
Design and Implementation of an Auto Complete

Algorithm for E-Commerce

Jonathan Persson (jonathan.persson.85 at student dot lth dot se)

Department of Electrical and Information Technology
Lund University

Advisor: Mikael Hammar

Examiner: Anders Ardö

November 30, 2010

Printed in Sweden
E-huset, Lund, 2010

Preface

This report is the result of a Master's Thesis at the Faculty of Engineering at Lund
University (LTH), which was done at Apptus Technologies in Lund, Sweden. In
this thesis I have had the opportunity to experiment with a rather large data set
containing searches resulting in purchases, a data set full of possibilities. This data
contains information about which queries that have led to the purchase of which
items and at what time. The suspicion was that this data would be a very good
base on which to build an auto complete upon.

I would like to thank Mikael Hammar at Apptus Technologies for many hours
of valuable discussions and advice. I would also like to thank Anders Ardö at LTH
for his valuable input and advice.

i

ii

Abstract

In this paper two main ways of ranking are designed and presented for auto com-
plete drop-down lists on e-commerce sites: Probabilistic Ranking, and Popularity
Measurement. These rankings are based on data of search events that have led
to the purchase of one or more products. The goal was to design a ranking al-
gorithm that maximizes both usability and the commercial e�ectiveness of the
auto complete.

This thesis shows that using this data as the set of possible auto complete
suggestions gives very good results. If the number of purchases ever followed by
the query is used as the query's rank, both usability and commercial e�ectiveness is
maximized. This is how the �rst way of ranking works. The second way of ranking
also takes time into account and ranks based on the latest purchase frequency.

The di�erent rankings in this paper and variations of them are tested and com-
pared. Testing has been possible due to the available data, which in fact contains
use cases of what users have searched for and then purchased. During the testing
the goal has been to primarily maximize the rate of successful auto completions,
and secondly to minimize the average required input length before the correct
completion is found. Increased commercial e�ectiveness of the auto complete can
unfortunately not be tested without real users.

iii

iv

Contents

1 Introduction 1

1.1 Introduction . 1
1.2 Related Work . 2
1.3 Overview . 3

2 Problem 5

2.1 Goals . 5
2.2 Problem Formulation . 5
2.3 Data . 6
2.4 Use Cases . 6

3 Analysis 9

3.1 Matching . 9
3.2 Data . 10
3.3 Conversion Rate . 10
3.4 Ranking of Suggestions . 11
3.5 Merging Similar Suggestions . 22

4 Testing 25

4.1 Procedure . 25
4.2 Test Criteria . 25
4.3 Errors in the Test Results . 27
4.4 The Algorithm Implementation . 27

5 Results 29

5.1 Comparing Product Matching and Query Matching 29
5.2 Merging Similar Suggestions . 29
5.3 Removing Rare Queries . 30
5.4 Matching . 30
5.5 Using Data from a Shorter Time Period 30
5.6 Popularity Measurement . 31
5.7 Relation to Data Density . 32
5.8 Summary and Discussion of Test Results 32

v

6 Conclusion 35

7 Applications 37

7.1 Customers who Searched for ... Bought These Items 37
7.2 Did You Mean? . 37
7.3 Improved Search Ranking . 37

Bibliography 39

A Appendix: Test Results from Test Data Set 1 41

A.1 Non-updating tests . 42
A.2 Order-unspeci�c tests . 42
A.3 Shorter time period tests . 43
A.4 Updating Tests - Probabilistic Ranking 43
A.5 Updating Tests - Approach 2 . 44
A.6 Updating Tests - Approach 3 . 46

B Appendix: Test Results from Test Data Set 2 47

B.1 Non-updating tests . 47
B.2 Order-unspeci�c tests . 48
B.3 Shorter time period tests . 48
B.4 Updating Tests - Probabilistic Ranking 49
B.5 Updating Tests - Approach 2 . 50
B.6 Updating Tests - Approach 3 . 52

vi

List of Figures

1.1 The graphical auto complete web function implemented using jQuery. 2

3.1 Purchases per day after searching for �michael jackson�, February to
October 2009 . 13

3.2 Purchases in time. In this example n is set to 5, which gives c = 5
since pQa > n, and tc becomes the time elapsed since 5 purchases ago. 15

3.3 Approach 2 rank at di�erent time instances over a month's time for
the query �wow�. The following constants are set: LB = 1 day, n = 5
(green), 10 (blue) and 20 (magenta). 18

3.4 Approach 2 rank at di�erent time instances over a month's time for
the query �wow�. The following constants are set: n = 5, LB = 1 ms
(green), 1 day (blue) and 2 days (magenta). 18

3.5 Approach 2 rank at di�erent time instances over a month's time for
the query �wow�. The following constants are set: n = 10, LB = 1
ms (green), 1 day (blue) and 2 days (magenta). 19

3.6 Approach 2 rank at di�erent time instances over a month's time for the
queries �wow� (green), �forrest gump� (blue) and �korn� (magenta).
The following constants are set: n = 10, LB = 1 day. �wow� was
obviously more popular than �forrest gump� and �korn� during that
month, but for almost �ve days �forrest gump� had a higher popularity. 19

3.7 Approach 3 rank at di�erent time instances over a month's time. The
query �wow� in green and �korn� in magenta. The following constants
are set: const = 1 ms, n = 10. 21

3.8 Approach 3 rank at di�erent time instances over a month's time. The
query �wow� in green and �korn� in magenta. The following constants
are set: const = 2 hours, n = 10. 21

5.1 Comparison between di�erent rankings in SR. An asterisk (*) means
that the ranking is combined with product matching. 34

5.2 Comparison between di�erent rankings in ARIL. An asterisk (*) means
that the ranking is combined with product matching. 34

vii

viii

List of Tables

A.1 Non-updating tests. 42
A.2 Non-updating, order-unspeci�c. 42
A.3 Non-updating, shorter time period tests 43
A.4 Updating Tests - Probabilistic Ranking 43
A.5 Updating Tests - Approach 2 . 44
A.6 Updating Tests - Approach 2 with Constant 45
A.7 Updating Tests - Approach 2: Other Insecurity Punishment 45
A.8 Updating Tests - Approach 3 . 46

B.1 Non-updating tests. 47
B.2 Non-updating, order-unspeci�c. 48
B.3 Non-updating, shorter time period tests 48
B.4 Updating Tests - Probabilistic Ranking 49
B.5 Updating Tests - Approach 2 . 50
B.6 Updating Tests - Approach 2 with Constant 51
B.7 Updating Tests - Approach 2: Other Insecurity Punishment 52
B.8 Updating Tests - Approach 3 . 52

ix

x

Chapter1

Introduction

1.1 Introduction

The World Wide Web is an immense network of websites and was estimated at
11.5 billion pages in 2005 [1]. Finding relevant information in this vast network
of billions of pages has always been a challenge for the web search engines, and
sometimes for the users utilizing them.

Electronic commerce (e-commerce) is today a very common way to sell things,
and a very convenient way for the customers. But e-commerce faces a similar
challenge as the web search engines: large retailers might have to help tens of
millions of customers to �nd the right items in a catalog with millions of items [2].
Therefore every tool available is used to help bring the products to the customers.
Among these are for example recommenders, which have become very common
on e-commerce sites. They recommend items to customers in di�erent ways, for
example with a panel on a product page labeled: �Others who bought this item
also bought...,� or a panel on the search result page labeled: �Customers who
searched for ... bought these items.�

Recommenders help a great deal, but one still needs to type the whole query
in the search box, which might be long, which in turn makes misspellings more
likely, and if the search engine is not forgiving enough, one might end up without
hits.

This is where the auto complete comes in. The auto complete is a drop-down
list populated with suggestions of what one can write in the search box (see Figure
1.1). When a customer starts to write a few letters of the beginning of a query
the list appears below the search box and is populated with query suggestions
that start with the same letters as he has already typed in, or in another way
resembles the input. The customer can then navigate in this list and select the
right suggestion. This spares him of having to formulate the complete query, which
saves time and frustration and helps customers when they did not remember the
complete product name.

The auto complete has become a very popular function on the web and on
e-commerce sites, simplifying search a great deal for the end-user. But on e-
commerce sites it is not only a convenience for the customers, but also an op-
portunity for the site to show customers a selection of products they might be
interested in, like a recommender, or a form of directed advertising. So the ques-

1

2 Introduction

tion is: how can one create an auto complete that is both useful and pro�table?

Figure 1.1: The graphical auto complete web function implemented
using jQuery.

1.2 Related Work

Not much related work was found during the studying phase of this thesis. One
document was found about an auto complete for the address �eld in a web browser,
called �Using Supervised Learning to Improve Url Ordering in Autocomplete� by
Ranjan et al. [3]. The report is a study using a softmax like probabilistic model
to rank URL completions in the Mozilla browser. Therefore it only seeks to max-
imize usability, where this thesis also seeks to maximize pro�t. Furthermore, the
available data in this thesis has fewer parameters than the data used in the report.
Therefore the approaches in this thesis were considered to be more promising for
an e-commerce site with the data available, and in lack of time an approach based
on neural networks is left out in this thesis.

�Type less, �nd more: fast autocompletion search with a succinct index� by
Bast et al. [4], and �Output-sensitive autocompletion search� by Bast et al.[5],
are two articles that discuss autocompletion of the last word of the input for web
search. This might be usable on e-commerce sites, using product data with text
from for example descriptions, titles and artists. But completing the last word
of the input by looking at product data is just what the existing auto complete
developed by Apptus Technologies does, which does not work satisfactory for e-
commerce sites. This is both due to the fact that just suggesting the continuation
of the last word instead of a complete query requires much more work from the
user, and due to the fact that using product data has the limitation that it does not
show what is popular. Therefore the theories from these articles are not pursued.

Introduction 3

There is a lot of literature about recommenders, which normally comes to
calculating similarity between users and users or products and products, such as
�Item-Based Collaborative Filtering Recommendation Algorithms� by Sarwar et
al. [6] but no promising applications of these theories were found for the problem
in this thesis.

1.3 Overview

The thesis begins with a formulation of the problems and goals in Chapter 2.
Chapter 3 goes through the di�erent rankings that are later tested. The testing
procedure, criteria and other issues are described in Chapter 4, and the test results
are found in Appendix A and B. These results are interpreted in Chapter 5, and
the �ndings are summarized in Chapter 6. In Chapter 7 a few other web functions
where the algorithms could be applied are mentioned.

4 Introduction

Chapter2
Problem

2.1 Goals

The goal is to maximize the long-term pro�t from the auto complete, and this is of
course a hard problem. This will be handled by setting up more speci�c goals that
bring functionality to customers at the same time as pushing pro�table products.
Here are the goals for the auto complete.

1. The auto complete should rank queries that are thought to be more prof-
itable, or commercially e�ective, higher without noticable loss in usability.

2. If the user has a speci�c query in mind, the auto complete should after as
few characters as possible suggest the wanted query.

3. If the user has a speci�c query in mind, the auto complete should as often
as possible �nd the wanted query.

4. The auto complete should as often as possible be able to o�er suggestions.

In short the goal is to create an auto complete that maximizes the commercial
e�ectiveness of the suggestions, as fast as possible guesses what the customer wants
and in as many cases as possible has something to suggest.

2.2 Problem Formulation

The auto complete is a list of suggestions of what one can write in the search box
to reach di�erent products or categories. These suggestions will also be referred
to as query suggestions or completions. After one has written a few letters of the
beginning of the query and the list is populated with query suggestions that in
some way match the input. In the normal case matching means that the suggestion
starts with the input.

One assumes that one has the following situation: a random customer on an
e-commerce site is typing into the search box, and one is given the n �rst letters
of the intended query q. This is the input or the �query pre�x� to be completed.
Two main problems are now de�ned, where the second is the focus of the thesis:

1. Which suggestions are considered to match the input? This is what will be
referred to as matching (Section 3.1).

5

6 Problem

2. How can one �nd the x matching suggestions that best ful�ll the goals?
This is discussed in Section 3.4.

To solve these problems the data described below is available. One can also
assume that the system can be continuously updated once every 15 minutes, and
at these occations receive new data.

2.3 Data

The data studied in this thesis comes from a leading Scandinavian online store for
mainly music, movies and books, which did not have an auto complete at the time
the data was collected. The data available is the search-to-purchase data, and the
product data.

2.3.1 Search-to-Purchase Data

The search-to-purchase data contains search queries that have led to purchase.
This is given in tuples of:

transaction id, query, product key of purchased product, time stamp

The data is taken from the time period February to September 2009 inclusive,
contains 1,921,652 tuples, and is about 300 MB in XML format. Only a small
assessment of the data quality has been done, which shows that the data quality
is quite good (see Section 3.2.1).

2.3.2 Product Data

The product data contains a set of about 120,000 products from the product cat-
alog with product key and various attributes such as artists, authors, description,
directors and title.

2.4 Use Cases

In this section a few possible scenarios are described, when a user is writing in the
search box and has di�erent intentions. These are provided to give better insight
into the problem. A product will be denoted by enclosing a text in brackets, and
a query with quotation marks.

Case 1:

• User types: �the � and intends to write �the lord of the rings: the fellowship
of the ring�.

• User selects: �the lord of the rings: the fellowship of the ring� in the sug-
gestion list.

• User buys: [The Lord of the Rings: The Fellowship of the Ring].

Problem 7

Case 2:

• User types: �the � and intends to write �the lord of the rings�.

• User selects: �the lord of the rings: the two towers� in the suggestion list.

• User buys: [The Lord of the Rings: The Two Towers].

Case 3:

• User types: �the � and intends to write �the lord of the rings: the two towers�.

• User sees in the suggestion list that there is a new title he did not know
about.

• User selects: �the lord of the rings: the return of the king� in the suggestion
list.

• User buys: [The Lord of the Rings: The Return of the King] and [The Lord
of the Rings: The Two Towers].

Case 1 and 2 represent normal simple cases when a user, as in Case 1 is looking
for a speci�c product and then buys that product, or in Case 2 when the user could
be looking for a more general topic and buys a product under that topic. In Case
3 the user is looking for a product but when he sees another item in the list he gets
interested and buys that too. Especially in Case 2 and Case 3 the auto complete
has the possibility to a�ect the customer's choice into one that would be more
bene�cial for the retailer, such as a choice that would make him more satis�ed and
return as a customer. Unfortunately, cases where the users change their minds
will not be tested since that would require tests on real users. The weaknesses in
the testing will be discussed further later on.

8 Problem

Chapter3

Analysis

3.1 Matching

The �rst problem that needs to be solved is �nding the possible suggestions that
should be considered showing, that is: which suggestions are considered as match-
ing the input?

On the web this is done in at least two ways. If one for example considers a
list of products and wants to auto complete based on the title, the probably most
common way to select the possible titles to show is to take all titles that start with
the user input. Another way is to also consider titles that don't have the right
word order but otherwise match. These two ways have been tested in this thesis
and are described in more detail, as implemented in this thesis, below.

First a few terms have to be de�ned. What needs to be done is to match
the user's query pre�x with existing queries from some kind of database. Query
pre�xes are here viewed as a number of words where the last word is viewed as a
word pre�x if and only if there is no white-space following it, e.g. �the last of the
mohi� contains four words and a word pre�x whereas �star wars � contains two
words and no word pre�x.

Below the two ways of matching that have been tested in this thesis are de-
scribed.

3.1.1 Order-unspeci�c matching

This way of matching was done by saying that a query pre�x matches a query if
the query contains every word from the query pre�x. If there is a word pre�x in
the query pre�x, there has to be a word in the query that starts with the word
pre�x.

This means that for instance �michael jackson �, which has no word pre�x,
matches �michael jackson�, �jackson michael� and �michael jackson thriller�, but
not �michael jacksonn�.

As another example �the last of the mohi� (where �mohi� is a word pre�x)
matches �the last of the mohicans�, �the mohicans of the last�, but not �the last of
the mo�.

9

10 Analysis

3.1.2 Order-speci�c matching

This way of matching was done by saying that a query pre�x matches a query if
and only if the query pre�x is a pre�x to the query (or identical to the query).

Therefore with this matching �michael jackson � matches �michael jackson
thriller� but not �jackson michael thriller�

3.2 Data

There is a big limitation with using product data to to rank suggestions. For
example, the most common continuations of the input in the product data can be
suggested. In that case suggestions of what occurs most in the data are shown in
the auto complete, such as artists that have produced many albums, but it does
not suggest what is popular or how people choose to refer to a product, which
does not have to be by the title.

Search-to-purchase data on the other hand shows how people usually refer to
a product when they make a purchase, and how often they do so. Therefore one
can rank based on what is popular to write, but only when the query has led to
a purchase, so it will not be the true popularity of a query. It is later shown that
this has a very interesting e�ect.

3.2.1 Correctness of the Data

The data is collected by for every purchase recording what the last query in the
same session was. This data cannot be completely accurate since users can search
for one thing and then browse for something else and purchase an unrelated prod-
uct. Hence, a small manual assessment of the data quality has been made for
100 consecutive data tuples on a random location in the data. Although such a
small assessment cannot be completely trusted, the results show that the data is
actually surprisingly correct.

Out of 100 cases, in 95 cases the product key was obviously related to the
query (for instance the query was the name of an artist, a song track, a title or
part of the description of the product). Out of the remaining �ve, three were
completely unrelated, and two did not exist in the available product data.

Another thing to point out is that the search-to-purchase data (and the product
data) contains information in various languages mixed up. This should give worse
tests results than when single language queries are used and the data has a single
language, since there is a bigger set of queries to choose from, but it does not
change the correctness of the data.

3.3 Conversion Rate

Conversion rate on an e-commerce site is an important measure of Web-based ad-
vertising e�ectiveness and is de�ned by the percentage of visits that convert to
orders [2]. The conversion rate could also be calculated for a speci�c product as
a way of measuring how commercially e�ective a product is, or even for a speci�c

Analysis 11

suggestion as a way of measuring how commercially e�ective a suggestion is. Max-
imizing the conversion rate for a suggestion is thus to maximize the commercial
e�ectiveness for a suggestion, which was one of the goals. The conversion rate of a
suggestion or query will in this thesis more precisely be de�ned as: the percentage
of times the query is searched for that lead to purchase.

3.4 Ranking of Suggestions

3.4.1 Ranking 1: Probabilistic Ranking

In this section the fundamental discovery of this paper is described. It is here
shown that the search-to-purchase data theoretically is a very good source to use
for the auto complete ranking. This ranking will be referred to as the Probabilistic
Ranking (PR).

Recalling the goals of the auto complete, these could be achieved by maximiz-
ing the probability of that a suggestion is �rst selected and then a product is bought.
In the calculations below the following situation is assumed: a query pre�x to be
completed and the set of matching suggestions are provided, and one can assume
that one out of these suggestion will be selected by the user.

Let P be the event of a purchase of an item, and S the event of a search on
the query Qa ∈ Q, where Q is the set of all suggestions in the data set. One can
then calculate the probability of a purchase given that the query Qa was selected:

P (P |S) = pQa

sQa

(3.1)

where pQa
is the number of purchases after searching on Qa, and sQa

the number
of searches on Qa.

The de�nition of conditional probability [7] states that

P (P |S) = P (P ∩ S)

P (S)
(3.2)

therefore P (S∩P), the sought probability of selection and purchase, is de�ned
by

P (S ∩ P) = P (P ∩ S) = P (P |S) · P (S) (3.3)

P (S), the probability of selecting Qa, can be calculated by

P (S) =
sQa∑

Qi∈Q sQi

(3.4)

Inserting Equation 3.1 and 3.4 into 3.3 gives

P (S ∩ P) =
pQa

sQa

· sQa∑
Qi∈Q sQi

=
pQa∑

Qi∈Q sQi

(3.5)

This is the probability that a suggestion will be selected and result in the purchase
of an item. If one uses Equation 3.5 in ranking suggestions, one can skip the

12 Analysis

division by
∑

Qi∈Q sQi
and rank solely on pQa

, since
∑

Qi∈Q sQi
is constant for

every matching suggestion set.

This is a very impressive result; it's very simple, powerful and the only needed
data is the number of purchases followed by every query, which can be found in
the search-to-purchase data. This also means that no run-time calculations and
no pre-calculations are needed, since a commercial system can store a counter
for every query that is incremented every time a new search-to-purchase event is
detected.

As very nice bonus with this ranking model, it is found from Equation 3.3 that
the rank P (P ∩S) contains the factor P (P |S), and as seen in Equation 3.1 this is
exactly the conversion rate for a query as de�ned in Section 3.3: the percentage
of times the query is searched for that lead to purchase.

One can of course not rely only on conversion rate because that could show
queries to very unpopular products that always are bought by the few who like
them. However with the probability of selection included in the rank, the queries
to these unpopular products get a much lower rank.

Another good quality about the number of purchases is that it is intuitively a
good indicator: products that sell much are probably liked by many, and it seems
clever to make selling products more accessible. Moreover, customers who are
satis�ed with an item might recommend it to their friends, increasing the number
of purchases, so queries to items that satisfy customers to some extent get a higher
rank, which in turn hopefully leads to more satisfactory purchases. Also, if the
auto complete shows what people buy rather than what they type one could say
that they get what they want, not what they asks for.

A problem with the probabilistic approach is that it assumes that no matter
how old a query is it is equally likely that it will be searched for again. This is
obviously not true as, for example, products often are more popular shortly after
they are released, or after a commercial campaign. This problem is of course worse
the longer the time span of the data is, and will be addressed in the next ranking
approach.

Machine Learning

The Probabilistic Ranking is meant to be used in a system with continuous up-
dates. What the users select, and thus what is added to the database, will depend
on the output of the auto complete itself. Therefore the auto complete is self-
learning: for example if users always select the tenth suggestion after a speci�c
pre�x, it will climb up the suggestion list to eventually be �rst. This is a very
good thing which also, for example, implies that if the majority of the users select
the correctly spelled item in the list when many alternate spellings are presented,
the auto complete will learn the correct spelling of items and place them �rst.

On the other hand, if a query is misspelled the �rst time and the user still
�nds the product and purchases it, the misspelled query will be auto completed
in the future, which could lead to more users selecting the misspelled query and
might prevent the correct spelling from being added, and if it is eventually added
the question is if the majority of the users will choose the misspelling on the �rst
place or the correct spelling on the second place.

Analysis 13

This kind of phenomena could lead to unexpected results, both good and bad,
and although it is very interesting, to study these would require studying how the
auto complete changes with time on an e-commerce site with real users, which is
outside the scope of this paper.

Properties of the Probabilistic Ranking

To sum up the good properties, and the bad properties of the Probabilistic Ranking
will be listed. The good properties are the following:

• The PR ranks on the probability of selection followed by purchase, a simple
and intuitive rank that aims to ful�ll the goals.

• The PR has a simple rank (pQa
) requiring neither run-time calculations nor

pre-calculations.

• Queries with high conversion rate get higher rank.

• The PR is self-learning in a continuously updated system (might also be
bad).

The only noted bad properties are the following:

• The PR does not take time into consideration, so queries that have been
popular but no longer are popular will still have a high rank.

• The PR is self-learning in a continuously updated system. This might have
bad e�ects, but this cannot be studied in this thesis.

Figure 3.1: Purchases per day after searching for �michael jackson�,
February to October 2009

14 Analysis

3.4.2 Ranking 2: Popularity Measurement

In Figure 3.1 one can see one of the reasons why measuring popularity is so impor-
tant. The plot shows the number of purchases per day after searching for �michael
jackson� from February to October 2009. In the end of June, when Michael Jack-
son died, there is a huge spike, followed by a higher popularity level. In this
section this kind of curves, and which properties that can be changed to get the
best ranking, is studied.

Since the previous approach did not take aging and trends into account, an
attempt is made to rank suggestions based on how popular a product is right
now, which is possible since the system is updated every 15 minutes. By doing
this one could even have di�erent reoccurring auto completion results at di�erent
hours of the day, depending on what people tend to buy at these hours. Below
di�erent ways of measuring popularity are presented, which all view popularity as
the frequency: purchases per time unit. These ranking methods will be referred
to as Popularity Measurement (PM) ranking methods.

Like before, the total count of purchases connected to a given query is denoted
by pQa .

Approach 1 - The Simple Way

The simplest way of making sure the Probabilistic Ranking (PR) does not base its
rank on outdated data would probably be to cut o� every purchase that is older
than a certain limit, say for instance a week, i.e. measuring pQa

the last x time
units. This method has the bene�t that the PR approach applies just like before
without modi�cation since the only di�erence is that a data set from a shorter time
period is used. But all older data is then lost, which especially for rare queries can
be a signi�cant loss. Some rare but reoccurring queries, like classical music, might
perhaps not even have been entered during the last week and would be lost.

The parameter that can be experimented with here is the look-back time x. If
x is small, data is lost but the results are more recent, and if it is large more data
is kept but it is less recent on average.

Approach 2

This approach tries to cope with the weakness of the previous one by always
keeping a high enough number of time stamps for every query, and rank based on
the latest frequency of purchases.

The purchase count during a time period tc is here denoted by c. The basic
idea is to measure c/tc for the last n time stamps, where n is a �x number. This
means that the actual rank can be calculated by

c = min(pQa
, n) (3.6)

rank =
c

tc
(3.7)

If there are fewer than n time stamps, c is set to the number of available
time stamps, pQa , and tc is set accordingly, i.e. to the time elapsed since the �rst

Analysis 15

purchase. Thus one always ranks by the frequency: queries/time unit. Figure 3.2
illustrates the selection of c and tc on a time axis.

Figure 3.2: Purchases in time. In this example n is set to 5, which
gives c = 5 since pQa

> n, and tc becomes the time elapsed
since 5 purchases ago.

This approach makes sure that one ranks by as recent data as possible while
keeping enough time stamps to properly determine the frequency. It also has the
bene�t that rare queries are never left out and get a fair rank. Also note that if
n is set to 1, one gets Approach 1 or the �The Simple Way� from above, which
means that Approach 1 is a special case of this approach.

Insecurity Punishment
However, there is a problem here. If for example, an unusual query that has never
been entered before happens to be entered twice, it can get a very high rank if
it's recent enough. Therefore one might want to add something to adjust for the
insecurity in determining the popularity of a query with few purchases.

One way of doing this is to say that the number n is the limit above which it
is assumed that there is enough evidence about the popularity of the query. Then
unsure queries are punished using a rank (as a function of c)

rank =

{
f(c)/tc, if 0 < c < n,

c/tc, otherwise.
(3.8)

f(c) < c, for 0 < c < n (3.9)

f(n) = n (3.10)

The condition in Equation 3.10 given to connect f(c) with the line g(c) = c
in the point c = n so that there is no jump in rank from queries with n − 1 time
stamps to queries with n time stamps. One possible function is f(c) = 1

n2 c
3, and

another is f(c) = 1
nc

2 which will be referred to as Cubic and Quadratic Insecurity
Punishment.

Another concern for popular queries is that the rank could vary too much from
one minute to another. Without testing, there were no imaginable means to know
how quickly a rank should be allowed to change to best re�ect the current popu-
larity value. Therefore, two ways of evening out the rank over time are described
below, and will later be tested.

16 Analysis

Introducing Look-Back Time in Approach 2
To prevent the rank from changing too fast a minimum look-back time (in the
future termed as LB) is introduced, making the algorithm in its simplest form as
follows:

Analysis 17

Algorithm 1.

Input: pQa , n, LB
Output: rank
if pQa

> n
set c = n

else

set c = pQa

end

set tc = time(c)
if tc < LB

set tc = LB
set c = count(LB)

end

set rank = c
tc

The function time(c) returns the time di�erence between the current point in time
and the point at c purchases backwards, and the function count(tc) returns the
number of purchases that have occurred since tc time units back in time.

Adding a Constant in the Denominator
Another way of preventing the curve from varying too fast is to add a constant
in the denominator, making the formula for the rank: rank = c

tc+const , with the
same rules for selecting c and tc. This formula gives an overall smoother rank
curve, not only in intense regions as was the case with the minimum look-back
time approach (this will be con�rmed in the plots).

The smoothening comes from that a curve on the form 1
t+const moves to the

left if const increases, so that t, which is greater or equal to zero, cannot reach
the steep slope where 1/t goes to in�nity near t = 0. Consequently, with a higher
const the rank will not explode for short time di�erences.

Plotting
Now experiments by altering n and LB can be done. When n is increased, the
mean value is taken for more points and thus the variance in the curve decreases,
as shown in Figure 3.3.

When LB is increased the mean value is taken over a longer time, and thus
the variance in the curve here too decreases. But, as seen in Algorithm 1, LB
only in�uences the curve where tc < LB, and for that reason using LB has a
much stronger e�ect with low n-values, because low n-values make the average
tc shorter. This is shown in Figure 3.4 and 3.5. One can see that in Figure 3.4
where n is set to 5, the lines with di�erent LB values vary more than in Figure
3.5, where n is set to 10.

Figure 3.6 shows a comparison between the rank curves for three di�erent
queries. �wow� was more popular than �forrest gump� and �korn� during the month
in question, but for almost �ve days �forrest gump� had a higher popularity. In
Chapter 5 test results are presented of best combination of n and LB.

18 Analysis

Figure 3.3: Approach 2 rank at di�erent time instances over a
month's time for the query �wow�. The following constants are
set: LB = 1 day, n = 5 (green), 10 (blue) and 20 (magenta).

Figure 3.4: Approach 2 rank at di�erent time instances over a
month's time for the query �wow�. The following constants
are set: n = 5, LB = 1 ms (green), 1 day (blue) and 2 days
(magenta).

Analysis 19

Figure 3.5: Approach 2 rank at di�erent time instances over a
month's time for the query �wow�. The following constants
are set: n = 10, LB = 1 ms (green), 1 day (blue) and 2 days
(magenta).

Figure 3.6: Approach 2 rank at di�erent time instances over a
month's time for the queries �wow� (green), �forrest gump�
(blue) and �korn� (magenta). The following constants are set:
n = 10, LB = 1 day. �wow� was obviously more popular than
�forrest gump� and �korn� during that month, but for almost
�ve days �forrest gump� had a higher popularity.

20 Analysis

Approach 3

To better explore the options an attempt is made to calculate the recent mean pur-
chase frequency in a di�erent way. This is here done by taking the mean of 1

ti−ti−1

for the last n time stamps. This is expressed with the following mathematical
expression:

1

n

m∑
i=m−n+1

1

ti − ti−1
(3.11)

where m is the index of the last time stamp. This can, like in the previous
approach, be extended to use a minimum look-back time, a constant in the de-
nominator and insecurity punishment. A constant in the denominator is rather
necessary in this case as seen in Figure 3.7, since the rank can vary very much
from one moment to another.

Equation 3.11 is now plotted for some di�erent queries connected to purchase
time series. A function plot point corresponding to the rank is calculated for every
time instance in the time series, as if it were a moment when an auto complete
ranking had to be done.

Figure 3.7 shows how the rank changes during a month for the query �wow�,
which has 119 purchases, and the query �korn�, which has 18 purchases. First one
can see that the values change very much, which is a bad sign. Second, the query
�korn� gets a very high rank in the end, that is even close to the max of �wow�.
That is not acceptable, since one can see by the number of red plot points that
�wow� is much more popular all over and also has a much higher total number of
purchases.

The reason for this is that the division in Equation 3.11 is done for every
pair of points and then the mean value is taken, which makes it more probable
to land on the steep part of the curve 1/x. In Figure 3.7 one can see that there
are two very close pairs in the end of the curve for �korn�, and starting there the
points have a very high rank since they include the close pairs in their mean value
calculation.

In Figure 3.8 the result after introducing a constant equal to 2 hours in mil-
liseconds is shown. This plot looks much better, but �korn� is still in the end in
level with �wow�, which is not acceptable, and unfortunately this doesn't change
with introducing look-back time or changing parameters in other ways, so this
method clearly has problems. One can also punish insecurity in this method, and
will do so in the testing.

Relation to the Probabilistic Ranking

This section explains how Popularity Measurement relates to the PR, and it is
important that the good properties from the PR remain even here. The rank c/tc
from Approach 2 is compared �rst. As mentioned before, using look-back time
and an n set to 1 gives Approach 1, which is the same as the PR with data from
a shorter time period and thus it must have the properties of the PR. But what
happens when n is higher, which allows c to be higher? If tc is smaller than LB,
one still looks back the look-back time so the Probabilistic Ranking still holds, but
when tc is greater than LB the situation is di�erent.

Analysis 21

Figure 3.7: Approach 3 rank at di�erent time instances over a
month's time. The query �wow� in green and �korn� in ma-
genta. The following constants are set: const = 1 ms, n = 10.

Figure 3.8: Approach 3 rank at di�erent time instances over a
month's time. The query �wow� in green and �korn� in magenta.
The following constants are set: const = 2 hours, n = 10.

22 Analysis

In the Probabilistic Ranking the rank of a query Qa is pQa
, the number of

purchases after searching for Qa over the total time that purchases have been
recorded LB. As nothing is said about the popularity trends in the PR and all
that is required is that the sum of the purchases during LB is pQa

, one can assume
that the popularity during the whole period LB on average is the same, recalling
later that it is not generally so.

Mathematically this can be described as that a purchase occurs after T time
units, where T is a random variable with a certain probability density function
(pdf) and the expected value E[T]. E[T] can be calculated by taking the total
time divided by the number of purchases during this time:

E[T] =
LB

pQa

(3.12)

If the Approach 2 ranking is used there is a c ful�lling 1 ≤ c ≤ pQa
and a tc

corresponding to the time elapsed since c purchases ago. tc can be approximated
with

t̂c = cE[T] = c
LB

pQa

(3.13)

which gives that the rank c/tc can be estimated by

c/t̂c =
pQa

LB
(3.14)

which is the same ranking as the PR, but divided by the constant look-back time.
So when the pdf doesn't change over time, the Probabilistic Ranking and the
Approach 2 ranking are approximately the same, and thus Approach 2 still ranks
based on what is stated in Section 3.4.1 about the Probabilistic Ranking.

In reality the expected value of the pdf of T changes over time, which actually
is the whole point with the PM ranking, so what this method does is that it ranks
based on the most recent estimate of T . In other words it ranks based on the most
recent PR value that can be found for each individual query.

Approach 3, using the mean of 1
ti−ti−1

values, is just another way of calculating

the mean frequency than Approach 2. Therefore this approach is based on PR
ranking too even though it is sensitive to small divisors, which could result in a
poor estimate of T .

Adding a constant in the denominator in Approach 2 or 3 smoothens the rank
curve, making the ranking a bit di�erent, but it is still based on the PR ranking.

3.5 Merging Similar Suggestions

After trying the Probabilistic Ranking auto complete one can see that sometimes
many alternate forms of the same suggestion litter the suggestion list. This can be
misspellings, the suggestion with an extra mistakenly entered symbol, titles with
and without �the� in the beginning, two words that are written as one or one word
written as two. Merging Similar Suggestions here means locating all suggestions
that look too similar and removing all but the best one, which is determined by
choosing the one with the highest rank.

Analysis 23

It is also risky to normalize some things like various spellings because if one
would initially have more searches on the incorrectly spelled suggestion, this would
remove the correct spelling from the list and users would be helped to spell incor-
rectly, which could prevent the correct spelling from ever appearing in the list, so
only very careful normalization will be done.

Similar suggestions are assumed to become less of a problem in a live e-
commerce system since the data used here is taken from a system without an
auto complete. The statistics collected from a system using an auto complete is
assumed to cause fewer misspelled queries to be added to the data as users will be
able to choose the correct spelling among multiple ones. This was also discussed
in Section 3.4.1, Machine Learning.

Still this e�ect might not be enough so some degree of normalization could
give better results. This is tested in the next chapter.

24 Analysis

Chapter4
Testing

4.1 Procedure

In the testing the search-to-purchase data is used, which in fact is real data of when
users have searched for a text string and then bought a product. It is therefore
possible to do the testing automatically by using this data.

The test data used is referred to as Test Data Set 1 (TDS 1), and Test Data Set
2 (TDS 2), which are part of the search-to-purchase data. These contain the queries
that are tested: TDS 1 consists of the approximately 4000 �rst search-to-purchase
tuples of September 2009, and TDS 2 consists of the following approximately 4000
tuples. The reason for using two test data sets is that these data sets have di�erent
qualities, and it is also practically more managable due to the long test execution
time.

The testing was done by going through every query in the test data set by
asking for an auto completion given the �rst character as input, then the two �rst,
then the three �rst, and so on until a good completion is found in the completion
list or the end of the query was reached without �nding a good completion. What a
good completion is will be de�ned in the Test Criteria below. During the testing of
a test data set, all the earlier search-to-purchase data to the point of the beginning
of the test data set is loaded in the auto complete.

For the tests on Popularity Measurement (described in Section 3.4.2) it is im-
portant that the test updates the search-to-purchase database continuously during
the test, but it is less important for the other tests. The updates are done every
15 minutes, in time stamp time (not test execution time), which is often enough
to quickly capture new trends and at the same time allow the tests to run in
manageable time.

The tests were performed on a virtual server with 8 GB available memory and
each test case took between 3 and 12 hours each to perform depending on server
load and look-back time.

4.2 Test Criteria

The testing is performed in the manner described above and measure the Average
Required Input Length (henceforth termed as ARIL), which more speci�cally is the
average number of characters needed to be typed in before a good completion is

25

26 Testing

found. The Successful Rate (henceforth termed as SR) is also measured, which
is the percentage of times the correct completion was found. The testing seeks
to optimize these two values as these values directly correspond to point two and
three of the goals in Section 2.1.

Now it has to be de�ned what a good completion is. In this thesis the following
de�nition is used:

A good completion is de�ned as a completion that, when searched for, returns the
product that the user was going to buy among:

a) the �rst 10 search results, or
b) the �rst 5 recommendation results.

This is a guess of what a user might see on a result page after a search and
if the product to be bought exists on this page, it was a good completion (the
recommendation results are of the type �Customers who searched for ... bought
these items.�). This de�nition is motivated because many queries are misspelled
or have multiple synonyms, like �jennifer lopez� and �jlo�, which usually refer to
the same artist. It is also motivated by the fact that if the de�nition simply would
have required the auto complete to return a completion that matched the query
by exact string match, then for example if a misspelled query would have given a
correctly spelled completion, it would not count as a match in the test. This gives
misleading test results, and tests of merging of similar suggestions with di�erent
spellings give worse test results.

This de�nition also gives the easily interpreted and useful results: the average
number of characters one needs to type in to reach the product one wanted to buy,
and the percentage of the times one will �nd this product from a completion in
the auto complete.

4.2.1 ARIL and SR

The Average Required Input Length (ARIL) and the Successful Rate (SR) have
a strong relationship to one another. The ARIL depends on the SR: if the SR
increases or decreases, so does the ARIL (note that a high SR is good, but a high
ARIL is bad). For this reason primarily SR will be maximized, and if there are
many cases where the SR is equal, the ARIL is minimized.

A logic explanation for this would be that when the SR increases it means
that additional queries are found. Since these additional queries were not found
before they must be rarer queries that are competing to be included in the list
before the end of the input (which in general means a long input length). When
they were not included they were ignored by the ARIL, but when they became
included long required input length values are added to the ARIL calculation, and
thus the ARIL increases.

A 100 % SR will not be achievable since this would mean that there are no
new queries that start in a new way or lead to a new product.

Testing 27

4.2.2 Testing Increased Revenue

One of the goals was to maximize the revenue for the seller, but this is unfortu-
nately impossible to test. This is because in the tests it has to be assumed that
every user already has set their mind on which product to buy, as the search-
to-purchase data contains information of decisions that users already have made.
This kind of testing would require real customers that test every ranking and make
purchases. Because the users in the data have already made their decisions it does
not matter which other products the auto complete algorithm shows; the �users�
will still not change their mind. In Section 3.4.1 about the Probabilistic Rank-
ing, however, it was shown that the auto complete also includes this in the rank.
Moreover, the SR and ARIL values with the criteria de�ned above gives a measure
of how often and how fast the users would reach their desired product.

4.3 Errors in the Test Results

Unfortunately the search-to-purchase data is not completely accurate since users
very well can search for one thing and then browse for something else and buy an
unrelated product to the previously entered search text as was discussed in Section
3.2.1 Correctness of the Data. However, since the auto complete has a limited out-
put (10 completions) it is unlikely to get false positives, which happens if a tested
query has a random unrelated product and the auto complete suggests a com-
pletion with top search/recommendation results containing this random product.
There would then in most cases instead not be any matches for this test query.
Therefore the test results are worse than the reality, but should be accurate in
comparing di�erent algorithms.

An important thing to note is that the tests depend on the performance of
the search function and the recommender. It is assumed that the test cases would
perform in a similar way for most search functions are recommenders.

Another important thing to note is that the test results might be inaccurate
since an auto complete provided with data from an input that is a�ected by itself
could have unpredictable e�ects. Moreover, when users are given an auto complete
they would often not �nd the exact same thing in the auto complete list as they
would have entered without one.

As mentioned in Section 2.4, it is assumed in the tests that the users always
already have set their mind on what to buy. This is another error source, because
the auto complete could change the user behaviour.

4.4 The Algorithm Implementation

The existing product matching auto complete, the new algorithms from this thesis,
and the combination of the new algorithms and the product matching auto com-
plete will be compared.

The existing product matching auto complete, developed by Apptus Technolo-
gies, is quite complex but basically ranks on the most common continuation of the
input in the product data, which means that strings that often occur in the prod-

28 Testing

uct data get a higher rank. This, however, is not the focus of this thesis and this
existing mechanism will simply be used like a black box.

The combination of one of the new algorithms and the product matching
algorithm is done by �rst using the new algorithm, and in the case it outputs
fewer suggestions than what �lls the list, the product matching algorithm is used
for the rest of the places in the list. The auto complete is set to show a maximum
of 10 suggestions in the list, and the product matching auto complete is set to use
product data from the product attributes: title, artists and authors. When the
search-to-purchase data is loaded queries are normalized to lowercase.

The new auto complete algorithms were implemented as functions in a system
developed by Apptus Technologies, which let the auto complete answer to HTTP
requests with XML documents, and gave it access to a database management
system that could be loaded with search-to-purchase and product data.

Chapter5
Results

In the appendixes, tables with the test results are presented. In this chapter the
results are discussed referring to these tables. As explained before, the tests were
done for Test Data Set 1 and 2, and one can see that the results are di�erent for
the two test data sets. More about this in the discussion below (Section 5.7).

5.1 Comparing the Product Matching and the Query Match-

ing Auto Complete

As seen in Table A.1 for Test Data Set 1 and Table B.1 for Test Data Set 2, the
query matching auto complete (ac_new_only) using PR ranking performs better
than the product matching auto complete (ac_old). PR ranking alone compared
to the product matching auto complete gave an improvement of 4.4 % in successful
rate (SR) and 1.1 characters in average required input length (ARIL). These values
are averages of both test data sets.

Evidently, there is potential in using search-to-purchase data; it gives a high
successful rate and quickly �nds the right completions. Combining PR ranking
with the product matching auto complete gave an even higher SR, or more speci�-
cally an improvement of 2.5 % in SR compared to just using PR ranking. Moreover,
as seen in Section 3.4.1, the query matching auto complete also takes conversion
rate into account and the product matching auto complete does not.

5.2 Merging Similar Suggestions

In this section the results on merging similar suggestions will be discussed, which
was described in Section 3.5. Comparing ac_merge and ac_merge_with_the with
ac_new_old in Table A.1 for TDS 1 and Table B.1 for TDS 2, one can see that
ac_merge and ac_merge_with_the had very little di�erence in SR, so merging by
removing some special characters, or removing an initial �the� does not make a
big di�erence, but in general the results are somewhat worse except for the fact
that ac_merge for TDS 1 got a somewhat higher SR. This means that it's quite
safe merging suggestions that look the same except for some special characters for
the suggestions to look cleaner, but it cannot promise a better auto complete and
might in fact even make it perform worse.

29

30 Results

5.3 Removing Rare Queries

The reason that removing rare queries is considered is that the product matching
and query matching algorithms are combined by just giving the query matching
auto complete results precedence. If queries with few purchases are removed more
space is allowed for the top suggestions of the product matching auto complete.

Comparing ac_new_old with ac_size_gt_1, ac_size_gt_2 and ac_size_gt_3
from Table A.1 for TDS 1 and Table B.1 for TDS 2, one can see that they all have
lower SR and therefore no queries should be removed.

An e-commerce site might still choose to do so for the sake of the visual
appearance of the completion list (rare queries are often a particular misspelling
of another query or typos), or for the sake of increased performance (the number
of di�erent queries with just a few purchases is very high compared to the number
of common queries).

5.4 Matching

A �rst thing to note is that the order-speci�c matching queries are a subset of
the order-unspeci�c matching queries. To maintain high SR one can therefore in
the order-speci�c matching tests �rst collect the data by matching using order-
unspeci�c matching, and afterwards prioritize the order-speci�cally matching sub-
set. As seen in the test results, there was a big di�erence between order-speci�c
matching and order-unspeci�c matching.

Order-speci�c matching, meaning that suggestions that start with the entered
pre�x were prioritized, had much smaller ARIL (an improvement of 0.26 characters
on average) and slightly higher SR (an improvement of 0.26 %). Compare the
entries ac_new_old and ac_no_prefix from Table A.1 and Table A.2 for TDS 1,
and Table B.1 and Table B.2 for TDS 2.

This result is not that strange. The data consists of a list of queries that all
have been typed in from left to right. If one only keeps the ones that start with the
given pre�x, what remains is the list of queries where users started with writing a
certain pre�x and continued in di�erent ways. So, taking the most frequent queries
in this list will give the most common ways to continue the query after the pre�x.

5.5 Using Data from a Shorter Time Period

Comparing the entry ac_new_old from Table A.1 or B.1 to the entries in Table
A.3 or B.3 respectively, one can see that using the data from a shorter time period
results in a shorter ARIL and a lower SR. This shows that a rank based on a
shorter and more recent time period gives a faster auto completion, but gives a
higher number of failed queries, just as suspected in Section 3.4.2.

Unfortunately it is not possible to test what happens for a longer data period.
The SR might increase even more, or decrease, and if it increases it might start
to decrease when the data period is long enough. This is a concern that the PM
ranking does not have, but as long as time stamps are saved one can update the
count of purchases for every query very given time interval.

Results 31

5.6 Popularity Measurement

With Popularity Measurement the best features are taken from using short and
long time periods; this gives both recentness and no data loss, which combined
gives even higher SR than the PR ranking with a long time period.

5.6.1 Approach 2

Numerous tests were done to �nd the best combination of constants. The tables
with test results are presented in Section A.5 and Section B.5 in the appendix for
Test Data Set 1 and 2. As seen when comparing the results from both test data
sets these values are data dependent, so the values will look di�erent for other
data sets. These values will therefore serve to give a hint of how to initially �nd a
decent setup of the parameters n, LB and const, and will also show if it is desirable
to use a look-back time and a constant in the denominator. Since most test cases
here have very similar ARIL and SR values it is not crucial that the parameters
are absolutely optimal.

First Table A.5 for TDS 1 and Table B.5 for TDS 2 are studied, to �nd the
best n and LB.

For TDS 1 one can see see that the entries with the highest SR values are the
entries with n = 9. The entry ac_updating_n_9_LB_0.5d, with LB set to 0.5
days is the winning entry of this table using the criteria to �nd the cases with
highest SR �rst and then select the one of these with the lowest ARIL. This entry
has an ARIL of 2.839 and an SR of 85.56 %, while the other has an ARIL of 2.843
and an SR of 85.56 %.

For TDS 2 however, the entries with n = 20 have the highest SR, and among
these ac_updating_n_20_LB_1d is the winning entry with an ARIL of 2.837 and
an SR of 87.13 %.

Table A.6 and B.6 explore the e�ect of adding di�erent constants in the de-
nominator for TDS 1 and 2 for some LB and n combinations. The best entry for
TDS 1 is ac_updating_n_9_LB_0.5d_const_4d which has the same n and LB as
the best entry of Table A.5 but has a constant corresponding to 4 days in mil-
liseconds in the denominator. This gave an ARIL of 2.831 and an SR of 85.56 %,
which is an improvement over the not using a constant. Although it is a small
improvement, it might be a good idea to use a constant since it costs nothing in
performance.

The best entry for TDS 2 is found to be ac_updating_n_20_LB_1d_const_4d,
which has the same n and LB as the winning entry of Table B.5 but has a constant
corresponding to 4 days in milliseconds in the denominator.

In Table A.7 and B.7 Quadratic Insecurity Punishment is tested to see if it
gives better results. However, the tests performed gave worse results than their
corresponding tests using Cubic Insecurity Punishment. One can also see that
using no Insecurity Punishment gives worse results.

As seen above better results have been achieved in both ARIL and SR com-
pared to ac_updating_no_pop in Table A.4 and B.4. ac_updating_no_pop is the
updating version of ac_new_old in Table A.1 and B.1, which simply is a combina-
tion of the product matching auto complete and PR ranking auto complete. The

32 Results

improvement is however perhaps not as big as one would have hoped for: 0.3 %
in SR and 0.07 characters in ARIL on average. More on this in the discussion in
Section 5.8.

The best con�gurations, although combined with the product matching auto com-
plete, on average gave an improvement of 7.3 % in SR and 1.1 characters in ARIL
compared to only using the product matching auto complete.

5.6.2 Approach 3

In Table A.8 for TDS 1 and Table B.8 for TDS 2 one can see that a higher n value
needs to be used to get the best SR and ARIL. The best settings found for TDS
1 were n = 40 and const = 2 days which gave an ARIL of 2.847 characters and
an SR of 85.3 %, and the best settings for TDS 2 were n = 40 and const = 2
hours which gave an ARIL of 2.91 characters and an SR of 86.92 %. The results
are better than expected but still none of the settings that were tried gave an SR
value very close to the better Approach 2 test cases, as suspected in Section 3.4.2.

5.7 Relation to Data Density

The tests were done for two test data sets, and there was a quite big di�erence in
the best PM ranking settings. A guess is that this has to do with the data/time
density, which in Test Data Set 1 is 3981 purchases/14.5 hours (≈ 275 purchases/h)
and in Test Data Set 2 is 3976 purchases/6.25 hours (≈ 636 purchases/h). There
might be a simple relationship between this number and for example the best n,
but to completely investigate this is not included in this thesis.

However, a quick check indicates that there might be such a relationship: take
best n

purchases/h for Test Data Set 1 and call this value C.

C = 9/275 (5.1)

Now note that also for the second test data set C · purchases/hour approxi-
mately gives the best n, which was 21.

C · 275 = 9 (5.2)

C · 636 ≈ 20.8 (5.3)

5.8 Summary and Discussion of Test Results

A big improvement was found in using Probabilistic Ranking (PR) and Popularity
Measurement (PM) ranking compared to product matching. There was a smaller
improvement going from PR to PM ranking, and only a small di�erence between
most PM ranking con�gurations. The best results were found using PM ranking
Approach 2 (combined with the product matching auto complete) with n = 9,
LB = 0.5 days and a constant in the denominator set to 4 days for Test Data Set
1, and PM ranking Approach 2 with n = 20, LB = 1 days and a constant in the
denominator set to 4 days for Test Data Set 2.

Results 33

The e�ect of removing rare queries was explored, and merging similarly looking
suggestions and none of these methods gave any improvement.

Some of the improvements are listed below, found by taking the average from
both test data sets. These improvements can also be seen in Figure 5.1 and 5.2.

• PR ranking alone compared to the product matching auto complete gave an
improvement of 4.4 % in successful rate (SR) and 1.1 characters in average
required input length (ARIL).

• Combining PR ranking with the product matching auto complete gave an
improvement of 2.5 % in SR compared to just using PR ranking.

• The best PM ranking con�gurations (combined with the product matching
auto complete) gave an improvement of 7.3 % in SR and 1.1 characters in
ARIL compared to only using the product matching auto complete.

• The best PM ranking con�gurations (combined with the product matching
auto complete) gave an improvement of 0.3 % in SR and 0.07 characters
in ARIL on average compared to basic PR ranking combined with product
matching.

• A big advantage (especially in ARIL) was found in strictly prioritizing
queries beginning with the user input, which made a di�erence of 0.26 % in
SR and 0.26 characters in ARIL.

Even though PR ranking has worse results than PM ranking, it is much easier
to implement and maintain and also requires less computational power than PM
ranking since the sum of all purchases connected to a query can be stored and
updated periodically. This means that no calculations have to be done to retrieve
a rank for a suggestion. PM ranking is however generally very fast as well. The
worst case, when there are many purchases within the look-back time, requires
about as many operations as the number of purchases connected to the query
during LB to retrieve a rank, and as seen earlier in this chapter, LB should in any
case be set quite low. One should therefore consider if implementing PM ranking
is worth the e�ort for the advantage it gives.

An important thing to note is that the PR ranking here has data from 8
months, and a longer data period will change the ARIL and the SR. It is likely
that the di�erence between PR and PM ranking will be bigger when the data
period is longer. PR ranking will remember more old hits that have been popular
but are not anymore, and will always consider them popular. This is something
one does not have to worry about with the PM ranking. PM ranking will also
always quickly follow trends, while the PR ranking will be slower in noticing that
a product has become popular again.

There seems to be a relationship between the best n for PM ranking and the
data density, which if it is true might allow one to adapt the algorithm by changing
parameters as the purchase intensity changes.

As an interesting note, a test with di�erent criteria was performed using the
best con�guration of PM ranking for TDS 2. The new criteria was just like the
previous one but, in addition, a completion was said to be the correct completion
of it was exactly equal to the string that the user was going to enter. This gave

34 Results

a SR value of 96.86 % and an ARIL of 2.68 characters. The interpretation of this
is that, in the cases that a customer is going to buy something, in 96.86 % of the
cases the customer on average only has to type 2.68 characters to get a completion
of either the exact string he was going to type or a completion with top search
results including the product one was going to buy. In 3.14 % of the cases the
customer will not �nd the product through the auto complete.

Figure 5.1: Comparison between di�erent rankings in SR. An as-
terisk (*) means that the ranking is combined with product
matching.

Figure 5.2: Comparison between di�erent rankings in ARIL. An
asterisk (*) means that the ranking is combined with product
matching.

Chapter6
Conclusion

It was concluded that the search-to-purchase data contains very valuable infor-
mation for constructing an auto complete, namely the total number of purchases
following every query (see Section 3.4.1). If these queries are used possible sug-
gestions and ranked based on the number of associated purchases, one can show
that the suggestions that are most likely to be selected and most commercially
e�ective are prioritized. This ranking is called the Probabilistic Ranking (PR).
The negative side with this approach is that it does not take into account how
long ago the purchases were made, which is bad since product popularity changes
over time.

Therefore a new ranking is created, still based on the number of purchases
connected to a query in order to keep the good properties mentioned above, but
using as recent data as possible for every query. This is done by calculating the
mean purchase frequency for the last up to n purchases. Additional adjustments
are also made which include forcing the algorithm to at least look back a speci�c
look-back time and punishing the rank when there are too few purchases (see
Section 3.4.2). This ranking is called Popularity Measurement (PM).

The parameters involved in the PM ranking approach are optimized through
tests for two test data sets and achieve a higher rate of successful auto completions
(denoted successful rate or SR) and a smaller average required input length to �nd
the right completion (ARIL). To get higher rates of successful auto completions
a product matching auto complete is used when the PR or PM ranking does not
�nd a complete list of suggestions.

A big improvement was found in using Probabilistic Ranking (PR) and Pop-
ularity Measurement (PM) ranking compared to product matching. There was a
smaller improvement going from PR to PM ranking, and only a small di�erence
between most PM ranking con�gurations. The test results are summarized in Sec-
tion 5.8, which also lists improvements achieved with di�erent techniques given in
a measure of SR and ARIL.

35

36 Conclusion

Chapter7

Applications

A very nice property with the solution of the problem in this thesis is that it can
be applied for many other functions as well. One can for example use the same
algorithms for a �Did you mean?� function, the �Customers who searched for ...
bought these items� recommender, and search ranking. How these three functions
can be implemented will be described brie�y below.

7.1 Customers who Searched for ... Bought These Items

A recommender of this kind takes an input search query and presents what peo-
ple purchased after searching for that query. There are two di�erences from the
auto complete. The �rst is that the input is a complete query instead of a query
pre�x, so the matching in the search-to-purchase data base should be done either
by exact match with minor normalization or by order-unspeci�c matching (Sec-
tion 3.1), in the latter case perhaps without the requirement that all the words
are found. The second di�erence is that the PR or PM rank for each product
connected to the matching query (or queries) has to be calculated rather than the
PR or PM rank for each query.

7.2 Did You Mean?

A �Did you mean?� function is basically a function that suggests a correct query if
one misspells or makes a typo. The search-to-purchase data contains many various
spellings and variations of queries, and the �rst step one needs to solve is to �nd
a search-to-purchase entry that matches the entered query either exactly or well
enough by some measure of string similarity. One can then create groups of similar
queries by looking at which queries lead to the same product purchases. Then the
query with highest PR or PM rank in this group is suggested.

7.3 Improved Search Ranking

Products in the search result can be ranked just as described about the �Customers
who searched for ... bought these items� recommender, and in some way the rank

37

38 Applications

can be combined that with a document ranking from the information retrieval
�eld, like for example tf-idf (see [8]).

Bibliography

[1] A. Gulli and A. Signorini. �The Indexable Web is More than 11.5 Billion
Pages,� In Special interest tracks and posters of the 14th international con-
ference on World Wide Web, pages 902 - 903, May 10 - 14, 2005. Chiba,
Japan.

[2] G. Linden, B. Smith, and J. York. (2003). Amazon.com Recommendations:
Item-to-Item Collaborative Filtering. IEEE Internet Computing, Jan./Feb.,
pages 76 - 80

[3] Nisheeth Ranjan, Andrew Ng. �Using Supervised Learning to Improve
Url Ordering in Autocomplete,� http://www.mozilla.org/projects/ml/

autocomplete/ac-report.html, retrieved: November 28, 2010

[4] Bast, H., Weber, I. �Type less, �nd more: fast autocompletion search with a
succinct index,� In Proceedings of the 29th annual international ACM SIGIR
conference on Research and development in information retrieval, pages 364
- 371. ACM, 2006

[5] H. Bast, C. W. Mortensen, and I. Weber. �Output-sensitive autocompletion
search,� In Proceedings of the 13th International Conference on String Pro-
cessing and Information Retrieval (SPIRE 2006), pages 150 - 162, 2006.

[6] B. Sarwar, G. Karypis, J. Konstan and J. Riedl. �Item-Based Collaborative
Filtering Recommendation Algorithms,� In Proceedings of the World Wide
Web Conference (WWWC10), pages 285 - 295, 2001.

[7] Gunnar Blom, Jan Enger, Gunnar Englund, Jan Grandell and Lars Holst.
(2005). Sannolikhetsteori och statistikteori med tillämpningar, page 27. Lund:
Studentlitteratur. ISBN-13: 9789144024424

[8] Ricardo Baeza-Yates, Berthier Ribeiro-Neto. (1999).Modern Information Re-
trieval, pages 29 - 30. New York: ACM Press. ISBN-13: 9780201398298

39

http://www.mozilla.org/projects/ml/autocomplete/ac-report.html
http://www.mozilla.org/projects/ml/autocomplete/ac-report.html

40 Bibliography

AppendixA
Appendix: Test Results from Test Data Set

1

This appendix presents the test results for Test Data Set 1. Below is a list of
explanations of the notation used in the appendixes.

Training Data Period: the period from which search-to-purchase data is loaded
to the auto complete and recommender.
Test Data: the test cases tested.
Matching: if order-speci�c or order-unspeci�c matching is used.
Entry Name: a name used to refer to a speci�c test in the table.
AC Comb.: the combination of auto complete algorithms used. Possible values
are: P (referring to the product matching auto complete), Q (referring to the
query matching auto complete), and Q & P.
Merging: if merge of similar suggestions in the suggestion list is done (see Sec-
tion 3.5). Possible values are: None, Basic (normalizing by stripping the symbols
separated by a comma: white space, -, :, ', `, �), BasicThe (like the previous but
occurrences of �the� are also removed).
Size g.t.: keep only suggestions with a number of purchases greater than a given
number.
Insecurity Punishment: punish when there are fewer than n purchases. Possi-
ble values: Cubic (using the function f(c) = 1

n2 c
3), Quadratic (using the function

f(c) = 1
nc

2), or None.
Const.: the constant added in the denominator in either Approach 2 or Ap-
proach 3.
Size g.t. and Matching are not applicable for the product matching auto complete.

41

42 Appendix: Test Results from Test Data Set 1

A.1 Non-updating tests

In Table A.1 the following settings are used:

Training Data Period: February - August

Test Data: 3981 �rst entries of September, corresponding to 14.5 hours

Matching: Order-speci�c

Table A.1: Non-updating tests.

Entry Name AC Comb. Merging Size g.t. ARIL SR

ac_old P None - 3.97 78.07 %

ac_new_only Q None 0 2.77 82.67 %

ac_new_old Q & P None 0 2.90 85.23 %

ac_merge Q & P Basic 0 2.91 85.31 %

ac_merge_with_the Q & P BasicThe 0 2.92 85.20 %

ac_size_gt_1 Q & P None 1 2.87 84.35 %

ac_size_gt_2 Q & P None 2 2.85 83.90 %

ac_size_gt_3 Q & P None 3 2.84 83.55 %

A.2 Order-unspeci�c tests

In Table A.2 the following settings are used:

Training Data Period: February - August

Test Data: 3981 �rst entries of September, corresponding to 14.5 hours

Matching: Order-unspeci�c

Table A.2: Non-updating, order-unspeci�c.

Entry Name AC Comb. Merging Size g.t. ARIL SR

ac_no_pre�x Q & P None 0 3.15 84.98 %

Appendix: Test Results from Test Data Set 1 43

A.3 Shorter time period tests

In Table A.3 the following settings are used:

Test Data: 3981 �rst entries of September, corresponding to 14.5 hours

Matching: Order-speci�c

AC Comb.: Q & P

Merging: None

Size g.t.: 0

Table A.3: Non-updating, shorter time period tests

Entry Name Training Data Period ARIL SR

ac_aug Aug 2.78 84.23 %

ac_july_aug July - Aug 2.82 84.75 %

A.4 Updating Tests - Probabilistic Ranking

In Table A.4 the following settings are used:

Test Data: 3981 �rst entries of September, corresponding to 14.5 hours

Matching: Order-speci�c

AC Comb.: Q & P

Merging: None

Size g.t.: 0

Insecurity Punishment: None

Table A.4: Updating Tests - Probabilistic Ranking

Entry Name ARIL SR

ac_updating_no_pop 2.90 85.28 %

44 Appendix: Test Results from Test Data Set 1

A.5 Updating Tests - Approach 2

Cubic Insecurity Punishment

In Table A.5 the following settings are used:

Test Data: 3981 �rst entries of September, corresponding to 14.5 hours

Matching: Order-speci�c

AC Comb.: Q & P

Merging: None

Size g.t.: 0

Insecurity Punishment: Cubic

Table A.5: Updating Tests - Approach 2

Entry Name n LB ARIL SR

ac_updating_n_1_LB_1d 1 1 day 2.94 85.36 %

ac_updating_n_5_LB_2h 5 2 h 2.86 85.51 %

ac_updating_n_5_LB_8h 5 8 h 2.85 85.48 %

ac_updating_n_5_LB_1d 5 1 day 2.83 85.46 %

ac_updating_n_5_LB_2d 5 2 days 2.83 85.48 %

ac_updating_n_5_LB_3d 5 3 days 2.81 85.48 %

ac_updating_n_6_LB_0.5d 6 0.5 days 2.84 85.41 %

ac_updating_n_6_LB_3d 6 3 days 2.81 85.38 %

ac_updating_n_7_LB_0.5d 7 0.5 days 2.84 85.51 %

ac_updating_n_7_LB_3d 7 3 days 2.82 85.46 %

ac_updating_n_8_LB_0.5d 8 0.5 days 2.85 85.51 %

ac_updating_n_9_LB_15min 9 15 min 2.85 85.56 %

ac_updating_n_9_LB_2h 9 2 h 2.85 85.56 %

ac_updating_n_9_LB_6h 9 6 h 2.84 85.56 %

ac_updating_n_9_LB_0.5d 9 0.5 days 2.84 85.56 %

ac_updating_n_9_LB_1d 9 1 day 2.84 85.53 %

ac_updating_n_9_LB_2d 9 2 days 2.83 85.53 %

ac_updating_n_9_LB_3d 9 3 days 2.83 85.53 %

ac_updating_n_9_LB_6d 9 6 days 2.83 85.51 %

ac_updating_n_9_LB_12d 9 12 days 2.83 85.46 %

ac_updating_n_10_LB_8h 10 8 h 2.84 85.48 %

ac_updating_n_10_LB_0.5d 10 0.5 days 2.84 85.48 %

ac_updating_n_10_LB_1d 10 1 day 2.83 85.48 %

ac_updating_n_10_LB_2d 10 2 days 2.83 85.48 %

ac_updating_n_10_LB_3d 10 3 days 2.83 85.48 %

ac_updating_n_10_LB_6d 10 6 days 2.82 85.46 %

ac_updating_n_11_LB_0.5d 11 0.5 days 2.85 85.43 %

ac_updating_n_20 20 1 ms 2.86 85.38 %

ac_updating_n_20_LB_0.5d 20 0.5 days 2.84 85.38 %

ac_updating_n_20_LB_1d 20 1 day 2.84 85.38 %

ac_updating_n_20_LB_2d 20 2 days 2.84 85.38 %

ac_updating_n_40 40 1 ms 2.88 85.13 %

ac_updating_n_40_LB_0.5d 40 0.5 days 2.86 85.13 %

ac_updating_n_40_LB_1d 40 1 day 2.86 85.13 %

Appendix: Test Results from Test Data Set 1 45

Adding a Constant in the Denominator

In Table A.6 the following settings are used:

Test Data: 3981 �rst entries of September, corresponding to 14.5 hours

Matching: Order-speci�c

AC Comb.: Q & P

Merging: None

Size g.t.: 0

Insecurity Punishment: Cubic

Table A.6: Updating Tests - Approach 2 with Constant

Entry Name n LB Const. ARIL SR

ac_updating_n_8_LB_0.5d_const_2d 8 0.5 days 2 days 2.85 85.53 %

ac_updating_n_9_LB_15min_const_1d 9 15 min 1 day 2.84 85.56 %

ac_updating_n_9_LB_15min_const_2d 9 15 min 2 days 2.84 85.56 %

ac_updating_n_9_LB_0.5d_const_2d 9 0.5 days 2 days 2.84 85.56 %

ac_updating_n_9_LB_0.5d_const_4d 9 0.5 days 4 days 2.83 85.56 %

ac_updating_n_9_LB_0.5d_const_6d 9 0.5 days 6 days 2.83 85.53 %

ac_updating_n_9_LB_1d_const_4d 9 1 day 4 days 2.83 85.53 %

ac_updating_n_10_LB_0.5d_const_2d 10 0.5 days 2 days 2.83 85.48 %

ac_updating_n_20_LB_0.5d_const_2d 20 0.5 days 2 days 2.84 85.38 %

Other Insecurity Punishment

In Table A.7 the following settings are used:

Test Data: 3981 �rst entries of September, corresponding to 14.5 hours

Matching: Order-speci�c

AC Comb.: Q & P

Merging: None

Size g.t.: 0

Insecurity Punishment: Quadratic

LB : 0.5 days

Table A.7: Updating Tests - Approach 2: Other Insecurity Punish-
ment

Entry Name n Const. IP ARIL SR

x2_n_9_LB_0.5d_const_4d 9 4 days Quadratic 2.84 85.56 %

x2_n_20_LB_0.5d_const_4d 20 4 days Quadratic 2.83 85.41 %

ac_updating_n_9_LB_0.5d_nip 9 None None 2.87 85.46 %

46 Appendix: Test Results from Test Data Set 1

A.6 Updating Tests - Approach 3

In Table A.8 the following settings are used:

Test Data: 3981 �rst entries of September, corresponding to 14.5 hours

Matching: Order-speci�c

AC Comb.: Q & P

Merging: None

Size g.t.: 0

Insecurity Punishment: Cubic

Table A.8: Updating Tests - Approach 3

Entry Name n Const. ARIL SR

ac_updating_t2-t1_n_10_const_2h 10 2 hours 3.30 85.05 %

ac_updating_t2-t1_n_10_const_1d 10 1 day 2.98 85.23 %

ac_updating_t2-t1_n_10_const_2d 10 2 days 2.96 85.18 %

ac_updating_t2-t1_n_20_const_2d 20 2 days 2.86 85.25 %

ac_updating_t2-t1_n_20_const_7d 20 7 days 2.86 85.23 %

ac_updating_t2-t1_n_40_const_2h 40 2 hours 2.93 85.20 %

ac_updating_t2-t1_n_40_const_2d 40 2 days 2.85 85.25 %

ac_updating_t2-t1_n_40_const_7d 40 7 days 2.84 85.23 %

AppendixB
Appendix: Test Results from Test Data Set

2

This appendix presents the test results for Test Data Set 2.

B.1 Non-updating tests

In Table B.1 the following settings are used:

Training Data Period: February - August

Test Data: 3981 �rst entries of September, corresponding to 14.5 hours

Matching: Order-speci�c

Table B.1: Non-updating tests.

Entry Name AC Comb. Merging Size g.t. ARIL SR

ac_old P None - 3.80 80.03 %

ac_new_only Q None 0 2.77 84.26 %

ac_new_old Q & P None 0 2.88 86.75 %

ac_merge Q & P Basic 0 2.87 86.67 %

ac_merge_with_the Q & P BasicThe 0 2.87 86.64 %

ac_size_gt_1 Q & P None 1 2.86 86.32 %

ac_size_gt_2 Q & P None 2 2.85 85.76 %

ac_size_gt_3 Q & P None 3 2.84 85.26 %

47

48 Appendix: Test Results from Test Data Set 2

B.2 Order-unspeci�c tests

In Table B.2 the following settings are used:

Training Data Period: February - August

Test Data: 3981 �rst entries of September, corresponding to 14.5 hours

Matching: Order-unspeci�c

Table B.2: Non-updating, order-unspeci�c.

Entry Name AC Comb. Merging Size g.t. ARIL SR

ac_no_pre�x Q & P None 0 3.14 86.49 %

B.3 Shorter time period tests

In Table B.3 the following settings are used:

Test Data: 3981 �rst entries of September, corresponding to 14.5 hours

Matching: Order-speci�c

AC Comb.: Q & P

Merging: None

Size g.t.: 0

Table B.3: Non-updating, shorter time period tests

Entry Name Training Data Period ARIL SR

ac_aug Aug 2.78 85.49 %

ac_july_aug July - Aug 2.83 86.44 %

Appendix: Test Results from Test Data Set 2 49

B.4 Updating Tests - Probabilistic Ranking

In Table B.4 the following settings are used:

Test Data: 3981 �rst entries of September, corresponding to 14.5 hours

Matching: Order-speci�c

AC Comb.: Q & P

Merging: None

Size g.t.: 0

Insecurity Punishment: None

Table B.4: Updating Tests - Probabilistic Ranking

Entry Name ARIL SR

ac_updating_no_pop 2.89 86.85 %

50 Appendix: Test Results from Test Data Set 2

B.5 Updating Tests - Approach 2

Cubic Insecurity Punishment

In Table B.5 the following settings are used:

Test Data: 3981 �rst entries of September, corresponding to 14.5 hours

Matching: Order-speci�c

AC Comb.: Q & P

Merging: None

Size g.t.: 0

Insecurity Punishment: Cubic

Table B.5: Updating Tests - Approach 2

Entry Name n LB ARIL SR

ac_updating_n_1_LB_1d 1 1 day 2.93 86.57 %

ac_updating_n_5_LB_2h 5 2 h 2.84 87.03 %

ac_updating_n_5_LB_8h 5 8 h 2.83 87.03 %

ac_updating_n_5_LB_1d 5 1 day 2.82 87.00 %

ac_updating_n_5_LB_2d 5 2 days 2.81 87.00 %

ac_updating_n_5_LB_3d 5 3 days 2.81 87.03 %

ac_updating_n_6_LB_0.5d 6 0.5 days 2.83 87.08 %

ac_updating_n_6_LB_3d 6 3 days 2.81 87.05 %

ac_updating_n_7_LB_0.5d 7 0.5 days 2.83 87.05 %

ac_updating_n_7_LB_3d 7 3 days 2.81 87.05 %

ac_updating_n_8_LB_0.5d 8 0.5 days 2.82 87.03 %

ac_updating_n_9_LB_15min 9 15 min 2.85 87.05 %

ac_updating_n_9_LB_2h 9 2 h 2.83 87.05 %

ac_updating_n_9_LB_6h 9 6 h 2.83 87.00 %

ac_updating_n_9_LB_0.5d 9 0.5 days 2.83 87.03 %

ac_updating_n_9_LB_1d 9 1 day 2.82 87.00 %

ac_updating_n_9_LB_2d 9 2 days 2.82 87.00 %

ac_updating_n_9_LB_3d 9 3 days 2.81 87.05 %

ac_updating_n_9_LB_6d 9 6 days 2.80 87.03 %

ac_updating_n_9_LB_12d 9 12 days 2.80 86.98 %

ac_updating_n_10_LB_8h 10 8 h 2.83 87.05 %

ac_updating_n_10_LB_0.5d 10 0.5 days 2.83 87.08 %

ac_updating_n_10_LB_1d 10 1 day 2.83 87.08 %

ac_updating_n_10_LB_2d 10 2 days 2.82 87.05 %

ac_updating_n_10_LB_3d 10 3 days 2.82 87.05 %

ac_updating_n_10_LB_6d 10 6 days 2.82 87.08 %

ac_updating_n_11_LB_0.5d 11 0.5 days 2.82 86.95 %

ac_updating_n_20 20 1 ms 2.86 87.10 %

ac_updating_n_20_LB_0.5d 20 0.5 days 2.84 87.13 %

ac_updating_n_20_LB_1d 20 1 day 2.84 87.13 %

ac_updating_n_20_LB_2d 20 2 days 2.84 87.10 %

ac_updating_n_21_LB_1d 21 1 days 2.84 87.10 %

ac_updating_n_40 40 1 ms 2.88 87.00 %

ac_updating_n_40_LB_0.5d 40 0.5 days 2.86 87.00 %

ac_updating_n_40_LB_1d 40 1 day 2.85 86.95 %

Appendix: Test Results from Test Data Set 2 51

Adding a Constant in the Denominator

In Table B.6 the following settings are used:

Test Data: 3981 �rst entries of September, corresponding to 14.5 hours

Matching: Order-speci�c

AC Comb.: Q & P

Merging: None

Size g.t.: 0

Insecurity Punishment: Cubic

Table B.6: Updating Tests - Approach 2 with Constant

Entry Name n LB Const. ARIL SR

ac_updating_n_8_LB_0.5d_const_2d 8 0.5 days 2 days 2.81 87.00 %

ac_updating_n_9_LB_15min_const_1d 9 15 min 1 day 2.83 87.03 %

ac_updating_n_9_LB_15min_const_2d 9 15 min 2 days 2.82 87.00 %

ac_updating_n_9_LB_0.5d_const_2d 9 0.5 days 2 days 2.82 87.03 %

ac_updating_n_9_LB_0.5d_const_4d 9 0.5 days 4 days 2.82 87.05 %

ac_updating_n_9_LB_0.5d_const_6d 9 0.5 days 6 days 2.82 87.08 %

ac_updating_n_9_LB_1d_const_4d 9 1 day 4 days 2.82 87.03 %

ac_updating_n_10_LB_0.5d_const_2d 10 0.5 days 2 days 2.83 87.05 %

ac_updating_n_20_LB_0.5d_const_2d 20 0.5 days 2 days 2.84 87.13 %

ac_updating_n_20_LB_1d_const_2d 20 1 days 2 days 2.83 87.10 %

ac_updating_n_20_LB_1d_const_4d 20 1 days 4 days 2.83 87.15 %

ac_updating_n_20_LB_1d_const_6d 20 1 days 6 days 2.82 87.03 %

ac_updating_n_21_LB_1d_const_4d 21 1 days 4 days 2.84 87.15 %

52 Appendix: Test Results from Test Data Set 2

Other Insecurity Punishment

In Table B.7 the following settings are used:

Test Data: 3981 �rst entries of September, corresponding to 14.5 hours

Matching: Order-speci�c

AC Comb.: Q & P

Merging: None

Size g.t.: 0

Insecurity Punishment: Quadratic

LB : 0.5 days

Table B.7: Updating Tests - Approach 2: Other Insecurity Punish-
ment

Entry Name n Const. IP ARIL SR

x2_n_9_LB_0.5d_const_4d 9 4 days Quadratic 2.82 86.95 %

x2_n_20_LB_0.5d_const_4d 20 4 days Quadratic 2.81 87.08 %

ac_updating_n_9_LB_0.5d_nip 9 None None 2.87 86.95 %

B.6 Updating Tests - Approach 3

In Table B.8 the following settings are used:

Test Data: 3981 �rst entries of September, corresponding to 14.5 hours

Matching: Order-speci�c

AC Comb.: Q & P

Merging: None

Size g.t.: 0

Insecurity Punishment: Cubic

Table B.8: Updating Tests - Approach 3

Entry Name n Const. ARIL SR

ac_updating_t2-t1_n_10_const_2h 10 2 hours 3.23 86.60 %

ac_updating_t2-t1_n_10_const_1d 10 1 day 2.95 86.90 %

ac_updating_t2-t1_n_10_const_2d 10 2 days 2.92 86.87 %

ac_updating_t2-t1_n_20_const_2d 20 2 days 2.84 86.90 %

ac_updating_t2-t1_n_20_const_7d 20 7 days 2.84 86.85 %

ac_updating_t2-t1_n_40_const_2h 40 2 hours 2.91 86.92 %

ac_updating_t2-t1_n_40_const_2d 40 2 days 2.83 86.80 %

ac_updating_t2-t1_n_40_const_7d 40 7 days 2.82 86.82 %

	Introduction
	Introduction
	Related Work
	Overview

	Problem
	Goals
	Problem Formulation
	Data
	Use Cases

	Analysis
	Matching
	Data
	Conversion Rate
	Ranking of Suggestions
	Merging Similar Suggestions

	Testing
	Procedure
	Test Criteria
	Errors in the Test Results
	The Algorithm Implementation

	Results
	Comparing Product Matching and Query Matching
	Merging Similar Suggestions
	Removing Rare Queries
	Matching
	Using Data from a Shorter Time Period
	Popularity Measurement
	Relation to Data Density
	Summary and Discussion of Test Results

	Conclusion
	Applications
	Customers who Searched for ... Bought These Items
	Did You Mean?
	Improved Search Ranking

	Bibliography
	Appendix: Test Results from Test Data Set 1
	Non-updating tests
	Order-unspecific tests
	Shorter time period tests
	Updating Tests - Probabilistic Ranking
	Updating Tests - Approach 2
	Updating Tests - Approach 3

	Appendix: Test Results from Test Data Set 2
	Non-updating tests
	Order-unspecific tests
	Shorter time period tests
	Updating Tests - Probabilistic Ranking
	Updating Tests - Approach 2
	Updating Tests - Approach 3

