development process in contrast to

learning a whole new programming language.

One of the biggest drawbacks of a web-based solution is the degraded

performance when using JavaScript frameworks. The hardware of a mobile

device has limited performance and the application might not execute as

smoothly as desired since JavaScript can be quite demanding.

One advantage when developing native applications is, as mentioned

earlier, the easy access to core functionality of the mobile device. You have

more freedom to make use of the entire phone, and not just the web

browser. Another big benefit is that the application often runs more

smoothly, because it can utilize the hardware better.

To make a mobile web based application look and feel native, there is a

wide range of different frameworks and tools to choose from. As the mobile

12

market has increased during the last years, several new frameworks have

emerged. Since it is not possible to examine all frameworks that exist, the

most popular ones will be selected. The results can be seen in the following

chapters.

3.2 Sencha Touch

Sencha Touch is, according to their homepage, the first HTML5 based

mobile web application framework [5]. It offers developers access to a

variety of components like buttons, lists and icons. The framework also has

support for animations, touch events and local data storage. As mentioned

above, it takes advantage of HTML5 but also CSS3 and JavaScript.

The framework generates its own DOM
1
 (Document Object Model) instead

of enhancing existing HTML code. This means that the HTML is created

dynamically, either manually by the developer or automatically by Sencha

Touch. This makes it feel like developing a real application instead of a

web based one.

Sencha has earlier offered several tools using JavaScript for production of

feature rich web sites. Sencha Touch was created to build rich web

applications for mobile devices. They officially support iOS, Android and

BlackBerry but works with all WebKit
2
 based browsers, like Google

Chrome and Safari.

Sencha Touch has support for touch events, like pinch and rotate gestures.

It also has automatic adaption to screen resolutions which is an important

feature since resolutions differ much between devices.

Figure 3: Examples of touch events supported by Sencha Touch [Online image]

http://www.sencha.com/products/touch/

1
 The DOM is an interface that scripts can use to access and dynamically update the

content and structure of a document, often a HTML document [18]
2
 WebKit is a layout engine that helps web browsers to render web pages correctly [19]

13

The theming in Sencha Touch is made in CSS3 with the help of SASS
1
.

This makes it relatively easy to change the appearance of the application for

developers familiar with regular web development. CSS3 can, in contrast to

its predecessors, make use of rounded corners and gradient backgrounds. It

can also be used for animations and Sencha Touch utilizes this in their

product allowing flexible and easy animations between screens and views.

The mobile framework uses HTML5 for video and audio playback but also

for offline data storage, making it possible to develop applications that can

function offline as well.

3.3 jQuery Mobile

The main focus of jQuery Mobile, which is an open source project, is to

make it possible for developers to “write less, do more” [6]. What this

means is simply that development of one web application should be enough

to make it available for the most common mobile platforms.

jQuery is a well-known JavaScript library that has been extensively used

for web development during the past years. jQuery Mobile was announced

in august 2010 and is at the time of writing only available in an alpha

version.

This JavaScript framework provides developers with a library of different

user interface components such as lists, buttons and form elements. The

framework is built using standard semantic HTML aiming at making the

applications accessible from a wide range of devices, for example iPhone,

Android, BlackBerry, Windows Phone, Palm and Symbian.

Unlike Sencha Touch, the developer has to manually write the HTML code

making it more like traditional web development.

The library is small in size, around half the size of Sencha Touch when it is

minified
2
. This makes it fast to download even on devices with poor

internet access.

1
 SASS is a meta-language that improves the functionality of CSS and adds features like

selector inheritance and support for variables [20].
2
 Minified is a term describing that a library or similar is reduced in size by removing

white space characters and comments for instance [21].

14

jQuery Mobile has support for basic touch events like tap and swipe but

lacks support for more advanced touch gestures like pinch and rotate.

3.4 Titanium Mobile

Titanium Mobile differs from the previously mentioned tools. The code

written for the application is still in JavaScript but is translated to the native

language of the desired device [7]. This makes it look and feel even more

like a real native application and offers potential for better performance.

The appearance follows the standard look of the device. This means that an

application developed in Titanium Mobile for a specific platform will look

like a regular application developed in the native language.

Titanium Mobile supports iOS and Android. An application must be

adjusted to fit a specific platform in order to access different features of the

device.

Applications created with this tool cannot be accessed from a web browser

in the same way as applications developed with Sencha Touch or jQuery

Mobile since the source code is compiled to the native language of the

device. Therefore it has to be run as a regular application. Thus,

applications created in this tool are not considered to be web applications

even though they are written in JavaScript.

One of the benefits with Titanium is that core functions of a device can be

used which enriches the applications.

3.5 PhoneGap

In April 2009, PhoneGap won the Web 2.0 Expo LaunchPad competition.

Since then, it has been downloaded over 350,000 times [8].

Unlike the other frameworks in this chapter, PhoneGap cannot be used by

itself. The actual user interface needs to be built by the developer. The idea

of this is that the developer can use whatever web technology best suitable

for the situation. This means that PhoneGap can be used together with both

jQuery Mobile and Sencha Touch in a good way.

PhoneGap is actually a solution that wraps the web application and turns it

into a real application that is installed on the device instead of running on a

web browser. Because of this, native features of the device can be accessed.

15

It has support for all the larger mobile platforms available today, like

BlackBerry and Symbian but most of the features work best in Android and

iOS devices.

PhoneGap provides a cloud
1
 based build service which allows the

developer to upload the web application and get back the executable

application for the chosen platforms. All the actual compilation gets done in

the cloud.

Figure 4: the wrapping of PhoneGap

1
 The definition of Cloud Computing is, according to Sveriges IT-arkitekter, “applications

that are delivered as services over the Internet but also the hardware and software that

provide these services” [22].

16

CHAPTER 4

4 Comparison of the frameworks

The purpose of the initial part of this project is to investigate and compare

possible tools for the development of Luvit for mobile platforms. The

chosen tool must meet several requirements in terms of performance,

platform support and interface appearance. It is important that the tool

provides good usability for the end user and also that it is relatively easy to

use for development. For the assessment of these criteria, prototypes in the

different frameworks are being developed.

To be able to make a fair evaluation it is important to make the prototypes

as alike as possible, both regarding appearance and functionality. The

prototypes are also tested on the same devices. These are Apple iPhone 3G

with iOS 4.1, Apple iPad with iOS 4.3 and ZTE Blade with Android 3.3.

4.1 Interchange of data

The final solution of Luvit Mobile needs to be able to both read and write to

the database of Luvit. Therefore, it is a good idea to examine possibilities

for this in the prototypes instead of just presenting “dummy data”. One

might think that it is just as simple as re-using existing code from Luvit for

the prototypes but it is more difficult than that since different technologies

are going to be used.

Usually in an ASP.NET project, every page has its own code-behind file.

The page-files, with the extension “.aspx”, contain static HTML-markup

and markup that define so called ASP.NET Web controls. These controls

are tags that are understood by the server, i.e. the code-behind file. An

example is shown below with an ASP.NET Label control.

17

Test.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "---//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head runat="server">

<title>Example page</title>

</head>

<body>

 <form id="form1" runat="server">

 <div>

 <asp:Label runat="server" id="LblHello" />

 </div>

 </form>

</body>

</html>

Test.aspx.cs

public partial class HelloWorld : System.Web.UI.Page
{

 protected void Page_Load(object sender, EventArgs e)

 {
 LblHello.Text = "Hello, world";

 }

}

When the page loads, the text property of the label is set to “Hello, world”

in the code-behind and is presented to the user in the aspx page.

The code-behind approach is a way to separate content from presentation in

contrast to the classic ASP where the server-side code usually was mixed

within the HTML-markup and therefore difficult to handle when pages

turned large.

This approach is not possible with most of the tools and frameworks in this

chapter. Regular HTML-files need to be used and since the examined

frameworks and tools use JavaScript that is executed on the client-side it is

not possible to call the functions in the code-behind class since that is

executed on the server-side before the client-side code.

So how does one pass information from a database to a JavaScript

framework? The solution is to use a web service or a HTTP handler. In this

18

case a HTTP handler is used. The handler is a single file with the extension

.ashx.

Handler.ashx

<%@ WebHandler Language="C#" Class="Handler" %>
using System;
using System.Web;

public class Handler : IHttpHandler
{
 public void ProcessRequest(HttpContext context)
 {
 context.Response.ContentType = "text/plain";
 context.Response.Write("Hello World");
 }

 public bool IsReusable
 {
 get
 {
 return false;
 }
 }
}

ProcessRequest is the method that will be invoked when the handler is

requested and it is here the communication with the database will occur

later. In the case above, all it does is returning the text “Hello World” but in

a real world application it most probably makes a call to some sort of

database and returns that response to the web application. That is exactly

what will be the case in the prototypes in this chapter.

The data that is returned is usually in the form of XML or JSON. XML is

the older of the two and its syntax can be seen below.

XML syntax

<card>
 <fullname>Anders Forslund</fullname>
 <emailaddrs>
 <address type='work'>anders@work.com</address>
 <address type='home'>anders@home.com</address>
 </emailaddrs>
 <age>25</age>
</card>

19

JSON is a newer format and has gained popularity in the recent years due to its

simplicity. For this reason it will be used in the prototypes. The syntax is shown

below.

JSON syntax

{
 "fullname": "Anders Forslund",
 "emailaddrs": [
 {
 "type": "work",
 "value": "anders@work.com"
 },
 {
 "type": "home",
 "value": "anders@home.com"
 }
],
 "age": "25"
}

The frameworks have good support for handling both of the formats.

4.2 Sencha Touch

The first framework that is going to be reviewed is Sencha Touch. As

mentioned before, this framework has been around for a while and thus one

can expect great things from this it.

In the moment of writing, version 1.1.0 is the latest one so therefore that is

the obvious choice. The Sencha Touch installation folder contains various

example applications and a large application that shows off most of the

features of the framework. This application is called Kitchen Sink. Here,

one can try out the functions live and get code examples for them. Also, a

small tutorial is provided on how to get started with the development.

4.2.1 Getting started

To try out the Sencha Touch SDK a simple Hello World application will be

created. The application should consist of a HTML-file, the Sencha Touch

library file and the Sencha Touch standard stylesheet file.

20

The HTML file should contain references to the files mentioned above.

Index.html

<html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">

 <title>Hello World</title>

 <script src="sencha-touch.js" type="text/javascript"></script>

 <link href="sencha-touch.css" rel="stylesheet" type="text/css" />

 </head>

 <body></body>

</html>

As expected, nothing happens when visiting index.html from a browser.

Some code needs to be included that utilizes the Sencha Touch library.

Usually, this code is included in a separate JavaScript file and referenced in

index.html but in this simple case it is placed directly in the HTML file.

Code snippet in index.html

<script type="text/javascript">

 new Ext.Application({

 launch: function() {

 new Ext.Panel({

 fullscreen: true,

 html: 'Hello World'

 });

 }

 });

</script>

This simple application creates a panel which contains some HTML, in this

case the text “Hello World”.

4.2.2 Developing the prototype

The example above is a good way of getting started but the prototype needs

to be more advanced than that. It is a good idea to include regular

components such as lists and forms which will be suitable in the final

product.

21

First, a general layout needs to be created. A common approach, using

Sencha Touch, is to use a card layout. This means that the application

consists of different cards, each containing different components. Only one

card at a time can be visible.

To begin with, an Ext.List is created containing course participants for an

arbitrary course. This is our first card. To fill a Sencha Touch list

component with information, an Ext.data.Store is used. An AJAX
1
 call is

made to the HTTP handler which returns the users in JSON format and

loads it into the store.

Example of filling a store component with data. Irrelevant code is omitted.

var usersStore = new Ext.data.Store({

 proxy: {

 type: 'ajax',

 headers: { 'Content-Type': 'application/json;charset=utf-8' },

 dataType: 'json',

 url: 'Handler.ashx?function=GetUsers&courseID=5186'

 }

});

usersStore.load();

After this, the store can be binded to the list. To make it look more

professional the Ext.Toolbar component is added as well. A toolbar can

contain a headline, buttons and other components that can help navigation

in the application. A useful ability with the toolbar in Sencha Touch is that

it is “dockable”, meaning that it can be locked into a fixed position and still

be seen when scrolling in the application.

To try out some transitions and interactions with the application, more

functionality is added. Each item in the list has a listener that reacts to a tap

event. When tapping a list element, in this case a course participant, the

application switches cards with a slide transition to a second card which

will show the user info.

1
 AJAX (shorthand for “asynchronous JavaScript and XML”) is a group of techniques used

to make web applications more interactive. One example is the ability to make calls to the

web server without reloading the page [23]

22

The switching of cards

mainPanel.setActiveItem(cardUserInfo, {type: ‘slide’})

Before the card switch, another AJAX request to the handler is made to

collect user information about the tapped user. This is then loaded into an

Ext.form.FormPanel which, in this case, is the second card.

The form panel contains two text fields, one which holds the name and one

with the e-mail address of the user. To try out some more components, the

text fields are put into a fieldset. This makes them appear in a group with a

nice headline.

The form panel also contains a button, for saving changes made in the e-

mail field. This is, once again, taken care of with the HTTP handler that

makes the changes to the database.

Another thing worth mentioning is that a back button is added to the toolbar

to be able to go back to the previous card. This needs to be done manually

and is not taken care of by the framework.

23

Figure 5: The Sencha Touch prototype

4.2.3 Performance and appearance

Testing the prototype on actual mobile devices is a good way to get an idea

on how the framework performs.

As the Sencha Touch library is rather large, it takes some time to load the

web application. The loading time is around twice as long as the loading

time for the jQuery prototype.

When adding additional functionality to lists and other components, the

performance gets reduced on some of the devices. It is therefore important

to find a balance between an appealing appearance and performance of the

application.

Animations and transitions work better and more smoothly on iOS devices

than with Android. This is probably because Android devices do not utilize

the GPU when using the web browser [9].

The general user experience with Sencha Touch and the performance is that

it is not as smooth as a native application but works very well on newer

Apple devices and satisfactorily on newer Android devices. Some

24

choppiness can occur but not as much that it interferes with the user

experience.

The standard appearance of the framework looks a lot like the user interface

of an iPhone. The application gets a professional look without much effort

at all.

The Sencha Touch installation also comes bundled with other themes.

Stylesheets are available to make the web application look like a native

BlackBerry, Android or iPhone application.

To create custom themes, SASS is used. This process starts with creating a

file with the file extension “.scss”. There are two ways of affecting the

appearance of the applications. One of them is to override some standard

variables that exist. There are about 50 variables available, for instance

$base-color, $base-gradient and $tabs-bottom-radius. Most of the variable

names are self-explanatory, which makes them easy to use.

Example of variable overriding

$base-color: #7A1E08;

$base-gradient: 'glossy';

$body-bg-color: #fbf5e6;

The other way of adjusting the appearance is to just use regular CSS.

Example usage of regular CSS

body {

 font-family: Georgia;

 color: #5a3d23;

}

When satisfied with the adjustments, Compass is used to compile the file

into a regular CSS file that can be included in the web application.

Compass is a stylesheet authoring tool recommended by the Sencha Touch

crew [10].

25

In Sencha Touch there are also over 300 different icons included that one

can use in a web application. The icons are very stylistically pure which

make them suitable for most applications.

4.2.4 Functionality

The most commonly used functionality in Sencha Touch is of course the

one related to the user interface. The library provides components like

panels, buttons, lists, toolbars, tabs, dialogs, form elements and much more.

Below is a small example of how a component can be used.

Creation of a tab bar

var bar = new Ext.TabBar({

 dock: ‘top’,

 items: [{text: ’Example button’}]

});

var panel = new Ext.Panel({

 dockedItems: [bar]

});

An essential part of Sencha Touch is the support for different touch events.

Examples of touch events that can be handled are tap, doubletap, swipe,

pinch, touchmove and about 10 more. Worth mentioning is that jQuery

Mobile, for instance, only has support for half as many touch events.

Different techniques for fetching data are supported. As mentioned before,

AJAX is one of them but JSONP and YQL can also be used.

JSONP, or “JSON with Padding”, is used when collecting data from a

server in a different domain since this is not possible with AJAX [11].

YQL, or Yahoo Query Language, is an SQL like language that lets the

developer query and filter data from a web service [12].

Sencha Touch also supports embedding of audio and video in a simple way.

26

Embedding of an audio file in a panel

var audioPanel = new Ext.Panel({

 items: [{

 xtype: 'audio',

 url: 'test.mp3',

 loop: true

 }]

});

4.2.5 Developing in the framework

Even for experienced web developers Sencha Touch can be rather difficult

to develop in. When browsing through various forums and mailing-lists on

the Internet, people in general have complaints about the steep learning

curve.

Sencha Touch works differently from more common JavaScript

frameworks like jQuery and Prototype. It creates the interface, i.e. the

HTML code, dynamically and it is harder for a developer to have full

control of what is happening when accustomed to the more static approach

that the latter frameworks use.

The developer does not write any HTML code in the actual HTML file, but

has to use either regular JavaScript or the Sencha Touch API.

A typical Sencha Touch application consists of several different panels.

Each panel has its own content consisting of different components. These

components can either be created dynamically when the panel is shown or

created statically and filled with data when the panel is shown.

27

Dynamic creation of a text field when tapping a button

var button = new Ext.Button({

 text: 'Dynamic creation',

 handler: function (btn, evt){

 panel1.add({

 xtype: 'textfield',

 label: 'Name:',

 value: 'Christian Veinfors'

 });

 mainPanel.setActiveItem(panel1); //switches to panel1

 }

});

Static creation of a text field. It is shown when tapping the button

var panel1 = new Ext.Panel({

 items: [{

 xtype: 'textfield',

 label: 'Name:',

 value: 'Christian Veinfors'

 }]

});

var button = new Ext.Button({

 text: 'Static example',

 handler: function (btn, evt){

 mainPanel.setActiveItem(panel1); //switches to panel1

 }

});

To start creating web applications with Sencha Touch, one needs to know

data handling (as mentioned earlier with AJAX requests) and the concept of

panel layout.

4.3 jQuery Mobile

jQuery Mobile is still in its early stages. In the moment of writing, the latest

version available is Alpha 4.1. No date is yet decided when a stable version

is to be released.

The archive available on the jQuery site contains the actual jQuery Mobile

library file and a CSS-file. It also contains a folder with icons and images.

One thing worth mentioning is that the regular jQuery library has to be

downloaded as well.

28

There are plenty of demos and examples of how to use jQuery Mobile on

the homepage but no real tutorials.

4.3.1 Getting started

To try out the framework a simple test application is created. It consists of a

HTML file, the jQuery Mobile library file and the CSS file.

The HTML file consists of references to the library files and the stylesheet

file.

Index.html

<!DOCTYPE html>

<html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">

 <title>Hello World</title>

 <script src="jquery-1.5.2.min.js" type="text/javascript"></script>

 <script src="jquery.mobile-1.0a4.1.min.js"

type="text/javascript"></script>

 <link href=" jquery.mobile-1.0a4.1.min.css" rel="stylesheet"

type="text/css" />

 </head>

 <body></body>

</html>

In contrast to Sencha Touch, the actual HTML code is written inside the

body tag. Each page of the application is identified with a div element with

the data-role=”page” attribute.

Inside the div, any HTML markup can be used. To try out the framework,

some other typical data-roles are used.

29

The content inside the body tag

<div data-role="page">

 <div data-role="header">

 <h1>Title text</h1>

 </div>

 <div data-role="content">

 <p>Hello World</p>

 </div>

 <div data-role="footer">

 <h4>Footer text</h4>

 </div>

</div>

The example code above creates a simple web application with a header,

footer and some text in between. Worth mentioning is that not a single line

of JavaScript has been written yet. The data-role attribute tells jQuery

Mobile how the element should behave and be styled.

4.3.2 Developing the prototype

The first notable thing when starting the development is that in jQuery

Mobile every page in the web application is its own HTML file.

This makes it possible to take advantage of the code behind approach of

ASP.NET for handling external data, instead of using a HTTP handler or

web service.

To be able to compare this prototype with the Sencha Touch prototype,

some corresponding components and functions are used.

Again, a list is used to show some course participants.

Creation of list in the content div

<ul data-role="listview">

 <asp:Repeater ID="UserList" runat="server"

OnItemDataBound="UserList_ItemDataBound">

 <ItemTemplate>

 <asp:HyperLink ID="LnkUser" runat="server"></asp:HyperLink>

 </ItemTemplate>

 </asp:Repeater>

30

When setting the data-role attribute to “listview” on an ul tag (unordered

list), the jQuery Mobile framework automatically makes the list more

mobile-friendly, both in functionality and style.

The users are fetched from the database in the code behind file. This data is

binded to the ASP.NET repeater component, which will fill the list. What

this component does is to fetch data one row at a time and construct a list of

it.

Each list item is in the form of a hyperlink, which will navigate to the user

information page. This page consists of labels and text fields to show the

name and e-mail of the user. A button is also added to be able to save

possible changes. The button functionality is, once again, taken care of in

the code behind.

All these components are written in regular HTML markup and jQuery

Mobile takes care of the styling automatically.

When tapping a user in the list a slide transition is used by default to

display the user information page. In contrast to Sencha Touch, this

transition does not need to be explicitly defined but is taken care of by the

framework. Also, a back-button is added automatically to the header by

jQuery Mobile.

31

Figure 6: The jQuery Mobile prototype

4.3.3 Performance and appearance

The first thing noticed when trying out the prototype on some mobile

devices is that the performance of jQuery Mobile is not as good as with

Sencha Touch. Scrolling is less smooth and transitions are a little choppier,

especially on Android devices.

As mentioned in chapter 4.2.3, the loading time is faster for jQuery Mobile

than for Sencha Touch.

The standard appearance of the framework uses discrete colors. Black, grey

and white are mostly used throughout the components. It makes the

application look stylish and professional.

The theming in jQuery Mobile is made by adding the attribute data-theme

to an optional HTML tag. The attribute can be set on entire pages but also

on single components.

32

Example of changing a toolbar to theme b

<div data-role="header" data-theme="b">

 <h1>Page Title</h1>

</div>

There are 5 different themes available at the moment, called a, b, c, d and e.

Figure 7: the different themes available in jQuery Mobile

In contrast to Sencha Touch, there is no smooth way of creating custom

themes in jQuery Mobile. The main CSS file can of course be modified but

it takes a lot of work and trial and error to get things right. According to the

jQuery Mobile blog, better support for theming will be a priority in the

future [13].

The framework comes with around 20 icons that can be applied on

elements such as buttons and lists. This is less than what Sencha Touch

offers.

4.3.4 Functionality

As expected, all the regular components such as buttons, lists, form

elements and dialogs can be utilized in the framework. One important

component that jQuery Mobile lacks is a tab bar, which is commonly used

on mobile devices.

Also, the toolbar component in the framework does not work as well as the

one in the version of Sencha Touch. It does not have good support for fixed

positioning which is one of the features one would expect from a toolbar.

33

There is no specific functionality for handling data in jQuery Mobile, but

one has to use regular jQuery instead. This has support for AJAX and

JSONP. Since jQuery also has a large plug-in library, there are many other

possibilities for handling data exchange. This plug-in library can of course

also be utilized for other uses in a jQuery Mobile application.

Example of fetching data with AJAX in jQuery

$.ajax({

 type: ‘POST’,

 url: 'Handler.ashx?function=GetUsers&courseID=5186',

 contentType: ‘application/json; charset=utf-8’,

 dataType: ‘json’

})

4.3.5 Developing in the framework

Developing a web application in jQuery Mobile is not very different from

developing a regular web site. For instance, each page in a mobile

application is its own HTML file in contrast to a Sencha Touch application.

A web developer can rather easily and quickly create something that feels

like a mobile application.

As seen earlier, a typical jQuery Mobile application mainly consists of

regular HTML elements. To utilize the jQuery Mobile functionality,

attributes are added to these elements (for instance, the data-role attribute).

Then the framework styles and adds some typical web application

functionality such as transitions between pages.

The actual programming in the application is done with jQuery so for a

developer experienced in that, it will be a small step to take to be able to

make mobile web applications in jQuery Mobile.

4.4 Titanium Mobile

As mentioned earlier in this thesis, the code written in Titanium Mobile

gets translated to the native code of the mobile device. Therefore, the

expectations on applications created in this framework are quite high,

34

especially when it comes to performance.

To get started with the development, Titanium Developer needs to be

installed. This is a development environment used to develop Titanium

Mobile applications. It is also necessary to install the desired software

development kit for each target platform. For instance, if one is to develop

an application for Apple and Android devices both SDK’s need to be

installed.

4.4.1 Getting started

When creating a new mobile project in Titanium Developer, a test

application is automatically generated. This simple application consists of a

tab bar with two tabs. Each of these tabs has its own page. This can help

developers getting started by looking at the generated source code.

In Titanium Developer, there are two choices of how to run the created

application. Either in an emulator or on an actual device connected to the

computer. When launching the application it is first compiled into native

code and then installed on the device.

4.4.2 Performance

To get a fair view of the performance of Titanium Mobile, the Kitchen Sink

application was tried out on a real Android device. The performance did not

meet the high expectations. Transitions and the overall flow of the

application were not as smooth as one would expect from a native

application. Though, the start-up time is significantly better than with

Sencha Touch and jQuery Mobile.

4.4.3 Difficulties

The most prominent difficulties and drawbacks of Titanium Mobile are

testing and distribution. Each time a change is made to the application it has

to be compiled and installed on the device or emulator. This is rather

tedious compared to testing of a web based application.

The option of making the application executable through a web browser

also disappears when using this framework. Instead the application has to

be distributed through Apple App Store and Android Market.

35

The performance needed to be really good in order to outweigh the

drawbacks of the framework. Since this was not the case, it was decided not

to examine Titanium Mobile any further. Because of this, no prototype was

created.

4.5 PhoneGap

PhoneGap is recommended by Sencha for deploying web applications. This

makes it suitable to use the prototype developed in Sencha Touch to try out

PhoneGap.

The cloud service provided by PhoneGap for building the application is

used in this case. Hence, it is not necessary to install PhoneGap or any

mobile SDK on the computer in order to use the tool.

4.5.1 Getting started

There is only one requirement that needs to be met for the web application

to be able to use PhoneGap's build service. This is that the application

contains an HTML file. In reality, no application consist of just that so in

the typical case a zip archive is uploaded instead with all the necessary

files. Once this is done, the build service will create installation files for all

the different platforms that the developer can download and install.

4.5.2 Developing the prototype

To try out PhoneGaps’ support for accessing native features of different

mobile devices, the Sencha Touch prototype is expanded. The functionality

added is the ability to capture photos with the camera and then upload them

to a server.

36

PhoneGap code mixed with Sencha Touch code to access the gallery of a device

new Ext.Button({

 text: 'Upload photo',

 listeners: {

 click: {

 fn: function(){

 navigator.camera.getPicture(onPhotoURISuccess, fail1, {

 quality: 30,

 destinationType: navigator.camera.DestinationType.FILE_URI,

 sourceType: navigator.camera.PictureSourceType.PHOTOLIBRARY

 });

 }

 }

 }

})

As seen in the example code above, it is not necessary to write much in

order to add native features. Of course, this prototype has to be tested on a

real mobile device with a built in camera since no emulators provide this.

Since all basically PhoneGap does is to wrap a web application, neither the

performance nor appearance is affected. This only depends on the

framework that the application is built with, for instance Sencha Touch.

Figure 8: PhoneGap prototype when the upload button has been tapped

37

4.6 Conclusions

There are many aspects to consider when choosing the most appropriate

solution for developing Luvit Mobile. The main focus has been much on

features that can rather easily be measured or experienced visually. But in

the end, it is still the general user experience that matters. Even if the

application performs well and looks good it is not guaranteed that the end

user will enjoy it.

As a developer it might be hard to find the balance between user experience

and more measurable properties of the application. In the end, it will more

or less be our subjective opinions on what is the best choice.

4.6.1 Performance

Performance is an important aspect of any application. When it comes to

mobile applications, it is even more important due to limited hardware

resources.

PhoneGap is excluded from this part of the comparison of the frameworks

for apparent reasons. Sencha Touch and jQuery Mobile falls into one

category while Titanium Mobile falls into another since it compiles the

source code into native code. Therefore, the demands for Titanium are

higher.

When it comes to start-up time, Titanium is clearly the best choice. When

running Sencha Touch or jQuery Mobile applications from an external web

server, the loading time is fairly slow. Sencha Touch is the slowest of the

three.

When it comes to general flow and transitions in the applications, Titanium

is a disappointment. It performs a little better than the other two

frameworks but you would expect much more. Sencha Touch performs

slightly better than jQuery Mobile.

4.6.2 Functionality

To get a fair assessment of the different frameworks in terms of

functionality we will compare Titanium Mobile with Sencha Touch and

jQuery Mobile when both are combined with PhoneGap.

38

Both PhoneGap and Titanium Mobile have support for the most common

native features like camera, GPS and notifications. PhoneGap has support

for more platforms, though, which is a great advantage.

When it comes to functionality of the user interface, both Titanium Mobile

and Sencha Touch offers everything one might wish. jQuery Mobile is still

a little behind but has potential, especially since it is only in an early alpha

version.

Sencha Touch offers great possibilities for changing or customizing your

own theme which jQuery Mobile still lacks.

4.6.3 Final decision

When taking all the aspects in this chapter in consideration, the final choice

for developing Luvit Mobile is by using Sencha Touch together with

PhoneGap. The functionality and performance of Sencha Touch is

satisfying but the most important reason for choosing Sencha Touch is the

overall experience of the framework. It has a steep learning curve but when

overcoming this obstacle it is a delight to work with.

To fully utilize a mobile device and more of its functions, PhoneGap is the

obvious choice to combine with Sencha Touch.

4.6.4 Tools

Since Sencha Touch is a rather new framework, the range of tools is quite

limited. The only development environment with syntax support for Sencha

Touch found was Aptana Studio 3. It worked reasonably satisfying and

made the implementation a bit easier.

The web browser Google Chrome was used extensively during the

development, both for its good support for Sencha Touch but also for the

built-in developer tools [14]. The graphical debugger can be helpful when

debugging JavaScript and the Elements panel for inspecting the DOM. The

DOM can also be edited directly which can save a lot of time and makes the

development a lot easier.

39

Another great tool that was used was Fiddler, which is a web debugger that

logs the HTTP traffic [15]. This is very useful when debugging AJAX

requests which is used through-out Luvit Mobile.

40

CHAPTER 5

5 Requirements specification

Before starting the development it is needed to know what has to be

implemented. The requirements were developed iteratively. For instance,

on the first meeting only a handful of requirements were decided to be

implemented.

In the end, the requirements specification included the following features.

 Authentication: The user should be able to log in and log out in a

safe way. The same credentials as for regular Luvit are to be used.

 Course selection: A user should be able to select a course that

he/she already participates in.

 Course contents: As in regular Luvit, the user should to be able to

access different course content. This can be HTML files, PDF files,

picture files, links to other sites, tests and so on. The course

administrator chooses what content are “mobile friendly” and

thereby shown in the application.

 User information: A user should be able to view the other

participants in a course. Also, a subset of a users’ profile

presentation from regular Luvit is to be shown such as e-mail,

phone number and a profile picture. When pressing the e-mail or

phone link the mobile device should open the e-mail application or

call the number.

 Message handling: A user should be able to read and write

messages to other course participants.

 Bulletin board: A user should be able to read news in a course that

the administrator has published.

 Course activities: A user should be able to view different activities

in the course. This can be when someone changes their personal

presentation, when someone makes a personal status update and so

on. A user should also be able to make their own status update and

comment on others.

41

 Calendar: A user should be able to see the upcoming events in a

course. This can both be course events or self-added events.

 Assignments: A user should be able to view all kind of information

about the assignments in a course and also the history about handed

in assignments.

 Tracking: A user should be able to view the different personal

results in a course. This can be the general course status, status

about assignments and status about assessments.

42

CHAPTER 6

6 Results

6.1 Application structure of the front-end

The design pattern used in the application is called Model-View-Controller

(MVC). In the latest versions of Sencha Touch it is recommended to use

this.

Figure 9: the concept of MVC [24]

The benefits of using the MVC pattern is that the codebase gets a good

structure which is less complex and therefore easier to maintain and

develop further [25].

It is often wise to separate data (Model) from the presentation layer (View).

By doing this, one can for example re-organize the data without having to

change the view and vice versa.

43

 Model: Manages the data handling of the application. It also

decides in what form data is represented.

 View: Renders the data into a user interface. This is the part of the

application that is visible to the user.

 Controller: When a user interacts with the application, the

Controller instructs the Model and View with changes to be made.

Figure 10: the structure of Luvit Mobile

As shown in Figure 10, the MVC pattern is used in the finished Luvit

Mobile application. Worth mentioning is that a folder named stores also has

been added which contains data structures that holds the data that the Model

represents. Some code examples that have been simplified are shown

below.

View: consists of a list component that shows Title and Date of the model

Luvit.views.Activity = Ext.extend(Ext.List, {

 store: Luvit.stores.Activity,

 itemTpl: '<p class="title">{Title}</p><p class="date">{Date}</p>',

 ui: 'round'

});

44

Model: decides how the store should be filled

Luvit.models.Activity = Ext.regModel('Luvit.models.Activity', {

 fields: [

 {name: 'Title', type: 'string'},

 {name: 'Date', type: 'string'}

]

});

function fillActivityStore() {

 // AJAX call to a web service. Fills the corresponding store with data.

}

Store

Luvit.stores.Activity = new Ext.data.Store({

 model: 'Luvit.models.Activity'

});

Controller: sets what view to be shown

Ext.regController("Activity", {

 show: function() {

 Ext.getCmp('backButton').show();

 Ext.getCmp('toolbar').setTitle('Activity');

 Luvit.views.viewport.setActiveItem(

 Luvit.views.Activity

);

 }

});

6.2 The back-end

The back-end consists of .NET Web Services. The web services basically

consist of web methods which get and set data from the database.

The objects that are returned and received by the web services are in the

JSON format.

45

Below is a code example of a web method.

The object that is returned

public class Activity

{

 public string Title { get; set; }

 public string Date { get; set; }

}

The web method. Returns the Activity object in JSON format.

[System.Web.Services.WebMethod(EnableSession = true)]

[ResponseFormat = System.Web.Script.Services.ResponseFormat.Json)]

public Activity GetActivity()

{

 DataTable dt = GetData(); // Fetches information from the database

 var activity = new Activity();

 activity.Title = dt.Rows["title"].toString();

 activity.Date = dt.Rows["date"].toString();

 return activity;

}

In the figure below the software design for Luvit Mobile can be seen. In

comparison with figure 2, the entire front-end has been replaced. Some

parts from the back-end have been reused but are now in the form of

webservices. The same database is still used.

46

Figure 11: Software design of Luvit Mobile

6.3 Encountered problems

During all kind of development, problems occur. This is almost impossible

to avoid. In this project a lot of minor problems emerged since Sencha

Touch had not been used before by the developers of Luvit Mobile. Also,

technologies like AJAX had not been used before.

One of the small problems encountered was how to handle the back button

functionality. Some pages in the application could be reached from several

places so one cannot just save the previous page in a history variable. This

was solved with the stack data structure, which saved all the previous pages

a user has visited. When going back, the latest visited page was popped

from the stack and redirected the user to the right location.

On some places in the application the Sencha Touch components lacked

some functionality that was needed to make the application work in a

satisfying way. For instance, some small components were styled manually

with the help of JavaScript and CSS.

6.3.1 Downloading on Android

One of the biggest problems that occurred was the lack of support for

downloading files in regular Luvit to Android devices. The way that Luvit

47

is built, it streams out files to the client. Before the whole output stream had

been sent to the client it always stopped for no apparent reason and only on

Android devices.

After reading a lot of forums and development blogs a solution was found

[16]. When streaming out the file, a content-type and filename had to be

added to the HTTP header in a very specific way.

The content-type that was needed was application/octet-stream. The

filename had to be surrounded with double quotation marks and the file

extension MUST to be in upper case. After changing this, the file download

worked perfectly on Android devices.

6.3.2 Embedding files in Sencha Touch

Another large problem that took a lot of time during the development was

the limited support of embedding files in Sencha Touch. To make the

application intuitive and easy to work with, the user should not have to

leave it in order to view external files like HTML pages, images and PDF

files.

The problem with just including these files directly in the Sencha Touch

framework is that one loses the built-in ability of the web browser to

interact with them. For example, if an image is too large to be fully

displayed on the screen the user should be able to zoom out using pinch

gestures. Sencha Touch can catch these kinds of events but the developer

has to fully implement what should happen when using them. Since this

works flawlessly in the browser, it would be better to utilize this instead of

building the wheel again.

The simplest solution would be to just open the files in a new browser

window. This is not a good solution for many reasons. The user loses the

ability to easily navigate backwards in the application. Also, if the

application is compiled with PhoneGap and the mobile device does not

support multitasking (like older iPhones) the application has to be restarted.

The solution chosen for Luvit Mobile is a very special one but it gets the

job done. The external file is opened in the same window, but a frame is

added at the top of the window with a Sencha Touch styled navigation bar

with a back button. By doing this, you can fully utilize the browsers’

48

functionality for zooming and scrolling but the user does not notice that

he/she has left the application.

The user is actually redirected to an HTML page consisting of two frames.

A path to the file that should be displayed is included in the query string
1
,

and the file is displayed in the bottom frame using an AJAX request. The

query string also contains a variable that is used when the user taps the back

button in the top frame to go back to the previous place in the application.

Thanks to this solution, the requirement on course contents mentioned in

chapter 5 was fulfilled.

Figure 12: Example of displaying an image file in Luvit Mobile

6.4 Performance

In order to make the user experience of the application as good as possible

it is of great importance to maximize the performance. To make this in an

efficient way it is important to identify possible bottlenecks. According to

1
 The query string is the part of the URL used to pass data to a web application (marked in

bold below)

Example: http://grade.com?data=hello

49

Tommy Maintz, Lead Developer of Sencha Touch, the DOM size is the

most important thing to consider when optimizing web applications [17].

When creating the different pages in Luvit Mobile, this has been taken into

account to make the flow of the application as smooth as possible.

To optimize the performance even more, event listeners on buttons was

created only when needed and removed otherwise. This led to a great

performance boost for this application.

Another thing that increased the general flow of the application was to

avoid showing the loading animation at the same time as a page transition.

Instead the animation was only showed during the AJAX request. When

this call was finished, the animation was removed and then the page

transition was made and the data from the request was shown.

Since the finished application consisted of about 70 JavaScript files with

about 2500 lines of code it was needed to merge these files into one file to

make the loading time better. Also, a minification was done to make this

one file even smaller. This made the file size around 35 percent smaller.

This minification was done with jsbuilder 3 and ycompressor that came

bundled with Sencha Touch. On older phones, the loading times decreased

by over 50 percent.

50

6.5 Final result

The requirements in chapter 5 were all successfully implemented.

Below are some screenshots of the final application.

Figure 13: the main menu of Luvit Mobile and the user profile view

51

CHAPTER 8

7 Conclusions

7.1 Discussion

After having been working with Sencha Touch for a fair amount of time

now, it is easier to draw conclusions regarding advantages/drawbacks about

both the specific framework but also about mobile web development in

general.

The biggest concern in the beginning of the development of Luvit Mobile

was the steep learning curve, mentioned earlier in this thesis. After some

time you get used to the unusual syntax and how it works in general. When

working with the basic components and creating simple applications like

the demo applications on the Sencha site
1
 the development is a smooth

ride.

When it comes to creating a large application with more specific demands,

both in functionality and styling, it gets tougher. This depends a lot on the

immaturity of the framework and sometimes the lack of documentation.

Thus one has to use a lot of special solutions that can be time consuming.

Another concern was the performance compared to native applications. As

Luvit Mobile grew bigger the performance seemed to get worse and we

started to get doubts about the framework. Although, after making the

optimizations mentioned in chapter 6.4 the application started to feel

smooth and fast loading.

When trying out the application on actual mobile devices (as opposed to

simulators), it became more obvious that the optimization changes had

made a great impact on the performance. On older devices the application

does not feel as smooth as one would hope, though.

1
 http://www.sencha.com/products/touch/demos/

http://www.sencha.com/products/touch/demos/

52

When it comes to appearance, there were no problems at all to make it look

and feel like a professional native application. This result was expected

after the investigations in earlier chapters in this thesis.

7.1.1 Native versus web based

So, what are our opinions about Sencha Touch versus a native solution?

When it comes to Luvit Mobile, most of the advantages will probably occur

in the future when the application needs to be maintained. It is so much less

time consuming having to update one web based application instead of

several native ones. Since Grade releases their product Luvit in different

customized versions to different customers, this solution with Sencha

Touch and PhoneGap will work very well.

In our own opinion, Sencha Touch is a well-suited solution for Luvit

Mobile. This is because in Luvit the users mostly just read and write

different kind of information.

For applications with more advanced graphics, such as games, and

applications which utilize much of the devices’ hardware it is wiser to

choose a native solution. This is because with Sencha Touch you run the

application in a web browser which simply gives worse performance than

an application that runs closer to the hardware.

Of course, one can always access hardware functionality with tools like

PhoneGap but it can only utilize a limited set of functions of the device and

not all of them like with a native solution.

As mentioned above, this web based solution is probably the better choice

for Grade as a company but from our point of view we would prefer a little

better performance on older devices. Also, we are more comfortable

working with an object oriented programming language instead of a

scripting language.

In conclusion, we can really recommend Sencha Touch and PhoneGap but

if your applications performance needs to be flawless, even on older

devices, a native solution is the better choice.

53

These web based solutions gets better every day and the performance of

mobile devices is also increasing in a fast pace so the future looks bright.

7.2 Future work

In the future, Luvit Mobile will probably grow larger with more

functionality. Thanks to the good structure in the code base with the use of

the MVC pattern the expansion will be relatively simple.

At the moment, Luvit Mobile only uses PhoneGap to wrap the application

making it possible to install as a native one. As mentioned in chapter 4.5

the tool can be utilized to do much more and will probably also do so in the

future.

54

References

[1] (2011, Mar.) Utbildningssystemet LUVIT. [Online].

http://www.grade.se/luvit-lms.aspx

[2] Grade. (2011, Mar.) Grade. [Online]. http://www.grade.se

[3] Stefan Larsson, Grade. Interview, Mar. 2011.

[4] Jonathan Stark, Building iPhone Apps with HTML CSS and

JavaScript., 2010.

[5] (2011, Mar.) Sencha Touch. [Online].

http://www.sencha.com/products/touch/

[6] (2011, Apr.) jQuery Mobile. [Online]. http://jquerymobile.com/

[7] (2011, Apr.) Titanium Mobile. [Online].

http://www.appcelerator.com/products/titanium-mobile-application-

development/

[8] (2011, Apr.) PhoneGap. [Online]. http://www.phonegap.com/story

[9] (2011, Apr.) Android Issues. [Online].

http://code.google.com/p/android/issues/detail?id=6914

[10] (2011, Apr.) Sencha Touch Theming. [Online].

http://www.sencha.com/blog/an-introduction-to-theming-sencha-touch

[11] (2011, Apr.) JSONP. [Online].

http://bob.pythonmac.org/archives/2005/12/05/remote-json-jsonp/

[12] (2011, Apr.) YQL. [Online]. http://developer.yahoo.com/yql/

[13] (2011, Apr.) jQuery Mobile Blog. [Online].

http://jquerymobile.com/blog/2011/03/31/jquery-mobile-alpha-4-

released/

[14] (2011, Aug.) Chrome Developer Tools. [Online].

http://code.google.com/intl/sv-SE/chrome/devtools/docs/console.html

[15] (2011, Aug.) Fiddler. [Online]. http://www.fiddler2.com/fiddler2/

[16] (2011, Aug.) digiblog.de. [Online].

http://digiblog.de/2011/04/19/android-and-the-download-file-headers/

[17] (2011, Aug.) Performance Optimization for Sencha Touch. [Online].

http://vimeo.com/17699976

[18] (2011, Mar.) W3C. [Online]. http://www.w3.org/DOM

[19] (2011, Mar.) WebKit. [Online]. http://www.webkit.org

[20] (2011, Mar.) SASS. [Online]. http://sass-lang.com/

[21] (2011, Apr.) Wikipedia. [Online].

http://www.grade.se/luvit-lms.aspx
http://www.grade.se/
http://www.sencha.com/products/touch/
http://jquerymobile.com/
http://www.appcelerator.com/products/titanium-mobile-application-development/
http://www.appcelerator.com/products/titanium-mobile-application-development/
http://www.phonegap.com/story
http://code.google.com/p/android/issues/detail?id=6914
http://www.sencha.com/blog/an-introduction-to-theming-sencha-touch
http://bob.pythonmac.org/archives/2005/12/05/remote-json-jsonp/
http://developer.yahoo.com/yql/
http://jquerymobile.com/blog/2011/03/31/jquery-mobile-alpha-4-released/
http://jquerymobile.com/blog/2011/03/31/jquery-mobile-alpha-4-released/
http://code.google.com/intl/sv-SE/chrome/devtools/docs/console.html
http://www.fiddler2.com/fiddler2/
http://digiblog.de/2011/04/19/android-and-the-download-file-headers/
http://vimeo.com/17699976
http://www.w3.org/DOM
http://www.webkit.org/
http://sass-lang.com/

55

http://en.wikipedia.org/wiki/Minification_(programming)

[22] (2011, Apr.) IASA. [Online]. http://www.iasa.se/?p=267

[23] (2011, Apr.) Adaptive Path. [Online].

http://www.adaptivepath.com/ideas/e000385

[24] (2011, Aug.) Slideshare [Online].

http://www.slideshare.net/senchainc/structuring-your-sencha-touch-

application

[25] Leff, A., Rayfield, J.T, "Web-application development using the
Model/View/Controller design pattern”. Enterprise Distributed Object
Computing Conference, 2001. EDOC '01. Proceedings. Fifth IEEE
International, pages 118-127.

http://en.wikipedia.org/wiki/Minification_(programming)
http://www.iasa.se/?p=267
http://www.adaptivepath.com/ideas/e000385
http://www.slideshare.net/senchainc/structuring-your-sencha-touch-application
http://www.slideshare.net/senchainc/structuring-your-sencha-touch-application

56

List of Acronyms

LMS Learning Management System

DOM Document Object Model

HTML Hyper Text Markup Language

CSS Cascading Style Sheets

SASS Syntactically Awesome Stylesheets

SDK Software Development Kit

GPU Graphics Processing Unit

API Application Programming Interface

MVC Model View Controller

