
 
 

Master’s Thesis Report 

 

 

Design of FFTs using CORDIC and Parabolic 
Synthesis as an alternative to Twiddle 

Factor Rotations 

 
By 

 
Muhammad Waqas Shafiq 

Nauman Hafeez 

 
 

Department of Electrical and Information Technology 
Faculty of Engineering, LTH, Lund University 

SE-221 00 Lund, Sweden 

 



2 
 

Abstract 
Fast Fourier Transform (FFT) processor is an important signal processing block 
widely adopted in various disciplines, such as within the computer area, computer 
graphics, digital signal processing, communication systems, robotics, navigational 
systems, etc. Advanced and complex algorithms in these disciplines need higher 
computation performance and low power utilization processes. Due to 
advancements and down scaling of hardware technologies, it becomes possible to 
fulfill these higher demands from the most advanced algorithms with higher clock 
rates on the chips. The improvement in hardware technology performance has 
moved the interest more over to the hardware implementation of algorithms.  

The scope of this thesis is to investigate different algorithms to compute the 
rotations, often done by complex twiddle factor multiplications in in run time, in 
FFT processor architectures. The FFT processor is commonly implemented with a 
complex multiplier but due to demand of higher point FFTs in the applications, the 
size of ROM in the multiplier based implementation for the twiddle factors 
becomes the matter  of  concern with larger  chip area.  The aim of  this  thesis  is  to  
design  an  FFT  with  un-rolled  CORDIC  and  Parabolic  Synthesis  algorithms  in  
order to replace complex multipliers and ROMs. 

The outcome of the presented thesis is comparison results for accuracy, power 
consumption, performance and area of these algorithms in the STM 65nm CMOS 
technology with different transistor technologies and power supplies. It is noted 
that implementation with Parabolic synthesis algorithm gives better results as it 
automatically gives a high degree of parallelism that gives a shorter critical path 
and thereby fast computation. The structure of the methodology will also assure an 
area efficient hardware implementation if higher point FFTs are implemented. 
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CHAPTER

1. Introduction

1.1 Overview
In past few years the advancements in VLSI technologies have opened many 
windows for designing real time applications, using efficient algorithms with 
custom chips. The use of special arithmetic techniques, parallel and pipelined 
architectures have led the designs far away from basic computers. 

Nowadays the world of information technology has lined up many areas together 
such as communication systems, computer graphics, robotics, navigations, 
astrophysics etc. and all applications demands high performance with minimum 
possible power consumption. Many digital signal processor designers and 
manufacturers are facing one big challenge, that is, how to perform complex 
mathematical function calculations more efficiently. To gain efficiency, it is 
needed to dig inside our complete designing cycle which contains algorithms, 
architectures, hardware technology, power supply etc. 

Fast Fourier Transform (FFT) is widely used transform in digital applications 
especially in communication systems. An FFT is an important processing block in 
these systems, which takes most of the hardware complexity in a digital baseband 
transceiver for instance. Due to demand in higher data rates in communication 
systems, large-point FFTs are required for multiple carrier modulation, such as 
1024/2048/8192 etc. An FFT is commonly implemented with complex multiplier; 
a complex multiplier is equivalent to four real multipliers and two real adders, and 
a ROM to store the twiddle factors. The ROM in this type of implementation takes 
most of the chip area, consumes more power and degrades the speed because of 
ROM read operation ROM size increased with large-point FFTs. Hence poor 
performance of the FFT in terms of power, speed, and area can be seen.   

The main objective of the thesis is to investigate algorithms which can be used to 
calculate trigonometric functions and perform complex multiplications. An un-
rolled CORDIC architecture is widely used instead of complex multiplier and 
ROM based architectures. Power consumption, speed and accuracy are issues in 
this architecture implementation. A newly invented “Parabolic Synthesis” 
algorithm is also investigated that could improve the results with respect to 
CORDIC based implementation of  the FFT. Both algorithms are implemented in 
VHDL, synthesized and   compared in terms of power, area, accuracy and timing. 
Both algorithms are tested to calculate the rotations and to perform complex 
multiplications for a 16-Point FFT processor. 
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Traditional methodologies such as use of complex multipliers with pre-computed 
twiddling  factors  (stored  in  ROM/Registers)  for  FFT  processors  are  also  being  
compared with CORDIC and Parabolic Synthesis. 

1.2 Organization of Thesis
Chapter 2 explains the basic theory and fundamental equations of CORDIC 
algorithm along with the hardware architecture. 

Chapter 3 contains the brief description of Parabolic Synthesis and covers the 
basic theory, mathematical equations and hardware architectures used to 
implement this algorithm for FFT processors. 

Chapter 4 is a review of FFT and explanation of butterfly architecture is provided, 
and Single-path Delay Feedback (SDF) architecture for implementing FFT is also 
discussed and implemented in hardware. 

Chapter 5 contains the synthesis results of tested algorithms and gives the 
guideline to the reader about the selection of algorithm, the detail comparison 
between power, area and speed using different transistor technologies and supply 
voltages, is presented. 

Chapter 6 summarizes the results achieved in the project.  

Chapter 7 discusses the future work in order to improve performance. 
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Chapter 2 

2. Fast Fourier Transform
The Fast Fourier Transform (FFT) architecture was invented in 1965 by Cooley 
and  Tukey  [8]  and  is  not  a  different  algorithm  from  DFT.  It  is  architecture  for  
efficient computation of DFT. 

2.1 Discrete Fourier Transform
 DFT is the most widely used transform of all the available transforms in digital 
signal processing. The DFT maps the input sequence ( ) into frequency domain. 

The Discrete Fourier Transform (DFT) of ( ) input sequence is defined as in 
(2.1), which is an N-point sequence [9]. 

 ( ) = ( ) = 0,1, … . , 1  (2.1) 

 

Where ( ) and ( ) are complex in general and the indices  and  are integers. 

The term is twiddle factors, which is described in (2.2) 

 = = cos
2 2

 (2.2) 

 

The  DFT  is  complex  valued  but  in  hardware,  the  real  (Re)  and  imaginary  (Im)  
parts are separated in two real parts as in (2.3) 

 ( )= cos sin  
 

(2.3) 

 ( )= sin + cos  
 

 

2.2 FFT Algorithms
Fast Fourier Transform (FFT) [8] is an efficient algorithm for computing the DFT. 
Its principle is based on decomposing the computation of the discrete Fourier 
transform with sequence of length N into successively smaller discrete Fourier 
transforms. Computation complexity is reduced from O(N2) to O(Nlog(N)) after 
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introducing the FFT architecture to calculate a DFT. There are different algorithms 
of FFT based on different decomposition schemes. Some of the algorithms are 
described next. 

2.2.1 Decimation in Time (DIT) algorithm
The algorithm which decomposes the sequence ( ) into subsequently smaller 
sequences is called decimation in time algorithm [10]. In order to explain it, a 
radix-2 DIT algorithm is explained to demonstrate the decomposition. 

In (2.1), the input sequence is divided into even and odd numbered sequences. In 
this case, the DFT is described as  

 ( ) = ( ) ( + 1) = 0,1, . . , (2.4) 

The input sequence ( ) is split into even numbered ( ) sequence and odd 
numbered ( + 1) sequence.  

For larger N, the complexity is reduced from O(N2) to nearly half by dividing the 
input sequence into even and odd numbered sequences. The complexity can be 
further reduced by using the symmetry and periodicity of twiddle factors. 

 

Figure 2.1  A Radix-2 DIT Butterfly 

Due to the even and odd numbered sequence split, the twiddle factor is also 
simplified. The architecture of radix-2 DIT butterfly only needs one complex 
multiplier and two complex adders instead of two complex multipliers. 

2.2.2 Decimation in Frequency (DIF) algorithm
In this algorithm, the output of the DFT is divided into smaller subsequent 
sequences. DFT main equation is recalled as in (2.1). 

Even numbered output sequence can be described in (2.5) 
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(2 ) = ( ) + ( ) , = 0,1, . . , 1 (2.5)  

By changing the second summation from  to N into the summation from 0 to  
and by using the property of , (2.5) can be rewritten as in (2.6) 

(2 ) = ( ) + + , = 0,1, . . , 1 (2.6)  

In the same way, odd numbered sequence can be expressed as in (2.7) 

(2 + 1) = ( ) +
2

, = 0,1, . . ,
2

1 (2.7) 

(2.6) and (2.7) are combined to get the first order DIF derivation. First step is to 
compute ( ) +  and ( ) +  and then multiply the latter 
term with . Fig. 2.2 shows a simple radix-2 DIF butterfly. 

+

+ x

W

-

in1

in2

out1

out2

 

Figure 2.2 A Radix-2 DIF Butterfly 

A 16-point radix-2 DIF FFT architecture is chosen to be used in this project. The 
signal flow graph of the architecture is presented in (2.3). 
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Figure 2.3 A 16-point radix-2 DIF FFT algorithm 

 

Fig. 2.3 shows the signal flow graph for a 16-point FFT.  Two structures as the 
one in the figure are needed, one for the real part and one for the imaginary part. 
The output is in bit-reversal order i.e., the bits are flipped at the output. 

The  signal  flow  graph  in  Fig.  2.4  shows  4  stages  of  butterflies.  In  between  a  
multiplication with the twiddle factor W is shown according to (2.7). 

2.3 Hardware Architecture
Figure 2.4 describes a Single-path Delay Feedback (SDF) architecture of a 16-
point FFT using multipliers. The pre-computed twiddle factors are stored in an 
array  or  ROM  if  large-point  FFTs  are  to  be  designed.  A  controller  is  used  to  
generate the addresses to access the stored twiddle factors and to control 
multiplexers in every clock cycle.  
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Fixed point 2’s complement data format is used. In 2’s complement, first bit of a 
positive number is always 0 and rest of bits are ordinary binary values. For 
negative numbers, invert its standard binary value and add one to it.  

Complex data (real and imaginary) has been used for both twiddle factors and 
input  sequence.  Both  real  and  imaginary  values  are  15  bits  each;  1  sign  bit,  4  
integer bits and 10 fractional bits to get 3 decimal places of accuracy in the 
fractional part. Data scaling and truncation between different stages of the 
architecture due to multiplication is done according to precision requirements. 

Fig. 2.4 shows an architecture for a 16-point FFT architecture with multipliers. In 
the first phase, 8 input samples are, coming serially, are stored in the 8 registers of 
15 bits each during the first stage.  

 

Figure 2.4 A 16-point FFT architecture using multipliers 

In the second phase,  the first  8  samples,  stored in registers,  are  processed,  in  the 
butterfly, with the remaining 8 samples. . The reason behind is that the 1st sample, 
x(0) has to be processed with the 9th sample, x(8). The second sample, x(1) should 
be processed with 10th sample, x(9). The butterfly will generate the sum and 
difference of two input samples. The result of difference of input samples will 
eventually be stored in the register and multiplied with twiddle factor. In contrast, 
the addition of two input samples is sent to the next stage without any 
multiplication with a twiddle factor. The MUXes in this architecture are controlled 
by a controller, which keep track of the values that are sent to the next stage in the 
specific clock cycle. In the second stage, the same operations are done but in two 
parts.  The  first  4  results  from  the  first  stage  are  stored  in  the  4  registers  in  the  
second  stage.  These  4  samples  are  processed  with  the  upcoming  4  results  in  the  
butterfly. The same procedure is done with the next results from the first stage. 
This architecture generates the first end result in the 17th clock cycle. It produces 
all the 16 results in 32 clock cycles.  
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Twiddling factors approximation and complex multiplication can be done by a 
coefficient ROM and a multiplier, by using CORDIC algorithm, and by Parabolic 
Synthesis as described in Fig. 2.5.   

 

 

Figure 2.5 A 16-point FFT architecture 

Figure 2.5 shows a complete architecture of a 16-point FFT with both real and 
imaginary parts. Complex multiplier (comprising of 4 real multipliers and 2 real 
adders) and ROM can be replaced with CORDIC and Parabolic Synthesis 
algorithms to calculate real and imaginary values for next stage in the FFT. An 
angle  “ ”  and  previous  stage  real  and  imaginary  values  are  provided  to  the  
CORDIC algorithm, it will generate the final Xre and Xim values at the output for 
the next stage of the FFT. In the same manner, an angle “ ” and previous stage 
real and imaginary values are provided to the Parabolic Synthesis algorithm, 
which will generate the rotations, with the final Xre and Xim values at the output 
according to (2.3). 
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CHAPTER

3. CORDIC
The CORDIC (COordinate Rotation DIgital Computer) is a simple and efficient 
“shift-add” algorithm to calculate the wide range of functions including 
trigonometric, logarithmic, hyperbolic and linear. It is commonly used when there 
is no hardware multiplier is available. 

The  CORDIC  algorithm  was  first  described  by  Jack  E.Volder  in  1959.  It  was  
developed to provide the digital solution for the real-time navigation problems [1].  

Two basic CORDIC modes are well known for the computation of different 
functions, the rotation mode and vector mode. The CORDIC algorithm can be 
taken in as iterative structure of additions, subtractions and binary shift operations, 
which can perform fixed angle rotation (also known as micro-rotations). 

The CORDIC algorithm is well suited for VLSI implementations due to the 
simplicity of the involved operations. The CORDIC does not provide the perfect 
rotation when it is involved with the complex multiplication because the rotated 
vector gets scaled. To achieve perfect angle rotation, the scaling factor can be 
easily corrected. The idea behind the CORDIC for rotating the complex number by 
successive constant angles is highly useful and needs to be compared with other 
algorithms, which are claiming the similar functionality. 

3.1 Rotation
As the nature of CORDIC algorithm is based on simplicity, and the basic 
observation of unit-length vector can give the foundation of CORDIC algorithm. 

The point z in Fig. 3.1 at coordinates (x, y) = (1, 0) is rotated by the angle  and 
the new point z' will be at (x, y) = (cos ,sin ). Thus, the trigonometric functions 
cos  and sin  can be computed by finding the co-ordinates of point z', which is a 
rotated vector of angle  [2]. 

The rotation of the vector in a rectangular coordinate system from one point to 
another point can be performed by simply multiplying the vector by a complex 
number. Let the initial vector is 

 z = x + jy (3.1) 
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X

Y

r=1

z’=(cos ,sin )

z=(1,0)

 

Figure 3.1 Unit-length vector in Cartesian coordinate system 

And the desire vector is z' which is rotated by angle   

 z = x + jy  (3.2) 

z' can easily be computed by multiplying z with  

 z = z e  (3.3) 

 e = cos + sin  (3.4) 

 z = (x + jy)(cos + sin ) (3.5) 

 z = x cos + jx sin + jy cos y sin  (3.6) 

 z = (x cos y sin ) + j(x sin + y cos ) (3.7) 

Equation (3.7) gives us the new rotated points of the vector z , as shown in Fig. 
3.2. 

The complex number rotations in 2-dimensions are commutative [3], unlike in 
higher level of dimensions. By observing the equation (3.5), whenever two 
complex numbers gets multiplied with each other, their phase is added up and the 
magnitude gets multiplied. Thus, during the multiplication with the complex 
number with unity magnitude we are not affecting the magnitude but only rotating 
the vector by the desired angle. Such a rotation is known as a Real rotation as 
shown in Fig. 3.2. 
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Figure 3.2 Real Rotation of the vector 

 

 x = x cos y sin  (3.8) 

 y = x sin + y cos  (3.9) 

   

 

Let us take (3.8) and (2.9) one step further and make our way towards the 
CORDIC  

 x = cos (x y sin / cos )  

 y = cos (y + x sin / cos )  

 x = cos (x y tan ) (3.10) 

 y = cos (y + x tan ) (3.11) 

In (3.10) and (3.11) the factor cos  provides the scaling in rotated angle and 
causes the reduction in magnitude due to that fact that cos  1,  but  the  term  
tan  brings ease in computation because it is simply a shift operation. 

To further investigate the (3.10) and (3.11) and neglecting the scaling factor cos  
from the above equation  
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 x = x y tan  (3.12) 

 y = y + x tan  (3.13) 

 
Equation (3.12) and (3.13) are the coordinates of the rotated vector without any 
scaling factor, the absence of scaling factor can affect the results during the 
rotations but at the end of total computation this factor can be multiplied to 
balance the effect. The new rotated values x  and y  are shown in Fig. 3.3, such 
rotation is known as Pseudo Rotation. Fig. 3.3 shows the different between the real 
rotation and pseudo rotation. 

 

Figure 3.3 Real and Pseudo Rotation of the vector 

 

 

3.2 CORDIC Formulation
Jack E.Volder has proposed the idea to break the rotation angle  into the series of 
smaller angles i [4]  such  that  the  resultant  series  could  utilize  the  property  of  
tangent function  

 tan =  (3.14) 

The resultant series of angles is shown below in Table 3.1 
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Table 3.3.1 Pre-Computed angle set 

i deg tan  

0 45 1 

1 26.5 0.5 

2 13.25 0.25 

3 7.125 0.125 

4 3.576 0.0625 

5 1.789 0.03125 

6 0.895 0.015625 

7 0.447 0.00781 

8 0.223 0.00390 

9 0.115 0.001953125 

10 0.055 0.0009765625 

 

Using (3.14) in (3.12) and (3.13), the foundation of the CORDIC equation is 
verified as, which is 

 = 2  (3.15) 

 = + 2  (3.16) 

 

The rotations in each stage around the desired angle could be clock-wise or anti-
clock-wise, and with the sequential values of i the angle  and tan   goes on 
decreasing as shown in following equations. 

= ± …….. 

 = tan 2 tan 2 tan 2 tan 2 tan 2  ……. 
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During the angle rotation, the resultant angles either perform addition or 
subtraction depending on the operation deciding factor . Generally, the 
CORDIC algorithm for other mathematical functions depends on  as-well.   

 = 2  (3.17) 

 = + 2  (3.18) 

Example: To compute the angle  = 30º, using the rotation algorithm, is done by 
breaking the angles into smaller parts 

30º  45º – 26.6º + 14º – 7.1º + 3.6º +1.8º – 0.9º + 0.4º 

All  the  angles  in  series  against  the  angle  30º  can  be  taken  from  the  Table  3.1.  
These angle values can easily be computed using shift, add and subtract 
operations. 

 

3.3 Unrolled CORDIC ARCHITECTURE
An eleven stage CORDIC is shown in Fig. 3.4. In the eleven adders at the top, the 
remaining angle is computed for each stage. The input variable  is the angle for 
the cosine and sine that is searched for. At the top, the fixed coefficient angle 
values , for each rotation are provided. These are added or subtracted from  in 
each stage. They are fixed coefficients (hardware wired) but they can be stored in 
a ROM as well. 

In the middle and the lower adder rows the approximation of the real and 
imaginary signals, Xre(n) and Xim(n), are computed and provided to the right. The 
initial vector values, xre(1)  and xim(1), are provided to the left. The input signals 
are  taken  from  previous  real  and  imaginary  butterflies  (in  the  case  of  FFT).  
Furthermore, the output signals are provided to next real and imaginary butterflies. 
In each stage new vectors are determined, in order to converge towards the vector 
that approximates the vector that represents the angle . In each vector rotation 
stage there is a crosswise addition or subtraction of the vector coordinates. The 
vector rotation depend on the sign bit, sgn, in each stage of the upper row of 
adders. That is, the sign bits determine if it should be an addition or subtraction. 
There are also divisions of the vector coordinates by a factor corresponding to 2 i 
where i’s are the integers {1, 2, 3, 4, 5, 6 … n}. That is, division by {1, 2, 4, 8, 16, 
32 … 2n}. This corresponds to the right shifts as discussed in the CORDIC 
algorithm, which are done by shifting the busses between the stages. There is thus 
no extra cost in hardware for the divisions.  
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Figure 3.4 An un-rolled 14-stage CORDIC architecture 
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3.4 CORDIC Scaling Factor
The above CORDIC algorithm introduces the constant scaling factor (K) with the 
resulted rotated vector, and this factor needs to be multiplied. The property 
cos cos( brings more ease to pre-compute the scaling factor because, the 
direction of rotation does not matter in case of cosine function  

K = (1) …. 

K = 0.707 x 0.894 x 0.970 x 0.992 x 0.998 …. 

K  0.60725 

Now, constant scaling factors which can be further designed with shifts and add 
operations to eliminate the need of multiplier, as shown in Fig. 3.5.  

 

Figure 3.5 Hardware Multiplication of scaling factor. 

3.5 Generalize CORDIC
Generalized CORDIC covers the equations for the linear, circular and hyperbolic 
systems and the (3.17) and (3.18) can be modified to accommodate these functions 
as well 

 = 2  (3.19) 
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 = + 2  (3.20) 

 = +  (3.21) 

 

The parameters for generalized CORDIC algorithm are listed in Table 3.2 with the 
rotation type 

Table 3.3.2 Parameters for Generalized CORDIC 

Linear Rotation = 2  µ=0 

Circular Rotation = tan 2  µ=1 

Hyperbolic Rotation = tanh 2  µ=-1 
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CHAPTER

4. Parabolic Synthesis
Parabolic synthesis methodology [6] is devised to implement approximation of 
different unary functions e.g. trigonometric, logarithm, square root and division 
functions that are extremely important in the field of astronomy, digital signal 
processing, image processing, robotics, navigation systems etc. High speed 
applications in these fields need hardware implementation where software 
solutions in most of the cases are not sufficient.  

Parabolic synthesis methodology performs an approximation of original unary 
function by developing other sub-function and help functions. The architecture of 
the proposed methodology itself parallel in nature and take great advantage of 
parallelism to reduce the execution time. Only low complexity operations e.g. 
multiplications, shifts, additions are used that is easily implemented in the 
hardware.  

Parabolic synthesis methodology has been devised in order to generate better 
results in terms of speed, area, power and precision as compared to algorithms 
employed previously for the approximations of unary functions. Pre-processing 
and post-processing are two steps besides the most important approximation part 
that are used to normalize and transformation respectively. Therefore, the 
implementation is divided into three parts, normalizing, approximation and 
transforming.  

4.1 The Methodology
Pre-processing is the first step; normalization, approximation is the next one in 
which sub-function and help functions are developed and post-processing is the 
last step to transform the result according to the requirement. 

4.1.1 Normalization
Normalization is done to facilitate the hardware implementation by restricting the 
numerical range. The purpose of this step is to satisfy that the values should be in 
the  interval  of  0    <  1on  the  x-axis  and  0    < 1on the y-axis keeping the 
coordinates of starting point at (0,0) and ending point having coordinates smaller 
than (1,1). Furthermore the function must be strictly concave or convex during the 
interval. 

4.1.2 Hardware Architecture Development
Low complexity operations are used when developing hardware architecture that 
approximates an original function. These operations include additions, 
multiplications and shifts, which are efficient for hardware implementation. The 
emergence of efficient multiplier architecture and downscaling of semiconductor 
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technologies has made the multiplication operation efficient in hardware 
implementation.  

The proposed methodology is based on decomposition of basic functions. It is 
based on second order parabolic functions since these functions can easily be 
implemented with low complexity operations. The recombination process is done 
with multiplication. 

The methodology is devised in terms of second order parabolic functions called 
sub-functions ( ), these sub-functions when recombined give the approximation 
of the original function ( ) as shown in (4.1). The accuracy of the results 
depends on the number of sub-functions used. 

 ( )=  ( ) ( ) … ( ) (4.1) 

 

The first help function ( ) is generated by dividing the original function ( ) 
with the first sub-function ( ). This help function will be a parabolic looking 
function as shown in (4.2). 

 ( ) = 
( )

( )
   (4.2) 

The subsequent help functions will be generated according to (4.3). The 
sub-function ( ) should be chosen to be feasible for hardware 
implementation. 

 ( ) = ( )
( )

             (4.3) 

        

4.1.3 Methodology for developing sub-functions
The sub-functions are developed by decomposing the original function ( ) 
according to second order parabolic functions in the interval 0   <1 and the sub-
interval within the interval. The second order parabolic function is the 
decomposition function and it is easily implemented in hardware with low 
complexity functions such as multiplication and addition. 

 

 

The first sub-function 
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The methodology to develop the first sub-function ( ) is by dividing the 
original function ( ) with  as a first order approximation. There are two 
possibilities as a result of this division, one when ( ) > 1 and one when ( ) <
1. The first sub-function ( ) as given by (4.4). The expression 1 + ( )  
is utilized to get approximation of these functions. The first sub-function ( ) 
results in a second order parabolic function as in (4.4). 

 ( ) = 1 + (1 ) = + ( )  (4.4) 

              

In equation (4.4), the coefficient   is determined according to (4.5). 

 = lim
( )

1 (4.5) 

The second sub-function 

The first help-function ( ), is important in developing the second sub-function. 
The first help function ( ), is calculated according to (4.2) and dividing two 
continuously concave or convex functions having the same starting and ending 
point which will give rise to another function similar to a parabolic function. The 
second sub-function ( ), is developed according to second order parabolic 
function as shown in (4.6). 

 ( ) = 1 + ( )            (4.6) 

      

The coefficient   in (4.6), is to satisfy the condition that the quotient between the 
first help-function and second sub-function is equal to 1 when  is  set  to  0.5  in  
(4.7). 

 
    = 4 1  (4.7)    

      

The second help-function ( ) is developed in such a way that it can be divided 
into a pair of functions that look like parabolic functions, where the interval of first 
function is from 0   < 0.5 and for second, interval is from 0.5   < 1. 

 

 

Sub-function when n>2 
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For help functions ( ) when n>2, there are one or more pairs of parabolic 
looking functions. Each pair of parabolic looking function is divided into two 
parabolic help-functions in order to develop higher order sub-functions. A 
parabolic sub-function is developed as an approximation of the help function 

( ) in the sub-interval. Sub-sub-functions are associated with a specific sub-
interval, and for this the subscript index is increased with the index m in sub-help-
function in ( ). The numbers of sub-help-functions are doubled in every order 
of n>1. The corresponding sub-sub-functions are developed from these help 
functions.  

4.2 Hardware Implementation
An implementation for calculating real and imaginary values during the twiddle 
factor multiplication in the FFT using the proposed methodology of parabolic 
synthesis is described in this section. 

The hardware implementation is divided into three parts; pre-processing, 
processing and post-processing. Fixed point 2’s complement representation is 
used. 

4.2.1 Pre-Processing
 

Pre-processing is done to satisfy that the value of incoming angle  is in the 
interval 0 <1 and transfer angles from quadrant 2,3 and 4 into quadrant 1, to 
achieve this operand in radians is multiplied with as shown in Fig. 4.2.  
                

Original angle=  

Normalized angle = f  =  = (integer part)(fractional part)       (4.8) 

The  integer  part  1 0 represents  the  quadrant  of  the  original  angle  and  it  will  be  
used for 2’s complement conversion at the output and as MUX select bits. 
Quadrant  1,  2,  3  and  4  is  represented  by  0,  1,  2,  and  3  respectively  in  binary  
representation as shown in Fig. 4.1.  
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Figure 4.1 Angle transformation from quadrant 2-4 to quadrant 1 

The word length of the input angle is fifteen bits; one sign bit, four integer bits and 
ten fractional bits to get three fractional digit precision. It is multiplied with the 
factor to get the normalized angle.  

 

Figure 4.2 Hardware architecture for pre-processing 

4.2.2 Processing
The Discrete Fourier Transform (DFT) is defined as in (4.9) and (4.10) 

 ( ) = ( )   (4.9) 

 =  (4.10) 

The  DFT  is  complex  valued  but  in  hardware,  the  real  (Re)  and  imaginary  (Im)  
parts are separated in two real parts as shown in (4.11) and (4.12) 
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 ( )= cos sin  
(4.11) 

 ( )= sin + cos  
(4.12) 

 

(4.11) and (4.12) can also be presented for simplicity as in (4.13) and (4.14). 

  = × cos( ) sin( ) (4.13) 

 = × sin( ) + cos( ) (4.14) 

The sine and cosine values must be determined by approximation. The 
approximated sine and cosine functions according to first and second sub-
functions (4.4) and (4.6) are in (4.15) and (4.16) respectively.  

 = + ×  

= 1 + ×  

 

 

 

(4.15) 

 = 1 + ×  

= 1 + ×  

 

 

 

(4.16) 

These equations are developed according to [7] with coefficients = 0.571 
and = 0.401. Only two sub-functions are used as it will be equivalent to 
precision CORDIC algorithm can deliver with 11 stages. The angle  is  the  
normalized  fractional  part  of  .  It  is  only   that  differs  from the  sin  and  cosine  
functions.  Since there is  a  connection between the sine and cosine terms in all  4  
quadrants, the  term is used instead of  in first sub-function in the cosine 
equation. 
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Figure 4.3 Input Transformation from quadrant 2-4 to quadrant 1 

In figure (4.4), both sine and cosine functions are approximated and multiplied 
with previous real and  values  in  the  FFT to  get  new real  and  imaginary  
values. The normalized angle  from pre-processing block is multiplied with 
itself to get  and in the next step  is subtracted from  to get - . The 
result from -  is multiplied with coefficients  and  with simple shifts and 
add operation in Multiple Constant Multiplication (MCM) block as shown in Fig. 
4.5. 

There is one input -  and it will generate two results - ) and - ) 
with shifts and adders. It will considerably reduce the hardware, compared to two 
multipliers.  
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Figure 4.4 Architecture for the multiplication of complex numbers with approximated 
trigonometric functions (sine and cosine) 

 

Figure 4.5 Architecture for Multiple Constant Multiplication 
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In case of adding “1” to - ) term, there is no need of an adder. Since   is 
positive, and - ) always will be less than “1”. The fractional part can thus 
be merged with “1” directly with the wiring as shown in Fig. 4.6. 

 

Figure 4.6 The fractional bus with an added integer “1” 

This wiring will give the second sub-functions for both sine and cosine functions 
as shown in Fig. 4.4. 

Table 4.1 shows when the input transformations are needed according to quadrant 
of original angle . The integer value  is used to select the MUXes as shown in 
Fig. 4.4. 

Table 4.4.1 Input Transformations 

 1st Quadrant 2nd Quadrant 3rd Quadrant  4th Quadrant 

Sine f 1- f f 1- f 

Cosine 1- f f 1- f f 

 

The upper adder with a MUX will generate first sub-function ×
  for  cosine  function  and  lower  adder  with  MUX  will  give  ×
 for  sine  function.  The  following  multipliers  will  produce  the  

approximated sine and cosine values.  

Since all the computation is done in the first quadrant, the output is to be 
transformed back again. Table 4.2 shows the output transformations necessary at 
the output. 
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Table 4.4.2 Output Transformations 

 1st Quadrant 2nd Quadrant 3rd Quadrant  4th Quadrant 

Sine + + - - 

Cosine + - - + 

 

For 2’s complement conversion, the architecture in Fig. 4.7 is used with half 
adders and XOR gates. A control signal  or  XOR is used to select when the 
conversion is to be done according to table 4.2. 

 

Figure 4.7 Architecture for 2’s complement conversion 

After post-processing, sine and cosine, the approximated values are multiplied 
with real and imaginary  parts  from previous  stage  of  the  FFT.  The  new 
real  and imaginary  values are calculated according to (4.13) and (4.14). 
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CHAPTER

5. Results
The methodology for extracting results of area, timing and power constraints in 
both the designs is shown in Fig. 5.1. The HDL description of the designs is done 
in VHDL. The target design is synthesized into a gate-level netlist using an ASIC 
design synthesis tool, Synopsys Design Compiler with a standard cell library such 
as  in  our  case  LPLVT (Low Power  Low Threshold  Voltage)  and  LPHVT (Low 
Power High Threshold Voltage). The results are taken on different voltages (1V, 
1.1V, 1.2V) on each library. Area and timing information for both the designs are 
gathered after the synthesis process. The synthesis process generates a Gate-level 
netlist of the design and a SDC file, which contains area and timing design 
constraints in the Synopsys Design Constraint format. MentorGraphics ModelSim 
is used to generate toggle information of the target design in VCD (Value Change 
Dump) file by using the Gate-level netlist and the SDC file from Design Compiler. 
The power analysis tool, Synopsys PrimeTime estimates the static and dynamic 
power dissipation in the target design using the design netlist and the VCD file. 

 

 

Figure 5.1 ASIC flow for results extraction 
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5.1 Area
The CORDIC and Parabolic Synthesis algorithm designs are synthesized in 
Synopsys Design Compiler using STMicroelectronics 65-nm LPLVT and LPHVT 
CMOS libraries. The synthesis is done using different supply voltages i.e., 1V, 
1.1V and 1.2V. Fig. 5.2 and Fig. 5.3 show total area of the CORDIC and Parabolic 
Synthesis algorithm designs respectively, in LPLVT and LPHVT CMOS libraries 
with different supply voltages. It is obvious that parabolic synthesis design is more 
area efficient than 14 stage unrolled CORDIC design. 

 

Figure 5.2 Total Area analysis of CORDIC design in LPLVt and LPHVt 

 

Figure 5.3 Total Area analysis of Parabolic Synthesis design in LPLVt and LPHVt 
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Table 5.1 Total area of CORDIC and Parabilic Synthesis in LPLVt and LPHVt 

Architecture CORDIC Parabolic Synthesis 

Supply Voltage (V)  1V 1.1V 1.2V 1V 1.1V 1.2V 

Area (um2) LPLVT 19303 19363 19370 16322 16331 16324 

Area (um2) LPHVT 19502 19487 19491 16296 16304 16279 

 

5.2 Timing
Fig. 5.4 and Fig. 5.5 show the critical path propagation delay timing for the 
CORDIC  and  Parabolic  Synthesis  designs  respectively.  It  can  be  seen  that  the  
propagation delay is less in parabolic synthesis compared to the 14-stage un-rolled 
CORDIC design.  The  reason  for  that  is  the  shorter  critical  path  in  the  Parabolic  
Synthesis design due to the high degree of parallelism. There is also a difference in 
delay in two different libraries LPLVT and LPHVT. The delay is smaller in 
LPLVT, that is, it is almost half of that in LPHVT. 

 

Figure 5.4 Propagation delay of CORDIC design in LPLVt and LPHVt 
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Figure 5.5 Propagation delay of Parabolic Synthesis design in LPLVt and LPHVt 

 

 

Table 5.2 Total Propagation Delay of CORDIC and Parabilic Synthesis in LPLVt and LPHVt 

Architecture CORDIC Parabolic Synthesis 

Voltage Supply (V)  1V 1.1V 1.2V 1V 1.1V 1.2V 

Propagation delay (ns) LPLVT 23.4 19.13 16.25 13.95 11.5 9.85 

Propagation delay (ns) LPHVT 47 37 26 32.7 24.1 18.66 

 

 

5.3 Static Power
Fig. 5.6 and Fig. 5.7 show the static power dissipation in the CORDIC and 
Parabolic Synthesis designs respectively, using LPLVT and LPHVT CMOS 
libraries.  The  static  power  dissipation  is  almost  zero  with  respect  to  LPLVT  
transistor technology. The static power dissipation in the Parabolic Synthesis is 
less than in the CORDIC algorithm. 
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Figure 5.6  Static Power (Leakage) of CORDIC design in LPLVtt and LPHVt 

 

Figure 5.7 Static Power (Leakage) of Parabolic Synthesis design in LPLVt and LPHVt 
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Table 5.3 Static Power (Leakage) of CORDIC and Parabolic Synthesis design in LPLVt and 
LPHVt 

Architecture CORDIC Parabolic Synthesis 

Supply Voltage (V) 1 1.1 1.2 1 1.1 1.2 

Static Power (uW) LPLVT 5.67 8 11.8 3 5 7.21 

Static Power (uW) LPLVT 0.03 0.043 0.001 0.021 0.031 0.045 

 

5.4 Dynamic Power
Fig. 5.8 and Fig. 5.9 describes the total dynamic power (both cell internal power 
and Net Switching power) in the unrolled-CORDIC and Parabolic Synthesis 
designs respectively, using LPLVT and LPHVT design libraries. The architectures 
are tested on maximum frequencies. 

 

Figure 5.8 Total Dynamic Power of CORDIC design in LPLVt and LPHVt 
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Figure 5.9 Total Dynamic Power of Parabolic Synthesis design in LPLVt and LPHVt 

 

Table 5.4 Dynamic Power of CORDIC and Parabolic Synthesis design in LPLVt and LPHVt 

Architecture CORDIC Parabolic Synthesis 

Voltage Supply (V) 1V 1.1V 1.2V 1V 1.1V 1.2V 

Dynamic Power (uW) LPLVT 267 330 404 203 250 306 

Dynamic Power (uW) LPHVT 355 427 498 299 339 409 

 

5.5 Energy
Fig. 5.8 and Fig 5.9 for dynamic power comparison gives us total dynamic power 
consumed by Parabolic Synthesis and Cordic, but due to different design 
approaches, both architectures have different frequencies, as shown in Fig. 5.4 and 
fig. 5.5. Total energy consumed by both architectures at their maximum 
frequencies  is  shown  below  in  Fig.  5.10  and  Fig.  5.11.  It  is  clearly  seen  that  
Parabolic synthesis is about 50% more energy efficient than Cordic. 
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Figure 5.10 Energy Consumption in CORDIC design in LPLVt and LPHVt 

 

 

Figure 5.11 Energy Consumption in Parabolic Synthesis design in LPLVt and LPHVt 

 

 

 

0,0E+0
2,0E-9
4,0E-9
6,0E-9
8,0E-9
1,0E-8
1,2E-8
1,4E-8
1,6E-8
1,8E-8

1 1,1 1,2

En
er

gy
 co

ns
um

pt
io

n 
(J

)

Supply Voltage (V)

LPHVT

LPLVT

0,0E+0

2,0E-9

4,0E-9

6,0E-9

8,0E-9

1,0E-8

1,2E-8

1 1,1 1,2

En
er

gy
 co

ns
um

pt
io

n 
(J

)

Supply Voltage (V)

LPHVT

LPLVT



43 
 

Table 5.5 Energy Consumption in CORDIC and Parabolic Synthesis design 

Architecture CORDIC Parabolic Synthesis 

Voltage Supply (V)  1 1.1 1.2 1 1.1 1.2 

Energy consumption (nJ) LPLVT 6.24 6.37 6.67 2.83 2.87 3.01 

Energy consumption (nJ) LPHVT 16.68 15.79 12.94 9.77 8.16 7.63 
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Table 5.6.1 required memories, registers and multipliers for FFT points 

No of FFT 
points 

No of register/Rom cells required to store 
the Twiddling factors (Real + Imaginary) Real Multipliers 

16 16 12 

32 32 16 

64 64 20 

128 128 24 

256 256 28 

512 512 32 

1024 1024 36 

2028 2048 40 
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CHAPTER

6. Conclusions
A comparison of two different algorithms, un-rolled CORDIC and Parabolic 
Synthesis, has been made for area, speed and energy. These algorithms are utilized 
to approximate real and imaginary values in an FFT. Comparisons have been done 
on different transistor technologies at different voltages. The results show that the 
parabolic synthesis algorithm is better in energy consumption, speed and area. The 
area utilization in the Parabolic Synthesis is 16% less than in the un-rolled 
CORDIC for the specific precision and energy consumption, on the other hand, is 
50% less than the CORDIC. In the same manner, the timing of the parabolic 
synthesis is about 1.4 times better than the un-rolled CORDIC algorithm. It is also 
concluded that, when using a LPLVT transistor technology, the static power is 
higher but less dynamic power with comparison of LPHVT transistor technology. 
Since the cell size in both the technologies is almost same, the area utilization 
comes to be very close to each other. Speed is better when using LPLVT transistor 
technology as expected due to less parasitic effects.  

An investigation of the rotations, using twiddle factor multiplications, is not 
included here. However, a rough estimate on how the number of register/ROM 
cells, to store the twiddle factors, increase with the number of FFT points, can be 
done as shown in Table 5.1  

It can be noted that the number of twiddle factor cells are increasing exponentially. 
For  small  FFTs,  registers  can  be  beneficial  but  for  large  FFTs,  A  ROM  will  be  
preferred. But the size of memory increases exponentially with increase in FFT 
points, whereas on other hand the Parabolic synthesis and the CORDIC algorithms 
computes rotations in the real time, hence, there is no need to store twiddle factors. 
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CHAPTER

7. Future Work
The comparison of Un-rolled CORDIC and Parabolic Synthesis algorithms for 
twiddle factors can also be carried out with multiplier based FFT architecture 
which needs ROM to store larger number of twiddle factors. The multiplier based 
FFT  architecture  is  area  efficient  for  the  low  number  of  FFT  points.  However,  
when  the  number  of  points  is  increasing,  it  utilizes  an  exponentially  larger  chip  
area. Parabolic Synthesis algorithm can also be improved with respect to 
wordlength optimization between the architecture.    
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