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Abstract

This thesis project implements a virtual environment that emulates an em-
bedded Electronic Control Unit (ECU) with a dual CPU in Quick EMUlator
(QEMU). Hardware rigs are an expensive and time-consuming bottleneck in the
development process. To obtain an edge over rig hardware, we need to execute
software verification, which allows us to improve performance without compro-
mising hardware. Emulation technology reduces the need for physical hardware
and makes embedded software testing easier in the early stages of embedded
software development. QEMU, an open-source emulator for several processors,
is used to emulate one of two ARM CPUs on Linux Yocto and another CPU
running on the AUTOSAR. Finally, the target Telematic Gateway Software
(TGW3-SW) should run with the dual CPU emulated ecosystem.
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Popular Science
Summary

Electronic Control Units (ECUs) are essential components in modern vehicles,
responsible for controlling and managing various systems such as the engine,
transmission, and brakes. In the past, ECUs were mechanically implemented,
but in the 1980s there was a shift toward electronic control. The first attempt
to create an entirely electronic ECU was made by Intel and Ford, who named
it the Electronic Engine Control (EEC) [1].

As technology has advanced, digital systems have become the norm for ECUs
due to their improved performance and ease of manipulation. However, the
increasing complexity of ECU software programs has made it more challenging
to efficiently test and verify their functionality. This is where the concept of
emulation comes in. Emulation refers to the ability to replicate the behavior of
a program on another computer, using virtual machines to run any operating
system or program on the current platform [3].

This thesis project aims to address this challenge by implementing a virtual
environment that emulates an ECU with a dual CPU using the open-source
Quick EMUlator (QEMU) software. By emulating one of two ARM CPUs on
Linux Yocto and another CPU running on the AUTOSAR, the project aims to
create a more efficient and effective way to test and verify AUTOSAR-based
ECU software applications that are still in development. The ultimate goal is
to run the target Telematic Gateway Software (TGW3-SW) with the dual CPU
emulated ecosystem.
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Nomenclature

AUTOSAR AUTomotive Open System ARchitecture

ECU Electronic Control Unit

QEMU Quick EMUlator

TGW Telematic Gateway

CPU Central Processing Unit

SW Software

ACPU Application CPU

API Application Programming Interface

BSW Basic Software

CAN Control Area Network

CDD Complex Device Drivers

DDR Double Data Rate

EEC Electronic Engine Control

GCC GNU Compiler Collection

HSEM Hardware Semaphore

HW Hardware

ICC Inter CPU communication

IRQ Interrupt Request

MCAL Microcontroller Abstraction Layer

MCU Microcontroller Unit

MMIO Memory-Mapped Input/Output

MMU Memory Management Unit

MPU Memory Protection Unit

MSW Main Software

OCP On-board Connectivity Platform
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OS Operating System

QOM QEMU Object Model

RAM Random Access Memory

SDK Software Development Kit

SOC System-On-Chip

SRAM Static Random Access Memory

V CPU Vehicle CPU

VM Virtual Machine
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Chapter 1

Introduction

This chapter contains a synopsis of the thesis project’s content. It starts with a
brief history of Electronic Control Unit (ECU) development, and an outline of
the thesis follows the project description.

1.1 Background

Historically, all control mechanisms in a typical vehicle were mechanically im-
plemented. During the 1980s, there was a significant shift toward electronic
control, with Intel and Ford making the first combined attempt to create the
first entirely electronic control unit, which they named Electronic Engine Con-
trol (EEC) (now known as ECU). This ECU was built around a customized
version of the Intel 8061 CPU family. It’s noteworthy how 8061 and its descen-
dants served as the foundation for nearly all Ford ECUs until 2000 [1]. Because
analog circuits are not clock-speed dependent, they were used in early ECUs.
Before the final move to purely digital circuitry ECU systems around 1987, there
was a temporary conversion to hybrid ECU systems, which included analog and
digital logic.

The analog-to-digital transition occurred because it corresponded with the mo-
ment when digital devices were fast enough to process data and respond in
real-time[2]. As ECU technology advanced, digital systems demonstrated im-
proved performance and ease of manipulation. Nonetheless, the revolution in
automotive electronics has resulted in a massive increase in ECU software pro-
grams developed to execute critical vehicle operations[3].

In terms of growth, software verification would give us an advantage over rig
hardware because virtual rigs are easy to implement. Virtual rigs can be quickly
scaled and maintained compared to HW rigs, which are more challenging to
scale and maintain. Early integration on real hardware before implementing the
target is an advantage of SW verification. Emulators and emulation will test
the design with the actual input data in a simulated environment. Emulation
refers to the ability to replicate the behavior of a program on another computer.
Using virtual machines, the emulator will enable us to run any operating system
or program on the current platform.
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For the thesis, QEMU was chosen since Volvo had already done some important
foreground work on this project, which made it possible to get started on the
thesis. In the following chapters, we’ll take a look at how the chosen method
fits into the overall development and testing process.

1.2 Problem Description

By creating a friendly environment for AUTOSAR application developers, the
process of integrating ECU modules was accelerated. As a result, a more fre-
quent and precise testing environment was required to demonstrate the prop-
erties of the target hardware platform. Given that all ECU applications are
hardware-dependent, the ideal situation would be to equip each designer with
a real board so that they could download and test the application while it was
still in development.

The project aims to simplify the testing and verify AUTOSAR based ECU soft-
ware applications that are still in development. Because the desired hardware
is frequently a limited resource by nature, and sometimes it is even being devel-
oped at the same time, a lack of proper testing creates a risky situation. This
will be addressed by the development of a verification platform, which will help
decrease the risks and costs of producing new ECU software by invoking the
target hardware board for testing only at the end of the process. This plat-
form is a Virtual Machine (VM) that runs AUTOSAR OS on top of a Linux
distribution[3].

1.3 Virtualization

Virtualization creates an abstraction layer over the computer hardware using
software that permits the hardware elements of the computer components, like
processors, memory, storage, and more, to be divided into multiple virtual com-
puters, mainly referred to as virtual machines (VMs). A VM runs its required
operating system and stands as an independent computer, although it utilizes
just a portion of the particular underlying hardware. A hypervisor, a software
layer, will help interact with the VMs. It acts as a communication interface
between a VM and the underlying physical hardware and ensures access to the
correct physical resources a VM has to execute. It even ensures that the present
VMs don’t interfere by affecting each other’s memory space or compute cycles.
There are two kinds of hypervisors:

Type 1: Hypervisors interact directly with the underlying physical resources,
replacing the typical operating system.

Type 2: This type runs as an application on an existing OS. This type is mainly
used on endpoint devices to run another OS. They must use the host OS to
access and coordinate with the underlying hardware resources; they carry a
performance overhead [4].
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Figure 1.1: Hypervisor Types

This thesis project will try and emulate the vehicle CPU (VCPU) using the type
2 hypervisor, while the application CPU (ACPU) is already emulated within the
virtual machine.

1.4 Project Goal

The project aims to emulate a dual CPU for an embedded ECU to speed up the
SW verification. It should be able to run and be tested in a virtual environment.
Build a platform that allows AUTOSAR and Linux to cohabit. The result would
be a Linux C-based platform running an AUTOSAR application in a Linux OS
environment.

1.5 Outline

This thesis work is categorized into 6 chapters.

Chapter 1: Introduction, provides an insight into the problems, how this study
is relevant to the problem, and an outline about the target system

Chapter 2: Theory, explains the theory behind Operating System, Qemu, and
AUTOSAR.

Chapter 3: Architecture, discusses the architecture of TGW3 and the memory
map of Cortex-M3.

Chapter 4: Implementation, discusses the environment setup, workflow of QEMU
and VCPU on QEMU.

Chapter 5: Results and Discussion, discusses the implementation results and
experiences of testing the embedded platform to boot up in the emulated envi-
ronment

Chapter 6: Conclusion, presents the final analysis and the future plans regarding
the study
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Chapter 2

Theory

This chapter gives insight into various topics relevant to this Master’s thesis. Its
goal is to lay the theoretical groundwork for the project’s work and thoroughly
investigate relevant basics in order to provide a complete view of the topics
covered in this report.

We began by providing a general explanation of operating systems, illustrat-
ing various categories relevant to our project, such as embedded OS. Next, we
discuss QEMU followed by the AUTOSAR OS functionality.

2.1 Operating Systems

A computer’s operating system is a set of software components designed to
manage the machine’s hardware. Historically, the most well-known operating
systems have been Microsoft Windows, UNIX-based (Uniplexed Information
and Computing Service) distributions (e.g., Linux, Ubuntu, and Macintosh OS
X). Because these three alternatives have served as the foundation for the vast
majority of personal computers and mobile devices ever used, consumers engage
with at least one of them daily.

Figure 2.1 demonstrates the architecture of the general concept behind an op-
erating system. The illustrated architecture includes an application layer with
service programs that control alarms and tasks, shared libraries, and a kernel.
The kernel is an operating system layer that handles resource allocation (such as
hardware access) for a computer system. The kernel is in charge of preventing
various user and system applications from accessing restricted memory locations
[5].

The hardware sits beneath the software, and its purpose is to execute the soft-
ware instructions in the programs, libraries, and operating system. The major
components are the CPU, which executes the instructions. It does, however,
have immediate access to a limited number of extremely fast memory regions
known as registers. We require main memory, which has a large amount of much
slower data storage, to store vast amounts of data while a program is running,
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which holds the machine instructions for the programs currently running and
the data they are consuming.

The CPU and main memory are linked to the system’s peripheral devices, in-
cluding I/O devices like keyboards and displays, network interfaces, hard disks,
etc. Main memory is typically a hundred times slower than the CPU, and
peripheral devices are thousands of times slower.

The hardware is interconnected by a network of busses that transport data
between hardware components, machine instructions, and other control signals
[6].

Figure 2.1: OS software architecture layout

2.2 QEMU

Quick EMUlator (QEMU) is a hypervisor that performs hardware virtualization
[7]. QEMU is an open-source project started by Fabrice Bellard. The most
common architectures for the QEMU emulation are ARM, x86, PowerPC, and
Sparc. More specifically, it is a Type 2 hypervisor, as stated above.

QEMU supports two different modes of operation, namely, user-mode emula-
tion and full-system emulation. QEMU supports user-mode emulation to run a
Linux process compiled for one target CPU on another CPU. User-mode emu-
lation is just a subset of full-system emulation at the CPU level. There is no
MMU simulation because QEMU supposes that the host OS handles the mem-
ory mappings. QEMU includes a generic Linux system call converter to address
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endianness issues and 32/64-bit conversions. QEMU accurately emulates the
target signals due to its exception support. Each target thread runs on one host
thread [8].

Full-system emulation, preferred during this thesis, emulates the entire com-
puter system, including peripherals. It can boot different guest operating sys-
tems; it supports emulating different instruction sets, including x86, MIPS,
32-bit ARMv7, ARMv8, and more. Specifically, this thesis focuses on the 32-bit
ARMv7 architecture as Cortex-M3 was one of the CPUs.

Emulating the guest instructions alone does not provide a full emulation. During
runtime, guest applications use the required peripheral registers on the embed-
ded device, and each register is mapped to a specific memory region. When
memory read and write requests are received, QEMU can intercept them and
forward them to the callbacks. It is possible to produce an IRQ or modify some
device registers in response to a request from the program. This might be useful
for providing feedback to the application[9].

There are many official and unofficial virtual machine implementations for QEMU,
but the lack of documentation is still an obstacle for new developers. The official
QEMU getting started guide for developers states the following: ”QEMU does
not have a high–level design description document—only the source code tells
the full story” [10]. The best way to understand how a virtual machine works
are by browsing through the source code and studying patches submitted by
other developers.

2.3 AUTOSAR

Automotive Open System Architecture(AUTOSAR) is an open automotive soft-
ware architecture; standardized jointly by automobile tool developers, manu-
facturers, and suppliers. The AUTOSAR-standard enables a component-based
software design model to design a vehicular system. The design model uses ap-
plication software components that link through an abstract component, named
the virtual function bus.

The standard layered layout of the AUTOSAR is divided into the following
layers:

- Application Layer.

- Runtime Environment (RTE).

- Basic Software (BSW).

- Microcontroller Unit (MCU).
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Figure 2.2: AUTOSAR software architecture

As shown in the Figure 2.2, the sub-layers are described in the following segment,
consisting of discrete components:

1. Application Layer: We place the created software components for the specific
functionality in this layer. In the same layer are the sensor/actuators software
components according to AUTOSAR standard [11].

2. Runtime Environment: This layer serves as a conduit for communication
between the application software and the outside world. [11]. Above the RTE,
the software architecture style changes from ”layered” to ”component style.”
The RTE allows the software components to communicate with one another
and with services [12] to call it middle-ware.

3. Basic Software: This layer is sub-divided into different layers, namely, a
Service Layer, an ECU Abstraction Layer, a Complex Device Drivers (CDD)
Layer, and a Microcontroller Abstraction Layer (MCAL). • The service layer
is the highest layer of the BSW which applies for its relevance for the appli-
cation software: while the ECU Abstraction layer covers access to I/O signals
[12].

• The ECU Abstraction layer interfaces the drivers of the next layer, which
is the Microcontroller Abstraction Layer. It also contains drivers for external
devices. It offers API for access to the peripherals and devices regardless of
their location and connection to the microcontroller [12].

• The Microcontroller Abstraction layer is the lowest software layer of the BSW.
It contains internal drivers, software modules with direct access to the micro-
controller and the internal peripherals [12].

4. Microcontroller Unit: It is the hardware layer of the ECU and communicates
with the AUTOSAR BSW through the MCAL and CDD.
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Chapter 3

Architecture

3.1 TGW3 Architecture

Figure 3.1: TGW3 Architecture (Source: Volvo)

As shown in the above Figure 3.1, the TGW3 is a multi-CPU solution, and the
architecture is divided into two modules. The first module is an Application
CPU, and the other one is Vehicle CPU. Both CPUs are connected via Inter
CPU communication. The Vehicle CPU is emulated on AUTOSAR OS via
QEMU, and the Application CPU is emulated on Linux OS via QEMU. The
Vehicle CPU and the Application CPU act as one Logical ECU; for example, a
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reset of the VCPU will cause a reset of the ACPU. The main aim is to emulate
both the CPUs in an OCP environment.

The main software (MSW) in the vehicle CPU is the core of the ECU. This
repository contains the whole binary image of the VCPU SW, which needs to be
emulated on QEMU. The VCPU SW is based on the MICROSAR, which Vector
Informatik developed and cloned into the MSW repository. The core software
modules of the MICROSAR packages are responsible for ensuring that the ECU
performs its essential functions. They contain the AUTOSAR standard services
implementations required for functional software to work correctly.

3.2 Memory Map of Cortex-M3

The memory of the Cortex-M3 is divided into sections, as shown in Figure
3.2

Figure 3.2: Memory Map of Cortex-M3 (Source: ARM Documentation)

The memory on the embedded platform is divided into sections, namely CODE,
SRAM, and the PERIPHERALS sections. The CODE section will be loaded by
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a binary file produced by the compilers. It contains the program sections that
will be executed during device operation. Also, any data saved into non-volatile
memory is held in the same file because that binary file is the exact mirror
of the static data stored in the code area. SRAM is the operating systems
program memory, which in QEMU is just a byte array. It is safe to assume that
the peripheral region is some message passing interface. For that reason, each’
read’ and’ write’ operations are processed by the emulator. The device memory
is mapped to these input and output actions.

As shown in Figure 3.2, the CODE region begins at 0x00000000, the SRAM area
begins at 0x20000000, and the PERIPHERAL region begins at 0x40000000. It
does not imply that entire R/W access to the peripheral region is permissible.
Attempting to access an incorrect register will result in a hardware exception.
In QEMU, developers can configure the valid address range and register R/W
call-backs for each peripheral.

If the device is unimplemented, an exception will be thrown on the virtual CPU
since it is invalid. The relevant parameters, such as the register offset and the
write value, are passed to the reading and write call-backs. The read function
returns a value instantly available in the virtual CPU.

Depending on the peripheral, a write operation may initiate a job or alter the
active configuration. Interrupts, for example, are deactivated and enabled using
a set of registers specific to each peripheral. We may learn about the interrupt
setup by reading the value from the interrupt registers. In addition, the guest
system can use write-only device registers to initiate and stop tasks.

The Interrupt Vector table, stack pointer, and reset handler must be present in
the start-up code, often known as boot code. Exception handlers are present
in the start-up code. In the Cortex-M3, memory alignment is done in words
(32 bits), and vector table interrupts are organized appropriately, starting at
0x0[13][14]. The Thumb instruction set was utilized, generally comprising 16
bit long (half word-aligned) instructions and a few 32-bit long ones [15]. The
developer can pick between ARM and Thumb for the instruction set format,
although only one design can be active at a time. The supportive scripts were
taken from the CMSIS git repository [16].

The linker program is the (.ld) script that links the application code with the
start-up code. The processor must leap to the application code from start-up,
and the processor must jump to the application code, which gets connected by
the linker script. The linker script converts the start-up and application code
to object files and links them together.

The linker script defines the System-On-Chip (SOC) memory layout, including
memory locations such as RAM and Flash with allotted memory space. The
vector table is stored in flash memory at the location 0x0. With the GNU
bin-utilities command, readelf -s/-S/-an filename.elf [15], the memory structure
and code location may be validated. The memory allocation and vector table
placement in the memory layout of the created elf are displayed by readelf -s/-
S/-an filename.elf command.
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Chapter 4

Implementation

This chapter provides a detailed explanation of how the project team worked,
detailing and summarizing the overall work structure. This begins with a de-
scription of the On-Board Connectivity Platform (OCP), which serves as the
project’s primary working platform. The tools that were utilized to accomplish
the desired results will be discussed in the section that follows. The final seg-
ment, which is organized in accordance with the iterations, discusses what we
did during the entire project.

4.1 Environment Setup

The OCP SW Development Environment is introduced in the following man-
ner:

The Ubuntu Linux operating system serves as the foundation for the develop-
ment of OCP applications. With the help of the following command, the OCP
Application SDK was installed on a VMware (virtual machine):

ocp-setup-client

The OCP Application SDK is used to develop the actual libraries and appli-
cations for OCP, which are then distributed to users. The TGW3 hardware
will eventually be equipped with the libraries, headers, and tools contained
within this package. By using this tool, OCP developers can cross-compile a
binary or library for the TGW3 (ARM) target hardware from their development
(virtual) machine. It also includes a QEMU emulator, which relieves OCP de-
velopers from the limits of hardware and allows them to debug applications
that have been cross-compiled for target hardware on target hardware that has
been emulated. Debugging an OCP application in the development environment
requires two virtualization layers. This will, of course, result in certain limita-
tions in terms of speed. Still, it will make it easier to verify many functional
requirements that do not require special hardware or severe time limits in their
verification.

In order to build OCP software, we use the Yocto SDK, C++14, and several
Linux-based tools, including CMake, Git, and gcc. Eclipse and CMake are used
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in the development of OCP software.

4.2 QEMU Build

The qemu-4.2.0 source files were cloned from the Github project into the vcpu -
on qemu repository. The vcpu on qemu repo contains the following:

vcpu_on_qemu

gcc-arm/

proj/

qemu-2.10/

qemu-4.2.0/

readme.txt

The gcc-arm directory holds the tools for compiling and linking the arm binary.
The gcc-arm-none-eabi-6-2017-q2-update toolchain was downloaded from the
arm developer website[12].

Proj: This folder holds test projects that can be built and run on QEMU using
the above toolchain.

Before adding the custom machine file to the QEMU, we need to build it from
the source to our required target. The commands for building the QEMU is as
follows:

# Install pixman

$ sudo apt-get install libpixman-1-dev

$ cd qemu-4.2.0

$ mkdir build

$ cd build

$ ../configure --disable-werror --enable-debug

--target-list="arm-softmmu"

$ make

4.3 ARM cortex-m3 binary in QEMU

The steps to run a ARM cortex-m3 binary in QEMU is as follows:

The proj/simple folder has two simple applications built and linked with GCC
tools: a hello world application and an application that tests that the systick is
working.

$ cd proj/simple
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The hello world.c is given in Figure 4.1

Figure 4.1: hello world.c

The following command is used to compile the application into binary or a
executable is:

$ ../../gcc-arm/gcc-arm-none-eabi-6-2017-q2-update/bin/

arm-none-eabi-gcc hello_world.c startup_ARMCM3.S

-mthumb -mcpu=cortex-m3

-D_start=main -Os -flto -ffunction-sections -fdata-sections

--specs=nano.specs --specs=rdimon.specs -Wl,--gc-sections

-Wl,-Map=main.map -T gcc.ld -o main.axf

Notes:

linker command − − specs = nano.specs, links against the reduced size nano-
libc

linker command −− specs = rdimon.specs links against semihosting libraries,
which enables some of the host i/o facilities like stdio for printf.

the linker command file gcc.ld, should locate FLASH at 0x0 and RAM at
0x20000000, which corresponds to the memory map of the cortex-m3 core.

4.3.1 Adding a Custom Machine to QEMU

The QEMU code-base is well-structured into specific folders. The main file
vl.c, where the initial QEMU application is located, is in the folder /qemu-
4.2.0. Processor architectures such as Alpha, ARM, i386, MIPS are emulated
and are present in the /qemu-4.2.0/hw directory. As discussed in this project,
the processor is the ARM Cortex-M3, and hence code for the custom machine
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should be placed in the /hw/arm folder. The same directory consists of emulated
hardware source codes. This folder also has a makefile.objs file containing the
list of source code file names that must be converted to architecture-specific
object files using obj-y. The ’y’ symbolizes using the architecture CONFIG -
ARM v7M, the default entry.

The supported machines in QEMU are:

akita Sharp SL-C1000 (Akita) PDA (PXA270)

ast2500-evb Aspeed AST2500 EVB (ARM1176)

ast2600-evb Aspeed AST2600 EVB (Cortex A7)

borzoi Sharp SL-C3100 (Borzoi) PDA (PXA270)

canon-a1100 Canon PowerShot A1100 IS

cheetah Palm Tungsten|E aka. Cheetah PDA (OMAP310)

collie Sharp SL-5500 (Collie) PDA (SA-1110)

connex Gumstix Connex (PXA255)

cubieboard cubietech cubieboard (Cortex-A9)

emcraft-sf2 SmartFusion2 SOM kit from Emcraft (M2S010)

highbank Calxeda Highbank (ECX-1000)

imx25-pdk ARM i.MX25 PDK board (ARM926)

integratorcp ARM Integrator/CP (ARM926EJ-S)

kzm ARM KZM Emulation Baseboard (ARM1136)

lm3s6965evb Stellaris LM3S6965EVB

lm3s811evb Stellaris LM3S811EVB

mainstone Mainstone II (PXA27x)

mcimx6ul-evk Freescale i.MX6UL Evaluation Kit (Cortex A7)

mcimx7d-sabre Freescale i.MX7 DUAL SABRE (Cortex A7)

microbit BBC micro:bit

midway Calxeda Midway (ECX-2000)

mps2-an385 ARM MPS2 with AN385 FPGA image for Cortex-M3

mps2-an505 ARM MPS2 with AN505 FPGA image for Cortex-M33

mps2-an511 ARM MPS2 with AN511 DesignStart FPGA image for Cortex-M3

mps2-an521 ARM MPS2 with AN521 FPGA image for dual Cortex-M33

musca-a ARM Musca-A board (dual Cortex-M33)

musca-b1 ARM Musca-B1 board (dual Cortex-M33)

musicpal Marvell 88w8618 / MusicPal (ARM926EJ-S)

n800 Nokia N800 tablet aka. RX-34 (OMAP2420)

n810 Nokia N810 tablet aka. RX-44 (OMAP2420)

netduino2 Netduino 2 Machine

none empty machine

nuri Samsung NURI board (Exynos4210)

palmetto-bmc OpenPOWER Palmetto BMC (ARM926EJ-S)

raspi2 Raspberry Pi 2

realview-eb ARM RealView Emulation Baseboard (ARM926EJ-S)

realview-eb-mpcore ARM RealView Emulation Baseboard (ARM11MPCore)

realview-pb-a8 ARM RealView Platform Baseboard for Cortex-A8

realview-pbx-a9 ARM RealView Platform Baseboard Explore for Cortex-A9

romulus-bmc OpenPOWER Romulus BMC (ARM1176)

sabrelite Freescale i.MX6 Quad SABRE Lite Board (Cortex A9)

smdkc210 Samsung SMDKC210 board (Exynos4210)

spitz Sharp SL-C3000 (Spitz) PDA (PXA270)

32



swift-bmc OpenPOWER Swift BMC (ARM1176)

sx1 Siemens SX1 (OMAP310) V2

sx1-v1 Siemens SX1 (OMAP310) V1

terrier Sharp SL-C3200 (Terrier) PDA (PXA270)

tosa Sharp SL-6000 (Tosa) PDA (PXA255)

verdex Gumstix Verdex (PXA270)

versatileab ARM Versatile/AB (ARM926EJ-S)

versatilepb ARM Versatile/PB (ARM926EJ-S)

vexpress-a15 ARM Versatile Express for Cortex-A15

vexpress-a9 ARM Versatile Express for Cortex-A9

virt-2.10 QEMU 2.10 ARM Virtual Machine

virt-2.11 QEMU 2.11 ARM Virtual Machine

virt-2.12 QEMU 2.12 ARM Virtual Machine

virt-2.6 QEMU 2.6 ARM Virtual Machine

virt-2.7 QEMU 2.7 ARM Virtual Machine

virt-2.8 QEMU 2.8 ARM Virtual Machine

virt-2.9 QEMU 2.9 ARM Virtual Machine

virt-3.0 QEMU 3.0 ARM Virtual Machine

virt-3.1 QEMU 3.1 ARM Virtual Machine

virt-4.0 QEMU 4.0 ARM Virtual Machine

virt-4.1 QEMU 4.1 ARM Virtual Machine

virt QEMU 4.2 ARM Virtual Machine (alias of virt-4.2)

virt-4.2 QEMU 4.2 ARM Virtual Machine

witherspoon-bmc OpenPOWER Witherspoon BMC (ARM1176)

xilinx-zynq-a9 Xilinx Zynq Platform Baseboard for Cortex-A9

z2 Zipit Z2 (PXA27x)

The implementation started by creating a dummy machine without a guest OS
by considering the start-up and linker scripts available on the CMSIS GitHub
page [16]. In the directory qemu-4.2.0/hw/arm, a simple machine was created
by ’mymachine.c’ with the RAM and Flash size of 1MB each by keeping the
TI Stellaris model as a reference. To define a new machine in QEMU, we need
to create QOM TypeInfo, associated with the MachineClass and MachineState
functions.

The TypeInfo :

DEFINE MACHINE (“mymachine”, my machine init)

Which generate the following code:
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Figure 4.2: Initialize the Machine

This will register a new machine class type for our mymachine. It is a basic
level of definition. In MachineClass, can define specific properties of the ma-
chine, such as the CPU model and, most significantly, the instance initialization
method my init. Once the class is specified, an object instance will be created.
The main features of our board implementation will be here.

Standard QEMU APIs

The abstraction methods used by QEMU APIs enable a very straightforward
approach to creating a custom machine. Within QEMU, several categories of
APIs are utilized for various reasons. A few QEMU APIs required for building
a custom machine are listed below.

• MemoryRegion: The memory API model aids the QEMU machine’s memory
and I/O buses and controllers. Ordinary RAM, memory-mapped I/O (MMIO),
and memory controllers are attempted to be modeled [17].

Types of regions represented by MemoryRegions:

RAM: A RAM region is essentially a portion of the host’s memory available to
the guest. Typically, memory region init ram() is used to initialize them[17].

MMIO: is a set of host callbacks that implement a range of guest memory; each
read or write triggers a callback on the host. In general, use memory region -
init io() to initialize them, supplying a MemoryRegionOps structure to describe
the callbacks[17].

Alias: A subregion of another region is referred to as an alias. A region can be
divided into discontiguous areas using aliases. Aliases can point to any location,
including other aliases, but they cannot, directly or indirectly, lead back to
themselves. memory region init alias() is used to set them up[17].

• qdev: qdev keeps track of the device tree, organized into a hierarchy of buses
and devices. As stated in the original commit, the assumption here is that it
should be feasible to build a machine without knowing about other individual
devices [18]. For board init processes to provide each device with a set of
arguments, the board must first determine which device it deals with. This file
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contains an abstract API for configuring and initializing devices. Machines will
inherit from a specific bus (e.g., I2C).

• QOM stands for QEMU Object Model [19][20], a framework for registering
user-created kinds. User-defined types can be created and instantiated with
QOM.

Some API groups fully utilize QEMU’s capabilities and reduce the developer’s
workload while programming sophisticated hardware.

The following Figure 4.3 will give the reader how the memory regions instanti-
ated.

Figure 4.3: Definition of MemoryRegions in Machine

The command-line to invoke the custom machine created in Linux is as fol-
lows:

gcc-arm/gcc-arm-none-eabi-6-2017-q2-update/bin/arm-none-eabi-gcc -g hello -
world.c Startup ARMCM3.S -mthumb -mcpu=cortex-m3 -D start=main -Os -
flto -ffunction-sections -fdata-sections –specs=nano.specs –specs=rdimon.specs
-Wl,–gc-sections -Wl,-Map=main.map -T mymachine.ld -o main.axf

The above command is used for compiling.

qemu-4.2.0/build/arm-softmmu/qemu-system-arm -M mymachine -cpu cortex-
m3 -kernel main.axf -monitor none -serial stdio -semihosting -nographic

From the above command, one can learn that the configuration was in a direc-
tory called ‘build.’ the -M flag gives the user to specify the machine which was
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added to emulate. The -cpu flag will let one select the CPU type and -kernel to
pass the required binary file, and the rest of the flags are to re-direct the con-
sole output of the QEMU onto the Linux terminal. Using the above commands,
QEMU executes the cortex-m3 binary main.axf.

4.4 VCPU on QEMU

Figure 4.4: VCPU on QEMU

Figure 4.4 shows the mechanism of how the emulation works. The functionality
of each module is as follows:

• The qemu cortex-m3 emulation initially loads and executes the VCPU firmware
in QEMU.

• The VCPU’s firmware interacts with peripheral devices through memory-
mapped registers.

• The VCPU machine intercepts R/W-operations performed by the firmware
and emulates the expected behavior. In the case of a communication device,
e.g., a write operation to a CAN TX register, the written data can be fetched
and forwarded to the VCPU control device.

• VCPU control device, in turn, passes data to the serial device via the VCPU
control device.

• The serial device makes the data available to the host machine, for example,
through a socket.

Steps to run VCPU firmware under QEMU:

• Linking:

The scatter file (vcpu.ld) used for linking the VCPU binary places the vector
table at address 0x10000000 in RW memory and the program code in a flash

36



starting at 0x70000000. However, the Qemu cortex-m3 emulation expects the
vector table to be located at address 0x0, so a new scatter file (vcpu qemu.ld)
was created to be used when building for qemu. In this scatter file, the flash
memory is located at 0x0, starting with the vector table, followed by program
code.

• VCPU custom QEMU machine:

For the VCPU, a custom machine has been built and placed in qemu-
4.2.0/hw/arm/tgw3/vcpu.c. It can be started by specifying ”-M vcpu” on the
command line when starting QEMU. The VCPU machine sets up two memory
regions: FLASH, located at 0x0, and RAM, at 0x10000000. In addition to the
memory setup, the VCPU machine emulates several peripheral devices. These
emulations are not fully functional models of the actual hardware; they provide
as much functionality as is needed for the VCPU firmware to run.

• QEMU is started with: qemu-4.2.0/build/arm-softmmu/qemu-system-arm -
M vcpu -cpu cortex-m3 -kernel vcpu.elf -monitor none -serial stdio -semihosting
-nographic

To check the functionalities added placed in the correct addressed spaces, we
make use of the command:

qemu-system-arm -M vcpu -s -S -monitor stdio

Where -s is a shorthand to connect with the VNC server running on 127.0.0.1:5900,
and -S is to freeze the CPU until a command to execute. Once the QEMU
monitor pops, one can use different options to explore the machine; two of such
are

-info mtree: shows the VM guest memory hierarchy.

-info qtree: shows the device tree.

the output of these commands is seen below:

QEMU 4.2.0 monitor - type ’help’ for more information

(qemu) VNC server running on 127.0.0.1:5900

info mtree

address-space: memory

0000000000000000-ffffffffffffffff (prio -1, i/o): system

0000000010000000-000000001003ffff (prio 0, ram): tgw.sram

0000000040020000-000000004002007b (prio 0, i/o): stasrcm3

00000000481c0000-00000000481c017b (prio 0, i/o): staadc

0000000049000000-00000000490002ff (prio 0, i/o): staccc

0000000050020000-0000000050020fff (prio 0, i/o): stauart

0000000050150000-0000000050150fff (prio 0, i/o): stauart

0000000050160000-0000000050160fff (prio 0, i/o): stai2c

0000000050170000-0000000050170fff (prio 0, i/o): ssp

0000000050180000-00000000501827ff (prio 0, i/o): stacanram

0000000050183000-00000000501830ff (prio 0, i/o): stacan

0000000050183400-00000000501834ff (prio 0, i/o): stacan

0000000050200000-000000005020011b (prio 0, i/o): stasqi

0000000050600000-00000000506004ff (prio 0, i/o): staddr_cntl

0000000050900000-00000000509002ff (prio 0, i/o): staddr_pub
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0000000068000000-000000006800014b (prio 0, i/o): stassca7

0000000070000100-00000000700800ff (prio 0, ram): tgw.flash

00000000bd000000-00000000bdffffff (prio 0, ram): tgw.ddr

address-space: I/O

0000000000000000-000000000000ffff (prio 0, i/o): io

address-space: cpu-memory-0

0000000000000000-ffffffffffffffff (prio 0, i/o): armv7m-container

0000000000000000-ffffffffffffffff (prio -1, i/o): system

0000000010000000-000000001003ffff (prio 0, ram): tgw.sram

0000000040020000-000000004002007b (prio 0, i/o): stasrcm3

00000000481c0000-00000000481c017b (prio 0, i/o): staadc

0000000049000000-00000000490002ff (prio 0, i/o): staccc

0000000050020000-0000000050020fff (prio 0, i/o): stauart

0000000050150000-0000000050150fff (prio 0, i/o): stauart

0000000050160000-0000000050160fff (prio 0, i/o): stai2c

0000000050170000-0000000050170fff (prio 0, i/o): ssp

0000000050180000-00000000501827ff (prio 0, i/o): stacanram

0000000050183000-00000000501830ff (prio 0, i/o): stacan

0000000050183400-00000000501834ff (prio 0, i/o): stacan

0000000050200000-000000005020011b (prio 0, i/o): stasqi

0000000050600000-00000000506004ff (prio 0, i/o): staddr_cntl

0000000050900000-00000000509002ff (prio 0, i/o): staddr_pub

0000000068000000-000000006800014b (prio 0, i/o): stassca7

0000000070000100-00000000700800ff (prio 0, ram): tgw.flash

00000000bd000000-00000000bdffffff (prio 0, ram): tgw.ddr

0000000022000000-0000000023ffffff (prio 0, i/o): bitband

0000000042000000-0000000043ffffff (prio 0, i/o): bitband

00000000e000e000-00000000e000efff (prio 0, i/o): nvic

00000000e000e000-00000000e000efff (prio 0, i/o): nvic_sysregs

00000000e000e010-00000000e000e0ef (prio 1, i/o): nvic_systick

address-space: bitband-source

0000000000000000-ffffffffffffffff (prio -1, i/o): system

0000000010000000-000000001003ffff (prio 0, ram): tgw.sram

0000000040020000-000000004002007b (prio 0, i/o): stasrcm3

00000000481c0000-00000000481c017b (prio 0, i/o): staadc

0000000049000000-00000000490002ff (prio 0, i/o): staccc

0000000050020000-0000000050020fff (prio 0, i/o): stauart

0000000050150000-0000000050150fff (prio 0, i/o): stauart

0000000050160000-0000000050160fff (prio 0, i/o): stai2c

0000000050170000-0000000050170fff (prio 0, i/o): ssp

0000000050180000-00000000501827ff (prio 0, i/o): stacanram

0000000050183000-00000000501830ff (prio 0, i/o): stacan

0000000050183400-00000000501834ff (prio 0, i/o): stacan

0000000050200000-000000005020011b (prio 0, i/o): stasqi

0000000050600000-00000000506004ff (prio 0, i/o): staddr_cntl

0000000050900000-00000000509002ff (prio 0, i/o): staddr_pub

0000000068000000-000000006800014b (prio 0, i/o): stassca7
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0000000070000100-00000000700800ff (prio 0, ram): tgw.flash

00000000bd000000-00000000bdffffff (prio 0, ram): tgw.ddr

address-space: bitband-source

0000000000000000-ffffffffffffffff (prio -1, i/o): system

0000000010000000-000000001003ffff (prio 0, ram): tgw.sram

0000000040020000-000000004002007b (prio 0, i/o): stasrcm3

00000000481c0000-00000000481c017b (prio 0, i/o): staadc

0000000049000000-00000000490002ff (prio 0, i/o): staccc

0000000050020000-0000000050020fff (prio 0, i/o): stauart

0000000050150000-0000000050150fff (prio 0, i/o): stauart

0000000050160000-0000000050160fff (prio 0, i/o): stai2c

0000000050170000-0000000050170fff (prio 0, i/o): ssp

0000000050180000-00000000501827ff (prio 0, i/o): stacanram

0000000050183000-00000000501830ff (prio 0, i/o): stacan

0000000050183400-00000000501834ff (prio 0, i/o): stacan

0000000050200000-000000005020011b (prio 0, i/o): stasqi

0000000050600000-00000000506004ff (prio 0, i/o): staddr_cntl

0000000050900000-00000000509002ff (prio 0, i/o): staddr_pub

0000000068000000-000000006800014b (prio 0, i/o): stassca7

0000000070000100-00000000700800ff (prio 0, ram): tgw.flash

00000000bd000000-00000000bdffffff (prio 0, ram): tgw.ddr

----------------------------------------------------------------------------------------------------------------------

(qemu) info qtree

bus: main-system-bus

type System

dev: vcpu-control, id ""

chardev_out = "serial0"

chardev_in = ""

dev: vcpu-sta-can-ram, id ""

mmio 0000000050180000/0000000000002800

dev: vcpu-sta-sqi, id ""

mmio 0000000050200000/000000000000011c

dev: vcpu-sta-can, id ""

mmio 0000000050183400/0000000000000100

dev: vcpu-sta-can, id ""

mmio 0000000050183000/0000000000000100

dev: vcpu-sta-ccc, id ""

mmio 0000000049000000/0000000000000300

dev: vcpu-sta-ddr-cntl, id ""

mmio 0000000050600000/0000000000000500

dev: vcpu-sta-ddr-pub, id ""

mmio 0000000050900000/0000000000000300

dev: vcpu-sta-i2c, id ""

mmio 0000000050160000/0000000000001000

bus: stai2c

type i2c-bus

dev: vcpu-sta-adc, id ""

mmio 00000000481c0000/000000000000017c

dev: vcpu-sta-uart, id ""
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mmio 0000000050020000/0000000000001000

dev: vcpu-sta-uart, id ""

mmio 0000000050150000/0000000000001000

dev: ssp, id ""

gpio-out "sysbus-irq" 1

mmio 0000000050170000/0000000000001000

bus: ssi

type SSI

dev: vcpu-sta-ssca7, id ""

mmio 0000000068000000/000000000000014c

dev: vcpu-sta-srcm3, id ""

mmio 0000000040020000/000000000000007c

dev: armv7m, id ""

gpio-in "NMI" 1

gpio-out "SYSRESETREQ" 1

gpio-in "" 64

cpu-type = "cortex-m3-arm-cpu"

memory = "/machine/unattached/system[0]"

idau = ""

init-svtor = 0 (0x0)

enable-bitband = true

start-powered-off = false

vfp = true

dsp = true

dev: ARM,bitband-memory, id ""

base = 1073741824 (0x40000000)

source-memory = "/machine/unattached/system[0]"

mmio ffffffffffffffff/0000000002000000

dev: ARM,bitband-memory, id ""

base = 536870912 (0x20000000)

source-memory = "/machine/unattached/system[0]"

mmio ffffffffffffffff/0000000002000000

dev: armv7m_nvic, id ""

gpio-in "systick-trigger" 2

gpio-out "sysbus-irq" 1

num-irq = 80 (0x50)

mmio ffffffffffffffff/0000000000001000

dev: armv7m_systick, id ""

gpio-out "sysbus-irq" 1

mmio ffffffffffffffff/00000000000000e0
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Chapter 5

Results and Discussion

This chapter discusses the implementation results and experiences of testing the
embedded platform to boot up in the emulated environment. It also discusses
the theory and problems behind the boot-up issues.

5.1 ARM Cortex-m3 binary analysis

While executing a Hello World application, the QEMU encountered a HardFault
error, as seen in the following Figure 5.1. The QEMU developers suggested up-
dating the qemu version to resolve this, but this had no effect. After conducting
an investigation, we discovered a solution to the problem at hand. The problem
was in the ARM semihosting until the initialise monitor handles () method was
called, at which point the problem was resolved. The research conducted for
this problem revealed a basic understanding of semihosting and its applications
[21].

Figure 5.1: HardFault handler

The screenshot in the Figure 5.2 shows an ARM cortex-m3 machine in QEMU,
running a simple Hello World program. As a result, qemu-5.0.0 can now emulate
a custom machine. With this knowledge, we imitated the VCPU machine in the
next section.
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Figure 5.2: Hello World execution

5.2 VCPU on QEMU Anaylsis

The simple ”hello world” application was executed on the VCPU machine in
a similar manner to that of mymachine, as shown in the Figure 5.3. The fol-
lowing step was to run the VCPU binary file (vcpu.elf) in the QEMU virtual
environment. Before doing so, the vcpu.elf file was generated in the msw repos-
itory.

Figure 5.3: Hello World execution on VCPU machine

An unexpected hard fault exception occurred during the execution of the vcpu.elf,
as shown in the Figure 5.4. To solve this issue, we used the GDB tool for de-
bugging binary. The general setup for using gdb is shown in Figure 5.5. The
option -S will freeze the CPU from execution, and the -s is shorthand to connect
to a remote server ”target remote localhost:1234” [22].

Figure 5.4: HardFault exception
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Figure 5.5: GDB setup for Debugging singlestep

In debugging, using -singlestep will help execute and trace each instruction, and
the -d option has many options to choose from according to the requirements
of the trace to debug, as shown in Figure 5.6. Using the -singlestep, it was
determined that the issue was with our vector table not being placed at the
correct address for booting the machine. By default, Qemu cortex-m3 emulation
expects the vector table to be located at the address 0x0. However, when the
linker script was examined, it was discovered that the vectors were inserted
at the position 0x10000000. Then the vector table was relocated from 0x0 to
0x1000000 to fix this issue, and the hard fault issue was no longer present. Part
of the boot is shown in Figure 5.7, where the R00 address runs until it matches
the R01 address. The procedure is the same for all three blocks, the Flash,
SRAM, and DDR memory, which execute the symbols within the content. The
machine boots up in THUMB mode.

Figure 5.6: -d help options
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Figure 5.7: A part of Machine Boot

After successfully placing the vector table, we tried to execute the VCPU binary
file (vcpu.elf) again; however, this time, the output was a blank screen, as seen
in the Figure 5.8. The reasons for the lock up will be explained in detail in the
boot issues section.

Figure 5.8: Freeze of vcpu machine with the given binary image

5.3 Theory behind Boot up Issues

Theory 1: Issue in the VCPU Machine

The first possibility for the lock up might be an issue with the machine. To
verify that our machine is working. We tried to implement some of the VCPU
test files available in the MSW repository, such as the CDE test file, and run
them on the VCPU machine in QEMU. The Figure 5.9 shows the successful
implementation of the CDE test file on the VCPU machine. This indicated that
our custom VCPU machine was running correctly. One drawback in our custom
VCPU machine was that some of the peripherals were not implemented; this
might have caused the lock up. This was a time-consuming scenario, as several
protocols required independent testing rather than being implemented directly
on the machine.
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Figure 5.9: CDE test result

Theory 2: Issue in the vector table placement

The linker script of vcpu.elf expects the vector table to be located at address
0x10000000 in the QEMU. In general, at reset, the Arm processor will boot from
the reset vector location at the address 0x0. We created a simple scatter file to
verify this issue where the vector table and OS Code were placed at the reset
vector address and tested on the VCPU machine. The test file was successfully
implemented, as seen in Figure 5.9. However, when we relocated the vector
table and OS Code at 0x10000000 in the scatter file. The Qemu throws the
lock-up error, as seen in the Figure 5.10. This means that when the controller is
reset, it begins reading data from the base address 0x00000000 [23][24].

Figure 5.10: VCPU Lock up

In this case, the PC is zero, and the Thumb bit is not set. It signifies that
our guest code did something that prompted the CPU to attempt to take an
exception, but because our ELF file did not include an exception vector table,
the vector table entry for this exception was zero. That means that the CPU
will attempt to execute from address 0 with the Thumb bit cleared, resulting
in an instantaneous UsageFault exception, which will typically result in the
exception-within-an-exception Lock-up case shown in Figure 5.10 [26].

Theory 3: Issue in running complete binary image

While running the complete binary image in QEMU [26], after the initial boot,
as seen in Figure 5.7, the machine goes into an infinite Fls init() function loop.
Examining this situation, commenting on the function, and trying to reboot
the machine was one way to check whether the machine could boot without
that particular function. In return, we got an Os Hal MemFault, as seen in the
Figure 5.11. The reason for this error might be that the PC value on the stack
that we are trying to return is incorrect. Furthermore, Memory Protection Unit
(MPU) was wrongly programmed. This process allowed us to look into the
HSEM module of our machine.
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Figure 5.11: Memory Fault

Hardware Semaphore (HSEM) is our embedded platform’s main feature, which
manages the access permissions and synchronization of the resources shared
between multiple processes running on the same CPU or different CPUs [25].
With this module not implemented in the machine, it goes into an infinite loop
within the function, fetching the correct addresses to exit and executing the
process that it cannot get hold off. A part of this execution is represented in
Figure 5.12; this issue may have caused the lock-up.

Figure 5.12: Infinite Loop for HSEM lock
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Chapter 6

Conclusion

The purpose of this chapter is to present the reader with our perspectives on
challenges we have encountered and to assess whether we were successful in
achieving our project objectives in the form of the final product of our project.
The chapter will conclude with our opinions on future development, including
what ways we believe this project could be taken in the future.

By virtualizing systems, emulation broadens the range of options for debug-
ging and testing embedded devices, allowing developers to concentrate on soft-
ware development. In many ways, the QEMU has assisted embedded system
developers in increasing their productivity by supporting a variety of architec-
tures.

QEMU includes a remote GDB interface that enables users to directly moni-
tor and influence the execution of programs running on the virtual CPU. The
debugger also provides access to the RAM and CPU registers, eliminating a
separate microcontroller debugger. Even after their continuous integration and
releases on new and upgraded QEMU, the platform has remained untapped
since it is difficult to comprehend for new developers and requires an expert to
have hands-on experience.

Despite all the research and analysis, we could not pinpoint a specific solution to
the infinite loop fault that was occurring in our QEMU. It has been challenging
to comprehend the entire workflow of the Main software (MSW). Limited re-
sources on QEMU have made our task more difficult to complete in the limited
time available for this project. After all of our efforts, the thesis aim remained
unattained.

The work and research completed to support the thesis can be utilized as a
foundation for future study and extensions—discovered limitations and possi-
bilities for the emulated platform. The main use of an emulator is to help in
the development and the transition between platforms. Even though the results
were mixed outcomes, future works use these issues and implement them with
more suitable tools. The aspects that would have helped in results are:

1. By the time we started the thesis, the QEMU’s latest version was 6.0.0, as
we were using a pretty old QEMU-4.2.0. The forum is active, but it was of little
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use because the API and build had undergone significant modifications. To use
the latest version, it needs the support of the least Ubuntu 18.04 LTS or higher
as running two VMs made the PC slow down and even crash sometimes.

2. The method tried in the thesis was to emulate both the CPUs separately
and combine them later, which was one of the issues. As both the CPUs are
dependent on being a complete embedded platform. For example, Xilinx has a
”ZynqMP ZCU102” board in QEMU, with 4xA53s and 2xR5Fs. The example
can be used as a model for other people’s future efforts. This might potentially
be one of the reasons why our machine is stuck in an infinite loop, as addressed
in Chapter 5.
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