Design of Coarse-Grained Reconfigurable

Architecture for Digital Signal Processing

Implementation Aspects

Chenxin Zhang

Master of Science Thesis

February 2009

Department of Electrical and Information Technology, Lund University
Supervisors: Thomas Lenart and Henrik Svensson

Abstract

Abstract

Reconfigurable computing is an emerging trend for embedded system design. With
the use of platform containing a reconfigurable architecture, it is possible to accelerate
arbitrary algorithms that are executing on an embedded system. To achieve high
performance to a feasible hardware cost, the reconfigurable architecture should be a
trade-off between efficiency and flexibility.

This thesis discusses design and implementation of the coarse-grained reconfigurable
architecture targeting for digital signal processing applications. The proposed
reconfigurable architecture is constructed from a mesh of resource cells, divided into
processing and memory cells, which communicate using a combination of local
interconnections and a global hierarchical routing network. The processing cell can
further be distinguished from a generic RISC processor and a CORDIC cell. High
performance local interconnections generate a high communication bandwidth
between neighboring cells, while the global network provides flexibility and access to
external modules.

All the cell modules developed in the reconfigurable architecture are design-time
configurable, where different hardware structure can be generated depending on the
user requests. Besides, the processing and memory cells are run-time reconfigurable
to enable flexible application mapping.

A 4-by-2 reconfigurable cell array containing four 16/32-bit RISC processor cells,
three smart memory cells and one configurable CORDIC cell has been designed and
implemented in HDL, and has been eventually integrated as a coprocessor into an
embedded system. Applications of a time-multiplexed FIR filter and a 32~1,024-point
time-multiplexed radix-2> FFT have been manually mapped onto the constructed cell
array and have been verified on an FPGA platform, the Virtex-II Pro-30-7ff896 from
Xilinx. It is shown that the reconfiguration code size for the mapped FFT
implementation on the cell array outperforms ordinary DSP processors by a factor of
8, and the number of used clock cycles is reduced with ~20%.

Page I

Page 11

Contents

Contents
ADSTIACT ...ttt ettt a e bttt at st et et nt st b et et ne et st enaeneenea I
ACKNOWIEAGEIMENTS........ooeiiieeee ettt ettt ettt et et ae s vl
LiST OF ACTONYIMIS ..ooiiiiieeeee ettt ettt ettt ettt teete s e sbeeteessensesaeas IX
R [1 o g0 To [T o Ao o 1RSSR 1
2 Coarse-grained reconfigurable architecture..............ccccocooiviiviiciccicieeennnne. 3
2.1 Reconfigurable archit@Ctureocvveviieriieiiiecice et 3
2.2 Coarse-grained reconfigurable architecturecccvevcieeriieniieerie e 5
2.3 Local and global commUNICAtIONc.eeeeviieriieeiiieeiieeiie e eree e eeaeesereessee e 6
2.3.1 Communication PrOtOCOLcevuiiiriieriieeiie et eteesteeeieeetee e beeereeesaeennae s 6
2.3.2 NEtWOTK PACKELS ..euviieiiieiieeciie ettt eieeetteeee et e e e e st e sbeesssaeensaeessneesssaessneens 8
2.3.3 NEIWOTK TOULINEZcuvvieiiieiieecieeeieeeieeesiteesiveesteesbeesbaessseeessaeessseessseessseesssessssees 9
2.3.4 NEIWOTK CAPACILY ...vveeeeiieiiieeiieeiiteieestteeteeeiteesiveestreesebeeseseesssaeesseeensseenssesnsnes 10
3 Processor cell arChiteCture. ... 11
3.1 Cell ATCRILECTUTEeeueeieeieeieee ettt ettt ettt ettt ens 11
3.1.1 Design-time architectural configurationcccceecuereuerieriiinieniienienieneeeee 12
3.1.2 Run-time operational configuration...........c.cceecveerveerieercieeeiie e e rveeeeee s 12
3.1.3 Hierarchical SYStEM TESELS.....uuririreririeriieeiieeieeeireerreesbeesreessaeesereessseessseennnes 13
3.1.4 RE@ISTEr DANKoiiiiiiiiieciie ettt et ens 14
3.1.5 Dual and separable ALU...........cccceeviieriiiiiieciie et sre e s e 15
3.1.6 INNET 100D COUNLETccuviiiiieiiieeiie ettt e ettt e e e sireessbaeensaeensseenreenens 16
3.2 Processor INSITUCTION SET......eeiuieriieriieriiertieiieieei ettt ettt ettt ettt 16
33 Pipeling hazardscoccveeiiieeiiieiiieciie ettt e e re e e rae e taeesnbeesnrae e 17
3.3.1 Hazards-handling in TF/ID Stage...........cceeeuieriieerriieeriieerieesreeeieeeeee e eseee e 18
3.3.2 Hazards-handling in ID/EXE Stage.......c.cccccveruireriiieriienieeniiesieeeeeeeeve e 18
3.3.3 Hazards-handling in EXE/WB Stage..........c.cccccvvvriiiniiiniieiieciee e 19
3.4 Performance evaluation in FPGAccccoooiiiiiiiiieeeeee e 20
3.5 CONCIUSION ...ttt et ettt et e e st satesatesatesaneeas 22
3.6 FULUTE WOTK .ot 23
3.6.1 Application specific instruction set processor (ASIP)cccceeevveeviveecveenireennen. 23
3.6.2 In-system reCONfiGUIAtIONcccuvervieriiieiiieeie ettt sree e et e b e e e e e 23
3.6.3 Debugging approaches.........cccoeccvieeiieiciieiiiieerieerrteeieesieeeireesreesseesseessseeenenas 24
4 CORDIC cell arChit@CTUIE.........cooieeeee e 25
4.1 Theoretical back@round............ccceeeiieiiiiriieiiieee e eees 25
4.1.1 CORDIC operations in circular coordinate SyStem...........cccceevuerreerruerreerreeneennn 25
4.1.2 Generalized CORDICccccoiiiiiiiiiiieeieee ettt 27
4.2 Cell ATCRILECTUTEeeutieiieie ettt ettt ettt et e et eas 28
4.2.1 CORDIC KEIMEL ...c.eiiieeieiiiiciieieieee sttt ae e st eneensensesseeneennens 28
422 T/O re@iSter DANKooooiiiiiiiieecieecee e 30
423 Configuration CONtTOIIETc.ceeviiiiriiiiiieie et 30
4.3 Computation accuracy analysis in MATLABcccooiiiiieciiecece e 31
4.4 Performance evaluation in FPGAccccoooiiiiiiiiiieee e 33

Page III

Contents

4.5 CONCIUSION ...ttt ettt et ettt st st saaesatesatesaee e 34
4.6 FULUTE WOTK ...t 34
4.6.1 CoCfICIENt ENETALOTeecvieeiieeciieeriieeeieeeteeeiee e e erereesireesreesssaeessaeesseessseensnes 34

5 Memory cell arChit@ClrUIEccooiovieeieiiceee e 35
5.1 Cell ATCRILECTUTEeeutieiieie ettt ettt ettt et e et eas 35
5.1.1 Operation CONtrOIIET........cceiiiiiieiiieeiie i e e 36
5.1.2 MEIMOTY GITAY ..evveievieeiieeiieesereesreesseeesreeseseessseessseesssseessseassseesssesssssssssseessseennses 38
5.1.3 Memory array considerations in an ASIC implementation..............ccccceveenneenne. 38

5.2 Memory descriptors and cell OPETationsccccveveveeerveerieeriieriee e eiee e e 39
521 FIFO MOAE...cciiiiiiiiiiiieiiectectese ettt sttt st s 39
5.2.2 Sequential ROM MOdE.........ccceereviiiiiieeiiieiiiecieeeieeeiee e esreesreeeteeeereeeseenens 40
523 RAM/ROM MOGCeivieeieieiieiieiieieeie ettt st sse e seenes 41

53 Performance evaluation in FPGAccccoooiiiiiiiiieeee e 42
54 CONCIUSION ..ttt ettt ettt st st satesatesatesaeeeas 43
5.5 FULUTE WOTK ...ttt 43
5.5.1 Memory cell RAM and ROM mode Operations............c.ceevveerrieeereveenveesneennens 43
5.5.2 Memory cell processing throughput improvements.............ccceeeveerveerveenveennne 43
5.5.3 Debugging approaches.........cccceccvieriieeciieeiieeriiesreeeriesieeeereesreesseesseesssneenens 44

6 Router cell arChiteCIUIe ..o 45
6.1 Cell ATCRILECTUTE ..ottt ettt ettt et ete et ens 45
6.1.1 ROULING tADIE......coiiiiiiieciie ettt ettt ettt e e eeses e enseeeneaeeenas 47
6.1.2 Decision unit and arbitration PoliCY........ccccvvevvreriiierciieiiieeiee e 47

6.2 Performance evaluation in FPGAccccoooiiiiiiiiieeeeee e 50
6.3 CONCIUSION ...ttt ettt ettt ettt st st e st e saeesatesaneeas 52
6.4 FULUTE WOTK .ottt 52
6.4.1 IMUIHICASE ..euieniieiiet ettt ettt et ettt e bt e st e b e saee e 52

7 Case study I: Time-multiplexed FIR filter..........cccooiiieviiiiicieeecee, 53
7.1 Theoretical back@round............cceeeiiiiiiiiiieiiie e e e eeeees 54
7.2 MATLAB reference model simulation...........coovevierienienienienienieieseeseeseeseeen 54
7.3 SYSEM ATCHILECLUTEcuvieeiiieeiiieie ettt eee et e et e eeeesae e b e e ssbeessseeessaeessaeensneas 55
7.4 System performance evValuationcccvevcvierciieriiieniie e eree e sreesreesreeeseeenene s 56
7.5 CONCIUSION ...ttt et ettt ettt st st satesatesatesaneeas 59
8 Case study Il: RAadiX-22 FFTcccooiiieieeeeeeeeeeeteeeee et 61
8.1 Theoretical back@round............cccoeeiiiiiiiriieiiieee e eees 61
8.2 MATLAB reference model simulation.........c.ceceevierieniinienienienieieseesieesieeseeee 62
8.3 SYSEM ATCHILECLUTEvvieeiiieiiieeiie ettt eteeeee et e e e staeesebeessbeesnseesssaeessaeensseas 63
8.3.1 RAdiX-27 PIPEINE FFT w.ocoooeoeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeeeees e es e esess e eseeeeeseeae 64
8.3.2 Time-multiplexed radiX-2% FFTcovuoveeeeeeeeeeereeeeeseeeeeeeeseeeeeeseeeseseeesseeseseens 69

8.4 System performance evValuationccceevcvierciieriiieeiieeee e e sreesreesree e eseee s 71
84.1 Radix-2* PIPEINE FET Lottt 71
8.4.2 Time-multiplexed radiX-2% FFTovuoveeeeeeeeeeeereeeeeeseeeseeesseeeseeseeseseeesseesseseens 72

8.5 Embedded system development in FPGA...........ccoooviieiiieniieciiecee e 75
8.5.1 SYSLEIM OVEIVIEWeiiiiieeiiieeiieeiieerteesteesteeeereeereessseessseessseessseeessseessseessseensseens 75
8.5.2 Communication with the SyStem proCessorccccvverirerveercreeriienieeeive e 76

Page IV

Contents

8.5.3 Software developmentcccuveiiieiiieiiie ettt e 77

8.5:4 UART DIt 1A SELUP ..uveeeuviieiieeiieesieesteeeteeeireeteesaeesseessaeessaeessreessseessseessseens 79

8.5.5 User interface in serial liNecoceviiriiriiiiiiiiiieieeecee e 79

8.5.6 User interface in MATLABcccoooiiiiiiiiieeeeeeeeeeee e 80

8.6 CONCIUSION ...ttt ettt ettt st e st satesatesatesaneeas 80

8.7 FULUTE WOTK .t 81
8.7.1 Serial lin€ INPUL SPEEA UP ...ecvvirrrieiiieeiiieiie ettt e sieeereeeiee e eereesreeseseeseseens 81

8.7.2 Dead lock handlingccccvveviiiiiiieiiie ettt s 81

9 Conclusion and OULIOOKcoiiiieieee e 83
BiblOGrapRNY ..ottt ettt reeanens 85
APPENAIX ...ttt ettt ettt ettt ettt st et et e e te ettt e teebe e st e b e eteereessenseereereensans 87
Appendix A — Processor Cell architeCtureecovveriieriieniieciee e 87
Appendix B — Processor cell register bankcccccveeeiiieciiiiiiiiicciecee e 88
Appendix C — Processor cell INStruCtion SEt...........cccveeriieriieriierieeiiieeeeeveesreesreesreesenee s 89
Appendix D — Processor cell control flowcceevvieriieniiieiciieiie e 91
Appendix E — Processor cell control instruction Set............cvevveereveeriieeerieenieerreesreesvee v 92
Appendix F — Processing cell register addreSSesovvierieeriieriiieiiiieerie e esveesreeseee e 93
Appendix G — CORDIC cell control flow.........cccuveiciieiriieriierieecieeciee e 94
Appendix H— CORDIC cell control instruction Stcceeeveerrieerieercieenieenreeeiee e e 95
Appendix I — Layout of a 4-by-2 CGRA cell array.........ccccccvevvieriieniie e 96
Appendix J — User commands in serial 1ine interface..........cccoecvveveiiencrieicienciieeie e, 97
Appendix K — User commands in MATLAB interface..........ccccceevvveriierciiencieenieeeieeeive e 98

Page V

Page VI

Acknowledgements

Acknowledgements

First of all, I am grateful to Associated Professor Viktor Owall and the EIT
department at LTH, for providing me the great opportunity to do my master thesis. It
has indeed been a pleasant and challenging time from which I will have many good
memories.

Most importantly, I would like to express my sincere gratitude to my supervisor PhD
Thomas Lenart. He has not only guided me stepping into this fantastic research area,
but also provided me a strong basis and all possible supports ever since the start of the
project. I appreciate his altruistic sharing of resources and his attitude on devoting
himself into research field. For many of the project meetings, he has to drive after a
whole days' work from Copenhagen all the way back to Lund to make discussions
with me at late evening. I would like to extend my gratitude to Viktor Owall, for
devoting his treasure time in having discussions and providing valuable comments to
me on a day-to-day basis. I would also like to show my appreciation to Viktor Owall
and Thomas Lenart both for their help and advice during the writing process of this
thesis. Further, I am thankful to assistant supervisor Henrik Svensson, for having
fruitful discussions with me during his very busy period documenting his own PhD
thesis.

The friendly and pleasant working atmosphere in the EIT department has played an
important part in making my master study an enjoyable experience. I am grateful to
Peter Nilsson, Joachim Neves Rodrigues, Johan Lofgren, Deepak Dasalukunte, Isael
Diaz, Stefan Molund, Erik Jonsson and all other members in the department for their
friendliness and helpfulness. The project would not have been possible without their
helps. Moreover, the generous electrical and mechanical tool support had facilitated
my work a lot. I feel especially thankful for the extraordinary disc space allotment.

Lund, February, 2009

Chenxin Zhang

Page VII

Page VIII

List of Acronyms

List of Ac

ALU
ASIC
ASIP
BIST
CGRA
CORDIC
DFT
DIF
DIT
DSP
FFT
FGRA
FIFO
FIR
FPGA
FSM
HDL
HPC
/O
ILC
1P
JTAG
LSB
LUT
MAC
MC
MIPS
MSB
PC
PGM
PLB
PPC
RAM
RC
RISC
ROM
RTL
RTR
SCENIC
SDF

ronyms

Arithmetic Logic Unit

Application Specific Integrated Circuit
Application Specific Instruction Set Processor
Built-In Self-Test

Coarse-Grained Reconfigurable Architecture
Coordinate Rotation Digital Computer
Discrete Fourier Transform
Decimation-In-Frequency
Decimation-In-Time

Digital Signal Processing

Fast Fourier Transform

Fine-Grained Reconfigurable Architecture
First In First Out

Finite Impulse Response

Field Programmable Gate Array

Finite State Machine

Hardware Description Language
High-Performance Computing

Input-Output

Inner Loop Controller

Intellectual Property

Joint Test Action Group

Least Significant Bit

Lookup Table

Multiply-Accumulate

Memory Cell

Microprocessor without Interlocked Pipeline Stages
Most Significant Bit

Processor Cell

Program Memory

Processor Local Bus

Power PC

Random Access Memory

Resource Cell

Reduced Instruction Set Computer

Read Only Memory

Register Transfer Level

Run-time reconfiguration

SystemC Environment with Interactive Control
Single-path Delay Feedback

Page IX

List of Acronyms

SQNR
SRAM
TMFIR
UART
VHDL

Signal-to-Quantization-Noise Ratio

Static Random-Access Memory

Time Multiplexed Finite Impulse Response
Universal Asynchronous Receiver/Transmitter
Very High Speed Integrated Circuit (VHSIC) HDL

Page X

Chapter 1 — Introduction

1 Introduction

The use of application specific hardware accelerators (ASICs) is a well known
approach for achieving real-time performance within the budget for physical size and
energy dissipation. However, these circuits require a rather long system development
time and exhaustive testing procedures both before and after the chip fabrication.
Besides, ASICs are by nature tailored for specific applications, they are less flexible
and can hardly be reused by other designs. The fine-grained reconfigurable
architectures (FGRAs), i.e. FPGA, are field reconfigurable. With existing design IP
cores, designers can sometimes gain system development time. However, the use of
FGPAs requires bit level manipulations during system design time, which might not
be the needs by initial requirements. Moreover, FGRAs expose a huge routing area
overhead and poor routing ability. Due to these reasons, coarse-grained reconfigurable
architectures (CGRAs) become a popular choice in many real applications in both
industry and academia.

Emphases in this thesis are placed on discussions of hardware design and
performance evaluations for the proposed CGRA in application of digital signal
processing, whereas the topic on systematic analysis of the coarse-grained
reconfigurable architecture are not a subject of this project. The proposed CGRA is
constructed from an array of resources cells which communicate using local
interconnections and a global hierarchical network. Resource cell is the common
name for all types of functional units, which are divided into processing and memory
cells. All the resource cells are dynamically reconfigurable to support run-time
mapping of arbitrary applications. Each of the individual cells has been implemented
in a hardware description language (HDL) and synthesized based on an FPGA
platform to obtain performance and area metrics. By integrating different resource
cells together, a 4-by-2 reconfigurable cell array containing four 16/32-bit RISC
processor cells, three smart memory cells and one configurable CORDIC cell has
been constructed and verified on an FPGA evaluation board, where applications of a
time-multiplexed FIR filter and a 32~1,024-point time-multiplexed radix-2* FFT have
been experimented.

Chapter 2 briefly describes the basic concepts of the CGRA and network
communications inside the system. Basic structure of the proposed reconfigurable
architecture is introduced, which is constructed from a tile of resource cells and a
communication network. Detailed descriptions on each of the individual resource cell
implementations, including the processor, CORDIC, memory and router cells, are
presented in Chapter 3, 4, 5 and 6, respectively. In Chapter 7, mapping of a
time-multiplexed FIR filter on the CGRA is described, where the basic functionalities
in each resource cell are verified and network communications are tested. In Chapter
8, design of a 4-by-2 cell array and an FPGA based embedded system with the
experimented time-multiplexed radix-2*> FFT application is comprehensively
described, and different algorithm mapping alternatives are discussed and evaluated.

Page 1

Page 2

Chapter 2 — Coarse-grained reconfigurable architecture

2 Coarse-grained reconfigurable architecture

Reconfigurable hardware architectures are emerging as a suitable and feasible
approach to achieve high performance combined with flexibility and programmability.
Compared to conventional fine-grained architectures, coarse-grained architectures
trade mapping flexibility to reduce reconfiguration time and achieve higher
performance using word-level data processing. In this chapter, a coarse-grained
dynamically reconfigurable architecture (CGRA) is briefly introduced. All the
concepts and basic structure of the CGRA are presented based on the exhaustive
pre-studies that have been carried out in previous work [1] and [2], and descriptions in
this chapter are collections of the essential points from [1] and [3].

2.1 Reconfigurable architecture

In contrast to programmable architectures, the reconfigurable architectures enable
hardware programmability. It means that not only the software that runs on a platform
is modified, but also how the architecture operates and communicates. Hence, an
application is accelerated by allocating a set of required processing, memory and
routing resource to adapt to the current operational and processing conditions.

Reconfigurable architectures provide numerous advantages over traditional
application-specific hardware accelerators, such as resource sharing to provide more
functionality than there is physical hardware. Hence, currently inactivated functional
units do not occupy any physical resources, which are instead dynamically configured
during run-time. Another advantage is that a reconfigurable architecture may enable
mapping of future functionality without additional hardware or manufacturing costs,
which could also extend the lifetime of the platform.

The size of the reconfigurable elements is referred to as the granularity of the
device. Fine-grained devices are usually based on small look-up tables (LUT) to
enable bit-level manipulations. These devices are extremely versatile and can be used
to map virtually any algorithm. However, fine-grained architectures are inefficient in
terms of hardware utilization of logic and routing resources. In contrast,
coarse-grained architectures use building blocks in a size ranging from arithmetic
logic units (ALU) to full-scale processors. This yields a higher performance when
constructing standard data-paths, since the arithmetic units are constructed more
efficiently, but the device becomes less versatile. The properties of fine-grained and
coarse-grained architectures are summarized in Table 2-1.

Coarse-grained reconfigurable architectures are arrays constructed from larger
computational elements, usually in the size of ALUs or smaller programmable kernels
and state-machines. The computational elements communicate using a routing
network, as illustrated in Figure 2-1 for an example of such a structure. In this way,
the coarse-grained architecture requires less configuration data, which improves the
reconfiguration time, while the routing resources generate a lower hardware overhead.

Page 3

Chapter 2 — Coarse-grained reconfigurable architecture

Table 2-1. A comparison between fine-grained and coarse-grained architectures.
Development time and design specification refer to applications running on the
platform.

Properties Fine-grained Coarse-grained
Granularity Bit-level (LUT) Word-level (ALU)
Versatility/Flexibility High Medium/High
Performance Medium High
Interconnection overhead Large Small
Reconfiguration time Long (ms) Short (us)
Development time Long Medium
Design specification Hardware Software
Application domain Prototyping, HPC RTR, HPC

Note: HPC — High-performance Computing; RTR — Run-time reconfiguration.

Router

Figure 2-1. An example of a coarse-grained reconfigurable architecture, with
an array of processing elements (ALU) and a routing network.

In contrast to a fine-grained FPGA, course-grained architectures are designed for
partial and run-time reconfiguration. This is an important aspect due to situations
when hardware acceleration is required for short time durations or only during the
device initialization phase. Instead of developing an application-specific hardware
accelerator for each individual situation, a reconfigurable architecture may be reused
to accelerate arbitrary algorithms. Once the execution of one algorithm completes, the
architecture is reconfigured for other tasks.

The possibility to support algorithmic scaling is also an important aspect.
Algorithmic scaling means that an algorithm can be mapped to the reconfigurable
array in multiple ways, which could be a trade-off between processing performance
and area requirements. A library containing different algorithm mappings would
enable the programmer or the mapping tool to select a suitable architecture for each
situation. A low complexity algorithm mapping may be suitable for non-critical
processing, while a parallel mapping may be required for high performance
computing.

From an algorithm development perspective, the coarse-grained architectures
differ considerably from the design methodology used for FPGA development. While
FPGAs use a hardware-centric methodology to map functionality into gates, the
coarse-grained architectures enable a more software-centric and high-level approach.
Hence, it allows hardware accelerators to be developed on-demand, and potentially in

Page 4

Chapter 2 — Coarse-grained reconfigurable architecture

the same language used for software development. Unified programming
environments enhance productivity by simplifying system integration and
verification.

2.2 Coarse-grained reconfigurable architecture

The proposed coarse-grained reconfigurable architecture is constructed from a tile of
W x H resource cells and a communication network, as shown in Figure 2-2. Resource
cell (RC) is the common name for all types of functional units, which are divided into
processing cells (PC) and memory cells (MC). Processing cells implement the
processing functionality to map applications to the CGRA, while memory cells are
used to store data tables and intermediate results during processing. Depending on the
different computational demands, three types of processing cells are provided in the
CGRA: a 32-bit DSP processor with radix-2 butterfly support, a 16-bit MAC
processor with multiplication support, and a configurable CORDIC processor for
advanced function evaluation. The DSP and MAC processors are based on a similar
architecture, with a customized instruction set. Memory cells contain a number of
memory banks that each can be configured to emulate FIFO functionality as well as
supporting random memory access. All the resource cells are dynamically
reconfigurable to support run-time mapping of arbitrary applications. Detailed
architecture descriptions of the processor, memory and CORDIC cells are presented
in Chapter 3, 4 and 5, respectively.

Figure 2-2. Proposed architecture with an array of processing and memory cells,
connected using a local and a global hierarchical routing network. W= H = 8.

An array of resource cells is constructed from a tile template. A tile template is
user-defined and contains the pattern in which processing and memory cells are
distributed over the array. For example, the architecture presented in Figure 2-2 is
based on a tile template of size 2 x 2, with two processing cells and two memory cells.
The template is replicated to construct an array of arbitrary size.

The resource cells communicate over local interconnections and a global
hierarchical network, as illustrated in Figure 2-3 (a) and (b), respectively. The local
network with dedicated wires provides high communication bandwidth between

Page 5

Chapter 2 — Coarse-grained reconfigurable architecture

neighboring resource cells. Hence, it is assumed that the main part of the total
communication is between neighboring cells and through local interconnections. The
global network provides communication flexibility to allow any two resource cells in
the array to communicate. However, transmitting data packets over the global network
suffers from long initial communication latency compared with local data
transmissions. This issue is further discussed in Chapter 6.

<&
-
5

Ls
2
(9]
& o &
A
4
}
Y
L2
2
(3]

M
Iy

(@ | (b)
Figure 2-3. (a) Local interconnections. (b) Router cell with global routing network.

2.3 Local and global communication

2.3.1 Communication protocol

Data
X Valid | RX
Register | Ack Register
Host A Host B
Data
RX | Valid TX
Register | Ack _ | Register

Figure 2-4. Data communication with flow control in the CGRA.

Basic hardware connections for data communications in the CGRA are shown in
Figure 2-4. Communication ports are bi-directional, where each port consists of one
TX line and one RX line, and flow control is used in all data transactions to avoid
overflow [4] and underrun [5].

Flow control is implemented with a valid bit toggled by the data sender,
indicating there is one data package available on the line, and an acknowledge bit fed
back from data receiver, indicating data package has been accepted. Obviously, two
intrinsic steps are involved in each data transmission, referred to as two-phase
protocol, and hence requires at least two clock cycles. This is considered as inefficient
in the CGRA, as the flow control overhead degrades data communication throughput
and will certainly be a bottleneck in applications like data streaming.

Page 6

Chapter 2 — Coarse-grained reconfigurable architecture

By exploring the hardware setup, 1/O port registers in both transmission terminals
are not utilized efficiently in the original two-phase communication protocol, where
two registers are utilized as transparent data path during each transaction, resulting in
transmission delays. To address this problem, the two-phase communication protocol
is revised with inspiration got from the FIFO operation scheme. The idea is to use I/O
port registers in both terminals as transmission buffers, where registers are always
writable as long as there is free space available. The transmission line is only
suspended if both buffers are full, and transmitter has more data to send and no
responding from the receiver side.

Data Data Data
— e ([e)
TX RX
Data Enable Register Valid Register Interrupt Data
— ™ (ouffer) [||7———™ (buffer) e ;
sender receiver
ACK) Enable
R A (8
ACK ACK

Figure 2-5. Hardware setup for FIFO like two-phase communication protocol.

Hardware setup for the FIFO like two-phase communication protocol is shown in
Figure 2-5. The acknowledgement (ACK) signal towards data sending side has two
responders. When data is written into an empty transmission buffer, packet is
automatically acknowledged by the control logics inside that buffer; otherwise the
ACK signal is switched to listen to the succeeding data receiving side when
transmission buffer is full. Hence, the ACK signal can be used to reflect the status of
the buffers in a transmission channel. This provides that the data transmitter can send
at least two packets before getting suspended by a “silent” data receiver, if both
transmission buffers are initially empty. In case when both communication terminals
are synchronized in packet sending and receiving, data transmissions can be carried
out in every clock cycle, thereby overcomes the communication overhead problem
explored in the original two-phase protocol. Figure 2-6 illustrates the timing diagram
of this revised communication protocol.

(1) Assume there is no initial data transmission since system started, the ACK

signal is initialized to state high. Data sender starts transmitting data by
pushing a packet into the transmission buffer at the rising edge of the clock.

{1 j_Data_selld(!I_::ii: | : l | |. I | - | - | - | 8 l_
e e e i B i B
ACK | | | 1 | | [| | |
Dala[31:nj_ 00000 |L: cco:ooozl: [ocooccoa] “
(2)_Transmission_line | © | | | | | | |
Ve [S — t - Te 1 [E—
Data[31 n]* 00000 al: i ooonccaz{ I| ooJ|uncm I
(3)_Data_receiver_side | l @ | J I I | I l
Interrupt . \ [| \
e R]
ACK i i i WO/ [] ! I | / | I [
Data[31:0] |__00000001 | 1 0000000 |1_00000003 | | RN

Figure 2-6. Timing diagram of the FIFO like two-phase protocol.

Page 7

Chapter 2 — Coarse-grained reconfigurable architecture

(2) In consecutive clock cycle, the first data packet is accepted by TX buffer, and
an acknowledgement signal is automatically sent back to the data sender.
When TX buffer is full, data receiving for the following packets will be
determined by the remote RX side.

(3) In the third clock cycle, the first data packet is taken by RX buffer, and the
automatically responded ACK signal allows TX buffer to keep receiving data
from its data sender. Thereafter, both TX and RX buffers are full. So if data
sender has more data to send, responses from the data receiver will determine
the states for the following transactions. In this example, data receiver does
not want to take any data packet at the moment, so all three ACK signals are
pulled down, indicating that transmission buffers are full and a
communication TX stall is asserted to the data sender.

(4) Transmission line is unfrozen along with the first data packet being accepted
by the data receiver.

(5) The following data packets stored in transmission buffers are shifted towards
the RX side in consecutive clock cycles. Again, depending on the response of
the data receiver, the whole transmission line will either be activated or
refrozen. In case the data sender has no more packets to send,
communication TX stall will not be asserted anymore, and both transmission
buffers will be gradually freed when stored data packets are consumed by the
receiving terminal.

2.3.2 Network packets

The routers forward network packets over the global connections. A network packet is
a carrier of data and control information from a source to a destination cell, or
between resource cells and an external host. A data stream is a set of network packets,
and each individual packet is send as a network flow control digit (flit). A flit is an
atomic element that is transferred as a single word on the network, as illustrated in
Figure 2-7.

2x(loga(#IDs))ceiling 2 1 2 32
‘ dst ‘ src ‘ ntype ‘ valid ‘ ptype ‘ data pType = { data, read, write }
nType = { data, config, control }
-~ T_/ —
routing IDs ow actual data

control

Local flit format

Global data packet format

Figure 2-7. Network packet format of local and global data transmission.

A flit consists of a 32-bit payload and a 2-bit payload type identifier to indicate if
the flit contains data, a read request, or a write request. For global routing, unique
identification numbers are required and an additional 2-bit network type identifier
indicates if the packet carries data, configuration, or control information.
Configuration packets contain a functional description on how the resource cells

Page 8

Chapter 2 — Coarse-grained reconfigurable architecture

should be configured, as will be further described in each of the resource cell chapters.
Control packets are used to notify the host processor of the current processing status,
and are reserved to exchange flow control information between resource cells.

2.3.3 Network routing

Each resource cell allocates one or more network identifiers (ID), which are integer
numbers to uniquely identify a resource cell in the CGRA, as shown in Figure 2-8 (a).

RO,O RI,O RLL,O R5.CI

Rayp 3o || FReo Rz
URO:Q

(a) (b) (c)
Figure 2-8. (a) Recursively assignment of network IDs. (b) A range of

consecutive network IDs are assigned to each router table. (c) Hierarchical
router naming as Riygex ievel-

A static routing table is stored inside the router cell and used to direct traffic over
the network. At design-time, network IDs and routing tables are recursively assigned
for resource cells by traversing the global network from the top router. Recursive
assignment results in that each entry in the routing table for a router R;;, where i is the
router index number and / is the router hierarchical level as defined in Figure 2-8 (c¢),
is a continuous range of network IDs as illustrated in Figure 2-8 (b). Hence, network
ID ranges are represented with a base address and a high address. How the routing
table is utilized in data transactions is further discussed in Chapter 6.

A link from a router R;; to a router R;;+; is referred to as an uplink. Any packet
received by router R is forwarded to the uplink router if the packets network ID is not
found in the router table. A router may only have a single uplink port, else the
communication path could become non-deterministic. A hierarchical view of the
router interconnects is illustrated in Figure 2-9.

i'o
interface

Vo
interface

/o
interface

Figure 2-9. Hierarchical view of the router interconnects and external interfaces.

Page 9

Chapter 2 — Coarse-grained reconfigurable architecture

2.3.4 Network capacity

When the size of a CGRA increases, the global communication network is likely to
handle more traffic, which requires network enhancements. A solution to improve the
communication bandwidth is to increase the network capacity in the communication
links, as shown in Figure 2-10 (a). Since routers on a higher hierarchical level could
become potential bottlenecks to the system, these routers and router links are
candidates for network link capacity scaling. Thus, this means that a single link
between two routers is replaced by parallel links to improve the network capacity. A
drawback of this approach is the increased complexity, since a more advanced router
decision unit is required to avoid packet reordering. Otherwise, if packets from the
same stream are divided onto different parallel links, this might result in that each of
the individual packets arrive out-of-order at the destination.

Another way to improve the communication bandwidth is to insert additional
network paths to avoid routing congestion in higher level routers, referred to as
network balancing. Figure 2-10 (b) shows an example where all R;; routers are
connected to lower the network traffic through the top router. Additional links may be
inserted between routers as long as the routing table in each network router is
deterministic. When a network link is created between two routers, the destination
router's reachable IDs are inserted in the routing table for the source router.

(a) (h)
Figure 2-10. (a) Enhancing the router capacity when the hierarchical level
increases. (b) Enhancing network capacity by connecting routers at the same
hierarchical level.

Page 10

Chapter 3 — Processor cell architecture

3 Processor cell architecture

The processor cell is one of the main building blocks in the CGRA, which is used to
handle computational operations for the mapped applications. In addition, it can
potentially be used to control the operations of surrounding cells. Some of the
hardware resources in the processor cell are configurable during system design-time
and a few run-time control possibilities are provided for dynamic reconfigurations.

Hardware implementation of the processor cell was initiated and constructed in a
previous work [3], where the basic cell architecture and functionalities have been
comprehensively described. In this project, the processor instruction set has been
extended based on the needs for intended DSP applications, and a few architectural
limitations have been explored and fixed during system developments.

3.1 Cell architecture

The processor cell is similar to conventional RISC core, which contains a program
memory, general purpose registers (GPR), and organized into pipeline stages. In
contrast, data memory is not located inside the processor cell, but can be reached by
connecting one or more external memory cells, either through the local or global
routing network. Bidirectional communication I/O ports are provided for exchanging
data with surrounding cells, and the I/O port registers can be accessed in the same
way as the GPRs. Figure 3-1 shows the block diagram of a processor cell. Due to the
absence of internal data memory, processor pipeline consists of four stages:
instruction fetch (IF), instruction decode (ID), execution (EXE) and write back (WB).
A more detailed architectural schematic of the processor cell is presented in
Figure-Appendix 1.

Local IO ports Global |0 port
(]
IF/ID ID/EXE EXE/WB

1 Instruction
controller

ILC

i

Branch
- PC » PGM > -1 ¢]
" 5
| Register bank =
[
Local 10 port(s) ©
Global 10 port(s) 8

Operation
controller
Forwarding

Figure 3-1. Internal building blocks in a processor cell. Optional
function modules are shaded in gray.

Page 11

Chapter 3 — Processor cell architecture

3.1.1 Design-time architectural configuration

Configurability is one of the features in the processor cell design. The basic
architecture can be configured with more advanced features during system
compilation time, such as the processor data bus width, the number of I/O ports,
barrel shifter and so on. This flexibility allows the user to balance the required
performance of the target application against the logic area cost of the processor cell.
All possible configuration parameters are summarized in Table 3-1.

Table 3-1. Possible design-time configuration parameters in the processor cell.

Item Value range Default value Configurability

Data bus width [bits] 16 (MAC), 32 (DSP) 32
General purpose registers 1~19 8
Program memory depth | Integer multiple of 2, 64 Design-time
(wordlength = 32 Byte) e.g. ..., 064,128, ...
Local I/O ports 1~8 8
Global I/O ports 1 1 Currently not configurable

. . No, automatically enabled
Accumulator Enable, Disable Disable)

in the MAC processor.

Barrel shifter Enable, Disable Disable Design-time

By choosing different data bus widths, the processor cell can be configured to
operate in two modes: the 16-bit MAC processor with multiplication support, and the
32-bit DSP processor with radix-2 butterfly support. The MAC processor uses a
parallel move instruction to split and join 16-bit internal registers and 32-bit fixed
length /O port registers. In addition, a 48-bit accumulation (ACC) unit is
automatically enabled when the MAC processor is selected. From a hardware cost
perspective, the 32-bit hardware multiplication function is not supported in DSP
processor. Instead, the real and complex valued multiplications can be processed
through the more advanced arithmetical co-processing unit, the CORDIC cell, as
presented in the following chapter. The number of global I/O ports is currently not
configurable, where the only port available is shared between normal data transferring
and system configuration package handling. Based on different data bus widths, either
a 48-bit or a 64-bit barrel shifter can be selected. The number of bit shifts can be
specified by using instruction flags (refer to section 3.2), where the maximum bit
shifts supported is 16 bits per clock cycle. Due to the large hardware requirements, the
barrel shifter is disabled by default.

3.1.2 Run-time operational configuration

A few control possibilities are provided to the user to configure the processor cell
during run-time, as listed in Table 3-2.

Page 12

Chapter 3 — Processor cell architecture

Table 3-2. Possible run-time configuration parameters in the processor cell.

Item Option Configurability
Instruction download Full, partial
Program counter value update Instruction address)
Run-time

Operation control and debug | Start, stop, reset, single step

Running status tracing —

Run-time configuration is handled by a dedicated controller inside the processor
cell, referred to as an operation controller and shown in the block diagram in Figure
3-1. The 32-bit configuration data packets are sent over the global network, where the
network type identifier is specified as “config”. During system run-time, the operation
controller keeps track of data packages received from the global I/O port. When a
configuration package is detected, the corresponding control actions are sequentially
executed. The operation controller unit is controlled by a finite state machine (FSM),
and a detailed control flow graph is shown in Figure-Appendix 5.

Each configuration packet contains a header and a payload, where the header
specifies the target address and size of the payload data. A processor cell has two
run-time reconfigurable parts, a program memory and a control register. The program
memory is indexed from address 1, where location 0 is reserved for the control
register. Several different program sections can be stored in the program memory,
where the user can reconfigure the program counter value on the fly in order to select
which program section to execute. The control register contains configuration bits to
start, stop, reset and single-step the processor. The complete configuration package
format is presented in Figure-Appendix 6, where an example of run-time
reconfiguration for the processor cell is shown in Figure 3-2.

0 Tsize =4 Taddr =10 ‘ w
1 | ADDI$1, SL2, 36 . .
4 instructions are
2 | ILC16 loaded into the
3 [ADD $L1, $L0, $1 program memory
@ address 10
4 |ENDO
0 | Teize =1 Tagar =0 ‘ W
- start command
1| {start} ‘ PC=9 } in control register

Figure 3-2. 32-bit configuration packets. Configuration of a processing cell,
including program memory (T, > 0) and control register (Tuagr = 0).
Configuration headers are shaded in gray.

3.1.3 Hierarchical system resets

Three levels of system resets are used in the processor cell design, as illustrated
in Figure 3-3. The top level processor cell reset is hard wired to the cell 1/O port,
which initializes the entire processor pipeline and program memory. The lower two
levels of reset signals are derived from the processor cell reset and are controlled by

Page 13

Chapter 3 — Processor cell architecture

the operation controller. The processor pipeline reset initializes all internal registers
including the GPRs, I/O port registers and the pipeline stage resisters, while the
pipeline register reset only flushes out data contents stored in the pipeline stage
registers.

Processor cell reset

Processor pipeline reset

Pipeline register reset

Figure 3-3. Hierarchical system resets.

3.1.4 Register bank

The 32 allocable address spaces in the register bank are sequentially ordered and
partitioned into four divisions: general purpose, local I/O, global /O and special
purpose register (SPR) bank. All register banks are transparent and accessible for the
user except for some of the SPRs. Table 3-3 summarizes four different partitions in
the register bank and their corresponding accessibilities. Notice that, three of the
register addresses are shared between the GPRs and the SPRs.

Table 3-3. Address space partitions and accessibility summary for the register bank.

Register bank partition Allocated/shared address space Accessibility
GPR 0~18
Local I/O registers 19 ~26 Yes
Global I/O registers 27

8 | GIO destination ID register
9 | Inner loop counter
Inner loop program counter

10 i No
address register
SPR
28 | Program counter
29 | ALU status register
30 | Low 16-bit ACC register
Yes

31 | High 32-bit ACC register

The I/O port registers are directly accessible in the same way as the GPRs. Hence,
no addition operations are required to move data between registers and ports, which
significantly increase the processing rate [1]. As an example, the following instruction
adds an input operand which is loaded from a GPR ($1) to an immediate value (10),
and the sum is sent through a local I/O port.

ADDI SL2, $1, 10 //$1+10=>5L2

Page 14

Chapter 3 — Processor cell architecture

A program instruction that accesses I/O port register for data receiving is
automatically stalled until data becomes available. Similarly, a data sending
instruction cannot proceed until the corresponding port register is writable.

3.1.5 Dual and separable ALU

A conventional ALU takes two input operands and produces a single result value. In
contrast, the DSP and MAC processors include two separate ALUs to produce two
result values in a single instruction. This is useful when computing a radix-2 butterfly
or when moving two data values in parallel [1].

Each 32-bit ALU data path can be separated into two independent 16-bit fields,
where arithmetic operations are applied to both fields in parallel. This can be used
when operating on complex valued data, represented as a 2x16-bit value. Hence,
complex values can be added and subtracted in a single instruction [1]. Block diagram
of the ALU in the processor cell is illustrated in Figure 3-4.

opa

opb

>
]
-

Ny vy
il + é’ +
;e
;
Yy

opa_lo

opb_hi
opa_hi
opb_lo

—P» out0

|
| —p out1

I
P TR .-

>
IC

N
L

opa

Logical
operators

opb LA 4

3130 — 1 0
LX) P mac_out

opa(0 ~ 15)

opb(0 ~ 15)

Figure 3-4. Block diagram of the ALU in the processor cell. Wordlength of
the data path opa_lo, opa_hi, opb_lo and opb_hi are one-half of the data bus
width opa and opb, respectively. Data bus opa and out(have the fixed
wordlength of 32 bits, whereas opb and outl are dependent on the processor
data bus width, e.g. 16 bits in the MAC processor and 32 bits in the DSP
processor. ALU [consists of adder low and adder high, and ALU 2 is
made up of sub_low and sub_high. Multiplier is enabled only in the 16-bit
MAC processor.

Each time when a computation is performed inside the ALU, result status from all
computational operators are collected and stored in a 32-bit status register (MSR), as
summarized in Table 3-4. This can be used for instance when checking the
computation overflows, detecting negative results and conditional program branching,
etc. Currently, the accessibility of the ALU status register is not yet supported, which
requires further development.

Page 15

Chapter 3 — Processor cell architecture

Table 3-4. Bit map of the ALU status register (MSR).

Bit position | Flag Description
0 70 | Zero flag of adder low and logical operators
1 zl | Zero flag of adder_high
2 z2 | Zero flag of sub_low
3 z3 | Zero flag of sub_low
4 n0 | Negative flag of adder low and logical operators
5 nl | Negative flag of adder high
6 n2 | Negative flag of sub_low
7 n3 | Negative flag of sub_high
8 c0 | Carry flag of adder low and logical operators
9 cl | Carry flag of adder high
10 b0 | Borrow flag of sub low
11 bl | Borrow flag of sub high

12 ~31 --- | Reserved

3.1.6 Inner loop counter

A special set of registers are used to reduce control overhead in compute-intensive
inner loops. The inner loop counter (ILC) register is loaded using a special instruction
that stores the next program counter address. Each instruction contains a flag that
indicates end-of-loop, which updates the ILC register and reloads the previously
stored program counter [1].

3.2 Processor instruction set

All processor instructions are defined in 32-bit format. Depending on different types
of input operands, instructions are grouped into two categories: type A uses only
registers as operands and #ype B uses immediate value. The different instruction types
are identified by the MSB value of the instruction operation code (OPCODE). Two
basic instruction templates are shown in Table 3-5. One additional option in type A
instructions is a 6-bit function flag. The flag directs the processor cell to carry out
additional function while executing the current instruction. Examples are the flag that
ends an inner loop, or the flag that accumulates resulting values from data
multiplications.

Table 3-5. Two basic instruction templates for the processor cells.

Type 31~26 25~21 | 20~16 | 15~11 10~6 5~0
A OPCODE DO Dl SO S1 Flags
B OPCODE DO SO Immediate

Page 16

Chapter 3 — Processor cell architecture

A complete list of instruction set with all possible instruction flags is presented in
Figure-Appendix 3 and Figure-Appendix 4. Worth mentioning is that, a few
specialized instructions have been designed for the processor cell based on the
frequently used operations in DSP applications. The radix-2 butterfly, 32-bit data
swap and double data move instructions are examples of such.

The branch type instructions are handled in the /D pipeline stage. Thereby, two
execution clocks are required to perform a branch-taken operation: one normal
instruction clock and an additional clock cycle to flush out the pipeline stage registers.

3.3 Pipeline hazards

There are situations, called hazards, which prevent the next instruction in the
instruction stream from executing during its designated clock cycle [8]. Pipeline
hazards in a processor can be divided into three types: structural, data and control
hazards. Structural hazards arise from resource conflicts when the hardware cannot
support all possible combinations of instructions simultaneously in overlapped
execution [8]. Data hazards are caused by the data dependences between two adjacent
instructions. Control hazards arise from instructions that change the value of program
counter, such as program branching. For a single processor cell in the CGRA, there
are at least six non-maskable pipeline hazards, where structural hazards generated
from program execution are not included. All possible pipeline hazards are ranked
according to their significance, as listed in Table 3-6.

Table 3-6. Priority of all possible pipeline hazards in a processor cell

Priority Hazard Hazard type
1 (Highest) System reset Control hazard
2 Program execution done Control hazard
3 User control Control hazard

4 Data receiving (RX) stall Data hazard

5 Data transmission (TX) stall Data hazard
6 (Lowest) Program branch Control hazard

System reset has the highest priority among all pipeline hazards, and the program
execution done event comes after. These are used to ensure that all processor pipeline
stages can be flushed and suspended in time. The user control events are ranked at the
third level, since the user should be able to determine the current running status of the
processor cell, e.g. starting or stopping data communications. Data RX stall event has
a slightly higher priority than the TX stalling, which is considered to prevent any data
package lost.

Hazards in pipelines can make it necessary to stall the pipeline. Basic design
criterions to handle the pipeline hazards are presented in [8], and are repeated here:

a) When an instruction is stalled, all instructions issued later than the stalled

instruction — and hence not as far along in the pipeline — are also stalled.

Page 17

Chapter 3 — Processor cell architecture

b) Instructions issued earlier than the stalled instruction — and hence farther
along in the pipeline — must continue, since otherwise the hazard will never
be cleared. As a result, no new instructions are fetched during the stall.

3.3.1 Hazards-handling in IF/ID stage

In IF/ID stage, “bubbles” (NOP instructions) are inserted into the following pipeline
stages during the system reset and the program execution done hazards. This is
because no instruction should be issued after resetting the entire system and before
receiving any commands from the user, or there is no more instruction to be issued
after executing a program section. Hazards-handling in ID/EXE stage are summarized
in Table 3-7.

Table 3-7. Handling of pipeline hazards in IF/ID stage.

Priority Hazard Handling
: a) Reset program counter value;
1 (Highest Syst t) .
(Highest) ysiem rese b) Insert “NOP” instruction.
. a) Preserve program counter value;
2 P tion d) .
rogratn execution done b) Insert “NOP” instruction.
3 User control
Data receiving (RX) stall | Preserve pipeline registers.
5 Data transmission (TX) stall
a) Update program counter value;
6 (L t P branch . .
(Lowest) rogtam branc b) Insert “NOP” instruction.

3.3.2 Hazards-handling in ID/EXE stage

For the program execution done hazard in ID/EXE stage, all pipeline registers are
updated, which ensures that remaining instructions in the pipeline stages can still be
executed. Since bubbles have already been inserted in the IF/ID stage during this
hazard, no special handling should be made here.

During the user control hazard, all current program executions are hanged up.
Additionally, register control signals in the EXE stage are cleared, because the
duplicated arithmetical operations in the EXE stage should be prohibited, such as the
value accumulations in ACC. Furthermore, all the RX units are suspended during this
hazard, which ensures that no duplicated acknowledgment signals are transmitted to
the data senders. Handling of the TX units is not carried out in the ID/EXE stage
during the user control hazard. This is because relevant controlling should be kept
close to the place where the target objects are located — that is the WB stage for the
TX units in this case.

In addition to the handling in user control hazards, two special control operations
are carried out during the data RX stall hazard. Firstly, not all of the RX units are

Page 18

Chapter 3 — Processor cell architecture

suspended during this event, whereas units that generated RX stalls will continue
receiving data from their data sender until the expected data package arrives. Another
special handling is that, all register control signals in the WB stage are cleared during
this hazard. Considering a case where a program instruction forwards a data packet
from a RX port to a TX port, if the RX unit is stalled due to the lack of incoming data
packet, a RX stall hazard is asserted. In this case, data sending actions in the TX unit
should be suspended until the required data packet is available. Hazards-handling in

ID/EXE stage are summarized in Table 3-8.

Table 3-8. Handling of pipeline hazards in ID/EXE stage.

Priority Hazard Handling
1 (Highest) System reset Flush pipeline registers.
2 Program execution done Update pipeline registers.
a) Flush register control signals in the
EXE stage;
3 User control b) Suspend RX units;
c) Preserve other pipeline registers.
a) Flush register control signals in the
EXE and WB stages;
4 Data receiving (RX) stall | b) Suspend RX units that did not
generate RX stall;
c) Preserve other pipeline registers.
a) Flush register control signals in the
5 Data transmission (TX) stall EXE stage;
b) Preserve other pipeline registers.
6 (Lowest) Program branch Update pipeline registers.

3.3.3 Hazards-handling in EXE/WB stage

Table 3-9. Handling of pipeline hazards in EXE/WB stage.

Priority Hazard Handling
1 (Highest) System reset Flush pipeline registers.
2 Program execution done | Update pipeline registers.
a) Flush register control signals in the
3 User control WB stages;
b) Preserve other pipeline registers.
4 Data receiving (RX) stall | Update pipeline registers.
a) Suspend TX units who did not
5 Data transmission (TX) stall generate TX stall;
b) Preserve pipeline registers.
6 (Lowest) Program branch Update pipeline registers.

Page 19

Chapter 3 — Processor cell architecture

Similar design criterion as described in the preceding section can be applied in
EXE/WB stage to handle all possible pipeline hazards, as summarized in Table 3-9.

3.4 Performance evaluation in FPGA

To explore the performance metrics, processor cell with different configuration
parameters have been synthesized for the target FPGA platform, the Virtex-II
Pro-30-7{f896 from Xilinx. All results are obtained after the design synthesis. Two
kinds of RTL synthesis processes have been carried out, one for extracting the
maximum operation speed and the other for exploring the minimum hardware usage.
Default compilation constraints are used during the RTL synthesis, and the actual
synthesis work is carried out in Xilinx XST wversion 10.1.03. All possible
configuration parameters for the processor cell have been listed in Table 1-1. Here,
the size of the program memory and the number of GPR remain unchanged during the
entire evaluation process, where the values are set to 32Bx64 and 16, respectively. All
the synthesis results are listed in Table 3-10.

Table 3-10. Performance evaluation of the processor cell based on an FPGA device.

Maximum Minimum .
. . speed area Differences
Configuration - - -
Slices [MHZ] Slices [MHZ] Slices [MHZ]
LIO=2 1,149 | 5097 | 1,161 | 41.51 -12 9.46
Data bus BS=No LIO=4 1,240 | 51.06 | 1,243 | 41.51 -3 9.55
width = 16-bit, LIO=8 1,471 | 56.68 | 1,415 | 41.67 56 15.01
ACC=Yes, LIO=2 1,320 | 40.73 | 1,303 | 30.65 17 10.08
GPR=16 BS=Yes LIO=4 1,435 | 40.12 | 1,405 | 30.68 30 9.43
LIO=8 1,607 | 40.47 | 1,574 | 31.82 33 8.65
LIO=2 1,579 | 56.42 | 1,538 | 42.33 41 14.09
Data bus BS=No LIO=4 1,669 | 55.38 | 1,636 | 42.27 33 13.12
width = 32-bit, LIO=8 1,833 | 57.00 | 1,835 | 42.33 -2 14.67
ACC=No, LIO=2 1,684 | 40.63 | 1,697 | 32.82 -13 7.81
GPR=16 BS=Yes LIO=4 1,795 | 40.08 | 1,803 | 32.56 -8 7.52
LIO=8 1,992 | 40.14 | 2,018 | 32.86 -26 7.28

Similar results are reported from two synthesis processes, both for hardware slice
usage and maximum operation speed. However, this is only true on an FPGA platform,
as the utilized arithmetic multiplier is one of the hardware macros provided by the
FPGA device. Thereby slice usage of the hardware multiplier is not counted in the
synthesis report. From a previous ASIC implementation attempt based on a 0.13um
CMOS cell library [3], about 5% area and over 250 MHz speed differences can be
found from these two different synthesis approaches.

Page 20

Chapter 3 — Processor cell architecture

Referring to the plots shown in Figure 3-5, hardware usage changes linearly with
the variation of system configurations. The 32-bit DSP processor in general uses
about 400 more FPGA slices than the 16-bit MAC processor on the target platform,
and approximately 150 slices can be saved if the barrel shifter is excluded.

FPGA slice usage exploration in max. speed synthesis

2,500

2,000 /

1,500 -
—4—16-hit MAC, no BS

1,0C0 == 16-bit MAC, BS
32-bit DSP, no B>

FPGA slice usage

500

32-bit DSP, BS

0 T T
Li0=2 LI0=4 LIO=8

The number local /0O ports

Figure 3-5. FPGA slice usage exploration based on an FPGA platform. BS
is short for Barrel Shifter.

Analysis on the critical timing path for the processor cell design is performed in
two phases. Firstly, all pipeline stages inside the processor cell are synthesized as a
stand-alone building block. This is considered to get an impression on the capable
running speed of the self-made logics, as the program memory is realized by using
block RAMs inside the FPGA device, which has fixed hardware properties. In the first
evaluation process, the MAC unit appears in the longest timing path, where over 60%
of the total signal delays are reported from its internal data path, as illustrated in

Figure 3-6.

[CONST] ALU_16

ALU LO(16) — I

2 _[% N 1% e EN

© 4 M10f—~

e ° % |Loce) | -y LACC

oPB . o Ot G (16-bit)

16/32 | e CLK —»| wen
ID_OUT_IMM (1) 1 |
OUT| \32) [

I

EN

HACC

(32-bit)

WEN
32, |

| I

Figure 3-6. Critical timing path in the pipeline stages.

One solution to address this problem is to use a pipelined hardware multiplier and
better adder/subtractor ' implementations for the MAC unit, for instance the

! Based on the Xilinx FPGA platform, the “ripple carry adders” are reported from the automatic
synthesis process.

Page 21

Chapter 3 — Processor cell architecture

coarse-grained multiplier and look-ahead adder, respectively. However, this solution
results in additional hardware requirements to allow increased operation speed, which
is a matter of design trade-off between hardware area and system performance.

In the second evaluation phase, the processor cell is synthesized and analyzed. By
tracing the synthesis report, maximum operation speed of the entire processor cell
suffers from an architectural design issue. Operations on the program memory are
triggered on the falling edge of the system clock, which is considered to ensure the
setup and hold time for control signals from pipeline registers. As a consequence,
demanded timing constraint is pushed to the processor pipelines, as all combinatorial
operations have to be accomplished within half of the execution clock. Obviously, a
solution to overcome this problem is to use the same clock edge when triggering the
program memory as well. But due to the signal propagation delays, instructions issued
in the ID stage will be delayed for two clock cycles compared to the program counter
value in the IF stage. This might require additional control logic for pipeline hazards,
which needs to be further considered during future design optimization.

3.5 Conclusion

A single-issue RISC processor cell developed for the CGRA has been presented in
this chapter. From a viewpoint of hardware architecture, processor cell in the CGRA
is constructed from four pipeline stages, whereas data memory is located outside the
cell. This is one of the main differences between the processor cell and the
conventional RISC core, as data memories are global system resources that are
distributed over the whole platform and are shared by all surrounding cells in the
CGRA.

Processor cell is characterized from its static configurability and dynamic
reconfigurability. Depending on different user requirements, the flexible hardware
structure makes the processor cell possible to be configured during system
design-time. Two of the processor cell configurations have been given as examples in
this chapter, namely the 16-bit MAC processor with hardware multiplication support
and the 32-bit DSP processor with radix-2 butterfly support. Run-time reconfiguration
on the processor cell is achieved through an internal operation controller and a nested
control register. By sending configuration packages over the global routing network,
the user is able to download new program segments, update the program counter
address and control running status of the processor cell, etc.

Due to the targeted application field of the reconfigurable cell array platform, i.e.
applications in digital signal processing, the processor cell has been enhanced with a
few DSP operations, such as the radix-2 butterfly, data swap and double data move
instructions.

Six non-schedulable pipeline hazards and their corresponding handling have been
described in this chapter. Based on the different significance inside the processor cell,
all possible pipeline hazards are assigned with the priority, and are handled internally
without the user interactions.

Different performance metrics for the processor cell have finally been evaluated.

Page 22

Chapter 3 — Processor cell architecture

By analyzing the critical timing path, an architectural design issue has been explored,
which has dramatically influenced the system performance. Therefore, further system
optimizations are needed in future work, where a speedup factor of about 2 is
speculated.

On software level, processor cells are currently programmed in assembly
language and manually translated into binary codes. Any of the design automation
tools, such as the assembler or C compiler, program optimizer and function emulator,
etc., is not covered in this project. A system exploration framework, the SCENIC,
developed in previous work [1][2][6][7] can be a good start point for further study and
developments.

3.6 Future work

3.6.1 Application specific instruction set processor (ASIP)

Generally, design of the system architect is dominated by the requirements from the
target application field, where system performance can be characterized from many
different aspects, such as the operating speed, hardware area, power consumption and
design flexibility, etc. Hence, instead of integrating a generic processor cell on silicon
which can cover a broad range of applications, it is often sufficient to use an
application specific instruction set processor (ASIP) that is optimized for a narrow
range of applications. Optimizations may be performed at the micro- architecture
level, so that functional units and memory system are tuned to the specific application.
Furthermore, it may include exploring instruction- or data-level parallel architectures.
However, the most characterizing for an ASIP is the instruction set customization [7].
For instance, the MAC operation is essential in a processing intensive application
such as the audio streaming, but this is not so critical in a system that has the main
constraints on the hardware design area, whereas the timing requirements are relaxed.
Therefore, it is desirable to have a flexible control on forming the processor
instruction set. This can be achieved by packing instructions into different categories,
and only enable the ones required by the specific application field in system
design-time.

3.6.2 In-system reconfiguration

The run-time system reconfiguration is one of the key points in the CGRA. Currently,
this is achieved through interactions between the host of the reconfigurable system
and the resource cell, where the host could either be the user or an external function
block. Either way, this approach demands data communications over the global
routing network, sometimes might even require off-chip data transmissions. This is
known to be inefficient due to the data communication latency, and hence causing the
increased reconfiguration time. One solution to address this problem is to let the

Page 23

Chapter 3 — Processor cell architecture

processor cell support more global packet sending types, i.e. to support the “config”
type, so that processor cells will have the possibilities to reconfigure their surrounding
cells. By doing so, the scheduled system reconfigurations can be managed by using
one of the processor cells inside the CGRA, or by using the processor cells nearby the
target objects, where the configuration package sending can be kept internally over
the high speed local network, thereby further shortens the reconfiguration time.

3.6.3 Debugging approaches

Although a few run-time control possibilities have been provided in the processor cell
to be able to for instance trace the operation status and step through program sections,
it is in general far too simple to be used for diagnosing problems, especially for
complex program executions, as the ability of controlling and observing the internal
registers is lacking. Several advanced debugging approaches can be used to improve
the controllability and observability on a testing platform, two of them are proposed
here. Firstly, the industry standard joint test action group (JTAG) chain is the most
straightforward approach to use, because all the internal data contents of interests can
be serially clocked out, if the corresponding internal registers are replaced with JTAG
scan registers. Secondly, the built-in self-test (BIST) can be used as an additional
method to verify basic functionalities of the system. If the in-system reconfiguration
feature mentioned previously can be realized, the BIST is supported automatically by
the CGRA without any additional hardware costs. Since one of the processor cells can
be programmed as a system master that can send test patterns serially to the other
resource cells, compare the processed outputs with golden references, and finally send
the test report to the user.

Page 24

Chapter 4 — CORDIC cell architecture

4 CORDIC cell architecture

The CORDIC cell implements a generalized coordinate rotation digital computer
(CORDIC) algorithm, which can be considered as an arithmetical co-processing unit
to the processor cell in the CGRA. CORDIC is an iterative arithmetic algorithm that
provides an efficient way of computing many elementary functions such as
trigonometric, hyperbolic, logarithmic, and some linear functions including complex
valued multiplication, etc. The idea of the CORDIC algorithm is to rotate the vector
through a sequence of elementary angles using a linear, circular or hyperbolic
coordinate system, where the algebraic sum of these angles approximates the desired
rotation value [9]. All elementary angles are selected such that they can be
implemented using only shift and add/subtract operation, hence no actual multipliers
are needed.

Hardware implementation of the CORDIC cell is based on a pre-developed
CORDIC kernel implemented in previous work [14]. In this project, a few functional
improvements and a list of surrounding modules have been implemented to embed the
CORDIC cell into the CGRA.

4.1 Theoretical background

4.1.1 CORDIC operations in circular coordinate system

The CORDIC algorithm is initially designed to perform a vector rotation, where
the vector (X, y) is rotated through the angle yielding a new vector (x’, y’) [1], as
illustrated in Figure 4-1. A general vector rotation by an angle 6 can be expressed as,

cos(6)~y-sin(0)

= cos 9) |:x y-tan(6 :|
eq. 4-1 Real vector rotation
y'=y- cos(0)+x sin (0)
(9):

[y+x tan (6)]

=CO0S

yA o
x,y)
¢
N 0%,
S \%
% \&
0 x,)
0 Y

Figure 4-1. A vector rotation by an angle #. The real vector rotation is
drawn in dashed line, where the pseudo-rotation is drawn in solid line.

Page 25

Chapter 4 — CORDIC cell architecture

Rotation expressed in eq. 4-1 is called real vector rotation, where the magnitude of the

vector being rotated is preserved. To simplify the CORDIC computation, the real

rotation angle is replaced by a pseudo-rotation as depicted in solid line in Figure 4-1.
x'=x—y-tan(6) .

' eq. 4-2 Pseudo vector rotation
y'=y+x-tan(6)

This removes the term cos(@) from the initial expression and hence results in a
known magnitude expansion.

To further reduce the computation complexity, vector rotation in the CORDIC
algorithm is realized in an iterative process that contains a sequence of successively
smaller rotations, each of angle tan”(2”), known as micro-rotations [11]. This reduces
the multiplication of the tangent term to a single shift operation, since tan(@)=2". The
direction of each micro-rotation is specified by the parameter d;, which is chosen such
that the remaining angles tend to go towards zero. The general vector rotation shown
in eq. 4-1 can be expressed by using a series of micro-rotations,

X =X —Y;+d, 27
d, =sign(z,)&d, e{-1,1},
i=0,1,..,n-1

Vin =Y, +x,-d, 27 Where
z,,=z—d, tan”' (27")

eq. 4-3

The variable z is initialized by the desired rotation angle. It keeps track of the
total elementary angles over micro-rotations and determines the sign of ;. A CORDIC
rotation is accomplished when z reaches 0, and the final results can be expressed as,

x, =K, [x,-cos(z,)—y,-sin(z,)]

n-1 -
v, =K, [y,-cos(z,)+x,sin(z,)] Where K, = _11-\/1+2’2" eq. 4-4
z, =0

The scaling factor K, represents the increased magnitude of the vector during the
rotation process [12], which is related to the number of computation iterations. When
n tends to infinite, K, approaches the value 1.64676. Referring to eq. 4-5, the
trigonometric sine and cosine functions can be obtained when CORDIC is operated in
rotation mode. For example, by initializing y=0, output x and y converge to K xsin(z)
and KXxcos(z), respectively. For m bits of precision in the resulting trigonometric
functions, at least m CORDIC iterations are needed [13].

In addition to the rotation mode, CORDIC can also be operated in vector mode to
compute for instance the square root function. This is achieved by choosing d; in a
way so that y converges towards zero. The resulting outputs in CORDIC vector mode
can be expressed as,

x, =K, X, +y, d, =-sign(x,-y,)&d, e {-11},
v, =0 Where i=0,1,....n—1,

n—1 -
z =z,+tan”’ (% j K, =II V1427
0 i=

eq. 4-5

Page 26

Chapter 4 — CORDIC cell architecture

4.1.2 Generalized CORDIC

By introducing a system parameter #, the CORDIC algorithm can be generalized
to operate in three different coordinate systems: circular, linear and the hyperbolic
system. The generalized CORDIC is defined as,

Xy =X, —H-y;-d, 27
Vi =Y+ x,d; 27 eq. 4-6
Z, =2,—d; ¢

Where the partial angle values tan” (2”) used for calculating z;+; in eq. 4-3 is redefined
by using a variable e; for each of the CORDIC iterations. Relations between u, e; and
the CORDIC scaling factor are summarized below.

Table 4-1. Relations between system parameter u, partial angle e¢; and the CORDIC
scaling factor K,,.

. n-1 :
u =1 Circular rotations (basic CORDIC) ¢ =tan™' (2_’) K, =TI-N1+27
i=0
u=20 Linear rotations e =2" 1

. n-l :
u=-1 Hyperbolic rotations e, =tanh™ (2_1) K, =T]-v1-27"
i=0

Table 4-2 [12][13]. The CORDIC functions for different operation modes.
K,=1.646760258 121 ... & K,’= 0.828 159 360 960 ...

Rotation mode: Vectoring mode:

d, =sign(z,) &z, >0 d, =-sign(x,-y,) &y, >0

xn:Kn'[XO'COS(ZO)_yo'Sin(ZO)])CnZKn. /xoz_,r_yoz
Circular ' o
(u=I) ynZKn-I:yo-cos(zo)+x0-s1n(zo)] z, =z, +tan (A)j

F & / t =]/Kl’l, = 0 -
Or cos & sin, et x Y For tan”, setx =1,z =0

X, =X,
— 0
X, =X, "

Linear 3 3 Vs
(quo) yn_y0+x0.ZO yn_ZO+ xO

For multiplication, set y = 0 .
p Y For division, setz = 0

x, =K, [x,-cosh(z,)—y,-sinh(z,)] | %= K, xS =y
Hyperbolic

(ﬂZO) yn = Kn' I:yO .COSh(ZO)_i_xO 'Sinh(zo):l Zn = ZO +tanh71 (%j

F h inh, setx = 1/K,,’,y =0 _
or cosh & sinh, setx = I/Ky', y For tanh™,setx =1,z =0

Page 27

Chapter 4 — CORDIC cell architecture

As can be seen from the generalized CORDIC expression (eq. 4-6), each of the
computation iterations requires only three add/subtract operations and three bit shifts.
All the partial rotation angles can be pre-computed and stored in a lookup table (LUT).
In addition, as long as the scaling factor is known, output results with the increased
magnitude can always be compensated by post-processing. A list of CORDIC
functions for different operation modes has been summarized in [12][13] and is
repeated here as shown in Table 4-2.

4.2 Cell architecture

An overview of the CORDIC cell architecture is shown in Figure 4-2, which is
constructed from a CORDIC kernel, an I/O register bank and an operation controller.
The CORDIC kernel is based on a pipeline structure, with 3 data input values and 2
data output values, capable of producing one set of CORDIC results each clock cycle.
The 1/0O register bank handles data communications between the CORDIC and
surrounding cells, monitors data traffic status, and generates flow control signals that
are used in the CORDIC kernel. The internal computation wordlength, the number of
iteration stages and the number of local I/O ports are configurable at system
compilation time, while the configuration controller provides run-time
reconfigurability, such as the computation function selection, data I/O port definitions
and the option of result concatenating, etc. Possible configuration parameters for the
CORDIC cell are summarized in Table 4-1.

Table 4-3. Configuration parameters in the CORDIC cell.

Default | Configuration
Item Value range
value type

Configuration register | 64-bit configuration packet format | No action Run-time
Internal wordlength 2~ 24% 16
Iteration stages 2~ 24% 16
Local I/O ports 1~8 8 Design-time

1~ I is sh ith th
Global I/O ports 8,G O.(O) is shared with the 1

configuration port

Note: * Maximum wordlength supported is limited by the number of partial rotation
angles stored in the coefficient LUT.

4.2.1 CORDIC kernel

A pipeline implementation of the CORDIC algorithm is chosen since it can produce
one output value each clock cycle, which balances the processing capacity and the
local network capacity in the CGRA. Due to the use of the pre- and post-processing
stages, the total latency of this structure is equal to the number of processing stages
plus 2.

Page 28

Chapter 4 — CORDIC cell architecture

Local 10 ports Global 10 port
He =]
L1
CORDIC Kernel 1/0O register bank
H | vaidigen i K
I i \ !
| [— |
| |) | f— £ |
| input_y | .2
| |) ' ‘g |
| Pipeline stage 0 | input_z ! le— <& |
| [— |
!		
Pipeline stage N		
	output x	> 2 1
, _ > 5		
:	output_y ‘ 3 :	
Post-Processing	—» g	
	valid_o	\—>
I »-		

/0
configurations

operation
modes

Configuration controller

Configuration port

Figure 4-2. Block diagram of a CORDIC cell

Xi

S +- Xis1

mode —

mode

en ——

valid i — | CORDIC valid oy, ® 0t g

stage
xy.zh — {x.y,Zhi1 L’-:I: o

Zj

' +/- Z;
e 4&’ i
mode

(@) (b)
Figure 4-3 [14]. (a) A basic CORDIC building block. (b) The internal
hardware structure of a single CORDIC computation stage. The constant and
shift factor is unique for each block.

Figure 4-3 (a) shows the block diagram of a single CORDIC stage. In addition to
three data inputs, an operation mode and two control signals are used in each pipeline
stage. A global control signal (en) enables/disables the stage operation, while the
signal valid i controls the data processing in the current pipeline stage. A high valid i
signal triggers the current stage to take a new set of data from its input ports, compute
and propagate the output values, operation mode and the flow control signal to the
following stage. When the valid o reaches the end of the pipeline, a complete
CORDIC operation is accomplished.

In the pre-processing stage, all the input data values are checked and the ones
who are initially outside the data quadrant I and IV are sited to these two areas, as the
domain of computation convergence is [-99.7°, 99.7°] [13]. In the post-processing
stage, the corresponding data correction for the output results is hence needed and
carried out. In addition, results output y and output z are multiplexed to one data
output in the post-processing stage, as either one converges to 0 depending on the
different operation modes. Figure 4-3 (b) shows the hardware structure for a single

Page 29

Chapter 4 — CORDIC cell architecture

CORDIC computation stage, which requires three adder/subtractors, two bit shifters
and control logics for operation mode selection and d; condition. The partial rotation
angle e; is loaded from a coefficient LUT inside the CORDIC kernel. Currently, the
hyperbolic operation mode is not supported in the hardware implementation, which
will be added in future work.

4.2.2 1/0O register bank

Based on the configured input and output ports, the I/O register bank handles data
communications with surrounding cells. In addition, it monitors data traffic status and
provides two flow control signals used in the CORDIC kernel, i.e. the enable signal
and data input valid. The CORDIC kernel can be enabled as long as no data sending
stalls are detected, since the current data set in the pipeline stage cannot be forwarded
when the preceding data process is not completed. Conditions for issuing an input
valid signal are resolved when all data inputs are available at the receiving ports, and
when no user configurations are in progress.

At the data input, value input x and input y are concatenated together and
transmitted through one single I/O port, while input z is transmitted individually
through the other port. The maximum input wordlength supported by the 1/O register
bank is 16-bit each. Computation results output x and output y can be transmitted in
two ways, either sent through two I/O ports, or to be concatenated together before
sending through one single data port. In the latter approach, if the concatenated output
has a longer wordlength than the I/O payload’s, each of the outputs will be clamped to
16 bits (high-nibble).

4.2.3 Configuration controller

Similar to the operation controller in the processor cell, the basic operations of the
configuration controller unit in the CORDIC cell are controlled by an FSM to
download and upload configuration packages. A detailed control flow graph of the
FSM is shown in Figure-Appendix 8.

Input configurations for the CORDIC cell are defined in a 64-bit format, which
are transmitted through two consecutive data packages, each of 32-bit length, over the
global network. All cell configurations are stored in a 64-bit control register inside the
configuration controller. This register is transparent to the user, which is both readable
and writable during run-time. In the configuration table, there are control bits to
enable the CORDIC kernel, define the computation function, specify the output result
format, reset the CORDIC cell, and define the data I/O ports with the relevant port
properties. More detailed descriptions for the configuration packages are presented in
Figure-Appendix 9.

The operation mode for the CORDIC kernel is defined by using 2 configuration
parameters, the function code F and the pure function selection P, as described in
Table 4-4. With the pure function P enabled, the corresponding data input values are

Page 30

Chapter 4 — CORDIC cell architecture

tied to 0 in the CORDIC kernel, which prevents incorrect data inputs from the I/O
port. For instance, input y is discarded when calculating the trigonometric sine and
cosine functions, as described in Table 4-2. The function code F is defined by using 3
bits, wherein 1 bit is used to specify the running mode of the CORDIC kernel such
that to operate either in rotation (value 0) or vectoring (value 1) modes, and the other
2 bits are used to define the coordinate system which represents the value set {1, 0,
-1}, corresponding to the circular, linear and the hyperbolic system, respectively.

Table 4-4. Configuration parameters for the CORDIC functions.

Pure function Function code (F) . .
) - Function description
selection (P) | Mode | Coordinate
0 0 0 | Multiply and accumulate
0 0 1 Complex number rotation
0 0 1 1 Hyperbolic complex number rotation
1 0 0 | Divide and accumulate
1 0 1 Tangent and accumulate
1 1 1 | Hyperbolic tangent and accumulate
0 0 0 | Multiplication
0 0 1 Sine & cosine
1 0 1 1 | Hyperbolic sine & cosine
1 0 0 | Division
1 0 1 | Absolute and phase
1 1 1 Tangent

4.3 Computation accuracy analysis in MATLAB

A bit-accurate simulation model for the CORDIC kernel has been developed in
MATLAB. This is used to analyze the computation accuracy in a fixed-point
hardware platform. All the user configuration parameters for the CORDIC
computation kernel are supported in this simulation, such as the internal calculation
precision, operation modes and the pure function selection, etc. The VHDL simulation
results are compared with the reference outputs generated in MATLAB.

The CORDIC calculation precision is evaluated by using a metric called effective
digits developed by Hu [9]. The number of effective digits at the output is calculated
as following,

d,=d,~log,(E,)-1 eq. 4-7

where dj, is the input data width, E, is the maximum computation error and subtract 1
removes the effect from input sign bit. The number of effective digits is dependent on
the wordlength used in each computation stage and the number of iterations. If m bits
is the desired output precision, the “rule of thumb” [10] suggests that all the internal
calculation stages should have log,(m) additional bits inserted to increase the

Page 31

Chapter 4 — CORDIC cell architecture

computation precision, referred to as the guard bits. This has been simulated by
comparing the output effective digits when varying the internal wordlength. Three
different input data vectors have been used in the simulations and the results are
summarized in Table 4-5. Notice that, magnitudes for the input data vectors are scaled
in half (x0.5) in order to avoid computation overflows’. The pseudo-rotation scaling
factors in the CORDIC outputs are compensated in MATLAB. Both the internal
wordlength and the number of iterations for the CORDIC kernel are bound together in
this test.

Table 4-5. Simulation summary for the effective digits (real parts of the
results only), where diyu is the input data width, and diyema 1s the
internal wordlength in all computation stages. The CORDIC kernel
operates in the complex number rotation mode.

input 8-bit 12-bit 16-bit
dinternal

8-bit 4.67-bit

9-bit 5.48-bit

10-bit 6.46-bit

11-bit 7.31-bit

12-bit 8.68-bit 7.56-bit

13-bit 9.33-bit

14-bit 9.98-bit

15-bit 11.53-bit

16-bit 12.03-bit 11.87-bit
17-bit 13.11-bit
18-bit 14.14-bit
19-bit 14.86-bit
20-bit 15.75-bit
21-bit 17.09-bit

As shown from the result summary, output data precisions deviate from their
corresponding data input by the amount of app. log>(m) when diusernar €quals to djppus.
Along with the increased wordlength for internal computations, the number of
effective digits increases. Notice that, at the point when djyerna €quals to logo(m)+1
bits, the number of effective digits at the output is higher than their input data widths.
This indicates that the calculation error under this circumstance is relatively smaller
than the internal computation capacity.

To summarize, decision on choosing the internal wordlength is dependent on the
target application. More bits to use, more computation precisions can be gained, but at
the same time more hardware resources are needed.

? Due to the add/subtract operations in each of the pipeline stages, internal computation overflow
will occur when input data values are too large.

Page 32

Chapter 4 — CORDIC cell architecture

4.4 Performance evaluation in FPGA

Similar to the performance evaluation procedures that have been done in the processor
cell, two kinds of RTL synthesis processes are carried out for the CORDIC design.
During the evaluation process, the internal wordlength and the number of computation
iterations are kept the same, and the number of global 1/O ports is fixed to 1. All the
synthesis results are summarized in Table 4-6.

Table 4-6. Performance evaluation of the CORDIC cell based on an FPGA device.

Maximum Minimum .
' | speed area Differences
Configuration
Slices [I\tlmlflxz] Slices [I\f/lmlflxz] Slices [I\tlmlflxz]
Internal wordlength=2 | 276 | 152.27 | 247 | 97.57 29 54.70
Internal wordlength =8 | 737 | 162.08 | 606 | 94.35 131 67.74
GIO = 1- Internal wordlength =12 | 1,145 | 132.76 | 986 | 91.52 159 41.24
LIO = 8;, Internal wordlength =16 | 1,621 | 133.34 | 1,444 | 91.14 177 42.19
Internal wordlength =20 | 2,077 | 128.92 | 1,859 | 89.94 218 38.98
Internal wordlength =24 | 2,636 | 125.46 | 2,420 | 88.60 216 36.86
GIO=1; LIO=2 1,258 | 133.44 | 1,154 | 104.07 | 104 29.37
Internal LIO=4 1,332 | 125.15 | 1,257 | 98.78 75 26.37
wordlength = LIO=6 1,497 | 124.82 | 1,343 | 88.91 | 154 | 35.92
16; LIO =8 1,621 | 133.34 | 1,444 | 91.14 177 42.19

Thanks to the pipeline structure, maximum operation speed (f4c) in each of the
synthesis processes does not vary too much with the configuration parameters.
Generally, the resulting FPGA slice usage from these two synthesis processes have no
big difference, since the amount of arithmetical units used in the hardware
implementation are limited. Furthermore, as seen from Figure 4-4, hardware slice
usage changes linearly with the internal wordlength, so a trade-off between these two
factors has to be decided upon the actual usage.

Slice usage vs. Internal word length

3,000

oo /"r
2,000
1,500
= Max. speed syn.
1,000
——Min.area syn.
500
2

FPGAsslices

0

8 12 16 20 24

Internal word length

Figure 4-4. FPGA slice usage vs. internal computation wordlength.

Page 33

Chapter 4 — CORDIC cell architecture

4.5 Conclusion

The CORDIC algorithm provides an elegant convergence method for evaluating
trigonometric and many other useful functions [13]. Emphasis in this chapter was
placed on the CORDIC cell implementation aspects, whereas the theoretical analysis
on the algorithm itself has been kept basic.

The CORDIC cell consists of three building blocks, a computation kernel, an I/O
register bank and an operation controller. A pipeline implementation has been chosen
for the computation kernel, to match the high communication bandwidth of the local
network in the CGRA. The number of effective digits is used as a metric in analysis of
the computation accuracy, and the consequence of varying the internal computation
wordlength has been studied. Calculation precision versus hardware area usage
always exists at the same time, and appropriate parameters have to be selected based
on the target application field.

4.6 Future work

4.6.1 Coefficient generator

Often, certain properties can be explored from one or more CORDIC inputs in a real
application. For example, when CORDIC operates in circular rotation mode,
trigonometric sine and cosine functions can be calculated, and operand input z is used
as input rotation angle. If the required computations iteratively rotate through the
angle space with regular steps, it is sufficient to use a sequential counter for
generating the input z during run-time. This is the case for instance in the FFT
computation, where the phases of the complex numbers being processed are regularly
rotated, i.e. complex multiplications with twiddle factors. In the conventional solution,
all twiddle factors are stored as coefficients inside the data memory, or computed
during run-time by using a processing unit [15]. But in general this is a waste of
system resources, since the operation of generating the twiddle factors is simple. To
improve the fact, a dedicated hardware unit can be embedded into the CORDIC cell,
where simple operations like the one mentioned above can be handled internally.

Page 34

Chapter 5 — Memory cell architecture

5 Memory cell architecture

Most algorithm implementations require some kind of memory space for intermediate
data storage, data reordering, or delay operations. Traditionally, data memory is
located inside the processor, which results in difficulties when sharing data contents
between surrounding cells. Therefore, external memory units are expected to be
distributed and shared between all system components. This distributed approach not
only supports information sharing between different processing elements, but also
enables direct data transfers between memory cells without additional control logic.

To meet the basic requirements in most algorithm implementations, the
distributed memory cells have to be intelligent and flexible enough to support
different operations at run-time, such as operating in FIFO, RAM and ROM mode, etc.
The run-time configurability also brings in another highlight for having this
distributed architecture. Since conventionally many different type of memory modules
are needed in an embedded system, but only a few of them have simultaneous
operations during system run-time. Because of the control logic requirements in each
memory module, this conventional system setup fashion might not be area and power
efficient. By introducing a smart memory cell with relatively large data storage and a
necessary operation controller, the hardware overheads mentioned above could be
eliminated hence saving power.

A RTL-level memory cell implementation is initiated and constructed by a group
of students in the IC project and verification course in 2008, according to the
specification [17] made by Thomas Lenart. In this project, a few changes have been
made in order to adapt the memory cell into the whole system structure.

5.1 Cell architecture

As illustrated in Figure 5-1, a memory cell consists of three main building blocks: a
descriptor (DSC) table, an operation controller and a memory array. The descriptor
table contains an array of configuration registers to store user-defined transactions.
Each descriptor reserves a storage space from the memory array, called a memory
bank; defines an operation behavior for the allocated memory bank during the
designated execution cycle; records memory operation status; and specifies cell I/O
ports for each stream transfer. The operation controller manages and schedules the
descriptor processing; monitors data transfers; and controls the corresponding
memory operations. The memory array is a shared memory space, which is able to
handle one data read and one data write operation simultaneously.

Each memory descriptor is 64-bit wide, and the memory array has an operation
wordlength of 32 bits. The length of a descriptor table, size of the memory array, and
the number of cell local I/O ports are configurable at system design-time, while the
contents of memory descriptors are dynamically reconfigurable during run-time.
Possible memory cell configuration parameters are summarized in Table 3-1.

Page 35

Chapter 5 — Memory cell architecture

bank

#M
bank

{

Operation controller

Local IO ports Global |10 port

o H L Lx [c}
°]

Memory array, N*32-bit

PortB

{

Port A

Input ports

ft

ol

Output ports

DSC N\
execute)/

DSC 0
DSC 1

Config.
_header

A
4

DSC M

Config. \\‘ j
pscmc)/

Descriptor table M*64-bit

#M

Configuration port

Figure 5-1. Block diagram of a memory cell.

Table 5-1. Configuration parameters in the memory cell.

Default | Configuration
Item Value range
value type
Memory descriptor 64-bit configuration file format | No action Run-time
: Int Itiple of 2
Descriptor table length n ng;r.??zji’eﬁ ’ 4
Integer multiple of 2,
M length 2
emory array wordlengt cq .. 1632, .. 3
Integer multiple of 2, Design-time
Memory array depth e ... 128,256, ... 256
Local I/O ports 1~8 8
1~ I is sh ith th
Global I/0 ports 8G O.(O) is shared with the 1
configuration port

5.1.1 Operation controller

Basic operations in a memory cell are controlled by an FSM that contains three main
states: initialization, execution and configuration, as illustrated in Figure 5-2.

After cell reset, control registers and memory descriptor table are initialized in
state “initialization”. Thereafter, the “execution” state is entered unconditionally and
the operation controller stays here to process descriptors in sequential order. The
“Configuration” state is activated if a configuration data package is received from a
global input port. Memory cell configurations are managed in two sub-sequences.
First of all, a list of configuration parameters are needed to be specified by receiving a
32-bit wide configuration header as defined in Table 5-2. Secondly, actual

configuration data is sent to the memory array or to the descriptor table.

Page 36

Chapter 5 — Memory cell architecture

/N

Configuration Configure
header DSC/MC

~ -

Initialization

DSC read ‘ ‘ DSC execution

Figure 5-2. Memory cell control FSM.

Table 5-2. Configuration header file format.

Bit 31~16 15 14~1

0

Starting address/

Transfer si M /D -
Item | Transfer size | Memory/DSC DSC sequential number

Read/Write

Because reading data from a memory often requires two execution cycles —
control signal issues and the actual memory reading, descriptor handlings in FSM
“execution” state are further pipelined in 3 stages to improve processing throughput.
In the “DSC read” stage, function descriptors are sequentially read out, the
corresponding memory bank reading controls are prepared, and a memory data write

operation from the previous “DSC execution” stage (if any) is

performed. The

memory array receives reading command in “memory read” stage, and data content is
pushed out in the same clock cycle. In the last stage “DSC execution”, data reading
and/or writing status in the allocated memory bank and data sending and/or receiving
status in specified cell I/O ports are checked. Transactions are executed only when all
required conditions are valid; otherwise the current descriptor operation is discarded.

DsC
execution

Memory

DSC #0 ‘ DSC read
read

DSC
execution

Memory

DSC #1
read

DSC read

Iteration
#0

Memory

DSC #M
read

‘ DSC read

DSC
execution

DSC #0

Memory
read

DsC
execution

Iteration
#1

‘ DSC read
I
|
I
I
|
I
I
|
I
i

| «——— M-1clock cycles ———w

Figure 5-3. 3-stage pipeline processing in the memory descriptor handlings.

Figure 5-3 shows the memory descriptor handlings in a 3-stage pipeline process.
Descriptors are executed in consecutive clock cycles, and each descriptor execution is
iterated in M-1 clocks, where M is the length of a descriptor table. Because a
descriptor defines an actual memory operation, empty descriptors will result in wasted

execution cycles and hence processing throughput degradation.

Page 37

Chapter 5 — Memory cell architecture

5.1.2 Memory array

Since the memory array should be able to handle simultaneous data read and write
operations, and it is better to have the memory cell operate at the same clock speed as
the other building blocks, using a dual-port SRAM is hence the most straightforward
approach. Because there is only one data bus inside the memory cell, one of the data
ports (port A) from the memory array is dedicated for memory reading, and the other
port (port B) only handles data write operations. By doing so, memory control signals
are possibly simplified. Simultaneous data read and write operations at one memory
location should in principle be avoided. However, the memory array in this project is
configured to a read before write operation if that is desired.

5.1.3 Memory array considerations in an ASIC implementation

The memory array is an important unit that occupies most of the hardware area in a
memory cell, especially when the data storage space increases. In a standard ASIC
implementation, this can be realized either as a register file or as a data memory. For a
small amount of memory, serially connected flip-flops are sufficient due to the small
hardware area, namely the register file. As memory size increases, using the static
random access memory (SRAM) often result in better performance in terms of
hardware area and power metrics. Selecting the best solution between register file and
SRAM is technology depended. For example, the dividing line is located at
approximately 250 bits in a 0.35um CMOS process [14], whereas the use of register
file is still optimal for the Faraday UMC 0.13um memories when storage size
increases up to 64K bits, as shown in Figure 5-4.

From a previous ASIC implementation attempt based on a 0.13um CMOS cell
library ([1] pp. 137, Table 3), SRAM occupied about 65% of the total hardware area
for a 8 Kb memory cell, and the area increased significantly to 83% when data storage
went up to 32 Kb. Obviously, selecting a proper SRAM core has significant impact on
design area and power consumption.

In the current memory cell implementation, a dual-port data memory is used as
the memory array. This is sufficient for a Xilinx FPGA implementation, since a batch
of dual-port block memories are provided as hardware resources inside the FPGA chip.
However, in standard ASIC implementations, dual port memories are often more area
and power consuming than single port memories. Taking the Faraday UMC 0.13pum
memories [16] as an example, Figure 5-4 shows the different property comparisons
between different SRAMs. Obviously, single-port memories are in general superior to
dual-port memories. Therefore, a different approach than using the dual-port memory
is highly recommended. This can be solved by using one single-port memory with
double wordlength to hold two consecutive values in a single location, alternating
between reading two values in one cycle and writing two values in the next cycle.
This scheme requires temporary storage to synchronize the dataflow [14] and a
structured access pattern.

Page 38

Chapter 5 — Memory cell architecture

Area comparisons DC power comparisons
1.600 12.000
1.400 s 10.000 -
1.200 a — L’
T 1.000 / < =000 —
s —_ - T Ly — -
Tsu_ 0.800 s . SPRAM & G000 g SPRAM
9 05600 o s - = =-DPRAM g ————DPRAM
< . ’ o 4.000
0.400 2 ' SPRF e SPRF
0.200 =T TPRF 2000 == - TPRF
. —— = - = A
0.000 0.000
8,192 16,384 32,768 65,536 131,072262,144 8,192 16,384 32,768 65,536 131,072262,144
Memory capacity [bits] Memory capacity [bits]
(a) (b)
Typical timing comparisons AC power comparisons
6.000 0.060
-
S000 — — = 0.050 »"
r'- g el al
7 4.000 vad S 0040 — e
— ’, cooara | e == ”
£ 3.000 —ot e SPRAM £ o030 = SPRAN
= e e - ——-DPRAM g Pt e ~==-DPRAM
& 2.000 = S 3 0.020 — =
= SPRF = == — " SPRF
1.000 < 0. —_—
— =TPRF 0.010 — =TPRF
0.000 0.000
8,192 16,384 32,768 65,536 131,072262,144 8,192 16,384 32,768 65,536 131,072262,144
Memory capacity [bits] Memory capacity [bits]
() (d)

Figure 5-4. Faraday UMC 0.13um memory core comparisons for storage sizes of 8Kb, 16Kb,
32Kb, 64Kb, 128Kb, and 256Kb. SPRAM, Single-Port RAM; DPRAM, Dual-Port RAM;
SPRF, Single-Port Register File; TPRF, Two Port Register File. The SPRF and TPRF cores
only support memory capacity up to 64Kb.

5.2 Memory descriptors and cell operations

5.2.1 FIFO mode

A memory operation in FIFO mode is identified by a descriptor type of ‘0’ from the
descriptor fields presented in Table 5-3. Using a reading possible and a writing
possible flag, the FIFO status can be determined. A read possible and write impossible
results in a full FIFO indication; a write possible and read impossible represents an
empty FIFO. This running status is tracked by the operation controller each time the
descriptor is executed. Memory areas can be reserved from the shared memory array
by using a base and a high address. In FIFO mode, the allocated memory area
operates as a circular buffer. Address pointers managed by the operation controller are
used to indicate the current read and write positions, and are incremented respectively
after each process. Conditions for being able to execute a FIFO descriptor are
resolved from incoming and outgoing data and the current FIFO status. For example,
writing data to a full FIFO cannot be executed until at least one data is read. The field
io_bank rst is used to flush out data packages stored in the cell I/O registers.

Worth mentioning is that the memory cells operating in FIFO mode can be

Page 39

Chapter 5 — Memory cell architecture

cascaded to form a larger capacity memory cell. This is a useful feature in a practical
embedded system design, especially for the reconfigurable cell array architecture.
Because the area and shape constraints for the physical placement are often made by
system architect for each building block, data storage in memory cell is therefore
restricted to meet this criterion. Cascading several memory cells together can then
solve larger memory space requirements.

Table 5-3. 64-bit FIFO/Sequential ROM descriptor.

Field Bits | Length Description

Operation mode selection:

dtype 63-62 2 FIFO mode = 0; Sequential ROM mode = 2.

rd ok 61 1 FIFO/Sequential ROM reading status, 1: read possible.

wr_ok/ 60 | FIFO writing status, 1: write possible.
--- This field is reserved in sequential ROM mode operation.
src/ 50.56 4 Data source port ID, 0~7: LIO; 15: GIO.
- This field is reserved in sequential ROM mode operation.
dst 55-52 4 Data destination port ID, 0~7: LIO; 15: GIO.
d 5142 10 gig.TX destination ID, only used when output through

base 41-32 10 Starting address in memory array.

high 31-22 10 Ending address in memory array.

ptr 21-12 10 Current FIFO reading pointer.

wptr/ 112 10 Current FIFO/Sequential ROM writing pointer.
- This field is reserved in sequential ROM mode operation.
‘0 bank rst | | Active high rc?set for memory 10 bank, hardware releases
- - reset automatically.
--- 0 1 Reserved.

5.2.2 Sequential ROM mode

The term “ROM” in this case does not mean that memory region selected is not
reconfigurable. This name is only used to distinguish the actual behavior of the
memory bank from other operation modes, which could be used for storing constants,
coefficients, etc.

Similarly, memory operation in the sequential ROM mode has been assigned with
a descriptor type of ‘2’. The memory cell in this mode behaves like a write protected
FIFO operation, where memory bank writing status, input data port definition, and the
current writing pointer are discarded from the descriptor fields as shown in Table 5-3.

In contrast to the normal ROM operation (see section 5.2.3), address pointer in
this mode is managed by the operation controller, and a consecutive data content is
read out in each data transfer. Because the sequential ROM reading pointer is
incremented after each valid execution, the memory host is in this mode exempt from
sending data READ request.

Page 40

Chapter 5 — Memory cell architecture

5.2.3 RAM/ROM mode

Memory RAM/ROM mode operation handles data transfers in two phases. Firstly, the
operation controller is triggered when the address port receives either a READ or a
WRITE request (Table 5-4), which specifies a memory address and a transfer length.
Secondly, data will start streaming from the memory array to the configured data port
if the address port receives a READ request. Consequently, if the address port
receives a WRITE request, data is fetched from the configured data port and stored in
the memory array [1]. The descriptor keeps track of the transmission direction using
“rnw”, the transfer size using “tsize”, the current memory address position using “ptr”,
and the current transfer status using a flag “active”.

Table 5-4. Service request format.

Bit 31~16 15~1 0
Item | Transfer size | Starting address | Read/Write

Table 5-5. 64-bit RAM/ROM descriptor.

Field Bits | Length Description

Operation mode selection:
RAM mode = 1; ROM mode = 3.

dtype 63-62 2

active 61 1 Active transfer flag.

mw/ 60 | Operation selection, 0: write; 1: read.
- This field is reserved in ROM mode operation.

paddr 59-56 4 Address port ID, 0~7: LI1O; 15: GIO(0).

pdata 55-52 4 Data port ID, 0~7: LIO; 15: GIO(0).

d 5140 10 GIO TX destination ID, only used when output

through GIO.
base 41-32 10 Starting address in memory array.
high 31-22 10 Ending address in memory array.
tsize 21-12 10 Current data transfer size.
ptr 11-2 10 Current data pointer.
‘o bank rst I 1 Active high reset for memory 10 bank, hardware
- - releases reset automatically.
--- 0 1 Reserved.

Page 41

Chapter 5 — Memory cell architecture

5.3 Performance evaluation in FPGA

All possible configuration parameters for the memory cell have been listed in Table
3-1. However, due to the practical usage of the reconfigurable system, wordlength of
the memory array and the number of global I/O ports are kept unchanged from
defaults during the evaluation process. Notice that, internal memory array in the
memory cell is realized by using dual-port block memories inside the FPGA device.
Results from the maximum speed and the minimum area synthesis processes are
compared in Table 4-6.

Table 5-6. Performance evaluation of the memory cell based on an FPGA device.

Maximum Minimum .
Differences
. . speed area
Configuration p p p
- max . max - max
Slices [MHZ] Slices [MHZ] Slices [MHZ]
GIO=1; DSC table length = 1 960 | 168.92 | 820 | 11795 | 140 | 50.97
LIO=8; DSC table length =2 1,125 | 138.54 | 961 11297 | 164 25.58
Memory size | DSC table length=4 | 1,271 | 123.73 | 1,102 | 110.80 | 169 | 12.94
= 32bx1024 DSC table length=8 | 1,744 | 109.42 | 1,532 | 100.75 | 212 | 8.67
GIO=1; LIO=2 772 | 128.60 | 799 | 117.21 =27 11.39
DSC table LIO=4 1,007 | 126.04 | 899 | 115.66 | 108 | 10.38
length = 4; LIO=6 1,118 | 125.16 | 1,022 | 109.69 | 96 | 15.47
Memory size
GIO=1; Memory size = 32bx256 | 1,297 | 127.92 | 1,130 | 105.07 | 167 | 22.85
LIO =8; Memory size = 32bx512 | 1,265 | 122.40 | 1,054 | 110.94 | 211 11.46
DSC table]
1 _ Memory size = 32bx1024 | 1,271 | 123.73 | 1,102 | 110.80 | 169 12.94
ength =4

Although value fluctuations can be observed from the gathered synthesis results,
it is still possible to conclude that the two synthesis processes provide similar
performance metrics. This should not be surprising, since not many arithmetical units
are used in the memory cell implementation and there is only little room left for the
design synthesizer to do area optimizations. This fact can be specifically emphasized
in the first synthesis attempt. Because of the involved arithmetical units in each
memory descriptor, such as the comparators, counters, etc., changing descriptor table
length results in evident operating speed degradations and relative larger area
requirements.

The critical timing path in the memory cell is found in the operation controller,
more specifically in the pipeline state 3 of the FSM “execution” stage. In that state,
the memory descriptor is updated under a batch of condition validations, therefore
causes processing delays. Further design optimizations should be able to help
upgrading system performance.

Page 42

Chapter 5 — Memory cell architecture

5.4 Conclusion

No embedded systems can be exempt from having at least one memory, either for data
processing, program storage, or special usage. Using distributed smart memory cells
in a system is an efficient way of handling data transfers between surrounding
resource cells.

The memory cell architecture and four different operation modes have been
presented in this chapter. With the use of a memory descriptor table, different
operation behaviors can be emulated. Each descriptor reserves a memory space from
the memory array and specifies stream transfers to be processed. The length of a
descriptor table, memory array size, and the number of cell local I/O ports are
compile-time configurable, while memory descriptors are run-time reconfigurable.

Based on the initial memory cell structure, a few design improvements have been
done in this project, such as: the communication I/O modules have been modified to
adapt memory cell into the cell array architecture; a few design optimizations on the
operation controller have been made; and a new field io_bank rst has been added into
the descriptor table to enable software level cell reset ability.

5.5 Future work

5.5.1 Memory cell RAM and ROM mode operations

Due to the lack of time and the actual needs in the target algorithm implementations,
such as the TMFIR described in Chapter 7 and the FFT presented in Chapter 8, the
RAM and ROM mode operations in this project were abandoned from the initial
memory cell specification. Hence, the first task in future work would be to have these
modes operating in the memory cell. The RAM mode operation could be for instance
used in FFT output data shuffling.

5.5.2 Memory cell processing throughput improvements

Although each memory host is allowed to use many function descriptors within a
single memory cell, but in current implementation one memory operation cannot be
sliced into pieces where each one is executed by a descriptor. For example, in reading
coefficients from a memory cell running in ROM mode, only one memory descriptor
is allowed to be used. Because memory descriptors can only be executed if all
required conditions are validated, otherwise descriptor in turn will be discarded.
Hence, if consecutive descriptors are configured for one stream transfer, receiving
data samples will not be guaranteed to retain an expected sequence.

This usage restriction results in poor memory cell utilization if only one
descriptor is configured in a memory cell, since all other descriptor cycles will be
wasted. Two solutions are proposed here to address this problem. First, all empty

Page 43

Chapter 5 — Memory cell architecture

descriptors should be skipped to improve the memory usage. As a consequence, using
this method will require additional checks on the content of memory descriptors,
which would potentially increase the design’s critical path, especially when the
descriptor table length increases. The second approach is to add a
blocking/non-blocking flag in each memory descriptor. If multi descriptors are used in
the example above with blocking function activated, memory controller will be
suspended if any stalling event occurs, hence maintaining the stream transfer
sequences.

5.5.3 Debugging approaches

Function debugging in a memory cell could be realized in two ways. First of all, it
should be able to retrieve memory descriptors during run-time. This could be used to
check memory behavior configurations, to check the allocated memory bank, to track
on the address pointers etc. Secondly, it might be a handy approach if data contents in
the memory array can be partially or fully dumped during execution time. This could
be used for instance in system logging, processor cell computing verification etc.

Page 44

Chapter 6 — Router cell architecture

6 Router cell architecture

The resource cells communicate over local and global networks in the CGRA. The
local interconnections provide high data throughput between neighboring cells, while
the global network connects any two cells using hierarchical routing and provides an
interface to external modules, such as the external host or data memories. Global
communication is supported by router cells that forward data packets over a global
network, as the peer-to-peer connections between any nodes result in difficulties on
network scaling.

6.1 Cell architecture

The router cell is constructed from three main building blocks: a decision unit with a
static routing table, a routing structure and an output packet queue, as illustrated in
Figure 6-1.

Decision unit

Routing table Action list

0-1: GIO(0) 0(0)|0(1)|0(2)|0(3)|0(4)
2-3: GIO(1) i) X

4-5: GIO(2) in() | x X Tx
6-7: GIO(3) @) X

—>
/ In(def) X

+¢rrv

E

GIO_RX_ACK
— GIO_RX_EN

=
3 E
|
Sel - g
) 4
. > > 1]
GIO(1) Ig g > [[]]
> X
g. GlOQ) Ig > > [[]] g'
© [clop) g > » [[]] ©
GIO(def) > » [[] =3 cloen
Routing Queues
Data IN [> Data OUT

Figure 6-1. Block diagram of a router cell. Five global I/O ports and a
parallel routing structure are used in this illustration.

The decision unit monitors incoming data packets from global input ports, looks
up the routing path, handles data transactions and configures the routing structure to
transfer data packets accordingly. In current architecture, data routing path is defined
in a table, which is statically generated at system design-time based on the hardware
connections in the CGRA. The static routing network is scheduled in a way that there
is only one valid path from each source to each destination. This consequently
simplifies the hardware implementation and enables each router instance to be

Page 45

Chapter 6 — Router cell architecture

optimized individually during logic synthesis. However, a drawback with static
routing is the network congestion, but mainly concerns networks with a high degree
of routing freedom, for example a traditional mesh topology [1].

The routing structure is made up of passive connections between inputs and
output ports, which can be implemented either by a parallel structure or a simple
MUX-DEMUX switch, as illustrated in Figure 6-2. The complexity of the routing
structure determines the routing capacity. A parallel routing structure has the ability of
handling multiple data requests in a single clock cycle, while the single switch is
limited to one transaction at a time [17]. However, the former approach is associated
with a higher hardware area cost and requires a more complex decision unit [1].

Select Select
GIO(0) GIO(0) GIO(0) —3 —» GIO(0)
GIO(1) GIO(1) GIOo(1) —3 —» GIO(1)
GIO@2) —» GIO(2) GIO(2) —) > GIO(?)
GIO@B) —> GIO@3) GIO@3) —} - GIO(3)
GlO(def) —p » GIO(def) GIO(def) —) I GIO(def)
C) (b)

Figure 6-2. Architectural options for switching network implementation.
Five global I/O ports are used in this example. (a) A parallel routing
structure with full switching flexibility using five 4-1 multiplexes. (b) A
simple network using one 4-1 multiplexer and one 1-4 demultiplexer.

The output packet queue is used to temporarily store packages traveling through
the network [6]. When the incoming packet is accepted and handled by the decision
unit, data sender is acknowledged and the packet is placed in the corresponding output
packet queue if output buffer has free spaces. Data stored in the output queue are
sequentially transmitted through global output ports on a first-in-first-out (FIFO) basis.
The output buffer continuously tries to send its packets out, and removes them
accordingly from the queue if transmission succeeded. When the output buffer is full,
no new data can be accepted until the buffer has forwarded at least one of the buffered
packets. The use of output packet queue increases global transmission throughput at
the data sending side, because there is no need to wait for acknowledgement signals
from receivers as long as the output buffer is not full. Therefore larger output buffer
size is desirable under this circumstance. However, the long output packet queue
requires more hardware resources and the use of output buffer causes additional
transmission delay for the data receivers, as one clock cycle is required to just pass
through an empty output queue. Therefore smaller output buffer size is wanted in this
case, or even without any output buffer. To summarize, varying the length of output
packet queue has impacts on global data communications, and the appropriate buffer
size is one of the network parameters that has to be evaluated and adjusted based on
the requirements.

The number of global I/O ports, network routing structure and the length of
output packet queue are examples of design-time configuration parameters in the

Page 46

Chapter 6 — Router cell architecture

router cell. Table 3-1 summarizes all possible parameters, where some of the concepts
are further described in the following sections.

Table 6-1. Possible configuration parameters in the router cell.

Item Value range Default value | Configurability
Global 1/O ports > 1 4
Default port selection Enable, Disable Enable
Default port I/O > 1 4
Routing structure Parallel, MUX-DEMUX Parallel .
— - - - - Design-time
Arbitration policy* Fixed, Round-robin Fixed
Output buffer (FIFO) size >1 4
Routing table Depending on the Invalid routing
number of GIOs

Note: * Only effective in the MUX-DEMUX routing structure.

6.1.1 Routing table

Based on the global network connections in the CGRA, the routing table is statically
generated for each of the router cells. The routing information is represented in the
form of an array of integer pairs, where each pair defines a global ID range for input
packet acceptances. A range pair contains a base and a high values, such as the
notation "port 0 -> ID 0 - 3" means that I/O port 0 in the router cell accepts data
packets that have destination ID specified in the range from 0 to 3. As an example,
port O is the data forwarding port for a packet with destination ID equals to 2. If there
is no range pair that accepts incoming packets, and the router is configured with a
default port, this default port will be used as the packet destination. The special value
“-1” (all ones) corresponds to an unspecified invalid port, which can be used if a port
never accepts packets [17]. In reference to the global routing network shown in Figure
6-3 (a), examples of the routing table are shown in Figure 6-3 (b).

6.1.2 Decision unit and arbitration policy

The decision unit consists of two combinatorial processes that are operated in parallel:
the transmission management and transaction handling processes. Gained from this
design structure, all transmission events can be easily managed and traced, and the
handling of data transactions can be flexibly controlled by applying different
arbitration policies, such as the fixed and Round-robin schemes.

In the transmission management process, data packets arrived at input ports are
continuously checked. Validity of the packet is confirmed by identifying the flow
control signal “valid” specified in the global packet format as defined in 2.3.2 and is
repeated here as shown in Figure 2-7.

Page 47

Chapter 6 — Router cell architecture

RC RC
GID_0 GID_1
(GIF[*)(:OE)O} s (R Routing table for R(0,0)
Port 0 ->ID O - O [resource cell #0]
RC RC Port 1 ->1D 1 - 1 [resource cell #1]
GID_2 GID_3 Port 2 -> ID 2 - 2 [resource cell #2]
Port 3 -> ID 3 - 3 [resource cell #3]
(R) Port 4 -> Default port, uplink
RC RC R(0,1) Routing table for R(0,1)
GID_8 GID_9 (GID: 0~ 11)
Port 0 -> 1D 0 - 3 [R(0,0)]
R(.0) Port 1 -> Invalid - Invalid
@Ds-11 (R Port2->ID 8 - 11 [R(1,0)]
Port 3 -> Invalid - Invalid
Port 4 -> Default port, uplink
RC RC
GID_10 GID_11

(a) (b)
Figure 6-3. (a) Global routing network in a 4-by-2 cell array. Each resource
cell (RC) has been assigned with a network ID (GID). (b) Static routing table
defined for the router cell R(0,0) and R(0,1).

2x(logy(#1Ds))ceiling 2 1 2 32
‘ dst ‘ src | ntype ‘ valid ‘ ptype ‘ data ‘ pType = { data, read, write }
nType = { data, config, control }
— ?/_/ —
routing IDs corcl);?lol actual data

Local flit format

Global data packet format

Figure 6-4. Network packet format of local and global data transmission.

The destination ID specified in each valid packet is thereafter evaluated and
looked up in the routing table. Data routing path is determined if the destination ID of
incoming packet falls into one of the value pairs defined in the routing table,
otherwise data packet is sent to the default port which is upwards in the hierarchical
routing network. The default port option is configurable during design-time, which
can be used to disable the uplink in a router cell if data communications are desired to
be kept within certain network hierarchal levels.

Before registering new transactions into the action list, additional historical check
on the corresponding log entry is performed. Transaction can only be registered into
the action list if no preceding data transmission is ongoing. This is used to prevent
data sending duplications, as the communication acknowledgement for the incoming
packet is updated in consecutive clock cycle, which consequently keeps the incoming
“valid” signal high during two clocks and therefore triggers an extra data transaction
process. Timing diagram of a transaction handling is illustrated in Figure 6-5, where
the active data transaction is masked with a write protection flag that is used in the
historical check in order to avoid the duplicated data sending. An example of how the
action list would look like after the transmission management process is shown in
Figure 6-6 (a).

Page 48

Chapter 6 — Router cell architecture

CLK l | l | l |
RX_Valid L/ i i \
T T
RX_Data ! X Data ! X Write protected area, no new
|
|

Log entry in action list
(combinatorial)

| transaction should be logged
/ \ G 45/// during this clock cycle.

RX_ACK

|
T
|
|
|
i
Write_protect }
|
|
I
|
|
|

TX_Data

Decision Output buffer
clock cycle writing cycle

Figure 6-5. Timing diagram of the transaction handling in the router cell.

Action list with logged transactions Action list with candidate transactions Action list with candidate transaction
0(0)|0(1)|0(2)|0(3)|0(4) 0(0)|0(1)|0(2)|0(3)[0(4) 0(0)|0(1)|0(2)|0(3)|0(4)
In(0) X In(0) o In(0) X
In(1) X X | X In(1) o o|o In(1) o X | X
In(2) X In(2) X In(2) X
In(3) X In(3) o In(3) X
In(def) X In(def) X In(def) X

(a) (b) (c)

Figure 6-6. Action list in the decision unit. The row and column items in the table
are input ports (/n) and output ports (O), respectively. (a) All valid data transactions
are checked in during the transmission management process. (b) All candidate
transaction handling are marked in ‘o’ during the second process. Fixed arbitration
scheme in a full parallel routing structure. (c) Fixed/Round-robin arbitration
scheme in a MUX-DEMUX routing structure.

In the transaction handling process, log entries in the action list are sequentially
checked, and the recorded transactions are prioritized and handled based on different
arbitration policy and the condition of output buffers. The fixed arbitration approach
is used when a parallel routing structure is selected, while two different arbitration
options are provided for the simple MUX-DEMUX routing structure, namely the
fixed and Round-robin arbitration.

In fixed mode, the arbiter always starts from the first log entry (row 0, column 0)
and scans column-wise through the action list until a candidate transaction is found. A
transaction is considered to be a candidate when it is logged in the action list and the
corresponding output buffer is not full. In this approach, all transactions are assigned
with priorities according to their log position in the action list. Consequently, this
might result in a case where the shared transmission channel is perpetually occupied
by a data flow that has higher priority than the others. Hence, network traffic has to be
well schedule when mapping applications on the CGRA if the fixed arbitration policy
is applied.

In contrast, the Round-robin algorithm assigns time slices to each process in
equal portions and in order, handling all transactions without priority [4]. This simple
arbitration approach is work conserving, meaning that an empty transmission cycle

Page 49

Chapter 6 — Router cell architecture

will be resulted if one flow is out of packets. Examples of candidate transactions in
the action list are shown in Figure 6-6 (b) and (c).

The candidate transactions selected out from arbitration process are thereafter
checked out from the action list, and the routing structure is configured and the data
senders are acknowledged accordingly. This way of handling the communication
acknowledgement signals prevents data loss from the network congestion, as data
senders cannot proceed without receiving ACK. signals.

A data broadcast function is provided in the simple MUX-DEMUX routing
structure. By addressing “the largest resource cell ID number — 17 as the packet
destination, data received from one input port is sequentially forwarded to all the
output ports available. This is achieved by sending acknowledgment signal to the data
sender only when no more logged transactions are left in the row of the action list,
where the row items specifying data input ports, and the output ports are specified
column-wise.

6.2 Performance evaluation in FPGA

An analysis of global data transmission latency is presented in Figure 6-7, where a
data packet is assumed to be forwarded by a router cell connected between host A and
B in a silent global network. The data transmission latency is measured from the time
when host A places a packet to its global output register to the time when the global
input register in host B receives the packet from network. The resulting time usage is
5 clock cycles, which uses 3 clocks more as compared to local data communication.

<«—— HostA —> <«———— Routercel ———>

I I
i i

GIO_TX | GIO_RX GIO_TX | GIO_RX
I I
i Decision FIFO i

—>|—> | (&Routing) > T —>[———>—>

i i

1-cc ' 1cC 1-cc 1cc ' 1cC

(@)

CLK

Host A_Transmit

Host A_GIO_TX

Router_GIO_RX

Router_Decision

Router_FIFO

Router_TX

Host B_GIO_RX

Host B_Receive

<«—— Data transmission latency —»

(b)
Figure 6-7. Data transmission latency over the global routing network. No initial
data traffic is assumed in the routing path. (a) Hardware setup for transmitting a
data packet from host A to B. Global I/O registers are drawn in vertical lines, and
the clock usage for the corresponding unit are stated underneath, as x-CC. (b)
Detailed timing diagram for a global data transmission.

Page 50

Chapter 6 — Router cell architecture

Router cell with different configurations have been synthesized with both the
maximum speed and minimum area constraints. Considering the realistic system setup,
two parameters are kept as constants during the synthesis processes, i.e. the default
port (uplink) is always enabled and assigned with the maximum global I/O port
number. All results are listed and compared in Table 3-10.

Table 6-2. Performance evaluation of the router cell based on an FPGA device.

Maximum Minimum .
Differences
. . speed area
Configuration ; ; r
H max - max H max

Slices [MHZ] Slices [MHZ] Slices [MHZ]
s | oy [0 LSS [o | 1
Def. GIO = Max. GIO; — : : : :
Routing — Parallel FIFO—4 #GIO=5 | 1,340 | 174.51 | 1,151 | 16099 | 189 | 13.52

#GIO=10 | 4,139 | 161.95 | 3,761 | 141.39 | 378 | 20.57
Def. port = Enable; HGIO=5 #FIFO=4 | 1,282 | 121.99 | 1,133 | 53.31 149 68.68
Def. GIO = Max. GIO; #FIFO=8 | 2,245 | 113.20 | 2,048 | 47.03 197 66.17
Routing = MUX-DEMUX; #GIO=5 | 1,282 | 121.99 | 1,133 | 53.31 149 68.68
o . #FIFO=4
Arbitration = Fixed. #GIO=10 | 2,941 | 6197 | 2,396 | 15.85 545 46.13
Def. port = Enable; 4GIO=5 #FIFO=4 | 1,243 | 173.02 | 1,139 | 149.43 | 104 23.59
Def. GIO = Max. GIO; #FIFO=8 | 2,189 | 142.03 | 2,053 | 120.31 136 21.72
Routing = MUX-DEMUX; #GIO=5 | 1,243 | 173.02 | 1,139 | 14943 | 104 23.59
o . | #FIFO=4

Arbitration = Round-robin. #GIO=10 | 2,561 | 151.13 | 2,208 | 137.68 | 353 13.45

Several points can be concluded from these synthesis results. First of all, the
highest cell operation speed in each set of the configurations is achieved in the
parallel routing structure. As mentioned previously, this is a result from concurrent
processing on multiple data transactions, where all input packets heading to different
output ports can be handled in a single clock cycle. Therefore, the critical timing path
in this structure is limited to the arbitration process for multiple transactions on the
same output port, i.e. columns in the action list as shown in Figure 6-6 (b). The
drawback of the parallel routing structure is the accompanied large hardware resource
usages.

Secondly, in the MUX-DEMUX routing structure, with the use of round-robin
arbitration approach results in less hardware usages and higher operation speeds than
using the fixed mode. This is because transaction handling in each clock cycle is
deterministic in the round-robin scheme, which simplifies the operation controlling
and shortens the critical timing path. In contrast, the fixed arbitration scheme scans
through the entire action list in each arbitration process until a candidate transaction is
found. This results in a long packet handling procedure and hence the slower
operation speed. Moreover, due to the combinatorial processing in the fixed
arbitration scheme, large speed differences are reported from these two synthesis
processes.

Page 51

Chapter 6 — Router cell architecture

6.3 Conclusion

The router cell is used to forward data packets over the global routing network in the
CGRA. The routing information is specified in a table that is statically generated
based on the physical network connections. The static routing is deterministic, which
means that there is only one single valid path to route network traffic. This approach
reduces hardware complexity as compared to adaptive routing algorithms [2].

The router cell consists of three main building blocks: the decision unit, routing
structure and output packet queue. Basic cell construction parameters, such as the
number of global I/O port, the routing structure and so on, can be configured during
system design-time in order to meet different application requirements.

The separation between transaction handling process and transmission event
managements in the decision unit results in a flexible design structure, where different
arbitration policies can be easily implemented and extended in future developments.
In current router cell implementation, the routing structure can be selected between a
parallel network and a MUX-DEMUX switch. A parallel routing structure has the
ability of handling multiple data requests in a single clock cycle, while the latter one
is limited to one transaction at a time. For the MUX-DEMUX structure, two simple
arbitration policies are supported and a data broadcast function is provided, while the
parallel structure is configured to only use the fixed arbitration policy. Benefit from
the way of handling acknowledgement signals in the decision unit, data loss due to the
network congestion is completely prohibited.

6.4 Future work

6.4.1 Multicast

In addition to packet broadcast function, the multicast would also be beneficial to
have in the CGRA, which is useful for instance in initializing a batch of memory cells
or to issue global operation commands to the processor cells and so on. This is can be
realized by applying a unique global ID address to each group of the resource cells, so
data packets with group ID specified will be forwarded to all the cells included in the

group.

Page 52

Chapter 7 — Case study I: Time-multiplexed FIR filter

7 Case study I: Time-multiplexed FIR filter

After creating each of the individual modules in the CGRA, a system integration test
should be carried out. This is used to verify the basic functionalities in each resource
cell, to test the interconnections between neighboring modules and to verify the
connectivity of the hierarchical routing network. This test has been accomplished by
mapping a small algorithm onto the cell array platform. A time-multiplexed FIR filter
has been selected in this study due to the simple algorithm structure and relatively low
system resource requirements. In addition, the author has done similar work in a
related project based on a single processor and a single memory cell, hence it is also
time efficient to reuse the same experiment and only expand the work to a more
complex system platform.

Figure 7-1 shows a generalized design flow for mapping an algorithm onto the
CGRA. This flow consists of four design phases: algorithm selection, reference model
design, cell array architecture design and the actual system implementation. As
illustrated in Figure 7-1, the third design phase involves additional sub-steps, where
the selected system architecture is designed and evaluated. This is the most
time-consuming procedure, since different mapping possibilities should be analyzed
and compared, in order to efficiently map an algorithm onto the platform. In the last
step, the system is implemented and tested physically on a hardware platform, such as
an FPGA device.

In this case study, the actual system implementation process is replaced by a
cycle-accurate HDL simulation running on a computer, since the intention of the
experiment is to verify the basic operations in the CGRA. Besides, some of the design
procedures are simplified due to the chosen simple algorithm structure, such as only
one hardware-mapping approach is used in this study.

f Tile template design

Algorithm selection
9 / v
/ Topology design
/ (Local interconnections)
Reference model design /
/ Y
/ Network design
(global routing network)
Cell array architecture
design and evaluation Y
'
System integration
v \ Y 9
) : \
System implementation
\ '
\\ Application mapping

\ A
\ /

\ Performance evaluation

Figure 7-1. Generalized design flow for mapping an algorithm onto the CGRA.

Page 53

Chapter 7 — Case study I: Time-multiplexed FIR filter

7.1 Theoretical background

A finite impulse response (FIR) filter is a discrete linear time-invariant (LTI) system.
The current filter output only depends on the current data input and its delayed input
samples. This can be expressed as

m

y(n)=Zhl.-x(n—i), eq. 7-1

where the filter is non-recursive with an order m. Its impulse response & = {hy, . . .,
hyt is limited to m + [taps [19].

An FIR filter can be implemented in several ways of which two are illustrated in
Figure 7-2. First, a direct form hardware-mapped structure processes input data
samples concurrently. It requires one multiply-accumulate (MAC) unit for each filter
coefficient, which are serially connected to form a pipeline. Each unit multiplies the
input value with the coefficient, adds the partial sum from the preceding stage, and
forwards the data value and result to the next stage [1]. Due to the way of the
concurrent processing, this structure provides high data throughput but requires large
amount of hardware resources. In contrast, a time multiplexing approach requires only
one MAC unit and two memory cells, one for coefficients and the other for input data
buffering. All data samples are iteratively processed using the same MAC unit.
Obviously this structure reduces the total hardware requirements especially for higher
order filters, but with the penalty of increased system computation time. Furthermore,
a time-multiplexed structure also exhibits a good property on the system flexibility,
since no hardware structure changes are needed when varying the filter order.

Figure 7-2. Hardware implementation structure of a FIR filter. (a) A direct form. (b)
A time multiplexing approach.

7.2 MATLAB reference model simulation

The system test is based on a time-multiplexed FIR filter. Input data samples, impulse
response and the filter output golden vector are all reused from the previous
experiment. As previously described the filter coefficients and input data samples are
quantized to 12-bit and 16-bit, respectively. The filter output is represented by 32-bit
and overflow is prevented by proper scaling of the input data magnitude. A simulation
using the MATLAB reference model is shown in Figure 7-3.

Page 54

Chapter 7 — Case study I: Time-multiplexed FIR filter

x 10° Input data samples, 16-bit quantized 5 x 10° Filtered output data samples, 32-bit quantized

Magnitude
=)
Magnitude
S

200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
Samples Samples

Figure 7-3. Reference model simulation in MATLAB. (a)

b
(a) [(b) 16-bit input data samples. (b) 32-bit filter outputs.

7.3 System architecture

A time-multiplexed FIR filter consists of one MAC unit, one input data buffer and one
coefficient ROM, as illustrated in Figure 7-2 (b). This structure can be directly
mapped onto the CGRA by using a MAC processor and two memory cells. If the
system resource usage is a main constraint, the input data buffer and the coefficient
ROM can be realized by using two memory descriptors from the same memory cell.
The latter approach has been used in a previous experiment. A direct mapping
structure is selected in this study, in order to verify the interaction between different
resource cells, as shown in Figure 7-4.

MAC Input buffer

LIO_2
LN\

MAC FIFO
Y ?: * .
LIO_4 Glo_0

SROM

-

Coefficient
ROM

Figure 7-4. A tile template for direct-mapped time-multiplexed FIR
filter on the CGRA. For illustration purpose, unused building block
and network connections are drawn in lightened shade.

Input and output data samples are streamed through the global network. All
intermediate data transfers are kept locally through the local interconnections. One of
the memory cells operating in FIFO mode is used as a circular buffer for the input
data samples. Filter coefficients are stored in the other memory cell which is
configured in sequential ROM mode. The MAC processor iterates over the buffered
data samples and coefficients that are multiplied pair-wise and accumulated. Every
time a new iteration starts, the oldest value in the circular buffer is discarded and

Page 55

Chapter 7 — Case study I: Time-multiplexed FIR filter

replaced by an incoming data sample from the global input port. The lower 32 bits
from the 48-bit accumulator inside the MAC processor are written to the output when
an iteration completes, since input data samples are pre-scaled in the data source. In
case output scaling is desired in a process, data can be shifted before sending it to the
output port. With the use of the local and global communications, all data samples
required by the MAC processor are synchronized automatically, since no new data
transfer can be started before the preceding package is completely handled. This
scheme provides an efficient manner of controlling the data flow in a processing
intensive application.

7.4 System performance evaluation

Before HDL simulation, system platform is extended with the interconnected resource
cells apart from the tile template designed previously. This is considered firstly to
explore the large-scale system performance in terms of area and speed. Secondly, to
have a suitable system architecture prepared for more complex algorithm mappings,
such as an FFT application evaluated in case study II. More detailed system
descriptions are presented in Chapter 8, as the main focus here is a basic functionality
test. System architecture of a 4-by-2 cell array is depicted in Figure 7-5. A view on the
synthesis floorplan and the final routed layout is shown in Figure-Appendix 10, based
on the target FPGA device, the Xilinx Virtex-II Pro-30-7{f896.

Location (0, 0) Location (0, 1)

FIFO

SROM

Location (1, 0)

R(0,1)

Figure 7-5. System architecture of an interconnected 4-by-2 cell array. Three
resource cells and two hierarchical network routers are used in the
time-multiplexed FIR filter.

Page 56

Chapter 7 — Case study I: Time-multiplexed FIR filter

To verify the filter operations, a program routine is developed for the MAC
processor, as shown in Table 7-1. Notice that, only one program instruction is required
to be re-downloaded when changing the filter order. By counting the execution time
for each of the instructions in this program routine, a theoretical iteration period for
this algorithm implementation can be obtained, as

cc :1-4+3-36+2+4:118[cc]. eqg. 7-2

iteration

The first term “1x4” sums up initial program execution cycles from instruction #3 to
#6, where the first two instructions are not counted, as they are only used to initialize
internal registers and are not iterated in each of the filter computations. The term
“3x36” counts up the iterative executions of the instruction #7 and #8, where an
additional clock cycle is used to flush the processor pipeline registers. Number “2” in
the expression is the clock usage for the last loop execution, where no flush operation
is needed. The last part “4” includes execution cycles for the rest of instructions,
where the branch instruction requires one additional clock cycle for the pipeline
register flushing.

Table 7-1. Program instructions in the MAC processor for a time-multiplexed FIR
filter. Table columns are: binary code, assembly program, comment and
reconfigurability.

84400024 //01: ADDI $2, SO, 36 ; Load filter order For reconfig.
BOOOOOOA //02:GID 10 ; Load GIO TX DST ID

10000000 //03: MUL $0, SO ; Clear acc. registers

84350000 //04:ADDIS],SL2,0 ; Remove one data from FIFO

86BB0000 //05: ADDI $L2, SGO, 0 ; Load a new data into FIFO

40001000 //06:ILCS2 ; Load iteration counter

1EA1AD40 //07: DMOV $L2, $R1, $L2, $L2 ; Load data from FIFO

1000B843 //08: MUL SL4, $1, {al} ; MAC and loops back

00000000 //09: NOP
1B60FF80 // 10: IMOV SGO, SHACC, SLACC ; Send result out
A400FFF7 //11:BRI-9 : Loop back

Table 7-2. Hardware configurations for resource cells in a 4-by-2 reconfigurable cell
array platform.

Location | Global ID Cell type Hardware configurations
(0, 0) 0 16-bit MAC processor;
(1, 1) 3 Barrel shifter disabled;

Processor . .
2, 1) 5 Program memory size = 64 x 32-bit;
(3, 0) 6 GPR =8§; LIO=8; GIO=1.
0, 1) 1 . .
Memory capacity = 256 x 32-bit;

(1,0 2 Memory DSC table length = 4.
G, D 7
(2,0) 4 CORDIC 16-bit pipelined core

Page 57

Chapter 7 — Case study I: Time-multiplexed FIR filter

Based on the suggested configurations [1], each memory cell is configured to
have 4 function descriptors and an 8K bits memory capacity. Notice that, empty
execution cycles are generated in each of the memory cells during run-time, since
only one function descriptor is actually required in the FIR filter implementation.
Table 7-2 summarizes the hardware configurations for all resource cells in a 4-by-2
cell array.

System performance numbers from the HDL simulation are shown in Table 7-3.
The reported maximum frequency for the integrated system reveals a slower running
speed than the critical building block in a 4-by-2 cell array. By tracking the synthesis
report, signals from all possible processing cells are shown in the longest delay path.
This implies that there are combinatorial signals connected in between those cells,
which have to be fixed in future work.

Two execution time measurements are reported in the performance summary, as
highlighted in bold fronts. When the descriptor table length (DSC) in each memory
cell is configured to 4, system performance is limited by the clock cycle overhead in
the memory cells. This can be observed from the data receiving stalls in the MAC
processor. By adjusting the descriptor table length until the RX stalls are completely
eliminated in the MAC processor, an optimal execution clock usage can be measured.
This happens when the descriptor table length is decreased to 2. Comparing to the
theoretical iteration period calculated previously, both local and global network
communications are proven to be efficient.

Table 7-3. System performance explorations for the CGRA based on the different
TMFIR computations.

FIR filter order 36
Memory [bits] 16K (8K x 2)
Memory utilization 6.32%
(Memory usage [bits]) (592 +444)
Maximum frequency [MHZz] 30.710

Number of slices: 10,460 out of 13,696 — 76% usage;
Number of MULT18X18s: 4 out of 136 — 2% usage;
Number of BRAMs: 7 out of 136 — 5% usage

FPGA usage on Xilinx
Virtex-11 Pro-30-7ff896

Configuration time [clock cycles] 581

Reconfiguration time [clock cycles] 28

Latency [clock cycles] 173 @ DSC =4 134 @ DSC =2
Execution time [clock cycles] 152 @ DSC =4 118 @ DSC =2
Throughput [samples per second] 200,720

Page 58

Chapter 7 — Case study I: Time-multiplexed FIR filter

7.5 Conclusion

A time-multiplexed FIR filter has been mapped onto a 4-by-2 reconfigurable cell array.
Basic operations of the resource cells have been verified based on cycle-accurate
HDL simulations. The outcome from the performance evaluation has proven the
effectiveness of the network communications in the CGRA. The large-scale cell array
architecture has been prepared for further system development, where the FIR filter
experiment utilizes only one 16-bit MAC processor, two memory cells and two
hierarchical network routers. The integrated 4-by-2 cell array occupies 76% of the
FPGA resources, and is capable of running at approximately 30 MHz.

Page 59

Page 60

Chapter 8 — Case study II: Radix-2> FFT

8 Case study II: Radix-2? FFT

In the preceding Chapter 7, a few basic operations in resource cells, local data
communications, and the hierarchical global routing network have been studied and
evaluated by mapping an algorithm onto a small region of the reconfigurable cell
array. In this second case study, it is desirable to scale up the system resource usage to
further explore interaction between different resource cells, and to analyze the
effectiveness of the data communications on a large-scale system platform. Hence, the
radix-2® FFT algorithm has been selected and mapped onto a 4-by-2 cell array based
on a time-multiplexed structure. Finally, the design has been implemented and
verified on a Xilinx XUP Virtex-II Pro development board.

8.1 Theoretical background

The discrete Fourier transform (DFT) is a commonly used operation in digital signal
processing. Typical applications are linear filtering, correlation, spectrum analysis,
and orthogonal frequency division multiplexing (OFDM) in modern communication
systems [14].

The DFT is defined as

X(k)=) x(n)-wy" 0<k<N eq. 8-1

where N is the transform length and
w, =e N eq. 8-2

Evaluating eq. 8-1 requires N MAC operations for each transformed value in X, or N’
operations for the complete DFT [14]. This time-complexity of O(N?) is known as an
inefficient way to carry out computations.

The fast Fourier transform (FFT) exploits the symmetry and periodicity
properties of the phase factor wy [21], which decomposes an N-point DFT into
successively smaller DFT transforms based on a divide-and-conquer approach. This
results in a O(Nxlogy(N)) complexity. According to the different partition approach,
the FFT decomposition can be classified into decimation-in-time (DIT) and
decimation-in-frequency (DIF) algorithms. No matter which kind of algorithm to use,
the basic FFT operation is adding and subtracting the same two values, which is
referred to as a butterfly operation due to its butterfly-like shape in the flow graph
[14].

When the transform length is a power of 2, N = 29, the processing data sequence
can be decomposed into two series using a radix-2 butterfly. This radix-2 algorithm
requires q decomposition steps, each computing N/2 butterfly operations. When the
transform length is a power of 4, N= 4% a more hardware efficient radix-4
decomposition algorithm can be used. This approach reduces the number of complex

Page 61

Chapter 8 — Case study II: Radix-2> FFT

multiplications with the penalty of increased complex additions. The complex radix-4
butterfly can be further simplified by using four radix-2 butterflies as shown in Figure
8-1, which reduces the number of complex additions needed. This reduction is evident
when folding on a flow graph is applied. A comparison between three decomposition
algorithms mentioned above has been originally compared in [14] and is repeated here
as shown in Table 8-1 in section 8.3.

X, ;_ i :: f (—
e ==
x; = : (X)— X; _ 7 ><_ —

(a) (b)
Figure 8-1 [14]. (a) Radix-4 butterfly. (b) Radix-2* butterfly.

Because data rounding or truncation is unavoidable operation in a fixed-point
hardware implementation, the signal to quantization noise ratio (SQNR) is often used
as one of the parameters to evaluate the system performance. It is defined as,

P
SONR , =10-log,, (FXJ eg. 8-3

q

where P, is the signal energy and P, is the quantization energy.

8.2 MATLAB reference model simulation

To comprehensively understand the algorithm structure and intermediate data flows, a
full precision reference model for a radix-2*> pipeline FFT is initially designed in
MATLAB. Thereafter, a fixed-point model for a time-multiplexed structure is
developed to further study the quantization and overflow effects in a hardware
platform. Because the complex multiplication function is realized by using a 16-bit
CORDIC processor in an actual system implementation (refer to section 8.3.2), a
bit-accurate simulation model for the CORDIC cell is developed in MATLAB and
used in the fixed-point modeling.

In the simulation environment, the user can specify the input data width,
intermediate calculation precision, overflow scheme and CORDIC configurations, etc.
Furthermore, the user selects FFT size and generates input data samples. Figure 8-2
shows a 1,024-point FFT simulation comparison between the MATLAB built-in
function and a fixed-point reference model. In this example, the input data width is 10
bits and all internal arithmetic operations in the fixed-point model are carried out with
16 bits precision.

Notice that the problem of internal computation overflow is not considered a
topic for hardware implementations in this experiment. To prevent that, system data

Page 62

Chapter 8 — Case study II: Radix-2> FFT

inputs are restricted to a maximum of 10-bit complex numbers with scaled (x0.5)
signal magnitudes. Complex valued data stimuli for the hardware platform are
currently generated from MATLAB, where the reference model simulations can be
carried out in advance to check the internal computation status.

0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
Frequency (Hz) Frequency (Hz)

Difference plot of FFT(()-FFT, . 5,04 (0)

X@!

oy

| 1 1 1 1 I
o 500 1000 1500 2000 2500 3000 3500 4000
Frequency (Hz)

Figure 8-2. A 1,024-point FFT output comparison between the MATLAB
built-in function (upper left) and a fixed point reference model (upper
right). Result differences are shown in the bottom plot. The SQNR for the
MATLAB built-in function full precision simulation is 40.122 dB; and the
SQNR for the fixed-point reference model is 39.928 dB.

8.3 System architecture

The hardware implementation of the FFT algorithm can be mapped in several ways.
In general, mapping schemes can be sorted into three categories: a direct algorithm
mapping, a pipeline structure and a time-multiplexed approach. Direct algorithm
mapping basically implements every processing unit in a flow graph using a unique
arithmetic unit. Normally, using this approach for a large and complex algorithm is
not desirable due to the huge amount of hardware resources required [1]. The
alternative is to fold operations onto the same block, which reduces hardware
complexity at the cost of increased computation time.

Taking a 4-point radix-2 FFT (Figure 8-3) as an example, folding the FFT
algorithm vertically is referred to as a pipeline FFT, which reuses computational
butterfly units at each stage. Because of the hardware resource sharing, a part of the
input data samples at each stage need to be temporally stored before any computation
can be performed. The required data storage is referred to as a single path delay
feedback (SDF) buffer. As a penalty, computation time required in a pipeline FFT is
dependent on the transform length, where a direct-mapped structure streams data in
each clock cycle.

Folding the pipeline structure further horizontally reduces the arithmetic unit
requirements to only one butterfly, results in a time-multiplexed architecture. Because

Page 63

Chapter 8 — Case study II: Radix-2> FFT

this approach folds the algorithm in two dimensions, the FFT computation stage
quantity also becomes a factor that influences the required execution time. This
architecture has the same memory requirements as a pipeline FFT. Property
comparisons between these FFT architectures are shown in Table 8-1. Due to the great
computation complexity reduction and the smallest hardware resource requirements,
the radix-2® FFT architecture is selected in this study to be mapped on the CGRA.

» X(0)

x(0) \/ ><:
x(1) > > X(2) Folding -
@ ><>§ N ':(> . I R 2
. /\1 ®" >< > 5
1
P 5
—®)

x(3) >

@ Folding

]
. s x ©
Figure 8-3. “Folding” a 4-point radix-2 FFT. (a) A flow graph. (b) A pipeline
structure is built up by using two radix-2 butterfly units (R-2 BF) with SDF buffer
attached, and a complex multiplier. The number stated inside SDF block represents
the FIFO depth. (c) A time-multiplexed structure uses a single radix-2 butterfly unit
and a complex multiplier.

Table 8-1 [14]. Properties for different FFT architectures. Multipliers and adders are
complex valued. The number of clock cycles depends on the transform length N.

Hardware architecture Adders Multipliers Memory Cycles
Direct-mapped radix-2 NlogoN (N/2)(loga(N) — 1) 0 -
Direct-mapped radix-4 2NlogsN (BN/4)(logy(N) — 1) 0 -
Direct-mapped radix-2? 2NlogsN (BN/4)(logy(N) — 1) 0 -
Pipeline radix-2 2logoN logy(N) -1 N-1 N-1
Pipeline radix-4 8log,N log4(N) -1 N-1 N-1
Pipeline radix-2° 4logsN log4(N) -1 N-1 N-1
Time-multiplexed radix-2 2 1 N Nlog,N
Time-multiplexed radix-4 8 1 N NlogsN
Time-multiplexed radix-2° 4 1 N NlogsN

8.3.1 Radix-2" pipeline FFT

A basic radix-2* FFT building block consists of two radix-2 butterfly units separated
by a trivial multiplication and a complex multiplier, as shown in Figure 8-4 (b). This
can be directly mapped onto the CGRA by using two tile templates, as illustrated in
Figure 8-4 (¢). Each tile template contains two processing cells and two memory cells.
32-bit DSP processors are used for the butterfly operations, while CORDIC processor
emulates complex multiplication using vector rotation [1].

Page 64

Chapter 8 — Case study II: Radix-2> FFT

[~] Emj
() R-22 w ':(> R2] R2 w | ®
> -

BF—)@—N%

b
%-il
!
%-il
Yo
Y

B|TF BIF ROM
A
i WX o
SDF SDF b COR
| psP] DIC

Figure 8-4. (a) A basic radix-2> FFT building block consists of a radix-2
butterfly unit (R-2* BF) and a complex multiplier. (b) A radix-2* butterfly
unit is constructed from two radix-2 butterflies (R-2 BF), separated by a
trivial multiplication. (c) A direct mapping on the CGRA. A basic radix-2>
FFT building block requires two tile templates.

The BTF I and BTF II blocks in Figure 8-4 (c¢) stand for butterfly stage 1 and
butterfly stage 2, respectively. They are functional blocks corresponding to the first
and second radix-2 butterfly units drawn in Figure 8-4 (b). SDF I and SDF II blocks
represent SDF buffers needed by each butterfly unit, which are implemented as FIFO
operations in the memory cells. The DSP cell in the first tile template is responsible
for the trivial multiplications in between two butterfly stages. The CORDIC processor
takes care of the complex multiplications, and the ROM cell attached is used for
feeding FFT twiddle factors required in each multiplication.

Simple mapping

A basic radix-2* FFT building block can be replicated in both horizontal and
vertical directions to construct a larger size cell array, used for larger size FFT
computations. As an example, Figure 8-6 illustrates an algorithm mapping for a
2,048-point radix-2° pipeline FFT (Figure 8-5) on an 8-by-8 reconfigurable cell array.

It is worth to mention that there is a list of advantages provided by this kind of
hardware structure.

e Each stage in a radix-2® pipeline FFT occupies two tile templates, so in

principle it is easy to replicate this up to achieve any transform length.

e It has a regular tile structure, where each processor has a memory cell attached
and every other tile template contains a CORDIC processor. This is a versatile
template structure that should be suitable for a broad range of algorithm
implementations.

e All internal data transfers are realized by using local connections. The mapped
pipeline FFT implementation therefore has a low demand on global data
communications. Due to the high throughput data transmissions provided by
the local network, this structure has a good property on data throughput and
system latency.

Page 65

Chapter 8 — Case study II: Radix-2> FFT

R-2? R-2? R-2? R-2? R-2? R-2

BF —>»®—» BF —>»®—» BF |[—>»®—>» BF —»&>» BF [—>»X—>» BF [—>»

stage 1 stage 2 stage 3 stage 4 stage 5 stage 6

Figure 8-5. A 2,048-point pipeline FFT constructed from five radix-2> butterflies and
one radix-2 butterfly.

BTF 1 BTF " rom BTF BT Rom
e I I I i)
3 v <N W 3 3
s | o (4 o [Teon [oo | Yow | [orr| sr
(o it ¥ 1
RoM BT ‘ BTF ‘ RoMm BTF é‘II'F
K \ ¢ R
ol Nl o |
cont Lo | s [0 || [ene? [] [owo | [
= PR
< 2
BTF BT RoMm BT RAM
i T e
\ W X
SOF DSP SoF coR SOF DSP

Figure 8-6. Structure of an algorithm mapping for a 2,048-point radix-2*
pipeline FFT on an 8-by-8 reconfigurable cell array. Interconnections and
building blocks drawn in lightened shade are unused system resources in this
application. Complete local interconnects are shown in the second tile
template of the first line, and a complete set of global interconnections is
depicted in the first tile template.

It is possible to do an output data shuffling by using the remaining DSP
processor and memory cells, as shown at the last stage.

However, there are also limitations involved in this hardware mapping.

This structure has high demand on data storage capacity for each single
memory cell. For instance, the SDF buffer at the first stage in the preceding
example requires a storage size of 1,024 xinput wordlength. For processing the
16-bit complex data inputs, this is a 32K bits memory requirement. Hence, the
actual realizable FFT implementation using this mapping scheme is limited by
the provided memory capacity.

If large data memories are possible to be integrated in each memory cell where
the hardware size is a main concern here, this structure reveals low utilization

Page 66

Chapter 8 — Case study II: Radix-2> FFT

in the memory cells. In the example above, a 32 Kb memory space is required
at first computation stage. However, there is only a 32-bit data storage
required at the last stage, which is equivalent to a 0.1% memory usage.

e The reconfigurable cell array has an asymmetrical structure. Every other row
of the tile templates have to be horizontally mirrored for proper local
interconnections.

e Internal computation accuracy is restricted at a high data throughput, because
current 32-bit DSP processor only supports 16-bit complex operations. For
higher computation accuracy demands, the real and imaginary parts of
complex inputs have to be treated separately in a processing cell, which
requires separated I/O data transfers, results in a lower data throughput.

To summarize, the use of the simple mapping structure is mainly limited by the
memory capacity available. This approach could be used for mapping small size FFT
applications. For instance, with the reasonable memory capacity 8 Kb provided (as
suggested in [1] pp. 136), the radix-2* pipeline FFT computation size can be
supported up to 256-point.

Simple mapping with split complex number data path

To improve internal computation accuracy while maintaining a high data throughput,
simple mapping structure can be combined with the use of split data path for complex
number processing. This is shown in Figure 8-7.

The real and imaginary parts of the complex inputs are streamed into two
different tile templates, where butterfly operations can be handled concurrently.
Butterfly processed data outputs are gathered by a DSP or a CORDIC processor to
perform the trivial or complex multiplications, respectively. Results are thereafter split
again for further processing.

Another advantage in this structure is the relative low demand on memory
storages. Because of the split data path, demand on the required SDF buffer for each
processing is reduced by half. In addition, memory cells in the first butterfly stage can
be concatenated to behave like a larger size SDF buffer.

Drawbacks with this structure are:

e Mapping has a high demand on system resources. Because each radix-2>
pipeline FFT stage occupies 4 tile templates, the realizable transform length is
limited by the number of resource cells available.

e This approach involves lots of hierarchical global communications for
intermediate data processing. Therefore it has a high demand on the parallel
switching ability in router cells. Moreover, routing data through global
network results in relatively longer system latency. But due to the pipeline
structure, data throughput will remain the same as previous mapping once the
system runs in steady state.

Page 67

Chapter 8 — Case study II: Radix-2> FFT

B':'F l— S|.E;F “— B;II'F ROM B'II'F B;II'F ROM
W o N 1S 4 o
VR A e o}
SDF 4 & SoF |+ cor i SDF soF | cor
1-1 psp L 1} 1 DIC | psp 1 DIC
\(E{\A] v] T R
AR«
<4 ‘ A 4
BTF ¢— SDF BTF BTF BTF
| -2 1} | 1
Jwed o |l 7
< !
SDF SDF SDF SDF
1-1 I | 1
A{
< P(R
- A
B':'F BITI'F ROM B'II'F MC B|1|'F ROM
i1 AT U el
R)e R
<
SDF SDF o COR SDF SDF h COR
| DsP I DIC | DsP 1 DIC
AOM Oh
BTF { Bre BTF \ BrF
| I | MC 1
Jeo— ol il
SDF SDF SDF SDF
| 1} | 1

Figure 8-7. Structure of an algorithm mapping with split complex number data
path for a 2,048-point radix-2* pipeline FFT on an 8-by-8 reconfigurable cell array.

Overall, the structure of a simple mapping with split complex number data path is
mainly system resource limited, and to some extent also has impacts related to the
provided memory capacity. This approach is suitable for mapping small size FFT
applications with desired high computation accuracy. For instance, an 8-by-8
reconfigurable cell array supports up to 256-point radix-2” pipeline FFT with up to
32-bit internal calculation precision.

Simple mapping with concatenated memory cells

To reduce the high storage capacity requirement in each memory cell as mentioned in
the previous two mapping approaches, memory cells can be concatenated together to
provide larger data storage, which makes it feasible to be practically implemented. As
shown in a previous study ([1] pp. 136), a good memory capacity selection for a
memory cell is 8 Kb. So in a 2,048-point radix-27 pipeline FFT, SDF buffer in the first
computation stage needs to have four memory cells concatenated together, as
illustrated in Figure 8-8.

Comparing with the other two hardware mappings, this structure has much lower
memory capacity requirements, and therefore higher memory cell utilization.
Although global communications are also needed here for intermediate data
processing, this has been well controlled to a regional level where no hierarchical
routing is required. This approach could be used for mapping larger size FFT
applications. For example, using memory cells with the suggested storage capacity, an
8-by-8 reconfigurable cell array supports up to 2,048-point radix-2® pipeline FFT
computations.

Page 68

Chapter 8 — Case study II: Radix-2> FFT

soF | i| BTF || soF BTF |«—] SDF BTF |«—] SDF
4 T 1 1 | 2 TR N
« I & ht -«
. ;il ey N | l >< " \
SOF |«] SIDF i CIOR ‘ soF | | ROM || COR
I3 [5| DSP 2 | pic -1 DSP 1 DIC
Re v I
ROM ROM ROM BTF
9 o osp |1 R DSP DSP 9 |
) | I A0
ROM [pgp ¢ ROM ROM bsp soF
< <G
-
A
BTF BIF ROM DSP BIF ROM
W A b 4
e— I e N it
<
SDF soF | Ycor SDF COR
| DSP I DIC RAM I DIC
9 | I
3 v
roM BT BTF RO BTF BTF
k| | K
I @4t WINJE o i
o A.
COR SDF SDF COR SDF SDF
DIC i Dsp | DIC I psP |

Figure 8-8. Structure of an algorithm mapping with concatenated memory
cells for a 2,048-point radix-2* pipeline FFT on an 8-by-8 reconfigurable
cell array. In contrast to the previous two hardware structures, required
single radix-2 stage has been moved to the first computation stage in this
example.

8.3.2 Time-multiplexed radix-2* FFT

A time-multiplexed radix-2* FFT structure is constructed by using one basic radix-2*
FFT building block, where all the required computations are executed iteratively on
the same hardware. Because of the relatively smaller system resource requirement,
this structure has been implemented and realized on an FPGA platform. The detailed
architecture diagram is shown in Figure 8-9 (a).

Resource cells at location (0, 0) and (2, 1) are 32-bit DSP processor cells,
corresponding to the butterfly stage 1 and 2, respectively. Memory cells at (0, 1) and
(3, 1) are SDF buffers required by each butterfly unit. The DSP processor at (1, 1) is
responsible for the trivial multiplications, and the CORDIC processor at (2, 0) is used
for the complex multiplications. In order to gain system flexibility, the FFT twiddle
factor ROM has been substituted by a DSP processor placed at location (3, 0), and the
coefficients are generated on the fly. The memory cell at (1, 0) runs in FIFO mode to
buffer intermediate data between adjacent computation stages. Because data
memories are provided as hard macros inside the FPGA, all memory cells have been
equipped with a 32Kb storage space. As a result, this time-multiplexed radix-2* FFT
structure supports a flexible transform length, from 32 to 1,024-point. Since the RAM
mode operation in the memory cell is currently not available, data outputs in the
hardware implementation are kept in a bit-reversed order, which can be sent back to
MATLAB for post-processing. Hardware configurations for all the resource cells in

Page 69

Chapter 8 — Case study II: Radix-2> FFT

the radix-2® FFT application are summarized in Table 7-2. Diagram of the functional
behaviors and the internal data flow graph are illustrated in Figure 8-9 (b).

Location (1, 0)

Location (2, 0)

Location (0, 0) Location (0, 1)
NN NONT RN
PC Mc
S 6ip o © :Go Go: S Gip 15 Z - ———— %
& 14O & 14§ 1 \ i "
A A * N
R(0,0) "
C e I 7 N
R <>
&S & I \
Y \ I N,
¢ 1 Gl Ol & 1 [T \
mc < » o - lc
“ @2 [» Z 63 |2
< L& 5 L o8 R(,1) R
A A 4
G
\/ Y I ‘
Q< REETERN
COR- o
S DIC | » o PC 5|5 ——— e
6D 4 -~ - GID_5 2
_ GO GO g =
LN Z LSS A 3 A — PR
A A I ‘
R(2,0)
- I
R 7 < G4 > I 1
o @ | |
\/ \J I ‘
o u % [GO o 4 s
o PC - @& ol &« MC _
“ 66" [™ 2 Gip_7°
<« O LSS TN
Location (3, 0) Location (3, 1)
(a) (b)

Figure 8-9. (a) Time-multiplexed radix-2* FFT structure in the CGRA. (b) Functional
behavior of each recourse cell and internal data flow graph in the time-multiplexed
radix-2* FFT structure.

Table 8-2. Hardware configurations for resource cells in a 4-by-2 cell array.

Location | Global ID Cell type Hardware configurations
(0, 0) 0 32-bit DSP processor;
(1, 1) 3 Program memory size = 64 x 32-bit;

P
2, 1) 5 rOCessOr | GPR = 11; LIO = 8; GIO = 1;
(3,0) 6 Barrel shifter disabled.
(0, 1) 1 . .
Memory capacity = 1024 x 32-bit;

(1, 0) 2 Memory DSC table length = 4.
(3, 1) 7
(2,0) 4 CORDIC 16-bit pipelined core

The global routing network in this structure has two hierarchical levels, where the
level number is indicated by the second digit in each router cell location. Global
network in a lower layer is responsible for distributing data packages received from a

Page 70

Chapter 8 — Case study II: Radix-2> FFT

higher routing hierarchy. In this structure, layer 1 is the top level network hierarchy
and is used for system level data transfers, such as configuration package
downloading, resource cell status tracing, input/output data streaming, etc.

8.4 System performance evaluation

8.4.1 Radix-2" pipeline FFT

As discussed previously, mapping 2,048-point radix-2* pipeline FFT structure with
concatenated memory cells requires an 8-by-8 cell array, as illustrated in Figure 8-8.
Since the target FPGA chip can hold a maximum of 8 resource cells, the pipeline
structure is far too large to be practically implemented on a FPGA platform. Besides,
it is also a time-consuming task to simulate such a complex design as a computer
based cycle-accurate HDL model, this design has only been analyzed theoretically in
this project.

Because data samples in a pipeline structure is non-recursively streamed through
the system, program routines in all processor cells are kept as simple as possible to
maximize the processing throughput. By analyzing program instructions in each
processor cell, execution time for processing each data sample can be extracted, as
listed in Table 8-3.

Table 8-3. Instruction size and execution time evaluation for the processor cells.

Execution time per data

Instruction Instruction sample [clock cycles]
Processor cell) -
amount code size [bytes] | First . Last
sample Typical sample

BTF 1 5 20 2 2 4
Trivial mul. 5 20 2 2 4
BTF II 5 20 2 2 4
Coeff. gen. 15 60 1 3 4

As an example, the program section for a function block “BTF I” in a processor
cell looks like:

Table 8-4. Assembly program in the processor cell “BTF 17, designed for the
radix-2° pipeline FFT.

.restart // Loop back label

ilc SC_FFT_SIZE/2 // 01: Set inner loop counter
dmov {I} SP_O_DATA, $P_O_SDF, $P_I_SDF, $P_|_DATA // 02: Filling SDF buffer

ilc SC_FFT_SIZE/2 // 03: Set inner loop counter
btf {c|} SP_O_DATA, SP_O_SDF, $P_| SDF, SP_| DATA // 04: Butterfly operation

bri .restart // 05: Loop back

Page 71

Chapter 8 — Case study II: Radix-2> FFT

The typical clock usage for processing data samples in this cell requires no more than
an instruction execution time (for operation “dmov” or “btf”), and an inner-loop
control time. This is also valid for computing the first data sample. A worst case
happens in the final loop back instruction. Since a branching operation requires one
execution clock and one register flush clock, two additional clock cycles are needed
there. Hence, there is a relatively large control overhead in this implementation when
computing small size FFTs.

Overall, execution time for the radix-2* pipeline FFT in this design has a worst
case clock usage of 4, and the average processing throughput is 3 clock cycles per
data sample.

8.4.2 Time-multiplexed radix-2* FFT

The time-multiplexed radix-2* FFT structure contains three 32-bit processor cells: one
16-bit pipelined CORDIC cell and three 32 Kb memory cells, as shown in Figure 8-9
(a). Considering a realistic system configuration that is suitable for a wide range of
algorithm implementations, the descriptor table length in each memory cell is
configured to 4 during system design-time. In this FFT experiment, only one memory
descriptor is actually needed, the other three locations are therefore left empty which
result in waste of execution cycles. Although this causes system performance
degradations, it is a trade-off between the system flexibility and the processing
efficiency.

Data throughput on system I/O ports is not evaluated in this project, where
instead input data samples are assumed to be ready for streaming through the
hierarchical global routing network. Because intermediate FFT results have been kept
locally, local I/O registers are used for data flow control between resource cells.
System performances are evaluated based on a cycle-accurate HDL simulation model.

Program routines for all processing cells in time-multiplexed radix-2° FFT
experiment are designed to emphasize the functional flexibilities rather than showing
the processing throughput. This functional flexibility is reflected from the easy way of
reconfiguring the FFT size during run-time. Changing the transform length requires at
most 4 instructions to be downloaded in each processor cell. Referring to hardware
configuration, the current FFT size supported by the platform is between 32 and
1024-point. The developed program routines prevent internal arithmetic overflows by
conservatively scaling the results by 2 before each radix-2* stage. A small program
segment in the processor cell (0, 0) is shown in Table 8-5, and the total instruction
size for each processor cell is summarized in Table 8-6.

Table 7-3 shows a few performance metrics extracted from the simulations.
Compared to a DSP solution as shown in Table 8-8, the CGRA exhibits great
reconfigurability on the code size, which further implies the required reconfiguration
time. These results also show that better transform throughput can be achieved by
reducing the descriptor table length in the memory cells. However, this might limit the
use of CGRA in other algorithm mappings due to the loss of configurability in the
memory cells. To summarize, the choice of hardware configuration is closely linked

Page 72

Chapter 8 — Case study II: Radix-2> FFT

to the field of application, a trade-off between the system flexibility and the

processing efficiency has to be decided before the actual implementation work begins.

Table 8-5. Program instructions in processor cell at location (0, 0) for a
time-multiplexed radix-2*> FFT. Table columns are: binary code, assembly
program, comment and reconfigurability.

BOOOOOOA
8480007F
84400004
85000000
84600001
40002000
06A0D801

/101
/102
/103
// 04
// 05
/106
/107

: GID 10

: ADDI $4, $0, 127

: ADDI $2, $0, 4

: ADDI $8, $0, 0

: ADDI $3, $0, 1

S ILC $4

: ADD $L2, $GO, $0 {I}

; Load GIO TX DST ID
; N_FFT2-1

; Load stage counter
; Last stage flag

; Load iteration counter

; Stage 1, special case

For reconfiguration
For reconfiguration
For reconfiguration
For reconfiguration

Table 8-6. Instruction size summary for the processor cells.

Processor cell PC(0,0)| PC(1,1) | PC(2,1) | PC(3,0)
Usage BTF-I | Trivial mul. | BTF-II | Coeff. gen.
Instruction amount 53 34 44 20
Instruction code size [bytes] 212 136 176 80
Reconfiguration inst. amount 4 3 4 3
Reconfiguration code size [bytes] 16 12 16 12

Table 8-7. System performance explorations for the CGRA based on the different

FFT computations.

FFT size [points] 32 | 256 \ 1,024
Input wordlength [bits] 10

Scaling scheme Conservative

SQNR [dB] 39337 | 39274 | 39928
Memory [bits] 96K (32K x 3)

Memory utilization 2.083% 16.67% 66.67%
(Memory usage [bits]) (512+512+1K) | (4K+4K+8K) | (16K+16K+32K)
Maximum frequency [MHZz] 27.398

FPGA usage on Xilinx
Virtex-11 Pro-30-7ff896

Number of slices: 11,022 out of 13,696 — 80% usage;
Number of BRAMs: 10 out of 136 — 7% usage

Configuration time [clock cycles] 1,552 4,912 16,432
Reconfiguration time [clock cycles] 184

Latency [clock cycles] 433 3,965 19,837
Execution time [clock cycles] 806 7,026 32,114
1D transform per second 33,993 3,899 853

Page 73

Chapter 8 — Case study II: Radix-2> FFT

Table 8-8. FFT benchmark comparison between the CGRA and a DSP processor, the
TMS320VC55x from Texas Instruments.

Execution time

. FFT size Code size | Reconfiguration
Architecture [points] [clock cycles] [bytes] code size [bytes]
4 mem. DSC | 2 mem. DSC
32 806 423
CGRA 256 7,026 4,290 604 56
1,024 32,114 20,212
Texas 32 591
TMS320VC55x 256 5,389 462
[22] 1,024 25,921

Page 74

Chapter 8 — Case study II: Radix-2> FFT

8.5 Embedded system development in FPGA

8.5.1 System overview

A FPGA based embedded system has been designed using the Xilinx Platform Studio
(XPS) software environment and verified on a Xilinx XUP Virtex-1I Pro development
board. A 32-bit MicroBlaze soft core is selected as a primary system processor, and a
4-by-2 reconfigurable cell array is embedded as a co-processor connected on a shared
processor local bus (PLB), as shown in Figure 8-10. Bidirectional data transmissions
in the cell array are handled by a global I/O port. To adapt the different data
transmission protocols, the reconfigurable cell array uses a wrapper to interface to a
PLB bus. The UART Lite module manages system level data transfers with the
external host, and the interrupt controller is responsible for informing the primary
system processor to receive data from the cell array. These two units are soft IP cores
from the XPS tool and are both connected to the PLB bus. The primary system
processor acts as a PLB bus master, and all the other connected hardware modules
operate in slave mode. The block diagram for the embedded system is illustrated in
Figure 8-10, and the total FPGA device utilization is summarized in Table 8-9.

MicroBlaze
v7.10.d

A
A

—

Y

UART Lite
v1.00.a

A PLB bus 4.6
v1.03.a

A
\

Interrupt p
controller |« Glo
v1.00.a 4

-

To host -

\

i

CGRA cell array 4-by-2

PLB bus driver & User logics

Xilinx XUP Virtex-Il Pro development board

Figure 8-10. Block diagram of the embedded system in FPGA development

Table 8-9. FPGA device utilization summary for the embedded system development

Number of DCMs 1 outof 8 12% System clock management.
Number of MULT18X18s 3 outof 136 2% Used by the MicroBlaze.
Number of RAMB16s 42 outof 136 30% Required by the software
developments in MicroBlaze.
Number of SLICEs 12,919 outof 13,696 94% Total slice usage, where the

4-by-2 cell array occupies
85% of the total slice usage.

Page 75

Chapter 8 — Case study II: Radix-2> FFT

From section 8.4.2, the maximum clock frequency for a 4-by-2 standalone cell
array is about 27 MHz, therefore 25 MHz is used as the PLB bus clock in a FPGA
embedded system. Because of the selected MicroBlaze architecture in XPS, the
primary processor is forced to operate at the same clock speed as the PLB bus clock.

8.5.2 Communication with the system processor

Bidirectional communication between the cell array and the primary processor
(MicroBlaze in this case) is realized through the use of four interface registers, two
for each direction. An interface register is a 32-bit wide transparent software
addressable register communicated through the PLB bus. Interface register 0 and 2 are
used for bidirectional communication handshakes and proper controlling in each
transmission direction. Register 1 and 3 are dedicated to unidirectional data transfers.

Although the cell array and the primary processor both operate at the same clock
speed, communication handshaking still needs to be performed. This is because it is
desirable to be implement system management software in the primary processor on a
high-level programming language such as C, in order to gain the design flexibility.
Hence, signal assignments from the primary processor might not be cycle controllable,
which would potentially cause action duplications. For instance, by issuing an enable
signal from the primary processor to the global input port in a cell array, a data
transmission between two blocks is initiated. An improper release of the enable signal
will trigger multiple data transfers and hence result in data package duplications.

To maintain integrity of each data package, data transmissions in the embedded
system are treated as blocking read/write operations, and a two-phase communication
protocol is engaged to accomplish each transaction. A data transfer can be initiated by
issuing an action command from the primary processor and completed by detecting an
acknowledgement action from the cell array block. The acknowledgement action is
handled by the cell array wrapper design, i.e. the PLB bus driver as shown in Figure
8-10. When a communication action from the primary processor is discovered,
additional control logics is activated to monitor feedback signals from the cell array. If
no stalling signal is detected in the following clock, control signals to the cell array is
released and the corresponding control commands in the interface register is erased.
The primary processor should keep track of the corresponding interface register after
sending a communication command, and this can be released by detecting an erased
control bit position from that register. Communication control commands and bit map
arrangement for the interface registers are summarized in Table 8-10 and Table 8-11,
respectively.

A global data RX interrupt is used in data transmissions from the cell array to the
primary processor, which releases the host from data polling. Currently, this is the
only interrupt enabled in the system implementation. However, if more interrupt
events exist in an embedded system, the global data RX event should still be kept with
the highest priority, since any data miss is prohibited.

Page 76

Chapter 8 — Case study II: Radix-2> FFT

Table 8-10. Interface Communication control commands

Command Description

tx_en Data sending enable signal in global I/O TX port.
dst id en | GIO destination write enable signal in global I/O TX port.
cap_ttype | Global data transfer package type.

rX_en Data receiving enable signal in global I/O RX port.

Table 8-11. Interface register bit map arrangement

Interface Bit map
register | 31~18 17~ 16 15~2 1 0
0 Reserved | CAP_TTYPE | Reserved | DST ID EN TX EN
Unidirectional Bidirectional
1 TX data package to the cell array
Unidirectional
) Reserved RX _EN
Unidirectional Bidirectional
3 RX data package from the cell array

Unidirectional

8.5.3 Software development

Software development for the primary processor is performed in C and compiled
using the GCC compiler. Software flow graphs are shown in Figure 8-11. The main
program starts by initializing the interrupt controller and a batch of message printouts.
Thereafter, the system runs in a loop that monitors data inputs from the UART
interface and handles different user actions accordingly. Unrecognized user inputs are
discarded and a valid user command activates the corresponding operations in the cell
array. A complete user command set is listed in Table-Appendix 1, and detailed
descriptions are discussed in section 8.5.5. A data receiving notification from the
global I/O port interrupts the sequential process in the main program. Global data
receiving in the primary processor is handled by an interrupt service routine (ISR) as
depicted in Figure 8-11 (b).

In order to run a real application on the cell array, certain configuration
procedures have to be followed. As an example, a configuration flow graph for the
FFT implementation is shown in Figure 8-12. Notice that, processor cells in the cell
array are first configured. This is because reset action in the processor cell will flush
out all stored values from internal registers, including the communication port
registers. If processor cells are initialized after memory cell configurations, pre-loaded
data transfers in communication port registers will be lost.

Page 77

Chapter 8 — Case study II: Radix-2> FFT

Interrupt controller GIO RX ISR
setup
RX control on the
i global I/O port
Welcome message i
printout
Data reading from
L interface register

User command input & l

Received data printout

eturn to main
program

(b)

Figure 8-11. Software development flow graph in the primary processor, the
MicroBlaze in current implementation. (a) Flow graph of the main program
implementation. (b) Global I/O RX port data receiving interrupt service routine.

<stop command> ‘\
Stop current N
program running

i \\ i* ””””””””” a

|
|
Program downloads in processor |
cells: RC(0,0), RC(1,1), RC(2,1), |
and RC(3,0)
at

<reset command>
Reset processor cell

,,,,,,,,,, 1 Memory initialization
i 4 l - _ I | inMemory Bank 0
/ |
/ Memory cell configurations: |
Program download , RC(0.1), RC(1,0), and RC(3.1) }
» - ! '
~ | Descriptor 0
R <~ confi ti
~ guration

CORDIC cell configuration:
RC(2,0)

<start command>
Start program running in
processor cells: RC(3,0),
RC(2,1), RC(1,1), and RC(0,0)

'

o | Data feeding from global I/O TX
o port

'

|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Result gathering from global I/0 }
|
|
|
|
|
|
|
|
|
I
|
|
I
|
|
|
|
I

RX port

Continue

User controls:
e.g. PC register tracing,

Figure 8-12. Implementation flow graph for a time-multiplexed radix-2* FFT
application.

Page 78

Chapter 8 — Case study II: Radix-2> FFT

8.5.4 UART bit rate setup

Considering the maximum system running speed of 25MHz on the target FPGA
platform, a list of UART bit rates are evaluated to find the maximum achievable
communication rate.

As an example, with a bit rate of 9600 bps (bits per second), the required UART
sampling clock by the Xilinx XPS UART Lite v1.00a core [20] is 16 times higher,
153.6 kHz (169600 bps). With the system running clock 25MHz, the dividable
integer clock ratio for driving the UART sampling clock is 162 (floor(25 MHz/153.6
kHz)). Therefore the actual realizable UART sampling clock in the Xilinx UART Lite
core can be found by dividing the system clock by 162 which results in 154.321 kHz.
As a consequence, the bit rate error is 0.4694% ((154.321 KHz-153.6 KHz)/153.6
KHzx100%). According to the specification [20], the bit rate error is considered to be
acceptable if it is within 5% of the requested rate. Hence, a bit rate of 9600 bps with
rate error of 0.4694% is an acceptable configuration for the system.

Using the Microsoft HyperTerminal program as a reference, the supported high
speed UART bit rates (with the use of a USB to RS232 converter) are evaluated and
listed in Table 8-12. According to the bit rate error criterion, all acceptable bit rate
setups are marked in Bold-Italic font, and the maximum usable bit rate in the current
system implementation is 115,200 bps.

Table 8-12. UART bit rate error evaluation table

Bitrate | UART SCLK | System CLK | Integer | UART SCLK Bit rate
[bps] required [Hz] [MHZz] CLK ratio | actual [Hz] error [%0]
4,800 76,800 325 76,923 0.1603
9,600 153,600 162 154,321 0.4694
19,200 307,200 81 308,642 0.4694
38,400 614,400 40 625,000 1.7253
57,600 921,600 25 27 925,926 0.4694

115,200 1,843,200 13 1,923,077 4.3336

230,400 3,686,400 6 4,166,667 13.0281

460,800 7,372,800 3 8,333,333 13.0281

921,600 14,745,600 1 25,000,000 69.5421

8.5.5 User interface in serial line

A transparent user interface in UART line has been designed to provide the user with
an easy way of controlling the embedded system. Processor cell instructions, memory
or CORDIC cell configurations, control commands and global data inputs can be
transmitted through the top level global port communication. In addition, a few
pre-stored FFT configuration scripts are provided as fast system demonstrations.
Different user actions can be executed by calling different user commands, as listed in

Page 79

Chapter 8 — Case study II: Radix-2> FFT

Table-Appendix 1. Bulk data transfers can be accomplished by sending a user defined
script file.

To be able to distinguish between different user actions, serial line inputs have
been divided into three categories: command input, number input and string input.
Command input is wrapped around by a leading ‘@’ and a trailing ‘#’ sign; string
input starts with a ‘$’ sign and ends with a ‘#’ sign; number input only accepts pure
digit inputs 0 ~ 9 and ends with a user input other than digits. For example, the
following command inputs download an instruction into a processor cell that is
labeled with GIO ID 0.

>> @gh // (command input) command ‘g’, destination cell selection.
>>0 // (number input) resource cell GIO port ID.

>> @it // (command input) command ‘i’, instruction downloading.
>>2 // (number input) the number of instructions to be sent.

>> $00010002# // (string input) instruction loading header.
>> SA8000001# // (string input) instruction “A8000001”.

8.5.6 User interface in MATLAB

Based on a transparent serial line interface, a higher level user control platform is
designed in MATLAB. This interface gives the user a more advanced and flexible
approach to control the data streams running in and out of the embedded system. For
example, input data sequences can be generated in MATLAB during run-time and
result data can be collected and plotted graphically.

The MATLAB interface works as a front-end user platform, where the serial line
interface runs in the background. By issuing different user commands, as listed in
Table-Appendix 2, different function calls will be executed. It is worth to mention that
using command ‘cmd’ will provide the user a transparent function control in the serial
line interface for the follow-up command input.

8.6 Conclusion

A complete radix-2* FFT implementation based on the CGRA has been presented.
Several FFT mapping alternatives have been discussed and compared. System
performance evaluations have been carried out based on a pipeline FFT structure as
well as on a time-multiplexed mapping approach. A 4-by-2 reconfigurable cell array
has been integrated as a co-processor into an embedded system and eventually
verified on a Xilinx FPGA board. The outcome from this case study is a fully
functional 4-by-2 reconfigurable cell array with a manually mapped flexible radix-2*
FFT implementation, where the transform length is run-time reconfigurable between
32 and 1,024-point.

From the initial algorithm selection to the final system implementation, all design
procedures introduced in the generalized system design flow as depicted in Chapter 7

Page 80

Chapter 8 — Case study II: Radix-2> FFT

have been tightly followed in this experiment.

In comparison to an ordinary DSP solution, the time-multiplexed radix-2> FFT
implementation on the CGRA exhibits great reconfigurability on the code size and
system reconfiguration time. Results also show that up to 20% of the total clock usage
can be saved when using the CGRA with configurations in pursuit of processing
efficiency, namely with the proper memory descriptor length setup.

8.7 Future work

8.7.1 Serial line input speed up

Due to the current UART RX handling in the embedded system, certain character
input delays have to be inserted when streaming data into the platform, for example
I-millisecond character delay is needed when sending data from Microsoft
HyperTerminal program. This is used to ensure the data integrity of each character
transmission, since other control actions or UART TX events could interrupt the serial
data receiving and result in data misses. As a main drawback of this scheme, the user
suffers from a long waiting time for data sending completions. In order to improve
that, the UART RX interrupt with a suitable length of receiving FIFO should be used
in the embedded system. Moreover, current primary system processor — the
MicroBlaze could be replaced by an embedded Power PC core inside the FPGA,
where a much higher processor clock can be used for system management, such as
control handlings and information printings, etc.

Alternatively, data streaming throughput can be improved by using a high speed
communication interface. One possible solution is to use a TCP/IP socket, which
provides the user a data transmission rate in the scale of mega bits per second.

8.7.2 Dead lock handling

According to the communication protocol defined in Chapter 2.3.1, relevant data
transactions in all resource cells should be suspended if any node in the chain gets
data stalled. This might cause a data dead lock if something goes wrong in the system
configuration. For instance, dead lock will occur if running a 64-point FFT
computation with the use of memory cells configured for 32-point only. In that case,
entire system will be suspended due to the lack of data inputs in the processing cells.
Therefore, a system level user action is needed to interrupt the stalled data
transmissions and to restart the entire system subsequently.

Page 81

Page 82

Chapter 9 — Conclusion

9 Conclusion and Outlook

Coarse-grained reconfigurable architecture (CGRA) coexists with fine-grained
reconfigurable architecture (FGRA), aimed for higher computing performance and
reduced system development time. The proposed CGRA is constructed from an array
of run-time reconfigurable processing and memory cells that are interconnected over a
hybrid communication network. Based on a series of pre-studies, each of the
individual cell modules inside the CGRA has been designed, implemented, verified
and evaluated. The outcome of this work is a system-level exploration on the usage of
the CGRA targeted for DSP applications, where a time-multiplexed FIR filter and a
32~1,024-point flexible time-multiplexed radix2® FFT algorithm have been manually
mapped onto a 4-by-2 reconfigurable cell array, and finally verified on an FPGA
platform. A list of system performance metrics has been measured and mainly
presented based on the FFT implementation, which showed that the reconfiguration
code size in the CGRA outperforms the ordinary DSP processor by a factor of 8, and
up to 20% of the total execution clock usages can be saved.

Function testing, debugging or running diagnostics on large-scale system architecture
is always problematic, ability to observe the inner working status of each resource cell
is therefore essential. The processing cells implemented in CGRA support run-time
status tracing, where the configuration parameters and operation states can be reported
upon the user requests. Besides, a few hardware assisted approaches for system-level
debugging have been proposed throughout chapters, such as the industry standard
JTAG chain, system BIST and memory content dumping, etc.

Looking forward, applying the CGRA into a wide application domain is a trend.
However, this requires a series of system-level exploration tools to model, simulate
and evaluate the use of the CGRA in different application environments, in order to
extract appropriate design parameters to achieve high performance to a feasible
hardware cost. Although there are still lots of system-level investigations left under
considerations, the future of the CGRA is certainly bright.

Page 83

Page 84

Bibliography

Bibliography

[1] Thomas Lenart, Design of Reconfigurable Hardware Architectures for Real-time
Applications, Ph.D dissertation, Lund University, Department of Electrical and
Information Technology, 2008.

[2] Henrik Svensson, Reconfigurable Architectures for Embedded Systems, Ph.D
dissertation, Lund University, Department of Electrical and Information Technology,
2008.

[3] Chenxin Zhang and Chao Wang, Implementation of Processor Cell in
Reconfigurable Computing, project report in course IC Project and Verification
(ETI210), Lund University, Department of Electrical and Information Technology,
2008.

[4] Wikipedia, “Buffer overflow,” 28 January 2009,
http://en.wikipedia.org/wiki/Buffer overflow.

[5] Wikipedia, “Buffer underrun,” 2 January 2009,
http://en.wikipedia.org/wiki/Buffer underrun.

[6] Thomas. Lenart, Henirk. Svensson and V. Owall, “A Hybrid Interconnect
Network-on-Chip and a Transaction Level Modeling approach for Reconfigurable
Computing,” in Proceedings of IEEE International Symposium on Electronic Design,
Test and Applications, Hong Kong, China, January 2008, pp. 398—404.

[7] Henrik Svensson, Thomas Lenart, and Viktor Owall, Modeling and Exploration
of a Reconfigurable Array using SystemC TLM, in Proceedings of Reconfigurable
Architectures Workshop, Miami, Florida, USA, April, 2008.

[8] J. L. Hennessy and D. A. Patterson, Computer architecture: A Quantitative
Approach, fourth edition, Morgan Kaufmann Publishers, 2003.

[9] Yu Hen Hu, “The Quantization Effects of the CORDIC Algorithm,” in [EEE
transactions on signal processing, vol. 40, no. 4, pp. 834-844, 1992.

[10]A. Meyer-Bise, ef al. “A parallel CORDIC architecture dedicated to compute the
Gaussian potential function in neural networks,” in Engineering Applications of

Artificial Intelligence, vol. 16, pp. 595-605, 2003.

[11]Xilinx, CORDIC v3.0 Product Specification, May21, 2004.

Page 85

Bibliography

[12]Fredrik Edman, Digital Hardware Aspects of Multiantenna Algorithms, Ph.D
dissertation, Lund University, Department of Electroscience, 2006.

[13]1B. Parhami, Computer Arithmetic: Algorithm and Hardware Designs, Oxford
University Press, 2000.

[14]Thomas Lenart, A Hardware Accelerator for Digital Holographic Imaging,
Licentiate Thesis, Lund University, Department of Electrical and Information
Technology, 2005.

[15]Chih-Pang Hsu, Design of Fast Fourier Transform Processor in DVB-T Inner
Receiver, Master thesis, Institute of Communication Engineering, National Central
University, 1995.

[16]Faraday, UMC 0.13um MEMAKER, 2007.

[17]Thomas Lenart, Henrik Svensson and Viktor Owall, Implementation of
Application Specific Stream Processors, project specification in the IC project and
verification course, Lund University, Department of Electrical and Information
Technology, 2008.

[18] Wikipedia, “Round-robin scheduling,” 9 December 2008,
http://en.wikipedia.org/wiki/Round-robin_scheduling.

[19]Matthias Kamuf, “DSP-Design, Seminars and Labs,” DSP design (ETI180)
course manual, Lund University, Department of Electrical and Information
Technology, 2008.

[20] Xilinx, “XPS UART Lite (v1.00a) Product Specification”, July 18, 2008.

[21]]J. G. Prpalos and D. G. Manolakis, Digital Signal Processing: Principles,
Algorithms, and Applications, third edition, Prentice-Hall, 1995.

[22]Texas Instruments, “TMS320C55x DSP Library Programmer’s Reference,”
http://www.cucat.org/general _accessibility/accessibility/Braille%20scanner/Misc%?20code/datashe

ets/5402programmersref.pdf.

Page 86

Appendix A — Processor cell architecture

Appendix

Appendix

seubis Jo suogouny panesy)

sieqebian asoding [E19USD X5 ~ 75
(pawasay) 1eisiBal yu pue dwnp 1§
lambal 0us7 0%

[aoN
oon” e 100

0T D

‘T T odmalg o a | | s {rs _m
- — |
: T T T | & |z - gzl mal o0”ano M
-1 - . - I
e o — e _w
v 3{9..32 e =
o
C
b "

d
' _._ ins3) -
-—
— e] e wey | suop |
h‘ L) Fa—suhmal e -—
r

A58

ST I -—
E= __ |] S

Bl & - =
m _w 330 50 D
werboud Wod
- b4 o ﬁ
i _m T [0 3
iy rswaal <l] hmu_w b _&
..s.ao.ie... [~ T wed
12 -
sl o4 M
s m (=]
L | e =
| | memomea | ooy b i
| B
[ki
wln [¢
i : e
an .
m ket 5 : .
2 ER 5l 3 £
z _ﬂ m Hgw L [e
: _
o, > n -
mx | Hi - &)] Bovy ™
= - - - _9__:8 st - g] B 4
= —1— = s Qi
8 | awaxad_ e SIS o e 1o T i 5 '
m Wi 1
s : | —— byl
-]] b |t

Figure-Appendix 1. Processor cell architecture
Page 87

Appendix

Appendix B — Processor cell register bank

\J

Ip_reg_rx_data_1

sO_data

sl data

lio_data_tx (0 ~ 7)

gio_data_tx0

reg_en_0.SP . Special Purpose register
— pe
reg_en_1.SP | | MSR
- LACC
> HACC
reg_en_0.GP General Purpose register
reg_wen_0.GP N RO
t
Il
reg_en_1.GP : I | @ dff_q_0_or
reg_wen_1.GP
——e \2)
0 1T !
S_» T ,II>
t I: ! dff_gq_1_or
1 t
Wdo + R18
—_—
o
6 OLTX Local 10 register - TX
ke) re_en_0.
wen_wdQ0 g > R e
o b : »
% % refy_en_1.LTX i | Lol 1
o | 3 1 - |
(%] D | |
(0] .
5 g . L7TX ‘ P ‘ v ‘ A
=] [%] el
sl < < Local IO register - RX
- 2 rely_en_0.LRX > e I b e o aalo
< : - p_reg_rx_ |
wdl relj_en_1.LRX i | = 1
Ip_reg_rx_dataj 1
> P : p_reg_rx_t |
- |
L7RX P{VI]A o,
wen_wd1 > [PIV]A] =
_ > E
reg_en_0.GTX Global 10 register - TX _DI
X
ﬁ GOTX ‘P‘V‘A‘T Src DSIF hl
=]
reg_en_1.GTX g
i - |
reg_en_0.GRX Global IO register - RX ‘ <
* GORX ‘P‘V‘A‘T Src | Dst |
reg_én_1.GRX |
CLK
wd0_data
wdl_data
lio_data_rx (0 ~ 7)
gio_data_rx0

Figure-Appendix 2. Processor cell register bank

Page 88

Appendix

Appendix C — Processor cell instruction set

{ia} 1S 0s Ld 0ad | LLoooo
Wi LLOLOL

0S 000010

| gLoLokL

L 0% LO0LOL
000000

L) 0s 0Q | LLLLOL

[0s 0a_|aLLLoL

wiw| 0S 0a | LoLLol
{lomist | LS 0s 00 | LLLLOO
{omis} [18 0s 0d [0LLLOO
{omist | LS 0s 00 | LOLLOO
{lamus} 0s 0d [00LL00
{lomis} 0s 0d | LloLoo
{jamis} 0s 0g |oLoLoo
{lomis} 0s 0d | Lo0Loo
[T 0s 0ooLOoL

[VT]] 0s LLLookL

[TI] 0s 0l 100k

LU 0s L0L0oL

Wi 08 001001

L 08 LLODoL

[0s 0d | 0loool

| 08 0a | Looool
{iras) LS 0s La 0a | LLLOOO
{omis} | 1s 0s 0d | 0L0000
{lomist | LS 0s 0d | L0000
05 g-0L LLSL 9102 1ZSZ 92IE

Buipon uononisy|

b

=~k

PRl R lh il il

saphn
»1201D

g'a'u'z

u'z
u'z
uz
u'z
u'z
u'z
a'u'z
o'u‘z
a'u'z
o’u‘z

qu'z
2'U'z

q'u'z
2'u'z

sbe|q

Z Jo | abed

LS -08-> Ld
1$+08->00

wiw| -> o7

1 +0d->dl

0S -> o1l
L+0d->d1l

ww| -> 3000 aN3
(Ww XS + 0d -> od

(Wwi) xS = 08 -> 04
(wwi)ixs los ->0a

(Wwp) xS 2 0S > 0d

LS @ 08 ->0d

1slos->0a

LS 2 0S8 ->0d

L 104 {08 + Auen) -= 00

L 101 (0S + A1eD) > 0d

L <<08->004

L >>08->0d

0 =< 08§l (WW)1XS + Dd -> Od
0< 08 4 (Ww1Xs + 2d -> Od
0 => 08§l (WW)1XS + 2d -> Od
0> 0S4 (Ww1Xs + 2d -> Od
0 =i 08 4 (WwW)1XS + Od -> Od
0 =08 4 (Ww1Xs + 2d -> Od
(Ww)1Xs - 08 -> 0d
(wwi)1¥s + 08 -> 0d

1S-> 10

108 ->0d

LS -0s8->0d

LS +0S->00d

uonesado

uonesado Auenng
a)eIpaLIWI Yiam [ouoa doo| Jsuu)

1381621 yym jouo0 doo| Jauu)

apeoo Bulpus uinies pue ucinoaxas doig
(dwnp aAne|ay) Youeiq [BUoIpUOIUN
uopelade op

ajeipaLUL Ylim eyep 18siBal HOX (eo1fon
SjeIpaLUl yim ejep JajsiBal HO [eoifo
ajepallLl) yiim eyep Jaisibal gNy |esifon
ejep JajsiBal omy HOX [eoifo]

elep 12151621 oM MO |e01607

ejep Jajsibal omy QN [eo1BoT

Au1ea yum 19-1. a3ej01 1By

Alled Uiism Jig-| 8jejol e

u9-1 Wiys iy

Yd- WUs Yo

00} |ebna Jo uew Jajealf ue youelg

0 uey Jayealb uc youeig

0 0} [enba Jo LB} $53] UC YoUEIg

0 Ueu} ss3| Uo youelg

0 0} |enba jou uo youeig

0 01 |enba uo youelg

sjel@uIw pue ejep JaisiBal joengng
aje|paliw pue ejep Jsjsibal ppy

sJa)sifal usamyaq saow BlEp 3|gnog

sie1siBal uaamiaq Joenagns eleq
sleisiBal uaamiag ppe BleQg

uonduosag

}9S uoioNJIsu| |90 10SSa201d YOI

Y lIs‘os’'ld’'od dld

d iy 1271
Y 0s o7
d W an3
d iy l&g
k4 = dON

}25 uononJisuj [eloads

wwi ‘0s ‘00 1¥OX
wwi‘0s ‘00 1¥O
ww| 0S ‘00 IONY

LS'0S ‘00 HOX
LS 0S8 '0a @)
LS‘0s ‘00 anv

0S'00 HOH
0s'‘og0 od
0S'00 HS
os'‘ogd 18

wwi ‘o 13sd
wwi‘os |lod
wwi'os 137d
wuw|‘os 1179
wwi‘ogs 13Ng
wuw| ‘os 1o3g
wwi'os ‘0a 19nNs
wwi ‘0s ‘o 1aav

LS 08 LA '0d ACWA

Lls‘0s'od dans
LS0s'0a qQav
}98 uoljonisuj| oiseg
So|uo
=wsuy

<L <t < MOO0DOMMOOM@OMAO=C-<C<C<<<(<C0O0MmMa®?

adAL spueladQ

Figure-Appendix 3. Processor cell instruction set

Page 89

Appendix

Z J10 ¢ abed

uoioeians Ul Be|j ul moliog :q

uciyppe Ul Bejy no Auen 0
Be)j anBap u
Bey ooz 2

‘suoiesado onaLWIYINE MY 241 10 yoea uodn palepdn ale yoiym ‘JeysiBal sniels Ny aUl Ul palols sanjea ayl ale sbel (g)

‘sBey) aamwid se pasn aJe Aay] ‘asj2 unoa Buijys WBU se pasn 2Je Siiq G Jamo| 2yl “19S SI1Ig SIYI USUAA "3IqBUS WIUS [Jeg - S G

‘panasay b

1sanbal 2)1UMm s1 d)Um Uod O] 8207 - M ©
1sanbal peal si ajum pod O 8007 -1 g

(2 'g-) <= (q '2) B'® 'ajqqiu mo| ajebau ‘olyioads dyYMS, - U

DONWK O] SN|eA S]EINWNDDY - B
19-Z/NWT BIEp Xeldwo - 9 1|
doop Jauul jopua - | 0

'sBeyy uononuisul ayy Jo nofe 1g (z)

‘0 JaysiBal asoding [e1auasy (AuD pesy) Jasibal olaz 0% (1)

Woolo Buimolio) ays Jo abpa Buisi ayl uo palepdn aJe SYNS2a1 UOIEINWNDIE 23U1S |, NN, UOITONJISU) UOIIEINLUINGOE 3y Jaye

1B sizysiBal uongNLINgoe Wolj no sanjea Buipeal uaym $a8242 ¥00j0 7 sauinbal 1ng ‘suoieiado aijauiyjiue Bulpuodsaiios Buiop 1o} 81949 %2013 | salinbal Uoioniisul UOIBINWNIOY .
‘Uolo. UaXel-yslield e 1o) $3940 000 Z puUB %202 Uoinaaxa | salinbal uonelado uayejun-ysuelg

{lerus} [1s 0s 001000
{lemus} | |s 0s 0ad |otLiooo
{lenus} 0s \a | oa |ioLooo
| 0% 00LL0L

{u} LS 0% 0a | 000100

i~

DOV + (18« 0S)O1 -> DOV
"DOWH + (LS « 0S)IH -> DOVH
LS -> (0a)o
‘0s -> (o@)H
(oslo1-> La
(0s)H -> 0Q

WiLl| -> 1sp'Olo
qu'z _”_‘_wv_I () -> (0Q)O
(Ls)on-> (oa)H

ajeinwinooe pue Adiniy

Jz)siBal Jig-zg suo pue sislsiBal

19-g| 0] Usasmiaq SA0W Elep JuIor
sia)s1Bal 19-g | oM} pue

Ja)s1B2l 1Ig-Zg AU Usamiag aaowl ejep Jids

‘810N

¥ LS80S NW
L s '0s‘'0d AOWP

b 0S 'Ld'0a AOWS

19§ uononuysu| oyoads NTv-91

ajum g uoneunsap Jod X1 Ol [edo|D

uonelado dems Jaquinu xs|duwios

189S UOIONIISU| [[9D 10SS9201d VHOD

d L) ae
W LS00 dvMS

Figure-Appendix 4. Processor cell instruction set continued

Page 90

Appendix

Appendix D — Processor cell control flow

-

o

I18YNT = (oAU UiBW
‘wonesado ou = senog od

========= |0 s========

Buinzoal = pod of
= JBUNGa IS
++ Jppe wibd
‘Bunum wid = o wed

L = dnusiuieep Ty

.............................. /

b = Buop Isul !
\

3701 01 wniey

3EvNG = _Q_Eol:_m,m_._/\p\l|/ ~ ~ T
/ ‘uonepado ou =pod 0if TEVNS = [o4ued Uieut,

= a ad =ypod o
joou = o whd | { L2l dOe gt A

0= .o_c:ool_mc_‘__.

“\OHOZTONILISW WD

3701 0 winjay

Buiniaoal = pod oI
te- JBJUNDD JSUI

JppeTis od = yppeTwibd

‘Bunumwid = 1o wbd

| = idnusi ejep

‘.r_c_._.m_mno ou = Jajunos ad .__

[‘uonesado ou = o wbd |

T ONILINMW Wod

0 =j J2Unoo jsu

VN3 = lonuos Ul . (1e:
‘uoepado ou = pod 06

f ‘uoesado ou = o wid

" ‘uogelado ou = Jajunco”ad {
........................... i
o VONWIEM NSd

(HLOIW Dd+CLgLleiep x db = Jaunco isu
iyt od: L)eyep i dB = JppeTisTod

0 =i Jaunos jsul \
% 934 W10 =i (L L)eiep xdB \
B ALIEM = (0)erep i db

HOFHO XY W

O34 L0 = (§1 1)elepdE

B Av3Y = (o)eiep xdb

o
od ajepdn = Janos ad

{HLOW Dd+5L gL Ieep W dB = sapunog jsul

{(H1QM Dd: Leiep i dB = JppeTisTad

0 = Jaunos jsul
® O3y MO =i (g1 L)ewep dB
8 311w = (0)ejepx db

8 AL1HA = (0)epepudB

/318YNS = p1uos Ul
/ 'uogepado ou = pod ol
[uonesado ou = ppTwBd |

‘(eyep x1) = ejep ¥y Gas—dB ', = uam prsp g db 0, = wua db L, = x3 ua”db Bugpusuey (p
‘0=eep ¥ Gardb g, =usm posp Xy db |, =x ua db g, = xi ua db Buwaoal (o
‘018 i Bas db = ejep g BaudB [, = uam pisp g dB Lo, = wua dB g, = ua db jpiisp piooal (g

‘0= eep x Gasdb g, = uam pusp X1 db |0, = xi"ue dB |, = xua"db uojesado ou (B

= >
/TEYSI] = [oquod U,

‘uonepado ou = pod ol
‘Bupeal whd = o wid __
‘B)geus = Jaunes od |

. ONINNNY

I

pod b (g)
=800l =qam’|, = 52 Bupeas whd (o
0, =800, =gam L, = 50 Bugum wbd (g
0, =20 L, =gam 0, = 50 uojesado ou (g

0 wed (z)
‘asal = 180 adid esal =)5 Bas adid |, = ua od Uossaoosd jesal (p
‘Jasal jou =151 adid ‘jesal jou = jsi Bai adid ||, = ua od ‘aqeua (2
‘1288l Jou = j=1” adid 'jasal = 185 Bay"adid |0, = ua od :od aepdn (g
jasa) jou = 150 adid 1esay Jou = si Bas adid 0, = va od woleiado ou (B

Jaunosod (L)
P o
/378YSIA = 1oAuoY Ujew.
/ ‘uogepado ou = pod ol Y,

‘Buipeas wbd = po wbd __
‘ageus = Jaunos ad |
T =/

. ONINNNY d3Ls /

301 o8 winjay

LHV1S 161D = Bai i

4318 HLD = Bar e

.

/8YNE = PAUoY Ueu,
‘uonepado ou = yod oib

/

‘uonesado ou = o whd
‘uonesado ou = Jayunos ad
b ooioooosiooooooooo J
\,

S 3Lvadn LD

T

va
~

3701 o) wnay

I1gYNI = 10QUes LIRW
‘Buimaoas = pod oib -

L = nusiueiep

- N
/378vSIA = [eAues Uew:
/ uoneyado ou = yod o6 \

[‘uonesadoou = g0 wBd |

| ‘uopesado ou = J8junos od ___‘/|_
p / \

i

pi 5P piogal = pod ol

o34 LD =(jen”
2 Qv3y = (0)mep wdb

eepudB |

.._ S50 Jayio

dOL1S 141D = Balp
s======== |0 ========
Jossasodd Jasal = Jaunos ad

\\\

135341410 = Balmme

A

I 378VNE = (o310 new
37EVNG = oos e oA
P ‘od wiauno 4 ___;w Bai 100 = ejep x) GaJ n_m,....
/"8 Bai" 1o = elep) Bas db', [‘Bumwsuen =yod o |
[Bujpwsuel = pod oI | | ‘uonesado ou = P Emn_ |

‘uogesado ou = g wbd | \, ‘uonesado ou = ssjuncood /
'\ ‘uoniesade ou = sepunosad / S s 4
/4|||||||||||||||||||||\|\\
“LTONIONTS Viva”

2p0YpUABUI = Blep ¥} Bal dB

0 =lles g db

37GVN3 = |osues biew
/7 '8po3puaTisul
! = gjep x bas db
‘Bupiwsuen = yod 0B |
‘uoljesado ou = P wid _
./ ‘ucnesado ou n._m_r_:oolua\.

P ——

ARNAGTONIONIS WAVa

/

uoepado ou = pod ol

0=nes X db

Figure-Appendix 5. Processor cell control flow

Page 91

Appendix

Appendix E — Processor cell control instruction set

"L LPERY, 0, LM, @Bexoed eleq (z)
‘uonoas welboid auo Bunnoaxa paysiuy Josssooid uaym paubisse s1 apod N3 L3ATYANT NI, 10 anjea Jnejap sey apo2 an3 uononssy) (L)

‘210N

2p0s QN3 UoIoNISU|

180H <- .| Elep peal JaisiBal jo1uoD, 10 Uollelado aAnIasuoD & SI

lossatold s 7 o0eyoed ejep ‘sniels JajsiBal josuos yoeg Buipuas ¢ Bjep peas JapsiBal joiuco

18JUN0o Dd Waung

1S0H <- ' 1senbal peal JajsiBal jo5uoD, 10 Uoijelado aAlNgasuUoD E S|

vEs dos fresoy| deis Jossaoold syl | abexoed eiep ‘sniels 1alsifau jouoD) Hoeq Bulpuss

| Blep peal Jg)sifal jonuoD

105530014 .
pesy L0000.X < 150H 18anbai Buipeal snjejs JajsiBal jonuos 1sanbal peal 1g)siBal joluon
aj e do asay| da {0ssadoid 1180 108800 epdn Ja)siBal [onue
WM »0000.X Hels o el = <-]SoH ay} Jo suolesado au joiuoo 0} JaisiBal jonuoD alepdn sjep B en e
lossaacld (nod) Aowa weinold spisul uonass
WM [ssaipe Buiels »0000.X <- |S0H welbold pajes 01 ‘ssalippe Buipes 12unoo Dd alepdn 212pdn JajUNoo Od
‘uoijelado , Japeay peojumop welboid,, au}
10SS200ld Ag Pa|loAU09 pUB paljioads S| SSaIppe UCHRINIISUl 3y} a1aym
vogonsu| <- 1SOH ‘J8peay peojumop weibold, sy} jo uonelado aAnnossUoD B PEIUMAR WeIEC]
1 sy “AOWBs WRIS0.d 0JUl PESPEOIUMOP 3] 0} LORoNIsU|
1085390 ‘|, SSaUppE Wl Yes suoiondisul alopelay) 1eisital
alupn | ssalppe Buipels wnooD) mcn_ |oJueD BU) o) paaasal s1 0 ssalppy (Wod) Aowspy lapeay peojumop welboid
< 1S0H Welsold ou welboid Buipeojumop 1o} Jepeay afexoed
0 [5-1" ol Ll 8l 61l 0z leZ-ie uons9lIg uondusseq uonesado

abeyoed ejeq

39S UoI}2NAISU| |043U0)) ||90 105S920.d YHD)

Figure-Appendix 6. Processor cell control instruction set

Page 92

Appendix

Appendix F — Processing cell register addresses

CGRA Processor Cell Register Address Summary

Register name Address Register name Address
General Purpose Registers Special Purpose Registers

30 00000 PC 11100
81 00001 MSR 11101
$2 00010 LACC 11110
$3 00011 HACC 11111
4 00100 GID 10000
$5 00101 ILC 10001
16 00110 ILP 10010
$7 00111 Local IO Registers

$8 01000 LO 10011
$9 01001 L1 10100
$10 01010 L2 10101
$11 01011 L3 10110
$12 01100 L4 10111
$13 01101 L5 11000
$14 01110 L6 11001
$15 01111 L7 11010
$16 10000 Global IO Register
$17 10001 GO 11011
$18 10010

CGRA CORDIC Cell Register Address Summary

Register name Address
Local 10 Registers
LO 0000
L1 0001
L2 0010
L3 0011
L4 0100
=5 0101
L6 0110
L7 0111
Global 10 Register
GO0 1000

INVALID 1111

Figure-Appendix 7. Processor cell register address summary

Page 93

/L. =ssaiBoid ui Byuos

(og)eep % dB = 15 adid Bay o
‘(6z)e1ep w dB = ynsai jeouoos Bal o
(gz)erep wdE = and ounyBas o
‘(sz:cz)eiep widb = apoo ounyBar o
(pz)ejep xidb = ua apioa Bai o
(ezzz)eyep xidb = Ly Bas o
(1zog)eyep xid6 = gn Bai” o
{g1-gL)erep 7 db = Lid Bai o
{219L)eep udB = gid Bay o
‘Buinieoas = pod aib

LI = (p)ejep xidB

‘Buwasal = pod 0ib \

.1, = ssauboud U Byuoo

181 adid Bas~ |00 = (pg)elep xq db
‘Ynsas yeauoa Bar o = (gz)elep x db
‘aind ouny Bal o = (gg)elep X db
‘apoa auny Bai e = (sz.c2)eep g db
‘ua oipuoo Bar e = (FZelep xy db
‘LpBai o = (ezzz)elep xy db
‘owBer o = (Lz:oz)elen” Xy db
‘Lid Ba1" o = (6L:gL)eyep g db
‘o) Bai" 1o = (21:91)erep g db
‘0 = (gL 0lejep xy db
‘s dB = pisp Ty dB
‘Bunwsuel = pod- 0B

av3y = (pleyep xi db

4 .1, = ssaiboud U Biyuoo

‘uoeyado ou = pod 0B |

(ejep X)) = ejep %) Ba s dB !0, = ua dB |, =g us db Bumusuel (2
‘g=eep x Bardb! |, =wua db! g =x us db Buwasal (g
‘0 =ejep xy BardB g = ua db g =X ua db uoesado ou (e
wod 0B (1)
‘810N

181" adid Basino = (og)eiep Xy db
‘Wnsas—jesuos Bar o = (gzlelepg db
saind ounyBaiT o = (g2)elep X db
//apooouny Bai o = (Lz:cz)elep Xy db,
‘ua oipJooBal o = (pz)elep 1 db
| ‘WBarup = (ez'zz)eiep x db
[‘onBai e = (Lz.0z)eep g dB
‘ndBar" |40 = (51:g1)erep Xy db |

‘oid Bas7 10 = (2191)eiep % db /
‘0 = (gL:plerep g db /

“ 'L, = ssauBoud U Byuoo
‘Bunmwusues) = pyod oif

TOMIONIS YYD ‘Lpisp Bar o = (Le'rz)elep db
‘opispBauT o = (gzig1)eiep T db
‘nspBaiTIgo = (gLizLlevep xy dB
‘mispBay o = (L Lg)elep X dB
‘s Bar e = (Lp)eiep Xy db
‘pusBal o = (go)eep xy db

0=es x db

LpiZsp BaI o = (1e)erep xi¥b
‘0PI 1spBal o = (ezigLJerep) db.
‘hspBai o =(glizLeep g dB

Page 94

Appendix G — CORDIC cell control flow

Appendix

‘Buiniaoal = pod ol [/ ‘mspBai o = (L1g)elep X db
| M—u_w.mw_l_:u = E”Emﬂw_ulxulam
| = Wdnuapieep % | ‘pusBai o = Hmbuﬂmn x1 db
\ 'L, = ssauboud U Byuod
IR ‘Bupwsues = pod o0

/.0, = ssaibosd LI Byuoe
[‘uonepsdoou =pod o |

(Lepglerep w db = |pspBai o
‘(ez-g1)eiep T d6 = gpiTisp BaiT |0
‘(gL-z1)eyep i db = spBas o
(LLg)eep wdb = gispGar o
A2plerep i db = pous Bas a0
‘0)eyep xi dB = gaus'Bal 0

‘0 =181 adid Bal "o

| = Wdnuau eep W

Figure-Appendix 8. Control flow of CORDIC cell configuration controller

Appendix

Appendix H—- CORDIC cell control instruction set

‘LLL = HISYHAHSEY ONNA 21aH00D

LOL = 3SYHASEY ONN4 21aH0D
00k = AIQ ONNA 210500
L= HSOOHNIS ONN4 010800
‘oo = SOONIS ONNA 21aH0D
‘000 = 1IN oNNd~01aH00

‘8poo uoauny D|gH00 (i)

G dinvand
01 - 1OHLINODH

qnE
‘0o

DIANODH
V.ivaH

‘edAy sbexoed ejep X1 Ol 18907 (€]
L areanidi
01 - DI3ndd
00 ©3d9aydl

00

v 1vads

‘adAy afexoed ejep x1 Ol 12007 (g)
b uPB3Y, L0, BN, 86ex0ed Bleq (1)

‘810N
oous |ious|ousalisa| oarisa \arisa BH < onciado onpbonns & Sl g soond S PER
108880014 o i T 1z1s1Bal jonuon
ejep 'snjes Ja1siBal jonuon yoeq Buipuag
Jeanbal peal JsisiBal josuoD,,
150H < uoiesado annoasuoo e s siy *| abexoed L BIEp pea
0ld | kld | OLL | kLL 4 d o d lossa00ld jo ol ; : 1 121s1Bal josuon
Ejep ‘sniejs JajsiBal jonueD yoeq Bupusg
=E] 10858001 ‘18anbal Buipeal snyels J2ysiBal joljuo: 1s9nba. peal
peay <- 180H ¥ P 19318 J2jsibal [oUeD 19181681 jo1U0D
| Bunnol uopeusap
ejep indino [eqejo TEaT 1ST 0dl 1Sd
_ _ 103880019 -equnu yod ejep SQSO._ 1150 01sd Z arepdn
024s L2ds|01sd|Llsd 0dal 1sd Ladl 1sa “Jaquinu ped ejep ndu| TT5ES 0045
<~]SO0H - | o1epdn J=ys1Bay jonuog
1818163l |05jU0D,, JO UoEeIado SAIINSSUDD
e sl sy 'z ebexoed sjepdn JsisiBal joauoD
‘Alleonewone 1@sal
sasealal alempley 18sal |99 YBiy snoy 9
‘synsal A g X D1QYCo Buuiqueco jo uondo S
a1 108830014 .co_ﬁo_wowwﬂw_ mﬁm Q1qHOD m | a1epdn
TUAA 0ld | k1g | OLL | L1L E| d o] = <1804 " ap 3 %O_Dm_oo..h_ sesiBal jonuon
‘Jeubis ejgqeus Jun O1IQE0D T3
‘=dfy sBexoed elep X1 Ol 189019 'TIL OLL
-ad#Ay sBexoed eyep X1 Ol 12207 TLId O1d
‘| aBexoed ayepdn JzisiBal jpluon
0 1€ L 8L ZLSL 9b-LL 8L6) 02712 C2€C VZ S2LC 8 €2 0F 33 uondaiq uonduosaq uonessdo

afieyoed ejeq

Je§ uonoanasu| joiue) 12D DIHOD VYOO

Figure-Appendix 9. CORDIC cell control instruction set

Page 95

Appendix

Appendix | — Layout of a 4-by-2 CGRA cell array

RC(0,1)

RC(1,1)

il Ro@

RC(2,0)
RC(3,0)
(a) Floorplan (b) Final routed layout

Figure-Appendix 10. Floorplan and final layout of a 4-by-2 CGRA cell array platform. The
architecture contains four 16-bit MAC processor cells [RC(0,0), RC(1,1), RC(2,1),
RC(3,0)], three 8K bits memory cells [RC(0,1), RC(1,0), RC(3,1)] and one 16-bit CORDIC
cell [RC(2,0]]. The floorplan is designed in Xilinx Floorplanner, which is used as one of the
user constraints for the automatic place & route process. Design is synthesized, placed and
routed for exploring the maximum speed, results in a 76% of the FPGA slice usage and is
capable of operating up to 30.71MHz. Notice that, there are minor deviations on the actual
cell placement between the final routed layout and the floorplan. But the integrity of each
resource cell has been preserved.

Page 96

Appendix

Appendix J — User commands in serial line interface

Table-Appendix 1. User commands in serial line interface.

Command Description Parameter
Select destination cell ID for global | Resource cell destination ID (number
8 I/O communications. input): 0 ~ 7.
d Send data inputs to the selected a) Data amount (number input);
destination cell. b) Data inputs (string input).
Send instructions or configuration . .
. .. a) Instruction amount (number input);
1 packages to the selected destination ..
cell b) Inst./Config. Inputs (string input).
Send “start” command to the
S None.
selected processor cell.
Send “step” command to the
e None.
selected processor cell.
Send “stop” command to the
p None.
selected processor cell.
Send “reset” command to the
r None.
selected processor cell.
Trace control register status from
the selected destination cell. Two
t . . None.
consecutive data packages will be
sent back through global port.
. Send special user command to the User command (string input)
selected destination cell. g mput)-
¢ Memory cell data storage Memory cell destination ID (number
initialization (zero filling). input): 1, 2, 7.
R . 2 .
) Run 32 po'mt rad'lx 2° FFT partial None.
configuration script.
X . 2 .
) Run 64 pgmt ra(yx 2° FFT partial None.
configuration script.
3 Run 128- point ra.ldix—22 FFT partial None.
configuration script.
X . 2 .
4 Run 256- pomt rz?dlx—2 FFT partial None.
configuration script.
X . 2 .
5 Run 512- pomt rz?dlx—2 FFT partial None.
configuration script.
Run 1024- point radix-2> FFT
6 . . . None.
partial configuration script.
. . 2
0 Run 1024-‘ point Fad1x-2 FFT full Nore.
configuration script.
h Command help printout. None.

Page 97

Appendix

Appendix K — User commands in MATLAB interface

Table-Appendix 2. User commands in MATLAB interface.

Command

Description

Parameter

User command input in serial line interface. The

User command in

cmd follow—up 1nput prompt is a transparent window serial line inferface.
in serial line interface.
Send instructions or configuration packages
config from a script file. The script file name is defined None.
in “send_config.m”.
data Sel?d global data' inputs from a script file. The Nore.
script file name is defined in “send data.m”.
demo Run a scr.ipt demo: 32 ~ 1024-point radix-2> FFT Nore.
computation.
Read MATLAB UART RX buffer. This could be
rxbuf used to flush out the remaining data packages in None.
RX buffer.
help Command help printout. None.
exit Exit user interface in MATLAB. None.

Page 98

