Test case selection based on code changes
and risk of regression

ALEXANDER OLOFSSON & CHRISTOFFER LARSSON

BACHELOR'’S THESIS

DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

k YL N A\ /

Test case selection based on code changes and
risk of regression

Alexander Olofsson Christoffer Larsson
al35860l1-s@student.lu.se ch0815la-s@student.lu.se

Department of Electrical and Information Technology
Lund University

Supervisors:
Christin Lindholm, christin.lindholm@cs.lth.se
Alf Stenbrunn, alf.stenbrunn®@axis.com
Lars Nylander, lars.nylander@axis.com

Examiner:
Christian Nyberg, christian.nyberg@eit.1lth.se

Bachelor’s thesis work carried out at Axis Communications AB.

June 20, 2022

© 2022

Printed in Sweden
Tryckeriet i E-huset, Lund

Abstract

Test case selection is an important part of the quality assurance process in a soft-
ware project. Since time and resources are limited, test cases have to be prioritized
in order to maintain efficiency and meet deadlines. This thesis researches the pos-
sibility of improving the development process at Axis Communications by partly
automating the test case selections. In this thesis, an algorithm called the ’Test
Selection Algorithm’ is developed. The algorithm contains two methods for se-
lecting test cases based on recent code changes and their risk of introduced errors
or regression. The first method draws a connection between test cases that have
previously found errors and reported them and the commits that solves the er-
rors. The second method makes use of text analysis and keyword extraction and
matches test cases to commits by analysing the commit messages. The resulting
algorithm combines the two methods and produces suggestions on which test cases
that should be included in upcoming test runs. A graphical interface containing
the suggested test cases was created for the user of the algorithm to easily look at
the results from the algorithm.

The result of this thesis is an algorithm that help partly automate the quality as-
surance process by suggesting test cases that the test leader should include.

Keywords: Quality Assurance, Test Case Selection, Keyword FExtraction, Text-
analysis, Application Programming Interface.

ii

Sammanfattning

Urval av testfall dr en viktig del av processen for kvalitetssikring i ett projekt.
Eftersom tid och resurser dr begrinsade behover testfallen prioriteras for att up-
pratthalla effektivitet och for att mota deadlines. Detta examensarbete utforskar
mojligheten att forbéttra utvecklingsprocessen pa Axis Communications genom
att delvis automatisera utvéljandet av testfall. I detta examensarbete har en algo-
ritm som kallas "Test Selection Algorithm’ utvecklats. Algoritmen innehaller tva
metoder for att vilja ut testfall baserat pa nyligen gjorda koddndringar och deras
risk for nya fel eller regression. Den forsta metoden drar en direkt koppling mellan
testfall som tidigare hittat fel och rapporterat dessa, till kodandringar som l6ser
felen. Den andra metoden anvénder textanalys och nyckelord for att matcha test-
fall till koddndringar genom att analysera meddelandena i kodéndringarna. Den
resulterande algoritmen kombinerar de tvad metoderna och producerar forslag pa
vilka testfall som borde inkluderas i kommande testrundor. Ett grafiskt anvindar-
granssnitt som innehaller de foreslagna testfallen skapades for att anvindaren av al-
goritmen enkelt skall kunna f& en 6verblick Gver resultaten fran algoritmen.

Resultatet av detta examensarbete ar en algoritm som delvis automatiserar pro-
cessen for kvalitetssdkring genom att foresla testfall som testledare borde inkludera
i testrundor.

Nyckelord: Kualitetssikring, Testfallsutviljning, Nyckelords-uthdmining, text-
analys, APL

il

v

Table of Contents

Introduction 1
1.1 Background 1
1.2 Purpose e 2
1.3 Objectives 2
1.4 Research questions 2
1.5 Thesismotivation 3
1.6 Boundaries 3
Technical background 5
2.1 Previouswork 5
22 Tools 6
Method 9
3.1 Research and information gathering 9
3.2 Development 12
33 Testing 13
3.4 Evaluation. 13
3.5 Communication and work process 14
3.6 Information evaluation 14
Analysis 15
41 EBvaluationresults. 15
42 Choices 16
4.3 Problems and solutionso 17
Result 19
5.1 TestTracker-Jira connection 19
5.2 Text-analysis and Keyword extraction 21
5.3 DASH - Data visualisation 23
Conclusion 27
6.1 Summary 27
6.2 Ethical reflection 28
6.3 Future development opportunities 29

7 Terminology

7.1 Terms and shortenings

References

vi

List of Figures

3.1

5.1
5.2
53
5.4
55
5.6

Visual representation of the phases. 10
Visual presentation of the TestTracker/Jira connection. 20
Visual representation of the keyword extraction and text analysis. . . 22
Page for viewing total ranking. 23
Page for viewing a single commit. 24
Page for viewing TestTracker - Jira matches. 24
Visual representation of the final "test selection algorithm". 25

vii

viii

List of Tables

4.1
4.2
4.3

5.1
5.2
53

5.4
55

Table of first test run comparison. 15
Table of the second test run comparison. 16
Table of the third test run comparison. 16

Table showing an example of data gathered from a TestTracker test-run. 19
Table showing an example of data gathered from Gerrit and GitLab. . 20
Table showing an example of the resulting list from the TestTracker/Jira

Connection. L 21
Table showing an example of the results for a specific commit. 21
Table showing an example of the total ranking for all test cases. . . . 23

X

Chapter]_

Introduction

1.1 Background

When changes in code are made there is always a risk of error and regression.
Manual system testing is done before a new launch but since there is a limited
amount of time the test cases must be prioritized. The Quality Assurance team,
furthermore described as QA team, at Axis Communications is using an algorithm
that analyzes code changes and evaluates the risk of errors in the change. This
process is done every time Axis plans on releasing a new version of the software.
The algorithm produces a list and a graphical overview of all commits* and ranks
them based on risk for errors. This algorithm will further be called the "risk
prediction algorithm". Commits are ranked based on risk of new errors in the
code. The list of commits is then sent to the test leader who manually selects the
test cases that need to be run based on the risky commits. Test cases are already
defined, and the test leader selects the test cases that best match the commits
with highest risk. Machine learning is used in the risk prediction algorithm to
train and improve the predictions it produces.

A lot of time and resources are spent when a test leader has to manually analyze
commits and select test cases based on the resulting list from the risk prediction
algorithm. Therefor the team at Axis Communications want to develop a new al-
gorithm that automatically selects the test cases that match the high risk commits.
The new algorithm shall analyze commits, commit messages** and the resulting
list produced by the risk prediction algorithm. The result of the new algorithm
will help save time in the testing process by automatically selecting test cases that
shall be completed before every new launch of software. The new algorithm will
further be called the "test selection algorithm".

Commits and tests can be categorized to help the development of the test selection
algorithm. Examples of categories could be size of changes or which area of code
the changes are made.

Axis Communications AB is a Swedish company based in Lund that was founded in
1984. Axis Communications is the industry leader in network-based video surveil-

2 Introduction

lance since the launch of the worlds first network camera in 1996. Today, Axis
Communications offers a wide variety of solutions of network cameras, network
audio and access control for the physical security and video surveillance indus-
try. Rather than targeting individual users, Axis main target customers are larger
companies and institutions across varies segments, such as retail, transportation,
government, healthcare and education etc.

*Commit - The latest change made in the code.

**Commit message - A description message from the developer who made the
change.

1.2 Purpose
The purpose of this thesis is to research if the development process at Axis Com-

munications can be improved by partly automating the testing process which will
then save time, money, and resources.

1.3 Objectives

The thesis will research if the selection of test cases can be automated with the help
of an algorithm. A prototype of the "test selection algorithm" shall be developed
and evaluated. The expected result is that the test leaders will no longer have to
manually select test cases.

1.4 Research questions

In this thesis the following questions shall be answered.

1. How are the test leaders at Axis currently selecting the test cases?
2. How does the risk prediction algorithm work?

3. How are code changes going to be analyzed and matched to test cases in the
test selection algorithm?

4. Will text analysis be used in the test selection algorithm?

5. Can commits and tests be categorized to help the development of the test
selection algorithm?

6. Can machine learning be used in the test selection algorithm?

7. How will the prototype of the test selection algorithm be evaluated?

Introduction 3

1.5 Thesis motivation

This thesis was chosen because it was an interesting problem and the task de-
scription matched our education. We have also been in contact with the company
earlier at different student work related events.

Axis Communications wants this work to be done since the result will hopefully
improve the development process by saving time, money, and resources.

The thesis will help improve society since it can help the development of new
tech and could also be applied to other areas of development. The test choosing
algorithm which will be developed in this thesis shall be made for Axis Access
Control products which are used to make places safer.

1.6 Boundaries

The test selection algorithm prototype shall be developed for both Windows and
Linux environments but not for Mac.

Introduction

Chapter 2

Technical background

2.1 Previous work

Test case selection is a method which aims to save time by only running the nec-
essary test cases ahead of each release. By selecting the right test cases redundant
test data can be avoided. The process of selecting which test cases to run has
always been a time consuming process and has been automated in many different
workplaces before. The difference between this thesis and work done before is
that this is a continuation of a previous thesis written at Axis Communications
called "Unsupervised predictions of software faults using change metrics" by Oskar
Holmqvist and Elias Tedenvall which in this thesis is mentioned as the risk predic-
tion algorithm. [1] The risk prediction algorithm uses machine learning to analyze
which changes in code are high risk and which changes are safe. But selecting the
test cases based on the results are still made manually by the test leaders.

To help the development of the "test selection algorithm" which will automati-
cally select relevant test cases based on recent code changes, a literature review
was made to search for different solutions and approaches to the problem. The
following works are relevant to discover and analyze different ideas that could be
implemented.

Filip Normann, a former student at Uppsala University, did a similar bachelor
thesis with the same problem definition. In this thesis, titled “Test Case Selection
Based on Code Changes’[2], Normann produced an algorithm for selecting test
cases by leveraging code dependencies.

Beszédes et al.(2012)(3] used a code-coverage based technique for test case selection
and prioritization with the goal of reducing the number of necessary tests. Alves
et al.(2013)[4] had the same goal but chose to go for a refactoring based approach
which mainly detects refactoring errors but also uses prioritization. The refactoring
based approach was chosen since according to their case study this is the most
common issue when regression testing.

Wang et al.(2013)[5] used a feature model for automatically selecting test cases
for new products. Where test engineers had to select the relevant features and the

6 Technical background

existing test cases would be selected based on the features selected. This is mainly
used to save time when testing new products.

In a systematic literature review Rongqi et al.(2021)[6] analyzed different machine
learning models for selecting and prioritizing test cases which could be relevant if
machine learning is used. Another approach that could be used to match testcases
and commits is by analysing the information and extracting different keywords
which is a technique shown in "Automatic Text Summarization and Keyword Ex-
traction using Natural Language Processing"[7] by Payak et al.(2020). Where they
have developed a tool to gather information from different sources and automati-
cally sort the relevant information. This technique could be used to analyze and
help match test cases in the "test selection algorithm".

The works referenced in this chapter will lay the ground work for developing the
"test selection algorithm" and later when evaluating the solution.

2.2 Tools

This section describes the tools used for developing the "test selection algorithm"
and to what purpose they were used.

2.2.1 Risk prediction algorithm

The risk prediction algorithm is used to get a list of all commits made in a chosen
time period. The commits that are considered fault-prone or risky are used to
determine which test cases that should be performed. [1]

2.2.2 TestTracker

TestTracker® is a platform developed by Axis Communications to manage and
visualize test-runs, test cases and the results from the test-runs. In this thesis
TestTracker is used to fetch test cases and test-run results. In the "test selection
algorithm" the test cases and test-run results are used to create a connection to
recent commits.

*TestTracker is a made up name, because of confidentiality, the real name will not
be presented in this thesis.

223 lJira

Jira is a project and issue tracking tool that Axis uses to document detected issues
and tasks within the software. The issues and tasks are posted as a "ticket" and
is the basis for the code changes. In this thesis, Jira is used for selecting test cases
that may catch Tickets reported to Jira. The tickets in Jira are categorized in to
one of the following; Story - A requirement written from the perspective of an end
user. Epic - A large task that can be broken down into several smaller tasks. Task
- Work that shall be done. Issue - a bug or problem that needs to be fixed. The

Technical background 7

"Test Selection Algorithm’ makes use of all the different categories when matching
test cases to commits.[8]

2.2.4 Gitlab

Gitlab is a git repository management platform. Gitlabs built-in API is used to
fetch commits and relevant data which is used in the "test selection algorithm".
Furthermore, Gitlab is used to track the development of the "test selection algo-
rithm" itself.|9]

2.25 Gerrit

Gerrit is a web-based code collaboration tool used for code reviews and git man-
agement. Like Gitlab, Gerrit has a built-in API which is used for fetching commits
and relevant data.[10]

2.2.6 Postman

Postman is an API platform which is used for building and using different APIs.
In this thesis Postman is used for testing and visualising the information gathered
from every API needed for the "test selection algorithm".[11]

2.2.7 RAKE

RAKE stands for Rapid Automatic Keyword Extraction and is an algorithm for
extracting keywords from individual documents and text. The algorithm removes
certain words, known as stop-words (e.g. ’and’ ’of’ the’ etc.), and produces key-
words with a given score. The higher score means a higher occurrence and co-
occurrence® of the words. [12]

RAKE is used by the 'Test Selection Algorithm’ to produce keywords which are
used to select relevant test cases.

*co-occurrence - The frequency of which a word occurs together with other key-
words.

2.2.8 SequenceMatcher

SequenceMatcher is a library available in Python. SequenceMatcher computes
similarities between two given string sequences. In the "Test Selection Algorithm’
SequenceMatcher is used to determine similarities between the commit message
and the titles of the test cases. A higher similarity means a higher relevance
between the test case and the commit. [13]

2.2.9 YAKE

YAKE, similarly to RAKE is an automatic keyword extraction tool that identifies
the most relevant keywords from text and documents. After comparing the result-
ing keywords from YAKE and RAKE it was decided that RAKE would be used

8 Technical background

in the algorithm since the keywords extracted from RAKE were more relevant.
[14]

2.2.10 DASH

DASH is a library in python and an open source framework for building data vi-
sualization interfaces. DASH is used by the *Test Selection Algorithm’ to visualize
the suggested test cases in a user-friendly manner instead of having all the data
in separate text- and csv-files. [15]

Chapter 3

Method

The work process was split into four different phases as shown in Figure 3.1. The
initial phase was gathering information. This was done by conducting a literature
study on previous work related to the topic. The next method used to gather in-
formation was by having interviews with employees at Axis, including an interview
with a test leader. The final method of information gathering was by manually
testing one of the products. The second phase was spent on developing, testing
and evaluating a prototype to the first solution, the TestTracker-Jira connection.
The third phase was spent on developing, testing and evaluating a prototype to
the second solution, the text analysis and keyword extraction. Finally the fourth
phase was spent on merging the two prototypes developed into a finished product,
also testing and evaluating it. The testing sub-phases consisted of running the
tools developed and making sure the results are reasonable and consistent. Evalu-
ation was conducted after every development sub-phase. The different phases and
sub-phases are described in further detail throughout this chapter.

3.1 Research and information gathering

This section describes the methods used to research and gather information.

3.1.1 Literature studies

In the beginning of the thesis, information had to be gathered in order to come up
with a solution. By conducting literature studies of similar and previous works,
an approach on how to solve the problems of the thesis could be created.

The tools used to search for relevant literature were LUBsearch and Google Scholar
using search terms "test case selection", "test case selection based on code changes
and risk of regression" and "automatic test case selection". Other relevant litera-
ture gathered was sent from the supervisors at Axis Communication.

10

Method

Research and information gathering

Literature Intervi Product
Studies nterviews Testing
A4
TestTracker/Jira
Connection
Development Testing Evaluation
A
Text analysis and Keyword extraction
Development Testing Evaluation
Y
Merging solutions into final product
Development Testing Evaluation

Figure 3.1: Visual representation of the phases.

Method 11

3.1.2 Interviews

After completing the literature studies, information about the testing-process and
how the QA team is currently working had to be gathered. Two interviews were
planned and conducted. The first one was with the author of the "risk prediction
algorithm" where the focus was on how the algorithm works and how it is used.
The second interview was with one of the test leaders at Axis where focus was on
how the test-leader uses the algorithm to select test-cases. The interviews provided
valuable insight to the work process at Axis and helped lay the groundwork for
developing the "test selection algorithm".

The interviews were conducted in a semi-constructed way with open conversa-
tions and a few prepared questions. [16] Both interviews were held over Microsoft
Teams.

The most important questions asked from the interview with the author of the
"risk prediction algorithm" were:
1. What information does the list of commits produced by the "risk prediction
algorithm" contain?
2. Are the commits categorized based on which area of the code they concern?
3. How does the test leader use the "risk prediction algorithm"?
4. Is the data gathered from Jira used to evaluate the results?

The most important questions asked from the interview with one of the test leaders
were:

1. How do you use the "risk prediction algorithm"?

N

What makes a test leader select a specific test case based on the results of
the "risk prediction algorithm"?

. Are pre-existing tags in test cases used?

3

4. How are test cases prioritized?

5. How would you like to view the results of our "test selection algorithm"?
6

. How do you construct a test run before the next release?

The interviews gave satisfying answers to the questions and also gave more useful
information such as a thorough presentation of the "risk prediction algorithm" in
use.

3.1.3 Product testing

In order to better understand the product the "Test Selection Algorithm’ would be
applied to, testing of the product was conducted. The testing was done by setting
up a test environment for the product and manually running tests from the pool
of test cases. The testing gave insight into the process which the algorithm would

12 Method

automate. The testing yielded a better understanding about the different test
cases that the algorithm would select.

3.2 Development

After having completed the literature studies and interviews an idea for a solution
was formed and a prototype was developed. The prototype solution contains
two methods for selecting test-cases. The first method draws a direct connection
between test-runs and commits that references the same issue-tickets. The other
method is a text-analysis based approach that extracts keywords from the commit-
messages. The reasoning for developing these two methods are described in section
3.2.1 and 3.2.2 respectively.

3.2.1 TestTracker-Jira connection

The interview, as described in 3.1.2, gave insight to the workflow of the QA team
and which tools are used for the testing process. At a closer inspection of the
tools, it was revealed that the test-run results from TestTracker (section 2.2.2)
and many commits contained a link or reference to the same ticket in Jira (section
2.2.3). Therefore, a connection could be made between the test-case that reported
the Ticket and the commit that solved the Ticket. This was the first method
for selecting test-cases but since not all commits and test-runs contains a ticket
reference, a second method had to be developed.

The TestTracker-Jira connection solution fetches all relevant information from
TestTracker. This includes test-runs, test-run results, test-cases performed in the
test-runs and comments from the test-cases. This is done using the built-in Test-
Tracker API. All comments containing a link to a Jira-ticket is stored in a list.
This list is then matched with all commits from GitLab and Gerrit containing
Jira-Tickets. Since a commit can contain multiple Jira-Tickets, a commit can be
matched to multiple test cases as well.

3.2.2 Text-analysis and keyword extraction

After conducting the literature studies of the previous works mentioned in chapter
2.1 it was decided to use text-analysis and keyword extraction for the solution.
The decision was made partly because one of the research questions for this thesis
is "Will text analysis be used in the test selection algorithm". The decision was
also made because the first method for selecting test-cases using the connection
between TestTracker and Jira, only covers a portion of the commits.

This method uses "RAKE" to generate keywords from commit messages which are
later used by "SequenceMatcher" to compare keywords to test cases. "RAKE"
also has a metric for how relevant every keyword is on a scale from 0-10. All
keywords with a rating below 4.0 were removed since those keywords are often
irrelevant. For every commit all test cases are ranked by a relevancy metric from
"SequenceMatcher" where test case ranking for each commit can be viewed. Since
a commit could cover multiple test cases a feature was added where the user can

Method 13

select how many of the top test cases for each commit that will be added to the
final selection. This feature is important for evaluation where statistics can be
measured for different selections.

3.2.3 Final development

After finishing the prototypes for both solutions and evaluating them the final part
of development was started. This phase consisted of merging the two solutions
together into a finished product where results and statistics are easily viewed in
a browser. A configuration file was created where the user can manually choose
which repositories the commits will be gathered from and the product that will be
tested. The reason for this is for the *Test Selection Algorithm’ to work for every
product at the company and not just for the one tested while developing.

3.3 Testing

For the TestTracker-Jira connection tests were made to verify all the issue tickets
are getting added by the code and the correct matches were made. To test this
all commits and test cases gathered were checked manually by the authors of
this thesis to make sure the code collected every issue from the commit messages
and that no potential matches were missed. To test the keyword extraction, the
keywords generated were compared to the text they were extracted from to make
sure they were relevant and that the prioritization looked reasonable. The test
case selection from both methods is evaluated more thoroughly in the evaluation
process.

3.4 Evaluation

Since the manual test selection today is based mostly on the experience and opin-
ions of the test leaders it’s difficult to determine if the "test selection algorithm"
is making the correct selections. Therefor the evaluation has to be made in coop-
eration with test leaders. To evaluate the selections an overview of the commits
along with all relevant information and selected test cases is made. The overview
will be used to compare the "test selection algorithm’s" selections to the selections
of the test leaders. This method can also be used to gather statistics and measure
accuracy.

Another way to evaluate the "test selection algorithm" is by comparing results
to previous test runs. By selecting a test run and running the "test selection
algorithm" for all risky commits* that happened in the two weeks prior to the test
run a comparison between the test cases selected and the test cases in the test
run can be made. This evaluation method was tried with selecting the top 10, top
5, top 3, and top 1 ranked test cases for each commit to see which one was the
most accurate compared to the actual test runs chosen by the test leader. These
evaluation runs were tried with both methods separately and together.

14 Method

*Risky Commit - A code change that have a risk of introduced errors or a risk of
regression.

3.5 Communication and work process

Since the majority of work is conducted in Axis office most of the communication
is in person but Microsoft Teams is also used for different meetings, interviews,
and to quickly send information back and forth. The work process is planned each
week

3.6 Information evaluation

The referenced sources are trusted published scientific literature, technical tools
and theses published at universities.

"Unsupervised predictions of software faults using change metrics"[1] and "Test
Case Selection Based on Code Changes"[2] are both theses published at universities
in the last year. Both are written by students and are meant for students with the
same level of knowledge.

"Code coverage-based Regression test selection and prioritization in WebKit"[3],
"A refactoring-based approach for test case selection and prioritization"[4], "Au-
tomated Test Case Selection Using Feature Model: An Industrial Case Study"[5]
and "Automatic Text Summarization and Keyword Extraction using Natural Lan-
guage Processing"|7] are all published at different international conferences. They
are all written by specialists and experts on the topics and the works are meant
for academics and professionals.

"Test Case Selection and Prioritization Using Machine Learning: A Systematic
Literature Review"[6] is a literature review published at University of Ottawa.
It’s written by students and is meant for students with similar level of knowl-
edge.

Chapter 4

Analysis

4.1 Evaluation results

The first test run compared(Table 4.1) consisted of 54 test cases where the "test
selection algorithm" was tried in a few different ways. Starting with selecting only
the highest ranked test case for each commit, then selecting the 3 highest ranked
moving on to 5 and later 10. No TestTracker-Jira connections were found for this
comparison.

Table 4.1: Table of first test run comparison.

First test run comparison

Tests/commit Test cases found | Correct test cases | Test cases in run
1 21 13 54
3 41 23 54
5 58 34 54
10 78 54 54

Since the most accurate method found too many test cases for a single run another
method was tested. Adding together the relevancy score for every single test case
and using the 54 highest since the run consisted of 54. This method was more
successful having 40 out of the 54 selected test cases correct. Usually a single test
run consist of 30-40 test cases so more test runs had to be compared.

The second test run comparison(Table 4.2) didn’t find any TestTracker-Jira con-
nections either. Using the method of adding all scores together and keeping the 43
highest ranked test cases for this run found 23 correct out of the 43 chosen.

The third test run comparison(Table 4.3) didn’t find any TestTracker-Jira connec-
tions either. Using the method of adding all scores together and keeping the 40
highest ranked test cases for this run found 16 correct out of the 40 chosen.

15

16 Analysis

Table 4.2: Table of the second test run comparison.

Second test run comparison
Tests/commit Test cases found | Correct test cases | Test cases in run
1 8 4 43
3 23 12 43
5 34 17 43
10 53 29 43

Table 4.3: Table of the third test run comparison.

Third test run comparison

Tests/commit Test cases found | Correct test cases | Test cases in run
1 12 6 40
3 32 16 40
5 45 19 40
10 64 27 40
4.2 Choices

In this section the different choices made for developing the *Test Selection Algo-
rithm’ are discussed.

4.2.1 Two solutions

As stated in section 3.2.1, after a closer inspection of the different tools it was
revealed that some comments from the test-run results in TestTracker and some
commit messages from Gitlab or Gerrit referenced the same Jira-Issue. Logically,
if a test case finds an issue and a commit claims to solve that issue, it would make
sense to run the same test case again. This was the idea behind the TestTracker-
Jira part of the "Test Selection Algorithm’. However, while this method is accurate
in selecting test cases, it demands that developers always reference Jira-Issues when
committing.

Since the TestTracker-Jira solution only covers commits with a Jira-Issue refer-
ence, it was decided to implement a second method for selecting test cases. This
method makes use of text-analysis and keyword extraction, as described in section
3.2.2.

4.2.2 Tools and languages

The ’Test Selection Algorithm’ was developed in Python. [17] The decision to
write the algorithm in Python was made because Python is one of the preferred
languages at Axis and the 'Risk Prediction Algorithm’ was written in Python
as well. When developing the Keyword Extraction part of the 'Test Selection
Algorithm’ two different libraries were tested, RAKE (see section 2.2.7) and YAKE

Analysis 17

(section 2.2.9). It was decided to continue developing the algorithm with RAKE
since the keywords yielded from the library were more relevant than those of
YAKE. When the functionality of the algorithm had been implemented it was
decided to visualize the result using DASH (see section 2.2.10). DASH was chosen
because it has all the features needed to display the results and the 'Risk Prediction
Algorithm’ uses DASH as well.

423 Filters

When manually inspecting the commits gathered from the ’Risk Prediction Algo-
rithm’ it was discovered that some commits were only made for testing purposes
and did not add or remove any functionality. A discussion with the test leader led
to a decision being made that those type of commits could be filtered out and not
be included in the "Test Selection Algorithm’.

The resulting keywords from the RAKE library are given a score between 1 and
10. A higher score means that the keyword is of higher relevance. It was decided
to remove every keyword that had a score lower than 4.0 since those keywords
were irrelevant.

4.3 Problems and solutions

The first problem encountered while developing the TestTracker-Jira connection
was that not every commit-message contained a specified Jira-Ticket. However
since the keyword solution covers these commits as well the "test selection algo-
rithm" can still find relevant test cases for these commits. This issue can also be
solved by developers writing more detailed commit-messages and always including
the specified Jira-Ticket the commit is solving.

Another issue encountered during development was commit-messages containing
multiple Jira-Tickets. This was an oversight from the thesis workers part but was
easily solved by changing the "test selection algorithm" to work with multiple
Jira-Tickets for every commit. This also helped improve the TestTracker-Jira
connection since the algorithm now found more matching Jira-Tickets.

While testing and evaluating the TestTracker-Jira part of the algorithm, there were
not enough matches to be a proper solution. By looking closer at the Tickets in
Jira, it was discovered that the Tickets had a field for 'Related Tickets’. The related
Tickets are Tickets that have reported the same or similar bugs, problems or tasks.
By taking the related Tickets into account in the algorithm, more matches could
be made. However, the amount of matches were still not enough. To solve this, it
would be required for developers to include a reference to Jira Tickets.

18

Analysis

Chapter 5

Result

5.1 TestTracker-Jira connection

The TestTracker-Jira connection solution, as described in section 3.2.1, fetches
all relevant information from Axis own platform TestTracker. This information
includes test-runs, results from the test-runs and the different test-cases performed
in the test-run. See table 5.1 for the information gathered from each test run. The
results from the test-runs includes whether or not the test-cases passed or failed
and a comment. The comments that contains a reference to a ticket in Jira are used
to match test-cases to commits that solves the tickets. The information gathered
from Gerrit and GitLab seen in table 5.2 are used to match the commits with the
test cases. See figure 5.1 for a full representation of how the method works.

Table 5.1: Table showing an example of data gathered from a Test-
Tracker test-run.

TestTracker Test-run Example
Test Case Status Comment
Test 1 Passed No comment
Test 2 Failed Jira Issue A
Test 3 Failed Jira Issue B
Test 4 Passed No comment

If a connection between a test-case and commit can be made, the algorithm
presents the title of the test-case together with in which test-run it was performed.
The algorithm also presents the commit that solves the ticket and which ticket that
was reported and solved. See table 5.3 for TestTracker/Jira results.

As evident in the evaluation results (see section 4.1) the TestTracker-Jira connec-
tion only works if developers references a Jira ticket in the commit message which
is not the case for the most part. The functionality behind the method works and
the suggested test cases from the solution are accurate. This is backed up by the

19

20

Result

TestTracker/Jira - Connection

[Test Run 1 ‘

Test case 1 - Reported issue 1
Test case 2 - Reported issue 2

v

‘ Jira Issues ‘

Issue 2

1
[|

‘ Issue 1

GitLab ‘ [Gerrit

LCommit 1 - Solves Issue 1 ‘ LCommit 2 - Solves Issue 2

.

Generated Test Run l

Test case 1 - Run again
Test case 2 - Run again

Figure 5.1: Visual presentation of the TestTracker/Jira connection.

Table 5.2: Table showing an example of data gathered from Gerrit

and GitLab.
Gerrit and GitLab Example
Commit-1D Jira-Issue Message
Commit 1 Jira A, Jira B Message
Commit 2 Jira C Message
Commit 3 No Jira Message
Commit 4 No Jira Message

Result 21

Table 5.3: Table showing an example of the resulting list from the
TestTracker/Jira Connection.

TestTracker /Jira Connection Result
Commit-ID Jira-Issue Test Case
Commit 1 Jira A, Jira B Test 2, Test 3
Commit 2 Jira C No Connection
Commit 3 No Jira No Connection
Commit 4 No Jira No Connection

testing of the method (see section 3.3). In order for the TestTracker-Jira connec-
tion to work, it would require developers to reference Jira tickets in the commit
messages and for the test team to report Jira tickets during test-runs.

5.2 Text-analysis and Keyword extraction

The solution using text analysis and keyword extraction (see section 3.2.2) fetches
the commit messages for all commits used in the algorithm. The commits are
gathered from the 'Risk Prediction Algorithm’. The commit messages are then
run through RAKE (see section 2.2.7) and keywords from the message are ex-
tracted. The keywords are then used to match the commit to the test-cases via
SequenceMatcher (see section 2.2.8). After running the keywords through Se-
quenceMatcher, a value is given to every test-case. The higher the value, the more
relevant the test-case is to the commit. See figure 5.2 for a representation of the
method.

The ’Test Selection Algorithm’ presents the commits paired together with the
values given for each test-case as seen in table 5.4. It also presents the total
ranking for all selected test cases as seen in table 5.5. The user of the algorithm
can determine how many test-cases per commit that shall be presented via the
configuration file.

Table 5.4: Table showing an example of the results for a specific

commit.
Single Commit Results
Ranking Test Case Value
1 Test 8 7.0
2 Test 5 5.5
3 Test 12 3.2
4 Test 23 1.8

As evident in the evaluation results (section 4.1), around 10 test cases per commit
yields the most correct suggestions. However, it also suggests more test cases than
what is usually included in a test-run.

22

Result

Keyword Extraction - Text Analysis

[GitLab ‘ { Gerrit ‘
{Commitx ‘ {CommitY ‘

Commit X Message Commit Y Message

RAKE
Keyword
Extractor

Extracted Keywords

SequenceMatcher TestTracker
Match Keywords to
Test Cases Test Cases

Test Run ‘

{ Suggested Test Cases ‘

Figure 5.2: Visual representation of the keyword extraction and text
analysis.

Result

23

Table 5.5: Table showing an example of the total ranking for all test

cases.
Total Ranking Results
Ranking Test Case Value
1 Test b 35.0
2 Test 2 25.5
3 Test 42 23.2
4 Test 19 21.8

5.3 DASH - Data visualisation

After the ’Test Selection Algorithm’ has been run, a web browser is opened in
which the results from the algorithm is presented. The user can view a ranking
of the most suggested test cases (see figure 5.3) as well as view suggestions for

each individual commit.

When viewing suggestions for an individual commit,

the commit-id and a link to the commit are displayed. A table consisting of the
suggested test cases for the commit is also displayed, see figure 5.4.

If any TestTracker-Jira matches were made, these can be viewed as well (see figure
5.5). Figure 5.6 shows a visual representation of how the final tool works together

with DASH to gather, match and display all results.

The most suggested testcases - Higher value means higher suggestion rate

Testcase

.
Rankings
Index
1 TEST 31
2 TEST 2
3 TEST 14
4 TEST 48
o] TEST 30
6 TEST 41
7 TEST 12
8 TEST 18
9 TEST 42
10 TEST 32
11 TEST 31
12 TEST 8
13 TEST 20
14 TEST 13
15 TEST 45
16 TEST 52
17 TEST 48
18 TEST 26
19 TEST 5
20 TEST 1

Value
8.03057012614204
8.106095319772372
7.807981111304933
7.871820448006674
6.2129753960870815
6.123111301140443
5.7568558740250575
5.636468413570122
5.300843438940800
4.958025993405274
4.683276940450017
4.662354470578154
4.619708582392351
4.409884621736679
4.473407359260492
4.424019306473895
4.413217139691426
4.201452509330999
3.0028799504170193
3.724789903904479

Figure 5.3: Page for viewing total ranking.

24

Result

SUGGESTIONS FOR SINGLE COMMIT

COMMIT 8

Link to commit

TESTCASE VALUE

TEST 16 2.2994367456884044
TEST 42 2.1971895703707696
TEST 200 2.0987932115165235
TEST 39 2.0842938139243925
TEST 48 2.0622194555132167
TEST 49 2.054761201453004
TEST 43 2.05379852865701
TEST 35 2.047108034315812
TEST 41 2.0375649809204663
TEST 500 2.017474861855637

Figure 5.4: Page for viewing a single commit.

TestTracker - Jira Matches

Connections between TestTracker and Jira:

TESTCASE COMMIT PACKAGETICKET LINK
TEST 8 COMMIT 12 package 5133 Link to JIRA
TEST 23 COMMIT 5 package 8222 Link to JIRA
TEST 7 COMMIT 11 package 6957 Link to JIRA
TEST 4 COMMIT 16 package 5247 Link to JIRA

Figure 5.5: Page for viewing TestTracker - Jira matches.

Result

25

Gerrit GitLab Jira.

TestTracker

TestTracker/Jira
Connection

DASH

Text analysis
and keyword
extraction

.

v

|

TestTracker/Jira matches

Commit-Test Case Ranking

Total Ranking

Commit-ID |Jira—|ssue|Test—Case

Ranking ‘Test—Case| Value

Ranking‘Test—Case| value

Figure 5.6: Visual representation of the final "test selection algo-

rithm".

26

Result

Chapter 6

Conclusion

6.1 Summary

The result of this thesis is an algorithm that automatically suggests test cases
based on recent code changes and the risk of introduced errors or regression. The
algorithm contains two methods for suggesting test cases. The first method, the
TestTracker-Jira connection, draws a direct connection between the test-case that
reported an issue or bug and the commit that solved it. This method yields
the most accurate suggestions but demands that developers and testers always
references Jira tickets.

The second method makes use of text analysis and keyword extraction and sug-
gests test cases based on the keywords extracted from commit messages. This
method yields less accurate suggestions compared to the first method, but it does
not require developers to always include references to Jira tickets. In order for
this method to work correctly and accurately, the commit messages have to be
descriptive enough to extract accurate keywords.

The algorithm opens a graphical user interface in a web browser where the QA
test leader can view rankings of the test cases as well as suggestions for individual
commits.

Since the test cases that are run are mostly based on the experience and knowledge
of the QA test leader, it is hard to determine how accurate the suggestions from
the ’Test Selection Algorithm’ are. The algorithm suggests test cases based on
direct connections between test cases and commits or the commit messages but
in the end it is the QA test leader that selects which test cases that shall be run.
Therefor, the algorithm solely gives suggestions and the test leader can then choose
which of the suggestions that should be included.

The purpose of this thesis (see section 1.2) was to research if the development
process at Axis Communications can be improved by partly automating the testing
process. The ’Test Selection Algorithm’ fulfills this purpose by helping the QA
test leader select test cases that shall be included in test-runs.

27

28

Conclusion

6.1.1 Research Questions

This section answers the research questions stated in section 1.4.

How are the test leaders at Axis currently selecting the test cases?

The test leaders at Axis are currently selecting test cases mostly based on
experience and prior knowledge as well as ’gut feeling’.

How does the risk prediction algorithm work?

The 'Risk Prediction Algorithm’ is a machine-learning algorithm that de-
picts whether or not commits are considered prone to introduce errors or
have a risk of regression. The algorithm has a number of features to de-
termine if a commit are risky, examples of these features are lines of code
added or deleted and number of commits per file.

How are code changes going to be analyzed and matched to test cases in the
test selection algorithm?

The "Test Selection Algorithm’ matches test cases to code changes via two
methods. The first with a direct connection between test cases that reported
an issue and commits that solved the issue. The second method uses text
analysis and extracts keywords from the commit messages and matches them
to test cases.

Will text analysis be used in the test selection algorithm?

Text analysis was used in developing the second method for matching test
cases to commits.

Can commits and tests be categorized to help the development of the test
selection algorithm?

Although categorization was not used in the "Test Selection Algorithm’, it
is listed as a potential further development, see section 6.3.5.

Can machine learning be used in the test selection algorithm?
Machine-learning was not used in the 'Test Selection Algorithm’ but is listed
as a potential further development, see section 6.3.2.

How will the prototype of the test selection algorithm be evaluated?

The "Test Selection Algorithm’ was evaluated by comparing the resulting
suggestions to prior test-runs. The algorithm was also evaluated by dis-
cussing the results with the QA test leader in order to determine if the
suggestions were reasonable enough to use.

6.2 Ethical reflection

This section discusses ethical aspects that this thesis may apply to.

Conclusion 29

6.2.1 Confidential Information

The ’Test Selection Algorithm’ is a new initiative for the New Business QA de-
partment at Axis Communications. Since the algorithm is applied to products not
yet out on the market, it is of great importance that confidential information is
not leaked. For this reason, it is important that any code snippets, screenshots or
images used in this thesis, whether it is for the report, poster or presentation, do
not contain information that is deemed confidential.

6.2.2 Societal benefit

Axis Communications offers network solutions in the domain of physical security.
In order for the security to be effective, it has to be reliable. Quality Assurance
helps ensure that the products that Axis offer are reliable and up to quality. The
process of Quality Assurance includes running tests on the products. However,
time and resources are limited and the test-cases needs to be prioritized. The
"Test Selection Algorithm’ improves the Quality Assurance process by suggesting
test-cases that shall be run and overall speeding up the process. This leads to an
improved Quality Assurance which in turn leads to more reliable products. As
stated, reliability is of great importance when offering solutions within physical
security.

6.3 Future development opportunities

6.3.1 Area of use

While the 'Test Selection Algorithm’ was developed for a specific product of Axis
Communications, it is adaptable. The algorithm contains a configuration file where
the user can determine which product or project the algorithm should apply to and
from which source-code repositories the commits are gathered from. While this
makes the algorithm adaptable, it is only available for the projects and products at
Axis Communications since the platform for fetching the test cases is an in-house
platform. The algorithm could possibly be developed further to be applicable to
a more general project and select test cases from a variety of sources.

6.3.2 Machine Learning

One of the research questions in section 1.4 states: "Can machine learning be used
in the Test Selection Algorithm?". While machine learning was not used in the
finished algorithm, it is worth bringing up as a potential further development and
perhaps even an improvement.

6.3.3 Heat map

The QA team at Axis Communications is using a heat map over which area the
recent code changes may affect. The 'Test Selection Algorithm’ could possibly
incorporate this heat map to further suggest accurate test cases.

30 Conclusion

6.3.4 Code packages

Filip Normanns thesis about 'Test Case Selection based on Code Changes’ de-
scribes a similar algorithm to the 'Test Selection Algorithm’. Normanns algorithm
levaraged code dependencies for selecting test cases. [2]

Although the "Test Selection Algorithm’ has a different approach, including the
packages in which the commit is made and making use of code dependencies, could
potentially be a further development opportunity.

6.3.5 Categorization

Categorization of the commits could potentially help with selecting relevant test
cases. An example of categorization could be that commits are categorized by the
area of code the commit may affect. By doing this, it could be combined with the
use of the heatmap (section 6.3.3).

Chapter 7

Terminology

This chapter lists and explains terms and shortenings used in this thesis.

7.1

Terms and shortenings
Commit - The latest change of source code in a repository.
Commit-id - A hash-encrypted identification number for a commit.

Commit message - A descriptive message from the developer that made the
code change.

Heat map - Heat map is a data visualization technique where the data is
represented as colors. The color variation can depict intensity or affected
areas.

Regression - Regression or software regression is a software bug where new
changes makes previously working code stop working and you have to revert
back.

Repository - In Software version control systems, a repository is a storage
location for software packages and source code.

Quality Assurance (QA) - Quality Assurance is a way of preventing mistakes
and defects when delivering products to customers.

31

32

Terminology

References

[1] Oskar Holmqvist, and Elias Tedenvall, Unsupervised predictions of soft-
ware faults using change metrics, https://www.lunduniversity.lu.se/
lup/publication/9066702

[2] Filip Normann, Test Case Selection Based on Code Changes, https://uu.
diva-portal.org/smash/get/diva2:1371200/FULLTEXTO1 . pdf

[3] Arpad Beszédes, Tamas Gergely, Lajos Schrettner, Judit Jasz, Laszlo Lango,
Tibor Gyiméthy, Code coverage-based Regression test selection and prior-
itization in WebKit, https://ieeexplore-ieee-org.ludwig.lub.lu.se/
stamp/stamp. jsp?tp=&arnumber=6405252&isnumber=6404866

[4] Everton L.G. Alves, Patricia D.L. Machado, Tiago Massoni, Samuel T.C.
Santos, A refactoring-based approach for test case selection and prioriti-
zation, https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=
6595798&1isnumber=6595779

[5] Shuai Wang, Arnaud Gotlieb, Shaukat Ali, Marius Liaaen, Automated Test
Case Selection Using Feature Model: An Industrial Case Study, https://
doi.org/10.1007/978-3-642-41533-3_15

[6] Rongqi Pan, Mojtaba Bagherzadeh, Taher A. Ghaleb, Lionel Briand, Test
Case Selection and Prioritization Using Machine Learning: A Systematic
Literature Review, https://arxiv.org/abs/2106.13891

[7] Avinash Payak, Saurabh Rai, Kanishka Shrivastava, Reshma Gulwani,
Automatic Text Summarization and Keyword FExtraction wusing Natural
Language Processing https://ieeexplore-ieee-org.ludwig.lub.lu.se/
stamp/stamp. jsp?tp=&arnumber=9155852&isnumber=9155547

[8] Atlassian, Jira Software development tool https://www.atlassian.com/
software/jira/features

[9] Gitlab, Gitlab DevOps Platform https://about.gitlab.com/

[10] Gerrit, Gerrit Code Review https://wuw.gerritcodereview.com/

33

34 References

[11] Postman, Postman API Platform https://wuw.postman.com/product/
what-is-postman/

[12] RAKE, Rapid Automatic Keyword Extraction https://pypi.org/project/
rake-nltk/

[13] Python SequenceMatcher, SequenceMatcher https://docs.python.org/3/
library/difflib.html

[14] Ricardo Campos, Vitor Mangaravite, Arian Pasquali, Alipio M. Jorge, Célia
Nunes, Adam Jatowt, YAKE! - Yet Another Keyword Extractor https://
pypi.org/project/yake/

[15] Plotly, DASH https://plotly.com/dash/
[16] Annika Lantz, intervjumetodik, 2013
[17] Python Software Foundation, Python, https://www.python.org/about/

UNIVERSITY

Series of Bachelor’s theses
Department of Electrical and Information Technology
LU/LTH-EIT 2022-879
http://www.eit.Ith.se

7207 punt 19sny-3 1 19182411 Aq patulid

