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Abstract 

 
Reconfigurable computing is an emerging trend for embedded system design. With 
the use of platform containing a reconfigurable architecture, it is possible to accelerate 
arbitrary algorithms that are executing on an embedded system. To achieve high 
performance to a feasible hardware cost, the reconfigurable architecture should be a 
trade-off between efficiency and flexibility. 
 
This thesis discusses design and implementation of the coarse-grained reconfigurable 
architecture targeting for digital signal processing applications. The proposed 
reconfigurable architecture is constructed from a mesh of resource cells, divided into 
processing and memory cells, which communicate using a combination of local 
interconnections and a global hierarchical routing network. The processing cell can 
further be distinguished from a generic RISC processor and a CORDIC cell. High 
performance local interconnections generate a high communication bandwidth 
between neighboring cells, while the global network provides flexibility and access to 
external modules.  
 
All the cell modules developed in the reconfigurable architecture are design-time 
configurable, where different hardware structure can be generated depending on the 
user requests. Besides, the processing and memory cells are run-time reconfigurable 
to enable flexible application mapping. 
 
A 4-by-2 reconfigurable cell array containing four 16/32-bit RISC processor cells, 
three smart memory cells and one configurable CORDIC cell has been designed and 
implemented in HDL, and has been eventually integrated as a coprocessor into an 
embedded system. Applications of a time-multiplexed FIR filter and a 32~1,024-point 
time-multiplexed radix-22 FFT have been manually mapped onto the constructed cell 
array and have been verified on an FPGA platform, the Virtex-II Pro-30-7ff896 from 
Xilinx. It is shown that the reconfiguration code size for the mapped FFT 
implementation on the cell array outperforms ordinary DSP processors by a factor of 
8, and the number of used clock cycles is reduced with ~20%. 
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1 Introduction 

The use of application specific hardware accelerators (ASICs) is a well known 
approach for achieving real-time performance within the budget for physical size and 
energy dissipation. However, these circuits require a rather long system development 
time and exhaustive testing procedures both before and after the chip fabrication. 
Besides, ASICs are by nature tailored for specific applications, they are less flexible 
and can hardly be reused by other designs. The fine-grained reconfigurable 
architectures (FGRAs), i.e. FPGA, are field reconfigurable. With existing design IP 
cores, designers can sometimes gain system development time. However, the use of 
FGPAs requires bit level manipulations during system design time, which might not 
be the needs by initial requirements. Moreover, FGRAs expose a huge routing area 
overhead and poor routing ability. Due to these reasons, coarse-grained reconfigurable 
architectures (CGRAs) become a popular choice in many real applications in both 
industry and academia. 

Emphases in this thesis are placed on discussions of hardware design and 
performance evaluations for the proposed CGRA in application of digital signal 
processing, whereas the topic on systematic analysis of the coarse-grained 
reconfigurable architecture are not a subject of this project. The proposed CGRA is 
constructed from an array of resources cells which communicate using local 
interconnections and a global hierarchical network. Resource cell is the common 
name for all types of functional units, which are divided into processing and memory 
cells. All the resource cells are dynamically reconfigurable to support run-time 
mapping of arbitrary applications. Each of the individual cells has been implemented 
in a hardware description language (HDL) and synthesized based on an FPGA 
platform to obtain performance and area metrics. By integrating different resource 
cells together, a 4-by-2 reconfigurable cell array containing four 16/32-bit RISC 
processor cells, three smart memory cells and one configurable CORDIC cell has 
been constructed and verified on an FPGA evaluation board, where applications of a 
time-multiplexed FIR filter and a 32~1,024-point time-multiplexed radix-22 FFT have 
been experimented. 

Chapter 2 briefly describes the basic concepts of the CGRA and network 
communications inside the system. Basic structure of the proposed reconfigurable 
architecture is introduced, which is constructed from a tile of resource cells and a 
communication network. Detailed descriptions on each of the individual resource cell 
implementations, including the processor, CORDIC, memory and router cells, are 
presented in Chapter 3, 4, 5 and 6, respectively. In Chapter 7, mapping of a 
time-multiplexed FIR filter on the CGRA is described, where the basic functionalities 
in each resource cell are verified and network communications are tested. In Chapter 
8, design of a 4-by-2 cell array and an FPGA based embedded system with the 
experimented time-multiplexed radix-22 FFT application is comprehensively 
described, and different algorithm mapping alternatives are discussed and evaluated. 
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2 Coarse-grained reconfigurable architecture 

Reconfigurable hardware architectures are emerging as a suitable and feasible 
approach to achieve high performance combined with flexibility and programmability. 
Compared to conventional fine-grained architectures, coarse-grained architectures 
trade mapping flexibility to reduce reconfiguration time and achieve higher 
performance using word-level data processing. In this chapter, a coarse-grained 
dynamically reconfigurable architecture (CGRA) is briefly introduced. All the 
concepts and basic structure of the CGRA are presented based on the exhaustive 
pre-studies that have been carried out in previous work [1] and [2], and descriptions in 
this chapter are collections of the essential points from [1] and [3]. 
 

2.1 Reconfigurable architecture 

In contrast to programmable architectures, the reconfigurable architectures enable 
hardware programmability. It means that not only the software that runs on a platform 
is modified, but also how the architecture operates and communicates. Hence, an 
application is accelerated by allocating a set of required processing, memory and 
routing resource to adapt to the current operational and processing conditions. 

Reconfigurable architectures provide numerous advantages over traditional 
application-specific hardware accelerators, such as resource sharing to provide more 
functionality than there is physical hardware. Hence, currently inactivated functional 
units do not occupy any physical resources, which are instead dynamically configured 
during run-time. Another advantage is that a reconfigurable architecture may enable 
mapping of future functionality without additional hardware or manufacturing costs, 
which could also extend the lifetime of the platform. 

The size of the reconfigurable elements is referred to as the granularity of the 
device. Fine-grained devices are usually based on small look-up tables (LUT) to 
enable bit-level manipulations. These devices are extremely versatile and can be used 
to map virtually any algorithm. However, fine-grained architectures are inefficient in 
terms of hardware utilization of logic and routing resources. In contrast, 
coarse-grained architectures use building blocks in a size ranging from arithmetic 
logic units (ALU) to full-scale processors. This yields a higher performance when 
constructing standard data-paths, since the arithmetic units are constructed more 
efficiently, but the device becomes less versatile. The properties of fine-grained and 
coarse-grained architectures are summarized in Table 2-1. 

Coarse-grained reconfigurable architectures are arrays constructed from larger 
computational elements, usually in the size of ALUs or smaller programmable kernels 
and state-machines. The computational elements communicate using a routing 
network, as illustrated in Figure 2-1 for an example of such a structure. In this way, 
the coarse-grained architecture requires less configuration data, which improves the 
reconfiguration time, while the routing resources generate a lower hardware overhead. 
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Table 2-1. A comparison between fine-grained and coarse-grained architectures. 
Development time and design specification refer to applications running on the 
platform. 

Properties Fine-grained Coarse-grained 
Granularity Bit-level (LUT) Word-level (ALU) 
Versatility/Flexibility High Medium/High 
Performance Medium High 
Interconnection overhead Large Small 
Reconfiguration time Long (ms) Short (µs) 
Development time Long Medium 
Design specification Hardware Software 
Application domain Prototyping, HPC  RTR, HPC 

Note: HPC – High-performance Computing; RTR – Run-time reconfiguration. 
 

 
Figure 2-1. An example of a coarse-grained reconfigurable architecture, with 
an array of processing elements (ALU) and a routing network. 
 
In contrast to a fine-grained FPGA, course-grained architectures are designed for 

partial and run-time reconfiguration. This is an important aspect due to situations 
when hardware acceleration is required for short time durations or only during the 
device initialization phase. Instead of developing an application-specific hardware 
accelerator for each individual situation, a reconfigurable architecture may be reused 
to accelerate arbitrary algorithms. Once the execution of one algorithm completes, the 
architecture is reconfigured for other tasks. 

The possibility to support algorithmic scaling is also an important aspect. 
Algorithmic scaling means that an algorithm can be mapped to the reconfigurable 
array in multiple ways, which could be a trade-off between processing performance 
and area requirements. A library containing different algorithm mappings would 
enable the programmer or the mapping tool to select a suitable architecture for each 
situation. A low complexity algorithm mapping may be suitable for non-critical 
processing, while a parallel mapping may be required for high performance 
computing. 

From an algorithm development perspective, the coarse-grained architectures 
differ considerably from the design methodology used for FPGA development. While 
FPGAs use a hardware-centric methodology to map functionality into gates, the 
coarse-grained architectures enable a more software-centric and high-level approach. 
Hence, it allows hardware accelerators to be developed on-demand, and potentially in 
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the same language used for software development. Unified programming 
environments enhance productivity by simplifying system integration and 
verification. 
 

2.2 Coarse-grained reconfigurable architecture 

The proposed coarse-grained reconfigurable architecture is constructed from a tile of 
W × H resource cells and a communication network, as shown in Figure 2-2. Resource 
cell (RC) is the common name for all types of functional units, which are divided into 
processing cells (PC) and memory cells (MC). Processing cells implement the 
processing functionality to map applications to the CGRA, while memory cells are 
used to store data tables and intermediate results during processing. Depending on the 
different computational demands, three types of processing cells are provided in the 
CGRA: a 32-bit DSP processor with radix-2 butterfly support, a 16-bit MAC 
processor with multiplication support, and a configurable CORDIC processor for 
advanced function evaluation. The DSP and MAC processors are based on a similar 
architecture, with a customized instruction set. Memory cells contain a number of 
memory banks that each can be configured to emulate FIFO functionality as well as 
supporting random memory access. All the resource cells are dynamically 
reconfigurable to support run-time mapping of arbitrary applications. Detailed 
architecture descriptions of the processor, memory and CORDIC cells are presented 
in Chapter 3, 4 and 5, respectively.  
 

 
Figure 2-2. Proposed architecture with an array of processing and memory cells, 
connected using a local and a global hierarchical routing network. W = H = 8. 

 
An array of resource cells is constructed from a tile template. A tile template is 

user-defined and contains the pattern in which processing and memory cells are 
distributed over the array. For example, the architecture presented in Figure 2-2 is 
based on a tile template of size 2 × 2, with two processing cells and two memory cells. 
The template is replicated to construct an array of arbitrary size. 

The resource cells communicate over local interconnections and a global 
hierarchical network, as illustrated in Figure 2-3 (a) and (b), respectively. The local 
network with dedicated wires provides high communication bandwidth between 
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neighboring resource cells. Hence, it is assumed that the main part of the total 
communication is between neighboring cells and through local interconnections. The 
global network provides communication flexibility to allow any two resource cells in 
the array to communicate. However, transmitting data packets over the global network 
suffers from long initial communication latency compared with local data 
transmissions. This issue is further discussed in Chapter 6. 

 

 

RC RC

RC RC

(b)

R G4

G0 G0

G0 G0

G0 G1

G2G3

 
Figure 2-3. (a) Local interconnections. (b) Router cell with global routing network.

 

2.3 Local and global communication 

2.3.1 Communication protocol 

 

 
Figure 2-4. Data communication with flow control in the CGRA. 

 
Basic hardware connections for data communications in the CGRA are shown in 
Figure 2-4. Communication ports are bi-directional, where each port consists of one 
TX line and one RX line, and flow control is used in all data transactions to avoid 
overflow [4] and underrun [5]. 

Flow control is implemented with a valid bit toggled by the data sender, 
indicating there is one data package available on the line, and an acknowledge bit fed 
back from data receiver, indicating data package has been accepted. Obviously, two 
intrinsic steps are involved in each data transmission, referred to as two-phase 
protocol, and hence requires at least two clock cycles. This is considered as inefficient 
in the CGRA, as the flow control overhead degrades data communication throughput 
and will certainly be a bottleneck in applications like data streaming. 



Chapter 2 – Coarse-grained reconfigurable architecture 

Page 7 

By exploring the hardware setup, I/O port registers in both transmission terminals 
are not utilized efficiently in the original two-phase communication protocol, where 
two registers are utilized as transparent data path during each transaction, resulting in 
transmission delays. To address this problem, the two-phase communication protocol 
is revised with inspiration got from the FIFO operation scheme. The idea is to use I/O 
port registers in both terminals as transmission buffers, where registers are always 
writable as long as there is free space available. The transmission line is only 
suspended if both buffers are full, and transmitter has more data to send and no 
responding from the receiver side. 

 

 
Figure 2-5. Hardware setup for FIFO like two-phase communication protocol. 
 
Hardware setup for the FIFO like two-phase communication protocol is shown in 

Figure 2-5. The acknowledgement (ACK) signal towards data sending side has two 
responders. When data is written into an empty transmission buffer, packet is 
automatically acknowledged by the control logics inside that buffer; otherwise the 
ACK signal is switched to listen to the succeeding data receiving side when 
transmission buffer is full. Hence, the ACK signal can be used to reflect the status of 
the buffers in a transmission channel. This provides that the data transmitter can send 
at least two packets before getting suspended by a “silent” data receiver, if both 
transmission buffers are initially empty. In case when both communication terminals 
are synchronized in packet sending and receiving, data transmissions can be carried 
out in every clock cycle, thereby overcomes the communication overhead problem 
explored in the original two-phase protocol. Figure 2-6 illustrates the timing diagram 
of this revised communication protocol. 

(1) Assume there is no initial data transmission since system started, the ACK 
signal is initialized to state high. Data sender starts transmitting data by 
pushing a packet into the transmission buffer at the rising edge of the clock. 

 

 
Figure 2-6. Timing diagram of the FIFO like two-phase protocol. 
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(2) In consecutive clock cycle, the first data packet is accepted by TX buffer, and 
an acknowledgement signal is automatically sent back to the data sender. 
When TX buffer is full, data receiving for the following packets will be 
determined by the remote RX side. 

(3) In the third clock cycle, the first data packet is taken by RX buffer, and the 
automatically responded ACK signal allows TX buffer to keep receiving data 
from its data sender. Thereafter, both TX and RX buffers are full. So if data 
sender has more data to send, responses from the data receiver will determine 
the states for the following transactions. In this example, data receiver does 
not want to take any data packet at the moment, so all three ACK signals are 
pulled down, indicating that transmission buffers are full and a 
communication TX stall is asserted to the data sender. 

(4) Transmission line is unfrozen along with the first data packet being accepted 
by the data receiver. 

(5) The following data packets stored in transmission buffers are shifted towards 
the RX side in consecutive clock cycles. Again, depending on the response of 
the data receiver, the whole transmission line will either be activated or 
refrozen. In case the data sender has no more packets to send, 
communication TX stall will not be asserted anymore, and both transmission 
buffers will be gradually freed when stored data packets are consumed by the 
receiving terminal. 

 

2.3.2 Network packets 

The routers forward network packets over the global connections. A network packet is 
a carrier of data and control information from a source to a destination cell, or 
between resource cells and an external host. A data stream is a set of network packets, 
and each individual packet is send as a network flow control digit (flit). A flit is an 
atomic element that is transferred as a single word on the network, as illustrated in 
Figure 2-7. 
 

 
Figure 2-7. Network packet format of local and global data transmission. 

 
A flit consists of a 32-bit payload and a 2-bit payload type identifier to indicate if 

the flit contains data, a read request, or a write request. For global routing, unique 
identification numbers are required and an additional 2-bit network type identifier 
indicates if the packet carries data, configuration, or control information. 
Configuration packets contain a functional description on how the resource cells 
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should be configured, as will be further described in each of the resource cell chapters. 
Control packets are used to notify the host processor of the current processing status, 
and are reserved to exchange flow control information between resource cells. 
 

2.3.3 Network routing 

Each resource cell allocates one or more network identifiers (ID), which are integer 
numbers to uniquely identify a resource cell in the CGRA, as shown in Figure 2-8 (a). 
 

 
Figure 2-8. (a) Recursively assignment of network IDs. (b) A range of 
consecutive network IDs are assigned to each router table. (c) Hierarchical 
router naming as Rindex,level. 

 
A static routing table is stored inside the router cell and used to direct traffic over 

the network. At design-time, network IDs and routing tables are recursively assigned 
for resource cells by traversing the global network from the top router. Recursive 
assignment results in that each entry in the routing table for a router Ri,l, where i is the 
router index number and l is the router hierarchical level as defined in Figure 2-8 (c), 
is a continuous range of network IDs as illustrated in Figure 2-8 (b). Hence, network 
ID ranges are represented with a base address and a high address. How the routing 
table is utilized in data transactions is further discussed in Chapter 6. 

A link from a router Ri,l to a router Rj,l+1 is referred to as an uplink. Any packet 
received by router R is forwarded to the uplink router if the packets network ID is not 
found in the router table. A router may only have a single uplink port, else the 
communication path could become non-deterministic. A hierarchical view of the 
router interconnects is illustrated in Figure 2-9. 

 

 
Figure 2-9. Hierarchical view of the router interconnects and external interfaces.
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2.3.4 Network capacity 

When the size of a CGRA increases, the global communication network is likely to 
handle more traffic, which requires network enhancements. A solution to improve the 
communication bandwidth is to increase the network capacity in the communication 
links, as shown in Figure 2-10 (a). Since routers on a higher hierarchical level could 
become potential bottlenecks to the system, these routers and router links are 
candidates for network link capacity scaling. Thus, this means that a single link 
between two routers is replaced by parallel links to improve the network capacity. A 
drawback of this approach is the increased complexity, since a more advanced router 
decision unit is required to avoid packet reordering. Otherwise, if packets from the 
same stream are divided onto different parallel links, this might result in that each of 
the individual packets arrive out-of-order at the destination. 

Another way to improve the communication bandwidth is to insert additional 
network paths to avoid routing congestion in higher level routers, referred to as 
network balancing. Figure 2-10 (b) shows an example where all Ri,1 routers are 
connected to lower the network traffic through the top router. Additional links may be 
inserted between routers as long as the routing table in each network router is 
deterministic. When a network link is created between two routers, the destination 
router's reachable IDs are inserted in the routing table for the source router.  
 

 
Figure 2-10. (a) Enhancing the router capacity when the hierarchical level 
increases. (b) Enhancing network capacity by connecting routers at the same 
hierarchical level. 
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3 Processor cell architecture 

The processor cell is one of the main building blocks in the CGRA, which is used to 
handle computational operations for the mapped applications. In addition, it can 
potentially be used to control the operations of surrounding cells. Some of the 
hardware resources in the processor cell are configurable during system design-time 
and a few run-time control possibilities are provided for dynamic reconfigurations. 

Hardware implementation of the processor cell was initiated and constructed in a 
previous work [3], where the basic cell architecture and functionalities have been 
comprehensively described. In this project, the processor instruction set has been 
extended based on the needs for intended DSP applications, and a few architectural 
limitations have been explored and fixed during system developments. 
 

3.1 Cell architecture 

The processor cell is similar to conventional RISC core, which contains a program 
memory, general purpose registers (GPR), and organized into pipeline stages. In 
contrast, data memory is not located inside the processor cell, but can be reached by 
connecting one or more external memory cells, either through the local or global 
routing network. Bidirectional communication I/O ports are provided for exchanging 
data with surrounding cells, and the I/O port registers can be accessed in the same 
way as the GPRs. Figure 3-1 shows the block diagram of a processor cell. Due to the 
absence of internal data memory, processor pipeline consists of four stages: 
instruction fetch (IF), instruction decode (ID), execution (EXE) and write back (WB). 
A more detailed architectural schematic of the processor cell is presented in 
Figure-Appendix 1. 
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Figure 3-1. Internal building blocks in a processor cell. Optional 
function modules are shaded in gray. 
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3.1.1 Design-time architectural configuration 

Configurability is one of the features in the processor cell design. The basic 
architecture can be configured with more advanced features during system 
compilation time, such as the processor data bus width, the number of I/O ports, 
barrel shifter and so on. This flexibility allows the user to balance the required 
performance of the target application against the logic area cost of the processor cell. 
All possible configuration parameters are summarized in Table 3-1. 

 
Table 3-1. Possible design-time configuration parameters in the processor cell. 

Item Value range Default value Configurability 
Data bus width [bits] 16 (MAC), 32 (DSP) 32 
General purpose registers 1 ~ 19 8 
Program memory depth 
(wordlength = 32 Byte) 

Integer multiple of 2,
e.g. …, 64, 128, … 64 

Local I/O ports 1 ~ 8 8 

Design-time 

Global I/O ports 1 1 Currently not configurable

Accumulator Enable, Disable Disable No, automatically enabled 
in the MAC processor. 

Barrel shifter Enable, Disable Disable Design-time 
 

By choosing different data bus widths, the processor cell can be configured to 
operate in two modes: the 16-bit MAC processor with multiplication support, and the 
32-bit DSP processor with radix-2 butterfly support. The MAC processor uses a 
parallel move instruction to split and join 16-bit internal registers and 32-bit fixed 
length I/O port registers. In addition, a 48-bit accumulation (ACC) unit is 
automatically enabled when the MAC processor is selected. From a hardware cost 
perspective, the 32-bit hardware multiplication function is not supported in DSP 
processor. Instead, the real and complex valued multiplications can be processed 
through the more advanced arithmetical co-processing unit, the CORDIC cell, as 
presented in the following chapter. The number of global I/O ports is currently not 
configurable, where the only port available is shared between normal data transferring 
and system configuration package handling. Based on different data bus widths, either 
a 48-bit or a 64-bit barrel shifter can be selected. The number of bit shifts can be 
specified by using instruction flags (refer to section 3.2), where the maximum bit 
shifts supported is 16 bits per clock cycle. Due to the large hardware requirements, the 
barrel shifter is disabled by default. 

 

3.1.2 Run-time operational configuration 

A few control possibilities are provided to the user to configure the processor cell 
during run-time, as listed in Table 3-2. 
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Table 3-2. Possible run-time configuration parameters in the processor cell. 

Item Option Configurability 
Instruction download Full, partial 
Program counter value update Instruction address 
Operation control and debug Start, stop, reset, single step
Running status tracing --- 

Run-time 

 
Run-time configuration is handled by a dedicated controller inside the processor 

cell, referred to as an operation controller and shown in the block diagram in Figure 
3-1. The 32-bit configuration data packets are sent over the global network, where the 
network type identifier is specified as “config”. During system run-time, the operation 
controller keeps track of data packages received from the global I/O port. When a 
configuration package is detected, the corresponding control actions are sequentially 
executed. The operation controller unit is controlled by a finite state machine (FSM), 
and a detailed control flow graph is shown in Figure-Appendix 5. 

Each configuration packet contains a header and a payload, where the header 
specifies the target address and size of the payload data. A processor cell has two 
run-time reconfigurable parts, a program memory and a control register. The program 
memory is indexed from address 1, where location 0 is reserved for the control 
register. Several different program sections can be stored in the program memory, 
where the user can reconfigure the program counter value on the fly in order to select 
which program section to execute. The control register contains configuration bits to 
start, stop, reset and single-step the processor. The complete configuration package 
format is presented in Figure-Appendix 6, where an example of run-time 
reconfiguration for the processor cell is shown in Figure 3-2. 
 

 
Figure 3-2. 32-bit configuration packets. Configuration of a processing cell, 
including program memory (Taddr > 0) and control register (Taddr = 0). 
Configuration headers are shaded in gray. 
 

3.1.3 Hierarchical system resets 

Three levels of system resets are used in the processor cell design, as illustrated 
in Figure 3-3. The top level processor cell reset is hard wired to the cell I/O port, 
which initializes the entire processor pipeline and program memory. The lower two 
levels of reset signals are derived from the processor cell reset and are controlled by 
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the operation controller. The processor pipeline reset initializes all internal registers 
including the GPRs, I/O port registers and the pipeline stage resisters, while the 
pipeline register reset only flushes out data contents stored in the pipeline stage 
registers. 

 

 
Figure 3-3. Hierarchical system resets.

 

3.1.4 Register bank 

The 32 allocable address spaces in the register bank are sequentially ordered and 
partitioned into four divisions: general purpose, local I/O, global I/O and special 
purpose register (SPR) bank. All register banks are transparent and accessible for the 
user except for some of the SPRs. Table 3-3 summarizes four different partitions in 
the register bank and their corresponding accessibilities. Notice that, three of the 
register addresses are shared between the GPRs and the SPRs. 
 
Table 3-3. Address space partitions and accessibility summary for the register bank. 

Register bank partition Allocated/shared address space Accessibility 
GPR 0 ~ 18 

Local I/O registers 19 ~ 26 
Global I/O registers 27 

Yes 

8 GIO destination ID register 
9 Inner loop counter 

10 Inner loop program counter 
address register 

28 Program counter 
29 ALU status register 

No 

30 Low 16-bit ACC register 

SPR 

31 High 32-bit ACC register 
Yes 

 
The I/O port registers are directly accessible in the same way as the GPRs. Hence, 

no addition operations are required to move data between registers and ports, which 
significantly increase the processing rate [1]. As an example, the following instruction 
adds an input operand which is loaded from a GPR ($1) to an immediate value (10), 
and the sum is sent through a local I/O port.  
 

ADDI $L2, $1, 10  // $1 + 10 => $L2 
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A program instruction that accesses I/O port register for data receiving is 
automatically stalled until data becomes available. Similarly, a data sending 
instruction cannot proceed until the corresponding port register is writable. 

 

3.1.5 Dual and separable ALU 

A conventional ALU takes two input operands and produces a single result value. In 
contrast, the DSP and MAC processors include two separate ALUs to produce two 
result values in a single instruction. This is useful when computing a radix-2 butterfly 
or when moving two data values in parallel [1]. 

Each 32-bit ALU data path can be separated into two independent 16-bit fields, 
where arithmetic operations are applied to both fields in parallel. This can be used 
when operating on complex valued data, represented as a 2×16-bit value. Hence, 
complex values can be added and subtracted in a single instruction [1]. Block diagram 
of the ALU in the processor cell is illustrated in Figure 3-4. 

 

 
Figure 3-4. Block diagram of the ALU in the processor cell. Wordlength of 
the data path opa_lo, opa_hi, opb_lo and opb_hi are one-half of the data bus 
width opa and opb, respectively. Data bus opa and out0 have the fixed 
wordlength of 32 bits, whereas opb and out1 are dependent on the processor 
data bus width, e.g. 16 bits in the MAC processor and 32 bits in the DSP 
processor. ALU_1 consists of adder_low and adder_high, and ALU_2 is 
made up of sub_low and sub_high. Multiplier is enabled only in the 16-bit 
MAC processor. 
 
Each time when a computation is performed inside the ALU, result status from all 

computational operators are collected and stored in a 32-bit status register (MSR), as 
summarized in Table 3-4. This can be used for instance when checking the 
computation overflows, detecting negative results and conditional program branching, 
etc. Currently, the accessibility of the ALU status register is not yet supported, which 
requires further development. 



Chapter 3 – Processor cell architecture 

Page 16 

Table 3-4. Bit map of the ALU status register (MSR). 

Bit position Flag Description 
0 z0 Zero flag of adder_low and logical operators 
1 z1 Zero flag of adder_high 
2 z2 Zero flag of sub_low 
3 z3 Zero flag of sub_low 
4 n0 Negative flag of adder_low and logical operators 
5 n1 Negative flag of adder_high 
6 n2 Negative flag of sub_low 
7 n3 Negative flag of sub_high 
8 c0 Carry flag of adder_low and logical operators 
9 c1 Carry flag of adder_high 
10 b0 Borrow flag of sub_low 
11 b1 Borrow flag of sub_high 

12 ~ 31 --- Reserved 
 

3.1.6 Inner loop counter 

A special set of registers are used to reduce control overhead in compute-intensive 
inner loops. The inner loop counter (ILC) register is loaded using a special instruction 
that stores the next program counter address. Each instruction contains a flag that 
indicates end-of-loop, which updates the ILC register and reloads the previously 
stored program counter [1]. 
 

3.2 Processor instruction set 

All processor instructions are defined in 32-bit format. Depending on different types 
of input operands, instructions are grouped into two categories: type A uses only 
registers as operands and type B uses immediate value. The different instruction types 
are identified by the MSB value of the instruction operation code (OPCODE). Two 
basic instruction templates are shown in Table 3-5. One additional option in type A 
instructions is a 6-bit function flag. The flag directs the processor cell to carry out 
additional function while executing the current instruction. Examples are the flag that 
ends an inner loop, or the flag that accumulates resulting values from data 
multiplications. 

 
Table 3-5. Two basic instruction templates for the processor cells. 

Type 31~26 25~21 20~16 15~11 10~6 5~0 
A OPCODE D0 D1 S0 S1 Flags 
B OPCODE D0 S0 Immediate 
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A complete list of instruction set with all possible instruction flags is presented in 
Figure-Appendix 3 and Figure-Appendix 4. Worth mentioning is that, a few 
specialized instructions have been designed for the processor cell based on the 
frequently used operations in DSP applications. The radix-2 butterfly, 32-bit data 
swap and double data move instructions are examples of such. 

The branch type instructions are handled in the ID pipeline stage. Thereby, two 
execution clocks are required to perform a branch-taken operation: one normal 
instruction clock and an additional clock cycle to flush out the pipeline stage registers. 

 

3.3 Pipeline hazards 

There are situations, called hazards, which prevent the next instruction in the 
instruction stream from executing during its designated clock cycle [8]. Pipeline 
hazards in a processor can be divided into three types: structural, data and control 
hazards. Structural hazards arise from resource conflicts when the hardware cannot 
support all possible combinations of instructions simultaneously in overlapped 
execution [8]. Data hazards are caused by the data dependences between two adjacent 
instructions. Control hazards arise from instructions that change the value of program 
counter, such as program branching. For a single processor cell in the CGRA, there 
are at least six non-maskable pipeline hazards, where structural hazards generated 
from program execution are not included. All possible pipeline hazards are ranked 
according to their significance, as listed in Table 3-6. 
 

Table 3-6. Priority of all possible pipeline hazards in a processor cell 

Priority Hazard Hazard type 
1 (Highest) System reset Control hazard 

2 Program execution done Control hazard 
3 User control Control hazard 
4 Data receiving (RX) stall  Data hazard 
5 Data transmission (TX) stall Data hazard 

6 (Lowest) Program branch Control hazard 
 

System reset has the highest priority among all pipeline hazards, and the program 
execution done event comes after. These are used to ensure that all processor pipeline 
stages can be flushed and suspended in time. The user control events are ranked at the 
third level, since the user should be able to determine the current running status of the 
processor cell, e.g. starting or stopping data communications. Data RX stall event has 
a slightly higher priority than the TX stalling, which is considered to prevent any data 
package lost. 

Hazards in pipelines can make it necessary to stall the pipeline. Basic design 
criterions to handle the pipeline hazards are presented in [8], and are repeated here: 

a) When an instruction is stalled, all instructions issued later than the stalled 
instruction – and hence not as far along in the pipeline – are also stalled.  
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b) Instructions issued earlier than the stalled instruction – and hence farther 
along in the pipeline – must continue, since otherwise the hazard will never 
be cleared. As a result, no new instructions are fetched during the stall. 

 

3.3.1 Hazards-handling in IF/ID stage 

In IF/ID stage, “bubbles” (NOP instructions) are inserted into the following pipeline 
stages during the system reset and the program execution done hazards. This is 
because no instruction should be issued after resetting the entire system and before 
receiving any commands from the user, or there is no more instruction to be issued 
after executing a program section. Hazards-handling in ID/EXE stage are summarized 
in Table 3-7. 
 

Table 3-7. Handling of pipeline hazards in IF/ID stage. 

Priority Hazard Handling 

1 (Highest) System reset a) Reset program counter value; 
b) Insert “NOP” instruction. 

2 Program execution done a) Preserve program counter value; 
b) Insert “NOP” instruction. 

3 User control 
4 Data receiving (RX) stall 
5 Data transmission (TX) stall

Preserve pipeline registers. 

6 (Lowest) Program branch a) Update program counter value; 
b) Insert “NOP” instruction. 

 

3.3.2 Hazards-handling in ID/EXE stage 

For the program execution done hazard in ID/EXE stage, all pipeline registers are 
updated, which ensures that remaining instructions in the pipeline stages can still be 
executed. Since bubbles have already been inserted in the IF/ID stage during this 
hazard, no special handling should be made here. 

During the user control hazard, all current program executions are hanged up. 
Additionally, register control signals in the EXE stage are cleared, because the 
duplicated arithmetical operations in the EXE stage should be prohibited, such as the 
value accumulations in ACC. Furthermore, all the RX units are suspended during this 
hazard, which ensures that no duplicated acknowledgment signals are transmitted to 
the data senders. Handling of the TX units is not carried out in the ID/EXE stage 
during the user control hazard. This is because relevant controlling should be kept 
close to the place where the target objects are located – that is the WB stage for the 
TX units in this case. 

In addition to the handling in user control hazards, two special control operations 
are carried out during the data RX stall hazard. Firstly, not all of the RX units are 
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suspended during this event, whereas units that generated RX stalls will continue 
receiving data from their data sender until the expected data package arrives. Another 
special handling is that, all register control signals in the WB stage are cleared during 
this hazard. Considering a case where a program instruction forwards a data packet 
from a RX port to a TX port, if the RX unit is stalled due to the lack of incoming data 
packet, a RX stall hazard is asserted. In this case, data sending actions in the TX unit 
should be suspended until the required data packet is available. Hazards-handling in 
ID/EXE stage are summarized in Table 3-8. 
 

Table 3-8. Handling of pipeline hazards in ID/EXE stage. 

Priority Hazard Handling 
1 (Highest) System reset Flush pipeline registers. 

2 Program execution done Update pipeline registers. 

3 User control 

a) Flush register control signals in the 
EXE stage; 

b) Suspend RX units; 
c) Preserve other pipeline registers. 

4 Data receiving (RX) stall 

a) Flush register control signals in the 
EXE and WB stages; 

b) Suspend RX units that did not 
generate RX stall; 

c) Preserve other pipeline registers. 

5 Data transmission (TX) stall
a) Flush register control signals in the 

EXE stage; 
b) Preserve other pipeline registers. 

6 (Lowest) Program branch Update pipeline registers. 
 

3.3.3 Hazards-handling in EXE/WB stage 

Table 3-9. Handling of pipeline hazards in EXE/WB stage. 

Priority Hazard Handling 
1 (Highest) System reset Flush pipeline registers. 

2 Program execution  done Update pipeline registers. 

3 User control 
a) Flush register control signals in the 

WB stages; 
b) Preserve other pipeline registers. 

4 Data receiving (RX) stall Update pipeline registers. 

5 Data transmission (TX) stall
a) Suspend TX units who did not 

generate TX stall; 
b) Preserve pipeline registers. 

6 (Lowest) Program branch Update pipeline registers. 
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Similar design criterion as described in the preceding section can be applied in 
EXE/WB stage to handle all possible pipeline hazards, as summarized in Table 3-9. 
 

3.4 Performance evaluation in FPGA 

To explore the performance metrics, processor cell with different configuration 
parameters have been synthesized for the target FPGA platform, the Virtex-II 
Pro-30-7ff896 from Xilinx. All results are obtained after the design synthesis. Two 
kinds of RTL synthesis processes have been carried out, one for extracting the 
maximum operation speed and the other for exploring the minimum hardware usage. 
Default compilation constraints are used during the RTL synthesis, and the actual 
synthesis work is carried out in Xilinx XST version 10.1.03. All possible 
configuration parameters for the processor cell have been listed in Table 1-1. Here, 
the size of the program memory and the number of GPR remain unchanged during the 
entire evaluation process, where the values are set to 32B×64 and 16, respectively. All 
the synthesis results are listed in Table 3-10. 
 
Table 3-10. Performance evaluation of the processor cell based on an FPGA device. 

Maximum 
speed 

Minimum 
area Differences 

Configuration 
Slices fmax 

[MHz] Slices fmax 
[MHz] Slices fmax 

[MHz]
LIO=2 1,149 50.97 1,161 41.51 -12 9.46 
LIO=4 1,240 51.06 1,243 41.51 -3 9.55 BS=No 
LIO=8 1,471 56.68 1,415 41.67 56 15.01
LIO=2 1,320 40.73 1,303 30.65 17 10.08
LIO=4 1,435 40.12 1,405 30.68 30 9.43 

Data bus 
width = 16-bit, 

ACC=Yes, 
GPR=16 BS=Yes 

LIO=8 1,607 40.47 1,574 31.82 33 8.65 
LIO=2 1,579 56.42 1,538 42.33 41 14.09
LIO=4 1,669 55.38 1,636 42.27 33 13.12BS=No 
LIO=8 1,833 57.00 1,835 42.33 -2 14.67
LIO=2 1,684 40.63 1,697 32.82 -13 7.81 
LIO=4 1,795 40.08 1,803 32.56 -8 7.52 

Data bus 
width = 32-bit, 

ACC=No, 
GPR=16 BS=Yes 

LIO=8 1,992 40.14 2,018 32.86 -26 7.28 
 

Similar results are reported from two synthesis processes, both for hardware slice 
usage and maximum operation speed. However, this is only true on an FPGA platform, 
as the utilized arithmetic multiplier is one of the hardware macros provided by the 
FPGA device. Thereby slice usage of the hardware multiplier is not counted in the 
synthesis report. From a previous ASIC implementation attempt based on a 0.13μm 
CMOS cell library [3], about 5% area and over 250 MHz speed differences can be 
found from these two different synthesis approaches. 
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Referring to the plots shown in Figure 3-5, hardware usage changes linearly with 
the variation of system configurations. The 32-bit DSP processor in general uses 
about 400 more FPGA slices than the 16-bit MAC processor on the target platform, 
and approximately 150 slices can be saved if the barrel shifter is excluded. 

 

 
Figure 3-5. FPGA slice usage exploration based on an FPGA platform. BS 
is short for Barrel Shifter. 

 
Analysis on the critical timing path for the processor cell design is performed in 

two phases. Firstly, all pipeline stages inside the processor cell are synthesized as a 
stand-alone building block. This is considered to get an impression on the capable 
running speed of the self-made logics, as the program memory is realized by using 
block RAMs inside the FPGA device, which has fixed hardware properties. In the first 
evaluation process, the MAC unit appears in the longest timing path, where over 60% 
of the total signal delays are reported from its internal data path, as illustrated in 
Figure 3-6. 

 

 
Figure 3-6. Critical timing path in the pipeline stages. 

 
One solution to address this problem is to use a pipelined hardware multiplier and 

better adder/subtractor 1  implementations for the MAC unit, for instance the 

                                                        
1 Based on the Xilinx FPGA platform, the “ripple carry adders” are reported from the automatic 
synthesis process. 
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coarse-grained multiplier and look-ahead adder, respectively. However, this solution 
results in additional hardware requirements to allow increased operation speed, which 
is a matter of design trade-off between hardware area and system performance. 

In the second evaluation phase, the processor cell is synthesized and analyzed. By 
tracing the synthesis report, maximum operation speed of the entire processor cell 
suffers from an architectural design issue. Operations on the program memory are 
triggered on the falling edge of the system clock, which is considered to ensure the 
setup and hold time for control signals from pipeline registers. As a consequence, 
demanded timing constraint is pushed to the processor pipelines, as all combinatorial 
operations have to be accomplished within half of the execution clock. Obviously, a 
solution to overcome this problem is to use the same clock edge when triggering the 
program memory as well. But due to the signal propagation delays, instructions issued 
in the ID stage will be delayed for two clock cycles compared to the program counter 
value in the IF stage. This might require additional control logic for pipeline hazards, 
which needs to be further considered during future design optimization. 

 

3.5 Conclusion 

A single-issue RISC processor cell developed for the CGRA has been presented in 
this chapter. From a viewpoint of hardware architecture, processor cell in the CGRA 
is constructed from four pipeline stages, whereas data memory is located outside the 
cell. This is one of the main differences between the processor cell and the 
conventional RISC core, as data memories are global system resources that are 
distributed over the whole platform and are shared by all surrounding cells in the 
CGRA. 

Processor cell is characterized from its static configurability and dynamic 
reconfigurability. Depending on different user requirements, the flexible hardware 
structure makes the processor cell possible to be configured during system 
design-time. Two of the processor cell configurations have been given as examples in 
this chapter, namely the 16-bit MAC processor with hardware multiplication support 
and the 32-bit DSP processor with radix-2 butterfly support. Run-time reconfiguration 
on the processor cell is achieved through an internal operation controller and a nested 
control register. By sending configuration packages over the global routing network, 
the user is able to download new program segments, update the program counter 
address and control running status of the processor cell, etc. 

Due to the targeted application field of the reconfigurable cell array platform, i.e. 
applications in digital signal processing, the processor cell has been enhanced with a 
few DSP operations, such as the radix-2 butterfly, data swap and double data move 
instructions. 

Six non-schedulable pipeline hazards and their corresponding handling have been 
described in this chapter. Based on the different significance inside the processor cell, 
all possible pipeline hazards are assigned with the priority, and are handled internally 
without the user interactions.  

Different performance metrics for the processor cell have finally been evaluated. 
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By analyzing the critical timing path, an architectural design issue has been explored, 
which has dramatically influenced the system performance. Therefore, further system 
optimizations are needed in future work, where a speedup factor of about 2 is 
speculated. 

On software level, processor cells are currently programmed in assembly 
language and manually translated into binary codes. Any of the design automation 
tools, such as the assembler or C compiler, program optimizer and function emulator, 
etc., is not covered in this project. A system exploration framework, the SCENIC, 
developed in previous work [1][2][6][7] can be a good start point for further study and 
developments. 
 

3.6 Future work 

3.6.1 Application specific instruction set processor (ASIP) 

Generally, design of the system architect is dominated by the requirements from the 
target application field, where system performance can be characterized from many 
different aspects, such as the operating speed, hardware area, power consumption and 
design flexibility, etc. Hence, instead of integrating a generic processor cell on silicon 
which can cover a broad range of applications, it is often sufficient to use an 
application specific instruction set processor (ASIP) that is optimized for a narrow 
range of applications. Optimizations may be performed at the micro- architecture 
level, so that functional units and memory system are tuned to the specific application. 
Furthermore, it may include exploring instruction- or data-level parallel architectures. 
However, the most characterizing for an ASIP is the instruction set customization [7]. 
For instance, the MAC operation is essential in a processing intensive application 
such as the audio streaming, but this is not so critical in a system that has the main 
constraints on the hardware design area, whereas the timing requirements are relaxed. 
Therefore, it is desirable to have a flexible control on forming the processor 
instruction set. This can be achieved by packing instructions into different categories, 
and only enable the ones required by the specific application field in system 
design-time. 
 

3.6.2 In-system reconfiguration 

The run-time system reconfiguration is one of the key points in the CGRA. Currently, 
this is achieved through interactions between the host of the reconfigurable system 
and the resource cell, where the host could either be the user or an external function 
block. Either way, this approach demands data communications over the global 
routing network, sometimes might even require off-chip data transmissions. This is 
known to be inefficient due to the data communication latency, and hence causing the 
increased reconfiguration time. One solution to address this problem is to let the 
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processor cell support more global packet sending types, i.e. to support the “config” 
type, so that processor cells will have the possibilities to reconfigure their surrounding 
cells. By doing so, the scheduled system reconfigurations can be managed by using 
one of the processor cells inside the CGRA, or by using the processor cells nearby the 
target objects, where the configuration package sending can be kept internally over 
the high speed local network, thereby further shortens the reconfiguration time. 
 

3.6.3 Debugging approaches 

Although a few run-time control possibilities have been provided in the processor cell 
to be able to for instance trace the operation status and step through program sections, 
it is in general far too simple to be used for diagnosing problems, especially for 
complex program executions, as the ability of controlling and observing the internal 
registers is lacking. Several advanced debugging approaches can be used to improve 
the controllability and observability on a testing platform, two of them are proposed 
here. Firstly, the industry standard joint test action group (JTAG) chain is the most 
straightforward approach to use, because all the internal data contents of interests can 
be serially clocked out, if the corresponding internal registers are replaced with JTAG 
scan registers. Secondly, the built-in self-test (BIST) can be used as an additional 
method to verify basic functionalities of the system. If the in-system reconfiguration 
feature mentioned previously can be realized, the BIST is supported automatically by 
the CGRA without any additional hardware costs. Since one of the processor cells can 
be programmed as a system master that can send test patterns serially to the other 
resource cells, compare the processed outputs with golden references, and finally send 
the test report to the user.  
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4 CORDIC cell architecture 

The CORDIC cell implements a generalized coordinate rotation digital computer 
(CORDIC) algorithm, which can be considered as an arithmetical co-processing unit 
to the processor cell in the CGRA. CORDIC is an iterative arithmetic algorithm that 
provides an efficient way of computing many elementary functions such as 
trigonometric, hyperbolic, logarithmic, and some linear functions including complex 
valued multiplication, etc. The idea of the CORDIC algorithm is to rotate the vector 
through a sequence of elementary angles using a linear, circular or hyperbolic 
coordinate system, where the algebraic sum of these angles approximates the desired 
rotation value [9]. All elementary angles are selected such that they can be 
implemented using only shift and add/subtract operation, hence no actual multipliers 
are needed.  

Hardware implementation of the CORDIC cell is based on a pre-developed 
CORDIC kernel implemented in previous work [14]. In this project, a few functional 
improvements and a list of surrounding modules have been implemented to embed the 
CORDIC cell into the CGRA. 
 

4.1 Theoretical background 

4.1.1 CORDIC operations in circular coordinate system 

The CORDIC algorithm is initially designed to perform a vector rotation, where 
the vector (x, y) is rotated through the angle yielding a new vector (x’, y’) [1], as 
illustrated in Figure 4-1. A general vector rotation by an angle θ can be expressed as, 
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x y

y y x
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 eq. 4-1 Real vector rotation

 

 
Figure 4-1. A vector rotation by an angle θ. The real vector rotation is 
drawn in dashed line, where the pseudo-rotation is drawn in solid line. 
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Rotation expressed in eq. 4-1 is called real vector rotation, where the magnitude of the 
vector being rotated is preserved. To simplify the CORDIC computation, the real 
rotation angle is replaced by a pseudo-rotation as depicted in solid line in Figure 4-1. 

( )
( )

' tan

' tan

x x y

y y x

θ

θ

= − ⋅

= + ⋅
 eq. 4-2 Pseudo vector rotation

This removes the term cos(θ) from the initial expression and hence results in a 
known magnitude expansion. 

To further reduce the computation complexity, vector rotation in the CORDIC 
algorithm is realized in an iterative process that contains a sequence of successively 
smaller rotations, each of angle tan-1(2-i), known as micro-rotations [11]. This reduces 
the multiplication of the tangent term to a single shift operation, since tan(θ)=2-i. The 
direction of each micro-rotation is specified by the parameter di, which is chosen such 
that the remaining angles tend to go towards zero. The general vector rotation shown 
in eq. 4-1 can be expressed by using a series of micro-rotations,  
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 eq. 4-3

The variable z is initialized by the desired rotation angle. It keeps track of the 
total elementary angles over micro-rotations and determines the sign of di. A CORDIC 
rotation is accomplished when z reaches 0, and the final results can be expressed as, 
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The scaling factor Kn represents the increased magnitude of the vector during the 
rotation process [12], which is related to the number of computation iterations. When 
n tends to infinite, Kn approaches the value 1.64676. Referring to eq. 4-5, the 
trigonometric sine and cosine functions can be obtained when CORDIC is operated in 
rotation mode. For example, by initializing y=0, output x and y converge to K×sin(z) 
and K×cos(z), respectively. For m bits of precision in the resulting trigonometric 
functions, at least m CORDIC iterations are needed [13]. 

In addition to the rotation mode, CORDIC can also be operated in vector mode to 
compute for instance the square root function. This is achieved by choosing di in a 
way so that y converges towards zero. The resulting outputs in CORDIC vector mode 
can be expressed as, 
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4.1.2 Generalized CORDIC 

By introducing a system parameter µ, the CORDIC algorithm can be generalized 
to operate in three different coordinate systems: circular, linear and the hyperbolic 
system. The generalized CORDIC is defined as, 
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 eq. 4-6

Where the partial angle values tan-1(2-i) used for calculating zi+1 in eq. 4-3 is redefined 
by using a variable ei for each of the CORDIC iterations. Relations between µ, ei and 
the CORDIC scaling factor are summarized below. 
 
Table 4-1. Relations between system parameter µ, partial angle ei and the CORDIC 
scaling factor Kn. 
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Table 4-2 [12][13]. The CORDIC functions for different operation modes. 
Kn = 1.646 760 258 121 … & Kn’ = 0.828 159 360 960 … 
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As can be seen from the generalized CORDIC expression (eq. 4-6), each of the 
computation iterations requires only three add/subtract operations and three bit shifts. 
All the partial rotation angles can be pre-computed and stored in a lookup table (LUT). 
In addition, as long as the scaling factor is known, output results with the increased 
magnitude can always be compensated by post-processing. A list of CORDIC 
functions for different operation modes has been summarized in [12][13] and is 
repeated here as shown in Table 4-2. 
 

4.2 Cell architecture 

An overview of the CORDIC cell architecture is shown in Figure 4-2, which is 
constructed from a CORDIC kernel, an I/O register bank and an operation controller. 
The CORDIC kernel is based on a pipeline structure, with 3 data input values and 2 
data output values, capable of producing one set of CORDIC results each clock cycle. 
The I/O register bank handles data communications between the CORDIC and 
surrounding cells, monitors data traffic status, and generates flow control signals that 
are used in the CORDIC kernel. The internal computation wordlength, the number of 
iteration stages and the number of local I/O ports are configurable at system 
compilation time, while the configuration controller provides run-time 
reconfigurability, such as the computation function selection, data I/O port definitions 
and the option of result concatenating, etc. Possible configuration parameters for the 
CORDIC cell are summarized in Table 4-1. 

 
Table 4-3. Configuration parameters in the CORDIC cell. 

Item Value range Default 
value 

Configuration 
type 

Configuration register 64-bit configuration packet format No action Run-time 
Internal wordlength 2~ 24* 16 
Iteration stages 2~ 24* 16 
Local I/O ports 1 ~ 8 8 

Global I/O ports 1 ~ 8, GIO(0) is shared with the 
configuration port 1 

Design-time 

Note: * Maximum wordlength supported is limited by the number of partial rotation 
angles stored in the coefficient LUT. 
 

4.2.1 CORDIC kernel 

A pipeline implementation of the CORDIC algorithm is chosen since it can produce 
one output value each clock cycle, which balances the processing capacity and the 
local network capacity in the CGRA. Due to the use of the pre- and post-processing 
stages, the total latency of this structure is equal to the number of processing stages 
plus 2. 



Chapter 4 – CORDIC cell architecture 

Page 29 

 
Figure 4-2. Block diagram of a CORDIC cell 

 

 
Figure 4-3 [14]. (a) A basic CORDIC building block. (b) The internal 
hardware structure of a single CORDIC computation stage. The constant and 
shift factor is unique for each block. 

 
Figure 4-3 (a) shows the block diagram of a single CORDIC stage. In addition to 

three data inputs, an operation mode and two control signals are used in each pipeline 
stage. A global control signal (en) enables/disables the stage operation, while the 
signal valid_i controls the data processing in the current pipeline stage. A high valid_i 
signal triggers the current stage to take a new set of data from its input ports, compute 
and propagate the output values, operation mode and the flow control signal to the 
following stage. When the valid_o reaches the end of the pipeline, a complete 
CORDIC operation is accomplished. 

In the pre-processing stage, all the input data values are checked and the ones 
who are initially outside the data quadrant I and IV are sited to these two areas, as the 
domain of computation convergence is [-99.7º, 99.7º] [13]. In the post-processing 
stage, the corresponding data correction for the output results is hence needed and 
carried out. In addition, results output_y and output_z are multiplexed to one data 
output in the post-processing stage, as either one converges to 0 depending on the 
different operation modes. Figure 4-3 (b) shows the hardware structure for a single 
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CORDIC computation stage, which requires three adder/subtractors, two bit shifters 
and control logics for operation mode selection and di condition. The partial rotation 
angle ei is loaded from a coefficient LUT inside the CORDIC kernel. Currently, the 
hyperbolic operation mode is not supported in the hardware implementation, which 
will be added in future work. 
 

4.2.2 I/O register bank 

Based on the configured input and output ports, the I/O register bank handles data 
communications with surrounding cells. In addition, it monitors data traffic status and 
provides two flow control signals used in the CORDIC kernel, i.e. the enable signal 
and data input valid. The CORDIC kernel can be enabled as long as no data sending 
stalls are detected, since the current data set in the pipeline stage cannot be forwarded 
when the preceding data process is not completed. Conditions for issuing an input 
valid signal are resolved when all data inputs are available at the receiving ports, and 
when no user configurations are in progress. 

At the data input, value input_x and input_y are concatenated together and 
transmitted through one single I/O port, while input_z is transmitted individually 
through the other port. The maximum input wordlength supported by the I/O register 
bank is 16-bit each. Computation results output_x and output_y can be transmitted in 
two ways, either sent through two I/O ports, or to be concatenated together before 
sending through one single data port. In the latter approach, if the concatenated output 
has a longer wordlength than the I/O payload’s, each of the outputs will be clamped to 
16 bits (high-nibble). 
 

4.2.3 Configuration controller 

Similar to the operation controller in the processor cell, the basic operations of the 
configuration controller unit in the CORDIC cell are controlled by an FSM to 
download and upload configuration packages. A detailed control flow graph of the 
FSM is shown in Figure-Appendix 8. 

Input configurations for the CORDIC cell are defined in a 64-bit format, which 
are transmitted through two consecutive data packages, each of 32-bit length, over the 
global network. All cell configurations are stored in a 64-bit control register inside the 
configuration controller. This register is transparent to the user, which is both readable 
and writable during run-time. In the configuration table, there are control bits to 
enable the CORDIC kernel, define the computation function, specify the output result 
format, reset the CORDIC cell, and define the data I/O ports with the relevant port 
properties. More detailed descriptions for the configuration packages are presented in 
Figure-Appendix 9.  

The operation mode for the CORDIC kernel is defined by using 2 configuration 
parameters, the function code F and the pure function selection P, as described in 
Table 4-4. With the pure function P enabled, the corresponding data input values are 
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tied to 0 in the CORDIC kernel, which prevents incorrect data inputs from the I/O 
port. For instance, input_y is discarded when calculating the trigonometric sine and 
cosine functions, as described in Table 4-2. The function code F is defined by using 3 
bits, wherein 1 bit is used to specify the running mode of the CORDIC kernel such 
that to operate either in rotation (value 0) or vectoring (value 1) modes, and the other 
2 bits are used to define the coordinate system which represents the value set {1, 0, 
-1}, corresponding to the circular, linear and the hyperbolic system, respectively. 

 
Table 4-4. Configuration parameters for the CORDIC functions. 

Function code (F) Pure function 
selection (P) Mode Coordinate

Function description 

0 0 0 Multiply and accumulate 
0 0 1 Complex number rotation 
0 1 1 Hyperbolic complex number rotation 
1 0 0 Divide and accumulate 
1 0 1 Tangent and accumulate 

0 

1 1 1 Hyperbolic tangent and accumulate 
0 0 0 Multiplication 
0 0 1 Sine & cosine 
0 1 1 Hyperbolic sine & cosine 
1 0 0 Division 
1 0 1 Absolute and phase 

1 

1 1 1 Tangent 
 

4.3 Computation accuracy analysis in MATLAB 

A bit-accurate simulation model for the CORDIC kernel has been developed in 
MATLAB. This is used to analyze the computation accuracy in a fixed-point 
hardware platform. All the user configuration parameters for the CORDIC 
computation kernel are supported in this simulation, such as the internal calculation 
precision, operation modes and the pure function selection, etc. The VHDL simulation 
results are compared with the reference outputs generated in MATLAB.  

The CORDIC calculation precision is evaluated by using a metric called effective 
digits developed by Hu [9]. The number of effective digits at the output is calculated 
as following,  

( )2log 1eff in qd d E= − −  eq. 4-7

where din is the input data width, Eq is the maximum computation error and subtract 1 
removes the effect from input sign bit. The number of effective digits is dependent on 
the wordlength used in each computation stage and the number of iterations. If m bits 
is the desired output precision, the “rule of thumb” [10] suggests that all the internal 
calculation stages should have log2(m) additional bits inserted to increase the 
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computation precision, referred to as the guard bits. This has been simulated by 
comparing the output effective digits when varying the internal wordlength. Three 
different input data vectors have been used in the simulations and the results are 
summarized in Table 4-5. Notice that, magnitudes for the input data vectors are scaled 
in half (×0.5) in order to avoid computation overflows2. The pseudo-rotation scaling 
factors in the CORDIC outputs are compensated in MATLAB. Both the internal 
wordlength and the number of iterations for the CORDIC kernel are bound together in 
this test. 
 

Table 4-5. Simulation summary for the effective digits (real parts of the 
results only), where dinput is the input data width, and dinternal is the 
internal wordlength in all computation stages. The CORDIC kernel 
operates in the complex number rotation mode. 

dinput

dinternal 
8-bit 12-bit 16-bit 

8-bit 4.67-bit   
9-bit 5.48-bit   
10-bit 6.46-bit   
11-bit 7.31-bit   
12-bit 8.68-bit 7.56-bit  
13-bit  9.33-bit  
14-bit  9.98-bit  
15-bit  11.53-bit  
16-bit  12.03-bit 11.87-bit 
17-bit   13.11-bit 
18-bit   14.14-bit 
19-bit   14.86-bit 
20-bit   15.75-bit 
21-bit   17.09-bit 

 
As shown from the result summary, output data precisions deviate from their 

corresponding data input by the amount of app. log2(m) when dinternal equals to dinput. 
Along with the increased wordlength for internal computations, the number of 
effective digits increases. Notice that, at the point when dinternal equals to log2(m)+1 
bits, the number of effective digits at the output is higher than their input data widths. 
This indicates that the calculation error under this circumstance is relatively smaller 
than the internal computation capacity. 

To summarize, decision on choosing the internal wordlength is dependent on the 
target application. More bits to use, more computation precisions can be gained, but at 
the same time more hardware resources are needed. 

                                                        
2 Due to the add/subtract operations in each of the pipeline stages, internal computation overflow 
will occur when input data values are too large. 
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4.4 Performance evaluation in FPGA 

Similar to the performance evaluation procedures that have been done in the processor 
cell, two kinds of RTL synthesis processes are carried out for the CORDIC design. 
During the evaluation process, the internal wordlength and the number of computation 
iterations are kept the same, and the number of global I/O ports is fixed to 1. All the 
synthesis results are summarized in Table 4-6. 
 

Table 4-6. Performance evaluation of the CORDIC cell based on an FPGA device. 

Maximum 
speed 

Minimum 
area Differences 

Configuration 
Slices fmax 

[MHz] Slices fmax 
[MHz] Slices fmax 

[MHz]
 Internal wordlength = 2 276 152.27 247 97.57 29 54.70

Internal wordlength = 8 737 162.08 606 94.35 131 67.74
Internal wordlength = 12 1,145 132.76 986 91.52 159 41.24
Internal wordlength = 16 1,621 133.34 1,444 91.14 177 42.19
Internal wordlength = 20 2,077 128.92 1,859 89.94 218 38.98

GIO = 1; 
LIO = 8; 

Internal wordlength = 24 2,636 125.46 2,420 88.60 216 36.86
LIO = 2 1,258 133.44 1,154 104.07 104 29.37
LIO = 4 1,332 125.15 1,257 98.78 75 26.37
LIO = 6 1,497 124.82 1,343 88.91 154 35.92

GIO = 1; 
Internal 

wordlength = 
16; LIO = 8 1,621 133.34 1,444 91.14 177 42.19

 
Thanks to the pipeline structure, maximum operation speed (fmax) in each of the 

synthesis processes does not vary too much with the configuration parameters. 
Generally, the resulting FPGA slice usage from these two synthesis processes have no 
big difference, since the amount of arithmetical units used in the hardware 
implementation are limited. Furthermore, as seen from Figure 4-4, hardware slice 
usage changes linearly with the internal wordlength, so a trade-off between these two 
factors has to be decided upon the actual usage. 

 

 
Figure 4-4. FPGA slice usage vs. internal computation wordlength. 
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4.5 Conclusion 

The CORDIC algorithm provides an elegant convergence method for evaluating 
trigonometric and many other useful functions [13]. Emphasis in this chapter was 
placed on the CORDIC cell implementation aspects, whereas the theoretical analysis 
on the algorithm itself has been kept basic. 

The CORDIC cell consists of three building blocks, a computation kernel, an I/O 
register bank and an operation controller. A pipeline implementation has been chosen 
for the computation kernel, to match the high communication bandwidth of the local 
network in the CGRA. The number of effective digits is used as a metric in analysis of 
the computation accuracy, and the consequence of varying the internal computation 
wordlength has been studied. Calculation precision versus hardware area usage 
always exists at the same time, and appropriate parameters have to be selected based 
on the target application field. 
 

4.6 Future work 

4.6.1 Coefficient generator 

Often, certain properties can be explored from one or more CORDIC inputs in a real 
application. For example, when CORDIC operates in circular rotation mode, 
trigonometric sine and cosine functions can be calculated, and operand input_z is used 
as input rotation angle. If the required computations iteratively rotate through the 
angle space with regular steps, it is sufficient to use a sequential counter for 
generating the input_z during run-time. This is the case for instance in the FFT 
computation, where the phases of the complex numbers being processed are regularly 
rotated, i.e. complex multiplications with twiddle factors. In the conventional solution, 
all twiddle factors are stored as coefficients inside the data memory, or computed 
during run-time by using a processing unit [15]. But in general this is a waste of 
system resources, since the operation of generating the twiddle factors is simple. To 
improve the fact, a dedicated hardware unit can be embedded into the CORDIC cell, 
where simple operations like the one mentioned above can be handled internally. 
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5 Memory cell architecture 

Most algorithm implementations require some kind of memory space for intermediate 
data storage, data reordering, or delay operations. Traditionally, data memory is 
located inside the processor, which results in difficulties when sharing data contents 
between surrounding cells. Therefore, external memory units are expected to be 
distributed and shared between all system components. This distributed approach not 
only supports information sharing between different processing elements, but also 
enables direct data transfers between memory cells without additional control logic. 

To meet the basic requirements in most algorithm implementations, the 
distributed memory cells have to be intelligent and flexible enough to support 
different operations at run-time, such as operating in FIFO, RAM and ROM mode, etc. 
The run-time configurability also brings in another highlight for having this 
distributed architecture. Since conventionally many different type of memory modules 
are needed in an embedded system, but only a few of them have simultaneous 
operations during system run-time. Because of the control logic requirements in each 
memory module, this conventional system setup fashion might not be area and power 
efficient. By introducing a smart memory cell with relatively large data storage and a 
necessary operation controller, the hardware overheads mentioned above could be 
eliminated hence saving power. 

A RTL-level memory cell implementation is initiated and constructed by a group 
of students in the IC project and verification course in 2008, according to the 
specification [17] made by Thomas Lenart. In this project, a few changes have been 
made in order to adapt the memory cell into the whole system structure. 
 

5.1 Cell architecture 

As illustrated in Figure 5-1, a memory cell consists of three main building blocks: a 
descriptor (DSC) table, an operation controller and a memory array. The descriptor 
table contains an array of configuration registers to store user-defined transactions. 
Each descriptor reserves a storage space from the memory array, called a memory 
bank; defines an operation behavior for the allocated memory bank during the 
designated execution cycle; records memory operation status; and specifies cell I/O 
ports for each stream transfer. The operation controller manages and schedules the 
descriptor processing; monitors data transfers; and controls the corresponding 
memory operations. The memory array is a shared memory space, which is able to 
handle one data read and one data write operation simultaneously. 

Each memory descriptor is 64-bit wide, and the memory array has an operation 
wordlength of 32 bits. The length of a descriptor table, size of the memory array, and 
the number of cell local I/O ports are configurable at system design-time, while the 
contents of memory descriptors are dynamically reconfigurable during run-time. 
Possible memory cell configuration parameters are summarized in Table 3-1. 
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Figure 5-1. Block diagram of a memory cell. 

 
Table 5-1. Configuration parameters in the memory cell. 

Item Value range Default 
value 

Configuration 
type 

Memory descriptor 64-bit configuration file format No action Run-time 

Descriptor table length Integer multiple of 2, 
e.g. …, 2, 4, … 4 

Memory array wordlength Integer multiple of 2, 
e.g. …, 16, 32, … 32 

Memory array depth Integer multiple of 2, 
e.g. …, 128, 256, … 256 

Local I/O ports 1 ~ 8 8 

Global I/O ports 1 ~ 8, GIO(0) is shared with the 
configuration port 1 

Design-time 

 

5.1.1 Operation controller 

Basic operations in a memory cell are controlled by an FSM that contains three main 
states: initialization, execution and configuration, as illustrated in Figure 5-2. 

After cell reset, control registers and memory descriptor table are initialized in 
state “initialization”. Thereafter, the “execution” state is entered unconditionally and 
the operation controller stays here to process descriptors in sequential order. The 
“Configuration” state is activated if a configuration data package is received from a 
global input port. Memory cell configurations are managed in two sub-sequences. 
First of all, a list of configuration parameters are needed to be specified by receiving a 
32-bit wide configuration header as defined in Table 5-2. Secondly, actual 
configuration data is sent to the memory array or to the descriptor table. 
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Figure 5-2. Memory cell control FSM. 

 
Table 5-2. Configuration header file format. 

Bit 31 ~ 16 15 14 ~ 1 0 

Item Transfer size Memory/DSC Starting address/ 
DSC sequential number Read/Write 

 
Because reading data from a memory often requires two execution cycles – 

control signal issues and the actual memory reading, descriptor handlings in FSM 
“execution” state are further pipelined in 3 stages to improve processing throughput. 
In the “DSC read” stage, function descriptors are sequentially read out, the 
corresponding memory bank reading controls are prepared, and a memory data write 
operation from the previous “DSC execution” stage (if any) is performed. The 
memory array receives reading command in “memory read” stage, and data content is 
pushed out in the same clock cycle. In the last stage “DSC execution”, data reading 
and/or writing status in the allocated memory bank and data sending and/or receiving 
status in specified cell I/O ports are checked. Transactions are executed only when all 
required conditions are valid; otherwise the current descriptor operation is discarded. 

 

 

 

 
Figure 5-3. 3-stage pipeline processing in the memory descriptor handlings. 
 
Figure 5-3 shows the memory descriptor handlings in a 3-stage pipeline process. 

Descriptors are executed in consecutive clock cycles, and each descriptor execution is 
iterated in M-1 clocks, where M is the length of a descriptor table. Because a 
descriptor defines an actual memory operation, empty descriptors will result in wasted 
execution cycles and hence processing throughput degradation. 



Chapter 5 – Memory cell architecture 

Page 38 

5.1.2 Memory array 

Since the memory array should be able to handle simultaneous data read and write 
operations, and it is better to have the memory cell operate at the same clock speed as 
the other building blocks, using a dual-port SRAM is hence the most straightforward 
approach. Because there is only one data bus inside the memory cell, one of the data 
ports (port A) from the memory array is dedicated for memory reading, and the other 
port (port B) only handles data write operations. By doing so, memory control signals 
are possibly simplified. Simultaneous data read and write operations at one memory 
location should in principle be avoided. However, the memory array in this project is 
configured to a read before write operation if that is desired. 
 

5.1.3 Memory array considerations in an ASIC implementation 

The memory array is an important unit that occupies most of the hardware area in a 
memory cell, especially when the data storage space increases. In a standard ASIC 
implementation, this can be realized either as a register file or as a data memory. For a 
small amount of memory, serially connected flip-flops are sufficient due to the small 
hardware area, namely the register file. As memory size increases, using the static 
random access memory (SRAM) often result in better performance in terms of 
hardware area and power metrics. Selecting the best solution between register file and 
SRAM is technology depended. For example, the dividing line is located at 
approximately 250 bits in a 0.35µm CMOS process [14], whereas the use of register 
file is still optimal for the Faraday UMC 0.13µm memories when storage size 
increases up to 64K bits, as shown in Figure 5-4. 

From a previous ASIC implementation attempt based on a 0.13µm CMOS cell 
library ([1] pp. 137, Table 3), SRAM occupied about 65% of the total hardware area 
for a 8 Kb memory cell, and the area increased significantly to 83% when data storage 
went up to 32 Kb. Obviously, selecting a proper SRAM core has significant impact on 
design area and power consumption. 

In the current memory cell implementation, a dual-port data memory is used as 
the memory array. This is sufficient for a Xilinx FPGA implementation, since a batch 
of dual-port block memories are provided as hardware resources inside the FPGA chip. 
However, in standard ASIC implementations, dual port memories are often more area 
and power consuming than single port memories. Taking the Faraday UMC 0.13µm 
memories [16] as an example, Figure 5-4 shows the different property comparisons 
between different SRAMs. Obviously, single-port memories are in general superior to 
dual-port memories. Therefore, a different approach than using the dual-port memory 
is highly recommended. This can be solved by using one single-port memory with 
double wordlength to hold two consecutive values in a single location, alternating 
between reading two values in one cycle and writing two values in the next cycle. 
This scheme requires temporary storage to synchronize the dataflow [14] and a 
structured access pattern. 
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(a) (b) 

(c) (d) 
Figure 5-4. Faraday UMC 0.13µm memory core comparisons for storage sizes of 8Kb, 16Kb, 
32Kb, 64Kb, 128Kb, and 256Kb. SPRAM, Single-Port RAM; DPRAM, Dual-Port RAM; 
SPRF, Single-Port Register File; TPRF, Two Port Register File. The SPRF and TPRF cores 
only support memory capacity up to 64Kb. 

 

5.2 Memory descriptors and cell operations 

5.2.1 FIFO mode 

A memory operation in FIFO mode is identified by a descriptor type of ‘0’ from the 
descriptor fields presented in Table 5-3. Using a reading possible and a writing 
possible flag, the FIFO status can be determined. A read possible and write impossible 
results in a full FIFO indication; a write possible and read impossible represents an 
empty FIFO. This running status is tracked by the operation controller each time the 
descriptor is executed. Memory areas can be reserved from the shared memory array 
by using a base and a high address. In FIFO mode, the allocated memory area 
operates as a circular buffer. Address pointers managed by the operation controller are 
used to indicate the current read and write positions, and are incremented respectively 
after each process. Conditions for being able to execute a FIFO descriptor are 
resolved from incoming and outgoing data and the current FIFO status. For example, 
writing data to a full FIFO cannot be executed until at least one data is read. The field 
io_bank_rst is used to flush out data packages stored in the cell I/O registers. 

Worth mentioning is that the memory cells operating in FIFO mode can be 
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cascaded to form a larger capacity memory cell. This is a useful feature in a practical 
embedded system design, especially for the reconfigurable cell array architecture. 
Because the area and shape constraints for the physical placement are often made by 
system architect for each building block, data storage in memory cell is therefore 
restricted to meet this criterion. Cascading several memory cells together can then 
solve larger memory space requirements. 

 
Table 5-3. 64-bit FIFO/Sequential ROM descriptor. 

Field Bits Length Description 

dtype 63-62 2 Operation mode selection: 
FIFO mode = 0; Sequential ROM mode = 2. 

rd_ok 61 1 FIFO/Sequential ROM reading status, 1: read possible. 
wr_ok/ 

--- 60 1 FIFO writing status, 1: write possible. 
This field is reserved in sequential ROM mode operation.

src/ 
--- 59-56 4 Data source port ID, 0~7: LIO; 15: GIO. 

This field is reserved in sequential ROM mode operation.
dst 55-52 4 Data destination port ID, 0~7: LIO; 15: GIO. 

id 51-42 10 GIO TX destination ID, only used when output through 
GIO. 

base 41-32 10 Starting address in memory array. 
high 31-22 10 Ending address in memory array. 
rptr 21-12 10 Current FIFO reading pointer. 

wptr/ 
--- 11-2 10 Current FIFO/Sequential ROM writing pointer. 

This field is reserved in sequential ROM mode operation.

io_bank_rst 1 1 Active high reset for memory IO bank, hardware releases 
reset automatically. 

--- 0 1 Reserved. 
 

5.2.2 Sequential ROM mode 

The term “ROM” in this case does not mean that memory region selected is not 
reconfigurable. This name is only used to distinguish the actual behavior of the 
memory bank from other operation modes, which could be used for storing constants, 
coefficients, etc. 

Similarly, memory operation in the sequential ROM mode has been assigned with 
a descriptor type of ‘2’. The memory cell in this mode behaves like a write protected 
FIFO operation, where memory bank writing status, input data port definition, and the 
current writing pointer are discarded from the descriptor fields as shown in Table 5-3.  

In contrast to the normal ROM operation (see section 5.2.3), address pointer in 
this mode is managed by the operation controller, and a consecutive data content is 
read out in each data transfer. Because the sequential ROM reading pointer is 
incremented after each valid execution, the memory host is in this mode exempt from 
sending data READ request. 
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5.2.3 RAM/ROM mode 

Memory RAM/ROM mode operation handles data transfers in two phases. Firstly, the 
operation controller is triggered when the address port receives either a READ or a 
WRITE request (Table 5-4), which specifies a memory address and a transfer length. 
Secondly, data will start streaming from the memory array to the configured data port 
if the address port receives a READ request. Consequently, if the address port 
receives a WRITE request, data is fetched from the configured data port and stored in 
the memory array [1]. The descriptor keeps track of the transmission direction using 
“rnw”, the transfer size using “tsize”, the current memory address position using “ptr”, 
and the current transfer status using a flag “active”. 
 

Table 5-4. Service request format. 

Bit 31 ~ 16 15 ~ 1 0 
Item Transfer size Starting address Read/Write 

 
Table 5-5. 64-bit RAM/ROM descriptor. 

Field Bits Length Description 

dtype 63-62 2 Operation mode selection: 
RAM mode = 1; ROM mode = 3. 

active 61 1 Active transfer flag. 
rnw/ 
--- 60 1 Operation selection, 0: write; 1: read. 

This field is reserved in ROM mode operation. 
paddr 59-56 4 Address port ID, 0~7: LIO; 15: GIO(0). 
pdata 55-52 4 Data port ID, 0~7: LIO; 15: GIO(0). 

id 51-42 10 GIO TX destination ID, only used when output 
through GIO. 

base 41-32 10 Starting address in memory array. 
high 31-22 10 Ending address in memory array. 
tsize 21-12 10 Current data transfer size. 
ptr 11-2 10 Current data pointer. 

io_bank_rst 1 1 Active high reset for memory IO bank, hardware 
releases reset automatically. 

--- 0 1 Reserved. 
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5.3 Performance evaluation in FPGA 

All possible configuration parameters for the memory cell have been listed in Table 
3-1. However, due to the practical usage of the reconfigurable system, wordlength of 
the memory array and the number of global I/O ports are kept unchanged from 
defaults during the evaluation process. Notice that, internal memory array in the 
memory cell is realized by using dual-port block memories inside the FPGA device. 
Results from the maximum speed and the minimum area synthesis processes are 
compared in Table 4-6. 
 

Table 5-6. Performance evaluation of the memory cell based on an FPGA device. 
Maximum 

speed 
Minimum 

area Differences 
Configuration 

Slices fmax 
[MHz] Slices fmax 

[MHz] Slices fmax 
[MHz]

DSC table length = 1 960 168.92 820 117.95 140 50.97
DSC table length = 2 1,125 138.54 961 112.97 164 25.58
DSC table length = 4 1,271 123.73 1,102 110.80 169 12.94

GIO = 1; 
LIO = 8; 

Memory size 
= 32b×1024 DSC table length = 8 1,744 109.42 1,532 100.75 212 8.67 

LIO = 2 772 128.60 799 117.21 -27 11.39
LIO = 4 1,007 126.04 899 115.66 108 10.38
LIO = 6 1,118 125.16 1,022 109.69 96 15.47

GIO = 1; 
DSC table 
length = 4; 

Memory size 
= 32b×1024 LIO = 8 1,271 123.73 1,102 110.80 169 12.94

Memory size = 32b×256 1,297 127.92 1,130 105.07 167 22.85
Memory size = 32b×512 1,265 122.40 1,054 110.94 211 11.46

GIO = 1;  
LIO = 8; 

DSC table 
length = 4 Memory size = 32b×1024 1,271 123.73 1,102 110.80 169 12.94

 
Although value fluctuations can be observed from the gathered synthesis results, 

it is still possible to conclude that the two synthesis processes provide similar 
performance metrics. This should not be surprising, since not many arithmetical units 
are used in the memory cell implementation and there is only little room left for the 
design synthesizer to do area optimizations. This fact can be specifically emphasized 
in the first synthesis attempt. Because of the involved arithmetical units in each 
memory descriptor, such as the comparators, counters, etc., changing descriptor table 
length results in evident operating speed degradations and relative larger area 
requirements. 

The critical timing path in the memory cell is found in the operation controller, 
more specifically in the pipeline state 3 of the FSM “execution” stage. In that state, 
the memory descriptor is updated under a batch of condition validations, therefore 
causes processing delays. Further design optimizations should be able to help 
upgrading system performance. 
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5.4 Conclusion 

No embedded systems can be exempt from having at least one memory, either for data 
processing, program storage, or special usage. Using distributed smart memory cells 
in a system is an efficient way of handling data transfers between surrounding 
resource cells. 

The memory cell architecture and four different operation modes have been 
presented in this chapter. With the use of a memory descriptor table, different 
operation behaviors can be emulated. Each descriptor reserves a memory space from 
the memory array and specifies stream transfers to be processed. The length of a 
descriptor table, memory array size, and the number of cell local I/O ports are 
compile-time configurable, while memory descriptors are run-time reconfigurable. 

Based on the initial memory cell structure, a few design improvements have been 
done in this project, such as: the communication I/O modules have been modified to 
adapt memory cell into the cell array architecture; a few design optimizations on the 
operation controller have been made; and a new field io_bank_rst has been added into 
the descriptor table to enable software level cell reset ability. 
 

5.5 Future work 

5.5.1 Memory cell RAM and ROM mode operations 

Due to the lack of time and the actual needs in the target algorithm implementations, 
such as the TMFIR described in Chapter 7 and the FFT presented in Chapter 8, the 
RAM and ROM mode operations in this project were abandoned from the initial 
memory cell specification. Hence, the first task in future work would be to have these 
modes operating in the memory cell. The RAM mode operation could be for instance 
used in FFT output data shuffling. 
 

5.5.2 Memory cell processing throughput improvements 

Although each memory host is allowed to use many function descriptors within a 
single memory cell, but in current implementation one memory operation cannot be 
sliced into pieces where each one is executed by a descriptor. For example, in reading 
coefficients from a memory cell running in ROM mode, only one memory descriptor 
is allowed to be used. Because memory descriptors can only be executed if all 
required conditions are validated, otherwise descriptor in turn will be discarded. 
Hence, if consecutive descriptors are configured for one stream transfer, receiving 
data samples will not be guaranteed to retain an expected sequence. 

This usage restriction results in poor memory cell utilization if only one 
descriptor is configured in a memory cell, since all other descriptor cycles will be 
wasted. Two solutions are proposed here to address this problem. First, all empty 
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descriptors should be skipped to improve the memory usage. As a consequence, using 
this method will require additional checks on the content of memory descriptors, 
which would potentially increase the design’s critical path, especially when the 
descriptor table length increases. The second approach is to add a 
blocking/non-blocking flag in each memory descriptor. If multi descriptors are used in 
the example above with blocking function activated, memory controller will be 
suspended if any stalling event occurs, hence maintaining the stream transfer 
sequences. 

 

5.5.3 Debugging approaches 

Function debugging in a memory cell could be realized in two ways. First of all, it 
should be able to retrieve memory descriptors during run-time. This could be used to 
check memory behavior configurations, to check the allocated memory bank, to track 
on the address pointers etc. Secondly, it might be a handy approach if data contents in 
the memory array can be partially or fully dumped during execution time. This could 
be used for instance in system logging, processor cell computing verification etc. 
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6 Router cell architecture 

The resource cells communicate over local and global networks in the CGRA. The 
local interconnections provide high data throughput between neighboring cells, while 
the global network connects any two cells using hierarchical routing and provides an 
interface to external modules, such as the external host or data memories. Global 
communication is supported by router cells that forward data packets over a global 
network, as the peer-to-peer connections between any nodes result in difficulties on 
network scaling. 
 

6.1 Cell architecture 

The router cell is constructed from three main building blocks: a decision unit with a 
static routing table, a routing structure and an output packet queue, as illustrated in 
Figure 6-1. 
 

 
Figure 6-1. Block diagram of a router cell. Five global I/O ports and a 
parallel routing structure are used in this illustration. 

 
The decision unit monitors incoming data packets from global input ports, looks 

up the routing path, handles data transactions and configures the routing structure to 
transfer data packets accordingly. In current architecture, data routing path is defined 
in a table, which is statically generated at system design-time based on the hardware 
connections in the CGRA. The static routing network is scheduled in a way that there 
is only one valid path from each source to each destination. This consequently 
simplifies the hardware implementation and enables each router instance to be 
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optimized individually during logic synthesis. However, a drawback with static 
routing is the network congestion, but mainly concerns networks with a high degree 
of routing freedom, for example a traditional mesh topology [1]. 

The routing structure is made up of passive connections between inputs and 
output ports, which can be implemented either by a parallel structure or a simple 
MUX-DEMUX switch, as illustrated in Figure 6-2. The complexity of the routing 
structure determines the routing capacity. A parallel routing structure has the ability of 
handling multiple data requests in a single clock cycle, while the single switch is 
limited to one transaction at a time [17]. However, the former approach is associated 
with a higher hardware area cost and requires a more complex decision unit [1]. 
 

 
Figure 6-2. Architectural options for switching network implementation. 
Five global I/O ports are used in this example. (a) A parallel routing 
structure with full switching flexibility using five 4-1 multiplexes. (b) A 
simple network using one 4-1 multiplexer and one 1-4 demultiplexer. 

 
The output packet queue is used to temporarily store packages traveling through 

the network [6]. When the incoming packet is accepted and handled by the decision 
unit, data sender is acknowledged and the packet is placed in the corresponding output 
packet queue if output buffer has free spaces. Data stored in the output queue are 
sequentially transmitted through global output ports on a first-in-first-out (FIFO) basis. 
The output buffer continuously tries to send its packets out, and removes them 
accordingly from the queue if transmission succeeded. When the output buffer is full, 
no new data can be accepted until the buffer has forwarded at least one of the buffered 
packets. The use of output packet queue increases global transmission throughput at 
the data sending side, because there is no need to wait for acknowledgement signals 
from receivers as long as the output buffer is not full. Therefore larger output buffer 
size is desirable under this circumstance. However, the long output packet queue 
requires more hardware resources and the use of output buffer causes additional 
transmission delay for the data receivers, as one clock cycle is required to just pass 
through an empty output queue. Therefore smaller output buffer size is wanted in this 
case, or even without any output buffer. To summarize, varying the length of output 
packet queue has impacts on global data communications, and the appropriate buffer 
size is one of the network parameters that has to be evaluated and adjusted based on 
the requirements. 

The number of global I/O ports, network routing structure and the length of 
output packet queue are examples of design-time configuration parameters in the 
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router cell. Table 3-1 summarizes all possible parameters, where some of the concepts 
are further described in the following sections. 
 
Table 6-1. Possible configuration parameters in the router cell. 

Item Value range Default value Configurability
Global I/O ports ≥ 1 4 
Default port selection Enable, Disable Enable 
Default port I/O ≥ 1 4 
Routing structure Parallel, MUX-DEMUX Parallel 
Arbitration policy* Fixed, Round-robin Fixed 
Output buffer (FIFO) size ≥ 1 4 

Routing table Depending on the 
number of GIOs Invalid routing 

Design-time 

Note: * Only effective in the MUX-DEMUX routing structure. 
 

6.1.1 Routing table 

Based on the global network connections in the CGRA, the routing table is statically 
generated for each of the router cells. The routing information is represented in the 
form of an array of integer pairs, where each pair defines a global ID range for input 
packet acceptances. A range pair contains a base and a high values, such as the 
notation "port 0 -> ID 0 - 3" means that I/O port 0 in the router cell accepts data 
packets that have destination ID specified in the range from 0 to 3. As an example, 
port 0 is the data forwarding port for a packet with destination ID equals to 2. If there 
is no range pair that accepts incoming packets, and the router is configured with a 
default port, this default port will be used as the packet destination. The special value 
“-1” (all ones) corresponds to an unspecified invalid port, which can be used if a port 
never accepts packets [17]. In reference to the global routing network shown in Figure 
6-3 (a), examples of the routing table are shown in Figure 6-3 (b). 
 

6.1.2 Decision unit and arbitration policy 

The decision unit consists of two combinatorial processes that are operated in parallel: 
the transmission management and transaction handling processes. Gained from this 
design structure, all transmission events can be easily managed and traced, and the 
handling of data transactions can be flexibly controlled by applying different 
arbitration policies, such as the fixed and Round-robin schemes. 

In the transmission management process, data packets arrived at input ports are 
continuously checked. Validity of the packet is confirmed by identifying the flow 
control signal “valid” specified in the global packet format as defined in 2.3.2 and is 
repeated here as shown in Figure 2-7. 
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Figure 6-3. (a) Global routing network in a 4-by-2 cell array. Each resource 
cell (RC) has been assigned with a network ID (GID). (b) Static routing table 
defined for the router cell R(0,0) and R(0,1). 
 

dst src ntype valid ptype data

flow 
control actual datarouting IDs

Local flit format

Global data packet format

32212
pType = { data, read, write }
nType = { data, config, control }

2×(log2(#IDs))Ceiling

 
Figure 6-4. Network packet format of local and global data transmission. 

 
The destination ID specified in each valid packet is thereafter evaluated and 

looked up in the routing table. Data routing path is determined if the destination ID of 
incoming packet falls into one of the value pairs defined in the routing table, 
otherwise data packet is sent to the default port which is upwards in the hierarchical 
routing network. The default port option is configurable during design-time, which 
can be used to disable the uplink in a router cell if data communications are desired to 
be kept within certain network hierarchal levels. 

Before registering new transactions into the action list, additional historical check 
on the corresponding log entry is performed. Transaction can only be registered into 
the action list if no preceding data transmission is ongoing. This is used to prevent 
data sending duplications, as the communication acknowledgement for the incoming 
packet is updated in consecutive clock cycle, which consequently keeps the incoming 
“valid” signal high during two clocks and therefore triggers an extra data transaction 
process. Timing diagram of a transaction handling is illustrated in Figure 6-5, where 
the active data transaction is masked with a write protection flag that is used in the 
historical check in order to avoid the duplicated data sending. An example of how the 
action list would look like after the transmission management process is shown in 
Figure 6-6 (a). 
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Figure 6-5. Timing diagram of the transaction handling in the router cell. 

 

Figure 6-6. Action list in the decision unit. The row and column items in the table 
are input ports (In) and output ports (O), respectively. (a) All valid data transactions 
are checked in during the transmission management process. (b) All candidate 
transaction handling are marked in ‘o’ during the second process. Fixed arbitration 
scheme in a full parallel routing structure. (c) Fixed/Round-robin arbitration 
scheme in a MUX-DEMUX routing structure. 

 
In the transaction handling process, log entries in the action list are sequentially 

checked, and the recorded transactions are prioritized and handled based on different 
arbitration policy and the condition of output buffers. The fixed arbitration approach 
is used when a parallel routing structure is selected, while two different arbitration 
options are provided for the simple MUX-DEMUX routing structure, namely the 
fixed and Round-robin arbitration. 

In fixed mode, the arbiter always starts from the first log entry (row 0, column 0) 
and scans column-wise through the action list until a candidate transaction is found. A 
transaction is considered to be a candidate when it is logged in the action list and the 
corresponding output buffer is not full. In this approach, all transactions are assigned 
with priorities according to their log position in the action list. Consequently, this 
might result in a case where the shared transmission channel is perpetually occupied 
by a data flow that has higher priority than the others. Hence, network traffic has to be 
well schedule when mapping applications on the CGRA if the fixed arbitration policy 
is applied. 

In contrast, the Round-robin algorithm assigns time slices to each process in 
equal portions and in order, handling all transactions without priority [4]. This simple 
arbitration approach is work conserving, meaning that an empty transmission cycle 
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will be resulted if one flow is out of packets. Examples of candidate transactions in 
the action list are shown in Figure 6-6 (b) and (c). 

The candidate transactions selected out from arbitration process are thereafter 
checked out from the action list, and the routing structure is configured and the data 
senders are acknowledged accordingly. This way of handling the communication 
acknowledgement signals prevents data loss from the network congestion, as data 
senders cannot proceed without receiving ACK. signals. 

A data broadcast function is provided in the simple MUX-DEMUX routing 
structure. By addressing “the largest resource cell ID number – 1” as the packet 
destination, data received from one input port is sequentially forwarded to all the 
output ports available. This is achieved by sending acknowledgment signal to the data 
sender only when no more logged transactions are left in the row of the action list, 
where the row items specifying data input ports, and the output ports are specified 
column-wise. 
 

6.2 Performance evaluation in FPGA 

An analysis of global data transmission latency is presented in Figure 6-7, where a 
data packet is assumed to be forwarded by a router cell connected between host A and 
B in a silent global network. The data transmission latency is measured from the time 
when host A places a packet to its global output register to the time when the global 
input register in host B receives the packet from network. The resulting time usage is 
5 clock cycles, which uses 3 clocks more as compared to local data communication. 
 

 
Figure 6-7. Data transmission latency over the global routing network. No initial 
data traffic is assumed in the routing path. (a) Hardware setup for transmitting a 
data packet from host A to B. Global I/O registers are drawn in vertical lines, and 
the clock usage for the corresponding unit are stated underneath, as x-CC. (b) 
Detailed timing diagram for a global data transmission. 
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Router cell with different configurations have been synthesized with both the 
maximum speed and minimum area constraints. Considering the realistic system setup, 
two parameters are kept as constants during the synthesis processes, i.e. the default 
port (uplink) is always enabled and assigned with the maximum global I/O port 
number. All results are listed and compared in Table 3-10. 
 
Table 6-2. Performance evaluation of the router cell based on an FPGA device. 

Maximum 
speed 

Minimum 
area Differences 

Configuration 
Slices fmax 

[MHz] Slices fmax 
[MHz] Slices fmax 

[MHz]
#FIFO=4 1,340 174.51 1,151 160.99 189 13.52#GIO=5 
#FIFO=8 2,297 168.15 2,066 128.12 231 40.03
#GIO=5 1,340 174.51 1,151 160.99 189 13.52

Def. port = Enable; 
Def. GIO = Max. GIO; 
Routing = Parallel. #FIFO=4 

#GIO=10 4,139 161.95 3,761 141.39 378 20.57
#FIFO=4 1,282 121.99 1,133 53.31 149 68.68#GIO=5 
#FIFO=8 2,245 113.20 2,048 47.03 197 66.17
#GIO=5 1,282 121.99 1,133 53.31 149 68.68

Def. port = Enable; 
Def. GIO = Max. GIO; 
Routing = MUX-DEMUX;
Arbitration = Fixed. #FIFO=4 

#GIO=10 2,941 61.97 2,396 15.85 545 46.13
#FIFO=4 1,243 173.02 1,139 149.43 104 23.59#GIO=5 
#FIFO=8 2,189 142.03 2,053 120.31 136 21.72
#GIO=5 1,243 173.02 1,139 149.43 104 23.59

Def. port = Enable; 
Def. GIO = Max. GIO; 
Routing = MUX-DEMUX;
Arbitration = Round-robin. #FIFO=4 

#GIO=10 2,561 151.13 2,208 137.68 353 13.45
 

Several points can be concluded from these synthesis results. First of all, the 
highest cell operation speed in each set of the configurations is achieved in the 
parallel routing structure. As mentioned previously, this is a result from concurrent 
processing on multiple data transactions, where all input packets heading to different 
output ports can be handled in a single clock cycle. Therefore, the critical timing path 
in this structure is limited to the arbitration process for multiple transactions on the 
same output port, i.e. columns in the action list as shown in Figure 6-6 (b). The 
drawback of the parallel routing structure is the accompanied large hardware resource 
usages. 

Secondly, in the MUX-DEMUX routing structure, with the use of round-robin 
arbitration approach results in less hardware usages and higher operation speeds than 
using the fixed mode. This is because transaction handling in each clock cycle is 
deterministic in the round-robin scheme, which simplifies the operation controlling 
and shortens the critical timing path. In contrast, the fixed arbitration scheme scans 
through the entire action list in each arbitration process until a candidate transaction is 
found. This results in a long packet handling procedure and hence the slower 
operation speed. Moreover, due to the combinatorial processing in the fixed 
arbitration scheme, large speed differences are reported from these two synthesis 
processes. 
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6.3 Conclusion 

The router cell is used to forward data packets over the global routing network in the 
CGRA. The routing information is specified in a table that is statically generated 
based on the physical network connections. The static routing is deterministic, which 
means that there is only one single valid path to route network traffic. This approach 
reduces hardware complexity as compared to adaptive routing algorithms [2]. 

The router cell consists of three main building blocks: the decision unit, routing 
structure and output packet queue. Basic cell construction parameters, such as the 
number of global I/O port, the routing structure and so on, can be configured during 
system design-time in order to meet different application requirements. 

The separation between transaction handling process and transmission event 
managements in the decision unit results in a flexible design structure, where different 
arbitration policies can be easily implemented and extended in future developments. 
In current router cell implementation, the routing structure can be selected between a 
parallel network and a MUX-DEMUX switch. A parallel routing structure has the 
ability of handling multiple data requests in a single clock cycle, while the latter one 
is limited to one transaction at a time. For the MUX-DEMUX structure, two simple 
arbitration policies are supported and a data broadcast function is provided, while the 
parallel structure is configured to only use the fixed arbitration policy. Benefit from 
the way of handling acknowledgement signals in the decision unit, data loss due to the 
network congestion is completely prohibited. 
 

6.4 Future work 

6.4.1 Multicast 

In addition to packet broadcast function, the multicast would also be beneficial to 
have in the CGRA, which is useful for instance in initializing a batch of memory cells 
or to issue global operation commands to the processor cells and so on. This is can be 
realized by applying a unique global ID address to each group of the resource cells, so 
data packets with group ID specified will be forwarded to all the cells included in the 
group. 
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7 Case study I: Time-multiplexed FIR filter 

After creating each of the individual modules in the CGRA, a system integration test 
should be carried out. This is used to verify the basic functionalities in each resource 
cell, to test the interconnections between neighboring modules and to verify the 
connectivity of the hierarchical routing network. This test has been accomplished by 
mapping a small algorithm onto the cell array platform. A time-multiplexed FIR filter 
has been selected in this study due to the simple algorithm structure and relatively low 
system resource requirements. In addition, the author has done similar work in a 
related project based on a single processor and a single memory cell, hence it is also 
time efficient to reuse the same experiment and only expand the work to a more 
complex system platform. 

Figure 7-1 shows a generalized design flow for mapping an algorithm onto the 
CGRA. This flow consists of four design phases: algorithm selection, reference model 
design, cell array architecture design and the actual system implementation. As 
illustrated in Figure 7-1, the third design phase involves additional sub-steps, where 
the selected system architecture is designed and evaluated. This is the most 
time-consuming procedure, since different mapping possibilities should be analyzed 
and compared, in order to efficiently map an algorithm onto the platform. In the last 
step, the system is implemented and tested physically on a hardware platform, such as 
an FPGA device. 

In this case study, the actual system implementation process is replaced by a 
cycle-accurate HDL simulation running on a computer, since the intention of the 
experiment is to verify the basic operations in the CGRA. Besides, some of the design 
procedures are simplified due to the chosen simple algorithm structure, such as only 
one hardware-mapping approach is used in this study. 
 

 
Figure 7-1. Generalized design flow for mapping an algorithm onto the CGRA. 
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7.1 Theoretical background 

A finite impulse response (FIR) filter is a discrete linear time-invariant (LTI) system. 
The current filter output only depends on the current data input and its delayed input 
samples. This can be expressed as 

( )
0

( ) ,
m

i
i

y n h x n i
=

= ⋅ −∑  eq. 7-1

where the filter is non-recursive with an order m. Its impulse response h = {h0, . . . , 
hm} is limited to m + 1 taps [19]. 

An FIR filter can be implemented in several ways of which two are illustrated in 
Figure 7-2. First, a direct form hardware-mapped structure processes input data 
samples concurrently. It requires one multiply-accumulate (MAC) unit for each filter 
coefficient, which are serially connected to form a pipeline. Each unit multiplies the 
input value with the coefficient, adds the partial sum from the preceding stage, and 
forwards the data value and result to the next stage [1]. Due to the way of the 
concurrent processing, this structure provides high data throughput but requires large 
amount of hardware resources. In contrast, a time multiplexing approach requires only 
one MAC unit and two memory cells, one for coefficients and the other for input data 
buffering. All data samples are iteratively processed using the same MAC unit. 
Obviously this structure reduces the total hardware requirements especially for higher 
order filters, but with the penalty of increased system computation time. Furthermore, 
a time-multiplexed structure also exhibits a good property on the system flexibility, 
since no hardware structure changes are needed when varying the filter order. 
 

Figure 7-2. Hardware implementation structure of a FIR filter. (a) A direct form. (b) 
A time multiplexing approach. 
 

7.2 MATLAB reference model simulation 

The system test is based on a time-multiplexed FIR filter. Input data samples, impulse 
response and the filter output golden vector are all reused from the previous 
experiment. As previously described the filter coefficients and input data samples are 
quantized to 12-bit and 16-bit, respectively. The filter output is represented by 32-bit 
and overflow is prevented by proper scaling of the input data magnitude. A simulation 
using the MATLAB reference model is shown in Figure 7-3. 
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(a) | (b) Figure 7-3. Reference model simulation in MATLAB. (a) 
16-bit input data samples. (b) 32-bit filter outputs. 

 

7.3 System architecture 

A time-multiplexed FIR filter consists of one MAC unit, one input data buffer and one 
coefficient ROM, as illustrated in Figure 7-2 (b). This structure can be directly 
mapped onto the CGRA by using a MAC processor and two memory cells. If the 
system resource usage is a main constraint, the input data buffer and the coefficient 
ROM can be realized by using two memory descriptors from the same memory cell. 
The latter approach has been used in a previous experiment. A direct mapping 
structure is selected in this study, in order to verify the interaction between different 
resource cells, as shown in Figure 7-4. 
 

 
Figure 7-4. A tile template for direct-mapped time-multiplexed FIR 
filter on the CGRA. For illustration purpose, unused building block 
and network connections are drawn in lightened shade. 

 
Input and output data samples are streamed through the global network. All 

intermediate data transfers are kept locally through the local interconnections. One of 
the memory cells operating in FIFO mode is used as a circular buffer for the input 
data samples. Filter coefficients are stored in the other memory cell which is 
configured in sequential ROM mode. The MAC processor iterates over the buffered 
data samples and coefficients that are multiplied pair-wise and accumulated. Every 
time a new iteration starts, the oldest value in the circular buffer is discarded and 
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replaced by an incoming data sample from the global input port. The lower 32 bits 
from the 48-bit accumulator inside the MAC processor are written to the output when 
an iteration completes, since input data samples are pre-scaled in the data source. In 
case output scaling is desired in a process, data can be shifted before sending it to the 
output port. With the use of the local and global communications, all data samples 
required by the MAC processor are synchronized automatically, since no new data 
transfer can be started before the preceding package is completely handled. This 
scheme provides an efficient manner of controlling the data flow in a processing 
intensive application. 
 

7.4 System performance evaluation 

Before HDL simulation, system platform is extended with the interconnected resource 
cells apart from the tile template designed previously. This is considered firstly to 
explore the large-scale system performance in terms of area and speed. Secondly, to 
have a suitable system architecture prepared for more complex algorithm mappings, 
such as an FFT application evaluated in case study II. More detailed system 
descriptions are presented in Chapter 8, as the main focus here is a basic functionality 
test. System architecture of a 4-by-2 cell array is depicted in Figure 7-5. A view on the 
synthesis floorplan and the final routed layout is shown in Figure-Appendix 10, based 
on the target FPGA device, the Xilinx Virtex-II Pro-30-7ff896. 
 

 
Figure 7-5. System architecture of an interconnected 4-by-2 cell array. Three 
resource cells and two hierarchical network routers are used in the 
time-multiplexed FIR filter. 
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To verify the filter operations, a program routine is developed for the MAC 
processor, as shown in Table 7-1. Notice that, only one program instruction is required 
to be re-downloaded when changing the filter order. By counting the execution time 
for each of the instructions in this program routine, a theoretical iteration period for 
this algorithm implementation can be obtained, as 

[ ]1 4 3 36 2 4 118 .iterationcc cc= ⋅ + ⋅ + + =  eq. 7-2

The first term “1×4” sums up initial program execution cycles from instruction #3 to 
#6, where the first two instructions are not counted, as they are only used to initialize 
internal registers and are not iterated in each of the filter computations. The term 
“3×36” counts up the iterative executions of the instruction #7 and #8, where an 
additional clock cycle is used to flush the processor pipeline registers. Number “2” in 
the expression is the clock usage for the last loop execution, where no flush operation 
is needed. The last part “4” includes execution cycles for the rest of instructions, 
where the branch instruction requires one additional clock cycle for the pipeline 
register flushing. 

 
Table 7-1. Program instructions in the MAC processor for a time-multiplexed FIR 
filter. Table columns are: binary code, assembly program, comment and 
reconfigurability. 

84400024  // 01: ADDI $2, $0, 36  ; Load filter order  For reconfig.
B000000A  // 02: GID 10  ; Load GIO TX DST ID   
10000000  // 03: MUL $0, $0  ; Clear acc. registers   
84350000  // 04: ADDI $1, $L2, 0  ; Remove one data from FIFO   
86BB0000  // 05: ADDI $L2, $G0, 0  ; Load a new data into FIFO   
40001000  // 06: ILC $2  ; Load iteration counter   
1EA1AD40  // 07: DMOV $L2, $R1, $L2, $L2  ; Load data from FIFO   
1000B843  // 08: MUL $L4, $1, {al}  ; MAC and loops back   
00000000  // 09: NOP     
1B60FF80  // 10: JMOV $G0, $HACC, $LACC ; Send result out   
A400FFF7  // 11: BRI ‐9  ; Loop back   

 
Table 7-2. Hardware configurations for resource cells in a 4-by-2 reconfigurable cell 
array platform. 

Location Global ID Cell type Hardware configurations 
(0, 0) 0 
(1, 1) 3 
(2, 1) 5 
(3, 0) 6 

Processor 

16-bit MAC processor; 
Barrel shifter disabled; 
Program memory size = 64 × 32-bit; 
GPR = 8; LIO = 8; GIO = 1. 

(0, 1) 1 
(1, 0) 2 
(3, 1) 7 

Memory Memory capacity = 256 × 32-bit; 
DSC table length = 4. 

(2, 0) 4 CORDIC 16-bit pipelined core 
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Based on the suggested configurations [1], each memory cell is configured to 
have 4 function descriptors and an 8K bits memory capacity. Notice that, empty 
execution cycles are generated in each of the memory cells during run-time, since 
only one function descriptor is actually required in the FIR filter implementation. 
Table 7-2 summarizes the hardware configurations for all resource cells in a 4-by-2 
cell array. 

System performance numbers from the HDL simulation are shown in Table 7-3. 
The reported maximum frequency for the integrated system reveals a slower running 
speed than the critical building block in a 4-by-2 cell array. By tracking the synthesis 
report, signals from all possible processing cells are shown in the longest delay path. 
This implies that there are combinatorial signals connected in between those cells, 
which have to be fixed in future work. 

Two execution time measurements are reported in the performance summary, as 
highlighted in bold fronts. When the descriptor table length (DSC) in each memory 
cell is configured to 4, system performance is limited by the clock cycle overhead in 
the memory cells. This can be observed from the data receiving stalls in the MAC 
processor. By adjusting the descriptor table length until the RX stalls are completely 
eliminated in the MAC processor, an optimal execution clock usage can be measured. 
This happens when the descriptor table length is decreased to 2. Comparing to the 
theoretical iteration period calculated previously, both local and global network 
communications are proven to be efficient. 

 
Table 7-3. System performance explorations for the CGRA based on the different 
TMFIR computations. 

FIR filter order 36 
Memory [bits] 16K (8K × 2) 
Memory utilization 
(Memory usage [bits]) 

6.32% 
(592 + 444) 

Maximum frequency [MHz] 30.710 

FPGA usage on Xilinx 
Virtex-II Pro-30-7ff896 

Number of slices: 10,460 out of 13,696 – 76% usage;
Number of MULT18X18s: 4 out of 136 – 2% usage; 
Number of BRAMs: 7 out of 136 – 5% usage 

Configuration time [clock cycles] 581 
Reconfiguration time [clock cycles] 28 
Latency [clock cycles] 173 @ DSC = 4 134 @ DSC = 2 
Execution time [clock cycles] 152 @ DSC = 4 118 @ DSC = 2 
Throughput [samples per second] 200,720 
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7.5 Conclusion 

A time-multiplexed FIR filter has been mapped onto a 4-by-2 reconfigurable cell array. 
Basic operations of the resource cells have been verified based on cycle-accurate 
HDL simulations. The outcome from the performance evaluation has proven the 
effectiveness of the network communications in the CGRA. The large-scale cell array 
architecture has been prepared for further system development, where the FIR filter 
experiment utilizes only one 16-bit MAC processor, two memory cells and two 
hierarchical network routers. The integrated 4-by-2 cell array occupies 76% of the 
FPGA resources, and is capable of running at approximately 30 MHz. 
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8 Case study II: Radix-22 FFT 

In the preceding Chapter 7, a few basic operations in resource cells, local data 
communications, and the hierarchical global routing network have been studied and 
evaluated by mapping an algorithm onto a small region of the reconfigurable cell 
array. In this second case study, it is desirable to scale up the system resource usage to 
further explore interaction between different resource cells, and to analyze the 
effectiveness of the data communications on a large-scale system platform. Hence, the 
radix-22 FFT algorithm has been selected and mapped onto a 4-by-2 cell array based 
on a time-multiplexed structure. Finally, the design has been implemented and 
verified on a Xilinx XUP Virtex-II Pro development board. 
 

8.1 Theoretical background 

The discrete Fourier transform (DFT) is a commonly used operation in digital signal 
processing. Typical applications are linear filtering, correlation, spectrum analysis, 
and orthogonal frequency division multiplexing (OFDM) in modern communication 
systems [14]. 

The DFT is defined as 
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= ⋅ ≤ ≤∑  eq. 8-1

where N is the transform length and 
2 /j N

N e πω − ⋅ ⋅=  eq. 8-2

Evaluating eq. 8-1 requires N MAC operations for each transformed value in X, or N2 
operations for the complete DFT [14]. This time-complexity of O(N2) is known as an 
inefficient way to carry out computations. 

The fast Fourier transform (FFT) exploits the symmetry and periodicity 
properties of the phase factor ωN [21], which decomposes an N-point DFT into 
successively smaller DFT transforms based on a divide-and-conquer approach. This 
results in a O(N×log2(N)) complexity. According to the different partition approach, 
the FFT decomposition can be classified into decimation-in-time (DIT) and 
decimation-in-frequency (DIF) algorithms. No matter which kind of algorithm to use, 
the basic FFT operation is adding and subtracting the same two values, which is 
referred to as a butterfly operation due to its butterfly-like shape in the flow graph 
[14]. 

When the transform length is a power of 2, N = 2q, the processing data sequence 
can be decomposed into two series using a radix-2 butterfly. This radix-2 algorithm 
requires q decomposition steps, each computing N/2 butterfly operations. When the 
transform length is a power of 4, N= 4q, a more hardware efficient radix-4 
decomposition algorithm can be used. This approach reduces the number of complex 
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multiplications with the penalty of increased complex additions. The complex radix-4 
butterfly can be further simplified by using four radix-2 butterflies as shown in Figure 
8-1, which reduces the number of complex additions needed. This reduction is evident 
when folding on a flow graph is applied. A comparison between three decomposition 
algorithms mentioned above has been originally compared in [14] and is repeated here 
as shown in Table 8-1 in section 8.3. 
 

 
Figure 8-1 [14]. (a) Radix-4 butterfly. (b) Radix-22 butterfly. 

 
Because data rounding or truncation is unavoidable operation in a fixed-point 

hardware implementation, the signal to quantization noise ratio (SQNR) is often used 
as one of the parameters to evaluate the system performance. It is defined as, 

1010 log x
dB

q

PSQNR
P

⎛ ⎞
= ⋅ ⎜ ⎟⎜ ⎟

⎝ ⎠
 eq. 8-3

where Px is the signal energy and Pq is the quantization energy. 
 

8.2 MATLAB reference model simulation 

To comprehensively understand the algorithm structure and intermediate data flows, a 
full precision reference model for a radix-22 pipeline FFT is initially designed in 
MATLAB. Thereafter, a fixed-point model for a time-multiplexed structure is 
developed to further study the quantization and overflow effects in a hardware 
platform. Because the complex multiplication function is realized by using a 16-bit 
CORDIC processor in an actual system implementation (refer to section 8.3.2), a 
bit-accurate simulation model for the CORDIC cell is developed in MATLAB and 
used in the fixed-point modeling. 

In the simulation environment, the user can specify the input data width, 
intermediate calculation precision, overflow scheme and CORDIC configurations, etc. 
Furthermore, the user selects FFT size and generates input data samples. Figure 8-2 
shows a 1,024-point FFT simulation comparison between the MATLAB built-in 
function and a fixed-point reference model. In this example, the input data width is 10 
bits and all internal arithmetic operations in the fixed-point model are carried out with 
16 bits precision. 

Notice that the problem of internal computation overflow is not considered a 
topic for hardware implementations in this experiment. To prevent that, system data 
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inputs are restricted to a maximum of 10-bit complex numbers with scaled (×0.5) 
signal magnitudes. Complex valued data stimuli for the hardware platform are 
currently generated from MATLAB, where the reference model simulations can be 
carried out in advance to check the internal computation status. 
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Figure 8-2. A 1,024-point FFT output comparison between the MATLAB 
built-in function (upper left) and a fixed point reference model (upper 
right). Result differences are shown in the bottom plot. The SQNR for the 
MATLAB built-in function full precision simulation is 40.122 dB; and the 
SQNR for the fixed-point reference model is 39.928 dB. 

 

8.3 System architecture 

The hardware implementation of the FFT algorithm can be mapped in several ways. 
In general, mapping schemes can be sorted into three categories: a direct algorithm 
mapping, a pipeline structure and a time-multiplexed approach. Direct algorithm 
mapping basically implements every processing unit in a flow graph using a unique 
arithmetic unit. Normally, using this approach for a large and complex algorithm is 
not desirable due to the huge amount of hardware resources required [1]. The 
alternative is to fold operations onto the same block, which reduces hardware 
complexity at the cost of increased computation time. 

Taking a 4-point radix-2 FFT (Figure 8-3) as an example, folding the FFT 
algorithm vertically is referred to as a pipeline FFT, which reuses computational 
butterfly units at each stage. Because of the hardware resource sharing, a part of the 
input data samples at each stage need to be temporally stored before any computation 
can be performed. The required data storage is referred to as a single path delay 
feedback (SDF) buffer. As a penalty, computation time required in a pipeline FFT is 
dependent on the transform length, where a direct-mapped structure streams data in 
each clock cycle. 

Folding the pipeline structure further horizontally reduces the arithmetic unit 
requirements to only one butterfly, results in a time-multiplexed architecture. Because 
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this approach folds the algorithm in two dimensions, the FFT computation stage 
quantity also becomes a factor that influences the required execution time. This 
architecture has the same memory requirements as a pipeline FFT. Property 
comparisons between these FFT architectures are shown in Table 8-1. Due to the great 
computation complexity reduction and the smallest hardware resource requirements, 
the radix-22 FFT architecture is selected in this study to be mapped on the CGRA. 
 

 
Figure 8-3. “Folding” a 4-point radix-2 FFT. (a) A flow graph. (b) A pipeline 
structure is built up by using two radix-2 butterfly units (R-2 BF) with SDF buffer 
attached, and a complex multiplier. The number stated inside SDF block represents 
the FIFO depth. (c) A time-multiplexed structure uses a single radix-2 butterfly unit 
and a complex multiplier. 

 
Table 8-1 [14]. Properties for different FFT architectures. Multipliers and adders are 
complex valued. The number of clock cycles depends on the transform length N. 

Hardware architecture Adders Multipliers Memory Cycles 
Direct-mapped radix-2 Nlog2N (N/2)(log2(N) – 1) 0 - 
Direct-mapped radix-4 2Nlog4N (3N/4)(log4(N) – 1) 0 - 
Direct-mapped radix-22 2Nlog4N (3N/4)(log4(N) – 1) 0 - 

Pipeline radix-2 2log2N log2(N) – 1 N - 1 N – 1 
Pipeline radix-4 8log4N log4(N) – 1 N - 1 N – 1 
Pipeline radix-22 4log4N log4(N) – 1 N - 1 N – 1 

Time-multiplexed radix-2 2 1 N Nlog2N 
Time-multiplexed radix-4 8 1 N Nlog4N 
Time-multiplexed radix-22 4 1 N Nlog4N 

 

8.3.1 Radix-22 pipeline FFT 

A basic radix-22 FFT building block consists of two radix-2 butterfly units separated 
by a trivial multiplication and a complex multiplier, as shown in Figure 8-4 (b). This 
can be directly mapped onto the CGRA by using two tile templates, as illustrated in 
Figure 8-4 (c). Each tile template contains two processing cells and two memory cells. 
32-bit DSP processors are used for the butterfly operations, while CORDIC processor 
emulates complex multiplication using vector rotation [1]. 
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Figure 8-4. (a) A basic radix-22 FFT building block consists of a radix-22 
butterfly unit (R-22 BF) and a complex multiplier. (b) A radix-22 butterfly 
unit is constructed from two radix-2 butterflies (R-2 BF), separated by a 
trivial multiplication. (c) A direct mapping on the CGRA. A basic radix-22 
FFT building block requires two tile templates. 

 
The BTF I and BTF II blocks in Figure 8-4 (c) stand for butterfly stage 1 and 

butterfly stage 2, respectively. They are functional blocks corresponding to the first 
and second radix-2 butterfly units drawn in Figure 8-4 (b). SDF I and SDF II blocks 
represent SDF buffers needed by each butterfly unit, which are implemented as FIFO 
operations in the memory cells. The DSP cell in the first tile template is responsible 
for the trivial multiplications in between two butterfly stages. The CORDIC processor 
takes care of the complex multiplications, and the ROM cell attached is used for 
feeding FFT twiddle factors required in each multiplication. 

 

Simple mapping 

A basic radix-22 FFT building block can be replicated in both horizontal and 
vertical directions to construct a larger size cell array, used for larger size FFT 
computations. As an example, Figure 8-6 illustrates an algorithm mapping for a 
2,048-point radix-22 pipeline FFT (Figure 8-5) on an 8-by-8 reconfigurable cell array.  

It is worth to mention that there is a list of advantages provided by this kind of 
hardware structure. 

• Each stage in a radix-22 pipeline FFT occupies two tile templates, so in 
principle it is easy to replicate this up to achieve any transform length.  

• It has a regular tile structure, where each processor has a memory cell attached 
and every other tile template contains a CORDIC processor. This is a versatile 
template structure that should be suitable for a broad range of algorithm 
implementations. 

• All internal data transfers are realized by using local connections. The mapped 
pipeline FFT implementation therefore has a low demand on global data 
communications. Due to the high throughput data transmissions provided by 
the local network, this structure has a good property on data throughput and 
system latency. 
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Figure 8-5. A 2,048-point pipeline FFT constructed from five radix-22 butterflies and 
one radix-2 butterfly. 

 

 
Figure 8-6. Structure of an algorithm mapping for a 2,048-point radix-22 
pipeline FFT on an 8-by-8 reconfigurable cell array. Interconnections and 
building blocks drawn in lightened shade are unused system resources in this 
application. Complete local interconnects are shown in the second tile 
template of the first line, and a complete set of global interconnections is 
depicted in the first tile template. 
 
• It is possible to do an output data shuffling by using the remaining DSP 

processor and memory cells, as shown at the last stage. 
 
However, there are also limitations involved in this hardware mapping. 
• This structure has high demand on data storage capacity for each single 

memory cell. For instance, the SDF buffer at the first stage in the preceding 
example requires a storage size of 1,024×input wordlength. For processing the 
16-bit complex data inputs, this is a 32K bits memory requirement. Hence, the 
actual realizable FFT implementation using this mapping scheme is limited by 
the provided memory capacity. 

• If large data memories are possible to be integrated in each memory cell where 
the hardware size is a main concern here, this structure reveals low utilization 
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in the memory cells. In the example above, a 32 Kb memory space is required 
at first computation stage. However, there is only a 32-bit data storage 
required at the last stage, which is equivalent to a 0.1% memory usage. 

• The reconfigurable cell array has an asymmetrical structure. Every other row 
of the tile templates have to be horizontally mirrored for proper local 
interconnections.  

• Internal computation accuracy is restricted at a high data throughput, because 
current 32-bit DSP processor only supports 16-bit complex operations. For 
higher computation accuracy demands, the real and imaginary parts of 
complex inputs have to be treated separately in a processing cell, which 
requires separated I/O data transfers, results in a lower data throughput. 

 
To summarize, the use of the simple mapping structure is mainly limited by the 

memory capacity available. This approach could be used for mapping small size FFT 
applications. For instance, with the reasonable memory capacity 8 Kb provided (as 
suggested in [1] pp. 136), the radix-22 pipeline FFT computation size can be 
supported up to 256-point. 
 

Simple mapping with split complex number data path 

To improve internal computation accuracy while maintaining a high data throughput, 
simple mapping structure can be combined with the use of split data path for complex 
number processing. This is shown in Figure 8-7.  

The real and imaginary parts of the complex inputs are streamed into two 
different tile templates, where butterfly operations can be handled concurrently. 
Butterfly processed data outputs are gathered by a DSP or a CORDIC processor to 
perform the trivial or complex multiplications, respectively. Results are thereafter split 
again for further processing. 

Another advantage in this structure is the relative low demand on memory 
storages. Because of the split data path, demand on the required SDF buffer for each 
processing is reduced by half. In addition, memory cells in the first butterfly stage can 
be concatenated to behave like a larger size SDF buffer. 

 
Drawbacks with this structure are: 
• Mapping has a high demand on system resources. Because each radix-22 

pipeline FFT stage occupies 4 tile templates, the realizable transform length is 
limited by the number of resource cells available. 

• This approach involves lots of hierarchical global communications for 
intermediate data processing. Therefore it has a high demand on the parallel 
switching ability in router cells. Moreover, routing data through global 
network results in relatively longer system latency. But due to the pipeline 
structure, data throughput will remain the same as previous mapping once the 
system runs in steady state. 
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Figure 8-7. Structure of an algorithm mapping with split complex number data 
path for a 2,048-point radix-22 pipeline FFT on an 8-by-8 reconfigurable cell array. 

 
Overall, the structure of a simple mapping with split complex number data path is 

mainly system resource limited, and to some extent also has impacts related to the 
provided memory capacity. This approach is suitable for mapping small size FFT 
applications with desired high computation accuracy. For instance, an 8-by-8 
reconfigurable cell array supports up to 256-point radix-22 pipeline FFT with up to 
32-bit internal calculation precision. 
 

Simple mapping with concatenated memory cells 

To reduce the high storage capacity requirement in each memory cell as mentioned in 
the previous two mapping approaches, memory cells can be concatenated together to 
provide larger data storage, which makes it feasible to be practically implemented. As 
shown in a previous study ([1] pp. 136), a good memory capacity selection for a 
memory cell is 8 Kb. So in a 2,048-point radix-22 pipeline FFT, SDF buffer in the first 
computation stage needs to have four memory cells concatenated together, as 
illustrated in Figure 8-8. 

Comparing with the other two hardware mappings, this structure has much lower 
memory capacity requirements, and therefore higher memory cell utilization. 
Although global communications are also needed here for intermediate data 
processing, this has been well controlled to a regional level where no hierarchical 
routing is required. This approach could be used for mapping larger size FFT 
applications. For example, using memory cells with the suggested storage capacity, an 
8-by-8 reconfigurable cell array supports up to 2,048-point radix-22 pipeline FFT 
computations. 
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Figure 8-8. Structure of an algorithm mapping with concatenated memory 
cells for a 2,048-point radix-22 pipeline FFT on an 8-by-8 reconfigurable 
cell array. In contrast to the previous two hardware structures, required 
single radix-2 stage has been moved to the first computation stage in this 
example. 

 

8.3.2 Time-multiplexed radix-22 FFT 

A time-multiplexed radix-22 FFT structure is constructed by using one basic radix-22 
FFT building block, where all the required computations are executed iteratively on 
the same hardware. Because of the relatively smaller system resource requirement, 
this structure has been implemented and realized on an FPGA platform. The detailed 
architecture diagram is shown in Figure 8-9 (a). 

Resource cells at location (0, 0) and (2, 1) are 32-bit DSP processor cells, 
corresponding to the butterfly stage 1 and 2, respectively. Memory cells at (0, 1) and 
(3, 1) are SDF buffers required by each butterfly unit. The DSP processor at (1, 1) is 
responsible for the trivial multiplications, and the CORDIC processor at (2, 0) is used 
for the complex multiplications. In order to gain system flexibility, the FFT twiddle 
factor ROM has been substituted by a DSP processor placed at location (3, 0), and the 
coefficients are generated on the fly. The memory cell at (1, 0) runs in FIFO mode to 
buffer intermediate data between adjacent computation stages. Because data 
memories are provided as hard macros inside the FPGA, all memory cells have been 
equipped with a 32Kb storage space. As a result, this time-multiplexed radix-22 FFT 
structure supports a flexible transform length, from 32 to 1,024-point. Since the RAM 
mode operation in the memory cell is currently not available, data outputs in the 
hardware implementation are kept in a bit-reversed order, which can be sent back to 
MATLAB for post-processing. Hardware configurations for all the resource cells in 
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the radix-22 FFT application are summarized in Table 7-2. Diagram of the functional 
behaviors and the internal data flow graph are illustrated in Figure 8-9 (b). 
 

*

*-j

-1

-1

(a) (b) 
Figure 8-9. (a) Time-multiplexed radix-22 FFT structure in the CGRA. (b) Functional 
behavior of each recourse cell and internal data flow graph in the time-multiplexed 
radix-22 FFT structure. 
 
Table 8-2. Hardware configurations for resource cells in a 4-by-2 cell array. 

Location Global ID Cell type Hardware configurations 
(0, 0) 0 
(1, 1) 3 
(2, 1) 5 
(3, 0) 6 

Processor 

32-bit DSP processor; 
Program memory size = 64 × 32-bit; 
GPR = 11; LIO = 8; GIO = 1; 
Barrel shifter disabled. 

(0, 1) 1 
(1, 0) 2 
(3, 1) 7 

Memory Memory capacity = 1024 × 32-bit; 
DSC table length = 4. 

(2, 0) 4 CORDIC 16-bit pipelined core 
 
The global routing network in this structure has two hierarchical levels, where the 

level number is indicated by the second digit in each router cell location. Global 
network in a lower layer is responsible for distributing data packages received from a 
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higher routing hierarchy. In this structure, layer 1 is the top level network hierarchy 
and is used for system level data transfers, such as configuration package 
downloading, resource cell status tracing, input/output data streaming, etc. 

 

8.4 System performance evaluation 

8.4.1 Radix-22 pipeline FFT 

As discussed previously, mapping 2,048-point radix-22 pipeline FFT structure with 
concatenated memory cells requires an 8-by-8 cell array, as illustrated in Figure 8-8. 
Since the target FPGA chip can hold a maximum of 8 resource cells, the pipeline 
structure is far too large to be practically implemented on a FPGA platform. Besides, 
it is also a time-consuming task to simulate such a complex design as a computer 
based cycle-accurate HDL model, this design has only been analyzed theoretically in 
this project. 

Because data samples in a pipeline structure is non-recursively streamed through 
the system, program routines in all processor cells are kept as simple as possible to 
maximize the processing throughput. By analyzing program instructions in each 
processor cell, execution time for processing each data sample can be extracted, as 
listed in Table 8-3. 

 
Table 8-3. Instruction size and execution time evaluation for the processor cells.  

Execution time per data 
sample [clock cycles] Processor cell Instruction

amount 
Instruction 

code size [bytes] First 
sample Typical Last 

sample 
BTF I 5 20 2 2 4 

Trivial mul. 5 20 2 2 4 
BTF II 5 20 2 2 4 

Coeff. gen. 15 60 1 3 4 
 

As an example, the program section for a function block “BTF I” in a processor 
cell looks like: 

 
Table 8-4. Assembly program in the processor cell “BTF I”, designed for the 
radix-22 pipeline FFT. 

.restart  // Loop back label 
ilc $C_FFT_SIZE/2  // 01: Set inner loop counter 
dmov {l} $P_O_DATA, $P_O_SDF, $P_I_SDF, $P_I_DATA // 02: Filling SDF buffer 
ilc $C_FFT_SIZE/2  // 03: Set inner loop counter 
btf {cl} $P_O_DATA, $P_O_SDF, $P_I_SDF, $P_I_DATA  // 04: Butterfly operation 
bri .restart  // 05: Loop back 
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The typical clock usage for processing data samples in this cell requires no more than 
an instruction execution time (for operation “dmov” or “btf”), and an inner-loop 
control time. This is also valid for computing the first data sample. A worst case 
happens in the final loop back instruction. Since a branching operation requires one 
execution clock and one register flush clock, two additional clock cycles are needed 
there. Hence, there is a relatively large control overhead in this implementation when 
computing small size FFTs. 

Overall, execution time for the radix-22 pipeline FFT in this design has a worst 
case clock usage of 4, and the average processing throughput is 3 clock cycles per 
data sample. 
 

8.4.2 Time-multiplexed radix-22 FFT 

The time-multiplexed radix-22 FFT structure contains three 32-bit processor cells: one 
16-bit pipelined CORDIC cell and three 32 Kb memory cells, as shown in Figure 8-9 
(a). Considering a realistic system configuration that is suitable for a wide range of 
algorithm implementations, the descriptor table length in each memory cell is 
configured to 4 during system design-time. In this FFT experiment, only one memory 
descriptor is actually needed, the other three locations are therefore left empty which 
result in waste of execution cycles. Although this causes system performance 
degradations, it is a trade-off between the system flexibility and the processing 
efficiency. 

Data throughput on system I/O ports is not evaluated in this project, where 
instead input data samples are assumed to be ready for streaming through the 
hierarchical global routing network. Because intermediate FFT results have been kept 
locally, local I/O registers are used for data flow control between resource cells. 
System performances are evaluated based on a cycle-accurate HDL simulation model. 

Program routines for all processing cells in time-multiplexed radix-22 FFT 
experiment are designed to emphasize the functional flexibilities rather than showing 
the processing throughput. This functional flexibility is reflected from the easy way of 
reconfiguring the FFT size during run-time. Changing the transform length requires at 
most 4 instructions to be downloaded in each processor cell. Referring to hardware 
configuration, the current FFT size supported by the platform is between 32 and 
1024-point. The developed program routines prevent internal arithmetic overflows by 
conservatively scaling the results by 2 before each radix-22 stage. A small program 
segment in the processor cell (0, 0) is shown in Table 8-5, and the total instruction 
size for each processor cell is summarized in Table 8-6. 

Table 7-3 shows a few performance metrics extracted from the simulations. 
Compared to a DSP solution as shown in Table 8-8, the CGRA exhibits great 
reconfigurability on the code size, which further implies the required reconfiguration 
time. These results also show that better transform throughput can be achieved by 
reducing the descriptor table length in the memory cells. However, this might limit the 
use of CGRA in other algorithm mappings due to the loss of configurability in the 
memory cells. To summarize, the choice of hardware configuration is closely linked 
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to the field of application, a trade-off between the system flexibility and the 
processing efficiency has to be decided before the actual implementation work begins. 

 
Table 8-5. Program instructions in processor cell at location (0, 0) for a 
time-multiplexed radix-22 FFT. Table columns are: binary code, assembly 
program, comment and reconfigurability. 

B000000A  // 01: GID 10  ; Load GIO TX DST ID  For reconfiguration
8480007F  // 02: ADDI $4, $0, 127  ; N_FFT/2‐1  For reconfiguration
84400004  // 03: ADDI $2, $0, 4  ; Load stage counter  For reconfiguration
85000000  // 04: ADDI $8, $0, 0  ; Last stage flag  For reconfiguration
84600001  // 05: ADDI $3, $0, 1  ; Load iteration counter  
40002000  // 06: ILC $4  ; Stage 1, special case   
06A0D801  // 07: ADD $L2, $G0, $0 {l}    

… 

 
Table 8-6. Instruction size summary for the processor cells.  

Processor cell PC (0, 0) PC (1, 1) PC (2, 1) PC(3, 0) 
Usage BTF-I Trivial mul. BTF-II Coeff. gen.

Instruction amount 53 34 44 20 
Instruction code size [bytes] 212 136 176 80 

Reconfiguration inst. amount 4 3 4 3 
Reconfiguration code size [bytes] 16 12 16 12 

 
Table 8-7. System performance explorations for the CGRA based on the different 
FFT computations. 

FFT size [points] 32 256 1,024 
Input wordlength [bits] 10 
Scaling scheme Conservative 
SQNR [dB] 39.337 39.274 39.928 
Memory [bits] 96K (32K × 3) 
Memory utilization 
(Memory usage [bits]) 

2.083% 
(512+512+1K)

16.67% 
(4K+4K+8K) 

66.67% 
(16K+16K+32K)

Maximum frequency [MHz] 27.398 
FPGA usage on Xilinx 
Virtex-II Pro-30-7ff896 

Number of slices: 11,022 out of 13,696 – 80% usage;
Number of BRAMs: 10 out of 136 – 7% usage 

Configuration time [clock cycles] 1,552 4,912 16,432 
Reconfiguration time [clock cycles] 184 
Latency [clock cycles] 433 3,965 19,837 
Execution time [clock cycles] 806 7,026 32,114 
1D transform per second 33,993 3,899 853 
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Table 8-8. FFT benchmark comparison between the CGRA and a DSP processor, the 
TMS320VC55x from Texas Instruments. 

Execution time 
[clock cycles] Architecture FFT size 

[points] 
4 mem. DSC 2 mem. DSC

Code size 
[bytes] 

Reconfiguration
code size [bytes]

32 806 423 
256 7,026 4,290 CGRA 

1,024 32,114 20,212 
604 56 

32 591 
256 5,389 

Texas 
TMS320VC55x 

[22] 1,024 25,921 
462 
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8.5 Embedded system development in FPGA 

8.5.1 System overview 

A FPGA based embedded system has been designed using the Xilinx Platform Studio 
(XPS) software environment and verified on a Xilinx XUP Virtex-II Pro development 
board. A 32-bit MicroBlaze soft core is selected as a primary system processor, and a 
4-by-2 reconfigurable cell array is embedded as a co-processor connected on a shared 
processor local bus (PLB), as shown in Figure 8-10. Bidirectional data transmissions 
in the cell array are handled by a global I/O port. To adapt the different data 
transmission protocols, the reconfigurable cell array uses a wrapper to interface to a 
PLB bus. The UART Lite module manages system level data transfers with the 
external host, and the interrupt controller is responsible for informing the primary 
system processor to receive data from the cell array. These two units are soft IP cores 
from the XPS tool and are both connected to the PLB bus. The primary system 
processor acts as a PLB bus master, and all the other connected hardware modules 
operate in slave mode. The block diagram for the embedded system is illustrated in 
Figure 8-10, and the total FPGA device utilization is summarized in Table 8-9. 
 

 
Figure 8-10. Block diagram of the embedded system in FPGA development 

 
Table 8-9. FPGA device utilization summary for the embedded system development 

Number of DCMs 1 out of 8 12% System clock management. 
Number of MULT18X18s 3 out of 136 2% Used by the MicroBlaze. 
Number of RAMB16s 42 out of 136 30% Required by the software 

developments in MicroBlaze.
Number of SLICEs 12,919 out of 13,696 94% Total slice usage, where the 

4-by-2 cell array occupies 
85% of the total slice usage. 
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From section 8.4.2, the maximum clock frequency for a 4-by-2 standalone cell 
array is about 27 MHz, therefore 25 MHz is used as the PLB bus clock in a FPGA 
embedded system. Because of the selected MicroBlaze architecture in XPS, the 
primary processor is forced to operate at the same clock speed as the PLB bus clock. 

 

8.5.2 Communication with the system processor 

Bidirectional communication between the cell array and the primary processor 
(MicroBlaze in this case) is realized through the use of four interface registers, two 
for each direction. An interface register is a 32-bit wide transparent software 
addressable register communicated through the PLB bus. Interface register 0 and 2 are 
used for bidirectional communication handshakes and proper controlling in each 
transmission direction. Register 1 and 3 are dedicated to unidirectional data transfers. 

Although the cell array and the primary processor both operate at the same clock 
speed, communication handshaking still needs to be performed. This is because it is 
desirable to be implement system management software in the primary processor on a 
high-level programming language such as C, in order to gain the design flexibility. 
Hence, signal assignments from the primary processor might not be cycle controllable, 
which would potentially cause action duplications. For instance, by issuing an enable 
signal from the primary processor to the global input port in a cell array, a data 
transmission between two blocks is initiated. An improper release of the enable signal 
will trigger multiple data transfers and hence result in data package duplications. 

To maintain integrity of each data package, data transmissions in the embedded 
system are treated as blocking read/write operations, and a two-phase communication 
protocol is engaged to accomplish each transaction. A data transfer can be initiated by 
issuing an action command from the primary processor and completed by detecting an 
acknowledgement action from the cell array block. The acknowledgement action is 
handled by the cell array wrapper design, i.e. the PLB bus driver as shown in Figure 
8-10. When a communication action from the primary processor is discovered, 
additional control logics is activated to monitor feedback signals from the cell array. If 
no stalling signal is detected in the following clock, control signals to the cell array is 
released and the corresponding control commands in the interface register is erased. 
The primary processor should keep track of the corresponding interface register after 
sending a communication command, and this can be released by detecting an erased 
control bit position from that register. Communication control commands and bit map 
arrangement for the interface registers are summarized in Table 8-10 and Table 8-11, 
respectively. 

A global data RX interrupt is used in data transmissions from the cell array to the 
primary processor, which releases the host from data polling. Currently, this is the 
only interrupt enabled in the system implementation. However, if more interrupt 
events exist in an embedded system, the global data RX event should still be kept with 
the highest priority, since any data miss is prohibited. 
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Table 8-10. Interface Communication control commands 

Command Description 
tx_en Data sending enable signal in global I/O TX port. 

dst_id_en GIO destination write enable signal in global I/O TX port. 
cap_ttype Global data transfer package type. 

rx_en Data receiving enable signal in global I/O RX port. 
 

Table 8-11. Interface register bit map arrangement 

Bit map Interface 
register 31 ~ 18 17 ~ 16 15 ~ 2 1 0 

Reserved CAP_TTYPE Reserved DST_ID_EN TX_EN 0 
Unidirectional Bidirectional 

TX data package to the cell array 1 
Unidirectional 

Reserved RX_EN 2 
Unidirectional Bidirectional 

RX data package from the cell array 3 
Unidirectional 

 

8.5.3 Software development 

Software development for the primary processor is performed in C and compiled 
using the GCC compiler. Software flow graphs are shown in Figure 8-11. The main 
program starts by initializing the interrupt controller and a batch of message printouts. 
Thereafter, the system runs in a loop that monitors data inputs from the UART 
interface and handles different user actions accordingly. Unrecognized user inputs are 
discarded and a valid user command activates the corresponding operations in the cell 
array. A complete user command set is listed in Table-Appendix 1, and detailed 
descriptions are discussed in section 8.5.5. A data receiving notification from the 
global I/O port interrupts the sequential process in the main program. Global data 
receiving in the primary processor is handled by an interrupt service routine (ISR) as 
depicted in Figure 8-11 (b). 

In order to run a real application on the cell array, certain configuration 
procedures have to be followed. As an example, a configuration flow graph for the 
FFT implementation is shown in Figure 8-12. Notice that, processor cells in the cell 
array are first configured. This is because reset action in the processor cell will flush 
out all stored values from internal registers, including the communication port 
registers. If processor cells are initialized after memory cell configurations, pre-loaded 
data transfers in communication port registers will be lost. 
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Welcome message 
printout

User command input

Known command?

Run the corresponding 
operations

No

Yes

Interrupt controller 
setup

Data reading from 
interface register

Received data printout

RX control on the 
global I/O port

Return to main 
program

GIO RX ISR

(a) (b)  
Figure 8-11. Software development flow graph in the primary processor, the 
MicroBlaze in current implementation. (a) Flow graph of the main program 
implementation. (b) Global I/O RX port data receiving interrupt service routine. 

 

Memory cell configurations: 
RC(0,1), RC(1,0), and RC(3,1)

CORDIC cell configuration: 
RC(2,0)

<start command>
Start program running in 
processor cells: RC(3,0), 

RC(2,1), RC(1,1), and RC(0,0)

User controls:
e.g. PC register tracing,
system reconfigurations, etc.

Program downloads in processor 
cells: RC(0,0), RC(1,1), RC(2,1), 

and RC(3,0)

<stop command>
Stop current 

program running

<reset command>
Reset processor cell

Program download

Data feeding from global I/O TX 
port

Result gathering from global I/O 
RX port

User action selection
Continue

Go to the corresponding 
configuration entry

Memory initialization 
in Memory Bank 0

Descriptor 0 
configuration

 
Figure 8-12. Implementation flow graph for a time-multiplexed radix-22 FFT 
application. 
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8.5.4 UART bit rate setup 

Considering the maximum system running speed of 25MHz on the target FPGA 
platform, a list of UART bit rates are evaluated to find the maximum achievable 
communication rate. 
As an example, with a bit rate of 9600 bps (bits per second), the required UART 
sampling clock by the Xilinx XPS UART Lite v1.00a core [20] is 16 times higher, 
153.6 kHz (16×9600 bps). With the system running clock 25MHz, the dividable 
integer clock ratio for driving the UART sampling clock is 162 (floor(25 MHz/153.6 
kHz)). Therefore the actual realizable UART sampling clock in the Xilinx UART Lite 
core can be found by dividing the system clock by 162 which results in 154.321 kHz. 
As a consequence, the bit rate error is 0.4694% ((154.321 KHz-153.6 KHz)/153.6 
KHz×100%). According to the specification [20], the bit rate error is considered to be 
acceptable if it is within 5% of the requested rate. Hence, a bit rate of 9600 bps with 
rate error of 0.4694% is an acceptable configuration for the system. 

Using the Microsoft HyperTerminal program as a reference, the supported high 
speed UART bit rates (with the use of a USB to RS232 converter) are evaluated and 
listed in Table 8-12. According to the bit rate error criterion, all acceptable bit rate 
setups are marked in Bold-Italic font, and the maximum usable bit rate in the current 
system implementation is 115,200 bps. 

 
Table 8-12. UART bit rate error evaluation table 

Bit rate 
[bps] 

UART SCLK 
required [Hz] 

System CLK 
[MHz] 

Integer 
CLK ratio

UART SCLK 
actual [Hz] 

Bit rate 
error [%] 

4,800 76,800 325 76,923 0.1603 
9,600 153,600 162 154,321 0.4694 
19,200 307,200 81 308,642 0.4694 
38,400 614,400 40 625,000 1.7253 
57,600 921,600 27 925,926 0.4694 
115,200 1,843,200 13 1,923,077 4.3336 
230,400 3,686,400 6 4,166,667 13.0281 
460,800 7,372,800 3 8,333,333 13.0281 
921,600 14,745,600 

25 

1 25,000,000 69.5421 
 

8.5.5 User interface in serial line 

A transparent user interface in UART line has been designed to provide the user with 
an easy way of controlling the embedded system. Processor cell instructions, memory 
or CORDIC cell configurations, control commands and global data inputs can be 
transmitted through the top level global port communication. In addition, a few 
pre-stored FFT configuration scripts are provided as fast system demonstrations. 
Different user actions can be executed by calling different user commands, as listed in 
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Table-Appendix 1. Bulk data transfers can be accomplished by sending a user defined 
script file. 

To be able to distinguish between different user actions, serial line inputs have 
been divided into three categories: command input, number input and string input. 
Command input is wrapped around by a leading ‘@’ and a trailing ‘#’ sign; string 
input starts with a ‘$’ sign and ends with a ‘#’ sign; number input only accepts pure 
digit inputs 0 ~ 9 and ends with a user input other than digits. For example, the 
following command inputs download an instruction into a processor cell that is 
labeled with GIO ID 0. 

 
>> @g#  // (command input) command ‘g’, destination cell selection. 
>> 0  // (number input) resource cell GIO port ID. 
>> @i#  // (command input) command ‘i’, instruction downloading. 
>> 2  // (number input) the number of instructions to be sent. 
>> $00010002#  // (string input) instruction loading header. 
>> $A8000001#  // (string input) instruction “A8000001”. 

 

8.5.6 User interface in MATLAB 

Based on a transparent serial line interface, a higher level user control platform is 
designed in MATLAB. This interface gives the user a more advanced and flexible 
approach to control the data streams running in and out of the embedded system. For 
example, input data sequences can be generated in MATLAB during run-time and 
result data can be collected and plotted graphically. 

The MATLAB interface works as a front-end user platform, where the serial line 
interface runs in the background. By issuing different user commands, as listed in 
Table-Appendix 2, different function calls will be executed. It is worth to mention that 
using command ‘cmd’ will provide the user a transparent function control in the serial 
line interface for the follow-up command input. 
 

8.6 Conclusion 

A complete radix-22 FFT implementation based on the CGRA has been presented. 
Several FFT mapping alternatives have been discussed and compared. System 
performance evaluations have been carried out based on a pipeline FFT structure as 
well as on a time-multiplexed mapping approach. A 4-by-2 reconfigurable cell array 
has been integrated as a co-processor into an embedded system and eventually 
verified on a Xilinx FPGA board. The outcome from this case study is a fully 
functional 4-by-2 reconfigurable cell array with a manually mapped flexible radix-22 
FFT implementation, where the transform length is run-time reconfigurable between 
32 and 1,024-point. 

From the initial algorithm selection to the final system implementation, all design 
procedures introduced in the generalized system design flow as depicted in Chapter 7 



Chapter 8 – Case study II: Radix-22 FFT 

Page 81 

have been tightly followed in this experiment. 
In comparison to an ordinary DSP solution, the time-multiplexed radix-22 FFT 

implementation on the CGRA exhibits great reconfigurability on the code size and 
system reconfiguration time. Results also show that up to 20% of the total clock usage 
can be saved when using the CGRA with configurations in pursuit of processing 
efficiency, namely with the proper memory descriptor length setup. 
 

8.7 Future work 

8.7.1 Serial line input speed up 

Due to the current UART RX handling in the embedded system, certain character 
input delays have to be inserted when streaming data into the platform, for example 
1-millisecond character delay is needed when sending data from Microsoft 
HyperTerminal program. This is used to ensure the data integrity of each character 
transmission, since other control actions or UART TX events could interrupt the serial 
data receiving and result in data misses. As a main drawback of this scheme, the user 
suffers from a long waiting time for data sending completions. In order to improve 
that, the UART RX interrupt with a suitable length of receiving FIFO should be used 
in the embedded system. Moreover, current primary system processor – the 
MicroBlaze could be replaced by an embedded Power PC core inside the FPGA, 
where a much higher processor clock can be used for system management, such as 
control handlings and information printings, etc. 

Alternatively, data streaming throughput can be improved by using a high speed 
communication interface. One possible solution is to use a TCP/IP socket, which 
provides the user a data transmission rate in the scale of mega bits per second. 
 

8.7.2 Dead lock handling 

According to the communication protocol defined in Chapter 2.3.1, relevant data 
transactions in all resource cells should be suspended if any node in the chain gets 
data stalled. This might cause a data dead lock if something goes wrong in the system 
configuration. For instance, dead lock will occur if running a 64-point FFT 
computation with the use of memory cells configured for 32-point only. In that case, 
entire system will be suspended due to the lack of data inputs in the processing cells. 
Therefore, a system level user action is needed to interrupt the stalled data 
transmissions and to restart the entire system subsequently. 
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9 Conclusion and Outlook 

Coarse-grained reconfigurable architecture (CGRA) coexists with fine-grained 
reconfigurable architecture (FGRA), aimed for higher computing performance and 
reduced system development time. The proposed CGRA is constructed from an array 
of run-time reconfigurable processing and memory cells that are interconnected over a 
hybrid communication network. Based on a series of pre-studies, each of the 
individual cell modules inside the CGRA has been designed, implemented, verified 
and evaluated. The outcome of this work is a system-level exploration on the usage of 
the CGRA targeted for DSP applications, where a time-multiplexed FIR filter and a 
32~1,024-point flexible time-multiplexed radix22 FFT algorithm have been manually 
mapped onto a 4-by-2 reconfigurable cell array, and finally verified on an FPGA 
platform. A list of system performance metrics has been measured and mainly 
presented based on the FFT implementation, which showed that the reconfiguration 
code size in the CGRA outperforms the ordinary DSP processor by a factor of 8, and 
up to 20% of the total execution clock usages can be saved. 
 
Function testing, debugging or running diagnostics on large-scale system architecture 
is always problematic, ability to observe the inner working status of each resource cell 
is therefore essential. The processing cells implemented in CGRA support run-time 
status tracing, where the configuration parameters and operation states can be reported 
upon the user requests. Besides, a few hardware assisted approaches for system-level 
debugging have been proposed throughout chapters, such as the industry standard 
JTAG chain, system BIST and memory content dumping, etc. 
 
Looking forward, applying the CGRA into a wide application domain is a trend. 
However, this requires a series of system-level exploration tools to model, simulate 
and evaluate the use of the CGRA in different application environments, in order to 
extract appropriate design parameters to achieve high performance to a feasible 
hardware cost. Although there are still lots of system-level investigations left under 
considerations, the future of the CGRA is certainly bright. 
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Appendix 

Appendix A – Processor cell architecture 

 
Figure-Appendix 1. Processor cell architecture 
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Appendix B – Processor cell register bank 
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Figure-Appendix 2. Processor cell register bank 
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Appendix C – Processor cell instruction set 

 
Figure-Appendix 3. Processor cell instruction set 
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Figure-Appendix 4. Processor cell instruction set continued 
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Appendix D – Processor cell control flow 

Figure-Appendix 5. Processor cell control flow 
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Appendix E – Processor cell control instruction set 

 

Figure-Appendix 6. Processor cell control instruction set 
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Appendix F – Processing cell register addresses 

 

Figure-Appendix 7. Processor cell register address summary 
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Appendix G – CORDIC cell control flow 

 

Figure-Appendix 8. Control flow of CORDIC cell configuration controller 
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Appendix H – CORDIC cell control instruction set 

Figure-Appendix 9. CORDIC cell control instruction set 



Appendix 

Page 96 

Appendix I – Layout of a 4-by-2 CGRA cell array 

(a) Floorplan (b) Final routed layout 

Figure-Appendix 10. Floorplan and final layout of a 4-by-2 CGRA cell array platform. The 
architecture contains four 16-bit MAC processor cells [RC(0,0), RC(1,1), RC(2,1), 
RC(3,0)], three 8K bits memory cells [RC(0,1), RC(1,0), RC(3,1)] and one 16-bit CORDIC 
cell [RC(2,0]]. The floorplan is designed in Xilinx Floorplanner, which is used as one of the 
user constraints for the automatic place & route process. Design is synthesized, placed and 
routed for exploring the maximum speed, results in a 76% of the FPGA slice usage and is 
capable of operating up to 30.71MHz. Notice that, there are minor deviations on the actual 
cell placement between the final routed layout and the floorplan. But the integrity of each 
resource cell has been preserved. 
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Appendix J – User commands in serial line interface 

Table-Appendix 1. User commands in serial line interface. 

Command Description Parameter 

g Select destination cell ID for global 
I/O communications. 

Resource cell destination ID (number 
input): 0 ~ 7. 

d Send data inputs to the selected 
destination cell. 

a) Data amount (number input); 
b) Data inputs (string input). 

i 
Send instructions or configuration 
packages to the selected destination 
cell. 

a) Instruction amount (number input); 
b) Inst./Config. Inputs (string input). 

s Send “start” command to the 
selected processor cell. None. 

e Send “step” command to the 
selected processor cell. None. 

p Send “stop” command to the 
selected processor cell. None. 

r Send “reset” command to the 
selected processor cell. None. 

t 

Trace control register status from 
the selected destination cell. Two 
consecutive data packages will be 
sent back through global port. 

None. 

c Send special user command to the 
selected destination cell. User command (string input). 

f Memory cell data storage 
initialization (zero filling). 

Memory cell destination ID (number 
input): 1, 2, 7. 

1 Run 32-point radix-22 FFT partial 
configuration script. None. 

2 Run 64- point radix-22 FFT partial 
configuration script. None. 

3 Run 128- point radix-22 FFT partial 
configuration script. None. 

4 Run 256- point radix-22 FFT partial 
configuration script. None. 

5 Run 512- point radix-22 FFT partial 
configuration script. None. 

6 Run 1024- point radix-22 FFT 
partial configuration script. None. 

0 Run 1024- point radix-22 FFT full 
configuration script. None. 

h Command help printout. None. 
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Appendix K – User commands in MATLAB interface 

Table-Appendix 2. User commands in MATLAB interface. 

Command Description Parameter 

cmd 
User command input in serial line interface. The 
follow-up input prompt is a transparent window 
in serial line interface. 

User command in 
serial line interface. 

config 
Send instructions or configuration packages 
from a script file. The script file name is defined 
in “send_config.m”. 

None. 

data Send global data inputs from a script file. The 
script file name is defined in “send_data.m”. None. 

demo Run a script demo: 32 ~ 1024-point radix-22 FFT 
computation. None. 

rxbuf 
Read MATLAB UART RX buffer. This could be 
used to flush out the remaining data packages in 
RX buffer. 

None. 

help Command help printout. None. 
exit Exit user interface in MATLAB. None. 

 
 
 


