
1

MASTER’S THESIS

Matrix Inversion Using QR Decomposition

by Parabolic Synthesis

By

Nafiz Ahmed Chisty

Supervisors:

 Professor Peter Nilsson and MScEE Erik Hertz

Department of Electrical and Information Technology

Faculty of Engineering, LTH, Lund University

SE-221 00 Lund, Sweden

2

Abstract

Parabolic synthesis is one of the latest methodologies, proposed by Professor Peter Nilsson and Erik

Hertz of EIT department at Lund University (LTH), for the implementation of unary functions in

hardware. In the preceding research conducted at Lund University, it had been shown that parabolic

synthesis is an effective solution, which is both fast and consumes less area compared to all the existing

methods.

The goal of this Master’s thesis is to develop hardware for the generation of three trigonometric functions

(+sine, -sine and +cosine) using the novel approximation methodology, which is based on Parabolic

synthesis, for the use in Givens rotations for implementing matrix inversion using QR decomposition.

Two hardware designs has been developed, one for the parabolic synthesis and another for matrix

inversion but due to time limitations the two hardware designs could not be integrated together. The paper

mainly focuses on the implementation of the three trigonometric functions on both FPGA and ASIC and

compares the result with metrics of speed and area and later a hardware solution for the overall system

has been proposed.

3

Acknowledgements

The greatest gratitude after GOD goes to Professor Peter Nilsson, my Master’s Thesis supervisor and

Examiner, who not only helped me with kind insightful advice and encouragements but also made it

possible for me to finish the thesis successfully by going beyond my expectations in assisting me with

various academic and administrative issues.

I would also like to thank my other supervisor, MScEE Erik Hertz for his kind support and guidance.

Last but not least, I would like to thank my beloved family and all friends for their constant moral support

and courage.

 Nafiz Ahmed Chisty

 Master’s in System-on-Chip

 Lund University (LTH)

 Lund, Sweden

 January 2012

4

Contents

Abstract ... 2

Acknowledgements ... 3

CHAPTER 1 ... 7

1 Introduction ... 7

CHAPTER 2 ... 9

2 Matrix Inversion by QR decomposition using Givens rotation ... 9

2.1 Matrix inversion .. 9

2.1.1 Properties of inverse matrix .. 9

2.2 QR decomposition .. 9

2.3 Givens Rotations ... 10

2.4 QRD Using Givens rotations .. 11

2.4.1 Triangularization for QRD .. 11

2.4.2 The inverse matrix for QRD ... 12

2.5 Hardware for inverse matrix for QRD .. 12

CHAPTER 3 ... 15

3 Parabolic Synthesis Methodology ... 15

3.1 Introduction ... 15

3.2 Other Hardware Approximation Methods .. 15

3.2.1 Advantage of Hardware over Software ... 15

3.2.2 Disadvantage of Look up table ... 15

3.2.3 Disadvantage of using polynomials .. 15

3.2.4 Disadvantage of the CORDIC ... 15

3.3 Parabolic Synthesis methodology ... 16

3.3.1 Normalizing .. 16

3.3.2 Developing the Hardware Architecture ... 16

3.3.3 Methodology for developing sub-functions .. 17

3.3.4 Hardware Implementation .. 18

3.3.5 Postprocessing ... 21

CHAPTER 4 ... 23

4 Parabolic Architecture development for Trigonometric functions ... 23

4.1 Design Methodology ... 23

4.2 The sub-functions .. 24

5

4.3 Angle transformation .. 25

4.4 Simplifications .. 27

4.4.1 The MCM unit .. 27

4.4.2 Eliminating an adder ... 29

4.4.3 Two’s complement conversion ... 29

4.4.4 Squarer .. 29

4.5 Final architecture .. 30

4.6 Wordlengths .. 31

4.7 Hardware for matrix inversion using QRD by Parabolic synthesis .. 31

CHAPTER 5 ... 33

5 Synthesis ... 33

5.1 Synthesis ... 33

5.2 Types of Synthesis .. 33

5.3 Synthesis for FPGA .. 34

5.3.1 Synthesis Report from FPGA ... 36

5.4 Synthesis for ASIC ... 36

5.4.1 Minimum Area Synthesis .. 36

5.4.2 High Speed Synthesis.. 36

5.4.3 Results from ASIC Synthesis .. 36

CHAPTER 6 ... 41

6 Results and Conclusion .. 41

CHAPTER 7 ... 43

7 Future Work .. 43

Reference .. 45

Appendix 1: For Synthesis .. 47

6

7

CHAPTER 1

1 Introduction

The demand of fast and small hardware architectures are increasing day by day. Most hardware uses

Unary functions like trigonometric functions, logarithms as well as square root and division functions.

These functions are extensively used in applications like robotics, signal processing, communication

systems, navigation, fluid physics, etc. The overall performance of the system is dependent on the

methods of computing such functions. In many cases, software solutions are not sufficient and a

hardware implementation is required [1].

For low precision computations, the simplest and faster method of implementations of such functions is

by using Single look-up table. However, for High-precision computations this method gets inappropriate

due to large table size and long execution time. Implementation using polynomial approximation also has

large computational complexities and delays due to extensive use of multiplications and divisions [1].

The Coordinate Rotation Digital Computer (CORDIC) algorithm is a popular method for the fast

computation of unary functions using only simple shift-add operation. Although this method is faster

than a software solution but due to its iterative property it is slow and thus improper for high speed

applications [1].

On the other hand Parabolic Synthesis, a methodology proposed by Professor Peter Nilsson and Erik

hertz, is a method based on developing functions that performs approximation of original unary functions

in hardware. This method uses parallelism to reduce execution time and employs low complexity

operations thus making hardware implementation faster and simpler than all other existing methodologies

[1].

This thesis mainly develops hardware for the generation of three trigonometric functions (+sine, -sine and

+cosine) using parabolic synthesis. Later, hardware architecture is proposed for implementing matrix

inversion using QR decomposition.

This paper consists of eight Chapters:

Chapter 1 deals with the motivation behind this thesis work.

Chapter 2 explains the basic of matrix inversion with details of QR decomposition using Given’s

rotations.

Chapter 3 introduces the novel Parabolic synthesis methodology.

Chapter 4 explains the development of architecture for the generation of trigonometric functions using

parabolic synthesis. A hardware solution is also shown for implementing matrix inversion with QR

decomposition using the implemented parabolic architecture.

Chapter 5 deals the Synthesis procedure and discusses the results obtained from FPGA and ASIC

synthesis.

8

Chapter 6 discusses the result obtained from the thesis work.

Chapter 7 concludes the thesis work.

Chapter 8 suggests some future prospects of the implemented design with improvement.

9

CHAPTER 2

2 Matrix Inversion by QR decomposition using Givens rotation

2.1 Matrix inversion

In linear algebra, for an n-by-n square matrix A, matrix inversion is the process of finding the matrix B if

(2.1) is satisfied

AB = BA = In (2.1)

where In denotes the n-by-n identity matrix. The inverse of A is denoted by A
−1

.

Non-square matrices (m-by-n matrices for which m ≠ n) do not have an inverse but may have a left

inverse or right inverse. A square matrix that is not invertible is called singular [3][4].

2.1.1 Properties of inverse matrix

Some of the most important properties for an invertible matrix A are:

(A
-1

)
-1

= A (2.2)

(kA)
-1

= k
-1

 A
-1

 for nonzero scalar k (2.3)

(A
T
)

-1
= (A

-1
)

T
 (2.4)

det(A
-1

)

= det(A)

-1
 (2.5)

2.2 QR decomposition

QR decomposition is an efficient frequently used methodology when matrix inversion is needed. A

typical application area is mobile communication systems using multiple antennas, i.e. Multi-Input Multi-

Output (MIMO) systems. The QR decomposition factorizes a matrix into an orthogonal and an upper

triangular matrix.

 (2.6)

where R is an upper triangular matrix and Q is orthogonal, that is, the unity matrix is

(2.7)

where Q
T
 is the transpose of Q, for real valued matrices.

MIMO systems often uses 4 transmit and 4 receive antennas. The inverse of a 4 by 4 matrix at the

receiver side is therefore often practiced. We thus get a system like:

A Q R

TI Q Q

10

 (2.8)

 (2.9)

 (2.10)

where R is an upper triangular matrix.

QR decomposition can be computed using several methods like the Gram-Schmidt process, Householder

transformations, or Givens rotations. Each has a number of advantages and disadvantages. In this thesis,

we will use Givens rotation method for computing QR decomposition since it can be parallelized and

have a lower operation count [5].

2.3 Givens Rotations

Givens rotation is a rotation in the plane spanned by two coordinates axes, which is represented by a

matrix of the form

 (2.11)

where c = cos(θ) and s = sin(θ). [6]

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

a a a a

a a a a
A

a a a a

a a a a

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

q q q q

q q q q
Q

q q q q

q q q q

11 12 13 14

22 23 24

33 34

44

0

0 0

0 0 0

r r r r

r r r
R

r r

r

11

2.4 QRD Using Givens rotations

Givens rotations can be used to perform QR decomposition. The process utilizes a number of cycles of

rotations whose function is to null an element in the sub-diagonal of the matrix, forming the R matrix as

shown in (2.10). The orthogonal Q matrix, as shown in (2.9), can be obtained by the concatenation of all

the Givens rotations [6].

2.4.1 Triangularization for QRD

A 3 by 3 input matrix, A1, is given in (2.12)

 (2.12)

From A1, we will determine the matrices A2 and A3, as well. In order to find a triangular matrix, R, three

rotations are needed, where one element is set to zero after each rotation. It can for instance be done in the

order (3, 1), (2, 1), and (3, 2). For that, three Givens rotation matrices are needed, G1, G2, and G3, as

defined below.

 (2.13)

(2.14)

 (2.15)

where c = cos(θ) and s = sin(θ). These values can be calculated as:

 (2.16)

11 12 13

1 21 22 23

31 32 33

a a a

A a a a

a a a

1

0

0 1 0

0

c s

G

s c

2

0

0

0 0 1

c s

G s c

3

1 0 0

0

0

G c s

s c

1
1

2 2

1 1

1
1

2 2

1 1

1 1

1 1 3 1

3 1

1 1 3 1

(,)

(,) (,)

(,)

(,) (,)

A
c

A A

A
s

A A

12

 (2.17)

 (2.18)

However, these operations include square-root, square, and division, which is not feasible for hardware

implementation.

In (2.19), the matrices A2 and A3 are determined.

 (2.19)

Finally, the Q and R matrices can be determined, as shown in (2.20).

 (2.20)

2.4.2 The inverse matrix for QRD

In (2.21) the inverse of A is derived. For that, the inverse of R is needed, which is a straight forward

operation since R is upper triangular. The transpose of Q is basically done with memory operations.

 (2.21)

2.5 Hardware for inverse matrix for QRD

Using formula (2.12) - (2.21), the basic hardware for obtaining the inverse matrix is demonstrated in Fig.

2.1.

1
2

2 2

1 1

1
2

2 2

1 1

1 1

1 1 2 1

2 1

1 1 2 1

(,)

(,) (,)

(,)

(,) (,)

A
c

A A

A
s

A A

1
3

2 2

1 1

1
3

2 2

1 1

2 2

2 2 3 2

3 2

2 2 3 2

(,)

(,) (,)

(,)

(,) (,)

A
c

A A

A
s

A A

2 1 1

3 2 2

A G A

A G A

1 2 3

3 3

T T TQ G G G

R G A

1 1

1 1 1

1 1

()

T

A Q R

A Q R

A Q R

A R Q

13

Figure 2.1. Basic hardware for obtaining matrix inversion using QRD.

14

15

CHAPTER 3

 3 Parabolic Synthesis Methodology

3.1 Introduction

Parabolic Synthesis is a method based on developing functions that performs approximation of original

unary functions in hardware. This method uses parallelism to reduce execution time and employs low

complexity operations like shifts, additions, and multiplications that are simple to implement in hardware,

thus making hardware implementation faster and simpler than all other existing methodologies [1].

3.2 Other Hardware Approximation Methods

The demand of hardware approximation for the implementation of elementary functions is increasing

with the passage of time. The goal is to make the implemented hardware fast at the same time limiting the

area consumption to a minimum level.

3.2.1 Advantage of Hardware over Software

Most hardware uses Unary functions like trigonometric functions, logarithms as well as square root and

division functions. These functions are extensively used in applications like robotics, signal processing,

communication systems, navigation, fluid physics, etc. The overall performance of the system is

dependent on the methods of computing such functions. In many cases, software solutions are not

sufficient and a hardware implementation is required [1].

Some popular hardware approximation methods include single lookup table, approximations using

polynomials, CORDIC etc.

3.2.2 Disadvantage of Look up table

For low precision computations, the simplest and fastest method of implementations of such functions is

by using Single look-up table. However, for High-precision computations this method gets inappropriate

due to large table size and long execution time [1].

3.2.3 Disadvantage of using polynomials

This method is also known as ROM-less system. Implementation using polynomial approximation also

has large computational complexities and delays due to extensive use of multiplications and divisions [1].

3.2.4 Disadvantage of the CORDIC

The Coordinate Rotation Digital Computer (CORDIC) algorithm is a popular method for the fast

computation of unary functions using only simple shift-add operation. Although, this method is faster

than a software solution but due to its iterative property it is slow thus improper for high speed

applications [1].

16

3.3 Parabolic Synthesis methodology

This is a method for hardware implementation of approximations of unary functions using parallelism and

low complexity operations. The method consists of three important steps: Normalization, Processing and

Post Processing. Of these three steps, the processing step is the most important part but the other two

steps are also necessary in some cases [1] [2].

3.3.1 Normalizing

This is the first step of the Parabolic synthesis methodology. The purpose of this step is to limit the

numerical range in the interval 0 ≤ x < 1 on the x-axis and 0 ≤ y < 1 on the y-axis to facilitate the hardware

implementation. The unary function is normalized to either a concave or convex function, known as the

original function forg(x), with starting coordinate of (0,0) and ending coordinate smaller than (1,1) [1] [2].

Figure 3.1. Example of normalized function [1].

3.3.2 Developing the Hardware Architecture

For efficient hardware architecture development, this methodology is founded on second order parabolic

functions called sub-functions, sn(x), which uses low complexity operations like shifts, additions and

multiplications. Multipliers are commonly used due to the ever going scaling down of the semiconductor

technologies and fast development of efficient multiplier architecture which has led hardware

implementation of multiplication operation efficient in both size and execution time. As shown in (3.1),

the original function forg(x), can be obtained by multiplying the sub-functions and its accuracy depends on

the number of sub-functions used [1] [2].

 (3.1)

A parabolic looking function called the first help-function, f1(x), is obtained by dividing the original

function forg(x), with the first sub-function s1(x).

(3.2)

1 2 3 4() () () () ()forg x s x s x s x s x

1

1

()
()

()

forg x
f x

s x

17

The rest of the functions is generated, as shown on (3.3).

(3.3)

3.3.3 Methodology for developing sub-functions

Sub-functions are developed by the decomposition of the original function forg(x) by using second order

parabolic functions within the interval 0 ≤ x < 1.0 and the sub intervals within the interval [1] [2].

3.3.3.1 The first sub-function

The first sub-function s1(x) can be obtained by dividing the original function forg(x) with x as a first order

approximation. The division produces two possible results, one where f(x)>1 and one where f(x)<1 as

shown on Fig. 3.2 [1] [2].

Figure 3.2. Two possible results after dividing an original function with x [1].

The first sub-function s1(x), as shown on equation (3.4), is achieved by multiplying x with the expression

1+(c1·(1-x)) where the coefficient c1 is obtained from the limit from the division of the original function

with x and subtracted with 1, according to (3.5) [1] [2].

 (3.4)

(3.5)

1

1

()
()

()

n
n

n

f x
f x

s x

2

1 1 1() (1 [(1)]) ()s x x c x x c x x

1
0

()
lim 1
x

forg x
c

x

18

3.3.3.2 The second sub-function

The second sub-function s2(x), is chosen as a second order parabolic function as shown in (3.6) [1] [2].

 (3.6)

The coefficient c2, is chosen in a such way that it satisfies with the quotient between the first function f1(x)

and the second sub-function s2(x) is equal to 1 when x is set to 0.5, as shown below.

 (3.7)

In this manner the second help-function f2(x), will get a shape of lying S shape as shown in figure (3.3).

This help-function can be divided into a pair of parabolic looking shapes where the first interval are from

0 ≤ x < 0.5 and second interval from 0.5 ≤ x < 1.0 [2].

Figure 3.3 Example of the second help function [2].

For easy hardware implementation, the size of the sub-intervals are chosen as a power of 2 since

the normalization of the interval can be performed as a left shift of x where the fractional part is

the normalization of the two new intervals and the integer part is the addressing of the

coefficients for the intervals [1] [2].

3.3.3.3 Sub-functions when n > 2

It is beyond the scope of this thesis to evaluate sub-functions for n>2.

3.3.4 Hardware Implementation

Two’s complement representation is used for the hardware implementation. The implementation is

divided into three hardware parts: preprocessing, processing, and postprocessing as shown in Figure 3.4.

2

2 2() 1 [()]s x c x x

2 14 [(0.5) 1]c f

19

Figure 3.4 The hardware architecture of the methodology [1].

3.3.4.1 Preprocessing

In this part the input operand v is normalized for the processing part. For a large system the

preprocessing part can be reduced or eliminated if the approximation is implemented together

with other logic in the preceding block [1].

3.3.4.2 Processing

In this part, the approximation of the original function is implemented in either iterative or

parallel hardware architecture. The iterative architecture as shown on figure (3.6) has the

advantage of small chip area but at the expense of longer computation time [1].

Figure 3.6 The principle of iterative hardware architecture [1].

On the other hand, the parallel hardware architectures as shown for four sub-functions on figure (3.7),

give a short critical path and fast computation at the prize of a larger chip area. The throughput can be

increased by pipelining.

reg reg S
n
(x) X

y x

 Preprocessing

 Processing

 Postprocessing

Operand v

Operand x

Operand y

Result z

20

Figure 3.7 The architecture principle for four sub-functions [1].

3.3.4.3 The square Unit

Square components like x
2
 and xn

2
 are reoccurring operations in the sub-functions. The square operation

xn
2
 in the parallel hardware architecture is a partial result of x

2
. That is why a unique squarer has been

developed [1].

 x3 x2 x1 x0

 x3 x2 x1 x0

 x0 x0

 p1 p0

 x1 x0

 x1 x1 x0 x1

p

 q3 q2 q1 q0

 x2 x0

 x2 x1

 x2 x2 x1 x2 x0 x2

q

 r5 r4 r3 r2 r1 r0

 x3 x0

 x3 x1

 x3 x2

 x3 x3 x2 x3 x1 x3 x0 x3

r

 s7 s6 s5 s4 s3 s2 s1 s0 s

Figure 3.8 Squaring algorithm for the partial product xn

2
 [1].

 x3 x2 x1 x0

 x3 x2 x1 x0

 x0

 x1 p1 p0

 x1 x0

p

 x2 q3 q2 q1 q0

 x2 x1 x2 x0

q

 x3 r5 r4 r3 r2 r1 r0 r

S
2
(x)

S
1
(x)

S
3
(x)

S
4
(x)

X

X

X

y

x

21

 x3 x2 x3 x1 x3 x0

 s7 s6 s5 s4 s3 s2 s1 s0 s

Figure 3.9 Simplified squaring algorithm for the partial product xn
2
 [1].

Vector p:

p0=x0x0 =x0 (3.8)

The result of component p1 is equal to 0 as the result of p0 does not contribute anything to p1.

Vector q:

q1=p1.2
1
+x1x0.2

1
+x0x1 .2

1
=p1.2

1
+x1x0.2

2
=p1.2

1
 (3.9)

q2= x1x0.2
2
+x1x1 .2

2
= x1.2

2
+x1x0.2

2
 (3.10)

Vector r:

r2=q2.2
2
+x2x0.2

2
+x0x2 .2

2
=q2.2

2
+x2x0.2

3
=q2.2

2
 (3.11)

r3=q3.2
3
+x2x1.2

3
+x1x2 .2

3
+x2x0.2

3
= q3.2

3
+x2x1.2

4
+ x2x0.2

3
=q3.2

3
 +x2x0.2

3
 (3.12)

r4= x2x1.2
4
+x2x2 .2

4
= x2.2

4
+x2x1.2

4
 (3.13)

Vector s:

s3=r3.2
3
+x3x0.2

3
+x0x3.2

3
=r3.2

3
+x3x0.2

4
=r3.2

3
 (3.14)

s4=r4.2
4
+x3x0.2

4
+x3x1 .2

4
+x1x3.2

4
= r4.2

4
+x3x0.2

4
+ x3x1.2

5
=r3.2

3
 +x3x0.2

4
 (3.15)

s5=r5.2
5
+x3x1.2

5
+x3x2 .2

5
+x2x3.2

5
= r5.2

5
+x3x1.2

5
+ x3x2.2

6
=r5.2

5
 +x3x1.2

5
 (3.16)

s6= x3x2.2
6
+x3x3.2

6
= x3.2

6
+x3x2.2

6
 (3.17)

The value of component s7 in the s vector is a possible carry from the s6 component. The result of square

x, x
2
is in the s vector and the partial products of the square are found for x3

2
 in r vector and in q for x4

2

[1].

3.3.5 Postprocessing

The main motivation for the part is to transform the output to a feasible form for the proceeding parts in

the system.

22

23

CHAPTER 4

4 Parabolic Architecture development for Trigonometric functions

4.1 Design Methodology

From chapter 3, we have seen that parabolic architecture uses parallelism to reduce the execution time

and employs low complexity operations thus making hardware implementation faster and simpler than all

other existing methodologies.

The first step of developing the architecture is to define the specifications and the requirements. The

second step is to develop the behavioral descriptions using a hardware description language like VHDL,

which will lead to the development of register transfer level (RTL) model. The RTL model is simulated

using a testbench for verification of the defined logic and for finding possible errors. After successful

simulation, the design is synthesized for either a FPGA or an ASIC. The synthesis converts the RTL

model into a design implementation in terms of logic gates. These logic gates are further simulated for the

actual implementation of the architecture in hardware and the process is known as post-synthesis

simulation. On the success of the simulation, the layout is sent for fabrication. The top down design

methodology is shown on figure 4.1.

Figure 4.1 Top down design Methodology [7].

Requirements

RTL Model

Synthesis

Gate-Level
Model

Layout
(ASIC or FPGA)

Simulate

Simulate

Test Bench

Behavioral
Model

24

4.2 The sub-functions

Based on the concepts on chapter 3, the sub-functions, which lead to the approximated sine and cosine

functions are shown in (4.1) and (4.2) respectively. The angle θf is the normalized fractional part of υ. It

can be noted that it is only s1 that differs for the sine and cosine functions.

 (4.1)

(4.2)

Where c1 and c2 are the coefficients.

The optimal 7-bit coefficients are shown in (4.3). For obtaining parallelism in the architecture, c1 and c2

are multiplied at the same time. Figure 4.2 shows the basic Parabolic Synthesis architecture.

(4.3)

Figure 4.2 The first parabolic synthesis architecture

2

1 1

2

2 2

1 2

1

() ()

() ()

sin() () ()

f f f f

f f f

f f f

s c

s c

s s

2

1 1

2

2 2

1 2

1

1

() ()

() ()

cos() () ()

f f f f

f f f

f f f

s c

s c

s s

1 2

2 2

 0 5703125 0 1001001

 0 4062500 0 0110100

. .

. .

c

c

2

f

2c

2()f f

2

1 ()f f fc

1 f

1c

2

1 ()f fc

2

2 ()f fc

2

11 ()f f fc

cos()

sin()

2

21 ()f fc

f1

f

1 f

25

4.3 Angle transformation

The architecture shown in figure 4.2 is only valid for angles in the first quadrant. The other three

quadrants must also be covered, which is done by transforming normalized angles larger than “1” to the

first quadrant. Figure 4.3 illustrates the methodology. In figure 4.3a, the original angles are shown. These

are normalized to Figure 4.3b, with a factor , e.g. the angle υ = is transformed to the normalized

angle θf = 1/3. The equations for the normalization are shown below.

(4.4)

(4.5)

(4.6)

(4.7)

All the normalized angles in the first quadrant are less than “1”. Figure 4.3b shows the integer part of the

angle θ. The integer part, θ1θ0, will thus show which quadrant the angle is in, i.e. quadrant 1, 2, 3 or 4 and

is represented by 0, 1, 2, 3 respectively in binary representation. That is useful in the selection of the

angle when transforming to the first quadrant, as shown in figure 4.3c for the sine functions. This can be

illustrated with the example in (4.4) – (4.7).

Figure 4.3 Transforming angles from quadrant 2-4 to quadrant 1.

6

2 2 2
01

6 3

2

3

1
1

3

()

f

norm

frac

frac

After
normalization

0
2

2

3

2

3
2

2

1 0 200 1 0 201

1 0 210 1 0 211

2
sin()f

1

2
sin(())f

2
sin()f

 1

2
sin(())f

Cosine functions

1 0() Integer part

(a) (b)

(c)

2

1
2

cos()

sin(())f

2

2

cos()

sin()f

2

1
2

cos()

sin(())f

2

2

cos()

sin()f

(d)

Sine functions

26

An angle υ = (4.4) in the second quadrant corresponds to the angle υ = in the first quadrant.

After normalization the angles will correspond to 5/3 and 1/3, where the first angel is larger than one

(4.5). The idea is now to transform 5/3, in the second quadrant to θf = 1/3 in the first quadrant. The integer

part, θ1θ0 = 01, in (4.5) is taken away to get (4.6). Finally, the angle θf = 1/3 is transformed to the first

quadrant (4.6). However, the integer part is not thrown away. It will be used to select the quadrant for the

initial angle and for two’s complement conversion at the output. Figure 4.3d shows the transformation of

the cosine functions in the four quadrants. All cosine functions are transformed to sine functions since the

architecture is designed for sine functions.

Table I shows when the input transformations are needed. To select that, the integer value θ0 is used. This

is solved by using two MUXes.

Table I. Input transformations

 Quadrant 1 Quadrant 2 Quadrant 3 Quadrant 4

Sine

Cosine

Since all calculations are done in the first quadrant, the output has to be transformed back again. As an

example, if we compute cos(υ) for the 2
nd

 quadrant angle , we get the value -0.5. However, the

cosine value is determined in the 1
st
 quadrant with the angle , which gives the value 0.5. To correct

that, a two’s complement conversion is needed. Table II shows when the two’s complement conversion is

needed. To select that, the integer values θ1 and θ0 are used.

Table II. Output transformations

 Quadrant 1 Quadrant 2 Quadrant 3 Quadrant 4

Sine + + - -

Cosine + - - +

Figure 4.4 shows the updated architecture capable of transforming the angles.

f 1 f f 1 f

1 f f 1 f f

27

Figure 4.4 The second parabolic architecture

4.4 Simplifications

Figure 4.4 is further improved by optimizing some of the components.

4.4.1 The MCM unit

The design can be improved by optimizing two multipliers. The multipliers can be exchanged with three

adders and some shifts as shown in Figure 4.5. The technique is called Multiple Constant Multiplication

(MCM). There is one input, θf – θf
2
, two outputs c1(θf – θf

2
) and c2(θf – θf

2
) in both figures. In the VHDL-

code, we thus eliminated expressions like “AxB” for these two multipliers.

2c

1 f

1c

cos()

sin()

f

1

f

1 f
1 0

10
1 f f

0

0

 Two’s

compl.

conv.

Two’s

compl.

conv.

0

1

1

1

0

sin()
1

0

28

Figure 4.5 Architecture for Multiple Constant Multiplication (MCM)

4.4.1.1 Example

If we use a fractional positive (it cannot be negative) input value for the left part in figure 4.5 we get:

θf - θf
2
 = 1/7 => 001001001101

000010010011|01000 Shifted by 2 θf/4

000000010010|01101 Shifted by 5 θf/32

000010100101|10101

000001001001|10100 Shifted by 3 θf/8

000011101111|01001

In (4.8) we then get the result for the left part of the architecture in figure 4.5

 (4.8)

2 2 2 2

2 4 32 8() ()/ ()/ ()/f f f f f f f fc

29

4.4.2 Eliminating an adder

Adding a “1” to c2(θf – θf
2
) can be simplified. Since c2 is positive, c2(θf – θf

2
) will never be larger than

“1”, i.e. c2(θf – θf
2
) < 1. The fractional part can thus be merged to the “1” directly with the wiring as

shown in figure 4.6.

Figure 4.6 The fractional bus with an added integer “1”

4.4.3 Two’s complement conversion

Figure 4.7 shows an architecture for two’s complement conversion. The architecture uses half adders

(HAs) and XOR gates. A control signal θ1 or θ1 XOR θ0 is used to select when the conversion is to be

done.

Figure 4.7 Two’s complement conversion

4.4.4 Squarer

Instead of using a multiplier for the squaring, a simplified version can be used as shown in figure 4.8.

 x5 x4 x3 x2 x1 x0

 x5 x4 x3 x2 x1 x0

x5x4 x5x3 x5x2 x5x1 x5x0 x4x0 x3x0 x2x0 x1x0 0 x0

x5 x4x3 x4x2 x4x1 x3x1 x2x1 x1

 x4 x3x2 x3x2´ x2

Figure 4.8 A 6-bit squarer

Fractional =

Integer = 1

2

2()f fc

HA

1

HA HA HA HA

30

4.5 Final architecture

The final architecture with all the simplifications is shown in figure 4.9. The architecture contains:

 Two multipliers,

 One squarer,

 Seven adders,

 Two two’s conversion converter, and

 Four MUXes.

Figure 4.9 The final architecture.

The critical path goes through:

 One squarer

 Four adders

 One multiplier

 One two’s conversion converter

 One MUX

SQR

2

f f

1 f

2

1 ()f fc

2

2 ()f fc
2

21 ()f fc

f

1

f

1 f

1 0

10

1 f f

0

0

1

cos()

sin()

Two’s

compl.

conv.

Two’s

compl.

conv.

0

1

1

1

0

sin()
1

0

31

4.6 Wordlengths

Figure 4.10 shows the needed internal bits to reach a 9-bit accuracy at the output.

Figure 4.10 Internal wordlengths

4.7 Hardware for matrix inversion using QRD by Parabolic synthesis

Figure 4.11 shows the proposed hardware for doing matrix inversion using QRD. Due to time limitation

the parabolic hardware could not be integrated with the QRD hardware.

32

Figure 4.11. Proposed hardware for matrix inversion using QRD.

33

CHAPTER 5

5 Synthesis

5.1 Synthesis

Synthesis is a process by which conceptual description of the logic functions needed for the desired

circuit behavior (typically register transfer level (RTL)) is turned into a design implementation in terms of

logic gates [8].

The flow chart of the synthesis is:

Figure 5.1 Flow chart of synthesis process [8].

5.2 Types of Synthesis

For the thesis work two types of synthesis have been performed. One targeted towards Virtex 2 pro

FPGA using Xilinx ISE design suit and the other have been performed for an ASIC implementation

using Synopsis Design Vision tool in STM 65nm technology. As mentioned in the previous chapter,

34

the Hardware Description Language (HDL) has been used for the design implementation. Some of

the advantages of HDL for synthesis include:

1) Decrease in design time by permitting a high-level design specification,

2) Reduced errors for manual translation from HDL to schematic design,

3) Increased optimization and efficiency due to the utilization of the automation techniques used by

the synthesis tool (such as, automatic I/O insertion and machine encoding styles) during the

optimization to the original HDL code.

5.3 Synthesis for FPGA

The design has been synthesized on Xilinx ISE Design suit for Virtex 2 pro FPGA using VHDL for a

speed grade of -7. The RTL schematic from the synthesis is shown in fig. 5.2.

Figure 5.2 RTL Schematic obtained from synthesis on Virtex 2 pro FPGA.

The RTL schematic is shown in fig. 5.3.

Figure 5.3 MCM block Schematic obtained from synthesis on Virtex 2 pro FPGA.

The technology schematic for the overall design is shown in fig. 5.4

35

36

Figure 5.4 Technology Schematic obtained from synthesis on Virtex2pro FPGA.

5.3.1 Synthesis Report from FPGA

The critical path includes the squarer, one subtractor, one multiplier, one two’s complement unit, one

multiplexer and the MCM unit. The critical path time is 20.496 ns so the maximum clock frequency that

is achievable is (1/20.496) = 48MHz. The individual delay of each component in the critical path is

shown in Appendix 1, Table VIII.

Detailed synthesis reports containing the macro statistics, cell usage and device utilization are shown in

Appendix 1, Table IX, X and XI respectively.

5.4 Synthesis for ASIC

The design has been synthesized towards an ASIC implementation on a 65nm technology using

Synopsis Design Vision tool. Two constraints, area and speed, were emphasized on this synthesis. As a

result, the design has been synthesized for both high speed and for minimum area. The scripts used for

these two types of synthesis are shown on appendix 1, Table I.

5.4.1 Minimum Area Synthesis

While doing synthesis for minimum area, we have set the clock period to a very high value and set the

maximum area to zero.

The constraints that were set for minimum area are:

i) Area, and

ii) Clock uncertainty time.

5.4.2 High Speed Synthesis

While synthesizing for high speed we have set the clock constraint to such a value so that we do not get

any negative slack and no parameter for the area constraint.

The constraints that were set for High Speed are:

i) Clock speed, and

ii) Clock uncertainty time.

5.4.3 Results from ASIC Synthesis

The results obtained from the Synopsis Design Vision synthesis report are as follows:

37

5.4.3.1 Area

The total area of the design is 450893 of which 2893 is the combinational area and the remaining 448000

is the sequential area consisting of the I/O pads and the input and output registers used for determining the

critical path. The individual component area is shown in Appendix 1, Table IV.

5.4.3.2 Implemented arithmetic blocks

The synthesis tool used the two libraries ‘IO65LPHVT_SF_1V8_50A_7M4X0Y2Z’ and

‘CORE65LPHVT’ for the implementation of the arithmetic blocks. The details of each implemented

blocks are shown in Appendix 1, Table V.

5.4.3.3 Timing

The critical path includes one squarer, one subtractor, one adder, one multiplier, one two’s complement

unit, one multiplexer and the MCM unit. The critical path time is 11.33 ns so the maximum clock

frequency that is achievable is (1/11.33) =88MHz. The individual delay of each component in the critical

path is shown in Appendix 1, Table III.

5.4.3.4 Power

From synthesis we obtained the dynamic power to be 0.0794mW of which 54.71% is net switching

power and 45.27% is cell internal power.

For obtaining a more accurate power report, the design has been simulated in Prime Time tool. The

Script and the detailed report are shown in Appendix 1, Table VII.

38

Figure 5.5 The parabolic architecture with I/O pads from Design Vision.

Figure 5.6 Parabolic architecture from Design vision.

Figure 5.7 Parabolic architecture from Primetime

39

Figure 5.8 Schematic view of the Matrix Inversion from Design Vision

40

41

CHAPTER 6

6 Results and Conclusion

The aim of the thesis was to develop hardware for the generation of three trigonometric functions

(+sine, -sine and +cosine) using the novel approximation methodology, which is based on

Parabolic synthesis, for the use in Givens rotations for implementing matrix inversion using QR

decomposition. Separate hardware for parabolic synthesis and matrix inversion using QRD is

implemented. However, due to time limitation, the two modules could not be integrated.

Although, a hardware solution had been presented at the end.

42

43

CHAPTER 7

7 Future Work

The matrix inversion unit only works for a fixed set of matrix. Furthermore, the division unit is limited to

4 bits.

In future, square root implementation could lead to matrix inversion for any set of values. The division

logic can be scaled down at the beginning and again scaled up at the end to allow the usage of larger bits.

44

45

Reference

[1] http://www.eit.lth.se/fileadmin/eit/docs/Licentiate/lic_14.5_mac.pdf

[2] Erik Hertz and Peter Nilsson, "A Methodology for Parabolic Synthesis", a book chapter in VLSI, In-

Tech, ISBN 978-3-902613-50-9, pp. 199-220, Vienna, Austria, September 2009.

[3] http://en.wikipedia.org/wiki/Invertible_matrix

[4] http://www.purplemath.com/modules/mtrxinvr.htm

[5] http://en.wikipedia.org/wiki/QR_decomposition

[6] http://en.wikipedia.org/wiki/Givens_rotation

[7] http://www.eit.lth.se/index.php?id=241&ciuid=475&coursepage=2602&L=1

[8] http://www.eit.lth.se/fileadmin/eit/courses/etin01/slides/Synthesis.pdf

[9] P.T.P. Tang (1991), "Table-lookup algorithms for elementary functions and their error analysis," Proc.

of the 10th IEEE Symposium on Computer Arithmetic, pp. 232 - 236, ISBN: 0-8186-9151-4, Grenoble,

France, June 1991

[10] J.-M. Muller (2006), Elementary Functions: Algorithm Implementation, second ed. Birkhauser,

ISBN 0-8176-4372-9, Birkhauser Boston, c/o Springer Science+Business Media Inc., 233 Spring Street,

New York, NY 10013, USA

[11] Erik Hertz and Peter Nilsson, “Parabolic Synthesis Methodology Implemented on the Sine

Function”, in Proceedings of the 2009 International Symposium on Circuits and Systems (ISCAS’09),

Taipei, Taiwan, May 24-27, 2009.

[12] Lei Wang, Hardware Implementation of Parabolic Synthesis Methodology for the Sine and Cosine

Functions, Master’s thesis, Lund University 2009.

46

47

Appendix 1: For Synthesis

Table I: Synthesis Scripts for ASIC

For High Speed:

gui_start

remove_design -all

analyze -library WORK -format vhdl

{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/para_generics_pack.vhd}

analyze -library WORK -format vhdl

{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/adder_block_pack1.vhd}

analyze -library WORK -format vhdl

{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/adder_block_pack2.vhd}

analyze -library WORK -format vhdl

{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/subtractor_block_pack1.vhd}

analyze -library WORK -format vhdl

{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/subtractor_block_pack2.vhd}

analyze -library WORK -format vhdl

{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/mcm_pack.vhd}

analyze -library WORK -format vhdl

{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/mult_block_pack.vhd}

analyze -library WORK -format vhdl

{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/mux2by1_pack1.vhd}

analyze -library WORK -format vhdl

{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/mux2by1_pack2.vhd}

analyze -library WORK -format vhdl

{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/mux2by1_pack3.vhd}

analyze -library WORK -format vhdl

{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/mux2by1_pack4.vhd}

analyze -library WORK -format vhdl

{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/squarrer_block_pack.vhd}

analyze -library WORK -format vhdl

{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/twos_comp_pack.vhd}

analyze -library WORK -format vhdl

{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/XOR_block_pack.vhd}

analyze -library WORK -format vhdl

{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/parabolic_senthesis1.vhd}

analyze -library WORK -format vhdl

{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/top_parabolic_senthesis1.vhd}

elaborate top_parabolic_senthesis -lib WORK -arch structural

compile -map_effort high

report_constraint -all_violators

change_names -rules verilog -hierarchy

write -format verilog -hierarchy -output netlists/top_para.v

write_sdf ./netlists/top_para.sdf

write_sdc ./netlists/top_para.sdc

For Minimum Area:

gui_start

remove_design -all

analyze -library WORK -format vhdl

48

{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/para_generics_pack.vhd}

analyze -library WORK -format vhdl

{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/adder_block_pack1.vhd}

analyze -library WORK -format vhdl

{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/adder_block_pack2.vhd}

analyze -library WORK -format vhdl

{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/subtractor_block_pack1.vhd}

analyze -library WORK -format vhdl

{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/subtractor_block_pack2.vhd}

analyze -library WORK -format vhdl

{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/mcm_pack.vhd}

analyze -library WORK -format vhdl

{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/mult_block_pack.vhd}

analyze -library WORK -format vhdl

{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/mux2by1_pack1.vhd}

analyze -library WORK -format vhdl

{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/mux2by1_pack2.vhd}

analyze -library WORK -format vhdl

{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/mux2by1_pack3.vhd}

analyze -library WORK -format vhdl

{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/mux2by1_pack4.vhd}

analyze -library WORK -format vhdl

{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/squarrer_block_pack.vhd}

analyze -library WORK -format vhdl

{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/twos_comp_pack.vhd}

analyze -library WORK -format vhdl

{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/XOR_block_pack.vhd}

analyze -library WORK -format vhdl

{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/parabolic_senthesis.vhd}

analyze -library WORK -format vhdl

{/home/piraten/sx08nc4/Desktop/New_Parabolic/vhdl/top_parabolic_senthesis1.vhd}

elaborate top_parabolic_senthesis -lib WORK -arch structural

set_max_area 0

compile -map_effort high

report_constraint -all_violators

change_names -rules verilog -hierarchy

write -format verilog -hierarchy -output netlists/par_min.v

write_sdf ./netlists/par_min.sdf

write_sdc ./netlists/par_min.sdc

49

Table II: Area Hierarchy of the design(ASIC)

50

51

52

Table III: Components in the critical path with individual delays (ASIC)

53

54

Table IV: Area Report (ASIC)

55

Table V: Implemented Arithmetic blocks (ASIC)

56

Table VI: Prime Time Script

start_gui

remove_design -all

set power_enable_analysis true

set search_path "$env(STM065_DIR)/IO65LPHVT_SF_1V8_50A_7M4X0Y2Z_7.0/libs \

 $env(STM065_DIR)/CORE65LPHVT_5.1/libs \

 $env(STM065_DIR)/CORE65LPSVT_5.1/libs \

 $search_path"

set link_library "* IO65LPHVT_SF_1V8_50A_7M4X0Y2Z_nom_1.00V_1.80V_25C.db \

 CORE65LPHVT_nom_1.20V_25C.db CORE65LPSVT_nom_1.20V_25C.db"

set target_library "IO65LPHVT_SF_1V8_50A_7M4X0Y2Z_nom_1.00V_1.80V_25C.db \

 CORE65LPHVT_nom_1.20V_25C.db CORE65LPSVT_nom_1.20V_25C.db "

57

Table VII: Power analysis obtained from Prime Time

Synthesized

Area

Synthesized Time 5ns

Net switching power Cell Internal power
Cell Leakage

power

Total

Power

None (High Speed) 8.95e-5 1.0e-4 4.61e-8 1.9e-4

0 (Minimum Area) 9.42e-5 1.0e-4 4.22e-8 1.95e-4

8592 8.20e-5 9.4e-5 4.07e-8 1.72e-4

Table VIII: Timing report from FPGA

Table IX: Macro Statistics report from FPGA

Multipliers : 3

 11x11-bit multiplier : 1

 12x12-bit multiplier : 2

Adders/Subtractors : 11

 10-bit adder : 3

 10-bit subtractor : 1

 11-bit adder : 1

 12-bit adder : 4

 9-bit adder : 2

Xors : 1

 1-bit xor2 : 1

58

Table X: Cell Usage report from FPGA

BELS : 305

GND : 1

INV : 22

LUT1 : 11

LUT2 : 31

LUT3 : 29

LUT4 : 46

MUXCY : 78

MUXF5 : 3

MUXF6 : 1

VCC : 1

XORCY : 82

IO Buffers : 49

IBUF : 13

OBUF : 36

MULTs : 3

MULT18X18 : 3

Table XI: Device utilization summary from FPGA

Selected Device : 2vp2fg256-7

 Number of Slices: 76 out of 1408 5%

 Number of 4 input LUTs: 139 out of 2816 4%

 Number of IOs: 49

 Number of bonded IOBs: 49 out of 140 35%

 Number of MULT18X18s: 3 out of 12 25%

