
Efficient High-level Synthesis Implementation of

massive MIMO Processing on RFSoC

SIJIA CHENG
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2022

SIJIA
 C

H
EN

G
Effi

cient H
igh-level Synthesis Im

plem
entation of m

assive M
IM

O
 Processing on R

FSoC
LU

N
D

 2022

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2022-860
http://www.eit.lth.se



Efficient High-level Synthesis Implementation of
massive MIMO Processing on RFSoC

Sijia Cheng
si4168ch-s@student.lu.se

Department of Electrical and Information Technology
Lund University

Supervisor: Liang Liu, Steffen Malkowsky

Examiner: Erik Larsson

March 21, 2022



© 2022
Printed in Sweden
Tryckeriet i E-huset, Lund



Abstract

Massive multiple-input multiple-output (MIMO) refers to a wireless access tech-
nology that equips base station (BS) with hundreds to thousands of antennas to
serve tens of user equipment (UE) in the same time-frequency resource. These
extensive antennas improve spectral and energy efficiency, but the detection algo-
rithms tend to be more complex with operations, multiplications, and inversions
on larger size matrix.

The traditional register transfer level (RTL) design process is time-consuming
and risks starting over if the proposed architecture does not meet the require-
ments. High-level synthesis (HLS) addresses this issue by employing a higher level
of abstraction and providing an error-less path to generate the RTL code from
user-defined architecture. However, more attention is needed during implementa-
tion as coding at a too high level might deteriorate the design quality, leading to
area overhead and down the throughput.

In this thesis, an efficient HLS implementation of massive MIMO processing is
demonstrated and optimized for higher throughput and less area occupation. The
design is written in C++ and synthesized by Mentor Catapult HLS. Firstly, the
baseline implementation with all default settings is synthesized and simulated,
and then loop and memory optimization is applied. The result shows that cor-
rect coding style and well-designed constraints improve the performance to a large
extent.

i



ii



Popular Science Summary

To meet the demanding user expectation on network capability in the 5G era, engi-
neers adopted a fundamentally new approach to communicate between users and
their base station. Compared with the multiple-input multiple-output (MIMO)
technology employed in 4G, the new solution utilizes much more antennas in the
base station, and that’s why it’s named "massive MIMO".

Why does the number of antennas on the base station side increase from 4G to
5G? The designer needs to enhance the receiving antenna power for more reliable
transmission. You may think of increasing transmitted power. But it is regret-
table that due to technical limitations and related regulations, designers cannot
increase the transmitting power infinitely; also, the antenna gain is limited by
current technology. You may also suggest placing the transmitter and receiver
closer. Mobile communication carriers won’t want to do this because it will cost
more money to build new base stations. Thanks to talented engineers who came
up with the "beamforming" concept. It is a solution that adaptively adjusts the
radiation graph of the antenna array according to a specific scene. Metaphori-
cally speaking, a signal antenna transmission is like an electric bulb that lights
up the whole room, while beamforming is like a flashlight where the light can be
intelligently converged to the target location. And also, the number of flashlights
can be constructed according to the number of targets. The more antennas in a
communication system, the more obvious beamforming can play.

However, this improvement does not come without a price. For the hardware
engineer, more base station antennas mean more register-level operations. Hence,
the frequently used register transfer level (RTL) language programming is time-
consuming and complex. This issue is solved with the help of high-level synthesis
(HLS) that can transform the C++ code to RTL code. In this thesis, a massive
MIMO processing system is implemented with HLS and further optimized to have
a faster and smaller design.

iii



iv



Table of Contents

1 Introduction 1

2 Background 3
2.1 Massive MIMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Uplink Detection Algorithm . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Challenge in Implementing Uplink MIMO Detection . . . . . . . . . 6
2.4 Different Implementation Methods . . . . . . . . . . . . . . . . . . . 7

3 System Architecture 9
3.1 Real-time Computing v.s. Keeping in Memory . . . . . . . . . . . . 9
3.2 Optimizing Block Partition . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Catapult Synthesis Flow 13
4.1 Compiling the Design . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Building the Architecture . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 Hardware Resource Allocation . . . . . . . . . . . . . . . . . . . . . 15

5 HLS Implementation and Optimization 17
5.1 Baseline Implementation . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 Loop Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3 Memory Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.4 Optimization Summary . . . . . . . . . . . . . . . . . . . . . . . . . 26

6 Conclusion and Future Work 27
6.1 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . 27
6.2 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

References 29

v



vi



List of Figures

2.1 Massive MIMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Time-frequency domain view of OFDM symbols . . . . . . . . . . . 4
2.3 OFDM frame structure . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Latency and throughput requirements . . . . . . . . . . . . . . . . . 6

3.1 Basic architecture and all executions . . . . . . . . . . . . . . . . . . 9
3.2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Ideal schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1 Catapult design flow . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.1 Channel Estimation&Pre-processing Block Implementation . . . . . . 17
5.2 Detection Block Implementation . . . . . . . . . . . . . . . . . . . . 18
5.3 Loop execution: without \ with loop pipelining . . . . . . . . . . . . 20
5.4 Loop execution: pipeline inner loop \ outer loop for nested loop . . . 21
5.5 Loop execution: fully unrolled loop \ partially unrolled loop . . . . . 22
5.6 Code for loops with \ without merging . . . . . . . . . . . . . . . . 23
5.7 Different memory architectures . . . . . . . . . . . . . . . . . . . . . 25

vii



viii



List of Tables

2.1 Example system parameters . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Operation complexity for every processing step . . . . . . . . . . . . 10
3.2 Required operation numbers and memory occupation for three archi-

tectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5.1 Selected parameters for implementation. . . . . . . . . . . . . . . . 18
5.2 Baseline implementation utilization report . . . . . . . . . . . . . . . 19
5.3 Loop optimized implementation utilization report . . . . . . . . . . . 24
5.4 Loop and memory optimized implementation utilization report . . . . 26
5.5 Average throughput summary table . . . . . . . . . . . . . . . . . . 26
5.6 Hardware resource utilization percentage summary table . . . . . . . 26

ix



x



Chapter 1
Introduction

Today is the era of wireless communication. To satisfy the increased demand for
reliable performance, high data rate, low latency, massive multiple-input multiple-
output (MIMO) is one of the most promising solutions, which features hundreds to
thousands of antennas incorporated with the base station. By utilizing a high num-
ber of antennas to multiplex messages for several devices on each time-frequency
resource, massive MIMO can focus the radiated energy and minimize the inter-
cell interference [1], consequently providing extra capacity and wireless reliability
systems.

Due to the increased number of antennas, uplink massive MIMO detection algo-
rithms tend to be more complex with operations, multiplications, and inversions
on larger size matrix. The deployment of the base station requires significant
architecture change, which is timing consuming and resource costly due to the
low-level characteristics of the widely used hardware description language (HDL).
Fast prototyping helps to some extent, where it allows automatically generating
the microarchitecture by setting synthesis directives. High-level synthesis (HLS)
allows the implementation of a complex system from a higher level of abstraction,
lowering the barrier between hardware design and software design. The develop-
ment time is reduced significantly without making low-level design decisions.

While HLS dramatically reduces the design productivity gap, non-negligible prob-
lems arise. Coding at a too high level might deteriorate the design quality, leading
to significant area overhead and bringing down the throughput. How to program
the source code and determine the synthesis constraints largely influence the fi-
nal implementation performance. This project suggests some rules for coding, for
example, merging loops together. In the meanwhile, it updates the constraints to
optimize the microarchitecture of an uplink MIMO detection system. The final
implementation has 517 times larger throughput than the baseline for processing
a data vector.

1



2 Introduction



Chapter 2
Background

2.1 Massive MIMO

Massive MIMO makes a clean break with other antenna systems by using an
enormous excess transmitter and receiver antennas and spatial multiplexing. It
promises significant gains that can accommodate more users at higher data rates
with better reliability while consuming less power [2]. With the term of massive,
a massive MIMO system implies the utilization of hundreds to thousands of base
station antennas simultaneously serving many tens of user devices in the same
time-frequency resource. These extensive antennas provide extra degrees of free-
dom in the spatial domain, thus significantly increasing the signal-to-noise ratio,
reliability and coverage [3].

Figure 2.1: Massive MIMO. Artwork by Ove Edfors [4]

The transmission between the base station and UEs is shown in Figure 2.1
multiple independent data streams are transmitted simultaneously. In the uplink
transmission, the streams generated from UEs are received by the base station,
while the direction is reversed in downlink transmission. Information bits to be
sent are first encoded and mapped to a constellation, then modulated before send-

3



4 Background

ing out by antennas. During the transmission, the electromagnetic waves experi-
ence various effects, like attenuation and phase shift [4]. The stream received is
formed by a sequence of OFDM symbols in most cases, where the OFDM uses the
(fast) discrete Fourier transform to decompose a frequency selective channel into
many orthogonal parallel channels called subcarriers; see Figure 2.2 [5]. To avoid
the inter symbol interface (ISI) generated by multi-path channel, cyclic prefix is
formed by replicating part of the back of orthogonal frequency division multiplex-
ing(OFDM) symbol to the front. For each subcarrier during uplink transmitting,
the baseband data received by base station is the UE data with channel modula-
tion information in this frequency region.

Figure 2.2: Time-frequency domain view of OFDM symbols

2.2 Uplink Detection Algorithm

Massive MIMO relies on spatial multiplexing, where multiple antennas at both
the UEs and base station are used to carry multiple data streams simultaneously
within the same frequency band [6]. To convert the base station received data vec-
tors back to UE data, the base station has to know what the transmission channel
is for every user station and every subcarrier before the data symbol transmis-
sion. A time-division duplexing (TDD) protocol shown in Figure 2.3 is suggested
to address this issue. During one subframe slot, the channel is assumed to be
constant. At the beginning of every subframe, UL estimation is performed during
the uplink pilot symbol by sending out known pilots, then use it to estimate the
channel modulation effect in the following data symbols [7].

Assume M antennas are employed in the base station(BS) and serve K UEs. The
channel modulation effect is represented by a complex M ×K matrix H. Consider
the pilot is transmitting in subcarrier0, the information received by BS antennas is :

y0 = H0Sp0
+ n0 (2.1)

In Equation 2.1, y0 is the complex M × 1 antenna received vector, and Sp0 is
the pilot data transmitting in K UEs, which is a complex K × 1 transmit signal



Background 5

UEK-1

Subframe #0

OFDM Frame

Subframe #1 Subframe #2 Subframe

UE0 UEall

UE1

Nsub
Subcarriers

UEK-1

UE0 UEall

UE1

ODFM Symbols

UEall

UEall

UEall

UEall

UEall

UEall

Uplink
Pilot

Uplink
Data

Figure 2.3: OFDM frame structure

vector. H0 corresponds to the channel gain in subcarrier 0, and n0 is the noise in
subcarrier0 channel.

H0 = [h0,h1,h...,hk−1] (2.2)

h0 is the channel gain for user 0 in subcarrier 0, h1 is that for user 1 and so on.
Different subscript corresponds to different subcarriers, while different superscript
corresponds to different UEs.

Each UE transmits pilot on K-th subcarrier with the first UE starting at sub-
carrier 0, the second at subcarrier 1, etc, overall utilizing a full OFDM symbol [4].
The channel gain for every K subcarriers for same UE are assumed to be identical.
With this assumption, K subcarriers share the same H0 matrix, which saves the
operation numbers and also the memory locations, and the overall performance
does not deteriorate by a lot.

Only UE0 is sending out data in subcarrier0, thus, only the first element is non
zero in Sp0

.

Sp0 =


p0
0
...
0


Kx1

(2.3)

And the received y adapts to

y0 = H0Sp0
= h0Sp0

(2.4)



6 Background

If the magnitude of p0 is 1, then h0 equals to y0 multiples with conjugation of p0.

h0 =
y0

p0

|p0=1|−−−−→= y0p
′

0 (2.5)

Same treatment is applied to remaining K-1 subcarriers’ vector to form a
H matrix. After got the channel estimation matrix H, channel pre-processing
manipulates H to find the detection matrix. The obtained H is further inversed
to obtain the detection matrix, so that every received data vector multiplies with
one over H matrix. A zero forcing detector is employed to calculate the pseudo-
inverse of H matrix as shown in equation below, and the result is named as
detection matrix Wdet.

H† = (HHH)−1HH = Wdet (2.6)

For the received data vector, all UEs are transmitting on all subcarriers, and
the channel is assumed to be noiseless.

y = HSd (2.7)

The detection matrix Wdet is used to extract the transmitted data back based on
the received data vector y. The estimated UE data Ŝd is calculated in Equation 2.8,
and equals to original data Sd with noiseless channel (n = 0 in Equation 2.1)

Ŝd = Wdety = (HHH)−1HHy = (HHH)−1(HHH)Sd = Sd (2.8)

2.3 Challenge in Implementing Uplink MIMO Detection

Since massive MIMO forces the use of more antennas on the base station side,
there are many issues to be addressed to make the system realistic.

Figure 2.4: Latency and throughput requirements



Background 7

2.3.1 Throughput Requirement

To avoid data accumulation in the anterior block, the uplink MIMO detection
implementation is supposed to have comparable processing speed with vector re-
ceiving. The throughput requirement shown in Figure 2.4 depends on the number
of subcarriers employed and symbol duration time. For example, the throughput
requirement is 36MSample/s if the system parameters in Table 2.1 is selected and
600 subcarriers are employed. The OFDM symbols are arriving at the speed of
60 kSample/s and each symbol is carrying 600 vectors.

Table 2.1: Example system parameters

Parameters Value
Bandwidth 50MHz
Sampling frequency 61.44MSample/s
Subcarrier spacing 60 kHz
OFDM symbol length 16.7µs

2.3.2 Latency Requirement

Because of the TDD feature, the system forwards a requirement for processing
latency. The detection matrix of a particular subcarrier needs to be calculated
by the received pilot vector before its corresponding data vector is transmitted to
the base station. Usually, the latency requirement is approximate to one symbol
duration as shown in Figure 2.4. If the system parameter is set to values in
Table 2.1, the latency requirement is supposed to be 16.7µs.

2.3.3 Design Flexibility

In addition to the time constraints, the challenge comes from ensuring the flexibil-
ity of actual implementation. For example, the number of antennas may change
in later use, and this design has to work smoothly at that time. It is not just
changing the number of antennas, but some other parameters need to be updated
to match the changes, such as, unrolling factor, pipelining factor, memory size.
Therefore, in a flexible design, these parameters are the ones that should be mod-
ified automatically.

2.4 Different Implementation Methods

Nowadays, most projects start with functional specifications. Usually, an exe-
cutable model is created with high-level languages, for example, SystemC. Once
validated, this behavioral model will be further developed to actual hardware im-
plementation with specific architecture. Different architecture leads to various
consequences on throughput, latency, and hardware utilization. While the func-
tionality defines ’what’ the design implements, the architecture determines ’how’
the design implements it.



8 Background

2.4.1 Hardware Description Languages

Using hardware description language(HDL) to implement often requires longer
development. This is because the programmer needs to make all low-level de-
cisions manually, such as explicitly connecting wires between modules and spec-
ifying cycle-by-cycle hardware behavior. After the final optimal architecture is
determined, the designer can start coding on register level in the forms of Verilog
or VHDL programming and experiencing writing bugs and debugging back and
forth. To validate the functionality, an testbench written in HDL is employed
once the design source code is determined. Due to the low level feature of HDL,
the designer can have a general idea of timing performance and hardware uti-
lization during programming. As a result, the final implementation can meet all
requirements in most cases.

2.4.2 High Level Synthesis

The source code for HLS is written in high level language, like C++, that is easy to
program for most of designers. After the executable model is proven to be work-
ing, the HLS tool develops corresponding RTL code from abstract specifications
with user-defined architecture through an error-less path. Therefore, the verifica-
tion is usually executed before RTL generation, with a high level testbench. The
time it consumes in programming and HDL generation is negligible compared to
directly coding with HDL. These advantages of HLS promotes the development of
new tools, such as Vivado HLS (Xilinx), Catapult C (Mentor Graphics), and Intel
OpenCL SDK (Intel) [8].

However, the consequence of letting the software do most of the work is that
the designer loses fine control over the resulting hardware. It’s hardly to get the
same level of optimization and precision with HLS as direct HDL implementation.
Too many designer find the translated hardware result is either missing the timing
constraint or too large to fit in chips or boards, or even both. The quality of syn-
thesized design is dependent on the coding style and chosen architecture, where
finding the ones that lead to satisfying result can be difficult.



Chapter 3
System Architecture

This chapter discusses different system architectures for further implementation.
The basic architecture is illustrated with necessary execution steps by Figure 3.1
with two things under-determined. Firstly, before writing channel information
to memory, what degree of completion should be for the pre-processing block.
Secondly, how to partition different steps into blocks.

Figure 3.1: Basic architecture and all executions

3.1 Real-time Computing v.s. Keeping in Memory

As described in Section 2.1, massive MIMO separates different signals by time di-
vision multiplexing, therefore, a memory block is necessary to keep the calculated
channel modulation effect. The problem arises during selecting what to be stored.
Theoretically, all the data sets holding same information as channel estimation
matrix H can be candidates, and they differ in required calculation complexity
and memory occupation.

By taking a closer look at Equation 2.6 for channel pre-processing, the first option

9



10 System Architecture

is storing H matrix directly, and do the pseudo-inversion in real time as receiving
data vectors. One other candidate for storing is the detection matrix Wdet, and
the channel pre-processing is performed right after got H matrix. The third choice
is storing the intermediate calculation result: (HHH)−1and HH .

The massive MIMO algorithm for channel pre-processing and detection is rewrit-
ten in Equation 3.1 and 3.2, respectively.

Wdet = H† = (HHH)−1HH (3.1)

ŝ = (HHH)−1HHy (3.2)

This process can be broken into four steps:

1. Multiplication of K ×M matrix HH with M ×K matrix H.
2. Inversion of a K ×K size matrix.
3. Multiplication of K ×K matrix (HHH)−1 with K ×M matrix HH .
4. Multiplication of K ×M matrix (HHH)−1HH with M × 1vector y.

The third and forth steps exchange if the intermediate matrix are stored:

3(2). Multiplication of K ×M matrix HH with M × 1vector y.
4(2). Multiplication of K ×K matrix (HHH)−1 with K × 1vector HHy.

Based on the operation complexity for every step provided in Table 3.1, the

Table 3.1: Operation complexity for every processing step

Step1 Step2 Step3 Step4 Step3(2) Step4(2)

Complexity O(MK2) O(K3) O(MK2) O(MK) O(MK) O(KK)

corresponding operation numbers for one matrix set and the needed memory size
are concluded as Table 3.2.

The number of antennas at base station (M) is always larger than that of UEs

Table 3.2: Required operation numbers and memory occupation for
three architectures

To be stored Memory size Operation number
H MK O(K3 + 2MK2 +MK)
Wdet MK O(K3 + 2MK2 +MK)
(HHH)−1, HH K(M +K) O(K3 +MK2 +MK +KK)

(K), thus, the overall complexity for storing two matrix is smaller than storing
one. However, this architecture is not adopted in this thesis work because of it’s
extra memory usage. Storing H or Wdet will behave same in uplink detection im-
plementation. In this work, Wdet is stored in memory for reusing it in downlink



System Architecture 11

pre-coding. In detail, the matrix to pre-code the downlink data transmitted to
UEs is just the transpose of matrix Wdet.

3.2 Optimizing Block Partition

Since all sub-blocks are running with parallelism implicitly, it is better to split
the whole design into separate blocks for higher throughput. However, overly fine
splitting granularity will deteriorate the design performance, as data sharing be-
tween blocks will be the bottleneck.

The first partition choice is integrating all process in one large block, which simply
bypasses the data sharing problem. If the throughput can be satisfied by carefully
controlling the microarchitecture, the coding process will be much easier. How-
ever, a realistic requirement mentioned in Section 2.3.1 is 36MHz, which implies
an new output should be available every 5 clock cycles if the system is running
at a frequency of 200MHz. Achieving that high throughput costs large amount of
optimizing effort, and that’s why a finer partition is expected.

The execution for pilot and data symbol is unrelated and without data trans-
mission, so that it’s better to not keep them together. The channel estimation
and pre-processing after receiving a pilot vector are implemented in one sub-block
to avoid transmission of matrix H. Another drawback for separating them is du-
plicated hardware utilization, as each block needs memory resource to keep local
array for H. The detection process after receiving a data vector is another block,
as only memory reading and matrix multiplication is performed. It’s meaningless
to split it finer.

One more block is added for distinguishing the input vectors. After the preceding
OFDM demodulation block, the input vector arrives in the subcarrier order. Then,
the flow control block will demultiplex the vectors to different symbols. Channel
estimation and pre-processing block is responsible for processing pilot symbol’s
vector, while detection block carries out manipulation for data symbol’s vector.In
this thesis work, the uplink MIMO detection system is divided into three main
calculation blocks and one memory resource as shown in Figure 3.2.

Figure 3.2: Block Diagram



12 System Architecture

3.3 Scheduling

Pilot Symbol Data Symbol

Subcarrier0 Subcarrier1 SubcarrierNsub-1 Subcarrier0 Subcarrier1 SubcarrierNsub-1

Flow Control
Block

Channel
Estimation

Block

Input

Detection
Block

Figure 3.3: Ideal schedule

Proper scheduling of processing blocks is necessary when combining them. The
prior FFT executor transforms the analog signals received by BS antennas to data
in the frequency domain to be read in the order of subcarrier. An ideal schedule is
shown in Figure 3.3 that the throughput is high enough to process all subcarriers
during one symbol without pipelining. After every input vector is read into the
system, the flow control block transmits it to channel estimation&pre-processing
or detection block based on its symbol type.



Chapter 4
Catapult Synthesis Flow

Catapult HLS from Mentor Graphics is used for high-level synthesis in this thesis
work. This section goes through the Catapult design flow to conclude some guide-
lines on the macro-architecture of uplink processing implementation by explaining
how the tool transforms C++ code to RTL implementation ready for simulation
and gate-level synthesis. All tasks are listed in the Task Bar (shown in the blue
background in Figure 4.1), where each of them corresponds to particular stages in
the Catapult workflow.

Figure 4.1: Catapult design flow

4.1 Compiling the Design

After correct setting the working directory and path of Catapult integrated tools,
the next step is compile the design into Catapult. The following list outlines the
steps in this process:

1. Adding source files. (Go new)

13



14 Catapult Synthesis Flow

2. Analyzing the code. (Go analyze)
3. Compiling the design. (Go compile)

4.1.1 Go New

User imports source code files to the design in this step, and the tool will implicitly
add their included header files. The high level language testbench is also added
to verify the functionality.

4.1.2 Go Analyze

The hierarchy task will analyze the files imported to the current project and find
functions candidates for hierarchical blocks in C++. There are three settings to
identify these functions: Top, Block, or Inline. One and only one function is sup-
posed to be designated as Top, and this function is the one that will be called in the
testbench. The Block designation leads to a sub-block under the top block. Differ-
ent sub-blocks can run in parallel to split the top block into stages and pipelined.
The inline setting results in executions inside the hierarchy blocks, which will be
executed sequentially if the sub-block is not explicitly pipelined.

C++ is a sequential execution language and does not naturally support hierarchical
structures. However, Catapult enables the transforming from a flat design into a
hierarchical one with the help of hls_design_pragma added before the function
name.

4.1.3 Go Compile

This command compiles the design to generate the synthesis internal format
database, which keeps the project’s current state and can be used to restore it.

4.2 Building the Architecture

To determine the micro-architecture for every processing entity in the design, the
following tasks are supposed to be executed:

1. Specifying the libraries. (Go libraries)
2. Adding clock and reset signal and assembling design. (Go assembly)
3. Determining the design architecture. (Go architect)

4.2.1 Go Libraries

By telling Catapult what RTL synthesis tool, vendor, and technology will be used
to characterize the design, the timing and area estimations for hardware imple-
mentation components are appended to the design. Scheduling and performance
evaluation in future steps are from these values.



Catapult Synthesis Flow 15

4.2.2 Go Assembly

This call assembles the design from bottom to top and adds clock and reset sig-
nal to all parts if the input files are written in C++. It verifies if the connections
between blocks are correct and realizes the interface for every sub-block and the
interconnections in the top block. The data transfer between sub-blocks or be-
tween top-block and testbench is realized by ac_channel. It allows Catapult to
properly synchronize the data between blocks by being synthesized to a FIFO
pipe. After the design is successfully assembled, Catapult suggested architecture
constraints are listed in GUI, and users can evaluate and modify them in GUI or
with directives.

4.2.3 Go Architecture

The architecture building process has three steps: loop transformations, memory
mapping, and cluster pattern characterizing, respectively. All the loops are left
rolled by default, and the user can design the micro-architecture by unrolling,
pipelining, and merging them. The arrays in source code will be mapped into
RAMs/ROMs or split into registers if the number of elements is smaller than
MEM_MAP_THRESHOLD value. For go cluster command, Catapult goes
through the design and searches pre-defined cluster patterns, such as adder trees,
multiply-add, and squares. These data path operators will be clustered together to
reduce the inefficiencies with fine-grained scheduling. However, clustering does not
help much in FPGA design due to the dedicated MAC and adder resources. These
three steps set architectural constraints, and go architecture command applies
them to the design.

4.3 Hardware Resource Allocation

Once functions, loops, and arrays have been determined by hierarchy constraints,
loop controlling, and memory architecture, respectively, Catapult can start the
real synthesis process, including scheduling operations, generating data path finite
state machine(dpfsm), and then instance binding.

During scheduling, Catapult converts a series of operations to data flow graph-
ics (DFG) according to the sequential order and data dependency. Then it maps
the behaviors in DFG onto states in the dpfsm using estimates for delays. After
that, Catapult starts assigning specified hardware instances to all operations. The
actual timing cannot be calculated until this step completes. If timing violations
are identified, new instances will be generated as needed without changing the fsm
from the scheduler. After all synthesis steps are completed, Catapult cleans up
the design and writes the netlist file.



16 Catapult Synthesis Flow



Chapter 5
HLS Implementation and Optimization

This thesis work aims to implement the uplink massive MIMO detection algorithms
effectively with HLS in Catapult. The primary objective is to have a functional
C++ source code for MIMO uplink processing and a corresponding testbench to
check it. After ensuring the code’s correctness, the next step is baselining the
architecture to provide a basis for further optimization.

5.1 Baseline Implementation

5.1.1 Source Code Formulation

Figure 5.1: Channel Estimation&Pre-processing Block Implementa-
tion

17



18 HLS Implementation and Optimization

Figure 5.2: Detection Block Implementation

The flow control block splits the input vector stream into two paths. If it
belongs to a pilot symbol, channel estimation&pre-processing block performs the
calculation flow as shown in Figure 5.1. The first channel estimation part is active
for every pilot vector while the remaining channel pre-processing part is only active
for every K vectors. The matrix multiplication and Cholesky inversion function
are provided in libraries. If a data vector is received, then the process shown in
Figure 5.2 will be executed by detection block.

To verify the functionality for the high-level implementation, a testbench written

Table 5.1: Selected parameters for implementation.

Parameters Value
K 4
M 32
Nsub 600

in C++ can be employed. By generating random channel information in MATLAB,
the testbench can know what symbols should be received by the base station for
a selected series of UE data. And these symbols are then sent into top design in
testbench and compared if the output generated is identical to the designated UE
data. The parameters selected are listed in Table 5.1.

The source testbench supplies input vectors to the uplink MIMO processing design
and captures the output vector for the expected correct numeric values to ensure
functional correctness. After that, the Catapult synthesized model is verified by
re-running the same tests for the source code and verifying the RTL simulation
matches the source behavior. As the source code is written in C++, the testbench
executes as untimed code. The SCVerify can generate wrappers, synchronization



HLS Implementation and Optimization 19

signals, and make-files to compile the source design. After the C++ model is proven
to be functional, these outputs will be used to self-check the synthesized model by
comparing equivalence between the C++ and RTL for test vectors provided in the
testbench.

5.1.2 Baseline Implementation Result

The clock frequency for Catapult synthesizing is 200MHz. After simulating Cat-
apult generated RTL result, the timing performance is concluded as follows:

• Latency for processing not the kth received pilot vector: 810 ns
• Latency for processing the kth received pilot vector(Wdet matrix calculation
included): 41 620 ns
• Average throughput for received pilot vector: K

(K−1)∗810 ns+41 620 ns = 22.7 kSample/s

• Latency for processing not the kth received data vector: 3875 ns
• Latency for processing the kth received data vector (memory reading included):
5815 ns
• Average throughput for received data vector: K

(K−1)∗3875 ns+5815 ns = 57.3 kSample/s

Table 5.2: Baseline implementation utilization report

Resource Utilization Available Utilization(%)
LUT 8860 274080 3.23
FF 11860 548160 2.16
BRAM 30 912 3.29
DSP 32 2520 1.27

To get a view of hardware resource utilization, the Catapult generated RTL
file is then synthesized and implemented using the VIVADO 2020.1 with the de-
fault options. The hardware utilization report is listed in Table 5.2, and the
corresponding occupation percentage of total resource is attached if employing
xczu9eg-ffvb1156-1-e RFSoc board. It’s obvious that the processing speed is far
from enough while there are still many unemployed hardware entities. Hence, kinds
of optimization methods are applied to trade resources for timing performance.

5.2 Loop Optimization

Controlling how Catapult will carry out the loops in hardware implementation
is an essential step in Catapult. The functionality specifications determine the
number of loop iterations, but there are still three dimensions that the user can
control to optimize the design.



20 HLS Implementation and Optimization

5.2.1 Loop Pipelining

In timing behavior, a new loop iteration only starts after the previous one has
finished. However, by enabling loop pipelining, the new iteration can be executed
certain clock cycles after the last one started instead of waiting it to be finished.
The number of clock cycles taken before starting a new iteration is named initial-
ization interval (II). In other words, loop pipelining means that adjacent iterations
of the loop overlap and run concurrently, and multiple hardware are active to ex-
ecute different stages of the loop-body [9].

Before illustrating the benefits of pipelining a loop, two criteria for evaluating the
timing performance of a loop are introduced first. They are latency and through-
put. The latency refers to the time between the input is fed into the design, and
the corresponding output is ready for reading, while the throughput means the
rate of output production.

Take the code piece in Figure 5.3 as an example; the latency for a single it-

Figure 5.3: Loop execution: without \ with loop pipelining

eration is three cycles, and the whole loop iterates three times. Assume that each
operation takes one clock cycle, and the color block indicates that the correspond-
ing hardware is under execution. The second iteration can only start in the fourth
cycle without loop pipelining, and the last one starts in the seventh cycle. The
loop has not finished until the ninth cycle, which implies the loop latency is nine
cycles. If loop pipelining is applied with II=1, causes the second iteration initiation
occurs in the second cycle, and the last iteration starts in the third cycle. In total,
all the operations are completed after five cycles; thus, the latency is reduced by
four compared with the unpipelined design. This example demonstrates how loop
pipelining improves timing performance without introducing replicated hardware



HLS Implementation and Optimization 21

resources.

Pipeline loops have several problems associated with dependency, and they are
generally called hazards. The most common hazard in this design is data hazards,
and it occurs when the current operation requires the result of a preceding instruc-
tion, but that data is still under calculation [10]. Data hazards between iterations
may cause subsequent schedule steps to fail. In the example demonstrated above,
if op_1 needs the value from op_3 of the last iteration, scheduling pipelined loops
will be impossible because op_1 is carried out even one cycle before op_3 from
the last iteration being performed. This conflict can be solved by removing data
dependencies or increasing the initialization interval.

If a loop exists inside the body of another loop, this structure is called a nested
loop. Pipelining nested loops need more attention in high-level C++ synthesis. It is
a good practice to start from pipelining the innermost loops and proceed towards
outer loops, because of the more and more heavy extra control logic.

As shown in Figure 5.4, if nested loops are pipelined together, the loops will

Figure 5.4: Loop execution: pipeline inner loop \ outer loop for
nested loop

be flattened into a signal loop, where its number of iterations equals the actual
execution times of the inner loop body, and the II constraint will be applied to the
flattened loop. The overhead state for controlling outer loop iteration is omitted
(indicated by diagonal stripes) and replaced by complex control logic incorporated
in flattened loop body.



22 HLS Implementation and Optimization

5.2.2 Loop Unrolling

Figure 5.5: Loop execution: fully unrolled loop \ partially unrolled
loop

By partially or completely performing multiple loop iterations in parallel, loop
unrolling can achieve speedy implementation. Assume no data dependency be-
tween iterations so that every iteration can be executed from the start. In Fig-
ure 5.5(a), the hardware is replicated four times (iteration number) to execute all
iterations simultaneously to unroll the loop fully. In Figure 5.5(b), the loop is
unrolled by a factor of 2. As a result, the hardware is duplicated by 2, and the
iteration number is halved.

Data dependencies between loop iterations also deteriorate the degree of timing
optimization gained from loop unrolling. If one iteration requires the operation
result from a previous iteration, it cannot be scheduled until that operation is
completed, which leads to wasted hardware.

Unrolling the innermost loop replicates the inner loop body and leaves the outer
loop unchanged for nested loops. Unrolling the outer loop without unrolling the
inner loop results in the inner loop being replicated as many times as the outer
loop is unrolled.

5.2.3 Loop Merging

For a rolled loop, each iteration takes at least one clock cycle when scheduling,
because there is an implied ‘wait until clock’ for the loop body [11]. So, it’s
common to merge loops into one to save iterations. Compared with the code on



HLS Implementation and Optimization 23

Figure 5.6: Code for loops with \ without merging

the left side of Figure 5.6, the two loops are merged into one, as shown on the
right side, which leads to less iteration number.

5.2.4 Loop Optimized Implementation and Result

There is no loop in the flow control block. Based on Catapult generated schedule,
the FSM for this block is formed by two states without feedback beyond state
registers; as a result, to accomplish a higher throughput, the main function is
pipelined with II=1.

The channel estimation block calls for special attention, which contains plenty
of inline loops. As mentioned before, inline functions inside the block are executed
sequentially if the main block is not pipelined. Pipelining the main function of a
complex block is the last option since it leads to longer synthesis time, and the
synthesis may fail because of the feedback path in the schedule. Hence, the latency
for every loop should be as minimum as possible. However, fully unrolling a loop
is also not encouraged. In addition to the larger area that will inevitably lead to,
it also has the potential to deteriorate the overall timing performance. The reason
is that if the loop is conditionally executed and it’s fully rolled, then the scheduler
will include its data path in the main function, and the condition is only checked
for writing outputs after finishing the execution. Even if the condition is set to be
false, the states are wasted anyway. Partially unrolling helps here since the itera-
tion condition needs to be checked before starting a loop execution, while the outer
condition will also be integrated into the judgment. Some principles are followed
during optimization: the innermost loop for nested loop is fully unrolled, and the
iteration number is kept small for higher throughput; the loops are pipelined if
there are no data dependency violations. By manually restructuring the loops in
the source code, the compiler can merge the conjugation and transposition loop
to execute their loop body parallel.

For the detection block, only the outermost loop is kept rolled, and the main
function is pipelined with II=1 to achieve a higher throughout during detection.



24 HLS Implementation and Optimization

Loop operations like unrolling and pipelining are accompanied by memory de-
sign, as the function must access multiple addresses in the same cycle. So, the
word length increases for corresponding memory to provide enough data resources
for the port connection.

• Latency for processing not the kth received pilot vector: 30 ns
• Latency for processing the kth received pilot vector(Wdet matrix calculation
included): 525 ns
• Average throughput for received pilot vector: K

(K−1)∗30 ns+525 ns = 6.5MSample/s

• Latency for processing not the kth received data vector: 30 ns
• Latency for processing the kth received data vector (memory reading included):
45 ns
• Average throughput for received data vector: K

(K−1)∗30 ns+45 ns = 29.6MSample/s

Compared with baseline implementation, the design after loop optimization has

Table 5.3: Loop optimized implementation utilization report

Resource Utilization Utilization(%)
LUT 45169 16.48
FF 33126 6.04
BRAM 37.5 4.11
DSP 1201 47.66

a better timing performance with the expense of higher hardware resource utiliza-
tion. The area overhead comes from the complex control logic, extra registers and
multiplexers from pipelining, and resource replication from unrolling [12].

5.3 Memory Optimization

The arrays in C++ code will be transformed to memories during synthesis, and in
this step, Catapult specify the type of memory resource, such as RAM/ROM or
registers. Different memory architectures are suitable for different data accessing
patterns.

Take a 2 rows 3 columns matrix as an example, and assume it can be stored
in a single memory. The address of each element is indexed sequentially by rows
as shown in Figure 5.7(a). Only one entry can be accessed in every clock cycle
without memory optimization. However, when the loop is unrolled or pipelined,
multiple elements must be read or written simultaneously. There are three ways
to increase the number of accessible elements [13].

Interleaving memory is the process of rearranging sequential data storage into
many non-contiguous storage blocks. Reading from original continuous locations
takes advantage of this design since the required data locations are distributed in



HLS Implementation and Optimization 25

Figure 5.7: Different memory architectures

different memory banks. As shown in Figure 5.7(b), every row is physically spread
out in distinct memories, and each memory has its ports for operations. Hence,
a full row of a M×K matrix can be reached at the same time if the memory is
interleaved by K.

Splitting memory will divide a large memory into several blocks with a speci-
fied block size. The original continuous data locations are still kept in the same
or neighboring memory bank. As shown in Figure 5.7(c), the original memory is
split with block size 3, so that each memory bank holds one row of the matrix, and
the elements in the same column is distributed in different banks so that they can
be accessed at the same time. If the matrix size M×K, then the memory should
be split into M parts to allow simultaneous reading or writing of a column.

The memory can also be developed by changing the word length of elements stored
in one location. In other words, the adjacent data can be merged and read or writ-
ten together. In Figure 5.7(d), the number of bits for a word is increased by 3
times, so all data in one row can be stored as one word. Splitting the memory
into blocks and interleaving it are different ways to split a memory resource into
several new resources, which can be accessed individually. The way how elements
are distributed among new resources differs. Reorganizing the memory, instead,
still results in a single memory.

5.3.1 Memory Optimized Result

The timing performance is largely improved by properly designing the memory
architecture since all needed data can be accessed simultaneously.

• Latency for processing not the kth received pilot vector: 30 ns
• Latency for processing the kth received pilot vector(Wdet matrix calculation
included): 455 ns
• Average throughput for received pilot vector: K

(K−1)∗30 ns+455 ns = 7.34MSample/s

• Latency for processing not the kth received data vector: 30 ns
• Latency for processing the kth received data vector (memory reading included):
45 ns



26 HLS Implementation and Optimization

• Average throughput for received data vector: K
(K−1)∗30 ns+45 ns = 29.6MSample/s

It’s easy to understand the increment in BRAM resource, since either inter-

Table 5.4: Loop and memory optimized implementation utilization
report

Resource Utilization Utilization(%)
LUT 26425 20.58
FF 40142 7.32
BRAM 79 8.66
DSP 857 34.01

leaving or splitting creates more memory blocks. Optimized memory architecture
largely lower the usage of DSP resource. The reason why more DSP is utilized in
previous design is more multiplexers occupy more LUT resource, and force some
calculations are executed by DSP block.

5.4 Optimization Summary

Table 5.5: Average throughput summary table

Pilot vector Data vector
Baseline 22.7 kSample/s 57.3 kSample/s
Loop optimized 6.5MSample/s 29.6MSample/s
Memory optimized 7.34MSample/s 29.6MSample/s

Table 5.6: Hardware resource utilization percentage summary table

LUT FF BRAM DSP
Baseline 3.23 2.16 3.29 1.27
Loop optimized 16.48 6.04 4.11 47.66
Memory optimized 20.58 7.32 8.66 34.01

By comparing the timing performance in Table 5.5 and hardware cost in Ta-
ble 5.6 for baseline and loop optimized implementations,it is easy to draw the
conclusion that employing many hardware in parallel largely improves the timing
performance, creating higher overall throughout. Furthermore, memory optimiza-
tion helps reducing the hardware utilization and accelerating the system, because
of the well designed data-path.



Chapter 6
Conclusion and Future Work

6.1 Discussion and Conclusion

Catapult synthesized RTL result performs slightly worse than expected, the first
bottleneck is memory control transfer between blocks.

Theoretically, the throughput when the input vector belongs to the data
symbol should be four since the main function of the detection block is
pipelined with II=1, implying all the loops inside pipelined. Both of the
loops have iteration number equal to 4. If no memory reading operation is
needed for the currently received data vector, every iteration in the multi-
ply loop can calculate one entry of an output vector, and the output vector
will be available every four clock cycles. The RTL simulation takes more
cycles than expected because of the shared memory. To ensure consistent
reading and writing rates, extra logic circuit blocks the memory from the
same type of operation after one memory read or memory write, prohibiting
channel estimation and detection block from accessing memory simultane-
ously. The main function takes at least two clock cycles for the channel
estimation block; after two clock cycles, this block release memory control,
and the memory is available for detection block. That’s where the two extra
cycles come from. If I was coding in VHDL, the memory access operation
could be carried out randomly at will. Catapult wants to ensure the same
read/write rate to avoid struct accumulation in C++ simulation, but hard-
ware loses flexibility.

Catapult’s lack of flexibility is reflected in the default sequential execution schedule
inside of blocks, too.

Pipelining the block main function will automatically pipeline all loops;
however, the data taken into main loop iteration is usually different from
the data for the inline loop body. For example, a main function call deals
with one vector, and a loop inside it only copes with one entry of this vec-
tor. In this situation, ideally, the initialization interval for the main loop
should be the iteration number of the loop inside. However, this cannot
be set independently in Catapult. Also, if the user wants to pipeline the

27



28 Conclusion and Future Work

inline blocks inside of a CCS_BLOCK to be executed concurrently instead
of sequentially, the only solution is to split them into blocks. As a result,
complicated interconnections and data sharing problems arise.

The problems above can be treated as the by-product of high abstract level design.
The scheduling and hardware allocation is replaced by software, then the loss of
detail control is a matter of course. Despite this, high-level synthesis accelerates
the whole design flow overall. Trying a new architecture is simple by just editing
new constraints in GUI, and then a new solution is branched out so that the user
can compare their performance to choose easily. Also, the automatic synthesis
path avoids error introduction.

6.2 Further Work

If a more optimized implementation is wanted, designer can carry out some po-
tential improvements in further work.

1. Data dependency in the Cholesky function prevents the loops in the chan-
nel estimation block from pipelining and limits the speed acceleration of unrolling.
It’s better to look into the function body and re-edit to remove the feedback path
as much as possible.

2. Splitting the channel estimation block into finer sub-blocks can pipeline the
sequential execution in the current design, but it leads to more programming time
for complicated data sharing.

3. The further design can try to get rid of ac_channel, and switch to use ac_sync
and ac_shared to build and control a shared memory channel. This can simplify
the design process, but the RTL file produced by Catapult may function differently
from the C code.



References

[1] Federico Boccardi, Robert W. Heath, Angel Lozano, Thomas L.
Marzetta, and Petar Popovski. Five disruptive technology direc-
tions for 5G. IEEE Communications Magazine, 52(2):74–80, 2014.
doi=10.1109/MCOM.2014.6736746.

[2] 5G massive MIMO testbed: From theory to reality.
https://www.ni.com/sv-se/innovations/white-papers/14/
5G-massive-MIMO-testbed--from-theory-to-reality--.html.

[3] Erik G. Larsson, Ove Edfors, Fredrik Tufvesson, and Thomas L. Marzetta.
Massive MIMO for next generation wireless systems. IEEE Communications
Magazine, 52(2):186–195, 2014.

[4] Steffen Malkowsky. Massive MIMO: Prototyping, Proof-of-Concept and Im-
plementation. PhD thesis, Lund University, 2019.

[5] Thomas L. Marzetta, Erik G. Larsson, Hong Yang, and Hien Quoc Ngo.
Models and Preliminaries, page 19–44. Cambridge University Press, 2016.

[6] Xiang Liu. Chapter 3 - Challenges and opportunities in future high-capacity
optical transmission systems. In John Zyskind and Atul Srivastava, editors,
Optically Amplified WDM Networks, pages 47–82. Academic Press, Oxford,
2011.

[7] Steffen Malkowsky, Joao Vieira, Karl Nieman, Nikhil Kundargi, Ian Wong,
Viktor Öwall, Ove Edfors, Fredrik Tufvesson, and Liang Liu. Implementation
of low-latency signal processing and data shuffling for TDD massive MIMO
systems. In 2016 IEEE International Workshop on Signal Processing Systems
(SiPS), pages 260–265, 2016.

[8] Roberto Millón, Emmanuel Frati, and Enzo Rucci. A comparative study
between HLS and HDL on SoC for image processing applications. Elektron,
4(2):100–106, Dec 2020.

[9] Xilinx. Vitis Unified Software Platform Documentation: Application Acceler-
ation Development (UG1393).

[10] M.S. Schmalz. Organization of computer systems: Pipelining. https://www.
cise.ufl.edu/~mssz/CompOrg/CDA-pipe.html.

29



30 References

[11] Mentor. Catapult® Synthesis User and Reference Manual.

[12] G. Georgiou and G. Theodoridis. Studying the impacts of loop unrolling and
pipeline in the fpga design of the simon and roadrunner lightweght ciphers. In
2021 10th International Conference on Modern Circuits and Systems Tech-
nologies (MOCAST), pages 1–6, 2021.

[13] Thomas Bollaert Mike Fingeroff. High-Level Synthesis Blue Book. Mentor
Graphics Corporation.



Efficient High-level Synthesis Implementation of

massive MIMO Processing on RFSoC

SIJIA CHENG
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2022

SIJIA
 C

H
EN

G
Effi

cient H
igh-level Synthesis Im

plem
entation of m

assive M
IM

O
 Processing on R

FSoC
LU

N
D

 2022

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2022-860
http://www.eit.lth.se


