
Investigation of dynamic control ML algorithms

on existing and future Arm microNPU systems

DAVID CORDESIUS & JOEL ÅHLUND
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2021

D
A

V
ID

 C
O

R
D

ESIU
S &

 JO
EL Å

H
LU

N
D

Investigation of dynam
ic control M

L algorithm
s on existing and future A

rm
 m

icroN
P

U
 system

s
LU

N
D

 2021

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2021-835
http://www.eit.lth.se

Investigation of dynamic control ML algorithms
on existing and future Arm microNPU systems

David Cordesius, Joel Åhlund
lan15dco@student.lu.se, jo7106ah-s@student.lu.se

Department of Electrical and Information Technology
Lund University

Supervisors:
Kevin Wohnrade (Arm)
Steffen Malkowsky (LTH)
Lucas Ferreira (LTH)

Examiner:
Erik Larsson

June 29, 2021

© 2021
Printed in Sweden
Tryckeriet i E-huset, Lund

Abstract

In this thesis, dynamically controlled machine learning algorithms running on state
of the art Arm microNPUs, with an attached Cortex-M CPU, were investigated.
The machine learning framework used was Tensorflow and different subsets of it,
such as Tensorflow Lite micro. Compiling the network to run on the microNPU was
done with the use of an open-source compiler called, Vela. In order to investigate
the dynamic support - the algorithm, MTCNN, as proposed by K. Zhang et, al.
[1] was implemented on the aforementioned hardware; MTCNN was chosen due to
its dynamic properties, as the algorithm structure changes depending on the input
it receives. Where some parts of the algorithm may not be executed as frequently,
or at all, depending on the result of earlier stages.

Full dynamic support was possible on the CPU through custom kernel imple-
mentations. Several of the components needed for full use of dynamic control,
on the microNPU, were unsupported throughout the toolchain. Because of this,
MTCNN was divided into several parts (removing the need for dynamic support)
to further investigate the performance gain by natively supporting the dynamic
control operators on the microNPU. The results obtained clearly outlines a general
performance gain by adding dynamic control support and the ability to run and
schedule an algorithm, as a single ML model. However, for MTCNN in particular
it was concluded that a major speedup was achieved by executing the static parts
of the algorithm on the microNPU. The dynamic parts, with regards to MTCNN,
amounts for a small percentage of the total run-time.

i

Popular Science Summary

When it comes to computer science in general; dynamic control flow, such as
conditional statements and loops, are a common tool for algorithm development.
However, the same can not be said for machine learning applications, even though
there is a deep connection between the two. The world is becoming increasingly
connected, with intelligent devices present in everyday products ranging from se-
curity cameras to LED lights. The need for smarter edge devices is growing and
more demand is put on said devices - a combination of these two topics are touched
upon in this thesis.
The possibility of implementing machine learning algorithms that are in nature,
dynamic, on embedded devices was investigated. This was done via implementing
an algorithm called MTCNN on a system containing a general purpose computer
with an attached accelerator. The accelerator is specialized to perform tasks often
found in machine learning algorithms. The process of running an algorithm on the
accelerator included extensive use of different tools.

The fundamental approach to this investigation was reminiscent of the famous
phrase "Divide and conquer", however, "Divide and analyze" is a better descrip-
tion; MTCNN was deconstructed into smaller parts to analyze what was, and
what was not, supported by the accelerator.
This resulted in the ability of running performance estimates for the complete
algorithm. A resounding increase to performance was achieved when larger parts
of the algorithm were able to run on the accelerator, however, the dynamic parts
had to be executed on the general purpose computer. The reason for this was
the lack of support for dynamic control flow in the different tools and hardware;
Due to this, the possibility of running algorithms like MTCNN completely on the
accelerator is currently not possible.

iii

Acknowledgements

First of all, we would like to thank Arm Sweden for the opportunity of conducting
this master thesis in collaboration with them.

We would like to express our gratitude towards our supervisor Kevin Wohn-
rade, who has provided useful insight and guided us throughout this thesis. A
special thank you also goes out to Arm and several Arm employees, especially
Patrik, Axel, Niclas and Tomas, who have provided answers to more technical
questions and showed great interest in our work.

We would also like to thank our supervisors at LTH: Steffen Malkowsky and
Lucas Ferreira, for their great support and valuable input during this thesis.

v

Contents

1 Introduction 1
1.1 Related Work . 2
1.2 Master Thesis Contribution . 2
1.3 Disposition . 3

2 Theory 5
2.1 Tensorflow . 5
2.2 Artificial neural networks . 7
2.3 Dynamic control . 13
2.4 MTCNN . 14
2.5 microNPU system . 22
2.6 TOSA . 25

3 Method 27
3.1 Implementation workflow . 27
3.2 Verification and profiling . 29

4 Results 31
4.1 Implementation results . 31
4.2 Performance . 33
4.3 Validation . 40

5 Discussion 45
5.1 Limitations . 45
5.2 Model Alterations . 46
5.3 Performance evaluation . 47
5.4 Validation . 53
5.5 DC in other ML algorithms . 54
5.6 Similar purpose ML algorithms . 55
5.7 DC support in emerging ML frameworks 55

6 Conclusion 59
6.1 Future work . 60

vii

Bibliography 61

A Custom MTCNN model implementation 67

viii

List of Figures

2.1 Simple TF graph . 6
2.2 Simple illustration of a fully connected ANN 8
2.3 Example of unfolding a recurrent node. 8
2.4 High-level overview of an example 2D-convolutional layer. 10
2.5 Example of a 2D-convolutional operation. 10
2.6 Accumulation of output of three-channel 2D-convolutional operation. 11
2.7 ReLU, PReLU and softmax activation functions. 13
2.8 Example of a PReLU activation function implementation, using a con-

ditional operator. 14
2.9 MTCNN example output. Input image is taken from the WIDER FACE

dataset. [2] . 15
2.10 Detailed MTCNN algorithm structure. 16
2.12 Proposal network structure. 17
2.11 High-level algorithm description of the image pyramid. 18
2.13 Refine network structure. 20
2.14 Output network structure. 21
2.15 Software stack for the microNPU system. [3] 23
2.16 Overview of the communication between microNPU and CPU during

inference. 24
2.17 Example use of TOSA IR. 26

3.1 Overview of model implementation and verification workflow. 28

4.1 TF while loop, displayed using the visualization tool: Netron. [4] . . 31
4.2 Quantized while loop unrolled 6 times, shown in Netron. 32
4.3 Quantized while loop unrolled 3 times with unknown input shapes,

shown in Netron. 33
4.4 Relative speedup (cycles only) on different HW configurations for se-

lected MTCNN stages. 34
4.5 Speedup of custom and default (TF) PReLU implementation. 36
4.6 Custom PReLU operator implementation. 36
4.7 Relative time spent by each layer, on different HW configurations with

a varying amount of faces detected. The bars correspond to the right
axis and the lines correspond to the left axis in Figure 4.7b. 38

ix

4.8 Throughput (FPS) of the MTCNN algorithm. 39
4.9 The absolute error over 500 images from the WIDER FACE dataset. [2] 40
4.10 The average absolute error for Figure 4.9. 41
4.11 Figure 4.9 without the outliers. 41
4.12 The average absolute error for Figure 4.11. 42
4.13 Bounding boxes from our MTCNN model (red) and a reference im-

plementation [5] (blue), on a sample image from the WIDER FACE
dataset. [2] . 42

5.1 Example pre-padding. Middle image is taken from the WIDER FACE
dataset. [2] . 51

A.1 Graph of normalize layer. 69
A.2 Graph of P-Net. 71
A.3 Graph of R-Net. 73
A.4 Graph of scales layer. 76
A.5 Graph of calibrate layer. 77
A.6 Graph of reshape layer. 79
A.7 Graph of custom prelu operation. 81

x

List of Tables

2.1 Overview of TOSA profiles [6] . 25

4.1 Individual stages of the MTCNN implementation. 33
4.2 Hardware configurations used throughout this section. 34
4.3 Memory footprint and operator utilization for selected MTCNN stages

running on an Arm microNPU system. 35
4.4 Profiling of the normalize stage in the MTCNN algorithm, running on

the target HW from Table 4.2. 35
4.6 Iterations per stage in the MTCNN algorithm. 37
4.5 Custom and TF PReLU operator placement and memory usage. . . . 37
4.7 Overview of throughput for MTCNN and other algorithm implemen-

tations. 39
4.8 The average difference for quantized stages. P-, R- and O-net displays

the difference for the coordinates and the confidence. 43

xi

List of Abbreviations

ANN Artificial Neural Network
CNN Convolutional Neural Network
CPU Central Processing Unit
DC Dynamic Control
DS Dynamic Shape
FNN Feed-forward Neural Network
FPS Frames Per Second
FVP Fixed Virtual Platform
HW Hardware
IoU Intersect over Union
IR Intermediate representation
IREE Intermediate Representation Execution Environment
ML Machine Learning
MLIR Multi-Level Intermediate Representation
MTCNN Multi-task Cascaded Convolutional Neural Networks
NMS Non-Maximum Suppression
NN Neural Network
NPU Neural Processing Unit
O-Net Output Network
P-Net Proposal Network
R-Net Refine Network
RNN Recurrent Neural Networks
SoC System-on-Chip
TF Tensorflow
TFLite Tensorflow Lite
TFL micro Tensorflow Lite Micro
TOSA Tensor Operator Set Architecture

xiii

Chapter 1
Introduction

The use of machine learning (ML) has surged in popularity in recent years due
to the expanding capability of the underlying hardware; The convenience and
usefulness of machine learning has made it a popular tool in many industries
across the world.

An often used machine learning variant is a neural network (NN). The NN is a
defined system of layers containing nodes and the layers are connected via edges.
There are typically weights on the edges between nodes and layers, which change
during the learning process of the network and alters the output. Despite this,
many NNs are still static in the sense that the number of layers, nodes and edges
remain the same during program execution.

If one wishes to use conditional and/or loop statements to determine - during
runtime, the outcome or architecture of a NN, larger requirements would be put on
the software chain and underlying hardware; Thus, investigating the requirements
and possibilities of implementing a NN with these properties on Arm’s state of
the art NN hardware accelerators [7] is of interest and the topic of this master
thesis. A network with these properties is called a dynamically controlled NN. Even
though many traditional networks are static, there is a high interest in dynamic
control implementations according to Yuan, et al: "We analyzed more than 11.7
million unique graphs for machine learning jobs at Google over the past year,
and found that approximately 65% contain some kind of conditional computation,
and approximately 5% contain one or more loops". [8] These dynamic control
properties are typically used either to efficiently implement ML algorithms, or to
extend NN based algorithms with extra functionality during training and inference.
[9]

Arm’s neural processing units (NPUs) are hardware accelerators for common
operations in NN algorithms. Therefore several well-known NN algorithms and
custom implementations are possible to be executed on the NPUs. [7] Due to
the extensible configurations of NNs, compability with the Arm NPU system is
not guaranteed for all NN variants. The NPUs are implemented in a system that
includes a central processing unit (CPU) capable of generic instructions. The
operations that can not be performed by the NPU will be executed on the CPU
instead. [10]

In order to investigate what would be required of the underlying hardware, the
proposed algorithm MTCNN by K. Zhang et al [1] will be used; The algorithm is
based on three dynamically controlled convolutional neural networks and is used

1

2 Introduction

for facial recognition and alignment. This algorithm is of particular interest to
investigate - due to its inherent dynamical properties.

1.1 Related Work

The subject of dynamic control in machine learning is being actively researched in
several projects; With new technologies and frameworks developed as a response.
This subsection will briefly introduce a few of these. Due to the early stages of
these projects, they were not used in producing results for the thesis; However,
they will be discussed later in the report as part of future work.

TOSA TOSA is an open-source tensor operator set architecture (early in de-
velopment), comparable to the instruction sets in general purpose computers but
with focus on NN operations. [6] TOSA is covered in more depth in Section 2.6.

MLIR MLIR is a compiler technology which simplifies the representation of
dynamic control in the compiler stack. It also allows for easy lowering between
different intermediate representations. [11]

IREE IREE is an end to end compiler solution for machine learning frameworks
(Tensorflow, etc.) that aims to support dynamic shapes and dynamic control.
IREE is being developed by a team at Google and is, at the time of writing, in a
very early stage of development (implemented in MLIR). [12]

1.2 Master Thesis Contribution

As mentioned above, work and effort is being put into solving/easing the use of
dynamically controlled NN algorithms. This is the motivation for investigating
the topic - and implementation effort, of a dynamically controlled NN algorithm;
The NPU itself is not the only point of interest, but the entire NPU ecosystem:
Software toolchain and other components, such as the CPU. The questions in the
following section will be the main point of evaluation for this thesis:

1.2.1 Research questions

• Is it possible to implement a dynamically controlled ML algorithm on the
current Arm NPU product line?

• What is required of future/existing NPU architectures to make dynamic
control possible?

• Does it give a performance increase when executing these algorithms on the
NPU?

• What ML areas, and/or NN algorithms, benefit from dynamic control?

• Can offloading parts of the algorithm to the CPU be done efficiently?

Introduction 3

• How does the NPU software toolchain compare to TOSA, IREE or other
related frameworks?

1.3 Disposition

The disposition of this thesis is as follows: Chapter 2 will introduce the theory
used to create results and discussion; This presents different machine learning
frameworks, hardware used, description of neural networks and MTCNN.
Chapter 3 familiarizes the reader with the methods used to produce the results -
presented in Chapter 4. These results are then discussed in chapter 5.
Chapter 6 will shortly present conclusions made for the research questions posed
in Section 1.2.1.

Chapter 2
Theory

This chapter will familiarize the reader with the background theory required to
draw conclusions from the results of this thesis. It will introduce the tools used in
this thesis as well as theory about artificial neural networks, MTCNN and dynamic
control.

2.1 Tensorflow

Before Tensorflow (TF) became public, it was an in-house tool at Google, named
DistBelief, and provided ways of expressing ML algorithms and executing them.
TF is now an open source venture (the next iteration of DistBelief) and a platform
for machine learning. It is at the time of writing, actively being developed and
worked upon by companies and individuals around the world. TF is interfaced via
its libraries for different programming languages - C++ and Python. This enables
modeling of NN algorithms and structures for different systems.

TF at its core is built around the concept of dataflow graphs, where the nodes
are operations and the data crossing the edges are N-dimensional arrays of a
defined type (called tensor) - an operation represents a computation on the given
input tensors. The desired operation can then be implemented on a specific device,
this is referred to as a kernel - the graph operators are unaware as to how they
should transform the data. This enables TF to run efficiently on a wide variety of
devices by the use of device specific kernels. [13] A TF graph can then be exported
and executed on said devices using the kernel implementations; TF provides kernels
for many operations [14]. An example graph can be seen in Figure 2.1, this graph
perform an Add operation; Adding two tensors, a and b, as seen in Listing 2.1.

Figure 2.1 can be constructed with the following code:

1 de f simple_graph (a , b) :
2 re turn t f . add (a , b)

Listing 2.1: Simple example code of a tensorflow layer performing
the add opertion.

Tensorflow also allows for eager execution - executing the operations in the
language interpreter: For example the Python interpreter. This enables the full

5

6 Theory

Add

a b

Identity

Figure 2.1: Simple TF graph

support of Dynamic Control (DC) that Python offers. This, however, means that
portability to different systems not supporting the Python interpreter, will not
work with eager execution. [15]

2.1.1 Tensorflow Lite

Tensorflow Lite (TFLite) is a collection of tools (see subparagraphs below) for
TF. TFLite contains optimized operators for resource constrained devices; such as
mobile phones and microcontrollers. At the time of writing, only a select subset
of TF operations are supported by the TFLite converter. [16]

TFLite converter The TFLite converter optimizes, defines types, in-
cludes supported operations and then converts a TF graph into a flatbuffer. The
flatbuffer is then easily transferred to other systems/configurations. [17]

Flatbuffer Flatbuffers are serialized objects (in our case - a TF graph with
its operations, weights and connections). [18]

TFLite quantizer The TFLite quantizer performs quantization on a given
TF graphs weights/activations and operation/tensor types. Meaning that the
datatypes are changed according to the TFLite quantization scheme. Separate
quantization layers can also be added to the model, which bridges the gap between
different datatypes. [19] A quantized graph enables easier arithmetics and lower
memory requirements on the targeted device - e.g TFLite can quantize the tensor
types from float32, to int8, removing the need for floating point operations and
alleviate memory requirements.

The decrease in tensor resolution post-quantization will give rise to a quanti-
zation error, which can negatively impact model performance. For int8 conversion,
the theoretical maximum error is:

1

28+1
= 0.19% (2.1)

Theory 7

The TFLite quantizer require a representative dataset to base the quantization
on. This will be used to determine the value range and distribution of the model
output, and perform the quantization to represent this value range. [19]

TFLite interpreter The TFLite interpreter will match kernels to opera-
tors and execute the flatbuffer produced by the TFLite converter. [20]

2.1.2 Tensorflow Lite Micro

TFLite micro is a subset of TFLite and used to run inference on microcontrollers.
TFLite micro further constraints the operators used in the model that is being
converted, since TFLite micro only supports a subset of the TFLite operators
(TF kernels). [21] Graphs converted with TFLite containing only TFLite micro
supported operators allows conversion to a C byte array that can be compiled on
the intended micro controller. [22]

2.1.3 MLIR

At the time of writing, TF is being converted to adopt Multi Task Intermediate
Representation (MLIR) as an intermediate representation (IR) in the compilation
process. MLIR is a high level IR that enables, among many things - custom types,
Dynamic shapes (DS) and DC. [23, 24] MLIR is analogous to a programming
language and MLIR dialects are analogous to applications/programs written in
said programming language. Dialects can then be used to lower the high level ML
representations (e.g graphs in TF) to a compilation stage closer to the hardware.
The features of MLIR (DS and DC) can thus be represented for a larger part of the
compilation process; Later stages would then need to handle the aforementioned
MLIR features.

2.2 Artificial neural networks

Artificial neural networks are inspired by neuroscience, and consists of layers con-
taining artificial neurons. These are similar to biological neurons as each artificial
neuron take one or more inputs and gives an independent activation value as out-
put. This activation value is based on a combination of the weighted input value
and a internal bias term, described in further detail in Equation 2.2. These weights
and biases are adjusted during training of the network, often by using backprop-
agation. [25] [26, pp. 165, 200-207] A complete ANN typically consist of an input
layer, output layer and one or more hidden layers. The hidden layers are the ones
containing artificial neurons and they are called hidden layers as their input or
output parameters are not directly accessed during training. [26, pp. 164-165]
Each layer is connected by edges to the previous and following layer. This is il-
lustrated in Figure 2.2. An additional neuron is usually introduced, with unary
input and weight corresponding to the bias term, for the internal bias parameter
of each layer. Meaning that the bias is commonly included when referring to the
weights of a NN layer. [27]

8 Theory

Hidden layerInput layer Ouput layer

Figure 2.2: Simple illustration of a fully connected ANN

Two main ANN versions exist: Feed-forward neural networks (FNNs) and
recurrent neural networks (RNNs).

FNN The name feed-forward is based on the network structure, where in-
formation flows through the network by sequential computations. Meaning that
the output data from one layer is fed as input to the next layer. An example of
this is displayed in Figure 2.2.

Each layer in an FNN is described according to:

h(x) = g(WTx+ b) (2.2)

Where x is the input to the layer, W are the weights, b bias, g is an activation
function and h is the output of the layer. [26, pp. 192-194, 207-208] There are
several possible activation functions for a layer to use, the ones implemented in
this thesis are presented under paragraph activation functions in Section 2.2.1.

A common subtype to FNNs is the convolutional neural network (CNN), which
include layers with convolutional operations.[26, pp. 326] CNNs are commonly
used for visual tasks such as: Image recognition and classification, as they have
historically provided great results on this type of applications. [28, 29]

H

W

H(t+1)H(t)H(t-1)

Unfold

...... W W WW

Figure 2.3: Example of unfolding a recurrent node.

Theory 9

RNN The difference between a RNN and a FNN is that the RNN includes
feedback from later to earlier layers. RNNs can be described as operating on
sequences of input data. Where the maximum sequence length is the limiting
factor on how far back in time recurrence relations has to occur. For a finite
sequence length, the RNN can be unrolled in the temporal domain and represented
as an FNN. An example of unfolding, also called unrolling, a RNN layer is shown
in Figure 2.3. The parameter t denote the timestep the current node is present in,
going from 1 to τ . With τ being the maximum sequence length. H is an arbitrary
node and W are the weights.

A generalization of the hidden RNN layers can be defined as:

ht = f(h(t−1) · xt) (2.3)

Where t is the current timestep, h is the output of the hidden layer and f is an
arbitrary function. This clearly show the recurrence relation, as ht reference to
itself back in time: h(t−1). [26, pp. 367-371]

2.2.1 ANN layers

This section gives a background to a selection of common ANN layers, which will
be used in the later stages of this thesis.

Convolutional layer The convolutional layer is by definition present in all
CNNs. It is primarily defined by its filters, or kernels, and kernel stride. The
filters are matrices containing trainable weights, this allows for different results
to be obtained by swapping filter between convolutional operations on the same
input data. The input, output, stride, filter values and filter sizes are fixed for
each layer.

S(t) = (P ∗K)(t) =

∫
P (a)K(t− a) (2.4)

A single-dimensional, continuous convolutional operation is performed accord-
ing to Equation 2.4. Where K is the kernel, P is an input parameter and S is
the output of the operation. Where all input and output parameters are one-
dimensional.

The input parameters are usually tensors (multi-dimensional arrays) in ML
applications, making a multi-dimensional convolution the operation of choice. [26,
pp. 328-329] As the ML application will operate on a finite set of data, discrete
convolution is also desired. The convolutional operation, in Equation 2.4, have to
be generalized according to these requirements before being adopted in a CNN.

S(i, j) =
∑
n

∑
m

P (i−m, j − n)K(m,n) (2.5)

A discrete 2D-convolution is described in Equation 2.5, which is the type of
convolution that will be referred to later in this report. In Equation 2.5: K is the
kernel, P is the input matrix, S is the output of the operation and i and j are the
start row and column indices within the input matrix. [26, pp 336-339]

10 Theory

Input Output

5x5x3 4x4x8

Kernel size: 2x2

2D-convolution

Stride: 1x1
Filter size: 8

Figure 2.4: High-level overview of an example 2D-convolutional
layer.

An example 2D-convolutional operation is shown in Figure 2.5 and an overview
of the entire convolutional layer is shown in Figure 2.4. Where the input to the
convolutional layer is a 5x5x3 matrix, with a sliding kernel of size 2x2 and stride
1x1 is used. The stride of 1x1means that the sliding kernel moves one step between
each convolutional operation. The filter size is 8, which can be observed in the
output dimension as well.

... ...

...

...

... ...

...

...

K[1,1]K[1,2]

K[2,1]K[2,2]

Input

Kernel

...

P[x1,y1]K[1,1] +
S[1,1] =

P[1,1] P[1,2]

P[2,1] P[2,2]

P[1,2] P[1,3]

P[2,2] P[2,3]P[1,1] P[3,2]

P[2,2]P[2,1]

P[3,1]

P[3,1]

...

...

...

P[2,1]

S[2,1]

S[1,2]S[1,1]

P[1,3]

P[2,3]

P[3,2]

...

... ...

...

...P[2,2]

P[1,2]

Channel 1
Channel 2

Channel 3

P[x2,y2]K[2,2]
P[x2,y1]K[2,1] +
P[x1,y2]K[1,2] +

Figure 2.5: Example of a 2D-convolutional operation.

Theory 11

Referring to Equation 2.5, each output value can be derived as the sum of
the multiplications between the kernel and input matrix. With the kernel sliding
across the entire input matrix, giving one of the output values per operation. An
example of this is shown in Figure 2.5, where K denotes the kernel weights, P input
and S output values. With each kernel, or filter, having its own weights. Figure
2.5 shows the computation for three values in the output matrix. The remaining
values are calculated in a similar manner by sliding the kernel position by 1 across
the input matrix between each computation. [26, pp. 328-331] Each color on the
input data in Figure 2.5 represent different kernel positions.

Note that the input is three-dimensional while the operation itself is 2D-
convolution, meaning that the same 2D convolution is done separately for each
of the three 2D-tensors on the input, also referred to as channels.

+

Output

O[1,1] ...

...

S[1,1] ...

...
S[1,1] ...

...
S[1,1] ...

...

Channel 1
Channel 2

Channel 3

Figure 2.6: Accumulation of output of three-channel 2D-
convolutional operation.

The resulting three separate output channels, from Figure 2.5, are summed
up to form one single output tensor, illustrated by Figure 2.6. Where the red,
green and blue matrices are the output of the 2D-convolutional operation on each

12 Theory

separate channel, and the bottom is the final output of the convolutional layer.
Resulting in a single 4x4x1 output matrix. [30] This procedure, presented in
Figure 2.5 and 2.6, is then repeated for all different filters. Producing the final
4x4x8 output shown in Figure 2.4.

Pooling layer A pooling layer is commonly used to make the output of another
CNN layer invariant to small changes. It determines the value of each output node
based that of its neighboring nodes, referred to as the neighborhood. Some variants
of this is: Max Pooling layer and Average Pooling. Max Pooling sets the output
values to the maximum within the neighborhood. This is implemented as a layer
with a set stride and kernel size. Where the kernel is the size of the neighborhood
and stride defines the movement of the kernel. Average Pooling functions the same
way as the Max Pooling, except that it calculates the average of the neighborhood,
instead of the maximum value.[26, pp. 335-339].

Fully connected layer The fully connected, or dense, layer connects all of
the neurons between two layers. See Figure 2.2 for a simple illustration.

Activation functions Nonlinear activation functions are commonly used after
any of the earlier mentioned layers, as described in Equation 2.2. These may or
may not contain trainable weights. This report will cover ReLU, PReLU and
Softmax activation layers: ReLU (Rectified Linear Unit) is defined according to
Equation 2.6. [28]

f(xi) = max(0, xi) (2.6)

PReLU (Parametric Rectified Linear Unit) is a generalization of ReLU and is
defined according to the equation:

f(xi) = max(0, xi) + ai ·min(0, xi) (2.7)

Where a is a vector of weights which are learned during training of the network.
[31] The example PReLU presented in Figure 2.7b has the slope of a on input
values below 0. Softmax is another nonlinear activation function, and is defined
according to Equation 2.8.

f(z)i =
ezi∑
j e

zj
(2.8)

Where zi denotes an element in the input vector z. The sum in the denominator
in Equation 2.8 is a sum of all values in the input vector z. Softmax binds the
output between 0 and 1. This property makes softmax common to use in NNs
where the desired output is a probability distribution. [26, pp. 180-183] The three
activation functions described above can be seen in Figure 2.7. With an example
of a softmax operation in Figure 2.7c.

Theory 13

(a) ReLU graph.

(b) PReLU graph.

0.3 1.2 2.7

0.07 0.17 0.76

f(z)

(c) Softmax illustra-
tion.

Figure 2.7: ReLU, PReLU and softmax activation functions.

2.3 Dynamic control

Dynamic control flow, or just dynamic control, means that the ordering of in-
structions in an algorithm can change dynamically during execution, depending
on input data or memory states.

The fundamental dynamic control operators are related to ordering of opera-
tions, also called decision making, which are represented by conditional and non-
conditional branch instructions on an assembly programming level. [32] These
instructions then act as building blocks for other control flow operations present
in high level programming languages. [33] There is also an important difference if
DC is dependent on input data or not. If it is not dependent on input data, then
the dynamic behavior can be resolved to static at execution time. For example by
resolving branches and/or unroll loops at compile time. [32] On top of this: Oper-
ations that depend on input data does not have to be dynamic control operations.

14 Theory

It is only dynamic control if the result may alter the execution order of succeeding
instructions.

x < 0 ?

MUL a

x

f = x f = ax

False True

x

PReLU
Operator

Figure 2.8: Example of a PReLU activation function implementa-
tion, using a conditional operator.

An example of a dynamic control in ML applications is the implementation
in Figure 2.8. This is a dataflow graph describing a PReLU activation function,
introduced in Section 2.2.1, with x input, f output and a being the weight param-
eter. As described by Equation 2.7. This is clearly dynamic control, as a decision
is made based on input data, which determine the following instruction; MUL by
a, or not.

If a variable has DS its datatype is not set at compile time, but is one of a set
of options. This follows the earlier presented definition of DC, as doing the same
operation but with different datatypes would utilize different instructions on an
assembly programming level. [34] This differentiation between DS and other types
of DC is made to easier categorize issues in higher level programming.

2.4 MTCNN

The algorithm presented by Zhang, et al. in: "Joint Face Detection and Alignment
using Multi-task Cascaded Neural Networks" [1] is commonly known as MTCNN
and is a ML algorithm used for face detection and alignment. As the name sug-
gests, it is based on cascaded neural networks. The networks are dynamically
controlled based on their input, which is a result of previous computations.

Theory 15

Input

Output: 10x1

100%

MTCNN

Figure 2.9: MTCNN example output. Input image is taken from
the WIDER FACE dataset. [2]

An example execution of the MTCNN algorithm is presented in Figure 2.9.
The input is an image and the outputs are the coordinates of the bounding box,
facial landmarks and probability of the box containing a face, for each detected
face in the input image. The bounding box, facial landmarks and probability are
plotted on top of the input image in Figure 2.9, which is done post-MTCNN.

The structure of MTCNN is described in Figure 2.10. It consists of three
CNNs: Proposal network (P-Net), refine network (R-Net) and output network
(O-Net). Where P-Net is visible in the image pyramid layer, described in greater
detail in Figure 2.11. These CNNs are designed and trained to perform different
tasks. Additional pre- and post-processing have to be performed between each
CNN to make the full MTCNN algorithm possible, each of these stages are visible
in Figure 2.10. The purpose of these stages are typically: Removing false positive
candidates, reshaping and calibrating the data to its proper format.
An in-depth description of each stage is provided below:

Normalize The input image consists of three arrays (R-, G-, B-channels) of
pixel values between: 0 and 255. To simplify calculations in the upcoming stages,
the pixel values are normalized to a value between: 1.0 and -1.0, ([0, 255] 7→
[−1, 1]).

Image pyramid The full image is resized to form an image pyramid. This is
required since the input size to P-Net is fixed; To find faces that are bigger than
the input size of P-net, the image has to be resized to a smaller size. Making the
entire face possible to fit in a single input array to P-Net. This stage is dynamically
controlled since it should work for any image size, where the image size is the factor
which decides both how many pyramid images are needed and how large each of
the pyramid images should be. The image sizes in the pyramid can be described
by the pseudo code in Listing 2.2. The overall structure of the image pyramid can
be seen in Figure 2.11

Moreover, DC is required in the image pyramid to provide the correct amount
of 12x12 image patches to P-Net. Also as a direct result of the image size.

16 Theory

Normalize

NMS

R-Net

O-Net

NMSRemove

NMS

Input image

Output

Image pyramid

Resize imageP-Net

Remove, rescale, NMS
More scales?

True

False

Calibrate boxes
Remove,

Calibrate boxes
& landmarks

Calibrate boxes
Remove,

Pad

Pad
Reshape,

Reshape,

Figure 2.10: Detailed MTCNN algorithm structure.

Proposal Network P-Net is a shallow CNN which takes 12x12x3 patches of
the images in the image pyramid, meaning that each patch is a 12x12 pixels wide
part of the image on each of the RGB-channels. A stride of two pixels between
each sample is used by Zhang, et al. [1] A stride of two instead of one greatly
reduces the amount of computations that has to be done on each input image -
the computational benefit can be seen in Equation 2.9.

N = (
X −K
S

+ 1) · (Y −K
S

+ 1) (2.9)

Where N is the number of patches from an image of size X*Y with kernel size K
and stride S.

The task of this CNN is to produce candidate bounding boxes which are likely
to contain a face. For each input sample it outputs coordinates for a bounding
box within the input, as well as the probability of it containing a face or not. The
probability of the candidate containing a face is given as a 1x2 vector: With the
probability of both containing a face and not containing a face, respectively.

Theory 17

1 i = 0
2 x = x_or ig ina l
3 y = y_or ig ina l
4 s c a l e s = []
5 whi le (min (x , y) >= 12) {
6 s c a l e = 0 .6 ∗ power (0 . 709 , i)
7 i++
8 x = s c a l e ∗ x_or ig ina l
9 y = s c a l e ∗ y_or ig ina l

10 s c a l e s . append (
11 r e s c a l e (image_orig inal , (x , y)))
12 }

Listing 2.2: Pseudo-code for scales in the image pyramid.

Input layer

12x12x3

Convolution

10x10x10

5x5x10

3x3x16

1x1x32

Softmax

1x1x2

1x1x4

Convolution

Probability of Candidate bounding

1x1x2

Convolution:

Convolution:

Convolution:
3x3 kernel

3x3 kernel

3x3 kernel

MaxPooling:
2x2 kernel,
2x2 stride

boxescontaining a face

Figure 2.12: Proposal network structure.

18 Theory

Resize image P-Net

RemoveRescale

NMS More scales?
True

False

Figure 2.11: High-level algorithm description of the image pyramid.

Figure 2.12 show which neural network layers P-Net is constructed of as well
as their input and output sizes. The stride and kernel size is 1 unless otherwise
specified. Each convolution that is not immediately preceding the output layer is
followed by a PReLU activation function, which is omitted from Figure 2.12.

Remove To avoid excessive computations, the boxes which are deemed by P-
Net to have a low probability of containing a face are removed.

Calibrate boxes P-, R- and O-Net outputs the coordinates for each candidate
bounding box within the input image it has received. These coordinates have to be
calibrated so that they represent the position of the candidate within the original
image. This can be done by keeping track of where each input patch sent to the
CNNs is originated in the original image, and then summing up the input patch
and its internal bounding box coordinates.

Non-maximum suppression (NMS) NMS is a technique used to remove
highly overlapping candidate bounding boxes. This is needed since P-Net has a
lot of overlapping input samples and the final bounding boxes should contain a
unique face each. NMS is performed by comparing the IoU (Intersect over Union)
between two boxes. IoU is calculated according to:

IoU =
Ai

Au
(2.10)

Theory 19

Where Ai is the intersection area and Au is the union area between the two boxes.
If the IoU is higher than a given threshold then the bounding box with the lowest
probability of containing a face is removed. This is done incrementally, starting
from the box with highest probability of containing a face, until all boxes have
been compared to each other. The boxes are sorted based on their probability of
containing a face to do this efficiently, since only two boxes can be compared at
once.

Reshape After removing and merging candidates, the remaining bounding boxes
has to be reshaped to a square with sides of equal length; In order to avoid losing
parts of the image, the shortest pair of sides should always be extended to match
the longest side pair.

Pad Because of the reshaping, some candidate bounding boxes may be extended
to reach outside of the original image. These candidate will be padded, to still
provide valid pixel values inside the entire bounding box. The padded pixels will
have a value of 0.

Resize The resulting bounding boxes will be of varying sizes: As they come
from different parts of the image pyramid and are altered by P-Net. Therefore
the bounding boxes have to be resized to a size of 24x24 pixels before being fed
to R-Net. With inter- or extrapolation if required. The resize stage use both
the coordinates from the bounding boxes as well as the corresponding data from
the stored input image. This is since R-Net require the pixel values of the facial
candidates as input.

Refine Network R-Net is a deeper CNN compared to P-Net, with the main
task of rejecting a lot of the false candidates it receives as input. It takes a bigger
resolution (24x24) of the candidate determined by P-Net. Which results in R-Net
being able to determine if the candidate contains a face or not with higher accuracy,
but it also has a longer computation time for each input candidate, compared to
P-Net. The outputs are candidate bounding boxes, within the provided 24x24
input, and their corresponding probability of containing a face.

20 Theory

Input layer

24x24x3

FC

FC

22x22x8

11x11x28

9x9x48

1x1x128

Softmax

1x1x2

1x1x4

FC

Probability of Candidate bounding

1x1x2

4x4x48

3x3x64

boxcontaining a face

Convolution:
3x3 kernel

Convolution:

3x3 kernel,

Convolution:

3x3 kernel

MaxPooling:

2x2 kernel

2x2 stride

MaxPooling:
3x3 kernel,
2x2 stride

Figure 2.13: Refine network structure.

Figure 2.13 show the internal layers in R-Net, with the input and output sizes
specified between each layer. There is a PReLU operation, omitted from the figure,
after each convolutional or fully connected (FC) layer. With an exception for the
output layers. All kernel and stride sizes are 1 if not stated otherwise. The output
from R-Net is handled similarly to that of P-Net: The remove, calibrate, NMS,
reshape, pad and resize operations are performed. Resize is computed in the same
way as pre-R-Net, but with a size of 48x48 pixels instead of 24x24 this time. After
that, the correct input can be provided to O-Net.

Output network O-Net is the deepest CNN in the MTCNN algorithm. Its
main task is to produce the final output: Setting the final bounding boxes, their
probabilities of containing a face and giving five facial landmark locations, for each
candidate it receives at the input.

Theory 21

Input layer

48x48x3

FC

FC

46x46x32

23x23x32

21x21x64

1x1x256

Softmax

1x1x2

1x1x4

FC

Probability of Candidate bounding

1x1x2

10x10x64

4x4x64

8x8x64

3x3x128

1x1x10

FC

Candidate
landmarksboxcontaining a face

Convolution:

MaxPooling:

Convolution:

Convolution:

Convolution:

2x2 kernel

3x3 kernel

3x3 kernel

3x3 kernel

2x2 kernel,
2x2 stride

MaxPooling:

MaxPooling:

3x3 kernel,

3x3 kernel,

2x2 stride

2x2 stride

Figure 2.14: Output network structure.

The internal structure of O-Net is shown in Figure 2.14, where the input
and output sizes of each layer is shown between the layers. Each fully connected
and convolutional operation, except on the output layer, is followed by a PReLU
activation function. All kernel and stride sizes are 1 where not stated otherwise.
The bounding boxes produced by O-Net are calibrated and NMS is applied to
remove any overlapping candidates. Candidates with low probability are also
removed. Unlike the output from R-Net and P-Net, there is no need to reshape or
pad any of the remaining candidate bounding boxes.

Calibrate landmarks The five facial landmarks provided as output from O-
Net have to be calibrated, in a similar manner as the candidate bounding boxes.
Each landmark is represented by two coordinates which represent their position
within the corresponding bounding box. The bounding box coordinates are then

22 Theory

used to calibrate the facial landmark coordinates to where they are located in the
original image, instead of in the bounding box.

2.4.1 Dynamic control in MTCNN

One of the strengths of MTCNN is that unnecessary computations are avoided by
removing false candidates in the early stages of the algorithm. This happens in the
remove/NMS stages, and means that it must be possible to decrease the number
of candidates from the input batch between each stage. Another implication of
this is that the number of iterations multiple stages have to run differ depending
on the input image.

If zero potential candidate faces are detected, additional conditional state-
ments must be inserted. This is due to the fact that null tensors causes runtime
errors to be thrown, equivalent to division by zero; Instead, the algorithm is fin-
ished and should terminate. This can only happen after one of the remove stages,
since all other stages with one or more boxes provided as input will result in at
least one box on its output.

The size of the input image will dynamically control the normalize, image
pyramid, calibrate, reshape and pad stages, in the sense that the number of oper-
ations that has to be performed are increased with an increasing image size. The
depth of the image pyramid also depends on the image size. This means that the
only static parts of the algorithm are the P-, R- and O-Nets. All other stages are
dynamically controlled by one or more factors.

To summarize, dynamic control in MTCNN is related to the following:

• The amount of iterations, per stage, depends on the input image and the
resulting amount of facial candidates produced.

• Candidate bounding boxes must be possible to remove.

• The algorithm should terminate if all facial candidates are removed.

• Input image size is variable and impacts multiple stages.

2.5 microNPU system

The hardware that will be evaluated is based on the Ethos-U Neural Processing
Unit (NPU) from Arm, also referred to as microNPU. [35] It comes in two main
variations: Ethos-U55 and -65, both with customer configurable parameters and
implementation targets such as: Number of computational units (MACs), clock
speed and memory size. Which allows for a wide range of future customer imple-
mentations with varying computational throughput, power consumption and us-
ability. The microNPU has to be deployed in a larger system featuring a Cortex-M
co-processor, referred to as CPU. [3]

Theory 23

Figure 2.15: Software stack for the microNPU system. [3]

The software stack of the microNPU system is described in Figure 2.15. It is
divided into two parts: Tooling and runtime software stack. Where the tooling
part is required for making the higher level ML model executable on the NPU
system and the software runtime is for running inference on the device. [3]

2.5.1 Tooling

The trained and quantized ML model provided as input in Figure 2.15 is a TFLite
file, quantized to use 8-bit integer computations where possible. This is processed
by the Arm compiler tool Vela before being deployable, as an optimized model,
on the microNPU system.

2.5.1.1 Vela

Vela is an open-source tool to make the TFLite model executable on the mi-
croNPU. It takes a quantized TFLite file as input, performs optimization and
scheduling and outputs a flatbuffer of commands to be executed on the microNPU
and/or CPU. [36] Vela will schedule the operators supported by the microNPU [37]
to be executed on the microNPU, with the possibility for unsupported operators
to be scheduled on the CPU instead. [10]

2.5.2 Runtime software stack

The software runtime consist of kernels to run inference using Arm’s CMSIS-NN
libraries, TFLite micro kernels, possibly other user defined kernels and a user
application, all running on the CPU. The user application can be any embedded

24 Theory

application capable of running on the CPU. The ML model, now optimized by
Vela, is executed on the microNPU as a command stream. If only parts of the
model can be accelerated by the microNPU, then the remaining parts will fall back
to the CPU. [10]

The full process of making an ML algorithm executable on the microNPU will
be discussed in greater detail in Section 3.

...

SRAM

Input data

Intermediate data

Output data

FLASH

CPU microNPU

Memory information

DMA

Interrupt signal

Control
Unit

Weights
Command stream

Figure 2.16: Overview of the communication between microNPU
and CPU during inference.

Running an application on the microNPU could be done in multiple ways, for
example by using different memory configurations. This thesis make use of the
following flow:

The pre-compiled command stream and compressed weights are put in system
Flash memory. Input data is put in SRAM, with space allocated for output data
and storage of intermediate data. The CPU sends the memory locations of the
command stream in Flash memory and allocated SRAM regions to the NPU and
signals it to start execution. The microNPU then executes the command stream,
storing the output and temporary data in the mentioned pre-defined space in
SRAM, and sends an interrupt to the CPU when finished. This is illustrated in

Theory 25

Figure 2.16, with the DMA-unit of the microNPU accessing the SRAM regions
(green) and the Control unit reading data (blue) from Flash based on the infor-
mation sent from the CPU. [10]

This exerts hard requirements on the available SRAM and Flash memory,
which has to be taken into account when developing these type of embedded ap-
plications. This will be further discussed in Section 5.3.3.

2.6 TOSA

Tensor Operator Instruction Set (TOSA) is an open-source operator set archi-
tecture, yet not finalized. It aims to standardize the primitive tensor operations
used in machine learning applications, with focus on operations often used/found
in neural networks. TOSA describes the low level operators in an algorithm and
is separated from the implementing framework, e.g TF and Pytorch (Pytorch is
another widely used ML framework). TOSA also provides the required type spec-
ification, data layout (tensor shapes), quantization and reference implementation
for the different operators, this makes it possible for different entities to imple-
ment hardware that can execute the operators with the same outcome - enabling
the possibility of TOSA compliant models/hardware. TOSA contains different
profiles depending on the use case. If training is required, an extended version of
TOSA would be necessary (the microNPU does not support training) - at the time
of writing this extension is not included. The profiles also mainly target different
systems depending on their type compatibility (integer and float) during inference.
[6]

Table 2.1: Overview of TOSA profiles [6]

Profile Purpose
BI Integer inference
MI Integer and float inference
MT MI with training

In Table 2.1 the type support and descriptions of the different TOSA profiles can be
seen; BI targets inference on smaller devices, such as a micro controller. MI targets
inference on regular devices with support for floating number representation. MT
is an extenstion on MI with support for training. [6]

Different frameworks handles quantization differently, e.g TF passes along the
needed quantization data on the tensors. Quantization in TOSA is executed be-
fore/after the operator in a separate RESCALE operator. This allows for different
quantization representations in the frameworks to be unified when lowering to
TOSA and the same quantization can be expected across all TOSA supported
models/hardware.[6]

TOSA supports if statements and while loops in terms of DC. However, no
support for dynamically shaped tensors are described in the specification.

26 Theory

TOSAMLIR TOSA has been implemented as a dialect in MLIR. It is a stand-
alone (separated from higher/lower compiler stages) IR that implements the tensor
and quantization specification of TOSA. The input to TOSA MLIR would suitably
be an IR from a framework, e.g Tensorflow lite.

Framework IR

TOSA MLIR

E.g NPU
Further

compilation

Figure 2.17: Example use of TOSA IR.

The output of TOSA MLIR can then be further compiled to different targets
or directly target specialized hardware. [38]

Chapter 3
Method

To make the MTCNN algorithm executable on the microNPU, the following work-
flow was adopted: Dividing MTCNN into smaller layers/sections, convert each
layer/section into a TF graph (using only native TF operators), quantize the sup-
ported graphs for int8 support and finally convert the quantized layers using Vela
to a command stream for the microNPU; unsupported operators on the microNPU
will fallback to the Cortex-M55 CPU. The aim of the workflow was to localize un-
supported parts of MTCNN. The sublayers of MTCNN contained various opera-
tors, both supported and unsupported, in different steps of the software/hardware
chain.

Verification and profiling could be performed at different steps in the imple-
mentation process.

3.1 Implementation workflow

In this section the workflow for model implementation is described in more detail.
Figure 3.1 show the workflow, and tooling, to go from an ML algorithm to

executable program on the NPU. It is an extension based on the requirements
for deploying and executing an ML application on the NPU system, presented in
Figure 2.15. Figure 3.1 includes verification, which will be discussed in Section
3.2. It illustrates how the verification can be done at different stages in the imple-
mentation process. The verification then acts as base for decision making if the
implementation is good enough or has to be changed in an earlier stage.

3.1.1 MTCNN model

The implementation of MTCNN, as described in the paper by Zhang et al. [1],
as well as a python implementation [5] was studied and reimplemented anew
in python with different structuring. The new structuring allowed for dividing
MTCNN into smaller subsections and putting necessary constraints on MTCNN.
These constraints are further discussed in the discussion section. The three net-
works in MTCNN: P-, R- and O-net, described in Section 2.4 and paper [1], were
given weights [39] provided by the python implementation. [5] Thus removing the
need for training the network using the method described in [1].

27

28 Method

TF graphs

TFL graphs

Quantization

Optimized models

Vela

C byte arrays

C conversion

Implementation

Model

Inference on FVP

Verification tools

Pre-trained
ML algorithm

TFL interpreter,
Quantization
comparison

TF/Python
interpreter

System test
environment

Figure 3.1: Overview of model implementation and verification
workflow.

3.1.2 TF graph

The subsections could then be converted to TF graphs using the TFLite converter,
described in Section 2.1.1. An example of this is presented in Appendix A. Which
shows the TF graphs of the different layers described in Section 2.4.

3.1.3 Quantization

The TF graphs could be quantized using the TFLite toolset, described in Sec-
tion 2.1.1, to use int8 types throughout the layer execution. Quantizing a graph
exerts extra requirements on the graph and its operators, such as not allowing
subgraphs. These requirements are presented and further discussed in Section 4.1.
The graphs were implemented to use only TFLite supported operators. Operators
with support for int8 data types were prioritized, since the NPU mainly support
8-bit integer operators [37], with fallback to use float32 data types where this was
not possible.

Method 29

3.1.4 Vela

The quantized TFLite graphs were then compiled using Vela. Producing an opti-
mized TFLite model as output.

3.1.5 NPU inference

The optimized TFLite model could be converted to a C byte array using C con-
version tools. [40] This makes the model possible to load into device memory and
be called from the main application. Manual memory mapping was done for the
memory regions that incorporate TFLite micro stages.

A C++ program was written to act as the main application for executing the
MTCNN algorithm. This application calls the individual MTCNN stages using
the TFLite interpreter, handles intermediate data between each stage and execute
the operations that cannot be executed on the NPU. All according to Section 2.5.2.

3.2 Verification and profiling

Each step of the implementation process, described in the section above, can result
in drawbacks in model performance. This makes verification an important part of
model implementation.

3.2.1 Full model in TF

The reimplementation of MTCNN was built using TF operators and 32-bit floating
point data types. After being converted to a TFLite file, with fallback to standard
TF operators if needed, inference could be run using the TFLite interpreter [20]
with fallback to the Python interpreter for TF native operators. The result was
evaluated based on images from the Wider Face dataset [2], it was also compared
to the python MTCNN implementation [5] by feeding both networks with the
same input image and comparing the output difference. This was done on the full
MTCNN model, described in Section 2.4, with the constraints presented in Section
5.2.

3.2.2 Quantization

After quantization from float32 to int8, evaluation was performed by inspecting the
quantization error of each stage. This quantization error was derived by subtract-
ing the output from the quantized model with that of the non-quantized model,
when running inference on the same input. To do this comparison, the input and
output data types must be the same. So the quantized model was extended with a
quantization layer from float32 to int8 before the input layer, and a dequantization
layer from int8 to float32 after the output layer. The quantization and dequantiza-
tion layers could be automatically generated using the TFLite quantizer, described
in Section 2.1.1.

30 Method

3.2.3 Vela

Vela produces performance estimates such as memory consumption and inference
time. It also gives detailed information about the scheduling made: Operator
utilization on the microNPU and CPU.

Arm provides models that can be used for verification and profiling of applica-
tions running on an Ethos-U system. [7] Similar models also exist for Arm CPUs,
such as the Cortex-M55 [41] and Cortex-M7. [42] These models can act as building
blocks to create a fixed virtual platform (FVP), which is a model of a complete
platform based on Arm processors, memory and other peripherals [43]: such as
the Corstone-300 FVP, which is based on the Cortex-M55 CPU and Ethos-U55
NPU. [44]

A system test environment, provided by Arm, was used to verify performance
of the individual stages. The test environment receives a quantized TFLite file
as input, build the necessary files using Vela and other tools and run inference
with the TFLite micro interpreter on the NPU/CPU models. The TFLite micro
inference results are then compared against the results of the original TFLite file
running on the TFLite interpreter: With the result being deemed as successful if
the TFLite and TFLite micro results are bit-exact to each other.

It also generates profiling information such as memory consumption, inference
time; including latency and stalling, and operator usage.

3.2.4 NPU inference

The Corstone-300 FVP was used to verify performance of the stages not possible
to be accelerated on the microNPU. This was done by executing the C++ main
application, with input generated by the TF-model, on the FVP and comparing
the output to the expected. Profiling could be done with regard to inference time
and to see that enough memory could be allocated for the individual MTCNN
stages to run on the FVP.

Inference was run on selected stages accelerated by the microNPU as described
in Section 3.1.5. This was used as a proof-of-concept and not as verification for
executing these stages, as they were already verified by the system test environ-
ment.

Chapter 4
Results

This chapter will present the results obtained from the investigation made in this
thesis. It will cover the implementation results, performance measured for different
hardware configurations as well as validation results from our implementation of
MTCNN.

4.1 Implementation results

Tensorflow supports dynamic shapes and control in the form of operators, such as
the TF while operator. When lowering the graph to TFLite with the supported
operators that accompanies this dialect of the compilation, more restrictions are
put on the availible operator set. TFLite also supports subgraphs, these are created
by conditional statements and blocks. See Figure 4.1, where subgraphs are created
by the body of the loop and the conditional statement of the while operator.

Figure 4.1: TF while loop, displayed using the visualization tool:
Netron. [4]

When quantizing the TFLite converted TF graph, further constraints are put
on the graph. Subgraphs are no longer supported and thus dynamic control in the
form of loops are not supported either. Although, a work-around to this is possible
by unrolling the loop, this is only valid if at compilation time the iteration count
can be calculated. This is demonstrated in Figure 4.2.

Unrolling the loop removes the need for subgraphs (body and conditional) and

31

32 Results

Figure 4.2: Quantized while loop unrolled 6 times, shown in Netron.

if the iteration count is unknown at compile time, an error is thrown by the TFLite
quantizer and quantization of the graph fails due to the lack of dynamic support.

Converting the model to TFLite micro then further constrains the available
operators. Operations on unknown dimensions of a tensor is unsupported and does
not work, as this would require changing the tensor shapes during interpretation
of the graph. By default, the shape of an unknown tensor becomes 1. A graph
instantiated with unknown input shapes with defaulted tensors to (1, 1) can be
seen in Figure 4.3. Running inference on a model with unknown shapes using the
TFLite interpreter requires a resize of the input tensors to fit the input data.

This also registers an error when compiling the quantized TFLite converted
graph with Vela as it detects the wrong input/output shapes. No work-around to
this was found and thus the entire MTCNN model could not be executed on the
microNPU as a single graph. The individual sub-layers could still be evaluated,
with fallback execution on the CPU where required, and the following section will
include results for this.

Results 33

Figure 4.3: Quantized while loop unrolled 3 times with unknown
input shapes, shown in Netron.

Table 4.1: Individual stages of the MTCNN implementation.

MTCNN stage CPU NPU
Normalize X

Image pyramid X
P-Net X
Remove X
NMS X
Scales X

Calibrate boxes X
Reshape X
Resize X
Pad X
R-Net X
O-Net X

Calibrate landmarks X

The sub-layers, or stages, the MTCNN algorithm had to be divided into are
presented in Table 4.1, where it is also marked if the stage could be accelerated by
the NPU, or has to be fully executed on the CPU. The individual stages are the
same as those the MTCNN algorithm was divided into in Section 2.4.

4.2 Performance

34 Results

4.2.1 Individual MTCNN sub-stages

Table 4.2: Hardware configurations used throughout this section.

HW configuration MAC units Clock frequency
HW1 32 500 MHz
HW2 128 500 MHz
HW3 512 1 GHz

The different sublayers of our MTCNN implementation was evaluated on the HW
configurations presented in Table 4.2, which will be used throughout this section.
All configurations include a Cortex-M55 as co-processor, referred to as CPU, with
different microNPU configurations.

Figure 4.4: Relative speedup (cycles only) on different HW config-
urations for selected MTCNN stages.

Figure 4.4 presents the speedup of running inference for selected MTCNN
stages, on the different HW configurations in Table 4.2 and the Cortex-M55 CPU.
Only the stages possible to implement on the microNPU has been included in
this figure. The speedup is calculated by dividing the inference time from Cortex-
M7 with the inference time for the target HW. Meaning that the Cortex-M7 is
used as baseline with the relative performance being shown for the other HW
configurations. The inference time is measured in clock cycles only. Different
clock frequencies between the processors would affect the runtime and will be
further mentioned in Section 5.

Results 35

Table 4.3: Memory footprint and operator utilization for selected
MTCNN stages running on an Arm microNPU system.

Stage SRAM Flash CPU/NPU OPS
Normalize 3.1 KB 0.4 KB 0/9
P-Net 5.3 KB 13.5 KB 0/81

Calibrate boxes 0.52 KB 0 B 0/31
Reshape 0.49 KB 1.3 KB 0/23
R-Net 47 KB 136 KB 0/91
O-Net 204 KB 463 KB 0/104

Calibrate landmarks 0.62 KB 3.2 KB 0/67

The NPU HW configurations used in the benchmarking is shown in Table
4.2. All are used alongside a Cortex-M55 co-processor, called CPU in Table 4.3.
The memory footprint for on-chip SRAM, Flash memory and NPU/CPU operator
utilization, for each stage that could be accelerated by the microNPU, is shown in
Table 4.3. These performance metrics are uncorrelated to which HW configuration
is being used, given that a microNPU is present. The Flash memory utilization
metrics are only estimates, while the SRAM usage and operator utilization were
derived during model verification.

Table 4.4: Profiling of the normalize stage in the MTCNN algorithm,
running on the target HW from Table 4.2.

Target HW NPU cycles Memory access
HW1 1 0.47
HW2 0.81 0.75
HW3 0.69 1

To obtain more information about the speedup measurements in Table 4.4,
further profiling was performed on selected stages and can be seen in Table 4.4 for
the normalize stage. The NPU execution and memory access results are presented
as their proportion of the total cycles when running the algorithm. These can run
in parallel, which is the reason why their sum is greater than 100 %. The NPU
execution and memory access values are only estimates, the actual utilization when
running the model may differ.

36 Results

4.2.2 Increasing performance

4.2.2.1 Custom PReLU operator

Figure 4.5: Speedup of custom and default (TF) PReLU implemen-
tation.

Figure 4.6: Custom PReLU operator implementation.

Figure 4.6 show the dataflow-graph of the custom PReLU operation, where a is the
weight. It conforms to Equation 2.7, presented in Section 2.2.1. Since multiplying
by −a will result in a positive value if the input is negative, and a value at 0 or
below otherwise. This implementation is only utilizing: MUL, SUB and ReLU
operators. All these operators are supported by the NPU. [37] The code and

Results 37

Table 4.6: Iterations per stage in the MTCNN algorithm.

Faces Normalize P-Net Calibrate boxes Reshape R-Net O-Net Calibrate landmarks
0-9 2186 126726 655 650 628 21.8 4.5

10-19 2186 126726 937 922 861.4 60.7 14.5
20-29 2186 126726 1191 1166 1068 97.7 24.5
30-39 2186 126726 1305 1270 1149 121 34.5
40-49 2186 126726 1535 1490 1345 145 44.5

TFLite graph for this implementation can be seen in Figure A.7, in Appendix A.

Table 4.5: Custom and TF PReLU operator placement and memory
usage.

Stage PReLU CPU/NPU OPS Memory footprint
P-Net TF 3/80 3.0 KB
R-Net TF 4/89 28 KB
O-Net TF 5/101 137 KB
P-Net custom 0/81 5.3 KB
R-Net custom 0/91 47 KB
O-Net custom 0/104 204 KB

The performance of the MTCNN stages using PReLU: P-, R- and O-Net,
is shown in Table 4.5 and Figure 4.5. All values in Table 4.5 are taken using
HW configuration HW2 from Table 4.2. TF in the PReLU column refers to the
default tensorflow PReLU-operator [45], custom means that our custom PReLU
implementation is used. The memory usage refers to required SRAM.
The speedup values in Figure 4.5 are normalized by dividing each value with that of
the same stage (P-, R- or O-Net) utilizing the TF-PReLU operator being executed
on the Cortex-M7. The other results in the report, such as Figure 4.4, utilize the
fastest available PReLU implementation for its underlying HW: P-, R- and O-Net
with custom PReLU when executing on the NPU, and TF-PReLU when executing
on the Cortex-M7 or -M55.

4.2.3 Execution time

It was investigated if there is a correlation between the number of faces in the input
image and the total MTCNN execution time, and the result is presented in Table
4.6; The average amount of iterations for each stage in the MTCNN algorithm for
different amount of faces in the target image is shown. Only the stages accelerated
by the NPU are included in this table.

These values were derived using 2500 test-images from the WIDER FACE
dataset [2]. Since different stages have different execution times depending on
the target HW it is executed on: The proportion of the total execution time for
each stage is shown in Figure 4.7a. These values are based on the iterations per
stage presented in Figure 4.6 and the cycle count for each stage when executed on
different HW configurations, seen in Figure 4.2.

The average throughput of the MTCNN algorithm is presented in Figure 4.8
and Table 4.7, in units of frames per second (FPS). These values are based on

38 Results

(a) With P-net

(b) Without P-net

Figure 4.7: Relative time spent by each layer, on different HW
configurations with a varying amount of faces detected. The
bars correspond to the right axis and the lines correspond to
the left axis in Figure 4.7b.

Results 39

Figure 4.8: Throughput (FPS) of the MTCNN algorithm.

Table 4.7: Overview of throughput for MTCNN and other algorithm
implementations.

Implementation Algorithm Throughput
(FPS) # Faces Resolution HW Power

requirements
This thesis. MTCNN 0.49 0-10 561x561x3 HW3 10-100 mW

Centeno. [5] MTCNN 4.5 1 561x561x3 Intel i7-3612QM
@ 2.1 GHz 35 W [46]

Centeno. [5] MTCNN 3.4 10 736x348x3 Intel i7-3612QM
@ 2.1 GHz 35 W [46]

Zhang, et al. [1] MTCNN 99 - 640x480x3 NVIDIA Titan 600 W
Power supply [47]

This thesis. MobilenetV2 467 - 224x224x3 HW3 10-100 mW
This thesis. MTCNN 11.15 0-5 128x128x3 HW3 10-100 mW

STMicroelectronics. [48] Person detect 6.8 0-1 128x128x3 STM32H747I
@ 400 MHz ∼600 mW [49]

Capotondi, Rusci. [50] Image
classification 6.1 - 160x160x3 STM32H743ZI

@ 400 MHz ∼600 mW [49]

execution using the HW configurations presented in Table 4.2, with a Cortex-M55
CPU. For a varying number of faces (0-49, in steps of 10 between each data point)
in the input images. The CPU clock frequency is assumed to be 216 MHz for all
HW configurations, and the microNPU clock frequency are presented in Table 4.2.

All clock frequencies are assumptions and can differ for HW based on the same
settings. The throughput results are derived by accumulating inference results for
all individual stages of the MTCNN algorithm, including the ones falling back to
the CPU. The implications of this will be further discussed in Section 5.3.6.

Table 4.7 display the throughput and related metrics, such as resolution and
HW platform, for different implementations of MTCNN and other NN based al-
gorithms. With resolution and #faces meaning the image resolution and number
of faces in the image. The person detect model is based on MobileNetV2, and the
image classification is based on MobileNetV1, which is discussed further in Section
5.6.2. Details about the HW configuration for our MTCNN implementations can
be seen in Table 4.2. The power requirements of the different implementations

40 Results

in Table 4.7 is also to be noted. As the system investigated in this thesis is an
embedded system, with requirements of lower power consumption compared to
that of a desktop GPU, for example; The column stating the power requirements
are estimates of the total power consumption for the different hardware configu-
rations and should be seen as a way to compare the efficiency of these. The power
consumption of the system investigated in this thesis are based on internal investi-
gations made at Arm. The power requirements for the STM32H7 microcontrollers
in Table 4.7 are derived based on typical current consumption at 400 MHz; With
all peripherals enabled and code execution from Flash memory with cache enabled,
multiplied by the typical operating voltage of the system.

4.3 Validation

Validation of the implemented model (only TF operators, running eager execution)
compared to a python MTCNN implementation by I. Centeno [5], was done by
running inference on the same images and comparing the outputs. As described
in Section 3.2. Figure 4.9 portrays the absolute difference in bounding boxes
coordinates over 500 images from the WIDER FACE dataset [2].

Figure 4.9: The absolute error over 500 images from the WIDER
FACE dataset. [2]

Figure 4.9 displays five outliers in the data and these will be discussed further
in Section 5.4. The average absolute error, in number of pixels, for the four corners
of every bounding box is seen in Figure 4.10.

Results 41

Figure 4.10: The average absolute error for Figure 4.9.

The average value was calculated across the absolute error (output delta) for
the 500 images. Removing the five outliers (absolute error above 60) resulted in
Figure 4.11.

Figure 4.11: Figure 4.9 without the outliers.

The average absolute error, in number of pixels, without the outliers can be
seen in Figure 4.12. With the outliers classed as failed detections; 69 out of the 500
images had too few faces detected and 29 had too many. Resulting in an accurate
detection rate of 80.4% for the custom model compared to the implementation by
I. Centeno [5] in terms of detected faces. The average error in confidence was: 0.89
%.

42 Results

Figure 4.12: The average absolute error for Figure 4.11.

Figure 4.13 display the difference between the detected bounding box by our
implementation (red), and the python MTCNN by I. Centeno [5] (blue), for an ex-
ample image from the WIDER FACE dataset. [2] The image resolution is 561x561,
which conforms to both algorithms. The average difference between each endpoint
of these two boxes are 4.6 pixels, which is close to the average difference presented
in Figure 4.12.

Figure 4.13: Bounding boxes from our MTCNN model (red) and
a reference implementation [5] (blue), on a sample image from
the WIDER FACE dataset. [2]

4.3.1 Quantization

In order to find the impact of quantizing the different layers, to use int8 weights and
tensor types, the quantization error was computed; using the method described

Results 43

in Section 3.2.2. The magnitude of this error represents the information loss via
quantization.

Table 4.8: The average difference for quantized stages. P-, R-
and O-net displays the difference for the coordinates and the
confidence.

Layer Tensor range Average Difference
Normalize [-1,1] 0.0039

P-net [0,1] 0.0156, 0.0082
Calibrate boxes [0,561] 2.39

Reshape [0,561] 1.09
R-net [0,1] 0.011, 0.015
O-net [0,1] 0.0068, 0.017

Calibrate landmarks [0, 561] 2.21

Table 4.8 presents the average difference between the quantized inference out-
put and the regular output. The layers were quantized using 25 images from the
WIDER FACE dataset [2]; An average difference was then also calculated on 25
different images from the WIDER FACE dataset [2].

The error presented in Table 4.8 was calculated for each layer, independent
of other layers; The total error for one inference would then be the summation of
all errors across the different layers - this would change if merging of layers were
possible, as the need for dequantization would be reduced.

Chapter 5
Discussion

5.1 Limitations

Due to the requirement of an 8-bit quantized model for the microNPU, certain
limits were enforced on the model in the different stages, when lowering from TF
to the barebone NPU. The limitations put on the model will be discussed in this
subsection.

5.1.1 Tensorflow

The limitations that was put on MTCNN with regards to implementing it in TF
could be viewed across the different steps (TF → TFLite → TFLite micro).

TF The complete divided and modified model (only TF native operations) were
able to run in TF using graph execution (not eagerly executed) on an ordinary
x86_64 cpu in python. This meant that no fallbacks to the python interpreter
took place when executing the graph - DC and DS is thus far supported.

TFLite The TFLite converter only supports a subset (albeit many) of the TF
operators used by our implementation of MTCNN. The unsupported operators
gets converted to what is called a flex operator. A flex operator is instead exe-
cuted using the core TF runtime [16]; Since the microNPU leverage the TFLite
micro runtime, flex operators are unsupported. The operators that were con-
verted to their flex counterpart in MTCNN were: tf.image.non_max_suppression,
tf.image.extract_patches and tf.image.crop_and_resize. [14] The necessity for the
extract patches operation can be discussed, as this essentially performs the crop-
ping of the images with a certain stride - equivalent to the initial part of a CNN.
However, it impacted the: NMS, image pyramid, resize and pad stages, as all were
using one of these operators. The implications of this will be further discussed in
Section 5.3.4.4.

Solely converting a model to TFLite does not suffice for running it on the
microNPU; Converting the model to use 8-bit integers is also necessary. The
quantizer put constraints on the model as well, even though while and if is sup-
ported in TFLite, quantization does not support the use of sub graphs - in the case
where the iteration count and condtional statements are unknown at compile-time

45

46 Discussion

- true DS and DC.

TFLite micro The TFLite micro runtime supports a subset of the TFLite
operations. Dynamic control (while and if) is not supported. DS in the graph is
also not supported and defaults to a size of 1.

5.1.2 Vela

The overall structure of Vela can be summarized as; A TFLite file is transformed,
optimized and scheduled to run on an Arm microNPU system using the TFLite
micro interpreter. Due to the limitations in TFLite and the TFLite quantizer,
Vela is unable to output said optimized TFLite file if the inclusion of DS and DC
is present.

5.1.3 NPU

It is not possible to use any DC or DS operators on the microNPU, as these are not
listed in the supported operators Vela can schedule on the microNPU. [37] Since
this is an upstream limitation in the toolchain, it is extpected that the microNPU
show no support for this.

5.2 Model Alterations

Because of the aforementioned limitations of TF and Vela, a complete replica of
MTCNN was not possible to make entirely using only TFLite micro operators. To
circumvent the problems of dynamic control and shapes, alterations were made
and constraints put on the model. One important constraint was that the input
image size to the model would be constant; This allowed for many of the shapes
and iteration counts to be calculated at compile-time - especially the number of
iterations in the image pyramid and the amount of sub images generated at each
iteration. This is a reasonable constraint to be set on an edge device as the use-
cases for these are often accompanied by sensors (cameras, etc) that does not
change the format of its output. This also removed multiple previously required
dynamic shapes.

Conditional operators could not be used, meaning that the model could not
be terminated early if no facial candidates remain. This could be resolved in two
ways: Letting the CPU handle the conditional for zero candidates, or including
an extra low-confidence candidate which is only removed at the final stage of the
algorithm. The latter approach was adopted; This made sure that all stages were
executed at least once and avoided errors by executing a stage without a valid
input. Having circumvented the issues at hand, performance could be measured
to evaluate the gain of running these kinds of models on the microNPU.

Discussion 47

5.3 Performance evaluation

This section will go summarize the individual stages performance in terms of in-
ference speed, memory footprint and what could be done to increase performance;
The full MTCNN model will be evaluated, based on execution time and accuracy.

5.3.1 HW constraints

The clock frequencies for the Cortex-M series processors as well as the microNPUs
are decided by the system-on-chip (SoC) manufacturer. Assumptions had to be
made on these to get the FPS-based results presented in Section 4.2.3. These clock
speeds are presented in Table 4.2 for the different NPU configurations, and was
chosen as 216 MHz for the CPU.

The assumption of microNPU clock speed was based on executing Vela [36]
with the settings in Table 4.2 as input parameters, and noting the clock speed
presented in the output profiling data. The CPU clock frequency was assumed
to be the same as that of the STMicroelectronics mid-range Cortex-M7 based
microcontrollers. [51] This was assumed since the Cortex-M7 has proven to be
capable of executing TFLite micro NN based applications. [48] However, as the
microNPU is able to accelerate ML performance in combination with the Cortex-
M55, a mid-range implementation of the CPU might be enough - which is why
the clock frequency of the mid-range (STM32F7), and not the high-performance
(STM32H7) series was selected as assumption.

These clock speeds were only used when unavoidable, due to the high uncer-
tainty of how it will relate to future SoCs, all other performance evaluations were
based on clock cycles only. These assumptions and the fact that models and not
physical HW was used to obtain the benchmarks, implies that all performance
figures stated should be treated as estimates only.

5.3.2 NPU acceleration

The P-, R- and O-Net stages shows a clear speedup of approximately 2-3 times
when running on the Cortex-M55 compared to the Cortex-M7. While for the other
stages the speedup is around 10 % between these hardware configurations. The
higher speedup is expected for the P-, R- and O-Nets as they are ANNs utilizing
common ML operators, which the Cortex-M55 was made to accelerate. [52]

The three NPU settings; HW1, HW2 and HW3 presented in Table 4.4, all
gives a speedup relative to the Cortex-M7 for all individual MTCNN stages. A
similar pattern as for the Cortex-M55 results is visible, where the P-, R- and
O-Nets achieve higher speedup compared to most of the other stages.

Combining the Cortex-M55 with a microNPU also accelerated the stages not
containing an ANN: With the normalize stage achieving a comparable speedup
to the CNN-based stages. This was not the case with only the Cortex-M55 CPU
present. This shows that significant performance increases can be achieved even for
non-ANN applications, when executed on the NPU. The calibrate, reshape and
calibrate landmarks stages did not achieve a performance increase as impressive;
This is due to the way the layers were implemented - seen in the Appendix A,
the graphs can only execute on one bounding box at a time. These layers are

48 Discussion

therefore unable to leverage the added performance increase of the parallelism
provided by higher-end hardware configurations - without further enhancements
to the software-stack. The same reasoning could explain why the P-Net and
normalize stages did not achieve as great speedup as, for example, O-Net on
the most powerful HW configuration (HW3); Since these stages contain fewer
operations, and thus benefit less of increased parallelism.

In Figure 4.7 the relative run-time spent on each layer for one inference can be
viewed; The most computationally demanding layers are accelerated by the NPU -
where the normalize, calibrate, reshape and calibrate landmarks stages amount for a
combined execution time of 1.2% to 0.2% depending on the hardware configuration.

The layers containing ANNs are by far the most demanding on the hardware
(in MTCNN) and little performance would be gained by getting the four aforemen-
tioned layers accelerated by the NPU - Even though the normalize layer achieved
a significant relative performance gain, the total gain by accelerating this layer is
perceivably non-existant in the grand scheme of run-time for MTCNN.

5.3.2.1 NPU execution vs. memory access

Table 4.4 show memory access versus NPU utilization for the normalize stage on
different hardware configurations. This explain the speedup between the different
hardware configurations HW1, HW2 and HW3 in Figure 4.4, for the normalize
stage: The NPU utilization relative to the total execution time decreased when
HW with more MAC units were used. The memory accesses are assumed to be the
same across the different configurations. Meaning that the NPU execution time
became more effective due to the increase in MAC units, with the possibility to
run more computations in parallel. Similarly, the hardware configuration with the
most MAC units on the microNPU is limited by memory access operations, thus
adding even more MAC units should not result in further speedup in this case.

5.3.3 Memory requirements

The memory required to be reserved for each stage is shown in Table 4.3. The
maximum SRAM value is the most important, as the stages will not run in parallel
and are therefore not required to occupy space in SRAM memory simultaneously.
The memory can instead be allocated right before model execution. No hard
limits to memory was considered, as this will depend on the physical SoC where
the network is deployed; It does not exist any commercially available products
incorporating an Arm microNPU yet. Instead, comparisons with current high end
embedded microcontrollers based on a Cortex-M CPU was made.

O-Net exerts the largest memory requirement of 204 KB. This is deemed as
acceptable since several high end Cortex-M based SoC has 256-1024 KB of SRAM.
[53, 54, 51, 55] If 700 KB or more is available as on-chip flash, which is the case for
multiple cortex-M based SoCs [53, 55, 54], the entire network can fit into the target
SoC. The flash memory usage can also be placed off-chip, if required, allowing for
bigger NNs when the SoC flash size is limited.

Discussion 49

5.3.4 Increasing performance

5.3.4.1 P-Net

As shown in Figure 4.7a, the overall performance of the algorithm depends on
an efficient implementation of P-Net. The system saw a bigger increase to per-
formance with an increase in complexity for the network; As P-Net is relatively
simple, and only runs for a 12x12 section of the image, a big potential for perfor-
mance increases can be made. The sections of the image analyzed by the P-Net
can run independent of other sections and thus can benefit greatly from parallel
execution by the P-Net. Another performance increase could be made by designing
a custom P-Net for the system, the custom P-Net could be more complex in the
sense that it could process larger parts of the image at once; It would be expected
to see a performance increase similar to the one for O-Net, seen in Figure 4.4.

5.3.4.2 Custom PReLU operator

The entire P-,R- and O-Nets of the MTCNN algorithm could initially not be
executed on the NPU, as seen in Table 4.5. This was because of the PReLU
operator, which had to fall-back to the CPU and was used multiple times for each
stage. This resulted in crosstalk between the CPU and NPU. To see what effect
this had on the performance itself a custom PReLU operator was implemented
and tested. A big speedup and increased memory usage was registered as a result.
The memory increase was expected as more operators are being executed on the
NPU.

This shows that it can be worthwhile the effort to create custom operators to
obtain performance increases. While at the same time the potential drawback of
increased memory usage is shown.

5.3.4.3 Decrease crosstalk

Another method to decrease crosstalk between CPU and NPU is merging stages
in the MTCNN algorithm. This allows for the NPU to operate longer without
requiring to communicate with the CPU. This would also reduce the times the
TFLite micro interpreter has to be invoked and lead to less data handling, between
each stage, in the main application. This makes the algorithm easier to deploy
from a developers perspective. However, it may require more space in the SRAM
as larger TFLite graphs are being run at once.

The major obstacle for merging more MTCNN stages are the operations that
cannot be executed on the NPU. These are interleaved with the other stages in
ways which makes merging impossible at several parts of the algorithm. The main
problem relates to the NMS and remove stages, as these are executed after each
of the three CNNs.

The reshape and calibrate layer was merged to investigate further performance
enhancements through merging layers. A decrease of about 25% could be seen to
the total run-time - this decrease is due to reduced crosstalk between the CPU
and NPU as well as more efficient parallel computation; Vela has the possibil-
ity of scheduling the operations more efficiently, the same concept as link-time

50 Discussion

optimization in compiler technology.

5.3.4.4 Issues with remaining stages

The stages including operators defaulting to flex-ops, mentioned in Section 5.1.1,
was investigated further to localize the issues with executing these on the NPU:

Image pyramid Major parts of the image pyramid could - with the constraint
of a fixed image size, be calculated at compile time; The size of the image pyramid
and coordinate computations are, in this case, independent from the input data
and not dynamical. The remaining issue was extracting the 12x12x3 patches for
P-net to analyze. This resulted in the TF graph having a very high iteration count
or a too large size, and it was deemed to be a more suitable operation to put on
the CPU instead (note that this is the same operation performed in a regular
CNN, extracting patches with a specific kernel and stride). This is not because
the CPU gives a performance uplift, but due to the limited number of operators
available in the toolchain. Since the operation mainly relates to forwarding input
data, as most computations are finished at compile time, there was no expected
performance uplift if this stage would be possible to be executed on the NPU.
Deploying it on the NPU is not expected to result in a significant reduction in
crosstalk between CPU and microNPU either, as this stage is only executed once
in the MTCNN algorithm.

Remove The remove stage require removing parts of the input with a low
probability of containing a face, decided by the preceding stages, and providing
the remaining boxes as output. This trivial operation was not possible in TFLite as
it require DS on the input and output. Contrary to the image pyramid, this would
be expected to reduce the total crosstalk in the system, resulting in a performance
uplift; The remove operation/layer has to be done previous to every NMS.

NMS NMS could not be accelerated by the microNPU as it require DS, on both
input and output parameters, and DC in the algorithm.
The amount of bounding boxes NMS receives depend on the input image; With
NMS having to sort and iterate over each box and therefore must know the total
number of boxes. The NMS algorithm require control flow operators: if and while
- as comparisons are made, and the input data has to be iterated over multiple
times. The amount of comparisons and iterations on each NMS run depends on
how often the candidate bounding boxes can be merged, and how many candidates
there are.

The NMS algorithm was possible to implement on the Cortex-M55, as this
supports DC and DS. So the entirety of the algorithm is executed on the CPU,
with no possible acceleration from the NPU. NMS is a computationally intensive
algorithm, making an acceleration by the NPU desirable not just for reducing
crosstalk but also achieving a performance increase during NMS inference. As the
number of faces in an image increases, so does the computational requirements of
NMS; This can be seen in Figure 4.7b where it surpasses both R- and O-net in

Discussion 51

computational requirements - when R- and O-net are accelerated on more powerful
configurations of the microNPU.

Pad The padding stage was problematic to implement without any conditional
DC operators. Since each bounding box should be padded for all coordinates that
exceed the input image, conditional control flow is required. Another solution
would be to run inference on pre-padded images and in turn, increase the run-
time.

Figure 5.1: Example pre-padding. Middle image is taken from the
WIDER FACE dataset. [2]

Another approach would be to create a pre-padded image, which has the input
image in the middle and padding on the sides, allowing for bounding boxes to
extend outside of the image. An example of this is shown in Figure 5.1, with black
denoting padding. The red bounding box is an example candidate that could have
been provided from the reshape stage.

This comes with two drawbacks: Pessimistic padding has to be made, as the
theoretical maximum padding has to be possible even if none of the boxes has to be
padded that much, or at all, in practice. The other issue is that the entire image,
with padding, then has to be stored in device SRAM to be used by a TFLite micro
program. Since the original image is 561x561x3 pixels, and the padded one will be
even larger, this approach was deemed as too memory intensive to be deployable
on the NPU.

Resize Bilinear resizing is supported by the NPU [37], but DS is also required
to make the resize stage possible. This is because the input sizes differs between
each input box, which has to be defined to perform the operation. This made the
resize stage unsupported on the NPU.

The resize stage is always preceeding the pad stage. Meaning that for crosstalk
to be reduced, both has to be implementable on the NPU instead of CPU. The
resize stage was still expected to give an uplift in performance if executed on the
NPU, as the main operator: Resize bilinear, is supported.

5.3.5 Impact of input data with varying number of faces

MTCNN differ from traditional ANNs, such as CNNs, in the sense that the input
image will have a large effect on the execution time. This must be taken into

52 Discussion

account to obtain proper MTCNN benchmarks.
With the constraint of a fixed image size, or resolution, P-Net will execute for

the same number of times for each input image. The proceeding stages will however
have different iteration counts depending on the P-Net output, which depends on
the input image. Table 4.6 show a clear correlation between an increased number
of faces and a higher iteration count for the later MTCNN stages. This was
somewhat expected: As the iteration count for the later stages depends on the
amount of candidates with a high probability of containing a face. The iteration
count can still differ a lot for images with the same numbers of faces, as there
will be false positives in the P-Net and R-Net output. This is why average values
over a large set of images, 2500 from the WIDER FACE dataset [2], was used to
obtain the data in Table 4.6; This also highlights the number of times P-net has
to run compared to the other stages in the MTCNN algorithm - as P-net is not
the individually most demanding layer on the hardware.

The non-NMS stages produce one output candidate per input, meaning that
the execution time is proportional to the iteration count. The NMS stage however,
is only executed once but with a variable number of input candidate bounding
boxes. It was assumed to have a nonlinear time complexity relative to the number
of input candidates, due to sorting the boxes and having to perform a calculations
for each box depending on the remaining number of boxes, described in Section
2.4. The benchmarking of the NMS algorithm was performed similarly to the other
stages, but by taking the median number of input boxes for each NMS instead of
an iteration count, for images with 0-50 faces. The NMS execution time will also
depend on the box coordinates, as more boxes being merged will lead to slightly
less total comparisons in the end. This was however disregarded when obtaining
the execution time benchmarks, as the amount of boxes was assumed to have a
much greater impact than the coordinates. Since different box coordinates mainly
affect the final comparisons, which are the less expensive than earlier comparisons,
and the sorting only depends on the number of boxes.

The NMS operation was done on sample data from running the full MTCNN
algorithm. This was not done for the other stages as their execution time only
depends on the iteration count, not the input data itself.

5.3.6 Execution time

A clear speedup is visible between the different HW configurations in Figure 4.8.
This speedup mainly comes from the speedup of P-Net; which dominate the total
MTCNN execution time, as displayed in Figure 4.7a. However the clock frequen-
cies used, shown in Table 4.2, also make a major contribution between the resulting
throughput for HW1 and HW2 compared to HW3.

Compared to the implementations by Centeno [5] and Zhang, et al. [1] in
Table 4.7, our MTCNN implementation achieves a substantially lower throughput
when executed with otherwise similar settings: Resolution and number of faces in
the input image. This was expected as the Centeno and Zhang, et al. benchmarks
utilize more powerful HW. However that comes at the cost of a higher power
consumption, which is also visualized in Table 4.7.

A person detect [48] and image classification [50] implementation was included

Discussion 53

to show how our MTCNN model differs to other NN algorithms executing on simi-
lar HW. The functional differences between the person detect, image classification
and MTCNN is discussed in Section 5.6.2. Our MTCNN algorithm was re-built
and executed using an input image resolution of 128x128x3 to be as comparable to
the other ML algorithms as possible. This reduces the computational complexity,
which explain the major increase in throughput, for the lower-resolution MTCNN
implementation.

Table 4.7 clearly displays the higher complexity of MTCNN compared to al-
gorithms like MobilenetV2, running on identical HW. As MTCNN receives a sig-
nificantly lower throughput compared to the mobilenetV2 benchmark, executed
on HW3.

The Cortex-M55 combined with a microNPU is not the recommended choice
for real time face detection, but instead the more powerful Ethos-N combined
with an Cortex-A CPU. [10] This coincides with our results: Even though real-
time performance can possibly be achieved, it is at the expense of reducing the
resolution of the input image. Which can be seen as a downgrade to the MTCNN
algorithm, as the input information is reduced. It is good that our performance
estimate of MTCNN can achieve similar performance to NNs with more basic tasks,
running on similar HW and other settings, but it might not make as much sense
for MTCNN to run on this low resolution as, for example, an object classification
or detection NN.

5.4 Validation

The accuracy of the model was only measured in terms of reassuring/validating
functionality for the custom implementation of the different layers.

This was done, as described in Section 3.2; By comparing the output of our
model to that of a python MTCNN implementation [5], on a set of images from
the WIDER FACE dataset. [2] This approach was deemed as the most fitting
to guarantee functionality, as it avoids manually having to look at a large set of
images to determine if the algorithm works or not. The WIDER FACE dataset
could have been used on its own, but that does neither take the minimum face
size (which MTCNN is trained to detect) into account nor the input resolution of
our model. Meaning that a lot of the information stated in the dataset would be
undetectable; due to input degradation when resizing and MTCNN minimum face
size requirement.

By using the python implementation as reference, many undetectable boxes
due to these limitations are immediately discarded. Some issues do remain how-
ever, such as boxes below the minimum face size being detected even though the
algorithm was never trained for that. These boxes were still included in the results
in Figure 4.11 and 4.12, as both implementations has a chance to detect them, but
it adds another level of uncertainty in the results. The outliers removed between
Figure 4.11 and 4.12 were deemed as being too far from the detected face, and
instead treated as a missed box by our implementation.

It is difficult to determine the coordinates of a face with pixel-perfect preci-
sion: This was illustrated by Figure 4.13. Thus having some pixel variations was

54 Discussion

determined as acceptable, with a low error in detection rate and confidence being
of higher importance.

Our implementation was deemed as functional. Based on the average pixel
error of around 4.5 pixels, displayed in Figure 4.12, alongside a low confidence
error of below 1% (using the same verification as for the bounding boxes). When
comparing the two implementations. As the implementations are done in a similar
manner, use the same weights and are based on the same algorithm; ideally the
outputs would have been identical. However, this result is still seen as good enough
for a valid MTCNN implementation.

5.4.1 Quantization

Verifying the model after quantization to 8-bit integer is important since this
can result in a performance degradation, as discussed in Section 2.1.1. Two ap-
proaches were considered for this: Testing the full quantized model and verify its
performance, or comparing the quantization error of each individual stage in the
MTCNN algorithm. The latter approach was chosen, as described in Section 3.2.
The first approach was turned down as it would not give any meaningful output
to which stage had a faulty quantization. It would only produce information with
regards to if the entire quantized model achieved a good enough result.

The results presented in Table 4.8 show the quantization error of the individual
stages. This was seen as reasonable, since all values are close to the theoretical
minimum quantization error, presented in Equation 2.1. This deviation, of a few
pixels or percent in confidence, is deemed as having low enough impact on the
final output of the layer. Mainly due to the previous argument; that it is difficult
to determine a face with pixel-perfect precision.

5.5 DC in other ML algorithms

MTCNN is not the only algorithm that incorporates dynamic control, which have
been addressed by Yuan, et al: "[M]odels based on recurrent neural networks
and on reinforcement learning depend on recurrence relations, data-dependent
conditional execution, and other features that call for dynamic control flow". [8]

RNNs contain recurrence relations that are commonly modeled as loops on
implementations using a high level programming language. [56] RNNs with finite
sequence lengths can be represented without dynamic control at execution time
if the loops are unrolled, according to Section 2.2, but infinite sequence length
RNNs cannot be unrolled and thus require dynamic control operators to imple-
ment. Using control flow operators can also reduce the memory footprint, as an
unrolled loop can result in more instructions placed in device memory [34], which
is important for memory constrained devices. Such as embedded microcontrollers.
This implies that the available memory, in which the unrolled RNN will be placed,
constrains the sequence length of the RNN itself. [8]

Even though RNNs and reinforced learning are prime examples of algorithms
that would benefit of dynamic control, Google has also emphasized that dynamic
control will enable future ML algorithms: "Dynamic shapes, dynamic flow control,
dynamic multi-model dispatch, streaming models, tree-based search algorithms,

Discussion 55

and other are all good examples of exciting ML evolution". [12]
Another benefit of DC operators is ease of use and flexibility when imple-

menting and training ML algorithms. Where more traditional, static NN based
algorithms could be extended with DC operators to gain extra functionality. Both
during training of the algorithm and during inference. [8, 9]

5.6 Similar purpose ML algorithms

MTCNN was selected due to its unique architecture and dynamic properties.
Other algorithms that perform similar tasks will be presented in this section with
a comparison to MTCNN. This is to highlight algorithms deployable on similar
hardware as the NPU system, but which are different to MTCNN.

5.6.1 MobileNetV1

MobileNetV1 is a NN architecture which target mobile and resource constrained
devices. It can be trained to perform different tasks, such as geolocalization and
image classification. [57] The image classification algorithm presented in Table
4.7 is a MobileNetV1 trained for image classification. [50] This makes it quite
different to MTCNN, as it does not give any bounding boxes or landmarks within
the image, but can be trained to classify the image as containing a person or not.

5.6.2 MobileNetV2

MobileNetV2 is a continuation of V1 with the same purpose; inference on re-
source constrained devices such as mobile platforms and microcontrollers. [58]
MobileNetV2 implementations fully executable on an microNPU system exist [59]
but does not, as opposed to MTCNN, consist of dynamic control.

MobileNetV2 can just like V1 be trained to perform a multitude of different
tasks, such as object detection, image classification and semantic segmentation.
[58] With person detection being closest to the face detection and alignment task
of MTCNN. The person detection algorithm presented in Table 4.7 receives an
input picture and produce a binary output (yes or no) depending on if the image
contain a person or not. [48] MTCNN give more elaborate results: Capability
of detecting multiple faces, each with its own probability, facial landmarks and
bounding box.

5.7 DC support in emerging ML frameworks

The TFLite micro based toolchain described in Section 2.5 presents the official
approach to deploying and executing an application on the current microNPU
product line. This was later extended by us to form a workflow, displayed in
Figure 3.1, which presents a complete toolchain for implementing a ML model on
the NPU system.

The NPU HW, when taped-out on a physical SoC, is inflexible. The toolchain
is not. The limitations of the toolchain, presented in Section 5.1, could potentially

56 Discussion

be bypassed by using other frameworks. However, as the NPU is designed to
support this specific workflow, it is possible to have limitations tied to those in
the toolchain as well. Meaning that solving these issues might require changes to
the HW as well.

This makes other frameworks for ML applications important to consider: As
they can be a replacement, or amendment, to the toolchain for the current or
future NPU versions. DS and DC support in modern ML frameworks is actively
being developed and new algorithms are emerging that can take advantage of
this additional DC; Following the framework, support for DS and DC in devices
(hardware accelerators, GPUs, etc) and compilation stack.

The following subsections will go into detail on these frameworks and what
they would mean for MTCNN and other DC based ML algorithms.

5.7.1 Pytorch

Pytorch is a framework that delivers the same functionality as TF (they both
provide graphs) but they differ in the way they build graphs. TF, as mentioned
throughout this report builds static graphs that are not meant to change in a
dynamic way; Dynamic graphs are one of the features of Pytorch that differs from
TF. This would presumably not change the outcome however, as the rest of the
software toolchain would also have to account for this; Compilation/interpretation
closer to the hardware would have to support a runtime that has this feature. [60]

5.7.2 IREE

IREE is, as mentioned in Section 1.1, still in early stages. This project is focused
on providing the full compilation stack between the framework (TF, Pytorch etc)
and hardware. One of its main features is to efficiently support DC and DS. [12]
The goal with this project strongly coincides with the investigation in this thesis
and can perhaps, in a future version, solve many of the issues we faced.

5.7.3 TOSA

TOSA, as mentioned in Section 2.6, aims to standardize the most commonly used
primitive operations of popular neural networks. In TOSA, some DC is supported
and in the current revision, while and conditional statements are supported. [6]
However, TOSA is not specific with regards to DS for the operators being sup-
ported or not - as TOSA reference implementations are often implemented using
the pseudo code "for_each(index in shape)" when performing the calculation on
the dimensions; This implies DS support/usage but is never explicitly mentioned.
This leaves the TOSA-compliant hardware/software implementer interpreting the
use/solution of DS.

Viewing TOSA from the perspective of MTCNN raises the question, would
MTCNN be TOSA-compliant? MTCNN consists of regular arithmetic, sorting
(NMS), 2D convolutions and activation functions (softmax and PRELU), as ex-
plained in Section 2.4; The arithmetical and convolutional part of MTCNN is
TOSA compliant.

Discussion 57

The NMS used by the original MTCNN [1] sorts the bounding boxes by confi-
dence and uses the corresponding indices for the rest of the computation; Assuming
DS is supported, this could potentially be done by merging TOSA operators (e.g,
WHILE, ARGMAX and GATHER). The rest of the NMS algorithm essentially run
arithmetics, until no more boxes can be merged, all of which are TOSA-compliant.

The activation functions used in the original MTCNN paper [1] are softmax
and PRELU. RELU, NEGATE, ABS and ADD is in the TOSA specification and
can be used to create PRELU. Softmax is also part of the different CNNs and is
described in the section MTCNN, using Equation 2.8. TOSA provides support for
elementwise exponential calculations, division and reduction to sum (EXP, DIV
and REDUCE_SUM), all needed to perform the softmax operation. In short,
MTCNN is TOSA-compliant assuming DS are supported.

Chapter 6
Conclusion

Current issues with implementing DC based ML algorithms on Arm NPU systems
was investigated in this thesis. With native dynamic control on the microNPU not
being achievable; Current microNPUs requires DC to be scheduled on the CPU. It
was also evaluated on which sections of the implementation process and software
toolchain DC support was lacking, with multiple limitations present at different
sections. This means that support would have to be implemented at different steps
of the toolchain, with changes possibly made to the microNPU HW architecture
as well - in order to run sufficiently dynamic algorithms strictly on the microNPU.

The implementation and evaluation conducted revolved around implementing
the algorithm MTCNN. Despite its DC properties, an implementation for a major-
ity of the algorithm on the microNPU was possible by exerting certain constraints
on the model. The sections of the algorithm that was unable to execute on the
microNPU was successfully offloaded to the CPU. A heavy speedup was achieved
for this implementation, compared to implementations on other Cortex-M CPUs.
It was both displayed that non-ML heavy parts of the algorithm could achieve a
significant speedup when executed on the microNPU; This speedup, however, had
a minimal impact on the total MTCNN execution time. The results demonstrate
that offloading unsupported operations, to the CPU, could be done efficiently for
this algorithm.

The need for DC support in current ML frameworks was also addressed. With
RNNs being a prime example of NN algorithms that benefits from DC support.
It would also make room for future DC based algorithms, and ease training and
other features related to deploying NNs.

Finally, emerging frameworks for deploying ML algorithms were evaluated.
Both their capability of supporting DC in general, and MTCNN in particular.
This highlighted the differences in what these frameworks plan to support in the
future and the limitations of the current toolchain. TOSA presented support to
fundamental DC operations such as conditionals and loops, while potentially lack-
ing other aspects such as support of dynamic shapes. With IREEE and Pytorch
also taking DC into account.

59

60 Conclusion

6.1 Future work

This thesis has displayed the current limitations of DC support on Arm NPU
system, and also hinted on what future frameworks have to offer and why DC is
relevant for ML based applications. This can act as a foundation for several topics
of future work:

Extending the Arm NPU models to support DC. This could be used to in-
vestigate what performance increase, if any, would be possible from running pure
DC operations on the NPU, compared to offloading tasks to the CPU. Further
investigations can be made into what impact this would have on MTCNN and
similar algorithms.

Another topic would be to evaluate the related ML frameworks presented in
this thesis (TOSA, IREE) closer to their release. To see how well they fit with
the, at the time, available microNPU product line; And investigate if they solve
the dynamic properties problems which have been investigated in this thesis.

More complex DC based ML algorithms coming in the future could also be
investigated. To see if the basic DC operators presented are still sufficient to
handle these networks, and if other architectural changes provide a performance
uplift. A final topic would be to investigate how ML architectures containing
weights handles a dynamic change in structure; This would be closely related to
subgraphs and solutions as such.

Bibliography

[1] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, “Joint face detection and alignment
using multitask cascaded convolutional networks,” IEEE Signal Processing
Letters, vol. 23, pp. 1499–1503, Oct 2016.

[2] S. Yang, P. Luo, C. C. Loy, and X. Tang, “WIDER FACE: A Face Detection
Benchmark,” in IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2016.

[3] Arm Ltd., “Arm ethos-u npu application development overview.” https:
//developer.arm.com/documentation/101888/0500/Introduction/
Ethos-U-system, Oct 2020. Version 5. Accessed: May 11, 2021.

[4] L. Roeder, “Netron.” https://netron.app/, May 2021. Version: 4.9.4. Ac-
cessed: May 27, 2021.

[5] I. Centeno de Paz, “Multi-task cascaded convolutional neural networks for
face detection, based on tensorflow.” https://pypi.org/project/mtcnn/,
Nov 2019. Version: 0.1.0. Accessed: May 11, 2021.

[6] Arm Ltd, et al. (Open source), “Tosa.” https://developer.mlplatform.
org/w/tosa/. Accessed: May 11,2021.

[7] Arm Ltd., “Arm ethos-u55 micronpu product brief.” https://www.arm.com/
products/silicon-ip-cpu/ethos/ethos-u55, Feb 2020. Retrieved: Apr.
14, 2021.

[8] Y. Yu, M. Abadi, P. Barham, E. Brevdo, M. Burrows, A. Davis, J. Dean,
S. Ghemawat, T. Harley, P. Hawkins, and et al., “Dynamic control flow in
large-scale machine learning,” Proceedings of the Thirteenth EuroSys Confer-
ence, Apr 2018.

[9] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore,
D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke,
Y. Yu, and X. Zheng, “Tensorflow: A system for large-scale machine learning,”
2016.

[10] A. Skillman and T. Edso, “A technical overview of cortex-m55 and ethos-u55:
Arm’s most capable processors for endpoint ai,” 2020 IEEE Hot Chips 32
Symposium (HCS), pp. 10, 12–14, 17, 2020.

61

https://developer.arm.com/documentation/101888/0500/Introduction/Ethos-U-system
https://developer.arm.com/documentation/101888/0500/Introduction/Ethos-U-system
https://developer.arm.com/documentation/101888/0500/Introduction/Ethos-U-system
https://netron.app/
https://pypi.org/project/mtcnn/
https://developer.mlplatform.org/w/tosa/
https://developer.mlplatform.org/w/tosa/
https://www.arm.com/products/silicon-ip-cpu/ethos/ethos-u55
https://www.arm.com/products/silicon-ip-cpu/ethos/ethos-u55

62 Bibliography

[11] C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. Pienaar, R. Rid-
dle, T. Shpeisman, N. Vasilache, and O. Zinenko, “Mlir: Scaling compiler
infrastructure for domain specific computation,” in 2021 IEEE/ACM Inter-
national Symposium on Code Generation and Optimization (CGO), pp. 2–14,
2021.

[12] Google, inc., “Iree (intermediate representation execution environment).”
https://google.github.io/iree/. Accessed: May 12, 2021.

[13] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Cor-
rado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg,
D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasude-
van, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu,
and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous
systems,” 2015. Software available from tensorflow.org.

[14] Tensorflow, “Tensorflow source code.” https://github.com/tensorflow/
tensorflow. Retrieved: 5/4-2021.

[15] Tensorflow, “Tensorflow: Introduction to graphs and tf.function.” https://
www.tensorflow.org/guide/intro_to_graphs. Retrieved: 8/5-2021.

[16] Tensorflow, “Tensorflow lite. operator compatibility.” https://www.
tensorflow.org/lite/guide/ops_compatibility. Retrieved: Apr. 5, 2021.

[17] Tensorflow, “Tensorflow lite. converter.” https://www.tensorflow.org/
lite/convert. Retrieved: Apr. 5, 2021.

[18] Fun Propulsion Lab, Google, “Google, github: Flatbuffer landing page.”
https://google.github.io/flatbuffers/. Retrieved: May. 4, 2021.

[19] Tensorflow, “Tensorflow lite. quantization.” https://www.tensorflow.org/
lite/performance/post_training_quantization. Retrieved May. 6, 2021.

[20] Tensorflow, “Tensorflow lite. interpreter.” https://www.tensorflow.org/
lite/guide/inference. Retrieved: Apr. 5, 2021.

[21] Tensorflow, “Tensorflow lite micro. build and convert models. operation
support.” https://www.tensorflow.org/lite/microcontrollers/build_
convert#operation_support. Retrieved Apr. 18, 2021.

[22] Tensorflow, “Tensorflow lite micro.” https://www.tensorflow.org/lite/
microcontrollers/. Retrieved Jan. 18, 2021.

[23] LLVM Project, “Llvm, multi-level intermediate representation.” https://
mlir.llvm.org/. Retrieved: May. 4, 2021.

[24] The TensorFlow MLIR Team., “Mlir: A new intermediate representation and
compiler framework.” https://mlir.llvm.org/. Retrieved: May. 6,2021.

[25] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hub-
bard, and L. D. Jackel, “Backpropagation applied to handwritten zip code
recognition,” Neural Computation, vol. 1, no. 4, pp. 541–551, 1989.

https://google.github.io/iree/
https://github.com/tensorflow/tensorflow
https://github.com/tensorflow/tensorflow
https://www.tensorflow.org/guide/intro_to_graphs
https://www.tensorflow.org/guide/intro_to_graphs
https://www.tensorflow.org/lite/guide/ops_compatibility
https://www.tensorflow.org/lite/guide/ops_compatibility
https://www.tensorflow.org/lite/convert
https://www.tensorflow.org/lite/convert
https://google.github.io/flatbuffers/
https://www.tensorflow.org/lite/performance/post_training_quantization
https://www.tensorflow.org/lite/performance/post_training_quantization
https://www.tensorflow.org/lite/guide/inference
https://www.tensorflow.org/lite/guide/inference
https://www.tensorflow.org/lite/microcontrollers/build_convert#operation_support
https://www.tensorflow.org/lite/microcontrollers/build_convert#operation_support
https://www.tensorflow.org/lite/microcontrollers/
https://www.tensorflow.org/lite/microcontrollers/
https://mlir.llvm.org/
https://mlir.llvm.org/
https://mlir.llvm.org/

Bibliography 63

[26] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, pp. 164–165,
180–183, 192–194, 200–208, 326–331, 335–339, 367–371. MIT Press, 2016.
http://www.deeplearningbook.org.

[27] Keras, “Making new layers and models via subclassing.” https://keras.io/
guides/making_new_layers_and_models_via_subclassing/. Retrieved:
Mar. 30, 2021.

[28] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” Commun. ACM, vol. 60, May 2017.

[29] S. Lawrence, C. Giles, A. C. Tsoi, and A. Back, “Face recognition: a convo-
lutional neural-network approach,” IEEE Transactions on Neural Networks,
vol. 8, no. 1, pp. 98–113, 1997.

[30] V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep learn-
ing,” 2018.

[31] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification,” 2015.

[32] D. A. Patterson and J. L. Hennessy, Computer Organization and Design,
Fifth Edition: The Hardware/Software Interface, pp. 90–96, 338–339. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 5th ed., 2013.

[33] Python Software Foundation., “Python, compound statements.” https://
docs.python.org/3.9/reference/compound_stmts.html. Retrieved: May.
7, 2021.

[34] D. A. Patterson and J. L. Hennessy, Computer Architecture: A Quantitative
Approach, pp. 157–161, Appendix A.5. Elsevier Science, 2011.

[35] Arm Ltd., “Arm ethos-u series processors..” https://developer.arm.com/
ip-products/processors/machine-learning/arm-ethos-u. Accessed:
May 11, 2021.

[36] Arm Ltd., “Ethos-u-vela 2.1.1..” https://pypi.org/project/
ethos-u-vela/. Accessed: Apr. 14, 2021.

[37] Arm Ltd., “Supported ops.” https://review.mlplatform.org/plugins/
gitiles/ml/ethos-u/ethos-u-vela/+/refs/tags/2.1.1/SUPPORTED_
OPS.md. Vela 2.1.0. Accessed: Apr. 14, 2021.

[38] LLVM, et al., “Tosa dialect in llvm.” https://mlir.llvm.org/docs/
Dialects/TOSA/. Accessed: May 11, 2021.

[39] I. Centeno de Paz, “Mtcnn weights.” https://github.com/ipazc/mtcnn/
blob/master/mtcnn/data/mtcnn_weights.npy, Nov 2019. Numpy dataset.
Accessed: May 10, 2021.

[40] Tensorflow, “Build and convert models. model conversion. convert to
c array.” https://www.tensorflow.org/lite/microcontrollers/build_
convert#convert_to_a_c_array. Accessed: May. 11, 2021.

http://www.deeplearningbook.org
https://keras.io/guides/making_new_layers_and_models_via_subclassing/
https://keras.io/guides/making_new_layers_and_models_via_subclassing/
https://docs.python.org/3.9/reference/compound_stmts.html
https://docs.python.org/3.9/reference/compound_stmts.html
https://developer.arm.com/ip-products/processors/machine-learning/arm-ethos-u
https://developer.arm.com/ip-products/processors/machine-learning/arm-ethos-u
https://pypi.org/project/ethos-u-vela/
https://pypi.org/project/ethos-u-vela/
 https://review.mlplatform.org/plugins/gitiles/ml/ethos-u/ethos-u-vela/+/refs/tags/2.1.1/SUPPORTED_OPS.md
 https://review.mlplatform.org/plugins/gitiles/ml/ethos-u/ethos-u-vela/+/refs/tags/2.1.1/SUPPORTED_OPS.md
 https://review.mlplatform.org/plugins/gitiles/ml/ethos-u/ethos-u-vela/+/refs/tags/2.1.1/SUPPORTED_OPS.md
https://mlir.llvm.org/docs/Dialects/TOSA/
https://mlir.llvm.org/docs/Dialects/TOSA/
https://github.com/ipazc/mtcnn/blob/master/mtcnn/data/mtcnn_weights.npy
https://github.com/ipazc/mtcnn/blob/master/mtcnn/data/mtcnn_weights.npy
 https://www.tensorflow.org/lite/microcontrollers/build_convert#convert_to_a_c_array
 https://www.tensorflow.org/lite/microcontrollers/build_convert#convert_to_a_c_array

64 Bibliography

[41] Arm Ltd., “Arm cortex-m55 processor product brief.” https://www.arm.
com/products/silicon-ip-cpu/cortex-m/cortex-m55. Retrieved: May
11, 2021.

[42] Arm Ltd., “Arm developer. fast models. fast models library.”
https://developer.arm.com/tools-and-software/simulation-models/
fast-models. Retrieved: May. 11, 2021.

[43] Arm Ltd., “Fast models user guide.” https://developer.arm.com/
documentation/100965/latest, Mar 2021. Version: 11.14. Retrieved: May
11, 2021.

[44] Arm Ltd., “Arm corstone sse-300 example subsystem. technical ref-
erence manual.” https://developer.arm.com/ip-products/subsystem/
corstone/corstone-300, Oct 2020. Issue: 0.2. Retrieved: May. 2, 2021.

[45] Keras, “Prelu layer.” https://keras.io/api/layers/activation_layers/
prelu/. Accessed: May 10, 2021.

[46] “Intel i7-3612qm product specification.” https://ark.
intel.com/content/www/us/en/ark/products/64901/
intel-core-i7-3612qm-processor-6m-cache-up-to-3-10-ghz-bga.
html. Accessed: June 7, 2021.

[47] “Gtx titan x user guide.” https://www.nvidia.com/content/geforce-gtx/
GTX_TITAN_X_User_Guide.pdf. Accessed: June 7, 2021.

[48] STMicroelectronics, “Artificial intelligence (ai) and computer vision function
pack for stm32h7 microcontrollers. user manual (um2611).” https://www.
st.com/en/embedded-software/fp-ai-vision1.html#documentation,
Apr 2021. Revision: 4. Accessed: May 13, 2021.

[49] STMicroelectronics, “STM32H742xI/G, STM32H743xI/G, 32-bit Arm
Cortex-M7 480MHz MCUs, up to 2MB Flash, up to 1MB RAM, 46 com.
and analog interfaces.” https://www.st.com/resource/en/datasheet/
stm32h743vi.pdf, Apr 2021. Revision: 8. Accessed: Jun 8, 2021.

[50] A. Capotondi and M. Rusci, “Mobilenet V1 for STM32 over CMSIS-NN.”
https://github.com/EEESlab/mobilenet_v1_stm32_cmsis_nn. Accessed:
May 18, 2021.

[51] STMicroelectronics, “Stm32f7 series of very high-performance
mcus with arm cortex-m7 core.” https://www.st.com/en/
microcontrollers-microprocessors/stm32f7-series.html. Accessed:
May 10, 2021.

[52] Arm Ltd., “Arm cortex-m55 processor datasheet.” https://developer.
arm.com/ip-products/processors/cortex-m/cortex-m55, Feb 2020. Re-
trieved: May 14, 2021.

[53] Nordic Semiconductor, “nrf52840 product specification.” https:
//infocenter.nordicsemi.com/pdf/nRF52840_PS_v1.1.pdf, Feb 2019.
Version 1.1. Accessed: May 10, 2021.

https://www.arm.com/products/silicon-ip-cpu/cortex-m/cortex-m55
https://www.arm.com/products/silicon-ip-cpu/cortex-m/cortex-m55
https://developer.arm.com/tools-and-software/simulation-models/fast-models
https://developer.arm.com/tools-and-software/simulation-models/fast-models
https://developer.arm.com/documentation/100965/latest
https://developer.arm.com/documentation/100965/latest
https://developer.arm.com/ip-products/subsystem/corstone/corstone-300
https://developer.arm.com/ip-products/subsystem/corstone/corstone-300
 https://keras.io/api/layers/activation_layers/prelu/
 https://keras.io/api/layers/activation_layers/prelu/
https://ark.intel.com/content/www/us/en/ark/products/64901/intel-core-i7-3612qm-processor-6m-cache-up-to-3-10-ghz-bga.html
https://ark.intel.com/content/www/us/en/ark/products/64901/intel-core-i7-3612qm-processor-6m-cache-up-to-3-10-ghz-bga.html
https://ark.intel.com/content/www/us/en/ark/products/64901/intel-core-i7-3612qm-processor-6m-cache-up-to-3-10-ghz-bga.html
https://ark.intel.com/content/www/us/en/ark/products/64901/intel-core-i7-3612qm-processor-6m-cache-up-to-3-10-ghz-bga.html
 https://www.nvidia.com/content/geforce-gtx/GTX_TITAN_X_User_Guide.pdf
 https://www.nvidia.com/content/geforce-gtx/GTX_TITAN_X_User_Guide.pdf
 https://www.st.com/en/embedded-software/fp-ai-vision1.html#documentation
 https://www.st.com/en/embedded-software/fp-ai-vision1.html#documentation
 https://www.st.com/resource/en/datasheet/stm32h743vi.pdf
 https://www.st.com/resource/en/datasheet/stm32h743vi.pdf
https://github.com/EEESlab/mobilenet_v1_stm32_cmsis_nn
 https://www.st.com/en/microcontrollers-microprocessors/stm32f7-series.html
 https://www.st.com/en/microcontrollers-microprocessors/stm32f7-series.html
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m55
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m55
 https://infocenter.nordicsemi.com/pdf/nRF52840_PS_v1.1.pdf
 https://infocenter.nordicsemi.com/pdf/nRF52840_PS_v1.1.pdf

Bibliography 65

[54] Microchip Technology Inc., “Sam e70/s70/v70/v71 fam-
ily.” https://ww1.microchip.com/downloads/en/DeviceDoc/
SAM-E70-S70-V70-V71-Family-Data-Sheet-DS60001527E.pdf, Dec
2020. Revision: E. Accessed: Jun 1, 2021.

[55] NXP Semiconductors, “i.mx rt1064 crossover processors data sheet
for consumer products.” https://www.nxp.com/docs/en/data-sheet/
IMXRT1064CEC.pdf, Mar 2021. Revision: 3. Accessed: May 17, 2021.

[56] Tensorflow., “Recurrent neural networks (rnn) with keras.” https://www.
tensorflow.org/guide/keras/rnn. Retrieved: Mar. 30, 2021.

[57] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural net-
works for mobile vision applications,” Apr 2017.

[58] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bilenetv2: Inverted residuals and linear bottlenecks,” Mar 2019. Version:
4.

[59] Arm, Ltd., “ARM software. ML-zoo. MobileNet v2 1.0 224 UINT8.”
https://github.com/ARM-software/ML-zoo/tree/master/models/
image_classification/mobilenet_v2_1.0_224/tflite_uint8. Accessed:
May 18, 2021.

[60] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito,
M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and
S. Chintala, “Pytorch: An imperative style, high-performance deep learning
library,” Dec 2019.

https://ww1.microchip.com/downloads/en/DeviceDoc/SAM-E70-S70-V70-V71-Family-Data-Sheet-DS60001527E.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/SAM-E70-S70-V70-V71-Family-Data-Sheet-DS60001527E.pdf
 https://www.nxp.com/docs/en/data-sheet/IMXRT1064CEC.pdf
 https://www.nxp.com/docs/en/data-sheet/IMXRT1064CEC.pdf
https://www.tensorflow.org/guide/keras/rnn
https://www.tensorflow.org/guide/keras/rnn
https://github.com/ARM-software/ML-zoo/tree/master/models/image_classification/mobilenet_v2_1.0_224/tflite_uint8
https://github.com/ARM-software/ML-zoo/tree/master/models/image_classification/mobilenet_v2_1.0_224/tflite_uint8

Appendix A
Custom MTCNN model implementation

This chapter will present the python code and TF graphs for some of the lay-
ers presented in this thesis. The work presented in this chapter is inspired by
the paper, "Joint Face Detection and Alignment Using Multitask Cascaded Con-
volutional Networks" and the derived work "Multi-task Cascaded Convolutional
Neural Networks for Face Detection, based on TensorFlow". [1, 5]

Model

1 de f custom_mtcnn () :
2 input = t f . keras . Input (
3 shape=(s e t t i n g s .IMG_Y, s e t t i n g s .IMG_X, s e t t i n g s .IMG_Z

))
4

5 normal ize = custom_layers . Normalize ()
6 normalized_input = normal ize (input)
7

8 sub_images_layer = custom_layers . Pre_p_net_sub_images ()
9 sub_images = sub_images_layer (

10 normalized_input , 1)
11

12 [p_out1 , p_out2] = custom_layers . p_net (sub_images)
13 p_out1 = t f . squeeze (p_out1)
14 p_out2 = t f . squeeze (p_out2)
15

16 post_p_1 = custom_layers . Post_p_net_scale ()
17 bboxes = post_p_1(s e t t i n g s . y_posit ion_divided [0] ,

s e t t i n g s . x_posit ion_divided [0] , s e t t i n g s .
sca les_extended_divided [0])

18

19 post_p_2 = custom_layers . Post_p_net_inter_nms ()
20 bboxes = post_p_2(bboxes , p_out1 , p_out2)
21

22 f o r i , s c a l e in enumerate (s e t t i n g s . s c a l e s_ i) :
23

24 sub_images_pyramid = sub_images_layer (
normalized_input , s c a l e)

67

68 Custom MTCNN model implementation

25 sub_images = t f . keras . l a y e r s . Concatenate (
26 ax i s =0) ([sub_images , sub_images_pyramid])
27

28 [p_out1 , p_out2] = custom_layers . p_net (
sub_images_pyramid)

29 p_out1 = t f . squeeze (p_out1)
30 p_out2 = t f . squeeze (p_out2)
31

32 post_p_1 = custom_layers . Post_p_net_scale ()
33 bboxes_scale = post_p_1(s e t t i n g s . y_posit ion_divided [i

+ 1] , s e t t i n g s . x_posit ion_divided [i + 1] , s e t t i n g s .
sca les_extended_divided [i + 1])

34

35 post_p_2 = custom_layers . Post_p_net_inter_nms ()
36 bboxes_scale = post_p_2(bboxes_scale , t f . reshape (

p_out1 , shape=(−1, 2)) , t f . reshape (p_out2 , shape=(−1, 4)))
37

38 bboxes = t f . keras . l a y e r s . Concatenate (
39 ax i s =0) ([bboxes , bboxes_scale])
40

41 post_p_2 = custom_layers . Post_p_net_nms ()
42 bboxes = post_p_2(bboxes [: , 0 : 4] , bboxes [: , 3 : 5] , bboxes [: ,

5 :])
43

44 post_p_3 = custom_layers . Cal ibrate_Rerec ()
45 bboxes = post_p_3(bboxes)
46

47 s = custom_layers . Subimages_24x24 ()
48 subimages_24x24 = s (normalized_input , bboxes)
49 [r_out1 , r_out2] = custom_layers . r_net (subimages_24x24)
50

51 r = custom_layers . Post_r_net_nms ()
52 bboxes = r (bboxes , r_out1 , r_out2)
53 post_r_2 = custom_layers . CalibratePlusOne_Rerec ()
54 bboxes = post_r_2 (bboxes)
55

56 s = custom_layers . Subimages_48x48 ()
57 subimages_48x48 = s (normalized_input , bboxes)
58 [o_conf , o_reg , o_landmarks] = custom_layers . o_net (

subimages_48x48)
59

60 post_o_1 = custom_layers . Calibrate_plus_one ()
61 bboxes = post_o_1 (t f . concat ([bboxes , o_conf [: , 1 : 2] ,

o_reg] , ax i s =1))
62

63 post_o_2 = custom_layers . Post_o_net_nms ()
64 landmarks , bboxes , conf = post_o_2 (bboxes , o_conf , o_reg ,

o_landmarks)
65

66 post_o_3 = custom_layers . Post_o_net_calibrate_landmarks ()
67 ret_val = post_o_3 (bboxes , landmarks)

Custom MTCNN model implementation 69

68

69 model = t f . keras . Model (input , [landmarks , bboxes , conf])
70

71 re turn model

Listing A.1: Code for custom MTCNN implementation

Normalize

1 c l a s s Normalize (t f . keras . l a y e r s . Layer) :
2 de f __init__(s e l f , ∗∗kwargs) :
3 super (Normalize , s e l f) . __init__(∗∗ kwargs)
4 @tf . f unc t i on (input_s ignature=[t f . TensorSpec (shape =(1 ,

s e t t i n g s .IMG_Y, s e t t i n g s .IMG_X, s e t t i n g s .IMG_Z) , dtype=t f .
f l o a t 3 2)])

5 de f c a l l (s e l f , input_image) :
6 re turn (input_image − 127 .5) ∗ 0.007812

Listing A.2: Code for Normalize layer

Figure A.1: Graph of normalize layer.

P-Net

1 de f p_net (sub_images) :
2 p_inp = t f . keras . l a y e r s . Input (shape =(12 , 12 , 3))
3 p_layer= t f . keras . l a y e r s . Conv2D(10 , ke rne l_s i z e =(3 , 3) ,

s t r i d e s =(
4 1 , 1) , padding=" va l i d ") (p_inp)
5 p_layer = custom_PRELU(shared_axes =[1 , 2]) (p_layer)
6 p_layer = t f . keras . l a y e r s . MaxPooling2D (poo l_s ize=(

70 Custom MTCNN model implementation

7 2 , 2) , s t r i d e s =(2 , 2) , padding="same") (p_layer)
8

9 p_layer = t f . keras . l a y e r s . Conv2D(16 , ke rne l_s i z e=(
10 3 , 3) , s t r i d e s =(1 , 1) , padding=" va l i d ") (p_layer)
11 p_layer = custom_PRELU(shared_axes =[1 , 2]) (p_layer)
12

13 p_layer = t f . keras . l a y e r s . Conv2D(32 , ke rne l_s i z e=(
14 3 , 3) , s t r i d e s =(1 , 1) , padding=" va l i d ") (p_layer)
15 p_layer = custom_PRELU(shared_axes =[1 , 2]) (p_layer)
16

17 p_layer_out1 = t f . keras . l a y e r s . Conv2D(
18 2 , ke rne l_s i z e =(1 , 1) , s t r i d e s =(1 , 1)) (p_layer)
19 p_layer_out1 = t f . keras . l a y e r s . Softmax (ax i s =3) (

p_layer_out1)
20

21 p_layer_out2 = t f . keras . l a y e r s . Conv2D(
22 4 , ke rne l_s i z e =(1 , 1) , s t r i d e s =(1 , 1)) (p_layer)
23 model = t f . keras . Model (inputs=p_inp , outputs=[

p_layer_out1 , p_layer_out2])
24 model = set_weights_for_p_net (model)
25 re turn model (sub_images)

Listing A.3: Code for P-Net implementation

Custom MTCNN model implementation 71

Figure A.2: Graph of P-Net.

72 Custom MTCNN model implementation

R-Net

1 de f r_net (sub_images) :
2 r_inp = t f . keras . l a y e r s . Input (shape =(24 , 24 , 3))
3 r_layer = t f . keras . l a y e r s . Conv2D(28 , ke rne l_s i z e =(3 , 3) ,

s t r i d e s =(
4 1 , 1) , padding=" va l i d " , input_shape=()) (r_inp)
5 r_layer = custom_PRELU(shared_axes =[1 , 2]) (r_layer)
6 r_layer = t f . keras . l a y e r s . MaxPooling2D (poo l_s ize=(
7 3 , 3) , s t r i d e s =(2 , 2) , padding="same") (r_layer)
8

9 r_layer = t f . keras . l a y e r s . Conv2D(48 , ke rne l_s i z e=(
10 3 , 3) , s t r i d e s =(1 , 1) , padding=" va l i d ") (r_layer)
11 r_layer = custom_PRELU(shared_axes =[1 , 2]) (r_layer)
12 r_layer = t f . keras . l a y e r s . MaxPooling2D (poo l_s ize=(
13 3 , 3) , s t r i d e s =(2 , 2) , padding=" va l i d ") (r_layer)
14

15 r_layer = t f . keras . l a y e r s . Conv2D(64 , ke rne l_s i z e=(
16 2 , 2) , s t r i d e s =(1 , 1) , padding=" va l i d ") (r_layer)
17 r_layer = custom_PRELU(shared_axes =[1 , 2]) (r_layer)
18 r_layer = t f . keras . l a y e r s . F lat ten () (r_layer)
19 r_layer = t f . keras . l a y e r s . Dense (128) (r_layer)
20 r_layer = custom_PRELU() (r_layer)
21

22 r_layer_out1 = t f . keras . l a y e r s . Dense (2) (r_layer)
23 r_layer_out1 = t f . keras . l a y e r s . Softmax (ax i s =1) (

r_layer_out1)
24

25 r_layer_out2 = t f . keras . l a y e r s . Dense (4) (r_layer)
26 model = t f . keras . Model (inputs=r_inp , outputs=[

r_layer_out1 , r_layer_out2])
27 model = set_weights_for_r_net (model)
28 re turn model (sub_images)

Listing A.4: Code for R-Net implementation

Custom MTCNN model implementation 73

Figure A.3: Graph of R-Net.

74 Custom MTCNN model implementation

O-Net

1 de f o_net (sub_images) :
2 o_inp = t f . keras . l a y e r s . Input (shape =(48 , 48 , 3))
3

4 o_layer = t f . keras . l a y e r s . Conv2D(32 , ke rne l_s i z e=(
5 3 , 3) , s t r i d e s =(1 , 1) , padding=" va l i d ") (o_inp)
6 o_layer = custom_PRELU(shared_axes =[1 , 2]) (o_layer)
7 o_layer = t f . keras . l a y e r s . MaxPooling2D (poo l_s ize=(
8 3 , 3) , s t r i d e s =(2 , 2) , padding="same") (o_layer)
9

10 o_layer = t f . keras . l a y e r s . Conv2D(64 , ke rne l_s i z e=(
11 3 , 3) , s t r i d e s =(1 , 1) , padding=" va l i d ") (o_layer)
12 o_layer = custom_PRELU(shared_axes =[1 , 2]) (o_layer)
13 o_layer = t f . keras . l a y e r s . MaxPooling2D (poo l_s ize=(
14 3 , 3) , s t r i d e s =(2 , 2) , padding=" va l i d ") (o_layer)
15

16 o_layer = t f . keras . l a y e r s . Conv2D(64 , ke rne l_s i z e=(
17 3 , 3) , s t r i d e s =(1 , 1) , padding=" va l i d ") (o_layer)
18 o_layer = custom_PRELU(shared_axes =[1 , 2]) (o_layer)
19 o_layer = t f . keras . l a y e r s . MaxPooling2D (poo l_s ize=(
20 2 , 2) , s t r i d e s =(2 , 2) , padding="same") (o_layer)
21

22 o_layer = t f . keras . l a y e r s . Conv2D(128 , ke rne l_s i z e=(
23 2 , 2) , s t r i d e s =(1 , 1) , padding=" va l i d ") (o_layer)
24 o_layer = custom_PRELU(shared_axes =[1 , 2]) (o_layer)
25

26 o_layer = t f . keras . l a y e r s . F lat ten () (o_layer)
27 o_layer = t f . keras . l a y e r s . Dense (256) (o_layer)
28 o_layer = custom_PRELU() (o_layer)
29

30 o_layer_out1 = t f . keras . l a y e r s . Dense (2) (o_layer)
31 o_layer_out1 = t f . keras . l a y e r s . Softmax (ax i s =1) (

o_layer_out1)
32 o_layer_out2 = t f . keras . l a y e r s . Dense (4) (o_layer)
33 o_layer_out3 = t f . keras . l a y e r s . Dense (10) (o_layer)
34 model = t f . keras . Model (inputs=o_inp , outputs=[

o_layer_out1 , o_layer_out2 , o_layer_out3])
35 model = set_weights_for_o_net (model)
36 re turn model (sub_images)

Listing A.5: Code for O-Net implementation

Scales

1 c l a s s Post_p_net_scale (t f . keras . l a y e r s . Layer) :
2 de f __init__(s e l f , ∗∗kwargs) :
3 super (Post_p_net_scale , s e l f) . __init__(∗∗ kwargs)
4

Custom MTCNN model implementation 75

5 @tf . f unc t i on (input_s ignature=[t f . TensorSpec (shape=(None ,
1) , dtype=t f . f l o a t 3 2) , t f . TensorSpec (shape=(None , 1) ,
dtype=t f . f l o a t 3 2) , t f . TensorSpec (shape=(None , 1) , dtype=t f
. f l o a t 3 2)])

6 de f c a l l (s e l f , y_posit ion , x_posit ion , sca les_extended) :
7 x1 = x_posit ion [: , 0 : 1]
8 y1 = y_posit ion [: , 0 : 1]
9 x2 = t f . math . add (x1 , t f . math . mult ip ly (

10 12 . 0 , t f . math . r e c i p r o c a l (sca les_extended [: , 0 : 1])
))

11 y2 = t f . math . add (y1 , t f . math . mult ip ly (
12 12 . 0 , t f . math . r e c i p r o c a l (sca les_extended [: , 0 : 1])

))
13 x1 = t f . math . f l o o r (x1)
14 x2 = t f . math . f l o o r (x2)
15 y1 = t f . math . f l o o r (y1)
16 y2 = t f . math . f l o o r (y2)
17 re turn t f . concat (
18 [x1 , y1 , x2 , y2] , ax i s =1)

Listing A.6: Code for scale layer

76 Custom MTCNN model implementation

Figure A.4: Graph of scales layer.

Custom MTCNN model implementation 77

Calibrate

1 c l a s s Ca l ib ra t e (t f . keras . l a y e r s . Layer) :
2 de f __init__(s e l f , ∗∗kwargs) :
3 super (Cal ibrate , s e l f) . __init__(∗∗ kwargs)
4 @tf . f unc t i on (input_s ignature=[t f . TensorSpec (shape=(None ,

9) , dtype=t f . f l o a t 3 2)])
5 de f c a l l (s e l f , bboxes) :
6 w = t f . math . subt rac t (
7 bboxes [: , 2 : 3] , bboxes [: , 0 : 1])
8 h = t f . math . subt rac t (
9 bboxes [: , 3 : 4] , bboxes [: , 1 : 2])

10 qq1 = t f . math . mult ip ly (bboxes [: , 5 : 6] , w)
11 qq1 = t f . math . add (bboxes [: , 0 : 1] , qq1)
12 qq2 = t f . math . mult ip ly (bboxes [: , 6 : 7] , h)
13 qq2 = t f . math . add (bboxes [: , 1 : 2] , qq2)
14 qq3 = t f . math . mult ip ly (bboxes [: , 7 : 8] , w)
15 qq3 = t f . math . add (bboxes [: , 2 : 3] , qq3)
16 qq4 = t f . math . mult ip ly (bboxes [: , 8 : 9] , h)
17 qq4 = t f . math . add (bboxes [: , 3 : 4] , qq4)
18 re turn t f . concat ([qq1 , qq2 , qq3 , qq4] , ax i s =1)

Listing A.7: Code for Calibrate layer

Figure A.5: Graph of calibrate layer.

78 Custom MTCNN model implementation

Reshape

1 c l a s s Rerec (t f . keras . l a y e r s . Layer) :
2 de f __init__(s e l f , ∗∗kwargs) :
3 super (Rerec , s e l f) . __init__(∗∗ kwargs)
4 @tf . f unc t i on (input_s ignature=[t f . TensorSpec (shape=(None ,

4) , dtype=t f . f l o a t 3 2)])
5 de f c a l l (s e l f , bbox) :
6 he ig th = t f . math . subt rac t (bbox [: , 3 : 4] , bbox [: , 1 : 2])
7 width = t f . math . subt rac t (bbox [: , 2 : 3] , bbox [: , 0 : 1])
8 max_side_length = t f .maximum(width , he ig th)
9 new_x1 = t f . math . mult ip ly (

10 t f . math . subt rac t (width , max_side_length) , 0 . 5)
11 new_x1 = t f . math . add (bbox [: , 0 : 1] , new_x1)
12 new_y1 = t f . math . mult ip ly (
13 t f . math . subt rac t (heigth , max_side_length) , 0 . 5)
14 new_y1 = t f . math . add (bbox [: , 1 : 2] , new_y1)
15 new_x2 = t f . math . add (bbox [: , 0 : 1] , max_side_length)
16 new_y2 = t f . math . add (bbox [: , 1 : 2] , max_side_length)
17 re turn t f . concat ([new_x1 , new_y1 , new_x2 , new_y2] ,

ax i s =1)

Listing A.8: Code for Reshape layer

Custom MTCNN model implementation 79

Figure A.6: Graph of reshape layer.

Custom Prelu

1 c l a s s custom_PRELU(t f . keras . l a y e r s . Layer) :
2

3 de f __init__(s e l f , a l p h a_ i n i t i a l i z e r=’ z e ro s ’ ,
a lpha_regu la r i z e r=None , a lpha_constra int=None , shared_axes
=None , ∗∗kwargs) :

4 super (custom_PRELU, s e l f) . __init__(∗∗ kwargs)
5 s e l f . supports_masking = True
6 s e l f . a l p h a_ i n i t i a l i z e r = i n i t i a l i z e r s . get (

a l p h a_ i n i t i a l i z e r)
7 s e l f . a l pha_regu la r i z e r = r e g u l a r i z e r s . get (

a lpha_regu la r i z e r)

80 Custom MTCNN model implementation

8 s e l f . a lpha_constra int = con s t r a i n t s . get (
a lpha_constra int)

9 i f shared_axes i s None :
10 s e l f . shared_axes = None
11 e l i f not i s i n s t a n c e (shared_axes , (l i s t , tup l e)) :
12 s e l f . shared_axes = [shared_axes]
13 e l s e :
14 s e l f . shared_axes = l i s t (shared_axes)
15

16 de f bu i ld (s e l f , input_shape) :
17 param_shape = l i s t (input_shape [1 :])
18 i f s e l f . shared_axes i s not None :
19 f o r i in s e l f . shared_axes :
20 param_shape [i − 1] = 1
21 s e l f . a lpha = s e l f . add_weight (
22 shape=param_shape ,
23 name=’ alpha ’ ,
24 i n i t i a l i z e r=s e l f . a l p h a_ i n i t i a l i z e r ,
25 r e g u l a r i z e r=s e l f . a lpha_regu la r i z e r ,
26 c on s t r a i n t=s e l f . a lpha_constra int)
27 axes = {}
28 i f s e l f . shared_axes :
29 f o r i in range (1 , l en (input_shape)) :
30 i f i not in s e l f . shared_axes :
31 axes [i] = input_shape [i]
32 s e l f . input_spec = InputSpec (ndim=len (input_shape) ,

axes=axes)
33 s e l f . b u i l t = True
34

35 @tf . f unc t i on (input_s ignature=[t f . TensorSpec (shape=(None) ,
dtype=t f . f l o a t 3 2)])

36 de f c a l l (s e l f , inputs) :
37 # po s i t i v e branch
38 pos = t f . nn . r e l u (inputs)
39 # negat ive branch
40 neg = t f . math . mult ip ly (inputs , −1)
41 neg = t f . nn . r e l u (neg)
42 neg = t f . math . mult ip ly (neg , s e l f . a lpha)
43 re turn t f . math . subt rac t (pos , neg)

Listing A.9: Code for custom PReLU layer

Custom MTCNN model implementation 81

Figure A.7: Graph of custom prelu operation.

Investigation of dynamic control ML algorithms

on existing and future Arm microNPU systems

DAVID CORDESIUS & JOEL ÅHLUND
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2021

D
A

V
ID

 C
O

R
D

ESIU
S &

 JO
EL Å

H
LU

N
D

Investigation of dynam
ic control M

L algorithm
s on existing and future A

rm
 m

icroN
P

U
 system

s
LU

N
D

 2021

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2021-835
http://www.eit.lth.se

	Exj David Cordesius_Joel Åhlund.pdf
	Introduction
	Related Work
	Master Thesis Contribution
	Disposition

	Theory
	Tensorflow
	Artificial neural networks
	Dynamic control
	MTCNN
	microNPU system
	TOSA

	Method
	Implementation workflow
	Verification and profiling

	Results
	Implementation results
	Performance
	Validation

	Discussion
	Limitations
	Model Alterations
	Performance evaluation
	Validation
	DC in other ML algorithms
	Similar purpose ML algorithms
	DC support in emerging ML frameworks

	Conclusion
	Future work

	Bibliography
	Custom MTCNN model implementation
	Tom sida

