Hardware Accelerator of Bundle Adjustment Algorithm

YICHEN WANG

YUZHE ZHANG

MASTER’S THESIS

DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

—

“output” — 2023/10/30 — 14:33 — page 1 — #1

Hardware Accelerator of Bundle Adjustment
Algorithm

Yichen Wang
yi0847wa-s@student.lu.se
Yuzhe Zhang
yuzhe.zhang.26230@student.lu.se

Department of Electrical and Information Technology
Lund University
Supervisor: Liang Liu, Lucas Ferreira, Ilayda Yaman
Examiner: Erik Larsson

October 30, 2023

“output” — 2023/10/30 — 14:33 — page 2 — #2

© 2023
Printed in Sweden
Tryckeriet i E-huset, Lund

“output” — 2023/10/30 — 14:33 — page i — #3

Abstract

With the popularization and development of CV technology, the SLAM algo-
rithm is widely used in scenarios such as self-driving cars and autonomous naviga-
tion robots. As a key step in the SLAM system, the BA algorithm is responsible
for optimizing camera parameters and 3D point coordinates. BA obtains more ac-
curate estimates by shrinking the re-projection error. So as to support the SLAM
system in building a more accurate 3D model of the surrounding environment and
a more reliable trajectory of the moving camera. However, due to the high com-
putational complexity of the BA algorithm, its computational efficiency becomes
a bottleneck limiting the real-time performance of SLAM. In order to improve the
performance of the BA algorithm in practical applications, the goal of our thesis
work is to build and implement an efficient hardware accelerator for BA.

The main tasks are as follows:

e Theoretical Understanding: To fully understand the theory and ideas of
the BA algorithm, do a comprehensive review of the related literature. For
hardware implementation, this understanding provides a strong basis.

e High-Level Architecture: Create a high-level architecture with an emphasis
on the CC and JU components. This work offers a well-organized framework
for the BA algorithm and points out the parts that affect performance.

e Hardware Implementation: Create specialized hardware accelerators by trans-
lating the high-level architecture into particular hardware designs. The
hardware accelerator needs to effectively process the JU and CC compo-
nents of the BA algorithm. We aim to focus on the performance and accu-
racy aspects of the BA accelerator.

“output” — 2023/10/30 — 14:33 — page ii — #4

ii

“output” — 2023/10/30 — 14:33 — page iii — #5

Popular Science Summary

Are you interested in technologies such as robotics and self-driving cars? An
important technology in these fields is called SLAM, which enables robots to per-
ceive and navigate. In SLAM, there is a key step called the BA algorithm, which
can improve the positioning and map construction accuracy of robots in unknown
environments. Let’s take a look at this fantastic algorithm together.

SLAM is a technology that enables a robot to simultaneously build a map
of the surrounding environment and determine their own position in an unknown
environment. Imagine that when a robot moves in an unfamiliar area, it needs
to constantly perceive the surrounding environment through its "eyes," like us
humans, and let its "brain" remember the map information around it and infer
its location. This ensures autonomous real-time navigation when it is difficult to
obtain GPS signals or there is no network. SLAM is a key technology that helps
robots accomplish this task.

The BA algorithm is an important step in SLAM. Its goal is to improve the
accuracy of the robot’s "eyes" in the SLAM process by optimizing the robot’s
"brain"’s estimation of its own position and surrounding map information. Simply
put, it finds the best model by constantly adjusting camera parameters and the 3D
point positions, making positioning and mapping more accurate. It corrects the
camera distortion and finds the best camera pose. At the same time, by optimizing
the positions of 3D points, the accuracy of the map can be further improved. In this
way, a robot or self-driving car will be more reliable at navigating and perceiving
its surrounding environment.

BA’s algorithm structure has many matrix operations. This requires more
computing power to support SLAM implemented in software to reduce time con-
sumption. The hardware accelerator we designed is specifically used to accelerate
the most time-consuming process of the BA algorithm. This helps to improve the
real-time performance and practicality of the entire SLAM system.

SLAM and BA algorithms in CV technology give robots the ability to perceive
and navigate. The development of these technologies will bring better performance
and reliability to applications in self-driving cars, robotics, and other fields, allow-
ing the "eyes" of robots to have a more accurate field of vision!

iii

“output” — 2023/10/30 — 14:33 — page iv — #6

v

“output” — 2023/10/30 — 14:33 — page v — #7

Table of Contents

1 Introduction

1.1 Background
1.2 Relatedwork
13 Goalsand Challenges

2 Methodology

2.1 System Analysis and High-Level Architecture
2.2 Arithmetic Circuit Design and Optimization
2.3 System Integration and Evaluation

3 Theory

3.1 Fundamentals of Bundle Adjustments
3.2 Nonlinear optimization
3.3 Implementation of LM Algorithm
3.4 Software implementation of BA using MATLAB

4 Hardware Implementation and Modification

4.1 Hardware Implementation L.
4.2 Hardware Modification

5 Performance and Correctness Verification

5.1 Computational Correctness Verification
5.2 Performance Comparison
5.3 Estimated Energy Saving Comparison

6 Conclusion and Future Works

6.1 Conclusion
6.2 Future Works

References

N =

DO~ W

21
21
25

29
30
31
33

35
35
35

39

“output” — 2023/10/30 — 14:33 — page vi — #8

vi

“output” — 2023/10/30 — 14:33 — page vii — #9

List of Figures

2.1
2.2
2.3

3.1
3.2
3.3
3.4
35
3.6
3.7

4.1
4.2
4.3
4.4
4.5
4.6

51
5.2
53
5.4
55

"Top-down" Methodology Chart.
Calculations Involved in JUand CC.
Initial Hardware Structure.

BA Image Model
BA Graph Model
LM Flowcharto oo oo
Frames taken by camera at different positions
Zoom in plot of bundle adjustment
RMS variation in each iteration
RMS error at different fractional word lengths of our fixed-point number.

Data Format and Actual Value of "Q4.16".
Structure Diagram of Carry Look-ahead Adder.
8-bits "Shift-Sub" Divider Algorithm Flow.
Accuracy Comparison of Different Newton lIterations.
ASMD of our controller.
Modified Hardware Structure.

Integrated System Block Diagram.,
Correctness Verification Flowchart.
RMS Comparison for 10 Iterations.
Hardware Speedup Compare to Software (SBA).
Hardware Speedup Compare to Software (Ceres).

vii

“output” — 2023/10/30 — 14:33 — page viii — #10

viii

“output” — 2023/10/30 — 14:33 — page ix — #11

List of Tables

3.1 LM algorithm datarange

4.1 Timing and Resource Utilization Comparison
4.2 Performance and Area of 20-bits "Shift-Sub"
4.3 Performance and Area of 20-bits "Newton"
4.4 Performance and Area Comparison after Modification

5.1 Performance and Area after System Integration
5.2 Speedup of Hardware Compared to Software for 10 lterations.
5.3 Estimated Energy Saving Comparison

X

“output” — 2023/10/30 — 14:33 — page x — #12

“output” — 2023/10/30 — 14:33 — page 1 — #13

Chapter 1

Introduction

In recent years, the development of autonomous driving and other related
fields has led to an increased application of SLAM in embedded real-time systems.
SLAM is an algorithm that enables a robot to determine its position and orienta-
tion within an unknown environment by repeatedly observing map features, such
as wall corners and pillars, during movement. This process allows for simultaneous
positioning and map construction, which is essential for effective navigation and
operation in various settings.

1.1 Background

The BA method plays a crucial role in refining the SLAM process. This op-
timization technique refines estimated camera poses and 3D point positions by
minimizing the error between observed and predicted image points. In the con-
text of SLAM, BA contributes to improving the accuracy and robustness of the
reconstructed map and estimated trajectory, resulting in more precise and reli-
able navigation for autonomous systems. However, using traditional BA software
for real-time processing will take longer to compute, making it difficult to meet
the performance and accuracy requirements of real-time SLAM in various scenar-
ios. Therefore, implementing an efficient BA algorithm that can run in real time
becomes the key to solving the practical application of SLAM.

BA is a computationally intensive algorithm for optimal estimation of map
data, and high-latency calculations limit the application scenarios of BA. Re-
cent research focuses on how to achieve efficient computing based on software
and often focuses on optimizing computational efficiency and reducing processing
times. Some of the methods, including parallelization, sparse matrices, and en-
hanced robustness, can inspire the design of hardware accelerators. Compared to
instruction-based software, implementing the optimization of algorithmic opera-
tors directly into hardware offers significant performance advantages.

1.2 Related work

For the acceleration of the BA algorithm, researchers have tried many meth-
ods, including software optimization and hardware acceleration. In this section,
we review these related works.

“output” — 2023/10/30 — 14:33 — page 2 — #14

2 Introduction

Triggs et al. introduced the application of BA in CV in 1999 [1], including
applications in 3D structure restoration, visual SLAM, and other fields. The book
summarizes the traditional BA algorithm and the newly proposed algorithm and
makes a comprehensive introduction and evaluation of BA, which provides an
important reference for follow-up BA research.

In 2021, Liu et al. [2] proposed a BA accelerator based on an FPGA hardware
accelerator that achieves parallel acceleration of BA by utilizing the 3D point dis-
tribution in the input image. Experiments show that the accelerator can achieve
efficient BA calculations and significantly reduce running time and energy con-
sumption.

Manolis et al. introduced the SBA software package in 2009 [3], which provides
a general sparse matrix solution for BA and supports a variety of constraints and
optimization algorithms. This software package is widely used in various aspects
of the field of CV, providing researchers with a convenient and effective BA tool.

In 2014, Zach et al. [4] improved the problems of deviation and outliers in
the traditional BA algorithm and proposed a new BA algorithm based on robust
estimation. Experiments show that the algorithm can better deal with outliers in
the input data and improve the robustness and accuracy of BA.

Cao et al. proposed an incremental SfM method based on the parallel BA al-
gorithm in 2020 [5], which achieves efficient 3D reconstruction and pose estimation
by processing input data in parallel and optimizing camera pose and 3D points.
Experimental results show that the algorithm has higher efficiency and precision
than the traditional BA algorithm.

1.3 Goals and Challenges

It can be seen from the previous work that the implementation of the BA
algorithm is often concentrated on the software level, and a lot of research has
been done on robustness, sparse matrices, and parallelism. But CPU-based soft-
ware lacks the high-efficiency advantages of hardware such as FPGA in computing.
"pi-BA," [2] which is similar to our work, focuses on how to reduce repeated calcu-
lations by parallel computing on an FPGA. However, it ignores the simplification
of the differential operations involved in the Jacobian matrix update of the BA
algorithm, which can reduce hardware complexity and improve efficiency. This
thesis is mainly aimed at designing a hardware accelerator for the JU and the CC
based on the simplification of the differential operation.

“output” — 2023/10/30 — 14:33 — page 3 — #15

Chapter 2

Methodology

Methodology refers to a set of systematic and organized plans and guidelines
for researching, discussing, or analyzing problems, which play a vital role in in-
depth understanding and effective problem-solving. The application of methodol-
ogy can ensure the research process’s logical coherence, precision, and robustness.
A good methodology design can effectively provide a solid foundation for the next
hardware implementation work.

In this project, we adopted a "top-down" strategy to plan the relevant work
steps, as shown in Fig. 2.1. We divide the main hardware implementation tasks
into three phases: high-level algorithm analysis, arithmetic circuit design, and
system integration and evaluation.

Methodology
Overview

Proposed Outcomes

Analysis of the
Algorithm

Set the Design
Goals

Design the High-
Level Architecture

Establish Design
Goals and Form a
High-Level Structure

Figure 2.1: "Top-down"

Arithmetic Circuit
Design

System Integration
and Evaluation

Divide the
Hardware into
Different Operators

Integrate Hardware
Accelerator into
System

Implement Each
Arithmetic Circuit

Initial Verification
to Ensure Accuracy
and Performance

Verify the
Performance of
Each Arithmetic
Circuit

Complete the
design of hardware

Methodology Chart.

Comparing the
Performance of the
System with Some

Previous Works

Form a Full System
and Verify the

Performance

“output” — 2023/10/30 — 14:33 — page 4 — #16

4 Methodology

2.1 System Analysis and High-Level Architecture

2.1.1 Algorithm Analysis

As shown in Fig. 2.2, JU and CC are key steps in the BA algorithm, and
their time-consuming nature has a significant impact on the performance of the
entire system. This part usually occupies more than 60 percent of the entire
BA algorithm’s running time [2]. Since this step is a differential calculation of
the projection function for the three-dimensional points, the rotation matrix, and
the translation vector. It involves a large number of matrix multiplication and
accumulation operations, so it is very important to understand its computational
complexity and parallelism characteristics.

4 p Y

1 \

HaaZ wl :

1 [HE=mar= oy Projection for Cost Function(CC) |

i i

: :

] du | x' xRy dv ¥ !

1 dx =z < dX 7 . i

Normalization Parameter 1| du x & R+ dv y z !
| [=it 1

* dy . o dy 1 *

X =RuX+RoY+RuZ+ty (i@ 7 WEp G F !
¥Y' =R X + RppY + Ry3Z + t; ; o e 1l e - !
2" = R31X + R32Y + RaaZ + t3 ! o z L z !
| du xxy dv y L B i

: du: - x dv _ x'xy E:“’d—tz:z‘ 1

1| dwg 22 dwy z* (f_u _ wt d_v = ol :

i|de ¥ dv & dts 'ty 2|}

dws z'dw; 2 :

1 i

1 1

: Differential for Jacobian Update(JU) :

1 1

\\ /l

Figure 2.2: Calculations Involved in JU and CC.

First, we studied the algorithm flow of the JU in detail, analyzed its mathemat-
ical operations, such as multiplication and addition, division to find the reciprocal,
etc., and simplified its computational complexity. We explored the parallelism of
the algorithm, in which "x*, y* and z*" can perform computing tasks simulta-
neously at the first stage, providing normalization parameters for 18 differential
formulas of each feature that can be processed in parallel in subsequent stages.
At the same time, we separately extract the "1/z*" that exists in the differential
operation and place it in a division module to complete the calculation, and then
deliver it to subsequent processing to simplify the overall hardware complexity.
These provide the possibility for us to design parallel hardware accelerators to the
greatest extent and simplify the calculation process.

2.1.2 Requirements and Goals of Design

We further clarified the design needs and objectives of the hardware acceler-
ator after defining the computational properties of the algorithm.

“output” — 2023/10/30 — 14:33 — page b — #17

Methodology 5

Firstly, performance is our primary design objective. We expect that the
developed hardware accelerator will allow the JU and CC to be computed at
a significantly faster rate while also increasing the overall performance of the BA
algorithm while consuming less power. The hardware accelerator’s main frequency
will initially be set to 100MHz in order to accomplish this purpose. Our hardware
accelerator is effective enough at this frequency level to speed up JU and CC
without significantly increasing power usage.

In addition, we also need to carefully consider the hardware area. We expect
that the hardware accelerator will be compact and easy to integrate into an em-
bedded system. Our design has to utilize internal FPGA resources such as logic
units (LUTs), flip-flops (FFs), and multipliers (DSPs) as minimally as possible
because it will be implemented on the FPGA. The specific resource constraints
will depend on the FPGA type.

2.1.3 High-Level Architecture Design Strategies

After clarifying the design requirements and goals, we began to design the
high-level structure of the hardware accelerator. The initial, unmodified hardware
structure is shown in Fig. 2.3.

= STAGE 1 STAGE 2 STAGE 3
REG JL
D= U 7]
REG duX
[— [(¥]
15 z * duz
3 X . [
=8 () I S) [Cdvx |
- [dvY
[=9) x —I :I dvz
D - REG duwl
[Ix —l j duw2
[[¥ +.ﬁ ReG [duws |
L= pY— g/] [dut1 |
- N
o S N N (dvwi
l z* REG 1/2* 1/Z*A2 REG | dvw2 |
[=1 X et (i © x i dvw3
a 1 ¥) . dvil
= 7 — [dvt2
dvt3

Figure 2.3: Initial Hardware Structure.

First, we determined the initial design of the hardware accelerator. In this
design, we should make use of the parallelism of the algorithm as much as possible
and distribute the computing tasks that can be executed in parallel to different
hardware units. Second, we need to design control logic for the hardware acceler-
ator to ensure that it behaves as expected. When designing the control logic, we
should minimize the complexity of the control logic to reduce the design complexity
and possible errors.

In general, our high-level architecture design strategy is to design an initial
hardware accelerator with high performance, low power consumption, compact
size, and flexibility based on the results of algorithm analysis and design require-
ments. This design strategy provides a clear direction for our subsequent specific
design and modification.

“output” — 2023/10/30 — 14:33 — page 6 — #18

6 Methodology

2.2 Arithmetic Circuit Design and Optimization

2.2.1 Operator Division Strategy

In our hardware accelerator design, we focus on several main arithmetic cir-
cuits involved in the algorithm flow based on the JU and CC. These arithmetic
circuits include adders, multipliers, and dividers, among others. Each operator
corresponds to one or more steps in the algorithm flow, where multiplication and
addition need to be designed to be executed in a single cycle as much as possible.
This granular strategy not only makes our design clearer and easier to optimize
but also helps to improve performance and save resources.

2.2.2 Arithmetic Circuit Design and Optimization Strategies

We must properly compare performance and resource utilization for the imple-
mentation of each arithmetic circuit. Before we start synthesizing combinatorial
logic into hardware circuits of LUTs cascaded with one another in accordance
with Boolean expressions within an FPGA, we must first compare the imple-
mentation of combinatorial logic (such as "carry look-ahead adder" and "Booth
multiplier"). To carry out addition and multiplication, resources inside the FPGA

such as "CARRY4" and "DSPs" are often used to implement such operators.

Regarding the divider, it is a key component necessary to ensure "1/z*" is

involved in all calculations in the differential operation. Implementing an effective
divider, however, requires more thought than multiplication and addition do be-
cause of the challenge of implementing the division operation in hardware. Consid-
erations like operational accuracy, speed, and resource usage must be made when
implementing a divider on hardware. We suggest the "Shift-Sub" and "Newton-
Raphson method" as two divider implementations to achieve this. They are all
suitable for embedded systems due to their low complexity and compact area, but
some operations may result in accuracy losses. In order to select the implementa-
tion with the best performance and efficiency, we will compare the running speed
and hardware resource usage of the two implementations.

2.3 System Integration and Evaluation

2.3.1 System Integration

We will integrate these operators into a full hardware accelerator after the
arithmetic circuit and each module have been built and verified. In order for the
system to work more effectively as expected during this process, we first defined the
ASMD of the controller. At the same time, we made some performance and area
optimizations to create a more efficient and compact hardware accelerator. We
will design a module with ROM inside to input data in parallel after the controller
and hardware accelerator are ready. After that, carry out corresponding tasks,
such as system simulation.

“output” — 2023/10/30 — 14:33 — page 7 — #19

Methodology 7

2.3.2 Performance Evaluation and Accuracy Comparison

In this step, we will conduct a performance test of the calculation accuracy of
the hardware accelerator and compare the speedup ratio of the software runtime.
At the same time, we can also estimate the energy consumption through the
running time of the hardware accelerator and the estimated power consumption
to compare the advantages of hardware accelerators in terms of energy efficiency
with the software implementation of JU and CC.

“output” — 2023/10/30 — 14:33 — page 8 — #20

Methodology

“output” — 2023/10/30 — 14:33 — page 9 — #21

Chapter 3

Theory

This chapter aims to introduce the fundamental principles and relevant theo-
ries of BA while highlighting the significance of JU and CC within the algorithm.
The objective is to provide a comprehensive understanding of BA and emphasize
the crucial roles played by JU and CC.

3.1 Fundamentals of Bundle Adjustments

3.1.1 Introduction of Bundle adjustment

A beam of light originates from a point in three-dimensional space and refers
to a projection of light onto an image plane. BA is the process of reconstructing
the geometric structure of a three-dimensional scene using image data observed
from multiple angles, with the goal of optimizing the estimation model. At its core,
BA involves an optimization model that seeks to minimize reprojection errors as
much as possible [6].

Reprojection errors are the differences between the projections of real 3D
points on the image and the re-projections based on our calculations. Repro-
jection involves two stages of projection. The first projection refers to projecting
3D points onto the image using the camera during photography. We utilize these
images to extract feature points. By employing these feature points, we can es-
timate the position of the 3D points through our calculations. Finally, we use
the calculated coordinates of the 3D points and the camera matrix to perform a
second projection, known as reprojection [7].

Figure 3.1: BA Image Model

“output” — 2023/10/30 — 14:33 — page 10 — #22

10 Theory

Fig. 3.1 [8] illustrates the concept of BA. In the figure, Py, P, and P; represent
the poses of three cameras. X, X, X3, X4, X5, and X4 denote six 3D points
that are visible and captured in the images taken by the cameras at poses Py, Ps,
and Ps;. Minimizing the sum of these differences becomes necessary to obtain the
optimal camera pose parameters and the coordinates of the 3D points.

3.1.2 Mathematical model of Bundle Adjustment

X1
Xi

Figure 3.2: BA Graph Model

BA is a graph optimization model [9], [10] which is shown in Fig. 3.2. The
nodes of the graph model are composed of camera P; and 3D points X;. If the
camera P; can see the point X, 2 nodes X; and P; can be connected. That means
we can write an observation function. We predict the position of the camera based
on the observation equation [11].

To get reprojection errors, we use the following observation function as follows
Eq. 3.1 [12][13].

u v
V| =KTP =K x [R]t] x 7 (3.1)
1

1

[UV] is the projection position in the image of 3D points under a camera
model, which is shown in the image. [XYZ] is the 3D Points position matrix in
the real world. T is a 3 X 4 transition matrix containing a 3 X 3 rotation matrix R
and a 3 x 1 translation matrix. K is the camera parameter model, which includes
distortion and focal length information. It is the camera’s internal parameter and
is fixed for a camera.

For the projection of any 3D point Xi in the image, BA needs to minimize
the sum of errors between the camera shooting point and the reprojected point.
Assuming a is the position of point X; captured by the camera at P; in the image.
b is the reprojection calculated by Eq. 3.2. We can get a reprojection error by
Eq. 3.2 [7].

ETT(i,j) = a(lvj) - b(%]) (32)

The purpose of BA is to minimize the sum of reprojection errors. Using the
least squares method, we obtain Eq. 3.3 [4][7].

“output” — 2023/10/30 — 14:33 — page 11 — #23

Theory 11

. 2
R 2 (o (@,) [1Err (i,)]) (3:3)

In Eq. 3.3 if X is shown in P; image, o equals 1, otherwise, it equals 0.

3.2 Nonlinear optimization

3.2.1 Solving Nonlinear Equations

To solve the least squares problem Eq. 3.3, we use iterative methods. Finding
the minimum value of a function can be transformed into finding a derivative
that equals 0. In this situation, first, give an initial value, and then add a small
increment to the independent variable each time to calculate the minimum value.
After multiple iterations, if the increment is small enough, the minimum value is
found and the linear equation is solved.

One convenient method for solving function increments is to perform Taylor
expansion on the function, which is shown in Eq. 3.4 [14].

Hf(:v—i—Ax)H2:f(a;)z—l—J(x)Ax—i—%A:rHAx (3.4)

J is the Jacobian matrix of the function, which is the first derivative of the
function. H is the Hessian matrix, the second derivative of the function. Through
Eq. 3.4 , the solution of X can be obtained as Eq. 3.5 . This method is known as
the gradient descent method.

Nz = —JT(x) (3.5)

Using negative values of gradients for descent is the simplest method Eq. 3.5,
but convergence is slow. Therefore, the Newton method was proposed to solve this
problem. When we consider the second derivative to solve x, we get Eq. 3.6 [7].

HAz=-JT(x) (3.6)

This method is called Newton’s method. However, the calculation cost of
the Hessian matrix is high. To solve this problem, the Newton-Gaussian method
was proposed. Gaussian Newton method uses J x JT transposition instead of the
Hessian matrix. However, there is no guarantee that every iteration error will
decrease. The LM algorithm is generally used to solve A x in slam, it can solve
the above problems very well.

3.2.2 Levenberg Marquardt (LM) algorithm

The LM algorithm is an improvement of the above algorithm. LM is a trust
domain-based optimization algorithm that limits the range of A x per iteration.
Its calculation method is Eq. 3.7 [15].

(JTT 4+ pul) Ax = -IT(x) (3.7)

“output” — 2023/10/30 — 14:33 — page 12 — #24

12 Theory

Compared with the Gaussian Newton method and the Steepest Descent method,
the LM algorithm combines the advantages of both. When p is relatively large,
Eq. 3.7 approaches the steepest descent algorithm. When p is small, Eq. 3.7
approaches the Gaussian Newton method.

The LM algorithm ensures that every iteration is descending and can converge
quickly. Besides, by solving the H-matrix with rank dissatisfaction or non-positive
definite, the LM algorithm is widely used in SLAM [16].

3.3 Implementation of LM Algorithm

To perform nonlinear optimization using Eq. 3.7, it is necessary to first calcu-
late the Jacobian matrix "J". The Jacobian matrix consists of first-order partial
derivatives, which reflect the optimal linear approximation of the equation. For a
sampling point, the first-order partial derivative mentioned in Eq. 3.8 can form a
matrix with 2 rows and 9 columns Eq. 3.8 [17].

dU dU dU dU dU dU dU dU dU
dX dY dZ dwl dw2 dw3 dtl1 dt2 dt3
(3.8)
dv dv dv dv dv dv dv dv dV
dX dY dZ dol dw2 dw3 dtl dt2 dt3
Eq. 3.8 is the Jacobian martix mentioned in Eq. 3.7. The [U, V] is the projection
position in the image of 3D points under a camera model Eq. 3.1. They represent
the horizontal and vertical distances in the frame, respectively. 9 parameters,
including rotation, translation, and 3D points in space, determine the position of
feature points in the image which is [U, V]. For a characteristic point, we need to
calculate the derivatives of U and V respectively. So we need 18 partial derivatives
to solve, shown in Eq.3.8. [X,Y,Z] are 3D point position which is derived from
Eq. 3.1. w are the 3 Lie algebras of the rotation matrix, and t are the 3 parameters
of the translation matrix. We will discuss this problem in detail in section 3.3.2.

3.3.1 Partial derivative of 3D point
Expanding Eq. 3.1, we obtain Eq. 3.9.

U R11 ng R13 § tl
V| =K R21 R22 R23 X 7 + | t2 (39)
1 R31 Rs32 R33 1 t3

The above formula can also be written as Eq. 3.10. As a constant, K does not
affect the result of the derivative and there is no need to calculate in the Jacobian
matrix.

X*"=R11 X+ R12Y +R13Z + t1
Y*=R21 X+ Ra2Y + Ro3Z + t1 (3.10)
Z* =R31 X+ R32Y +R33Z +t3

By normalizing Eq. 3.10, we can obtain Eq. 3.11 [18] as

“output” — 2023/10/30 — 14:33 — page 13 — #25

Theory 13

U=X%X
{V _& (3.11)
Z*

Combining Eq. 3.10 and Eq. 3.11, using the Chain Derivation Rule we get Eq. 3.12
[18] .

du _ Riy _ R3ixX”™
dX T zx Z %2
ﬂ _ Rio _ R32><X*
ay — Z* Z*2
du _ Riz _ Razx X"
dz — Z* Z*2
dl R21 _ R31><Y* (3'12)
dX Z* zZ*2
dv _ Ry _ R3axXY™
dy — Z* Z*2
dfv _ R23 _ R33><Y*
az — Z* Z*2

Eq. 3.12 obtains the partial derivative of 3D points in space relative to the pro-
jected coordinate in BA.

3.3.2 The partial derivative of the rotation matrix and translation matrix

In order to describe the camera position, it is necessary to know the camera’s
rotation and translation parameters to construct motion equations. However, the
derivation of rotation parameters is relatively not as simple due to the nonlinearity
of the rotation matrix. Therefore, firstly, we need to know how to describe rotation.
For a vector in a given coordinate system, we can define the base vector of this
coordinate system as [e1,eq,es], they are orthogonal to each other, and then we
can get any vector in this coordinate system like Eq. 3.13 [19][7].

X
a=le1,ez,e3] X |y| =e1 Xxx+exxy+esxz (3.13)
z

For the same point in space, vectors in two different coordinate systems can
be written as Eq. 3.14.

X1 X2
a=le11l,e12,e13] x |y1| = [e21,e22,e23] X |y2 (3.14)
Z1)
el
Multiplying both sides of the equation by |el, |to the left,we get Eq. 3.15.
€i3
X1 ejje21 e]jez; ejjess X2
yi = e’11‘2821 e}‘zezg ef2e23 X 1y2 (315)
Z3 6}‘3621 e'1r3e22 6;3923 Zo

The 3 x 3 matrix in the middle is the rotation matrix R in Eq. 3.1. The
rotation matrix is an orthogonal matrix whose determinant is 1. At the same
time, the orthogonal matrix with determinant 1 is also a rotation matrix. The
set of rotation matrices can be defined as an orthogonal group. We use a rotation
matrix to describe camera rotation in SLAM.

“output” — 2023/10/30 — 14:33 — page 14 — #26

14 Theory

Lie group is defined as a group with continuous properties. The group of
rotation matrix is a Lie group. The rotation matrix is not closed to addition, and
the increment of the derivative of the rotation matrix cannot be directly added to
the old matrix to update the matrix, so a way to calculate the partial differential
of rotation is needed. Therefore, Lie algebra was proposed to solve this problem.

Lie algebra is the tangent space at the identity element of the Lie group, which
describes the Local property of the Lie group. Each Lie group has a corresponding
Lie algebra. For rotation matrix, any rotation matrix R have this characteristic
R x RT =1. Assuming that the rotation matrix describes the continuous motion
in space, we can get Eq. 3.16 |7]

R(t)R()T =T (3.16)
Taking the derivative of time at both sides of the equation Eq. 3.17 [7].
R{t)R(t)T + R(t)R()T =0 (3.17)
Multiply R to the right of the Eq. 3.18
R{HR(t)T = —(R(t)R(t)T)T (3.18)

R(t)R(t)T is the Lie algebra of the rotation matrix group and can be written as
@(t). Tt is easy to see from Eq. 3.18 that ¢(t) is an anti-symmetric matrix because
according to the properties of the anti-symmetric matrix, ¢ can be written as
Eq. 3.19 [20]

0 —w3 w2
o= | w3 0 —wl (3.19)
—w?2 wl 0

Multiply both sides of the equation to the right by a R(t) Eq. 3.20.

R(t) = ¢(t) x R(t)T (3.20)

Eq. 3.20 shows that the derivation of the rotation matrix can be obtained by left
multiplying a Lie algebra. Solving the partial differential equation Eq. 3.20. yields
Eq. 3.21 [21].

R(t) = exp(¢(t)) (3.21)

This formula shows that for any rotation matrix R, there is a determined ¢
corresponding to it, which is called lie algebra. Lie algebra describes the derivative
relationship of Lie groups.

For a rotating matrix group, finding the tangent plane of a point on the group
is the process of finding the partial derivative. Assuming the rotation matrix of
spatial point p is represented as Rp. To obtain the derivative after rotation, it
can be written as Eq. 3.22.

ORp _ dexp(¢)p

OR 0¢
Since the rotation matrix group is not close to addition, it is necessary to find
the derivative in another way. we use perturbation models to solve this problem. A

(3.22)

“output” — 2023/10/30 — 14:33 — page 15 — #27

Theory 15

small perturbation is made to the rotation matrix R, assuming that the perturbed
Lie algebra is ¢, and the derivative of ¢ is obtained Eq. 3.23 [7].

9Rp exp(p)exp(Pp)p—exp(¢d)p

W = 1im¢_>0 @
~ i (I+p)exp(d)p—exp(d)p
~ Hle—o0 (3.23)
= lim Lﬁp .
p—0 %)

The transition matrices are also a Lie group, which can be written as Eq. 3.24 .

T - FO{ ﬂ (3.24)

T describes the transitions of the camera. The Lie algebra of the transition matrix
is Eq. 3.25. p is the Lie algebra of a translation matrix.

€= [ﬁ g] (3.25)

Similar to Eq. 3.23 , we can obtain the derivative of the transitions matrix Eq. 3.26
[18][7] as
Jl = LATg’ = lime_,¢ ewp(ﬁﬁ)ewzzfg)p—ew(é)p
(A+Aexp(§)p—exp(§)p
Ag
Agexp(§)p
Ag

~ lime 0
= lim§_>0

b il

= limgﬁo NE
_ [[—(Rp+t)

(3.26)

0 0
1 0 0 0 Zx =Y
=10 1 0 —Zx 0 X
0 0 1 Yx —Xx 0

The derivative of Eq. 3.26 for the rotation matrix and translation matrix is Eq. 3.27.

1 0 _ X
A Z %2
72 = (3.27)
0 1 Y=
Zx Z %2

According to the chain derivative rule, the derivative of a feature point can be
calculated as Eq. 3.28.

2
I R s
J1J2 = (3.28)
2
0 & ~F -U+ED -¥F %

At this point, we have derived the Jacobian matrix Eq. 3.29 and Eq. 3.11, and
the structure is shown in Eq. 3.8.

“output” — 2023/10/30 — 14:33 — page 16 — #28

16 Theory
du 1
dt] — Z~
(U —
a2 =0
du X
dt Z*2
@ =0
1
dv 1
dt2 — Z*,
dv _ _ Y
dt3 — ~ 72
du . X*y* (3.29)
c[llwl - Z)»«(Q*2
L —
dw2 — L+ Z*2
du Y
J dw3 Z*;/*2
v
dwl (1;_*1;:*2)
v
dw?2 Z*2
dv _XT
dw3 Z*

3.4 Software implementation of BA using MATLAB

3.4.1 Software Implementation of BA

Based on the above theory, we designed MATLAB code to simulate and im-
plement the BA algorithm. Firstly, according to Eq. 3.1, it was clarified that K,
Transition matrix, and Position matrix were used as inputs to the function. Using
two photos taken with the same camera, after re-projection, we obtained 1465
feature points that can be seen in both images Fig. 3.4(b). Therefore, the form of
the Jacobian matrix can be shown as Eq. 3.30.

rauvig AUV 1y y
aP.y 0 0 aTiy 0
AUV 1o dUV 1o
0 TPy 0 .. 0 AT 0
0 0
dUV1;y, dUV 1y,
0 0 0 .. “ap. an, 0
(3.30)
dUV 21,1 dUV21;;
AP 0 0 0 dT1.,
dUV21,5 dUV2;s
0 TP, 0 .. 0 0 AT,
0 0 0
auv;, auVv;,
L 0 0 0 dP;y, 0 dl;, J

In Eq. 3.30, UV1 and UV2 are the reprojection coordinates of the two images,

respectively. ngV is a 2 X 3 matrix containing the partial derivative of X, Y, and

Z to UV (Eq. 3.31).

“output” — 2023/10/30 — 14:33 — page 17 — #29

Theory 17
du du dU
AUV dX dY dz 331
dP ~ |av av av (3.31)
dX dy dz
ddU—TV is a 2 x 6 matrix containing the partial derivative of T to UV (Eq. 3.32).
From Eq. 3.30, it can be seen that each dggl occupies one row and one column,
while d[éq‘f L only occupies one column and is stacked together.
du du dU dU d4dU dU
dUV1 dol dw2 dw3 dtl dt2 de3 (3.32)
dl" |av av av dav 4av av '

dwl dw?2 dw3 dtl dt2 dt3

In this article, 1465 feature points were used, resulting in a Jacobian matrix of
1465 x 2 x 2 rows and 1465 x 346 x 2 columns.

We can see a large number of zeros in the Jacobian matrix, which means
that there will be a lot of meaningless calculations when solving J x J in the
subsequent LM algorithm calculations. Therefore, we learned that the idea of
the sparse matrix was introduced to solve this problem. When storing, only the
rows, columns, and contents of the data are recorded, which greatly accelerates the
calculation speed and reduces the computational workload, making SLAM possible
in scenarios that require rapid data processing, such as in the field of autonomous
driving.

We will divide the BA algorithm into four functions to solve the problem.
The first function is used to update the JU. Using the above formula, construct
Jacobian Eq. 3.29 and Eq. 3.12 for the calculation of the Jacobian matrix. Then
use the sparse matrix to store the matrix. The second function is to use the
obtained Jacobian matrix to calculate the Ax that needs to be corrected, using
Eq. 3.7. The third function is to update the input. After each iteration, update
the input P matrix and T matrix once to obtain better optimization results. It
should be noted that for the update of the rotation matrix R, it is necessary to use
Eq. 3.21 to add Lie algebra, instead of adding the rotation matrix directly. Finally,
it is necessary to calculate the RMS error and determine that the calculation result
converges at each iteration based on the results. The complete flowchart is shown
in Fig. 3.3.

Fig. 3.4(a) and Fig. 3.4(b) are two frames taken from different angles. Due
to the different shooting positions of the camera, rotation and translation of the
camera occur.

In Fig. 3.4(a) and Fig. 3.4(b), the SIFT point [22] are feature points that
can help confirm the pixel position in the image, drawing with a red circle in the
diagram. The initial solution is the initial result of camera reprojection, which has
not been optimized by the BA algorithm and is marked with a yellow cross on the
image. The blue cross is re-projection optimized by BA, and we can see that it
basically overlaps with the red cross in the figure.

When we zoom in on Fig. 3.4(b), we have obtained Fig. 3.5 and we can clearly
see that the results after BA are almost identical to the results of the feature
points. However, the results without BA have visible errors.

“output” — 2023/10/30 — 14:33 — page 18 — #30

18 Theory

Updated T, Xi, A T=[R;t] (Camera Model)
Xi=[X,Y,Z] (3D Points)
A=[U, V] (Features)

Software
(Floating)

[rl=Iu_&_cC(T, Xi,A)

C=JJ+AD'D
c=J*r
(LM Parameters)

-C*bx=c
(Solving the Ax)

Xi new=Xi +Ax(Xi)
T new=[R*eAAx(R); t+Ax(t)]
(Input Parameters Update)

Calculate the RMS

Figure 3.3: LM Flowchart

O SIFT points
i Initial Solution i
1] x After Bundle Adjustmnt '\\

JWHICELT

AN IR
O SIFT points
Initial Solution N

x After Bundle Adjustment i

AL

((a)) First Frame B - (b)) Secon Frame

Figure 3.4: Frames taken by camera at different positions

In Fig. 3.6, it can be clearly seen that the RMS error rapidly decreased from
66.75 in the first iteration to 1.47 in the fifth iteration, ultimately reaching 0.4906 in
the tenth iteration. Generally speaking, the lower the RMS, the better. However,
according to this paper in [3], the results optimized by RMS are generally below
2.

3.4.2 Fixed point analysis

When considering using FPGA as hardware to implement BA calculations,
fixed-point numbers are used for low-power and high throughput implementations.
However, fixed point numbers require a trade-off in data accuracy. Therefore, we
designed code to verify the impact of converting data to fixed point numbers on
BA results.

There are many intermediate data in the LM algorithm, and for each interme-
diate data, we perform data distribution analysis. Obtained Table. 3.1. According

“output” — 2023/10/30 — 14:33 — page 19 — #31

Theory

19

Figure 3.5: Zoom in plot of bundle adjustment

Reduction in RMS by Bundle Adjustment Iteration.

RMS

Iterations

Figure 3.6: RMS variation in each iteration

“output” — 2023/10/30 — 14:33 — page 20 — #32

20 Theory

to [2], the JU time accounts for approximately 60% of the total LM calculation
time. Therefore, we have chosen to implement the JU and CC functions as hard-
ware to accelerate computation speed. Using MATLAB to simulate fixed point
number results with 1-bit signed numbers, and 3-bit fixed point integers (to pre-
vent overflow).

Table 3.1: LM algorithm data range

Intermediate Data ‘ Maximum Value | Minimum Value
Jacobian Matrix 2.3041 -2.3041
C(Left side of Eq. 3.7) 4.1236e+03 -2.3886e+03
c(Right side of Eq. 3.7) 0.0418 -0.0796

Ax 2.2857e-05 -2.57301e-05

We simulate the RMS error for different fractional word lengths to achieve the
expected result. In Fig. 3.7, after 10 times iterations, it can be seen that at 10-bit
fractional word lengths, the RMS error is 28.37. As the bits of fractional word
length increase, the RMS increases but decreases at 13 and 17 decimal places,
which is caused by quantization errors. The RMS error is less than 2 when the
fractional word length is 14, and the best result of 0.5328 is achieved at 16 fractional
word length. In conclusion, our designed hardware will use 16 bits fractional, 3
bits integers, and 1 bits signed numbers.

RMS Error at Different Fractional Word Length.

30

25!

20

10262 0097 s 528 5478 [fare

10 1 12 13 14 15 16 17 18
Fractional Word Length

Figure 3.7: RMS error at different fractional word lengths of our
fixed-point number.

“output” — 2023/10/30 — 14:33 — page 21 — #33

Chapter 4

Hardware Implementation and Modification

4.1 Hardware Implementation

This chapter will detail how to implement the hardware accelerator based
on the "top-down" methodology presented in Chapter 2. The main task of our
hardware accelerator is to execute the JU and CC parts to improve the computa-
tional efficiency of this operation. Since the initial high-level hardware structure
block diagram is shown in Fig. 2.3 in Chapter 2, this chapter will first introduce
the implementation and comparison of each arithmetic circuit of the hardware
accelerator and then give the ASMD of the control logic. Finally, according to
the overall modified circuit structure, the modification method of the hardware
accelerator will be discussed in detail. In Chapter 3, we have tested that all data
involved in the JU and CC parts are below 3, and the use of Q4.16 fixed-point
numbers is sufficient to meet the accuracy requirements of the BA algorithm and
avoid overflow during the operation. All data on the hardware is represented by
20-bit fixed-point numbers containing 16 fractional bits (we call such fixed-point
numbers "Q4.16" for short), and the specific data format and actual values are
shown in Fig. 4.1 and Eq. 4.1.

(4.1)

S (Sign) | (Integer) F (Fractional)

Figure 4.1: Data Format and Actual Value of "Q4.16".

4.1.1 Implementation of Arithmetic Circuits

In this section, we will detail the specific implementation of each arithmetic
circuit. There are three operations we look at in detail: addition, multiplication,
and division.

21

“output” — 2023/10/30 — 14:33 — page 22 — #34

22

Hardware Implementation and Modification

e Adders: We first considered the implementation of the "Custom Carry-
Lookahead Adder", but in the FPGA, the combinational logic is imple-
mented in a way that the LUTs is connected. In this way, compared with
ASIC, which uses standard cells to implement logic circuits, FPGA will have
a larger area (the LUTs of Xilinx FPGA is concentrated in each Slice logic
block, which also includes many FFs, resulting in the additional area after
synthesis). The structure of a 4-bit "Custom Carry-Lookahead Adder" and
the logic gate diagram of the full adder is shown in Fig. 4.2 [23]. It can
be seen that this implementation will significantly increase the critical path
and area for addition with a large bit width. From the comprehensive com-
parison in Table. 4.1, it can be seen that the CARRY4 inside the FPGA is
actually more compact and efficient than manually implementing the adder
based on the logic gate connections. For this reason, we have adopted the
adder design based on the parallel resource of CARRY4 on the FPGA. This
design can effectively utilize the existing resources on the FPGA and in-
crease the delay of addition operations.

R T N

Gate-level of 1-bit Full Adder

AJ? l ' Ai J7) AJ7 l ' Ai J7 B
1 0 0
Cout 1-bit Cin / Cout 1-bit Cin/ Cout 1-bit Cin/ Cout 1-bit
Full Adder Full Adder Full Adder Full Adder

5 E I L

0 0 1 1

o

Figure 4.2: Structure Diagram of Carry Look-ahead Adder.

20-bits Adder Implementations ‘ LUTs ‘ Logic Delay
Custom Carry-Lookahead Adder 80 6.07 ns
CARRY4 on FPGA 20 1.84 ns

Table 4.1: Timing and Resource Utilization Comparison

e Multipliers: we have also considered implementations such as Radix-4 Booth
encoding, but through previous experience, we know that such a combina-
tional circuit is not as efficient as the DSP multiplier on the FPGA chip
(although the sequential multiplier is more compact, it also requires more
clock cycles to complete the calculation, unlike the DSP multiplier that can

“output” — 2023/10/30 — 14:33 — page 23 — #35

Hardware Implementation and Modification 23

complete the calculation within one cycle). For this reason, we decided to
use the DSP parallel resources on the FPGA to realize the multiplier. This
design can make full use of the existing resources on the FPGA to improve
the speed of multiplication.

e Dividers: Compared with the adder or multiplier, the structure of the di-
vider is more complex and usually requires multiple clock cycles to complete
an operation. For this reason, it is necessary to minimize the use of the
divider as much as possible. Fortunately, our algorithm only needs to cal-
culate 1/z* once, and we just need to find an efficient and compact divider
implementation.

00001100 00000000

b extend 8-Bits to low —
a>=h? a=za-b+1

00001100

8-bit integer a divided by b

00100100

T—s| Output a

T . 3 _Bi — K .
a extend 8-Bits to high — a SLL 1-Bits ¥ 16-bits 16-bits

Remainder Quotient

00000000 00100100 00000000 01001000

Figure 4.3: 8-bits "Shift-Sub" Divider Algorithm Flow.

We first chose the non-restorative divider design based on the "Shift-Sub"
method [24]. The algorithm flow of the 8-bit implementation of the divider is
shown in Fig. 4.3. The algorithm is based on a continuous heuristic and correction
strategy: first, the divisor a and the dividend b are bit-extended, and then the di-
visor is shifted to the left by one bit at each step, and at the same time, it is judged
whether the divisor a is greater than or equal to the dividend b. If the judgment
is "true", the difference between a and b needs to be assigned to a; otherwise,
continue to logically shift a to the left. The entire division requires 32 logical left
shifts to complete. This "Shift-Sub" design has advantages in hardware implemen-
tation compactness and power consumption and is suitable for implementation in
hardware accelerators, but its operation speed is generally slower than partial re-
covery or full recovery division algorithms. We use Verilog to describe the logical
structure of the 20-bit "Shift-Sub" divider, and through functional verification, we
ensure the correctness of the implementation of the divider and integrate it into
the early hardware structure shown in Fig. 2.3. Table. 4.2 shows the timing and
resource utilization report corresponding to the implementation of the divider and
how many clock cycles are required for a division calculation. Although the timing
and area of this implementation are in line with our expectations, the operation
speed is very slow, and resources such as the DSP multiplier on the FPGA chip
are not utilized as much as possible to bring higher efficiency. This makes us try
to find new implementations.

Based on the Newton-Raphson method [25] we try to implement a more ef-
ficient divider. This is an iterative method for finding numerically approximate
solutions to equations. It was first proposed by British scientist Isaac Newton in

“output” — 2023/10/30 — 14:33 — page 24 — #36

24 Hardware Implementation and Modification

Logic Delay ‘ LUTs ‘ FFs ‘ DSPs ‘ Cycles per Execution
2888mns | 207 | 168 | 0 | 86

Table 4.2: Performance and Area of 20-bits "Shift-Sub"

the 17th century and is widely used in numerical analysis and optimization prob-
lems. The basic idea is to approximate the roots of the equation by using the
tangents of the equation. During iteration, we start with an initial guess, compute
the derivative of the function at that point, and then pass the intersection of the
tangent with the x-axis as the new guess. This process iterates until specified
convergence criteria are met or a preset number of iterations is reached.

fz)=-—x (4.2)

(4.3)

zn+1) =2(n)(2 — x2z(n)) (4.4)

According to 1/z*, we can construct the functional Eq. 4.2 and bring it into
the Newton iteration Eq. 4.3, and the simplified formula Eq. 4.4 is our iterative for-
mula. Newton’s iteration method is widely used in mathematics and engineering,
especially for solving nonlinear equations and optimization problems. It is char-
acterized by fast convergence speed and high accuracy, but there may be cases
where iterations diverge or converge to the wrong root. Therefore, I need to per-
form the Newton method in different iterations on a set of Q4.16 fixed-point z*
on MATLAB. Then it was compared with the result of the double floating-point
calculation 1/7z* to ensure that there was no loss of precision. The comparison
results are shown in Fig . 4.4. It can be seen that 8 iterations inside the divider
can fully meet the accuracy requirements.

After designing the 20-bit Newton divider through Verilog, we ensured the
correctness of the implementation of the divider through functional verification
and integrated it into the optimized hardware structure. Table. 4.3 shows the
timing and resource utilization report corresponding to the implementation of the
divider and how many clock cycles are required for a division calculation. It is
obvious that the divider not only operates faster but also utilizes more "DSPs"
on-chip resources, which can significantly improve the overall efficiency of the
hardware.

Logic Delay ‘ LUTs ‘ FFs ‘ DSPs ‘ Cycles per Execution
4077ns | 207 | 28 | 4 | 19

Table 4.3: Performance and Area of 20-bits "Newton"

“output” — 2023/10/30 — 14:33 — page 25 — #37

Hardware Implementation and Modification 25

Comparison of 4 and 8 Newton iterations with the original results.
T T

%&; XY 9 o 1/z* (double)
® - Newton 4 (Q4.16)
- Newton 8 (Q4.16)

0 500 1000 1500
Number of Features

Figure 4.4: Accuracy Comparison of Different Newton lterations.

4.1.2 System Integration Preparation

After the arithmetic circuit is implemented, we need to integrate all the mod-
ules together to form a complete hardware accelerator. We first designed the
interface of each module to ensure the correct connection between them. We have
adopted a parametric design method, and the data bit width, address, and num-
ber of feature points of each module can be modified arbitrarily, and then these
modules are connected through interfaces. This design method not only makes
the design and testing of each module easier but also facilitates the subsequent
modification and expansion of the hardware accelerator.

We built a controller for the overall hardware according to the ASMD shown
in Fig. 4.5 and performed system-level simulations using the Vivado design suite
after system integration. The simulation results show that our hardware accel-
erator can correctly execute the JU and CC parts, and the speed is significantly
improved compared with the software implementation. The detailed results com-
parison report and the whole structure after system integration will be described
in Chapter 5.

In general, we have successfully implemented a hardware accelerator that can
effectively accelerate the JU and CC parts, and the optimized circuit structure is
shown in Fig. 4.6. In the following sections, we will introduce how we optimize the
hardware accelerator to improve its performance and on-chip resource utilization.

4.2 Hardware Modification

After successfully implementing the hardware accelerator, we further modi-
fied it to improve performance and reduce area. This chapter will detail these
optimization methods. Table. 4.3 shows the performance and resource utilization
report after passing Vivado’s "Implementation" according to the original hardware
architecture shown in Fig 2.3 (including the "Shift-Sub" divider inside).

“output” — 2023/10/30 — 14:33 — page 26 — #38

26 Hardware Implementation and Modification

STAGE3_START

cnt == FEATURES?

LOAD_CAMERA
start_S3=1;
camera_data = 1; y
Spre3_START T
F
F ready_preS3 == 1?
camera_done ==1?

start_preS3=1

LOAD_FEATURES
y

features_data=1; Szrs_START T
cnt_n<=cnt+1;

ready_S2_==1?

features_done == 1?

»| start_S2=1;

STAGE1_START STAGE2_START |T

F

start_S1=1; ready_S1_==1?

start_S1=1;

ready_S1_==1?

4

[T

Figure 4.5: ASMD of our controller.

STAGE 1 STAGE 2 STAGE zrs [STAGE Pre 3 STAGE 3

i &| REG

mul_zrs

I
L
I

mul_zr ReG duwl
£ j duw2 |
il y ReS duw3
pC) &, {mul_zrs — dutl
o] L duE2
[[pO, i REG dut3
o ot 2 % 1/7* 1/Z*n2 =] dvl
l) z REG / REG /] - Ldvwz |
[z [T P —s + —E W DY - T R B o dvw3
_ ¥ 1 i B N REG dvtl
=) o—1 =

Figure 4.6: Modified Hardware Structure.

“output” — 2023/10/30 — 14:33 — page 27 — #39

Hardware Implementation and Modification 27

4.2.1 Performance and Area Modification

In hardware design, performance is usually the first consideration. We have
used several methods to increase the operating speed of hardware accelerators.

First of all, as mentioned before, the comparison between the "Shift-Sub"
divider and the Newton iteration method to realize the divider. We adopted a
more efficient Newton divider and separated the calculation of "1/z*" into a new
pipeline "Szrs" to shrink the critical path.

Through these methods, we successfully increased the operating speed of the
hardware accelerator, allowing it to complete the operation of the JU and CC
faster.

As shown in Fig. 2.2, a common formula is involved in calculating the Jacobian
differential:

Zi* X 2 (4.5)
Z% « 1 (4.6)
zi* X Y (4.7)
z% X Y% (4.8)

We list these calculations separately as the new pipeline "preS3", which will
greatly reduce the use of DSP multipliers and some LUTs and FFs and will also
reduce the critical path to a certain extent.

4.2.2 Comparison Before and After Modification

Table. 4.4 shows the comparison of the performance and resource utilization
of the new (first row) and old (second row) hardware accelerator implementations.

Critical Delay ‘ LUTs ‘ FFs ‘ DSPs ‘ Cycles per Feature
7.337 ns 1706 | 662 | 28 32

10.68 ns 1644 | 292 36 96

Table 4.4: Performance and Area Comparison after Modification

Overall, we successfully improved the performance and area of the hardware
accelerator. This enables our hardware accelerators to be more efficient and smaller
when performing JU and CC operations.

“output” — 2023/10/30 — 14:33 — page 28 — #40

28

Hardware Implementation and Modification

“output” — 2023/10/30 — 14:33 — page 29 — #41

Chapter 5

Performance and Correctness Verification

Before the verification work started, we designed a "S1-IR" module and inte-
grated the ROM generated by the "Distributed Memory Generator" inside it. For
each iteration, we will manually modify the internal data in the ROM by modifying
the COE file. The main function of "S1-IR" is to input the data (such as 3D points
and camera models), which is controlled by the controller implemented as shown
in Fig. 4.5, to the hardware accelerator implemented as shown in Fig. 4.6. The
integrated system block diagram for integrating all modules is shown in Fig. 5.1.
At the same time, the resource utilization rate and other reports after the place-
ment and routing work on the FPGA "xc7a200tffg1156-3" through Vivado are
shown in Table. 5.1. Compared with the critical path of the hardware accelerator
itself shown in Table. 4.4, the critical path brought by the "S1-IR" internal ROM
after system integration is longer, so the overall critical path (and area too) of the
system has increased.

Controller

Input Data
(3D Points, Camera Models)

Output Data
(Jacobian Matrix)

JU&CC
Hardware Accelerator
(Modified) To Software

Figure 5.1: Integrated System Block Diagram.

29

“output” — 2023/10/30 — 14:33 — page 30 — #42

30 Performance and Correctness Verification

Critical Delay ‘ LUTs ‘ FFs ‘ DSPs ‘ Cycles per Feature
8114ns | 6435 | 1023 | 28 | 32

Table 5.1: Performance and Area after System Integration

5.1 Computational Correctness Verification

In order to verify that our accelerator can output data that meets the accu-
racy requirements, we follow the MATLAB software algorithm simulation process
shown in Fig. 3.3.in Chapter 2 and build a simulation process as shown in Fig. 5.2,
which allows the hardware accelerator to run in parallel with MATLAB. In this
way, we can bring the Jacobian matrix "J" and cost deviation "r" calculated by
the hardware accelerator into the software and compare the resulting RMS with
the original one. The comparison results are shown in Fig. 5.3. After completing
the 10th iteration, the original RMS is 0.4906, while the new RMS after introduc-
ing the hardware accelerator is 0.5405. This shows that our hardware accelerator
not only meets the calculation accuracy but also has little difference in correctness
deviation compared with software.

T=[R;t] (Camera Model)
Updated T, Xi, A Xi=[X,Y,Z] (3D Points)
A=[U, V] (Features)

Hardware
(Q4.16)

Y

[[J,r]=JU_8&_CC(T, Xi,A)]

Software
(Floating){ ~ €=JJ+AD'D
c=J'*r

(LM Parameters)

-C*Ax=c
(Solving the Ax)

(Xi new=Xi +Ax(Xi)
T new=[R*erAx(R); t+Ax(t)]
L(Input Parameters Update)

Calculate the RMS

Figure 5.2: Correctness Verification Flowchart.

“output” — 2023/10/30 — 14:33 — page 31 — #43

Performance and Correctness Verification 31

0 RMS x Bundle Adjustment Iteration.
T T T T T T
=—=MATLAB (double)

—e—Hardware (Q4.16)

RMS

Iterations

Figure 5.3: RMS Comparison for 10 lterations.

5.2 Performance Comparison

The BA algorithm MATLAB simulation code built in the second chapter, we
also implemented the same simulation code through Python and measured the
running time of the JU and CC parts on the software. At the same time, we also
know the simulation time of the whole system from the previous work. In this way,
it can be concluded how much the hardware accelerator accelerates the running
time of the JU and CC parts compared to the software at shown in the Table. 5.2.:

Python(Numpy) ‘ Hardware(Q4.16) ‘ Speedup
328.64 ms | 6.92 ms | 475

Table 5.2: Speedup of Hardware Compared to Software for 10 Iter-
ations.

At the same time, we refer to other work [2] [3] to find out the running time
of the JU and CC parts of BA on different data sets. Because our hardware accel-
erator has the same 32 clock cycles for the execution time of each Feature in each
iteration, and the highest system frequency is 134MHz. From this combination
Eq. 5.1, we can easily estimate the corresponding running time of the hardware
accelerator under each data set.

TEzecution(Sec.) = (features x iterations x cycles)/134000000 (5.1)

The accelerator run time compared to the run time of the JU and CC parts with
SBA on the Intel P4 processor is shown in Fig. 5.4. Since small-scale matrices do
not consume too much time in software operations, the speedup ratios of sequences
4 and 5 are relatively insignificant. In the case of relatively large input data sets,
our hardware accelerator can perform better.

“output” — 2023/10/30 — 14:33 — page 32 — #44

32 Performance and Correctness Verification

FPGA vs. Intel

Running Time Comparison between Software and Hardware FPGA \;5. Intel

Sequence Num. of | Times of
Features | Iterations

) 2 3 4 5

Sequence

Figure 5.4: Hardware Speedup Compare to Software (SBA).

Similarly, we also compared the running time of JU and CC with the Ceres
library on the popular ARM-embedded processor Cortex-A9, as shown in Fig. 5.5.
This group of comparisons illustrates well that our hardware accelerator has great
potential to be applied in embedded scenarios.

FPGA vs. ARM

FPGA vs. ARM

70
Num. of 60
Features :
o 50
=3
T 40
o
o
0 30
20
e 0
1 2 3 4 5 9

Sequence

The time for both ARM and hardware is the average time per iteration.

Figure 5.5: Hardware Speedup Compare to Software (Ceres).

“output” — 2023/10/30 — 14:33 — page 33 — #45

Performance and Correctness Verification

33

5.3 Estimated Energy Saving Comparison

We also estimated the power consumption of our system through Vivado to be
0.221 W. Although there may be some differences from the actual on-chip power
consumption, we can still make some energy-saving comparisons. It is known
that the Thermal Design Power (TDP) of the ARM Cortex-A9 at 667 MHz main
frequency is 1.5 W [2], and the following comparison results can be obtained by
combining the running time of hardware and ARM:

Sequence | ARM(Ceres) | Hardware(Q4.16) | Energy Saved
1 2151 mJ 4.2 mJ 99.805%
2 942 mJ 1.8 mJ 99.809%
3 1645.5 mJ 3.2 mlJ 99.806%
4 825 mJ 1.6 mJ 99.806%
5 1929 mJ 3.7 mJ 99.808%

Table 5.3: Estimated Energy Saving Comparison

“output” — 2023/10/30 — 14:33 — page 34 — #46

34

Performance and Correctness Verification

“output” — 2023/10/30 — 14:33 — page 35 — #47

Chapter 6

Conclusion and Future Works

6.1 Conclusion

In this thesis, we investigate the hardware accelerator for the BA algorithm,
which is an essential non-linear optimization part of the SLAM process. Imple-
menting efficient hardware accelerators to improve the computational efficiency
of BA algorithms is our key objective. We successfully constructed a hardware
accelerator for the JU and CC parts of the BA algorithm by comprehending the
theoretical basis, developing a high-level architecture, and translating it into our
hardware structure. We conducted the initial verification and further compari-
son of the hardware accelerator’s performance and accuracy after we modified our
hardware structure to be more extended.

The outcomes demonstrate a considerable increase in the computational ef-
ficiency of the BA algorithm due to the hardware accelerator. Using specialized
hardware, we speed up camera parameter and 3D point coordinate optimization
processing, leading to more accurate 3D models of the environment and a more
reliable motion trace of a moving camera. This development opens up new op-
portunities for real-world applications where real-time speed is crucial, such as
self-driving automobiles and robotic navigation.

6.2 Future Works

Although this thesis work has achieved a significant improvement in the com-
putational efficiency of the BA algorithm through hardware accelerating, there
is still room for further exploration and improvement. Here are some potential
future research directions:

e Hardware Optimizations: Explore new approach for hardware accelerators
to improve its efficiency and reduce resource utilization. This may involve
research on new architectures, reducing latency, improving memory access
patterns, and more. For example, a divider will be realized by LUTs to
reduce the overall latency of the hardware accelerator.

e Integrate into the SLAM system: Test the SLAM system integrated with
this BA hardware accelerator IP in the real environment and compare its
performance with the existing SLAM system such as ORB-SLAM. It can be

35

“output” — 2023/10/30 — 14:33 — page 36 — #48

36

Conclusion and Future Works

seen that our hardware accelerator has a high energy efficiency advantage
compared with the popular ARM embedded processor, which implements JU
and CC in SLAM through software. We will alter this hardware accelerator’s
interface with on-chip communication bus protocol (such as AXI4, etc.),
then package it as an IP and also open source it to facilitate subsequent
research by others.

Shure Elimination Hardware Accelerator: While further improving the hard-
ware accelerator, consider the design and implementation of the Shure Elim-
ination hardware accelerator. Schur Elimination is a common method for
sparse matrix solving and is often used in the BA algorithm. And this part
often takes a lot of running time. By developing a dedicated hardware ac-
celerator, the Schur Elimination process can be accelerated, thereby further
improving the computational efficiency of the entire BA algorithm. This
work could include hardware architecture optimization based on simplified
Schur Elimination algorithm, optimization of data storage patterns, and
application of parallel computing techniques.

“output” — 2023/10/30 — 14:33 — page 37 — #49

Acronyms

ASIC Application Specific Integrated Circuit. 22
ASMD Algorithm State Machine Diagram. 6, 21, 25

BA Bundle Adjustment. i, iii, 1, 2, 4, 5, 9, 10, 13, 16-18, 31, 35, 36

CC Cost-function Calculation. i, vii, 2, 4-7, 9, 20, 21, 25, 27, 31, 32, 35, 36
CV Computer Vision. i, iii, 2

FPGA Field Programmable Gate Arrays. 2, 5, 6, 18, 22, 23, 29
JU Jacobian Update. i, vii, 2, 4-7, 9, 17, 20, 21, 25, 27, 31, 32, 35, 36

LM Levenberg Marquardt. v, 11, 12, 17, 18, 20
LUTs Look-up Tables. 6, 22, 35

RMS Root Mean Square. 17, 18, 20, 30
ROM Read-Only Memory. 6, 29

SIFT Scale-Invariant Feature Transform. 17

SLAM Simultaneous Localization and Mapping. i, iii, 1, 2, 12, 13, 17, 35, 36

37

“output” — 2023/10/30 — 14:33 — page 38 — #50

38

Acronyms

“output” — 2023/10/30 — 14:33 — page 39 — #51

References

(1]

2]

3]

4]

[5]

[6]

7]

18]

19]

[10]

[11]

B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon, “Bundle
adjustment — a modern synthesis,” in Vision Algorithms: Theory and Prac-
tice (B. Triggs, A. Zisserman, and R. Szeliski, eds.), (Berlin, Heidelberg),
pp- 298-372, Springer Berlin Heidelberg, 2000.

Q. Liu, S. Qin, B. Yu, J. Tang, and S. Liu, “m-ba: Bundle adjustment hard-
ware accelerator based on distribution of 3d-point observations,” IEEE Trans-
actions on Computers, vol. 69, no. 7, pp. 1083-1095, 2020.

M. I. A. Lourakis and A. A. Argyros, “Sba: A software package for generic
sparse bundle adjustment,” ACM Trans. Math. Softw., vol. 36, mar 2009.

C. Zach, “Robust bundle adjustment revisited,” in Computer Vision — ECCV
2014 (D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, eds.), (Cham),
pp. 772-787, Springer International Publishing, 2014.

M. Cao, L. Zheng, W. Jia, and X. Liu, “Fast incremental structure from
motion based on parallel bundle adjustment,” Journal of Real-Time Image
Processing, vol. 18, pp. 379-392, 2021.

G. Sibley, “Relative bundle adjustment,” Department of Engineering Science,
Ozford University, Tech. Rep, vol. 2307, no. 09, 2009.

X. Gao, T. Zhang, Y. Liu, and Q. Yan, “14 lectures on visual slam: From
theory to practice,” 2017.

Cheng Wei, “Bundle adjustment,” 2018. https://scm_mos.gitlab.io/
vision/bundle-adjustment/, Last accessed on 2019-12-25.

D. Sibley, C. Mei, I. Reid, and P. Newman, “Adaptive relative bundle adjust-
ment,” in Robotics: science and systems, 2009.

F. Endres, J. Hess, J. Sturm, D. Cremers, and W. Burgard, “3-d mapping with
an rgh-d camera,” IEEE Transactions on Robotics, vol. 30, no. 1, pp. 177187,
2014.

T. Botterill, S. Mills, and R. Green, “Correcting scale drift by object recog-
nition in single-camera slam,” IEEE Transactions On Cybernetics, vol. 43,
no. 6SI, pp. 1767-1780, 2013.

39

“output” — 2023/10/30 — 14:33 — page 40 — #52

40

References

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21]

22]

23]

24]
[25]

K. Konolige and M. Agrawal, “Frameslam: From bundle adjustment to
real-time visual mapping,” IEFE Transactions on Robotics, vol. 24, no. 5,
pp- 10661077, 2008.

K. S. Arun, T. S. Huang, and S. D. Blostein, “Least-squares fitting of two 3-d
point sets,” Pattern Analysis and Machine Intelligence, IEEE Transactions
on, no. 5, pp. 698-700, 1987.

P. Agarwal, W. Burgard, and C. Stachniss, “Survey of geodetic mapping
methods: Geodetic approaches to mapping and the relationship to graph-
based slam,” Robotics Automation Magazine, IEEFE, vol. 21, pp. 63-80, Sept
2014.

X.-S. Gao, X.-R. Hou, J. Tang, and H.-F. Cheng, “Complete solution classifi-
cation for the perspective-three-point problem,” IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, vol. 25, pp. 930-943, Aug 2003.

N. Carlevaris-Bianco, M. Kaess, and R. Eustice, “Generic node removal for
factor-graph slam,” Robotics, IEEE Transactions on, vol. 30, pp. 1371-1385,
Dec 2014.

A. Gee, D. Chekhlov, A. Calway, and W. Mayol-Cuevas, “Discovering higher
level structure in visual slam,” IEEE Transactions on Robotics, vol. 24, no. 5,
pp- 980-990, 2008.

E. Eade and T. Drummond, “Edge landmarks in monocular slam,” Image and
Vision Computing, vol. 27, no. 5, pp. 588-596, 2009.

L. Carlone, M. K. Ng, J. J. Du, B. Bona, and M. Indri, “Simultaneous local-
ization and mapping using Rao-Blackwellized particle filters in multi robot
systems,” Journal of Intelligent € Robotic Systems, vol. 63, no. 2, pp. 283~
307, 2011.

J. Artieda, J. M. Sebastian, P. Campoy, J. F. Correa, 1. F. Mondragon,
C. Martinez, and M. Olivares, “Visual 3-d slam from uavs,” Journal of Intel-
ligent and Robotic Systems, vol. 55, no. 4-5, pp. 299-321, 2009.

G. Dubbelman and B. Browning, “Cop-slam: Closed-form online pose-chain
optimization for visual slam,” Robotics, IEEE Transactions on, vol. 31,
pp- 1194-1213, Oct 2015.

D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” In-
ternational Journal of Computer Vision, vol. 60, no. 2, pp. 91-110, 2004.

B. Harish, K. Sivani, and M. Rukmini, “Design and performance comparison
among various types of adder topologies,” in 2019 3rd international confer-
ence on computing methodologies and communication (ICCMC), pp. 725-730,
IEEE, 2019.

M. D. Ercegovac and T. Lang, Digital arithmetic. Elsevier, 2004.

D. R. Kincaid and E. W. Cheney, Numerical analysis: mathematics of scien-
tific computing, vol. 2. American Mathematical Soc., 2009.

LUN
UNIVERSITY

Series of Master’s theses
Department of Electrical and Information Technology
LU/LTH-EIT 2023-956
http://www.eit.Ith.se

€207 pun ‘18sny-3 1 1wUIAIL AQ patulg

