
Flexible software solution for automatic
maintenance of thick-client systems

Olof Olsson

Department of Electrical and Information Technology
Lund University

Advisor: Anders Ardö (EIT), Richard Houltz (Cenito Software AB),
Johan Nilsson (Cenito Software AB)

February 15, 2013

Printed in Sweden
E-huset, Lund, 2013

Abstract

Many distributed systems are implemented with very simple thin clients than can
operate without much locally bound software. This makes them fairly easy to
update since the application is stored on a central server. When on the other
hand a distributed system need to access local hardware, a thick client using local
software must be used.

To enable surveillance and maintenance over thick client systems, it is nec-
essary to automate the update and surveillance procedure with software. This
software should be able to control and survey the behavior of unique installations
and be dynamic enough to maintain and survey any thick client. The software
needs to be flexible in its design to allow support for multiple system types.

The purpose of this study was to propose a design for a system that could
enable cost-effective maintenance and surveillance of a distributed thick client sys-
tem. To develop a possible design for this system an article study was conducted
into usable design patterns and frameworks. The proposed design was also evalu-
ated by the development of a prototype system. This system was tested on a thick
client where its usefulness could be evaluated.

i

ii

Acknowledgements

I would like to take this opportunity to thank my advisors at Cenito Software AB,
Richard Houltz and Johan Nilsson, and my advisor at LTH Anders Ardö. I would
also like to thank my colleagues at Cenito Software AB for all the interest shown
in the study and the advice given.

iii

iv

Table of Contents

1 Introduction 1
1.1 Environment . 1
1.2 The prototype . 2

2 Pre study 5
2.1 Extensibility . 5
2.2 Communication . 7
2.3 Queueing . 9
2.4 Data storage . 12
2.5 Updating the thick client . 14
2.6 Heart beat . 15
2.7 Publishing data . 15

3 Possible solution 17
3.1 Prototype specification . 17
3.2 Extensibility . 18
3.3 Queueing . 19
3.4 Communication module . 20
3.5 Data storage . 21
3.6 Updating the software . 21
3.7 Publishing data . 22

4 Final design 23
4.1 Plugin structure . 23
4.2 Client . 23
4.3 Heart beat . 24
4.4 Server . 25
4.5 Publishing data . 25

5 Implementation issues 27
5.1 Duplex WCF with MSMQ bindings 27
5.2 Choosing solutions for maximum extensibility 27
5.3 Database design for generic data . 28

v

6 Testing the prototype on a thick client 29

7 Conclusion 31

8 Future development 33
8.1 A better user interface . 33
8.2 Filtering of accepted data in the server 33
8.3 Simplifying the plugin development 33

9 Terminology 35

References 37

vi

Chapter 1
Introduction

Many distributed systems today rely mainly on so called thin clients, logic-less
user interfaces that mainly communicate back to smart servers. These thin clients
has some great benefits from a viewpoint of maintenance as they can be updated
or changed without major downtime. They also have a smaller Achilles heal than
its opposite, thick client, as their only dependency is that the server and the
communication line are online. These thin clients do however have a limitation
to what they can be used for and when more complicated logics or hardware is
needed in the client application there is a need for a distributed client application
that also has to be maintained and surveyed. As these thick client can be of some
complexity it might not always be a simple task to keep them up to date and under
surveillance. Without any way to view the system operate the thick clients are left
on there own in case of a malfunction or unexpected change in operation that might
not be visible to someone taking care of said system. Maintenance and surveillance
systems for servers are not uncommon and while specialized surveillance systems
for thick client services exist they are limited and specialized. For a company
maintaining several types of systems, all working on distributed thick clients, the
issue of surveying these machines might be a costly one. I have prior to this study
worked for Cenito Software with such a distributed system and I have through
that experience seen that there is indeed a huge need for a system that can help
with the maintenance and surveillance. The issue with a system such as this is
that the kind of data that is interesting to survey in the thick clients might change
rapidly. It might one day be of interest to collect data specific to a current bug
and another day to collect data regarding the usage of the system. In this case
there is a need for a dynamic and changing system that can track data in any way
the user sees fit.

1.1 Environment

Cenito works with .Net and C# as their preferred language and have therefore
requested that the prototype, developed for testing in this study, should be built
in the same environment. This affords the prototype the benefit of having a first
testing ground in one of the Cenito projects; a distributed kiosk system. .Net comes
with some suitable features for the server hosting, namely Azure, which was to
be considered as a potential hosting environment. The final testing environment

1

2 Introduction

for the prototype is a mix of windows versions that runs a sun tanning payment
system. It will there collect suitable data and communicate that data to the server.
The data collection will be superficial and will hopefully show the final potentials
of the system.

The user interface will for practical reasons be built for standard web browsers.
It will not contain more features than is necessary for showing the potential of the
server and client. For the testing purposes, no sensitive data will be collected as
to not force the user interface to be run with security.

1.2 The prototype

To test the theories of a fully agile and extendable surveillance system for generic
distributed systems a prototype was considered. A system such as this might
work great in theory but when moving into the realm of practical application the
only way to really test the theory is by prototyping. To start the prototype some
limitations had to be set both because of the limitation in time and because of the
span of this thesis. The main focus was put on the extensibility and as such some
features had to be left out. Other important aspect of a potential final product,
such as security and remote controlling of the host machine had to be left for a
future update of the system, outside of this thesis scope.

1.2.1 Requirement specification

For a finished product to meet the expectations and uses, the following use cases
needs to be considered. The use cases are specified for a finished product and
all of the following use cases will not be implemented in the prototype software
developed for this study. The use cases that will not be considered for the pro-
totype is mentioned in more detail together with the prototype specification (See
chapter 4.1). The use cases has been revised several times and their numbering is
constructed from an id and version number separated by a dot.

General requirements

• 1.3
The systems user should be able to schedule or push updates to the thick
client.

• 2.3
The user should be able to see information about the thick clients hardware
status. Hardware information therefor needs to be collected from the thick
client.

• 3.2
The user should be able to view activity information from the thick clients
to know if the thick clients is running correctly.

• 4.2

Introduction 3

The user should be alerted if any configurations or software is changed from
an outside source. The user should also be able to view working configura-
tions and software versions from any thick client.

• 5.3
The user should be able to plug in an advanced information collector to the
thick client and view the collected information.

• 6.2
The user should be able to view log files from the thick client on demand
enabling fast error tracking. The log files therefore need to be collected and
uploaded automatically.

• 7.3
The User should automatically and on demand get potential malfunction
alerts from sources found in the log files. The log files therefore needs to be
analyzed automatically or continuously.

• 8.2
The Thick Client needs to update itself automatically to allow the user to
use new features and security updates.

• 9.2
The user should be able to schedule and run tasks on the thick client such
as backups.

• 10.2
The system should be able to run independent of hardware and software of
the thick client so that the user is able to combine information and status
collection for multiple different systems.

• 11.2
The user should be able to set thresholds for alarms so that the user can
decide how involved he will be in maintenance.

• 12.2
The user should be able to sort out information from the thick clients and
view only what is wanted

• 13
The user should be able to see system status and information from the
thick clients in real time so that malfunctioning systems can be spotted
immediately

• 14
The user should be able to view information and system status through a
web page for easy access.

• 15.2
The user should be able to push a message making the thick client update
itself

4 Introduction

• 16.2
The user should be informed by mail if a thick client is malfunctioning.

• 17.2
The user should be able to get notifications by push

Chapter 2
Pre study

Before starting on the development of this project some effort was put into the
search for similar projects and the documentation of such. The search did not
reveal any documentation of fully developed projects in the same area of function-
ality and design but a more detailed search in the areas of extensibility gave much
to build on. During the pre study the goal of the project shifted slightly in the
direction of extensibility as the research opened up new grounds for what could be
possible. The bigger part of the software seemed to theoretically work in a module
model where close to all parts could be exchanged depending on the underlaying
system from which the software would be run.

2.1 Extensibility

“In software engineering, extensibility (sometimes confused with forward compati-
bility) is a system design principle where the implementation takes into considera-
tion future growth. It is a systemic measure of the ability to extend a system and
the level of effort required to implement the extension. Extensions can be through
the addition of new functionality or through modification of existing functional-
ity. The central theme is to provide for change - typically enhancements - while
minimizing impact to existing system functions.”[6]

For a system to be able to survey another independent generic system the
surveying system needs to be either very general in its surveillance or very easy to
modify for detailed surveillance. As the main aim of this paper is to explore if a
surveying system can gather detailed data from an independent generic system a
high priority is put on making the surveying system highly extensible.

Basing the system on a plugin model enables us to exchange the parts of the
system that collects information and therefore makes our software able to survey
any system we can write data collection plugins for. Plugins could solve the most
necessary extensibility problem that we face and it could also enable us to loosely
bind any part of the system thus enable users to choose the parts any way that
they would want.

The first step to create the desired extensibility in the system is to look at
inversion of control and dependency injection.

5

6 Pre study

2.1.1 Inversion of Control containers and Dependency Injection

“In software engineering, Inversion of Control (IoC) is an object-oriented program-
ming practice where the object coupling is bound at run time by an assembler
object and is typically not known at compile time using static analysis. ”[10]

The main aim of IoC containers is to decouple systems. Loose bindings between
objects creates more flexible and manageable design which opens up for change
and enables mocking of modules in testing.

Dependency injection was first introduced by Martin Fowler in his article about
the pattern[14] and was by the new term separated from the general Inversion of
Control that is very common in software engineering.

Dependency injection is a concept or pattern that we can derive from Inversion
of Control. We do not always want to let an object be responsible for all its
dependencies. Therefore we inverse the control and let the host of the object
inject the dependencies into the object.

Dependency injection is a software design pattern that allows a choice of com-
ponent to be made at run-time rather than compile time. This can be used as a
way to introduce third party add-ins, or plugins. Dependency injection can also be
used to support different kinds of runtime environments. As an example it is pos-
sible for an application to use more than one database by letting the logic handle
the data transactions against a contract that would have several implementations
with the specific database logic. These implementations could be inserted into the
system by use of dependency injection.[12]

“At its core, IoC, and therefore DI also, aims to offer a simpler mechanism for
provisioning component dependencies and managing these dependencies through-
out their lifecycle.”[7]

With the use of the Dependency injection pattern we can create a suitable
plugin support for the prototype and get the extensibility needed for the system.

2.1.2 Suitable IoC containers

There are several IoC containers that should be considered for the implementation
of the prototype. There is a vast amount of available IoC container frameworks and
not all of them can be discussed in detail in this study because of time limitations.
A number of frameworks was selected from the book Dependency Injection in
.Net[30] for a closer look and as the wanted features was found, no further research
was conducted.

Unity

“The Unity Application Block (Unity) is a lightweight extensible dependency injec-
tion container with support for constructor, property, and method call injection.

Unity addresses the issues faced by developers engaged in component-based
software engineering. Modern business applications consist of custom business ob-
jects and components that perform specific or generic tasks within the application,
in addition to components that individually address cross cutting concerns such
as logging, authentication, authorization, caching, and exception handling.”[9]

Pre study 7

Unity tackles the Dependency injection pattern very well and is able to create
a very loosely coupled design. It does however compose its components by explicit
registration. It is therefore not optimal to use for a plugin pattern.[13]

Managed Extensibility Framework

Managed Extensibility Framework (MEF) is not strictly speaking an Inversion of
Control container as it does not depend on a clear definition of the dependencies
that it procures for the target. However in our case it acts as any other Inversion of
Control container in the sense that it provides the dependencies that are needed.

MEF composes the components by way of filling components marked with
the attribute [Import] with other components marked with the attribute [Export].
The importing components signals which imports it needs by adding the contract
the export needs to fulfill in its import attribute. The exporting component fulfills
contracts by implementing interfaces representing the contracts. Each import is
matched with a list of exports by way of its contract by the composition engine.[1]

MEF can be used for dynamic discovery of components. An application using
MEF could, with a DirectoryCatalog, be designed so that simply putting compiled
code, in the form of dlls, in that catalog enables the application to find all classes
marked by the export attribute. This makes for a very flexible plugin structure.

Other dependency injection frameworks

There is some other dependency injection frameworks worthy of a mention such
as Castle Windsor, StructureMap and Autofac. These framework does however
like Unity need a explicit registration of the components and is therefore not as
suitable as MEF for a plugin pattern.

2.2 Communication

2.2.1 Possible issues

The main feature of the system could be said to be the data communication.
It is also of the highest necessity that the client can work unhampered by the
statues of the server and vice versa as to be able to continue collect data even in
situations where the server is not responding. The following list describes some
potential communication problems that have to be considered in the choice of
solution model.

• Network issues; the network is down and the message can not be sent from
the client to the server or vice versa.

• Dropped connections; A package is sent after the client checks that the
connection to the server is up but is then immediately dropped resulting in
a lost package.

• Unpredicted lost package through unknown error; If we can not be com-
pletely sure of all parts in the communication between the client and the
server we have to protect the communication from the unpredictable errors

8 Pre study

as well. The client and server both should be able to keep running and
functioning as normal even in the advent of a lost package.

• Out-of-order messages; The packages that are sent from the client arrives in
the incorrect order therefor changing the intended result of handling those
packages.[2]

As the system will be relying information to the surveilling user, a proper
reliable and robust communication has to be used between the data collecting
clients and the data analyzing and storing server.

Three main solutions were considered for the communication, namely win-
dows communication foundation, TCP/IP socket communication and ASP.Net.
A fourth alternative with UDP communication was not considered as a possible
solution due to the likely dataloss in UDP communication.

2.2.2 Socket communication over TCP/IP

A socket communication would work very well for the communication between
server and client but a protocol for the communication would have to be built to
handle both the sending of collected data and the update push communication
from the server. Setting up such a protocol and data communication would be a
very big and unnecessarily complicated task in itself, therefor a shortcut is needed
for this prototype.

Another issue with using socket communication between the client and the
server would be the amount of connections that would have to be opened and
maintained if there were to be multiple clients.

On the whole, socket communication seems to be a possible solution but to
create the robustness and flexibility in that communication a considerable amount
of work would be needed.

2.2.3 Windows communication foundation

Setting up a web service with Windows Communication Foundation (WCF) is a
much simpler task than building a communication protocol for socket communi-
cation from scratch and therefor enables this study to focus more on the exten-
sibility part than on the communication problems. WCFâĂŹs implementation
uses sockets over TCP/IP in its lower levels but takes care of the difficulties and
issues mentioned above so that the exposed interface towards the developer is far
simpler to use. WCF therefore enables building the communication part of the
prototype in a very extensible and agile way. The interface for communication is
communicated with a XML schema and it is therefore possible to build clients po-
tentially independent of platform. The WCF web service comes with a number of
easily configured bindings and the potential to create new ones based on a wanted
protocol.[3]

Through web services, Microsoft wanted to create a compromise between web
development and component-based development. Web services were a step to-
ward service orientation, which is a way to develop loosely coupled distributed
applications.[3] WCF allows the client and server to work without any strong

Pre study 9

binding between each other and the two parts of the communication can therefore
work independent of the other parts accessibility. there is also no need to keep a
process running with an open socket for communication. These features solves the
loose binding requirement of the prototype.

Running the server as a web service would enable minimization of the runtime
of the server. It would only wake when a message was received and that could
depending on the clients save a lot of runtime on the server. WCF also supports
concurrent calls[5] which will be a necessity if the number of clients and plugins is
large.

2.2.4 Web Api with ASP.Net

A simple web api could be set up and hosted with ASP.Net as communication
between the server and the clients. ASP.Net is a framework that simplifies the
building of HTTP services which can broaden the range of possible clients to
browsers and mobile devices.[24]

Communicating with simple post and get verbs against a web server looks at
first glance as a practical solution. The communication work only in one way
however and the pushing of an update from the user interface necessitates that
the clients hosts their own web server or other technology for receiving the push
command. This set high demands on the openness of the thick clients network
which has to allow for such a hosting. A web API could however be used as part of
the communication solution as both a method of publishing data and potentially
for posting data to the server.

2.3 Queueing

If the server where to be shut off for a moment or the network between the server
and the client where to falter in its availability it is important that the clients
collected data is not lost. It is therefore necessary for the client to hold on to the
collected data until it is certain of the availability of the server. The best solution
to such a problem is arguably a message queue where in the clients can deliver its
data until the client can send the messages.

For the development of the queue some options must be considered. If the
queue is run as a separate module it is possible to choose which queueing technique
that is wanted. There is however some difficulties to deal with if the queueing is
to be a built in part of the communication. WCF does give the option to create a
binding using any queueing system but doing that would take a lot of time away
from the rest of the prototype development and in the end it might not be any
significant improvement over using the provided queue, MSMQ. This paper will
not go deeper into exploring the benefits of the individual queueing systems but
will instead explore if the queueing should be a part of the communication module
or if it should be separated into its own module.

To evaluate whether the stand alone queueing module or a closely coupled
queueing and communication module should be used the following benefits of the
two options were considered.

10 Pre study

The separated module gives us the possibility of simply exchanging the queue-
ing module in the client and thus enable the server to keep running without
changes. This certainly makes the client far more agile in the design and could
be very useful if the client are to be run on a different platform than currently
targeted. We could see the separated queueing module as a part of a pipe between
the clients collection and communication modules, enabling us to design for more
“pipe modules” that could be used to alter the collected data in preferred ways. i.e.
a compressing module could be inserted in that pipe together with the queueing
module.

The integrated queue and binding solution model would remove one error
prone part of message handover and in some cases simplify the search for errors
if communication would stop working. Using the queue as a part of the binding
instead of a module in between the collection and communication also enables us
to use some of the features that is part of the web service. We could let the plugins
target specific communication methods depending on priority and content.

2.3.1 Microsoft Message Queuing

Windows comes with its own built in queueing system that applications can hook
into. Applications can with Microsoft Message Queuing (MSMQ) create and con-
trol their own queues with a very small setup cost. MSMQ is also integrated into
the WCF solution as a binding (see WCF bindings) and is therefore well suited
for lossless communication between a client and a service.

Using MSMQ as a queueing buffer between the client and service and only
sending the messages from the queue when the server is responding guarantees
that no data will be lost because of network issues. If the network connection is
down or the server is unresponsive the client will simply store the packages in the
queue until the network connection is available and the service can be reached.

The MSMQ queue size is expandable as far as the disc hosting it allows, making
the discs size the limitation of the queue. The client is not meant to be run without
a connection to the service for a long duration but if someone wants to use the
system as such, MSMQ will not be a showstopper.

It is very important for the client and service to be loosely coupled in its
communication so that the client can continue to collect data even if the service
or the network connection goes down. MSMQ enables the client to release the
responsibility of communication and focus on the data collecting.

Another benefit of using a queueing system is that we can separate the client
from the server even before mixing in the communication modules. The client will
simply put messages in the queue and let the queue handle the handover to the
server by which ever method chosen. This means that some failure isolation is
achieved and that potential errors will be easier to spot.

MSMQ does however come with a maximum for message length and it is
therefor necessary to make sure that packages over the maximum size get split up
before communication with the server as well as put back together at the arrival.

Pre study 11

2.3.2 WCF and MSMQ

A direct issue with using MSMQ as part of the binding is that it does not support
duplex communication.

The server part of the prototype needs to be able to push a “update call” to
the registered clients. This call is necessary for forcing an update of the clients
software which is one of the requirements of the product. The duplex call is
therefore a necessity and the inability to use it has to be solved by adding a
second communication line between the server and the client. This solution would
let us keep the robustness and reliability of the MSMQ binding for the pure data
delivery from the client to the server while still using the duplex callback for the
registration and callback from the server.

We could not guarantee that the registration call or the update call would be
delivered safely as it would not be using the queue. Both the registration call and
the callback would however both be very small messages, using minimal bandwidth
and could potentially run repeatedly as to make sure that the client is registered.

Using two separate services for the communication does not result in a design
that is as clean as a design with only one service and it also introduces a potential
error source.

2.3.3 Queueing options

MSMQ is not the sole way of achieving reliability in a WCF service communica-
tion. MSMQ is supported by WCF out-of-the-box but one could build a transport
binding with other queueing systems. MSMQ is well supported by windows but
could prove to be a problem if the client was to be run on another operating
system. Another queueing system could potentially solve that problem.

2.3.4 WCF and MSMQ in separate modules

The queueing could be handled separated from the WCF communication on the
client side with a small module stuck between the collection of data and the com-
munication of said data.

This solution would potentially give the client a seemingly more extensible
design and if the coupling between the collection, queueing and sending were built
with the same extensibility framework as used in the other parts of the prototype
the client could switch the queueing method without changing any parts of the
communication module.

The separation would however also potentially lead to one more error creator.
It could become harder to find errors between the collecting and the receiving of
the data in the server. If a message were to disappear we would have to investigate
yet one more area as the hand over of the messages between the MSMQ and web
service is a separate procedure.

Further, the minimized runtime on the server that WCF would allow is a great
feature for a service.

12 Pre study

2.3.5 Integrating the queue in a WCF binding

While the MSMQ binding seems simple at first glance the added complexity of
having two services for supporting the callbacks makes this solution cluttered
compared to keeping the queueing as a separate module.

Separating the queueing into a module allows the client to change queueing
without changing the communication module and therefor lets the client owner
decide which queue is suitable for the platform.

The separated queueing module also opens up for the communication with non
.Net clients which enables future development of use case 10.2 (See chapter 2.2.1).

2.4 Data storage

The data storage is a central part of the system and it is important that the data
layer provides robustness and flexibility. If the service was allowed to talk directly
to a database we would loose the flexibility and would be unable to switch the
database model if that need arrises. As the plugins would talk directly to a set
standard of the database we could not exchange, upgrade or in any way change
the database without having to ask plugin developers to rewrite their plugins.

The solution to this problem is to separate the database with a layer of ab-
straction.

2.4.1 Repository pattern

“A Repository mediates between the domain and data mapping layers, acting like
an in-memory domain object collection. Client objects construct query specifica-
tions declaratively and submit them to Repository for satisfaction. Objects can be
added to and removed from the Repository, as they can from a simple collection
of objects, and the mapping code encapsulated by the Repository will carry out
the appropriate operations behind the scenes. Conceptually, a Repository encap-
sulates the set of objects persisted in a data store and the operations performed
over them, providing a more object-oriented view of the persistence layer.” [15]

A repository should be used to separate the logic that moves data in and out
of data storage from the logic acting on the model of a system to create a loose
coupling in an application. Making the business logic agnostic to the data types
that makes up the data source layer enables the data storage to be build from any
technology such as a database or a web service without affecting the logic acting
on the data.[16]

Separating the data storing structure from the data handling plugins creates
the flexibility needed in the server as it enables the change of data storage without
any effect on the plugins using the repository contract to communicate with the
data storage. Using a repository pattern together with a dependency injection such
as MEF enables the switching or multiplication of datasources. It could therefore
be possible to store the data to a database while at the same time posting the
data to a second server without making any changes to the server except adding
the extra data storage logic classes, implementing the repository contract, to the
plugin folder provided by the dependency injection framework.

Pre study 13

2.4.2 Choice of database

Saving the collected data from a dynamic range of collectors and potentially third
party developed collectors demands a very loose way of storing the data. The type
and format of the collected data will from the point of the database be unknown
and that necessitates the choice of a data structure that is very flexible.

When choosing the database three categories; Sql, NoSql and XML will be
considered. Picking the suitable technology and its suitable data model is a difficult
job as the choices are vast. Both the NoSql databases and the XML seem at first
glance to be good choices as they both provide a very high degree of flexibility
and extensibility. On the other hand, using SQL might be a good way to go as it
is both very robust and well supported by .Net and Azure and with the use of a
blob field can provide the flexibility needed.

Structured Query Language and relational database management systems

SQL or Structured Query Language is a programming language specially designed
for managing data in relational database management systems (RDBMS).[20] Re-
lational databases are fairly simple to use and well supported in both free and
for-pay versions. Using a standard SQL syntax to access the stored data is both
simple and fast as long as the complexity of the database model does not grow
to big. Relational databases are designed on the assumption of that the data in-
serted into it is of known scheme and for that kind of data they are ideal both
in simplicity and in speed. However, when it comes to storing data of dynamic
schemes or dynamic sizes they tend to complicate the usage. If the data is stored
with a simplified scheme of some important keys for easy fetching of data and
a large field for the storage of said data, the database becomes simple to design
and use but will need to use a xml based field for the data as to make it usable
to the publishing plugin. This is so that the plugins, which uses an unspecified
data scheme for its data, will be able to manage and query the data directly when
fetched from the database.

The .Net framework comes with some great advantages for coding for relational
databases. Entity framework which is a part of the .Net framework since NET
Framework 3.5 Service Pack 1[21] simplifies the use of a database as a data model
greatly by mediating between the code and the database. With another addition
of Code-First development, included in .Net 4[22], the database can be generated
and maintained automatically from the coded data model. Simply creating classes
that makes up the model without any requirements for inheritance of database
logic is enough for automatically defining the tables for a relational database[22].
Further, there is great support for a automatic deployment with code first into
Azure SQL making the development for hosting the server with azure a breeze.

To solve the issue of having no proper freedom regarding the scheme the data
that is entered into the database, a field for saving blobs of xml could be used in
the SQL database. This would supply a way to search the data and a way for the
collectors of data to take on the responsibility of how to arrange the collected data.
In this case a xml blob of data would be saved together with a couple of search
friendly keys such as a reference to the collector of the data, a date and other
information letting the publishing of the data access interesting entries easily.

14 Pre study

NoSQL database

“NoSQL database systems are developed to manage large volumes of data that do
not necessarily follow a fixed schema.”[19]

When discussing NoSQL databases it might be wise to divide these into two
categories; the document-style stores and the key-value stores.

The key value stores are designed to store a value and its key as a pair with
the use of, most commonly, distributed hash tables. These databases are not of
much interest to this study as it is suited for a very simple data structure.

The document-styled databases however, are indeed of interest as the allow
for the use of very dynamic data in both size and scheme. The document-styled
databases are usually used to store a collection of key values together with a
payload of data. Examples of such databases are CouchDB and MongoDB. [23]

Using a NoSQL database allows entering data in any format while still being
able to fetch data by keys that the plugin developer could specify. This could
allow the collection of data a lot of freedom in what kind of and what size of data
that is collected and later stored.

XML database

Much like the NoSql Databases, the XML databases stores data in free format
while still keeping the data highly searchable[31]. The database stores blobs of
data structured in XML tags and can therefore query the data based on key values
entered together with the data much like in the NoSQL databases. In the paper
Alternatives to relational database: Comparison of NoSQL and XML approaches
for clinical data storage, the two data storage approaches are compared and the
main difference between them seems to be the slightly faster querying speed of
the NoSQL database. The paper further states that both the database approaches
works very well with non relational complex structures of data[32].

2.5 Updating the thick client

Today most applications have the capability to update themselves or uses services
such as app stores or apt get to handle its download and installation procedures.
However, to fulfill one of the use cases specified the prototype needs to be able
to not only update itself but also other software on the thick client. The update
procedure must also be specifiable from client to client as the software to update
and the availability of the software might vary from system to system.

Another requirement of the application is that it must be possible to activate
the update by a forced call from the server. The important part to stress here
is that it will not be the client that decides when to update but the server. The
registration and callback was briefly examined when looking at the communication
module and that callback needs to be extended to produce the update by the
client. As all other parts of the system the updating part could be loosely bound
and changed as one or several plugins. If a thick client was to run several systems
that required forced updates it would be wise to separate the update procedure

Pre study 15

into several updaters. These updaters could be started by one or several updater
modules in the client.

Updating the surveying client software and thick client software is potentially
a big security issue. If an update is pushed by the system another hostile system
could potentially do a man in the middle attack and force the thick client to run
malicious software. Such an attack could be made much more difficult by letting
the thick client download and install its own update at the order of the server.
Only a pushed call telling the thick client to start the updating procedure would be
needed from the server in this solution. The client could then access the update
in a more secure way using a web based deployment strategy. The web based
deployment strategy would enable the thick client to access the new version of the
system to download and install it from where it is securely hosted. This update
procedure could be implemented with a separated system using technologies such
as ClickOnes[26], Java Web Start Technology[27] or Zero Install[28].

2.6 Heart beat

The most basic part of the surveillance of a distributed system would arguably
be live information about which clients are online and talking to the server. To
implement this a simple heart beat could be used. The heart beat would be a very
simple package of data that is sent to the server.

The heart beat could be separated out into a single plugin or be included into
the client as a standard feature. If the heart beat was to be implemented into
the client the user would not be able to remove it or change its behavior unless
by configuration if that was to be made available. This could potentially be an
unnecessary bandwidth use although a small one. The inclusion of the heart beat
would on the other hand be a great way to make sure that the communication
between the client and server is functioning and to cut out the communication as
a potential error source in case of plugin malfunction. Depending on the imple-
mentation of the communication module the inclusion of the heart beat might also
enable the usage of a higher or lower communication priority, depending on the
systems needs.

2.7 Publishing data

The display of the collected data is very important for a product based on the
prototype but for the prototype a simple way of displaying data through a web
API will suffice. To limit this study to the essential parts of the prototype no
direct research has been conducted into the area of publishing the data. Some
tips has been offered from advisors and colleagues and the most appealing, in its
simplicity, is the lightweight framework, Nancy[29].

16 Pre study

Chapter 3
Possible solution

3.1 Prototype specification

All of the use cases does not fall within the frames of this paper and therefore
some of them will be left for future development of the product. The prototype
designed and developed for this study will, however, have to take all the use cases
into account in the design for it not to make the implementations of the excluded
cases impossible in the future development.

the following cases will be excluded from the prototypes specification.

• 9.2

The user should be able to schedule and run tasks on the thick client such
as backups.

Enabling the user to schedule tasks or change configurations adds a lot
of complexity to both the service that has to communicate the changes
to the client and to the administrative interface that the plugins have to
develop. This case is of interest for a final product but does not impact on
the feasibility of building this system. Therefore this case will be excluded
from implementation in the prototype.

• 10.2

The system should be able to run independent of hardware and software of
the thick client so that the user is able to combine information and status
collection for multiple different systems.

While the design of the client does not exclude any platforms the choice
of using .Net does. The client could possibly be developed using other
frameworks but it would take far more time and it would not be necessary
to prove the feasibility of the product.

• 16.2

The user should be informed by mail if a thick client is malfunctioning.

While possibly being an excellent feature, this use case does not impact
the feasibility of the product and should therefore be excluded from the
prototype to save time for development of the higher prioritized cases.

17

18 Possible solution

3.2 Extensibility

“You use MEF to really manage a set of unknown things, you use IoC containers
to manage a set of known things.” - Glenn Block[8]

The process of importing third party plugins as dlls is something that MEF
was built for and while Unity also has support for the task the configurations are
complex and therefore unsatisfactory. MEF handles all the requirements for the
plugin structure and can be reused in the loose binding of the clients modules as
well as the service modules. It enables a repository pattern for the data storage
and opens up for further changes to the system.

The main difference between using Unity or MEF in the prototype is how the
classes are registered for composition. In Unity each class that is needed in the
composition is explicitly registered in a UnityContainer for later composition as
in the following example:

var container = new UnityContainer();
container.RegisterType<IFoo,Foo>();
container.RegisterType<IBar,Bar>();
...
var program = container.Resolve<Program>();
program.Run();

When using MEF the available classes for the composition is instead marked with
an Export attribute directly in the class implementation.

[Export(typeof(IFoo))]
public Foo
{

...
}

The system will be set up so that the client and server can collect plugins from
extension folders in the installation path. On the client side users of the system
simply needs to compile the collector plugin and put it in the extensions folder.
The system will take care of the rest. On the server side the data handler plugin
and the data publishing plugin will both be uploaded to the extension folder and
the server will be able to use the new plugins at the next call from the client.
Identification for the plugins will need to be set by the developer of the plugin. A
default identification will be generated for the collector plugin but it will need to
be registered in the data handler and data publisher plugins for the server to be
able to communicate the data to the correct handler plugin.

3.2.1 Building plugins with MEF

The system has three major actions that will be of interest to the user; The
collection of data, the handling of the collected data at the server level and the
presentation of that data. These three actions, while sharing the data type, has
three very divided responsibilities. It is therefore reasonable to split these parts

Possible solution 19

into the different contracts that the plugin developers needs to implement. The
development of a plugin function is therefore done in three different stand alone
plugins all sharing their identification.

Collector plugin

The client will create a thread for the collector plugin to run in and let that plugin
access the queue module for delivering its collected data. How the collection is
done is up to the plugin developer and as it runs in a separate thread there will not
be any direct restrictions enforced by the client. The clients collection modules
only responsibility is to gather and start the plugins and will there after not meddle
in the way the plugins use their given thread. The responsibility of keeping the
plugin to a low usage of the thick clients resources is left to the plugin developer.

Data handling plugin

The data handling plugin will be gathered by the web service when it is called by
a client. The service will hand over the data received from the client to the plugin
corresponding to the identification of said data. The data handling plugin is able
to use the data storage module to save the received data. The data handling plugin
also has access to the alarm module in the service enabling the service to send out
an alarm to the user in the way specified by said alarm module.

Data publishing plugin

The publishing plugin is responsible for formatting and displaying the data corre-
sponding to the plugins identification when prompted by the user. This structure
frees the administrative system of the responsibility of knowing each plugins pur-
pose. The graphical user interface will simply prompt the plugin, that is called on
by the user, for information and the plugin fetches the data needed from the data
storage, formats the data and returns it to the administrative user interface.

Other plugins

There might also be a case to argue for making the alarm module open to plugins
from the user and maybe even the data storage module. Changing or doubling
up on these modules behaviors might strain the server a bit but could in many
imaginable cases be well worth it. This however is not a part of the first prototype.

3.3 Queueing

While using MSMQ as the queueing module will only work as long as the client is
run on windows it carries the benefit of minimal setup. MSMQ works great for a
system running on windows and as the prototype is mainly meant to be run on a
thick client using windows for the testing, the benefits of simplicity outweigh the
issue of being bound to windows in the development of the prototype.

20 Possible solution

In a future platform independent product another queueing system would work
just as well for our needs. No specific MSMQ dependent features will be used and
the design of the software will not be reworked based on which queueing system
is used.

The queueing will be a separate module as part of a pipe between the collection
module and the communication module and that pipe could in the future also
enable the user to insert or change layers to the client.

Using the queueing module as a separate module enables the design to later be
made a platform independent product as it is possible to exchange the queueing
module without affecting the communication with the server.

Using the queueing module in this case enables the collection module to be
completely separated from the communication and as such only deposit its col-
lected information in the queue and with that hand over the responsibility to the
other modules of the client. This design also enables us to run the client with a
mocked testing queue for testing in case of lost packages. This will be very useful
in the process of finding potential errors.

MSMQ allows for the use of durable storage and is therefore well suited for use
where packages can not be allowed to disappear. This however also means that
if the client is run for to long without any connection to the server and with too
heavy data collection the thick client will fill up its data storage and potentially
crash.

3.4 Communication module

In the pre study the different possibilities for the communication module was
discussed. The suggested design of the prototype falls well into the use cases of
the WCF web service.

The web service solves the issues of having multiple clients on different plat-
forms communicating with the server at the same time. It also allows for the
deployment to hosted servers such as Azure.

Because the web service communicates based on a simple interface that can
easily be communicated to the clients we get a simple and agile design and it
enables us to update the web service without major repercussions.

Due to the choice of keeping the queueing module separated from the com-
munication binding, one web service suffices. The web service will communicate
over http or possible https and support only a small amount of exposed methods.
The service will be of duplex type and accept a registration call or a heartbeat
that registers the clients as working and listening for updates. The web service
will be accepting calls from the client in form of a package of binary data and an
identification of the plugin that collected the data. The web service will at the
point of receiving this package forward it to the parsing plugin corresponding to
the identification.

The web service exposes a contract to the clients that can be read with a meta
data call. The methods specified in the contract is implemented in the web service
and clients are able to call them through the specified binding. The callback uses
a second interface specified inside the previous contract. With the second interface

Possible solution 21

a method is called by the server to force the update on the registered clients.
The callback contract needs to be implemented on the client side and the way

the client chooses to update its software is specified by the client.

3.5 Data storage

When using the repository pattern to interact with the data we can relieve the
plugins collecting and handling data from the responsibility of knowing how the
data is stored in the database.This also enables the change or addition of different
data storage technologies.

Designing a repository contract that can switch the entire scheme of the data
layout is not a simple thing to do. To go from a relational data model to a
document styled model will not be a difficult task as the rules of the data model
becomes simpler and the data would fit into the new database model without
changes. If choosing to go the other direction, from document styled to a relational
data storage, it would be hard to create a repository pattern that would allow for
that change without also affecting the way the data handlers, and data publishers
operate on the data.

The flexibility of the NoSQL and XML databases is certainly a great benefit for
the extensibility and dynamics of the design. However, due to my prior knowledge
of SQL databases and the availability of Azure SQL when hosting the prototype
server on Azure, the SQL approach is suitable for implementing the prototype.

Azure also provides a document storage or blob storage but as it only admits
key-value inserts it will not suffice as a storage model for the prototype. However,
it might be a useful compromise to use both Azure’s provided SQL database and
its blob storage and reference the data blobs from the SQL tables, thereby allowing
the data to use a dynamic scheme inside the blob.

For a future product it would be greatly recommended to use a NoSql or XML
database as a data storage implementation as the two technologies provide ideal
flexibility and extensibility for the stored data.

3.6 Updating the software

“Two advantages of Zero Install over more popular packaging systems are that
it is cross-platform and no root password is needed to install software; packages
can be installed in system locations writable by that user instead of requiring
administrator access. Thus, package installation affects only the user installing it,
which makes it possible for all users to be able to install and run new software.”[17]

Because of the advantage of platform independency and not needing root pass-
word Zero Install might be the preferred system to use for the update. However
as the thick client that the prototypes testing is aimed at already has an updater
written in ClickOnes this one will be used for testing and evaluation purposes.

22 Possible solution

3.7 Publishing data

Nancy is a small framework created to supply a very lightweight and simple http
based service to .Net. How the publication of the collected data is best handled
is not a part of the scope of this study and therefore Nancy was chosen for demo
purposes because of its simplicity. The user interface will be set up simply as a
regular webpage displaying information from the active plugins.

Chapter 4
Final design

The final design was focused on the extensibility features and the choices for the
technologies have been described in the previous chapter. To handle the essential
extensibility feature, namely the possibility for users to write their own data plug-
ins, the client and server is decorated with three points of access for a third party
developer. The plugins that handle data is divided into three contracts that have
the responsibility for the collection of data, the saving and usage of the data, and
the publishing of data. Both the server and the client will be set up to read its plu-
gins from a specified folder wherein the user can add dlls of plugins implementing
the plugin contracts.

4.1 Plugin structure

The collector plugin is responsible for collecting the data of interest from the thick
client. It might be by file reading or other kinds of surveillance and will not be
limited by the client. The collector plugin will also format the data collected and
put said data into a message queue provided by the client for the transfer of the
data to the server. On the server side two contracts have to be implemented.
One contract for the handling of data received from the client machines and one
contract for publishing this data. The handling plugin will be responsible for saving
the data of interest to the databases provided data storage through a repository
pattern. The handling plugin is also responsible for acting on the collected data
by doing calculations or alarming the user by a provided alarm contract. The
publishing plugin is consulted as the user request information about a system and
has the responsibility of providing formatted data in a way that can be displayed
by the user interface.

4.2 Client

The client is modularized into three parts. The collection part, which collects
and starts the plugins; the communication module that is responsible for sending
the messages in the queue as soon as there is a connection to the server, and a
message queue, which relays the messages from the collection plugins to the final
messaging part. The data collection module has a very small area of responsibility
as the actual data collection is handled by the plugins supplied from outside dlls.

23

24 Final design

Figure 4.1: Overview of the client design. 1. The client is respon-
sible for starting the data collecting plugins that collects data
from the kiosk system. 2. The queue stores the collected data
until the WCF service can safely send it to the server. 3. The
WCF service client is responsible for communicating the col-
lected data and the heartbeat to the server. It also handles
a callback from the server that is relayed back to a updating
module

The module uses MEF to collect and start the plugins in parallel worker threads
wherein the plugins may collect their data in any way necessary.

4.3 Heart beat

The heart beat of the client is an implementation of the collector contract but is
distributed as an intricate part of the system as it uses special rules set up in the
communication module to enable the servers callback based on those heartbeats.
In the server the heartbeat is handled differently than the other collectors data as
it is communicating on another method with the duplex callback enabled. This
way of including the heart beat in the inner parts of the clients and servers logic
was chosen for two reasons: The heart beat is a central part of the system and
should be as far removed from other error sources as possible; The heart beat
serves as a great way for the server to set up its callback, enabling the user to
push the system updates back to the clients from the user interface.

Final design 25

Figure 4.2: Overview of the server design. 1. The WCF service
receives the collected data from the client and relays the data
to the correct handler plugin. 2. The data storage is accessed
mainly by the handling and the publishing plugins and is re-
sponsible for making the data persistent. 3. The alarm module
is accessed by the handling plugins to notify the systems user of
issues discovered in the handling of the collected data. 4. The
Nancy web service uses the publishing plugins to relay data to
a web browser.

4.4 Server

The server is like the client modularized into several parts. It consists of the WCF
service that receives the packages from the clients and is responsible for giving the
packages to the correct handler plugin. It also handles the call back to the clients
when the user forces an update. The server also has a module responsible for the
data storage as well as a module handling the alarm functionality. Both the data
storage and alarm modules could be multiplied in the design if need arrises.

4.5 Publishing data

The publishing of data is handled by a server module that collects the publishing
plugins and feeds their data into a simple web response published by the publishing
module with the help of the Nancy framework.

26 Final design

Chapter 5
Implementation issues

During the research and the implementation of the prototype several issues arose.
These issues will in this chapter get a closer examination.

5.1 Duplex WCF with MSMQ bindings

During the design an alternative binding for the WCF service, built on the use
of MSMQ, was considered and tested. The issue arose in the callback that was
necessary for the forced update of the client. WCF comes out of the box with
several bindings also including a MSMQ binding. However, the included support
for a MSMQ binding does not allow for the server responding to the client with a
callback. Much effort was put into finding a way to solve this issue and after some
searching a seemingly potential solution was found on Code Project [18]. The
solution examined in this article enabled the server to respond with a callback
immediately after a message was received but holding the communication open
with several clients, being able to send the callback on the request of the user, was
not possible. After much research and tinkering this approach had to be given up
in favor of a communication solution with a division between the queue module
and the communication module.

5.2 Choosing solutions for maximum extensibility

As the extensibility has been the main focus of the design it has also been a source
of issues. The most common issue has been a constant choice between what could
be called macro or micro freedom. On one hand the client could be made without
a platform dependency but with less dynamic design and on the other hand the
client could be designed in a very flexible way but use the features that bind it to
a specific platform or framework. In the case of the prototype, developed for this
thesis, the act of binding it to .Net, has also made it able to use the features that
give it its dynamic build such as MEF and WCF.

When faced with these choices during the development of the prototype the
decision of using the .Net dependent features was made based on that Cenito has
specifically requested that the prototype be made in .Net and C#. However, for
the sake of the research into how extensible and dynamic a system of this kind

27

28 Implementation issues

could be made, it is well worth specifying on which level, micro or macro, the
software should be made dynamic.

5.3 Database design for generic data

When storing unspecified data for later retrieval and potentially with enabled
searching the choice of a data structure is of importance. Finding the correct way
of storing the gathered data from the plugins in the server database was a issue
as the data does not follow a set scheme but is structured by the developer of the
plugin.

To be able to keep the saved data, a database choice had to be made and
there was no lack of options to consider. Due to a lack of prior knowledge and the
many potential areas of finding potential solutions the study had to be cut short
as to not spend to much time on only this area. A more complete study of NoSQL
databases and a potential solution using such could have benefited the prototype.

Finding a model that will allow future unplanned data structures to be entered
has been an issue and the chosen solution is a bit lacking in the potential features
it could benefit from because of the necessary simpleness that the chosen technic
brought on.

Chapter 6
Testing the prototype on a thick client

Testing the prototype on the distributed system supported by Cenito was an early
goal for this study and the development and chosen solution was aimed to be run
on that system. The prototypes footprint in memory, CPU, and bandwidth usage
was minimal and did not disturb the thick client. The prototype was constructed
with three plugins for test purposes.

• File watcher
The file watcher is intended to keep track of configuration files, adding a
message to the queue in case of changes to said file.

• Last booking time in the kiosk system
The surveyed thick client lets users book times on a sun tanning studio and
a plugin was constructed to, on an set interval, prompt the database of the
thick client for the last booking time.

• Hardware watcher
A common issue on the surveyed thick client is that the hardware often
goes offline. Therefore this plugin will be watching the availability of the
hardware on a fixed interval.

The results of the test was good and the plugin functionality worked well.
There were some issues with the connection between the prototype server and
client because of a firewall as the server was running locally on a separate machine
but the issues was resolved swiftly. The test showed that the prototype worked
as intended and that it could serve its purpose well. The owner of the distributed
kiosk system, used for testing the prototype, was pleasantly surprised about the
flexibility of the system and the possibility to add a wide range of surveillance
of the hardware. The registration of the client against the server also worked as
intended and the forced callback from the server was able to prompt the user to
update its software.

For the system to become really useful, in a future support situation, several
collecting, handling, and publishing plugins has to be constructed. A better user
interface, with the possibility of navigating and sorting the information, is also
needed.

The testing of the prototype showed that the general design of the system
holds up in a live environment and the prototype will function as a base for further

29

30 Testing the prototype on a thick client

development of the surveillance and maintenance system. The prototype will also
continue to survey the distributed kiosk system it was tested on and will there
hopefully be of much use in supporting the distributed kiosk system in the future.

Chapter 7
Conclusion

The development of a flexible and extensible surveillance system is, judged by the
evaluation of prototype, very possible. The extensibility of the prototype is greatly
improved by the use of MEF and therefore the system could be used for surveying
data in a great range of systems. Being able to design the plugins to collect data
and to specify the use of said data to alarm the user or to just be stored for
statistical purposes could be of great help when taking care of distributed thick
clients. There is however a need for making the development of the plugins a bit
simpler for the user as some experience in programming is needed to develop useful
data collectors.

The prototype showed the potential of a product running on the .Net frame-
work and if choosing to broaden the range of platforms there would be a need for
more research to find suitable frameworks that is platform independent.

The use of the system does demand a bit of work by the user and if the system
were to be made into a product some effort would need to be put into making the
usage of the system easier. Building the three necessary plugins for the collected
data is not as simple as could be asked in the prototype model and there is a need
for some default implementations that the user can inherit and specialize.

31

32 Conclusion

Chapter 8
Future development

8.1 A better user interface

To become really useful to a surveying user the product needs an easily operated
and overviewed user interface. Delivering the user interface through a web browser
works great as it is accessible from any platform but a great deal of work should
go into designing a good user experience as the collected data is useless without
any good way to view it.

8.2 Filtering of accepted data in the server

If the system were to survey multiple clients, each collecting big amounts of data,
it might be in the users interest to filter out clients or some of the plugins data to
save on the data usage of the server. For a future product it would be essential to
be able to configure the server in such a way.

8.3 Simplifying the plugin development

The development of the collection plugins does demand some know how in pro-
gramming if the data is not very easily accessible. There would be a great benefit
in supplying a simpler way of constructing the plugins for the users without expe-
rience in programming. It could for instance be possible to supply a large number
of configurable generic plugins that the user could use to target the wanted data
for collection.

33

34 Future development

Chapter 9
Terminology

• Thick client: A client system which relies on locally installed software.

• Thin client: A simple client that stores its application on a central server.

• Design pattern: A general reusable solution to a commonly occurring prob-
lem within a given context in software design

• Extensibility: see chapter 2.1

• Blob: A collection of binary data stored as a single entity in a database
management system

35

36 Terminology

References

[1] Managed Extensibility Framework Overview, 2012-08-15,
http://msdn.microsoft.com/en-us/library/dd460648(VS.100).aspx

#what_is_mef

[2] Nishith Pathak, Pro WCF: Practical Microsoft SOA Implementation, Chapter
8 Implementing reliable messaging and queue-based communications, Print
ISBN: 978-1-4302-3368-8

[3] Nishith Pathak, Pro WCF: Practical Microsoft SOA Implementation, Chapter
1 Implementing reliable messaging and queue-based communications, ISBN:
978-1-4302-3368-8

[4] Optimizing BizTalk Server WCF Adapter Performance , 2012-08-13,
http://msdn.microsoft.com/en-us/library/ee377035(v=bts.10).aspx

[5] Sessions, Instancing and Concurrency in WCF Services, 2012-08-13,
http://msdn.microsoft.com/en-us/library/ff183865.aspx

[6] Extensibility, 2012-08-15,
http://en.wikipedia.org/w/index.php?title=Extensibility

[7] Rob Harrop, Jan Machacek, Pro Spring, Introducing Inversion of Control,
2005, ISBN 1590594614, pp. 49 - 92

[8] MEF - Managed Extensibility Framework with Glenn Block, 2012-08-15,
http://www.hanselminutes.com/148/mef-managed-extensibility-frame
work-with-glenn-block

[9] patterns & practices - Unity, 2012-08-15 ,
http://unity.codeplex.com

[10] Inversion of Control, 2012-08-15,
http://en.wikipedia.org/wiki/Inversion_of_control

[11] InversionOfControl, 2012-08-15,
http://martinfowler.com/bliki/InversionOfControl.html

37

38 References

[12] Mark Seemann, Dependency injection in .Net, Part 1 Putting Dependency
injection on the map, ISBN: 9781935182504

[13] Mark Seemann, Dependency injection in .Net, Chapter 14 Unity, ISBN:
9781935182504

[14] Inversion of Control Containers and the Dependency Injection pattern, 2012-
08-16,
http://www.martinfowler.com/articles/injection.html

[15] Repository, 2012-08-17,
http://martinfowler.com/eaaCatalog/repository.html

[16] The Repository Pattern, 2012-08-17,
http://msdn.microsoft.com/en-us/library/ff649690.aspx

[17] Zero Install ,2012-08-17, http://en.wikipedia.org/wiki/Zero_Install

[18] WCF: Duplex MSMQ, 2012-12-27,
http://www.codeproject.com/Articles/41907/WCF-Duplex-MSMQ

[19] NoSQL, 2012-12-29,
http://en.wikipedia.org/wiki/NoSQL

[20] SQL, 2012-12-29,
http://en.wikipedia.org/wiki/SQL

[21] ADO.NET Entity Framework, 2012-12-29,
http://en.wikipedia.org/wiki/ADO.NET_Entity_Framework

[22] Code-First Development with Entity Framework 4, 2012-12-29,
http://weblogs.asp.net/scottgu/archive/2010/07/16/code-first-devel
opment-with-entity-framework-4.aspx

[23] Communications of the ACM, Volume 53 Issue 4, April 2010, Pages 10-11,
ACM New York, NY, USA

[24] ASP.Net Getting Started, 2012-12-31,
http://www.asp.net/web-api

[25] See 4.1 Prototype specification

[26] ClickOnes, 2013-01-28,
http://msdn.microsoft.com/en-us/library/t71a733d(v=vs.80).aspx

[27] Java Web Start Technology, 2013-01-28,
http://www.oracle.com/technetwork/java/javase/javawebstart/index.html

[28] Zero Install, 2013-01-28,
http://zero-install.sourceforge.net

[29] Nancy, 2013-01-28,
https://github.com/NancyFx/Nancy

References 39

[30] Mark Seemann, Dependency injection in .Net, ISBN: 9781935182504

[31] XML Database,2013-01-31,
http://en.wikipedia.org/wiki/XML_database

[32] Ken Ka-Yin L, Wai-Choi T, Kup-Sze C. Alternatives to relational database:
Comparison of NoSQL and XML approaches for clinical data storage. Com-
puter Methods And Programs In Biomedicine [serial online]. n.d.;Available
from: ScienceDirect, Ipswich, MA. Accessed January 31, 2013.

