
Rendering of Streamed Vector Maps on a

Mobile Phone

Dan Nilsson

Department of Information Technology
Lund University

Advisors: Mats Cedervall (LTH), Martin Santesson (Wayfinder)

August 7, 2008

Printed in Sweden
E-huset, Lund, 2008

Abstract

This thesis documents the design and implementation of a 3D vector map
renderer for mobile phones. It was carried out at Wayfinder Systems, which
previously used a limited 3D renderer that is layered upon an old 2D renderer.

An overview of mobile 3D API:s is provided, which focuses on cross platform
compatibility and performance. A target API is chosen (OpenGL ES) and an
extensible rendering framework is developed. The different steps required for
preparation of vector map data for such a framework is documented.

Features such as elevation model support are implemented in order to fully
demonstrate the advantages of the new renderer and an overview of other
map features that could be added is also provided. An algorithm for splitting
up polygon data against a terrain model is presented which should be more
effective than standard clipping algorithms.

Finally, the thesis concludes with an evaluation of the new renderer.

i

ii

Acknowledgments

First, I would like to express my thanks to Martin Santesson at Wayfinder,
who has been invaluable when discussing new ideas and concepts for the thesis.
I would also like to thank Mats Cedervall at LTH, who has provided great
support that made the thesis possible.

Last but not least, I would like to thank my family and friends who provided
support and inspiration throughout the writing of the thesis.

iii

iv

Table of Contents

1 Introduction 1

2 Implementation Considerations 3
2.1 The requirements . 3
2.2 API abstraction levels . 4
2.3 API overview . 5
2.4 The platforms and conclusion 7

3 Drawing Flat Maps 9
3.1 Visualizing data . 10
3.2 Triangulation . 11

4 Terrain Data 19
4.1 Format . 20
4.2 Creating the terrain model . 20
4.3 Choosing a 2D adaptation . 21
4.4 Adapting vector data . 22
4.5 Shortcuts . 31
4.6 Light processing . 32
4.7 Height offsets . 32
4.8 Grid spacing . 33

5 3D Models 35
5.1 Landmarks . 35
5.2 City models . 36

6 Conclusions and Future Work 39
6.1 3D Models . 39

v

6.2 Extensibility and performance 39
6.3 The terrain model . 40
6.4 Conclusion . 40

References 41

vi

Chapter 1

Introduction

Wayfinders maps are sent to the mobile clients dynamically, which always
allows the user to get reasonably up–to–date maps. Since the map data
might have to travel over the GPRS network (which has a peak bit rate of
116 kbps), it needs to be heavily compressed.

A proprietary vector map format was developed in order to fulfill this require-
ment. Instead of sending out images of the maps to the client, the geometric
layout is encoded into vector data. Roads and houses are represented as sepa-
rate polygons instead of pixels. This minimizes space usage better than pixel
based formats can do, at the cost of forcing the client software to perform
more advanced drawing logic.

Wayfinder currently uses a projection of a flat 2D drawing surface to display
3D. This approach has performance issues and it cannot easily be extended
to draw new types of map data (such as terrain and 3D models). This the-
sis examines ways to overcome these problems by designing an efficient and
extensible 3D vector map renderer. The primary goals that should influence
the design process are as follows:

• Choose an efficient 3D API that allows support for hardware accelera-
tion

• Create a renderer that can be used across multiple platforms

• Add support for terrain data

1

2 Introduction

• Add support for 3D models

The report begins with a brief introduction of implementation considerations
in Chapter 2, including choice of platform and 3D API.

In Chapter 3, the reader will learn about the challenges of preparing data for
the new renderer, using the current vector map format as input. The chapter
primarily deals with how make the new renderer draw the same flat vector
maps that the previous renderer could. The performance of the new renderer
compared to the old is evaluated with benchmarks.

Chapter 4 discusses the concept of elevated terrain and how it applies to the
rendering of maps. Auxiliary height data is used in conjunction with the
vector map to create elevated surfaces. It ends with a brief discussion on how
this new data might be distributed to client software.

3D models and how they can be used when rendering maps is discussed in
Chapter 5.

The final chapter discusses the results of the thesis along with future work
that can be carried out.

Chapter 2

Implementation Considerations

2.1 The requirements

Wayfinder’s vector map rendering has been been implemented for several ap-
plication types on multiple platforms. A goal in this thesis was to investigate
the different graphics API:s that are available for these platforms so that a
suitable alternative could be chosen as a basis for the new renderer.

API stands for “Application Programming Interface” and it describes code
interfaces that are usually used as abstraction layers over lower level func-
tionality. When writing graphics software, using such interfaces enables the
programmer to write more general code without working directly against dif-
ferent hardware configurations.

For this thesis, an API for 3D graphics had to be selected. Since the rendering
of 3D graphics is computationally demanding, it would be desirable to have
a high performance library that can take advantage of hardware acceleration
on devices which support it.

To reduce the amount of platform specific code that needs to be written, it
would be advantageous if the same API is open and cross platform, meaning
that the same code can be compiled for different platforms without changes.
This is particularly useful since writing applications for mobile phones usually
involves targeting multiple platforms and architectures.

3

4 Implementation Considerations

2.2 API abstraction levels

API:s are often implemented on different abstraction levels. Some API:s pro-
vide high level abstractions for 3D worlds (using scene graphs, see Figure 2.2)
while some only define the most basic drawing routines. Regardless of how
they are implemented, the vast majority rely on the same basic primitives.
Some higher level API:s only implements a scene graph design and depends
on lower level API:s to perform the actual drawing.

Figure 2.1: Dependency chain of abstraction layers.

A scene graph stores shapes and transforms (light, object movement etc) as
high level objects called nodes. The nodes are organized in a tree structure,
allowing groups of transforms to be applied to shape nodes in a stack–like
fashion. The structure is very general and can describe a number of different
scene types using a single format that can easily be serialized.

Figure 2.2: Basic layout of a scene graph structure.

Implementation Considerations 5

2.3 API overview

The purpose of this thesis is not to discuss implementation details tied to
specific API:s. It should instead document the difficulties and design consid-
erations of a mobile 3D vector map renderer which are relevant for any 3D
API. However, to provide an overview and to justify the choice of development
platform, an evaluation of the available API alternatives is presented.

2.3.1 OpenGL ES

OpenGL ES is a scaled down version of desktop OpenGL, primarily designed
for embedded devices such as consoles, phones, appliances, and vehicles. It
is built from well–defined subsets of desktop OpenGL and adds support for
features such as fixed point arithmetic that are relevant for embedded plat-
forms.

There are a few different versions, the most common ones in use today is 1.0
and 1.1. A new version (2.0) is currently being introduced, which will be
more oriented towards programmable graphics hardware (primarily focusing
on shader programming).

The Android SDK from the Open Handset Alliance Project will support
OpenGL ES 1.0. Apple’s iPhone SDK uses 1.1 and Symbian platforms (UIQ
and S60) supports 1.0 in earlier devices and 1.1 in later.

For Java platforms there is the JSR 239 specification, which defines a direct
binding to OpenGL ES 1.0. It is supported on the Sony Ericsson Java plat-
form, beginning with version JP-8. There is also the M3G API with wider
support that is also tied to OpenGL ES, which will be discussed later.

2.3.2 Direct3D Mobile

Like OpenGL ES, Direct3D Mobile is a scaled down version of its desktop
counterpart. Like OpenGL ES it has a feature set oriented towards mobile
programming with features like fixed point arithmetic.

It is made by Microsoft and is currently only supported on Windows Mobile

6 Implementation Considerations

platforms. It is a proprietary API and suffers from a lack of cross platform
compatibility. Support for the technology was introduced with the Windows
Mobile 5.0 platform in 2005.

2.3.3 M3G - Mobile 3D Graphics

M3G is an API for the Java 2 Micro Edition platform. It is not based on
desktop implementations such as Java 3D, instead focusing entirely on mobile
devices. It was specified by the Java Community Process, which is a formal-
ized process that allows interested parties to be involved in defining future
versions and features of the Java platform.

Unlike the previously mentioned API:s it has no support for fixed point arith-
metic, relying only on float and integer primitives to perform math operations.
Even though the API lacks direct support of fixed point arithmetic, its speci-
fication mandates that it should be possible to implement it on mobile devices
without hardware support for floating point operations.

M3G has two modes of operation, retained and immediate mode. The retained
mode supports a scene graph API while the the immediate mode only supports
low level drawing.

The M3G standard mandates that the immediate mode should be compatible
with OpenGL ES and that the retained mode should be built entirely on
top if it. This enables M3G to be quickly implemented on new platforms
using existing OpenGL ES libraries. For more information regarding the
relationship between M3G and OpenGL ES [13].

2.3.4 Mascot Capsule

Mascot Capsule was the first commercially deployed mobile 3D API, predat-
ing standardized API:s which came later. It was developed by the Japanese
company HI Corp and first released in 2001. Initially supporting only event–
driven control of skeletally animated characters using orthographic projection
and z–sorted polygons, it was later extended with a generic and robust feature
set combined with a lower level API.

Subsequent versions have added more features and in 2004 an implementation

Implementation Considerations 7

using M3G for low–level drawing was made a part of their fourth version. The
low level drawing is either implemented as a proprietary software rasterizer
or with OpenGL ES, depending on the target configuration.

2.4 The platforms and conclusion

As previously mentioned, most API:s are similar in feature sets (all are ade-
quate enough to perform the rendering required by this thesis). Perhaps the
rendering speeds of the API:s are different, and that is usually relevant, but
that can depend on many factors and investigating that is beyond the scope
of the thesis.

The two stand–alone alternatives are Direct3D Mobile and OpenGL ES. The
other API:s are all layered upon either software rasterizers or OpenGL ES.
These derived API:s are all tied in some way to OpenGL ES. This makes a
compelling case for using OpenGL ES—if the features can be implemented in
bare OpenGL ES, they can be implemented using the derived API:s. This is
guaranteed by their documentation.

Even if OpenGL ES and Direct3D Mobile are not directly comparable, they
are similar in many aspects. It is likely that a renderer with a modular
structure can support both API:s. This is due to the fact that much of the
code consists of preparation of input data to the renderer, which can be shared
across platforms.

Only M3G supports a scene graph structure. If there was a wider selection
of API:s that implemented this level of abstraction, or if M3G had a larger
number of supported platforms, the use of a scene graph structure would been
a factor when deciding which API to use.

It was ultimately decided that the Symbian platform should be used as an
initial target platform, which has excellent support for OpenGL ES. The
implementation language of choice for this platform is C++.

As previously stated, all of the API:s that were considered had adequate tech-
nical support for the implementation. If that would have been the only factor,
it could just as well have been implemented on a Java platform with support
for M3G/OpenGL ES or on a Microsoft platform with Direct3D Mobile.

8 Implementation Considerations

Chapter 3

Drawing Flat Maps

The map data is organized into tiles with separate layers for different parts
of the geometry. One layer might contain building outlines and another road
networks. The drawing order is explicitly defined and the map is essentially
made up of overlapping polygons.

There are two polygon types. They both share common meta attributes, such
as color and names.

Figure 3.1: Polygons and polylines

• Polygon - series of vertices (polygon point) that defines the hull of a
closed polygon.

• Polyline - series of points that defines the center of a line curve (roads,
railways etc.)

9

10 Drawing Flat Maps

3.1 Visualizing data

The previous renderer was first designed to draw flat top–down maps. It used
native 2D drawing API:s for each platform that often could draw the polygons
directly. Instead of creating a new renderer for its new 3D mode, Wayfinder
opted to add a layer upon the old renderer. This layer perspective transforms
the vertices of the polygon shapes before the 2D map renderer draws them
(see Figure 3.2). In terms of implementation work this was a time saving
approach since only a transformation layer was added to an existing design.

Figure 3.2: The transformation of vertices that was added to the old renderer
in order to achieve a 3D mode.

However, each new platform requires a mapping between its 2D drawing API:s
and the rendering code. Furthermore the transformation pass will have to be
performed whenever the 3D mode is active.

When using a 3D API such as OpenGL ES, the transformations pass is per-
formed by the API. This reduces code maintenance and also allows these
transformations to take place on 3D hardware when available, making them
significantly faster. With the correct perspective set, OpenGL ES can also be
used to draw the old top–down maps.

A more serious concern with the old renderer is that it lacks support for
new map features. Adding support for features like terrain rendering and 3D
models in the old renderer would be comparable to implementing a complete
proprietary graphics API. This is undesirable—doing so requires massive code
maintenance and work effort. If a 3D API like OpenGL ES is used instead
the support for implementing such features is available from the start.

With OpenGL ES the entire rendering engine can be made cross–platform

Drawing Flat Maps 11

with relatively little effort while benefiting from superior performance.

The preprocessing steps necessary to prepare data for such a rendering engine,
capable of drawing the same flat 3D mode that the previous renderer could,
are described in the following section.

3.2 Triangulation

3.2.1 Introduction

Figure 3.3: A triangulated polygon

Mobile 3D API:s rarely support the direct drawing of flat polygons. Instead
they focus on efficient drawing of triangles, which then in turn can be used
to build up polygons. This means that all polygons in the input data needs
to be converted into sets of triangles, a process which is called triangulation.

The following sections will deal with how to triangulate polygons and poly-
lines.

3.2.2 Triangulating polylines

A polyline consists of a sequence of points and a width value that together
defines a line curve polygon. To triangulate these, there is a need for an
algorithm that iterates over the points of input data and builds up a polygon
of connected triangles. Two such algorithms were constructed (see Figure 3.4),
each creating polygons with different properties.

12 Drawing Flat Maps

The first relies upon lines that join triangulated quadrilaterals (polygons with
four vertices) to build the polygon shape. The line joining two quadrilaterals
at each point is perpendicular to the vector p1−p0. If n is the number of points
in the input set this simple approach will only require 2n triangles. However,
it has a severe drawback in that the width of the road is not uniform, creating
a curve with a skewed appearance.

A better solution is to use a triangle to join the two quadrilaterals, thereby
reducing them to trapezoids. The width of the polygon is then constant in
the trapezoids, though still not in the triangles. If this skewed property in the
triangles needs to be reduced, additional points can be added to make it follow
the actual shape better (see Figure 3.5). This could be done by evaluating
the angle of the turn and letting turns with larger angles be divided into more
triangles.

Figure 3.4: Skewed and accurate way of triangulating polylines

The best solution will still be to have more input points near turns. Since
the points from the vector data fulfilled this to an acceptable extent, a single
triangle with no extra control points was used to join adjacent trapezoids.

A compact way to represent triangles is to use triangle strips. The first triangle
is explicitly specified using three vertices, and all subsequent by using only one
new point and two old. This means that consecutive triangles share an edge
(see Figure 3.7). Triangle strips can be used for polylines. If the algorithm
that produces skewed line segments is used, the number of vertices will be
reduced to about 2n from 6n. For the accurate algorithm, the number of

Drawing Flat Maps 13

vertices is about 4n compared to 9n for the non–strip version.

Figure 3.5: How to represent turns in polylines. A straight approximation
leaves visible errors in sharp turns. Subdivided approximations
reduces the magnitude of this error.

Note that one extra point is needed for the accurate algorithm since the
algorithm needs to realign after making a joining triangle. The reason for this
is that the following quadrilateral needs to share the upper two vertices of the
triangles (see Figure 3.6)

To deal with these kinds of situations, where the next triangle needs different
vertices than the previous two or where the order is wrong, a swap operation
can be used. In OpenGL this is done by re–adding one of the two previously
entered vertices. This creates triangles that are not visible when rendering.

3.2.3 Triangulating polygons

A polygon is stored as a clockwise sequence of vertices that defines its hull.
There are a lot of triangulation algorithms for polygons with different time
complexities. The simplest algorithm available is probably the “Subtracting
Ears” method, which continually creates triangles by removing ears (triangles
with two sides on the edge of the polygon and the other one completely inside)
from the polygon. It requires that the input polygons are not self-intersecting

14 Drawing Flat Maps

Figure 3.6: Situation that requires a swap operation. Note that after the
first triangle A has been closed using vertices v0 and v1, the
algorithm then adds the vertex v0 again. This creates a dummy
triangle that realigns the output. Finally the second triangle B
is created using v2, an operation which also specifies the first
two vertices of the third triangle C.

Figure 3.7: 3 triangles (A, B, and C) specified using only 5 vertices

and free of holes, which are conditions that the input polygons do satisfy.
Its time complexity is O(N2), but with a low constant factor. Since the
input polygons were guaranteed to consist of a small number of vertices this
algorithm was used for the thesis.

If it should prove to be a bottleneck in the future, there are asymptotically
faster algorithms (though none as simple). By splitting up a polygon into
monotone sub polygons which then can be triangulated in linear time, an
O(nlogn) algorithm is attained [6]. Bernard Chazelle showed in 1991 that any
simple polygon could be triangulated in linear time [2], though the algorithm
proposed was very complex. Simpler algorithms are still being looked for [1].

Drawing Flat Maps 15

3.2.4 Format discussion

A relevant question is whether or not these triangulations should take place
on the server or on the client side. The placement of processing is a trade–
off between bandwidth consumption and client performance. In the current
implementation all polygons are sent in the format described in the beginning
of the chapter.

For the polylines, the current representation requires significantly less band-
width than a pretriangulated alternative. If the accurate algorithm is used
before sending the vertices at least 4 times as many vertices are sent. This is
due to the fact that the algorithm generates the vertices of the polygon using
an exact mathematical description where the input is a smaller set of interior
center points.

There are no bandwidth advantages for pretriangulated polygons either. An
optimal triangle strip representation could theoretically only require as little
as n vertices to represent the polygon. Some polygons need swaps however (see
Section 3.2.2). Finding the optimal strip representation for a polygon is an
NP–complete problem [5], though there are algorithms that gives approximate
results in linear time [5].

The rendering time on the client could be improved if advanced triangle
strip algorithms (which outputs smaller triangle strip representations) are
performed offline on the server. This is because triangle strip representations
consume less bandwidth when sent to the graphics hardware.

In the end, the reduction of processing time and the improved rendering times
on the client comes at the cost of higher bandwidth usage. If acceptable
triangulations (in terms of processing and rendering time) can take place on
the client side the issue of lower bandwidth usage becomes the dividing factor
in favor of a client–side solution.

Furthermore, a more serious concern will arise when the concept of terrain is
introduced (see Chapter 4). When dealing with terrain certain assumptions
that were valid in a flat world are no longer valid and additional processing
steps will be introduced. If these steps would be performed on the server, two
separate sets of triangulated polygon data would have to be kept and sent
separately to the client.

If it is feasible to perform triangulation and splitting (see Chapter 4) on

16 Drawing Flat Maps

the client side it will be possible to support two separate modes of display
(flat and terrain) using the same data. The bandwidth usage will also be
the lowest possible. For these reasons, it was decided that the client–side
approach should be focused on in the thesis.

3.2.5 Result

Figure 3.8: OpenGL ES rendering of the city of Malmo in Sweden. Both
polygon and polyline triangulation working.

The implementing of the techniques described in this chapter was performed
without major difficulties. A renderer was developed which was as capable as
the previous. The new design approach meant that even an early unoptimized
renderer outperformed the previous by a large margin (see Table 3.2.5).

The OpenGL ES rendering code was separated into specific modules, which
meant that the rendering engine was not explicitly tied to the 3D API. This
makes it possible to implement support for different 3D API:s on platforms
that lacks support for OpenGL ES. The only requirement is that they are
able to use the same triangulated data that is generated in the platform
independent preprocessing step.

Drawing Flat Maps 17

Renderer Frame time FPS Improvement
Old 367.13 ms 2.75 1.0

New with AA 33.03ms 30.3 11.1
New without AA 18.05 ms 55.6 20.3

Table 3.1: Comparison between the old renderer and the new on a Sony
Ericsson P1i device. The new renderer was benchmarked both
with and without AA (anti–aliasing).

18 Drawing Flat Maps

Chapter 4

Terrain Data

Figure 4.1: Terrain rendering of Chamonix in eastern France, overlaid with
the height grid that was used to elevate the terrain. Made using
actual output from renderer.

19

20 Terrain Data

4.1 Format

Today, map suppliers offer world–wide digital elevation level coverage. The
data used for this thesis comes in two primary formats. The first is a grid (a
matrix of height values) and the second is in the form of polyhyps. Polyhyps
are oriented towards traditional top–down maps and are therefore not suited
for 3D terrain modeling (since they cannot easily be used to create polygons).

For this thesis the basic grid format was used to create the terrain. There are
other formats that are derived from the sample values of this grid model that
will be discussed at the end of this chapter.

4.2 Creating the terrain model

Figure 4.2: Terrain model

The grid is used to build up a terrain model by stitching together triangles.
A pair of triangles makes up a square which connects four elevation value
points. As Figure 4.2 shows, there are two triangle layouts that can make up
a square depending on how the diagonal is placed.

Both layouts are approximations. If the sample points were spaced with
smaller intervals, the correct alternative could be determined. To obtain a
fair approximation, the average value of the four corner points is calculated.

Terrain Data 21

Then the midpoint of the two possible dividing lines is calculated. The line
with the midpoint that is closest to the average point gets chosen.

If an even better approximation is desired, values from close height points can
be added to the midpoint calculation. If instead the implementation favors
speed over correctness, the step could be summarily skipped by always using
one of the layouts.

4.3 Choosing a 2D adaptation

Now that the terrain model is well defined, the next task is to adapt the vector
data so that it can be laid over the terrain. There are two approaches:

1. Make textures from vector data and wrap it over the terrain

2. Adapt the vector data so that it follows the terrain

The first approach has the benefit of using fewer triangles at the cost of
maintaining and generating texture sets. A drawback is that the resolution
of the textures is lower than that of the vector layout, which is for all intents
and purposes infinite. To approximate this multiple textures with different
level of detail would have to be used.

However, the second approach has a fair number of problems that need to
be addressed as well. Both solutions will require more triangles compared to
what they would with a flat terrain, though the adapted vector map solution
will require more. This is in part due to the fact that the polygons will need
to be split up in order to fit the underlying terrain. The number of triangles
produced depends on the grid spacing (see Section 4.8).

If the number of triangles can be kept at a reasonable level for rendering,
and if the preprocessing step can be done in acceptable time, then the main
difference between the two is the resolution of the polygons. Ideally a fair
comparison requires two reference implementations, but since there were time
constraints the adaptation of the vector maps was the solution that was fo-
cused on in the thesis.

22 Terrain Data

4.4 Adapting vector data

4.4.1 Problem description

Figure 4.3: Polygon splitting against the terrain triangles.

All of the polygons will need to be split against the triangles of the terrain
grid which will create smaller sub polygons. This is to make sure that the
shape of the polygon follows that of the terrain.

Figure 4.4: Split polygons, now adapted to the terrain triangles heights.

After the polygons have been split against the triangles, they are triangulated.
Height values are computed using barycentric interpolation for all vertices in
the resulting triangles, thus adapting the triangles to follow the grid terrain
(see Figure 4.4).

Terrain Data 23

An alternative approach that was considered triangulates the polygons first
and then those triangles are split against the terrain triangles. After the
split the resulting polygons will have to be triangulated once again. The
advantage of this method is that the splitting is between shapes that are
guaranteed to be convex which enables simpler and faster splitting algorithms
such as Sutherland-Hodgman [17] to be used. The disadvantage is the two
triangulation steps and that the resulting triangulation can consist of a larger
number of triangles. Therefore this method was not implemented in the thesis.

If lighting is to be used, normals have to be calculated for all vertices.

4.4.2 Reference implementation

The more common term for the algorithms used in splitting is “clipping”, and
it illustrates what they are usually employed for. A standard problem is clip-
ping polygons against the viewport of a program, thus reducing the number of
drawing operations necessary. However, splitting is a more appropriate term
for the problems presented in this thesis because no data should have to be
clipped away (discarded).

The outline of a simple and general algorithm that can be used to adapt a
polygon to a terrain model is as follows:

1. Find bounding box of polygon

2. Split the polygon against all the triangles in the area of the bounding
box

There are several different algorithms which can be used in the second step.
The simple variants such as Sutherland-Hodgman creates a single polygon
with possibly degenerate edges when concave input polygons are used, which
will cause the triangulation process to fail or output unnecessary triangles.
The more complex algorithms such as Weiler–Atherton [19], Vatti [18], and
Greiner–Hormann [7] all avoid this, with differing complexity.

If a simple algorithm such as Sutherland-Hodgman is used, the resulting tri-
angulation of the polygon will contain unnecessary triangles for re–entrant
polygons (concave).

24 Terrain Data

To gain an understanding of the nature of the problem a reference imple-
mentation was implemented first based on the described outline. As long as
the splitting algorithm is correct and produces non–degenerate polygons, the
output should be the same for all of these algorithms. The reference imple-
mentation uses a variation of the Vatti algorithm, implemented by the GPC
library [12], as a splitter.

This implementation produced correct results, though the preprocessing time
was quite slow. Due to time constraints, a better alternative was not imple-
mented in the time frame of the thesis. In the following section a customized
algorithm is proposed which should give better performance.

Another possibility that should be investigated is the use of a fast and simple
algorithm such as Sutherland-Hodgman. Its output for re–entrant polygons
was first thought to be unacceptable for later processing stages (triangula-
tion and light processing (see Section 4.6), but more thorough investigation
hinted at the possibility of this being false. Perhaps some additional prepro-
cessing step can be performed (perturbing certain points) that will allow the
triangulation functions to work. Unfortunately there was not enough time to
implement a test solution.

Figure 4.5: A single degenerate polygon.

If the output from such an algorithm could in fact be used, the main difference
between it and the other class of algorithms (apart from the likely shorter
execution time) would be that it generates a larger number of triangles. This
is because some polygons are degenerate (see Figure 4.5), requiring extra
triangles for the coincident edges. Even if this solution should prove more
feasible, it would still have been necessary to implement a reference solution
using the other class of algorithms to determine so.

Terrain Data 25

4.4.3 Suggested algorithm

Description

The primary disadvantage with using the classic clipping algorithms is that
they do not exploit the nature of the height grid. The clipping polygons are
just a disconnected set of triangles that each requires a separate call to the
clipping algorithm. A large number of vertices may have to be discarded in
each call. A more clever approach would traverse the polygon once and split
it against all the grid triangles it crosses in one pass.

Moving through the grid

Figure 4.6: Shows the outcodes for a triangle. The 1010 area is above and
to the right of the triangle.

To find out which grid triangle the polygon crosses, the concept of outcodes
are used (see Figure 4.6). Normally they are used for clipping rectangles, but
they can be used for triangles as well. Essentially, they determine if a point
is inside the current grid triangle, and if it is not, which grid triangle to move
to in order to eventually reach it.

The reason outcodes are used, instead of perhaps testing for intersection points

26 Terrain Data

along all edges of the triangles, is to better exploit the shapes of the triangles.
Outcode calculation for two of the edges is trivial since they are orthogonal
to the unit vectors of the basis (which is defined by the grid). One is not and
requires an intersection test. However if this test passes the point can directly
be used in the algorithm.

The algorithm starts by determining which grid triangle the first point is lo-
cated in. Then outcodes for subsequent points are calculated continuously
relative to this triangle. Whenever the outcode is non–zero the point is out-
side of the current grid triangle, and the algorithm should then use the next
grid triangle in the direction of the point. This triangle can be retrieved by
exploiting the regularity of the height grid combined with the outcodes.

Marking inner triangles

To fill the triangles which are completely enclosed by the clipping polygon,
the algorithm marks the grid triangle immediately to the right of the each
grid triangle when traversing the polygon. These right side triangles are
also retrieved using outcodes. Since the polygons are clockwise oriented, the
interior of the polygon will always be to the right of any given point. These
marked triangles are stored and at the end of the algorithm they are expanded
until no non–marked triangles can be reached (see Figure 4.7).

Adding entry and exit nodes

The actual splitting is inspired by the method used in the Weiler–Atherton
algorithm. As the triangles that the polygon crosses are traversed, entry and
exit points are stored in a list of as attributes called nodes (see Figure 4.8)
in the triangles. A triangle may have multiple pairs of such points for convex
polygons.

These nodes represent points that lay on the edges of the grid triangle. In
addition to points where the polygon intersects the grid triangle, the corners
of the triangles are also stored in the list. Intersection point nodes are called
breakpoint nodes, and can either be points where the polygon enters the grid
triangle (BREAK_BEGIN) or exits (BREAK_END).

As the grid is traversed by moving from grid triangle to grid triangle, BREAK_BEGIN

Terrain Data 27

Figure 4.7: Marking of enclosed parts, all to the right of the vertices in the
polygon. The darker shaded parts are marked later on in the
expansion phase.

and BREAK_END pairs are inserted at the points where the polygon intersects
the two triangles. The grid triangle that is exited from adds a BREAK_END
node to its node list and the triangle that is entered adds a BREAK_BEGIN.
Since the polygon has to close itself, these begin/end nodes always comes in
pairs. When a BREAK_END is added, it is connected to its BREAK_BEGIN part-
ner by the breakId variable. The breakpoint nodes also store indices to the
points in the polygon that lay between them, inside the grid triangle (via the
outlineIndex variable). See Figure 4.9 for an illustration.

Creating subpolygons in visited triangles

The insertion of breakpoint nodes and the marking of interior grid triangles
is the first phase of the algorithm.

The next phase of the algorithm begins when the polygon is completely tra-
versed. The idea is to create subpolygons using the breakpoint pairs that
have been added to the grid triangles. The first part of such a subpolygon is
the polygon outline between the two breakpoint pairs. The second consists
of a combination of triangle edges and corneres that seals the first part. It is

28 Terrain Data

enum Type { CORNER , /∗ Triang le corner ∗/
BREAK_BEGIN , /∗ Polygon entry po int ∗/
BREAK_END } ; /∗ Polygon e x i t po int ∗/

struct Node {
Vertex point ; /∗ Pos i t i on o f the node ∗/
Type type ; /∗ Type o f node ∗/
float alpha ; /∗ 0 . . 1 va lue r ep r e s en t i ng

r e l a t i v e p o s i t i o n on
t r i a n g l e borders ∗/

bool visited ; /∗ I s the node proce s s ed ? ∗/
int breakId ; /∗ Id o f begin /end partner ∗/
int outlineIndex ; /∗ Index o f f i r s t (i f begin)

or l a s t po int (i f end)
o f polygon ou t l i n e ∗/

} ;

Figure 4.8: Node layout

possible that other breakpoint pairs lay on the second part and if so they and
their outlines are added as part of the subpolygon.

In this phase all of the visited triangles are processed again. First, the corners
of the grid triangles are added to their internal node lists which are then sorted
based on the alpha values of the nodes. The alpha value is a normalized
unit that represents how far along a node is on the the outline of the grid
triangle. For example, the corners have 0.00, 0.33 and 0.66 as alpha values
(see Figure 4.10).

After the lists have been sorted they are traversed circularly. The construction
of a new subpolygon begins when a BREAK_BEGIN node is encountered. All of
the vertices in the polygon outline are added (using the outlineIndex pair)
and the current node in the list traversal is changed to the partner BREAK_END
node.

Now the algorithm will seal the polygon outline by traversing the node list
clockwise backwards, along the grid triangles edges, back to the BREAK_BEGIN

Terrain Data 29

Figure 4.9: Relationship between BREAK BEGIN and BREAK END pairs.
The part of the polygon between p2 and p6 is a the connecting
line curve between the pair. The pair uses indices to the polygon
array to represent this line curve instead of copying its vertices.

node. If it encounters any BREAK_BEGINs that belong to other break pairs (see
Figure 4.10 for such an example), it will add their polygon outlines as part
of the polygon and yet again adjust the current node according to this pair’s
BREAK_END (see Figure 4.11).

If a corner node is found along the traversal, then its coordinate is added
as part of the polygon. When the algorithm reaches the destination (the
BREAK_BEGIN), a new polygon has been completed. The algorithm then con-
tinues to traverse the list, looking for unprocessed BREAK_BEGIN nodes. If a
new one is detected then the algorithm will once again seal its polygon by
clockwise traversal. If no such node can be found the algorithm has finished.

Advantages

An advantage of this algorithm is the reduction of grid triangles that need
to be visited. Since it moves through the grid triangles incrementally, it only
needs to visit the ones actually touching the polygon. With the previous
approach, all grid triangles within the bounding box needed to be visited.
Furthermore, the input for each clipping operation is minimal, since vertices
outside of the clipping polygon are not part of it.

30 Terrain Data

Figure 4.10: Illustrates nodes with their alpha values in a grid triangle node
list.

Another advantage is that the number of polygon traversals is not relative to
the number of grid triangles it encompasses. This is also due to the fact that
it moves through the grid triangles touching the hull of the polygon in one
pass.

Finally, due to the known layouts of the grid triangles a tight list representa-
tion can be used, with constant alpha–values for the corners.

Figure 4.11: Flow of polygon building in algorithm. The boxes are nodes
in a circularly traversed list. Green are BREAK BEGIN, red
are BREAK END, and yellow boxes are corners. Based on Fig-
ure 4.10.

Terrain Data 31

Future considerations

There was not enough time at the end of the thesis for creating a sample
implementation. As such there is no real way to compare the traditional
clipping algorithms with this one. To get an implementation with sufficient
processing performance that can be used in the real world will be a challenge,
but this algorithm is a first step in overcoming that challenge.

Another area of improvement might be the data type used for the math op-
erations. Most mobile devices have no floating point unit, and a splitting
implementation which uses fixed point or integer arithmetic may prove to be
substantially faster. The GPC library used in this thesis uses double inter-
nally.

This algorithm should prove faster than naively using clipping algorithms with
a bounding box. However, the fastest approach will always be to use simpler
algorithms wherever possible, which is discussed in the following section.

4.5 Shortcuts

There are times when the use of a general algorithm, such as the one described
in Section 4.4.3, should be avoided. For example, there are large rectangular
polygons that are used to describe land areas. Due to their size, they are
likely to cover large amounts of grid triangles.

Since it is trivial to determine if a set of grid triangle is inside one of these
rectangles, this set of enclosed grid triangles should be determined before the
splitting takes place. For these grid triangles, no actual splitting needs to be
performed—the output polygons will be those in set. Also, for these cases no
triangulation need to be performed (since the output shapes are all triangles).

Since convex polygons can use simpler and faster splitting methods, they
should be redirected to such methods accordingly. This is particularly useful
for polylines, which consists of series of very simple convex polygons—triangles
and quadrilaterals (or trapezoids).

32 Terrain Data

4.6 Light processing

In order to see the contours of the terrain, lighting needs to be enabled. In this
thesis, only ambient and diffuse lighting was used. Diffuse lighting requires
normals for each polygon vertex that needs to be calculated. A simple way
of calculating the normal for a triangle is to use a normalized vector from the
cross product of two triangle edges. However, this will result in very abrupt
shading.

It is better to weight the normals of vertices from adjacent triangles.

Figure 4.12: Shows how the calculation of normals is performed. The normal
of point p is the normalized average of n1 and n2.

This was how the normals were calculated for this thesis. For a more accurate
approximation, the angles of the corners can be used as weights.

4.7 Height offsets

When terrain models are used, the scene needs to be depth sorted. This was
not necessary for the flat maps, since all polygons shared the same height
value. A problem that arises when depth sorting is enabled is the fact that
several overlapping polygons share the same elevation value. This makes it
impossible for the 3D API to determine which polygon should be drawn last,
causing a flickering appearance. The normals that were calculated in the light
processing phase can be used to offset the different layers slightly in order to
correct this (see Figure 4.13). ε should be the smallest number that causes
the 3D API to treat the polygons as being on separate elevation levels (which
can be dependent upon the viewport).

Terrain Data 33

Figure 4.13: Shows how correct drawing order was achieved by offsetting
polygons ε units along the normal vector. ε grossly exaggerated
for illustrative purposes.

4.8 Grid spacing

The elevation grid that was used in the thesis has a spacing of 20 meters.
The spacing has a significant impact on the triangle count, which influences
the rendering and loading times. In order to get acceptable rendering per-
formance, the spacing had to be increased. The number to add for each
row/column increment is called the stride. A stride of 1 equals the original
spacing of 20 meters, and a stride of k equals a spacing k ∗ 20 meters.

As a comparison, the same world with no terrain (flat) has a triangle count
of 1662. This indicates (see Table 4.1) that for larger stride values there is
not a significant increase in number of triangles. These results are promising,
and the renderer managed interactive frame rates at strides as low as 4 or 5.

However, the map loading times are quite long and even effective optimizations
will probably not reduce them to such levels that the loading could be done
in one pass. For interactive usage scenarios it would be better to process the
map incrementally, which the format is suited for.

For example, the large rectangular areas which covers the land could be split
and displayed early using the techniques described in Section 4.5. This will
give the user an immediate sense of the terrain with further detail being added
incrementally.

34 Terrain Data

Frame time (ms) FPS Load time (s) Triangles Stride
70.71 14.14 4 2292 8
75.97 13.16 5 2474 7
86.89 11.51 6 2934 6
99.12 10.08 8 3437 5
120.38 8.31 11 4237 4
163.05 6.13 16 5969 3
268.25 3.72 31 10116 2
780.60 1.28 100 30518 1

Table 4.1: Map loading and rendering times on a Sony Ericsson P1i device.

Chapter 5

3D Models

An original requirement of the thesis was to add support for 3D models in the
renderer. Unfortunately there was not time to fully implement this feature,
but this chapter will briefly discuss the different approaches that are possible.

5.1 Landmarks

Several map suppliers are now able to deliver textured high resolution 3D
models of well–known buildings throughout the world. Except for adding
texture support, there is nothing that is inherently more difficult about ren-
dering these models compared to rendering the terrain described in Chapter 4.

The real challenge lies in preparing the texture and model data in such a way
so that they can be efficiently rendered on a mobile device. Reducing the
amount of vertices, which results in a less refined appearance, is a necessary
first step. This is called polyhedral simplification ([14, 10, 4, 15, 11, 8, 9]).

After the model has been simplified its size can be further decreased using
algorithms from a research field called geometry compression [3]. When choos-
ing such an algorithm the constrained environments of mobile devices have
to be taken into consideration. The most important property will be a fast
decoding algorithm. The speed of the model encoding is not as important
since it only needs to be performed once, on the server side (the same model

35

36 3D Models

can then be sent to all clients).

The textures will also have to be compressed, for which there are also a number
of algorithms. One such compression scheme, which is geared towards mobile
phones, is called ipackman[16].

5.2 City models

Some map suppliers also provide simpler polygon models of city buildings.
These share common textures and are not specified explicitly with regards to
polygon vertices. Instead they are built up using attributes such as number
of levels, height, roof type, and socket type. This allows for greater compres-
sion rates compared to regular landmark models at the cost of lower accuracy
(many buildings share textures and some features are invariably lost). An-
other advantage of using these lower complexity models is that larger areas
can be covered using simpler methods.

This effect can also be emulated using the current vector maps. If the polygons
which are buildings can be identified, they can be raised an arbitrary amount
(see Figure 5.1). This effect is highly inaccurate but can give an added sense
of space compared to a flat map. To get more variation, the height could
be varied according to distance to city center, building density and city size.
Textures could also be used instead of the flat colors of the buildings (and
could also be varied with the same factors).

This will also work for terrain maps. In such a context the houses will need
a ground socket so that they can follow the shape of the terrain. The roof of
the house can still be flat.

3D Models 37

Figure 5.1: Building polygons raised above ground level.

38 3D Models

Chapter 6

Conclusions and Future Work

6.1 3D Models

Ultimately the support for 3D models had to be abandoned due to time con-
straints. Getting the basic rendering working should be achievable in a rela-
tively short time, but creating a framework for a combined server and client
solution that can handle preprocessing and compression involves a lot of work.
An outline and some reference material for such an implementation is provided
in Chapter 5, which can serve as a starting point for future work.

6.2 Extensibility and performance

The renderer was designed to work on multiple platforms while still being
efficient. The initial target platform was Symbian OS, and the implementation
was carried out on Nokia’s S60 framework. In order to make the development
cycle faster, an OpenGL ES simulator for Linux was used for prototyping.
This also meant that the code had to run on two platforms from the start.

Later on the simulator variant was extended so that it could run on the Win-
dows operating system as well, with relatively minor effort. Mobile ports for
the UIQ platform (also Symbian OS) and the iPhone (Apple) followed shortly
thereafter and in the end the code runs on three separate mobile platforms

39

40 Conclusions and Future Work

and two desktop platforms. This serves as a testament to the portable nature
of the rendering architecture.

The performance goal was accomplished as well, achieving rendering times
over 20 times faster than the previous versions for flat maps. Note that these
benchmarks were performed on a Sony Ericsson P1i, which is not one of the
fastest devices on the market today.

6.3 The terrain model

Even though a reference implementation was constructed that supports ter-
rain models a lot of work remains in this area. The process of adapting the
vector map to the height grid must be improved, perhaps by using the algo-
rithm suggested in Section 4.4.3. The rendering performance was slower than
the flat terrain mode, but the frame rates were still interactive.

An important realization was that the terrain mode and the flat map model
have different optimization possibilities, and should be treated with separate
profiles. The flat mode does not need depth sorting or lighting, which in-
creases performance considerably. On the other hand, the terrain model may
employ occlusion based on the terrain, not rendering parts of the map that is
obstructed by terrain outline.

6.4 Conclusion

Most of the goals that were laid out in the first chapter were attained. There
was not enough time to thoroughly investigate certain topics, which could
be attributed to the broad scope of the subject matter. However, the most
important benefits of using the described rendering architecture (speed, ex-
tensibility and cross platform support) were all brought to light.

References

[1] Nancy M. Amato, Michael T. Goodrich, and Edgar A. Ramos. Linear-
time triangulation of a simple polygon made easier via randomization.
In Symposium on Computational Geometry, pages 201–212, 2000.

[2] Bernard Chazelle. Triangulating a simple polygon in linear time. Discrete
Comput. Geom., 6(5):485–524, 1991.

[3] Michael Deering. Geometry compression. In SIGGRAPH ’95: Proceed-
ings of the 22nd annual conference on Computer graphics and interactive
techniques, pages 13–20, New York, NY, USA, 1995. ACM.

[4] Matthias Eck, Tony DeRose, Tom Duchamp, Hugues Hoppe, Michael
Lounsbery, and Werner Stuetzle. Multiresolution analysis of arbitrary
meshes. In SIGGRAPH ’95: Proceedings of the 22nd annual conference
on Computer graphics and interactive techniques, pages 173–182, New
York, NY, USA, 1995. ACM.

[5] F. Evans, S. Skiena, and A. Varshney. Efficiently generating triangle
strips for fast rendering, 1997.

[6] A. Fournier and D. Y. Montuno. Triangulating simple polygons and
equivalent problems. ACM Trans. Graph., 3(2):153–174, 1984.

[7] Günther Greiner and Kai Hormann. Efficient clipping of arbitrary poly-
gons. ACM Trans. Graph., 17(2):71–83, 1998.

[8] André Gueziec. Surface simplification with variable tolerance. In Second
Annual Symposium on Medical Robotics and Computer Assisted Surgery,
1995.

41

42 References

[9] H. Hoppe. Progressive meshes. In Computer Graphics (SIGGRAPH’96
Proceedings), 1996.

[10] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and
Werner Stuetzle. Mesh optimization. In SIGGRAPH ’93: Proceedings of
the 20th annual conference on Computer graphics and interactive tech-
niques, pages 19–26, New York, NY, USA, 1993. ACM.

[11] Alan D. Kalvin and Russell H. Taylor. Superfaces: Polygonal mesh
simplification with bounded error. IEEE Computer Graphics and Appli-
cations, 16(3):64–77, 1996.

[12] Alan Murta. General polygon clipper library. http://www.cs.man.ac.
uk/∼toby/alan/software/.

[13] Kari Pulli, Tomi Aarnio, Kimmo Roimela, and Jani Vaarala. Designing
graphics programming interfaces for mobile devices. IEEE Computer
Graphics and Applications, 25(8), 2005.

[14] Jarek Rossignac. Geometric modeling in computer graphics. pages 455–
465, 1993.

[15] William J. Schroeder, Jonathan A. Zarge, and William E. Lorensen. Dec-
imation of triangle meshes. SIGGRAPH Comput. Graph., 26(2):65–70,
1992.

[16] Jacob Ström and Tomas Akenine-Möller. ipackman: high-quality, low-
complexity texture compression for mobile phones. In HWWS ’05:
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on
Graphics hardware, pages 63–70, New York, NY, USA, 2005. ACM.

[17] Ivan E. Sutherland and Gary W. Hodgman. Reentrant polygon clipping.
Commun. ACM, 17(1):32–42, 1974.

[18] Bala R. Vatti. A generic solution to polygon clipping. Commun. ACM,
35(7):56–63, 1992.

[19] Kevin Weiler and Peter Atherton. Hidden surface removal using polygon
area sorting. In SIGGRAPH ’77: Proceedings of the 4th annual confer-
ence on Computer graphics and interactive techniques, pages 214–222,
New York, NY, USA, 1977. ACM.

