
Automating vulnerability remediation in Maven

CARL TERNBY & VIKTOR PETTERSSON
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2021

C
A

R
L TER

N
B

Y
 &

 V
IK

TO
R

 PETTER
SSO

N
A

utom
ating vulnerability rem

ediation in M
aven

LU
N

D
 2021

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2021-848
http://www.eit.lth.se

Automating vulnerability remediation in Maven

Carl Ternby, Viktor Pettersson
psy15cte@student.lu.se, vi1221pe-s@student.lu.se

Department of Electrical and Information Technology
Lund University

Supervisor: Martin Hell, Emil Wåreus

Examiner: Thomas Johansson

October 22, 2021

© 2021
Printed in Sweden
Tryckeriet i E-huset, Lund

Abstract

The usage of open source software is growing and with it, the number of vulnerabil-
ities that attackers can utilize in order to perform malicious activities. In order to
mitigate them, it is therefore important to develop effective means of remediating
said vulnerabilities. This thesis compares two different solutions for automating
vulnerability remediation in regards to time efficiency. Both share the idea that a
remediation should be performed by updating the vulnerable open source software
to a version where the vulnerability is gone.

The first solution aims to do so by gradually updating the affected versions of
open source software that a developer has directly imported in a project, until it
finds an appropriate version. The second solution instead utilizes a graph database
to store all available versions of an open source package and how it relates to other
available open source packages. It can then be used to make secure versions directly
query-able.

The simulations that were run in the project show that the graph database
solution is far superior to the "brute-force" method when it comes to time-efficiency
and also that such a graph would be scalable for use even with very large data
sets.

i

ii

Chapter1
Acknowledgements

We would like to thank Debricked for making this thesis possible. Without the
knowledge and foundations already present within the organisation, the results of
this thesis would have been immensely harder to accomplish. We especially want
give our gratitude to our supervisor at Debricked, Emil Wåreus for always being
available for questions and opening up new ways of thinking. Lastly we would like
to thank our supervisor at Elektro- och Informationstekniksinstitutionen, Martin
Hell for the guidance he has given us when it comes to putting this thesis together.

iii

iv

Chapter2
Popular Science Summary

Graph databases are proven to be very effective in representing large and complex
relations of data. Can their power be harnessed to allow a user to, with a click of
a button, be able to fix all security vulnerabilities that their software contains?

When developing a product, time and cost are important factors to have in
mind. It is commonplace to use previous innovations and technology to a great
extent in order to minimize these factors, since reinventing the wheel often proves
to be costly and ineffective. An auto manufacturer may, for example, want to out-
source the production of door locks to another company that has more experience
in the field, rather than attempting to create new ones from scratch.

An analogy can be drawn to software development, where it is popular to
make use of open source software when developing a product. Open source refers
to software which is publicly available to see, modify or optimise. It can also
be allowed usage in commercial products and the code is then often uploaded as
packages to a package registry, making it easy to use. This way developers can
avoid having to recreate basic components from scratch, while also being able to
contribute to their further development. Open source packages can use code from
other packages, making it a requirement to also include those in order for it to
run properly. The needed package is usually referred to as a dependency of the
package which requires it and it is possible for open source packages to have large
trees of dependencies needed for it to run.

Since open source software is available for public scrutiny, it allows attackers
to attempt to find weaknesses in the code which could be exploited. The strength
in letting users modify the published code is that it allows bugs, such as security
weaknesses, to quickly be fixed by releasing new versions of a package. This
makes it important for developers to keep the open source packages they use
up to date. Security weaknesses that can be exploited by an attacker are usually
called vulnerabilities. In large dependency trees vulnerabilities can be found deeply
nested in packages that you do not directly rely on, but that are dependencies of
those packages.

This thesis aims to produce a reliable and efficient way to find the needed
updates of directly used packages in a project so that vulnerabilities found in
dependencies further down in the tree are fixed. When implemented, the solution
should make it easy for users to secure their code. Two strategies were devised and
pitted against each other, in order to find out which of them was the most time-
efficient. The first strategy involved gradually updating the version of a directly

v

used package, that in turn has a vulnerable dependency, until it no longer depends
on the harmful code. The second strategy aimed to re-create the entire trees of
dependencies for all publicly available packages, together with their versions. One
could then make requests to the database to find out how the packages should be
updated to avoid the vulnerability.

The graph database proved far superior to the gradual updating of packages
and allowed one to find a fix for a vulnerability in less than a second, compared
to the other solution, which took several seconds and scaled poorly.

vi

Table of Contents

1 Acknowledgements iii

2 Popular Science Summary v

3 Introduction 1
3.1 Debricked . 1
3.2 Goals & Challenges . 2
3.3 Problem statement . 2
3.4 Hardware . 2
3.5 Contributions . 3
3.6 Outline . 3

4 Theory 5
4.1 Packages/Dependencies . 5
4.2 Maven . 7
4.3 Software vulnerabilities . 8
4.4 Relational Databases . 10
4.5 Graph Databases . 10

5 Implementation 13
5.1 Remediation using a brute force strategy 13
5.2 Remediation using a graph database structure strategy 15
5.3 Simulations . 18

6 Results 21
6.1 Remediation using a brute force strategy 21
6.2 Remediation using a graph data structure strategy 21
6.3 Most common dependency depths for Maven packages 23
6.4 Package version count in the Maven registry 23

7 Analysis 25
7.1 Remediation using a brute force strategy 25
7.2 Remediation using a graph data structure strategy 26
7.3 Most common dependency depths for Maven packages 27

vii

7.4 Other observations . 27

8 Conclusions 29

9 Future work 31
9.1 Develop simpler strategies for remediation 31
9.2 Scaling the graph database solution for production 31
9.3 Keeping the graph representation up to date 31
9.4 Widening the scope to more languages 32
9.5 The economic aspect . 32

References 33

A Figures 35

viii

List of Figures

4.1 Example pom.xml . 7
4.2 An implementation of the example in Section 4.5.2 11
4.3 Example queries in the cypher language 12

5.1 Debricked data flow . 14
5.2 Brute force strategy data flow . 15
5.3 Graph database structure flow . 16
5.4 Illustration of a root fix in the graph 18
5.5 Maven dependency node structure in Neo4j 19

6.1 Remediation using a brute force strategy 22
6.2 Remediation using a graph data structure strategy - minimal graph . 22
6.3 Remediation using a graph data structure strategy - big graph 23
6.4 Maven dependency depths . 24

A.1 CPU . 35
A.2 Memory - Handle 0x0013 . 36
A.3 Memory - Handle 0x001A . 37
A.4 Memory - Handle 0x001D . 38
A.5 Remediation using a graph data structure strategy - 10 node graph . 39
A.6 Remediation using a graph data structure strategy - 100 node graph 39
A.7 Remediation using a graph data structure strategy - 1000 node graph 40
A.8 Remediation using a graph data structure strategy - 10k node graph 40

ix

x

Chapter3
Introduction

This Master’s thesis will address issues regarding the remediation of vulnerabil-
ities in transitive dependencies when working with open source. The difficulty
in preserving a secure project often lies not only in managing the dependencies
that you import and depend on directly, but also in the dependencies of those
dependencies. It is these dependencies, often called transitive, or indirect, that
make dependency management difficult, since you cannot always decide which de-
pendencies and versions that your direct dependencies rely on. The question then
is; if a transitive dependency in a project is found to contain a vulnerability, how
does one fix it?

We will investigate two different methods for solving this problem and bench-
mark them against each other, in an attempt to find which of them is preferred.
The first method involves using brute force and building the project several times,
each time bumping the version of the dependency that introduced the vulnerable
transitive. By doing so, one would hopefully find a version of the direct depen-
dency which no longer uses a vulnerable version of the transitive. The second
method is to build a graph database over all dependencies known to exist, as well
as their relations to other dependencies, in a graph structure. This enables the
use of queries for finding out which version of a direct dependency is the first to
no longer use the vulnerable transitive.

3.1 Debricked

The Master’s project was done at Debricked AB [1] in Malmö and builds on
their SaaS tool which, among other things, helps users to maintain security in
their third-party software. To maintain the third-party code, or dependencies,
Debricked scans customers dependency specification files and match the found
dependencies to known vulnerabilities. The matches are then visualized and pre-
sented in a user interface along with relevant actions that can be done to remediate
the vulnerabilities. One feature that Debricked offers is opening pull requests that
fixes vulnerabilities directly in the users code base. This action is based on a brute-
force solution where a remediation is searched for and tried until one successfully
can remove the vulnerability. Right now, Debricked do not offer this action for
customers using Java and the build automation tool Maven.

1

2 Introduction

3.2 Goals & Challenges

The goals of this thesis are as follows:

• Implement a basic vulnerability remediation strategy that calculates depen-
dency versions that fixes vulnerabilities in a brute force manner for code
bases using the build automation tool Maven.

• Create a dependency graph database containing dependency versions and
their relations from the Maven registry and implement a solution that com-
municates with it and uses its data to find remediations.

• Compare the solutions in terms of time efficiency.

Several challenges will be faced during the Master’s project. One of the initial
challenges will be to acquire a large number of versions for the dependencies that
we are going to test. This is required in order to build an effective solution that
works without compromise. The graph solution presented in this thesis will be a
proof of concept, since the actual solution that will build upon this will require all
versions of all dependencies in Maven. Another challenge will be the implementa-
tion of the basic remediation algorithm mentioned previously. This algorithm will
use trial-and-error by bumping the versions of affected dependencies until the vul-
nerability is remediated. It is going to be important to implement the algorithm
with efficiency in mind, since it will be constrained when it comes to resource
use. Lastly, a graph database over all dependencies and versions that we have
acquired will need to be created, together with an algorithm that effectively uses
this database in order to find which versions of dependencies are required for the
remediation.

3.3 Problem statement

When the graph solution is in place we will benchmark it by computing the time-
efficiency with regards to the transitive depth of the vulnerable dependency. The
transitive depth of the vulnerable dependency is of interest for both solutions. It
possibly affects both the number of nodes that need to be traversed in the graph
database solution, as well as the time it takes to build the dependency tree in
the brute-force solution. By taking measurements on different depths for both
solutions, we will be able to derive a rough estimate of their time-efficiencies.
Using the average dependency depth in Maven as a whole, it is then possible to
draw conclusions regarding which solution is preferred.

3.4 Hardware

The computer used for the simulations described in Chapter 5 is a ASUS ROG
Zephyrus G14 GA401QM. Detailed information regarding the RAM and CPU can
be found in Appendix A in Figure A.1, A.2, A.3 and A.4 respectively.

Introduction 3

3.5 Contributions

The goal of this thesis will be to contribute the following:

• A generic algorithm for solving vulnerabilities by gradually increasing the
version of a direct dependency until the vulnerability is remediated.

• An implementation of a graph database containing available dependency
versions and their relations that can be queried in order to find remediations
for vulnerabilities.

3.6 Outline

In Chapter 4 theory regarding the problem and the two proposed solutions will
be introduced, in order to establish the terminology and concepts that were useful
during the implementation and analysis. The actual implementation of the solu-
tion will be gone through in Chapter 5 with the results presented in Chapter 6. In
Chapter 7 these results will then be analysed and discussed, giving the basis for
the conclusion presented in Chapter 8. Lastly, Chapter 9 will bring up potential
future work that can assist in further developing the solutions for use in a live
application.

4 Introduction

Chapter4
Theoretical Background

4.1 Packages/Dependencies

Open source software is often described as a piece of code that anyone can see,
modify or optimise, due to it being publicly available. Depending on the license
connected to the software, it may or may not be used in certain applications [2].
This thesis will be focusing on dependencies of open source software, meaning
external code that is required for the software to be used. Dependencies differ
in their structure and the different types have varying names, such as packages,
modules, gems and snaps etc. In this thesis, an openly published piece of open
source software will be referred to as a package.

4.1.1 Open source software registries

There are several different approaches for connecting packages throughout open
source. One approach is to wrap the package with defined meta code so that it can
be used generically in projects using the same meta code structure. These packages
using the same setup can then be published to a central registry store where they
can be used by a package manager. One of the larger package managers with such
a registry is Maven [3], which will be described more in detail in Section 4.2.

4.1.2 Dependency trees

During development, one can implement a new package that is built on top of
already existing packages. These are often called dependencies to the new package.
Later on, this new package might become a dependency to another newly built
package. We now have a set of dependencies depending on each other in a chain.
The dependencies of a dependency is usually called its transitive dependencies [4].
In A → B → C,A is a package that has a direct dependency B and a transitive
dependency C. To B, C is a direct dependency. A package manager is then used
for assisting with handling all of these packages and their relations [5].

The management of transitive dependencies differs a lot. Some package man-
agers do not permit the use of multiple different versions of a dependency, while
others do. Some even lock all transitive dependencies to a certain set of versions
in order to not get conflicting builds. Maven [3] and Composer [6] are examples of

5

6 Theory

package managers that do not accept multiple versions of the same dependency,
while npm [7] is an example of a package managers that does.

4.1.3 Breaking changes

When actively maintained, packages often receive updates and fixes with differing
reasons. It could be because of bugs inside the APIs or new functionality that is
being added due to new demands or interests. Sometimes parts might no longer
be used and could then be removed. Depending on the impact the changes make
to the package, users might be affected. If a certain API is changed so that others
cannot use it in the same way as before, that is usually called a Breaking change [8].

4.1.4 Package versioning

Due to the complexity of managing a large tree of dependency relations, an issue
sometimes faced when packages depend on each other is what is commonly known
as dependency hell. Package versions are often allowed to be declared loosely using,
for example, a version interval, or locked to a single version. One can imagine a
large tree, where versions are not locked and different packages and their transitive
dependencies get automatically updated within the allowed version interval at
different points in time. In that case it is difficult to know if the updates will
introduce breaking changes to a project. The simple solution to the problem would
be to make sure that all packages and their dependencies have locked versions, but
at the same time that means that the project will not receive new updates when
needed. It also still requires the maintainer to have to do research every time a
new version is to be used, in order to make sure that no breaking changes have
been introduced [9].

One common solution for assisting in making it easier to understand what an
update means to a project and reducing the risks of dependency hell is Seman-
tic versioning, also known as SemVer [9]. Semantic versioning is a rule-set for
managing different versions of packages and specifies how these should be incre-
mented/decremented, in order to be transparent about what a change in version
will lead to.

The versions in SemVer are divided into “MAJOR.MINOR.PATCH” (for ex-
ample 2.4.3), where the following scheme is applied:

• “MAJOR”: Incremented whenever changes to the open API are made in
such a way that breaking changes are introduced.

• “MINOR”: Incremented when new functionality is added to a package that is
backwards compatible and will therefore not introduce any breaking changes.
Changes in version are allowed within “MAJOR.X”

• “PATCH”: Incremented when changes that fix bugs are made to already
existing functionality in the package. Changes are allowed within
“MAJOR.MINOR.x”

SemVer declares that “MAJOR”, “MINOR” and “PATCH” should all increase
numerically and the each identifier should be a positive integer, without any zeros
before the actual integer.

Theory 7

SemVer also describes guidelines for how to compare SemVer defined versions.
To determine what version is newer than the other, one must consider the numbers
of each section where the major identifiers precedes minor identifiers which in turn
precedes patch identifiers. The following is, for example, true for SemVer [9]:

1.0.0 < 1.0.1 < 1.1.0 < 1.10.1 < 2.1.1

4.2 Maven

Maven is a package manager often used for Java projects. It does not only cover
the management of packages but also has support for setting up other project
operations, such as compiling, testing or deploying. These operations are normally
done through so called plugins [10]. Maven’s main concept is built around the
project object model, POM and the corresponding file called pom.xml which is a
project specification file in XML format [11]. A basic example of a pom.xml with a
plugin called maven-compiler-plugin and a dependency called maven-artifact can
be seen in Figure 4.1.

<project >
<modelVersion >4.0.0 </ modelVersion >
<groupId >com.mycompany.app </groupId >
<artifactId >my -module </artifactId >
<version >1</version >
<build >

<plugins >
<plugin >

<groupId >org.apache.maven.plugins </groupId >
<artifactId >maven -compiler -plugin </ artifactId >
<version >3.8.1 </ version >

</plugin >
</plugins >

</build >
<dependencies >

<dependency >
<groupId >org.apache.maven </groupId >
<artifactId >maven -artifact </artifactId >
<version >1.2.3 </ version >

</dependency >
</dependencies >

</project >

Figure 4.1: Example pom.xml

8 Theory

4.2.1 Dependency management

Defining what dependencies a Maven project requires is done under the tag de-
pendencies. When the project is built according to the POM, the dependencies
defined gets resolved and downloaded from a defined registry. The default Maven
registry is called the Maven Central Repository, however it is possible to within
the POM declare other registries that are to be used [12]. Since no other registry
has been defined in Figure 4.1 the dependencies and plugins would be downloaded
directly from the Maven Central Repository [13].

Maven supports having setups with dependencies depending on each other,
i.e., transitive dependencies. As stated in Section 4.1.2 Maven does not accept
several versions of a dependency in the tree. So a dependency x with version y
cannot have a another version on another depth. Java uses its classpath to resolve
imports in projects. This is helpful in the case that the same dependency has two
different versions, since they otherwise would end up on the same classpath [14]
making it impossible to know what to reference during compilation [4].

Maven uses so called Dependency mediation to decide what version will be
resolved in the case where two different versions occur as requirements during
build time. The one that gets resolved is the one that is closest to the direct
dependency in the tree. The Maven project defines it as the nearest definition [4].
An example of how this works is the case when we have a dependency x with
version y on level 1 (0 being direct dependencies) and on level 2, the dependency
x is required again but this time with version z. Here Maven would use version y
since it is closest to the direct dependency level. Because of this functionality, a
transitive dependency can always be forced to a certain version if it is declared a
direct dependency in the POM declaration.

4.3 Software vulnerabilities

Software can be affected by a range of different issues, varying in severity. Some
might have devastating effects, while others barely have any impact at all. These
issues sometimes result in software vulnerabilities that are exploitable by malicious
actors. There are several organisations that try to address or aid in the seemingly
never ending fight between the bug fixers and attackers. One such organisation is
the National Institute of Standards and Technology (NIST) and their project the
National Vulnerability Database (NVD). Some of the contributions made by the
project have become standards for managing software vulnerability data. They
also host an openly published vulnerability database that matches software pack-
ages with vulnerability definitions. The matches describe what versions are vul-
nerable to a certain weakness, what the issue is and sometimes how it can be
addressed. This is either done through code changes or pure upgrades or down-
grades of the package. The matched vulnerability is called a CVE, which stands
for Common Vulnerabilities and Exposures, and will be described more thoroughly
in Section 4.3.1. NVD uses a definition they call CPE, or Common Platform Enu-
meration, for defining packages [15], which will be described in Section 4.3.2.

Theory 9

4.3.1 CVE

As mentioned above, NVD has chosen the CVE identifier for vulnerabilities in their
database of package-vulnerability matches. CVE has become a widely used iden-
tifier for a specific vulnerability in information technology systems. The standard
is published and maintained by the MITRE Corporation which has copyrighted
it. A CVE Entry must include the following [16]:

• The name of the package affected by it.

• The version(s) of the package that is affected or that fixes the vulnerability.

• A CVE ID, for example CVE-2021-1337.

• One of either vulnerability type, root cause or impact.

• At least one public reference.

• A prose description.

• An indication of whether or not the vulnerability only affects products that
have stopped being supported.

4.3.2 CPE

A CPE, or Common Platform Enumeration is another information security re-
lated standard. This standard is used to generalise and identify software packages
though naming [17]. It is published and held by NIST which have also published a
CPE dictionary for packages [18]. A CPE identifier contains, among other things,
the following:

• The version of the CPE standard used.

• Related programming language or runtime environment.

• The name of the vendor.

• The name of the package/product.

• Version of the package.

An example of CPE could be the following JavaScript package called lodash that
has the SemVer version 0.1.0:

cpe:2.3:a:lodash:lodash:0.1.0:*:*:*:*:node.js:*:*

When specificed in a CVE, a CPE can sometimes be more general, by having
an asterisk ’*’ in the version tag as well. This would mean that all versions of that
package is affected by the CVE. Another example often used by NVD is specifying
a version interval, within which a package is vulnerable, which can be seen in for
example [19].

10 Theory

4.4 Relational Databases

A relational database consists of data stored in tables containing rows that repre-
sent records and columns that represent attributes. It is based on the relational
model concieved by E. F. Codd in 1970 [20]. The ideas behind the relational
spawned from an era where storage was both limited and expensive and therefore
data needed to be compressed. The relational database is still to this day effective
and useful in a lot of situations where relationships are of the one-to-one, one-
to-many or many-to-one sort, but when it comes to many-to-many relations, the
performance tends to leave a lot to be desired [21].

4.4.1 MySQL

MySQL is an example of a relational database management system using SQL
as language for creating queries. It can hold a variety of different data types,
which are defined in the table where the data is stored. In a MySQL database,
primary keys and foreign keys are used in order to define relationships between
tables [22]. Due to these relationships being highly connected, it can result in issues
with performance for larger databases. The more tables and larger a relational
database is, the more joins are often required for retrieving the data, resulting in
higher query retrieval times [23].

4.5 Graph Databases

A graph database is an alternative to the traditional relational database, consisting
of nodes and edges. It is part of a family of databases called NoSQL which,
unlike relational databases, do not use links between tables to define relationships,
allowing one to access objects in a quick and simple way, due to the explicit
direct relations between data and lack of expensive table joins. The concept of
graph databases was developed as a way of effectively handling many-to-many
relations and making it easy to model and traverse data with high performance
capabilities [24].

4.5.1 Components

Unlike primary and foreign keys in a relational database, the edges in a graph
database define the relationship between the nodes in a node-edge-node pattern.
Both the nodes and the edges are able to have properties and labels assigned
to them that helps describe both what the node represents and the necessary
information about the node’s relation to other nodes [21]. To give an example of
why this is often very useful when creating a graph database, we can consider a
graph database that has nodes describing both people and different physical and
conceptual objects. If we want to describe that a person “John” is fluent in French,
we could add a node with the label “person” and property “name: John”, another
node with the label “language” and property “name: French” and an edge with the
label “is fluent in”, connecting the two nodes. If we were to populate the database
with several other nodes and relationships we would then be able to easily query

Theory 11

the database to find all languages that John is fluent in. Due to the fact that
edges are allowed to have properties, we could further develop this and rename
the label of the edge to “proficiency” and instead include the property “skill_level:
fluent”. By doing this we are now able to do a single simple query and get all
Johns proficiencies in one go. In the same database, other types of objects and
relationships could be added with similar functionality by using properties and
labels.

Figure 4.2: An implementation of the example in Section 4.5.2

4.5.2 Neo4J

Neo4J, developed by the Swedish company Neo4J Inc. is an example of a graph
database management system that uses nodes, edges and properties to build a
graph structure. It supports the labelled property graph model, allowing nodes
and edges to have several different labels. It also allows for bidirectional edges [20].
Figure 4.2 illustrates an example Neo4J graph where the top relation between
John and Katie is bidirectional, while the relations between the people and the
proficiencies are unidirectional. All the edges in the example contain properties,
allowing for more advanced queries to be used to fetch data. Neo4J uses the
cypher query language for both the creation and retrieval of nodes and edges in
its database [20]. The cypher language allows for a wide variety of operations, and
the creation of the graph in Figure 4.2 can be done through the queries shown in
Figure 4.3. In the figure, there are also queries for retrieving data from the graph.

12 Theory

// Create nodes

CREATE (x:Person{name:"John "});

CREATE (x:Person{name:"Katie "});

CREATE (x:Language{name:" French "});

CREATE (x:Instrument{name:" Guitar "});

// Create edges

MATCH (x:Person), (y:Person) WHERE x.name = ’John ’
AND y.name = ’Katie ’ CREATE (x)-[r:Friends (Duration

_months):5)]->(y);

MATCH (x:Person), (y:Person) WHERE x.name = ’John ’
AND y.name = ’Katie ’ CREATE (x)<-[r:Friends (

Duration_months):5)]-(y);

MATCH (x:Person), (y:Language) WHERE x.name = ’John ’
AND y.name = ’French ’ CREATE
(x)-[r:Proficiency {Skill_level: ’Fluent ’}]->(y);

MATCH (x:Person), (y:Instrument) WHERE x.name = ’John ’
AND y.name = ’Guitar ’ CREATE
(x)-[r:Proficiency {Skill_level: ’Novice ’}]->(y);

MATCH (x:Person), (y:Instrument) WHERE x.name = ’Katie ’
AND y.name = ’Guitar ’ CREATE (x)-
[r:Proficiency {Skill_level: ’Professional ’}]->(y);

// Retrieving data

MATCH (x:Person{name:"John "}) -[skills:Proficiency]->(y)
RETURN skills;
// Returns the "French" and "Guitar" nodes

MATCH (x)-[friendship:Friends]-(y: Person{name: "John "})
WHERE friendship.Duration_months > 4 RETURN x;
// Returns the "Katie" node

Figure 4.3: Example queries in the cypher language

Chapter5
Implementation

In this chapter we will present the implementation of the two remediation strate-
gies. Each strategy will have its own relying infrastructure, described in the first
section of both strategies. An in-depth description of each strategy will then follow.

5.1 Remediation using a brute force strategy

The idea behind the name “brute force strategy” stems from that the strategy
theoretically is quite simple. It aims to continuously bump the version of the direct
dependency that transitively has imported a vulnerable dependency. This is to
be done until a version of the direct dependency is found that has either removed
the vulnerable transitive dependency or has changed its version to one outside of
the vulnerable range. By making as small changes as possible between each bump
we would, for versions using SemVer reduce the risk of breaking changes, since we
would prioritize patches and minor version changes over major version changes.

5.1.1 Infrastructure

The brute force strategy is implemented in Debricked’s core infrastructure, using
PHP 8.0 [25] and MySql [26]. Figure 5.1 shows the flow of that core.

The brute force strategy logic is operating as its own entity next to Rule en-
gine and GitHub Consumer, called the Root Fix Consumer. It uses Redis, Workers,
MySQL and the Webservice & API to operate. It is however not shown in Fig-
ure 5.1 but is described more in detail in Section 5.1.2.

5.1.2 Design

Root Fix

The brute force strategy starts with a entity called root fix. The name originates
from the fact that this entity contains the new version for a root dependency that
fixes a vulnerability in a project.

Inside Debricked’s service Maven projects are scanned and in that process,
parsed dependencies are matched with CVEs. The scanning also connects found
vulnerable dependencies with its related dependency ancestors making it possible
to fetch those after the scanning is complete.

13

14 Implementation

Figure 5.1: Debricked data flow

The root fix entity has four components.

1. CVE related data.

2. The vulnerable dependency.

3. The direct dependency in the Maven project that transitively imported the
vulnerable one.

4. The version of the direct dependency that remediates the vulnerable de-
pendency. i.e the fix. Before the remediation is done this is just allocated
space.

Root fix consumer

In order to handle big loads of root fix entries, the service uses a queue system
set up specifically for it. It also has a consumer class that handles queued root fix
entry jobs called the Root Fix Consumer.

The Root Fix Consumer has a method called Invoke that describes what to
be done when a root fix enters.

Maven Remediator

When Invoke is called in the Root Fix Consumer, the Maven Remediator is in turn
used to call its two methods fetch versions and remediate. Fetch versions takes
data regarding the direct dependency from the root fix entry and makes requests
to Maven Central Repository to find all existing versions through an intermediate
class called the Maven Version Fetcher.

Remediate then works its way through the version set returned from fetch
versions with the aim of finding a fix for the root fix entry and thereby the vul-
nerability. The search for such a solution has the following steps, also shown in in
Figure 5.2:

1. Get the next available version in the version set.

Implementation 15

2. Generate an isolated pom.xml file with one direct dependency (the one de-
fined in the root fix) with the version from Step 1 applied. After this, the
pom.xml gets resolved with Maven, using a plugin called dependency:tree
that visualizes the dependency tree in a format that is interpretable.

3. Analyze the generated dependency tree. If the vulnerable dependency is
gone, the algorithm terminates and the secure version is returned and set
in the root fix entry. If the vulnerability is still present and there are more
versions to try, the algorithm returns to Step 1 again. If instead the version
set is empty, the algorithm terminates without a found fix.

Figure 5.2: Brute force strategy data flow

5.2 Remediation using a graph database structure strategy

The second strategy involves creating a graph database, containing available Maven
dependency versions and their relations. A way of querying it also needs to be
implemented in order to find the root dependency versions required to fix a vulner-
ability. By finding root dependencies that are either not related to the vulnerable
transitive dependency or related to a safe version of it. The hope is to be able
to get similar results, in terms of safe versions, as the brute force strategy, but
through a less convoluted procedure.

5.2.1 Infrastructure

We decided to use Python 3.9 [27] with a microframework called Flask [28] to
implement the application communicating with the graph database. The reason

16 Implementation

for choosing Flask was that it is fairly lightweight, easy to use and flexible when it
comes to decisions such as which databases to use. This choice was also influenced
by the fact that the solution did not have to be implemented into Debricked’s core
infrastructure, like the brute force strategy described in Section 5.1. Instead it was
to be designed as a standalone application reachable through a number of REST
API endpoints. For the actual graph database implementation we used Neo4j,
described more in Section 4.5.2 with the py2neo library for communicating with
the graph through Python. In order to be able to queue repository scan requests,
we implemented a Redis [29] queue. Lastly, we used Docker [30] with the tool
Docker Compose [31] to package our application into three different containers,
one for the flask app, one for the Redis queue and one for Neo4j.

The flow of this setup can be followed more in detail in Figure 5.3.

Figure 5.3: Graph database structure flow

5.2.2 Design

Flask

The graph database solution uses Debricked’s tool for parsing dependencies and
relations from Maven projects, and fetches those results when adding it to the
graph. When adding a repository to the graph, the first step is to clone the
repository and branch chosen locally, and then use Debricked’s CLI tool to upload
the files and also perform a dependency scan in the main tool. The CLI tool keeps
track of the scanning progress and when it is finished, the next step is to get the
dependencies and relations from the scan. This is done through an API endpoint
that we implemented that fetches all vulnerable and non-vulnerable dependency
names, versions and relations for the upload. Once they have been fetched, they
are translated into Dependency and Relation entities and then inserted into

Implementation 17

the Neo4j graph. The communication between python and the graph is possible
with the use of the py2neo library.

Neo4j

After having received all the information needed from the scanned repository, we
iterate through the data, adding the appropriate nodes and relations when needed.
We do not allow duplicates in the graph, so if a certain node already exists, we
do not add it, and instead only add the potential new relations, if any exist.
Therefore all repositories which are scanned are interconnected when needed and
the end result is a large graph with nodes for all dependencies parsed and edges for
all relationships. Py2neo is not only used for adding new nodes and relationships
to the graph, but also for getting the appropriate data when needed. Through an
API it is possible to fetch certain data, in order to find the remediating version of
a dependency. Based on the fact that NVD often defines vulnerabilities through
a vulnerable interval, we have created a main API endpoint to be used for the
remediation. This takes the name of the direct dependency and the vulnerable
transitive dependency, as well as the vulnerable version interval as input. This is
used when the vulnerability is within a certain interval, and the graph is queried
to find a version of a direct dependency where that specific transitive dependency
is either outside of that interval, or is not interconnected with it.

Graph database

We want the graph to be as simple as possible and therefore only include the min-
imum required to accomplish the task of remediating vulnerabilities. A node con-
tains two properties, a name and a version and nodes relate to each other through
a relation called “TRANSITIVE_OF” without any properties, which points up-
wards in the graph. This is done so that we can traverse the graph from a safe
transitive dependency version up towards the direct dependencies which depend
on it and that remediates the vulnerability. The format of a CVE on NVD often
contains a vulnerable interval or specific vulnerable version, as mentioned in Sec-
tion 4.3.1. Due to this fact, we have two main queries for getting a root fix from
the graph database:

1. A query which takes the name of the vulnerable transitive and the direct
dependency, along with the vulnerable interval. This is used to find all direct
dependency versions connected to versions of the transitive dependency that
are outside of the interval. The first step of the query is to search for
transitive dependencies that have a version outside of the vulnerable interval.
Step two is then to traverse up the tree of each of these dependencies until
the end or until it finds a dependency whose name matches the name sent
in as the direct dependency name. In step three it then returns that root
node. An illustration of these three steps can be seen in Figure 5.4

2. A query which takes the name of the vulnerable transitive and the direct
dependency and finds all direct dependency versions where the transitive
does not exist. This works well in conjunction with query 1 if the transitive

18 Implementation

was added or removed at a certain point in the direct dependency’s version
history.

Figure 5.4: Illustration of a root fix in the graph

5.3 Simulations

As mentioned in Section 3.3, we decided to compare the two solutions using time
efficiency with regards to the depth of the vulnerable transitive dependency to be
remediated.

5.3.1 Maven registry

We considered it a risk that if the two strategy simulations did not share the
same prerequisites, the results could not be compared due to different dependency
setups. In order to create a shared defined dependency pool we created our own
Maven registry on the platform GitHub. We published in total eight packages, the
first being mvn1 and the last mvn8. For each package we published two versions,
1.0 and 2.0. We also made mvn1 the leaf dependency in the transitive chain.
mvn2 then used mvn1 as a direct dependency, while mvn3 used mvn2 and so
on until mvn8 lastly imported mvn7. We created two such transitive branches.
One version 1.0 branch and one version 2.0 branch. This setup is illustrated in
Figure 5.5.

5.3.2 Remediation using a brute force strategy

Since we wanted to use our newly created Maven registry with published packages
we first of all were forced to make changes to the Maven configuration inside
the Debricked service to make use of our registry instead of the Maven central
repository.

Implementation 19

Figure 5.5: Maven dependency node structure in Neo4j

We wanted to simulate the time needed to remediate a vulnerable dependency
on different dependency depths. Since the simulation focused on transitive depen-
dency depths, it was set up to only require one version bump in order to resolve a
vulnerability. If we were to add more versions that would scale linear and so we did
not see any value in adding more. With the published Maven packages we could
now explicitly say what depth was to be tested by always pointing out mvn1 as
the vulnerable dependency but for each new depth change the direct dependency
from the initial mvn8 down to mvn1. By doing so we could simulate depth 7 to 0.

Each remediation attempt started with inputting the relevant direct depen-
dency along with the vulnerable one to the brute force logic. It then returned the
remediating version of the direct dependency. When this was finished, the simu-
lation saved the time spent on remediating and lastly cleared the cache, so that
each attempt would be unaffected by the others. For each depth, 100 remediation
iterations were run. After this was done, a mean time value was calculated and
saved as the time result for the particular depth. The resulting data set was then
translated into a bar graph together with the standard deviation for each level.

5.3.3 Remediation using a graph database structure strategy

Minimal graph

This simulation was similar to the brute force strategy simulation setup but instead
of using the brute force remediation logic we made use of the graph system. The
big difference was that the two package branches that were published to our own
Maven registry were now pushed to our Neo4j instance, as shown in Figure 5.5.
With that done we could run the simulation by inputting the direct dependency
and the vulnerable one to the flask REST API endpoint, that in turn made queries
to the Neo4j instance, instead of calling the brute force logic. Just like for the brute
force simulation, each depth was run 100 times and the mean time per depth and
standard deviation was saved and translated into a bar graph.

Larger graphs

The number of nodes in the graph database was expected to affect the query
times since it determines how much it needs to search through. Because of this,
we thought that it would be interesting to do several simulations on the graph
solution, each time expanding the graph with a lot of other dependency nodes and
relations outside of the two relevant dependency branches. The graph was filled

20 Implementation

in stages, adding 10, 100, 1000, 10000 and 100000 nodes with the same names,
but different versions than the relevant branches. The same simulation procedure
was then run again for each of the stages, attempting to find out if the size of the
graph mattered for the end result.

5.3.4 Most common dependency depths for Maven packages

In order to evaluate which solution was the best in a real life scenario, we also
wanted to evaluate common dependency depths in Maven repositories. By depen-
dency depth we mean what level of transitivity a certain dependency has. If we
consider Maven packages as a whole, what depths are the most common? This is
relevant for the simulation, since we can cross-reference it to the graphs from the
simulations made in the different solution and see which solution fares best in the
most common dependency depths.

Since Debricked has a lot of users with Maven setups in their projects we felt
that it was suitable to use that data for this analysis. Due to the fact that the
same project could occur several times in the set we made sure to only use the
latest release of each project. If we had not made this filtering we felt that there
was a big risk of the same samples reoccurring, thereby corrupting the results.

With the filtering done we wrote code that fetched each latest Maven depen-
dency scan per project from Debricked. On each scan we got raw dependency
relation data. From these we traversed all branches of the dependency tree and
saved each dependency depth as a sample to our result. An important note here
is that the same dependency could occur twice as a sample. This was due to that
a dependency could share another, thus enabling different sub branches for one
dependency. The counted depths were then plotted as a bar diagram by using the
python library matplotlib [32].

5.3.5 Package version count in the Maven registry

As mentioned in Section 5.3.2, we only require one version bump for each simula-
tion to solve a vulnerability. It is still, however, interesting to look at how many
version bumps that could be expected in the general case. Therefore, we decided
to scrape the Maven central repository [13] in order to find out how many versions
a given Maven package has in average.

Chapter6
Results

6.1 Remediation using a brute force strategy

The results from the brute force strategy simulation can be seen in the bar graph in
Figure 6.1, with the bars representing the time it took to find a remediating version
and error bars represented by lines in the center of each bar. With a depth of 0,
meaning a vulnerable direct dependency without any transitive dependencies, it
took 5.25 seconds (std: 0.19s). When the depth is increased to 1 and the imported
direct dependency has a vulnerable transitive dependency directly under it, the
elapsed time was increased to 6.30 seconds (std: 0.41s). Furthermore, for depths
2, 3, 4, 5, 6 and 7, the dependency remediation took 6.88 (std:0.29s), 8.29 (std:
0.42s), 8.60 (std: 0.31s), 10.12 (std: 1.14s), 10.99 (std: 0.33s) and 12.20 (std:
0.44s) seconds respectively.

6.2 Remediation using a graph data structure strategy

6.2.1 Minimal graph

Shown in Figure 6.2 are the results of the simulation made on the minimal graph,
which contained just the nodes required to simulate a remediation. In this simula-
tion, the remediation of a vulnerable direct dependency (depth 0) took a total of
0.0098 seconds with a standard deviation of 0.0009 seconds. For depth 1, the mean
time decreased to 0.0090 seconds, with a standard deviation of 0.0008 and depths
2, 3, 4, 5, 6 and 7 took 0.095 (std: 0.0009s), 0.0088 (std: 0.0010s), 0.0088 (std:
0.0009s), 0.0092 (std: 0.0009s), 0.0095 (std: 0.0009s) and 0.0083 (std: 0.0008s)
seconds respectively.

6.2.2 Big graph

The results for a graph with 100,000 nodes can be seen in Figure 6.3. For depths
0, 1, 2, 3, 4, 5, 6 and 7 it took 1.373 (std: 0.059s), 0.143 (std: 0.013s), 0.168
(std: 0.010s), 0.204 (s 0.242 (std: 0.017s), 0.270 (std: 0.018s), 0.310 (std: 0.018s)
and 0.331 (std: 0.015s) seconds respectively. The results for when the graph had
10, 100, 1000 and 10,000 nodes can be seen in Figures A.5, A.6, A.7 and A.8
respectively, in Appendix A.

21

22 Results

Figure 6.1: Remediation using a brute force strategy

Figure 6.2: Remediation using a graph data structure strategy -
minimal graph

Results 23

Figure 6.3: Remediation using a graph data structure strategy - big
graph

6.3 Most common dependency depths for Maven packages

From the dependency depth simulation it was discovered that the vast majority
of all packages in Maven projects scanned by Debricked were on depth 1 and 2.
Direct dependencies and dependencies on depth 3 were the second most common
and the deepest dependencies found were on depth 7 which were also the least
common. The complete bar graph is found in Figure 6.4.

6.4 Package version count in the Maven registry

According to the results from scraping the Maven central repository it contained
394,095 unique packages which together contained a total of 6,624,270 versions.
By dividing the two, we get a mean value of ≈ 16.81 versions per package. The
amount of versions released for a given package varied from 1 to 4609.

24 Results

Figure 6.4: Maven dependency depths

Chapter7
Analysis

7.1 Remediation using a brute force strategy

7.1.1 Dependency depths

When observing the results from the brute force strategy simulations, it is found
that the time spent on remediating increases from one depth to the next with an
average of 0,99 seconds, with the lowest value being 0,58 seconds and the highest
1,52 seconds. This gives an idea of the time it takes to fetch a dependency from our
registry and use it in a build. For depth 0, it only has to fetch a single dependency,
but it also builds the prerequisites for a skeleton project. By subtracting the
mean time it takes to fetch a dependency (0,99 seconds) from the time it took
to remediate in depth 0 (≈ 5.254 seconds), it can be assumed that creating the
needed parts for a Maven skeleton projects to build, takes around 4,26 seconds.
This is already a lot longer than any graph remediation result.

7.1.2 Number of versions

Another aspect to consider is the average number of versions that exists in a
given Maven package. It would most likely be very difficult to find an average
of versions bumps required to remediate a vulnerability, requiring us to collect
data of remediations in our brute force solution over a very long time. The brute
force strategy is also already so much slower than the graph database when just
requiring a single version bump, leading us to that it was not worth the time.
Regardless, looking at the average number of versions published for a given Maven
package, the worst case scenario for the brute force strategy would in average be
a remediation which required 17 version bumps, drastically increasing the time
of remediation. Scraping the Maven registry also revealed that there are package
which have up to 4609 versions published. Attempting a brute force remediation
on such a package would most likely be an incredibly time consuming task.

7.1.3 Private Maven registry

By creating our own Maven registry on GitHub, we were able to quickly create
a chain of dependencies that were relevant for the simulations. It does, however,
leave the question of how much it affects the build time of the project. Could it

25

26 Analysis

be that using the Maven Central Repository is more efficient when it comes to
fetching packages, thereby making the brute force solution faster than it was in
our simulations? Since we wanted to isolate depth as a factor when bench-marking
the different solutions, we felt that the best way of doing this was by creating our
own Maven packages where size or width of each package did not skew the results.
The Maven Central Repository has quite a rigorous process required to publish
a package, however, making us opt for the simpler solution of just using GitHub
to publish them, saving us a lot of time. The fact that Maven allows the use of
repositories other than the Maven Central Repository also supports us not feeling
forced to use it for the simulations. To be completely sure about the validity of
the our own Maven registry it could have been interesting to actually perform the
same simulation when the packages were published on Maven Central Repository
to exclude the risk of the setup not being representative for the simulation.

7.2 Remediation using a graph data structure strategy

The remediation time for simulations on the minimal graph proved, unlike the
brute force strategy, not to be as clearly dependent on the depth of the remediation.
The fairly high standard deviation made it difficult to draw any clear connections
between depth and time. The simulations did, however, show that a remediation
in the minimal graph is a lot more efficient than the brute force strategy. We
were also interested in seeing how well the graph solution scaled. Since the Maven
Central Repository according to our scraping contained 6,624,270 versions, the
graph in its final form would require as many nodes in order to create the full
Maven dependency tree for use in production. Due to time constraints and the
time it took to create all dependency nodes and relationship, we were unable to
test adding 1,000,000 and 10,000,000 dependency nodes to the graph database.

When conducting simulations for the different graph sizes, it was found that
increasing the size of the graph had a profound effect on the time it took to find
a remediation. This is believed to be both due to the fact that the database is
larger, but even more so because we used the same dependency names, but with
unique versions, for all dependencies we added. This means that the query found
a matching name (but not a matching version) in all dependency chains. This
is an unrealistic scenario since a Maven package has on average ≈ 17 published
versions, but we decided to do so, since the graph proved to be so much faster in
regards to remediation time and we wanted to simulate if it was possible to reach
a point where the best case brute force remediation would be better, in regards
to time, than the graph solution. This was also useful due to the fact that we did
not test adding 1,000,000 and 10,000,000 nodes to the graph.

The simulations used a local instance of a Neo4j database and flask application
when querying for root fixes. This might have lessened the time it took to send an
API request to our flask application, compared to if we would have actually had
it deployed. The decision to not deploy was made due to a lack of time, but it
would have been interesting to see how that would have affected the simulations.

Analysis 27

7.3 Most common dependency depths for Maven packages

The simulations on dependency depths showed us that depths 1 and 2, followed
by 0 and 3 were the most common depths of dependencies, at least in Debricked’s
database. Therefore these depths are of most interest when deciding which solution
is preferred for our use case. This is positive for the brute force strategy, since it
proved to be more affected by deeper dependency trees than the graph database.
However it still does not change the fact that the graph was more effective in all
depths, however. In depth 1, for example, the graph with 100,000 nodes took 0.14
seconds to find a remediation in average, while the brute force remediation took
6.30 seconds.

7.4 Other observations

7.4.1 Remediation of direct dependencies

When it comes to the results for depth 0 in the graph simulation, it turned out
not to be as interesting as one might think. The reason for why it is so high
compared to the other bars and that it keeps growing when adding more nodes, is
because our graph queries are not designed to find a vulnerable direct dependency.
It first attempts to find a dependency with the name mvn1 that has a transitive
dependency with the name mvn1 that is not within the vulnerable interval, but
does not find any. After that it tries the other query and finds all dependencies
with the name mvn1 that does not have a transitive dependency with the name
mvn1, returning all nodes with the name mvn1. The situation is not realistic, since
if the direct dependency is vulnerable there is no need to perform a root fix. The
reason for this is that you simply need to adjust the version of the root to one that
is no longer vulnerable in those cases. The same goes for the brute force solution,
but it is still interesting to see how long that took, since it allowed us to find out
how long it takes to set up the project.

7.4.2 Dependency width and size

Worth noting for the simulations is that the environment that was created for
the simulations was made to be as simple as possible and enable us to isolate
dependency depth as a variable. By creating our own Maven registry on GitHub, as
mentioned in Section 5.3.1, we were able to create long dependency chains that had
a width of 1. It is not, however, uncommon that real life Maven packages depend
on several other packages and that each level in a dependency chain has a width
larger than 1. This is expected to greatly increase the number of dependencies
that has to be fetched in each brute force attempt. Since our graph query moves
upwards in the dependency tree in a straight line from a transitive to a direct
dependency, it should in theory not affect the graph solution, however, outside of
the fact that there would be more nodes in total in the database. There are other
variables that may affect the brute force remediation method, such as the size of
each package in the dependency tree. In the end, we deemed the depth being the
most interesting for our use-case and comparison and felt that since the graph

28 Analysis

database proved to be so much faster in all cases in our simulation, impairing the
situation for the brute force solution was not of interest when answering our main
questions.

Chapter8
Conclusions

The focus of this Master’s project was to find a solution for remediating vul-
nerabilities in transitive dependencies in open source. The Master’s project was
conducted at a company called Debricked and the solution was hoped to assist
them in the remediation of their customers vulnerabilities. To accomplish that,
we devised two different strategies for resolving such vulnerabilities. The first
strategy was the brute force strategy. This attempts to upgrade the direct de-
pendency that depended on the vulnerable transitive dependency iteratively in as
small version upgrades as possible. The iteration was to be done until a version of
the direct dependency was discovered that no longer depended on the transitive
dependency which contained the vulnerability. The other strategy was to create
a graph database over all available Maven packages and versions. It could then
be queried in order to find versions of direct dependencies, which no longer used
a particular transitive dependency. For the sake of the Master’s project, we de-
cided to create a proof of concept of the graph, which contained the packages and
versions we deemed suitable in order to test the strategy.

After implementation, we compared the two solutions in order to find which
of them proved more time-efficient. The comparison was made through multiple
simulations, which focused on how the depth of a transitive dependency would
affect the time it took to find a remediating version. It became clear from the
results of the simulations that the graph database was the preferred solution when
it comes to time-efficiency in finding a remediating version independent of vulner-
ability dependency depth. The graph database proved to be a lot less affected by
the depth of the vulnerable transitive dependency than the brute force strategy
and was overall a lot faster. It was also of importance that the graph solution
scaled well, so that it would be usable even when containing all Maven packages
in the future. With a total of 100,000 nodes, the graph database was still able to
outperform the brute force strategy by a large margin. We believe that the results
provided by this Master’s thesis will be of great use for Debricked when further
developing their solution to the problem.

29

30 Conclusions

Chapter9
Future work

9.1 Develop simpler strategies for remediation

The current brute force remediation strategy will, as shown by the results, be
quite time consuming, and scales fairly poorly with larger packages. The fact
that Maven does not accept several versions of a certain package, as mentioned in
Section 4.1.2, opens up a possibility of being able to set the vulnerable transitive
as a direct dependency and force its version to a secure one. This makes the
remediation process a lot simpler, but it does not evade the fact that breaking
changes may appear and it would be of interest to look into how this solution
could mature.

9.2 Scaling the graph database solution for production

Our current implementation of the graph database is made as a proof of concept
for comparing between the brute force solution and the graph database. Since the
graph database solution has proven to be very effective, it is of great interest to
scale the solution so that the graph includes all existing Maven packages. This way,
it can be used live in Debricked’s remediation tool. It would also be interesting
to conduct similar simulations to the ones made in this thesis with the complete
graph, since the size of the database should affect query times.

9.3 Keeping the graph representation up to date

When scaling the graph database solution to be used in Debricked’s tool, new
issues that have not been discussed in this Master’s thesis arise. One of them is
how to keep the graph representation up to date. The goal of such a database
would be to have an accurate representation of all Maven packages so that it can
be used for remediation of vulnerabilities. Because of this, the graph needs to
contain the latest available information regarding all packages to ensure that users
receive up-to-date updates for their packages. This is not an easy feat due to the
size of the graph itself and that it needs to be updated regularly and be fairly fast
when it does.

31

32 Future work

9.4 Widening the scope to more languages

Implementing a solution for Maven was of high priority to Debricked, but looking
forward, there could be a lot of value in making similar implementations and
conduct the same kind of tests with graph data from other package managers,
such as npm, pip, composer and NuGet. Since package managers often differ a lot
in terms of how both packages and versions are handled in a project, it would be
interesting to see how it affects the parameters that were discussed in the Master’s
thesis and if similar results would still be obtained.

9.5 The economic aspect

Even though it was clear that the graph solution outmatched the brute force
solution in all simulations in regards to time we have not made any comparisons
in regards to cost. Say the graph solution would be a lot more expensive to keep
updated and to use than the brute force strategy. An interesting aspect would
then be to find out at what point the hefty price would not match the gain in
speed for the graph solution.

References

[1] Debricked AB. Debricked. https://debricked.com.

[2] Opensource.com. What is open source? https://opensource.com/
resources/what-open-source.

[3] Apache Maven Project. Pom reference. https://maven.apache.org/index.
html.

[4] Apache Maven Project. Introduction to the dependency mech-
anism. https://maven.apache.org/guides/introduction/
introduction-to-dependency-mechanism.html.

[5] Pietro Abate, Roberto Di Cosmo, Ralf Treinen, and Stefano Zacchiroli. A
modular package manager architecture. Information and Software Technol-
ogy, 55(2):459 – 474, 2013.

[6] Composer community. Documentation - basic usage. https://getcomposer.
org/doc/01-basic-usage.md.

[7] npm community. package-lock.json. https://docs.npmjs.com/cli/v7/
configuring-npm/package-lock-json.

[8] Laerte Xavier, Aline Brito, Andre Hora, and Marco Tulio Valente. Histor-
ical and impact analysis of api breaking changes: A large-scale study. In
2017 IEEE 24th International Conference on Software Analysis, Evolution
and Reengineering (SANER), pages 138–147, 2017.

[9] Tom Preston-Werner. Semantic versioning 2.0.0. https://semver.org/.

[10] Maven community. Available plugins. https://maven.apache.org/
plugins/index.html.

[11] Welcome to Apache Maven. package-lock.json. https://maven.apache.
org/.

[12] Maven repositories. https://maven.apache.org/guides/introduction/
introduction-to-repositories.html.

[13] Maven central repository. https://repo1.maven.org/maven2/.

[14] Oracle. Setting the class path. https://docs.oracle.com/javase/7/docs/
technotes/tools/windows/classpath.html.

33

https://debricked.com
https://opensource.com/resources/what-open-source
https://opensource.com/resources/what-open-source
https://maven.apache.org/index.html
https://maven.apache.org/index.html
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
https://getcomposer.org/doc/01-basic-usage.md
https://getcomposer.org/doc/01-basic-usage.md
https://docs.npmjs.com/cli/v7/configuring-npm/package-lock-json
https://docs.npmjs.com/cli/v7/configuring-npm/package-lock-json
https://semver.org/
https://maven.apache.org/plugins/index.html
https://maven.apache.org/plugins/index.html
https://maven.apache.org/
https://maven.apache.org/
https://maven.apache.org/guides/introduction/introduction-to-repositories.html
https://maven.apache.org/guides/introduction/introduction-to-repositories.html
https://repo1.maven.org/maven2/
https://docs.oracle.com/javase/7/docs/technotes/tools/windows/classpath.html
https://docs.oracle.com/javase/7/docs/technotes/tools/windows/classpath.html

34 References

[15] NIST. General information. https://nvd.nist.gov/general.

[16] MITRE. Cve requirements. https://cve.mitre.org/cve/cna/rules.
html#section_8-1_cve_entry_information_requirements.

[17] NIST. Official common platform enumeration (cpe) dictionary. https:
//csrc.nist.gov/projects/security-content-automation-protocol/
specifications/cpe.

[18] NIST. Official common platform enumeration (cpe) dictionary.
https://nvd.nist.gov/products/cpe#:~:text=CPE%20is%20a%
20structured%20naming,and%20tests%20to%20a%20name.

[19] NIST. Cve-2018-16487 detail. https://nvd.nist.gov/vuln/detail/
cve-2018-16487#vulnConfigurationsArea.

[20] Surajit Medhi and Hemanta K. Baruah. Relational database and graph
database: A comparative analysis. volume 5, pages 21–25, 2017.

[21] George F. Hurlburt, George K. Thiruvathukal, and Maria R. Lee. The graph
database: Jack of all trades or just not sql? IT Professional, 19(6):21–25,
2017.

[22] Petr Filip and Lukáš Čegan. Comparison of mysql and mongodb with focus on
performance. In 2020 International Conference on Informatics, Multimedia,
Cyber and Information System (ICIMCIS), pages 184–187, 2020.

[23] H.R. Vyawahare, P.P. Karde, and V.M. Thakare. A hybrid database approach
using graph and relational database. In 2018 International Conference on
Research in Intelligent and Computing in Engineering (RICE), pages 1–4,
2018.

[24] I. Fosić and K. Šolić. Graph database approach for data storing, presentation
and manipulation. In 2019 42nd International Convention on Information
and Communication Technology, Electronics and Microelectronics (MIPRO),
pages 1548–1552, 2019.

[25] The PHP Development Team. Php: Hypertext preprocessor. https://www.
php.net.

[26] Oracle Corporation. Mysql. https://www.mysql.com.

[27] Python Software Foundation. Welcome to python. https://www.python.
org.

[28] Flask. Flask foreword. https://flask.palletsprojects.com/en/2.0.x/
foreword.

[29] Redis labs. Redis. https://redis.io.

[30] Inc. Docker. Docker. https://www.docker.com.

[31] Inc. Docker. Docker compose. https://docs.docker.com/compose.

[32] The Matplotlib development team. Matplotlib. https://matplotlib.org/.

https://nvd.nist.gov/general
 https://cve.mitre.org/cve/cna/rules.html#section_8-1_cve_entry_information_requirements
 https://cve.mitre.org/cve/cna/rules.html#section_8-1_cve_entry_information_requirements
https://csrc.nist.gov/projects/security-content-automation-protocol/specifications/cpe
https://csrc.nist.gov/projects/security-content-automation-protocol/specifications/cpe
https://csrc.nist.gov/projects/security-content-automation-protocol/specifications/cpe
https://nvd.nist.gov/products/cpe#:~:text=CPE%20is%20a%20structured%20naming,and%20tests%20to%20a%20name
https://nvd.nist.gov/products/cpe#:~:text=CPE%20is%20a%20structured%20naming,and%20tests%20to%20a%20name
https://nvd.nist.gov/vuln/detail/cve-2018-16487#vulnConfigurationsArea
https://nvd.nist.gov/vuln/detail/cve-2018-16487#vulnConfigurationsArea
https://www.php.net
https://www.php.net
https://www.mysql.com
https://www.python.org
https://www.python.org
https://flask.palletsprojects.com/en/2.0.x/foreword
https://flask.palletsprojects.com/en/2.0.x/foreword
https://redis.io
https://www.docker.com
https://docs.docker.com/compose
https://matplotlib.org/

AppendixA
Figures

Architecture: x86_64
CPU op-mode(s): 32-bit , 64-bit
Address sizes: 48 bits physical , 48 bits

virtual
Byte Order: Little Endian

CPU(s): 16
On -line CPU(s) list: 0-15

Vendor ID: AuthenticAMD
Model name: AMD Ryzen 9 5900HS with Radeon

Graphics
CPU family: 25
Model: 80
Thread(s) per core: 2
Core(s) per socket: 8
Socket(s): 1
Stepping: 0
Frequency boost: enabled
CPU max MHz: 3300.0000
CPU min MHz: 1200.0000
BogoMIPS: 6590.02

Virtualization features:
Virtualization: AMD -V

Caches (sum of all):
L1d: 256 KiB (8 instances)
L1i: 256 KiB (8 instances)
L2: 4 MiB (8 instances)
L3: 16 MiB (1 instance)

Figure A.1: CPU

35

36 Figures

Handle 0x0013 , DMI type 16, 23 bytes
Physical Memory Array

Location: System Board Or Motherboard
Use: System Memory
Error Correction Type: None
Maximum Capacity: 32 GB
Error Information Handle: 0x0012
Number Of Devices: 2

Figure A.2: Memory - Handle 0x0013

Figures 37

Handle 0x001A , DMI type 17, 92 bytes
Memory Device

Array Handle: 0x0013
Error Information Handle: 0x0019
Total Width: 64 bits
Data Width: 64 bits
Size: 16 GB
Form Factor: SODIMM
Set: None
Locator: DIMM 0
Bank Locator: P0 CHANNEL A
Type: DDR4
Type Detail: Synchronous Unbuffered (

Unregistered)
Speed: 3200 MT/s
Manufacturer: Hynix
Serial Number: 00000000
Asset Tag: Not Specified
Part Number: HMAB2GS6AMR6N -XN
Rank: 1
Configured Memory Speed: 3200 MT/s
Minimum Voltage: 1.2 V
Maximum Voltage: 1.2 V
Configured Voltage: 1.2 V
Memory Technology: DRAM
Memory Operating Mode Capability: Volatile

memory
Firmware Version: Unknown
Module Manufacturer ID: Bank 1, Hex 0xAD
Module Product ID: Unknown
Memory Subsystem Controller Manufacturer ID:

Unknown
Memory Subsystem Controller Product ID: Unknown
Non -Volatile Size: None
Volatile Size: 16 GB
Cache Size: None
Logical Size: None

Figure A.3: Memory - Handle 0x001A

38 Figures

Handle 0x001D , DMI type 17, 92 bytes
Memory Device

Array Handle: 0x0013
Error Information Handle: 0x001C
Total Width: 64 bits
Data Width: 64 bits
Size: 16 GB
Form Factor: SODIMM
Set: None
Locator: DIMM 0
Bank Locator: P0 CHANNEL B
Type: DDR4
Type Detail: Synchronous Unbuffered (

Unregistered)
Speed: 3200 MT/s
Manufacturer: Samsung
Serial Number: 17 F12341
Asset Tag: Not Specified
Part Number: M471A2G43AB2 -CWE
Rank: 1
Configured Memory Speed: 3200 MT/s
Minimum Voltage: 1.2 V
Maximum Voltage: 1.2 V
Configured Voltage: 1.2 V
Memory Technology: DRAM
Memory Operating Mode Capability: Volatile

memory
Firmware Version: Unknown
Module Manufacturer ID: Bank 1, Hex 0xCE
Module Product ID: Unknown
Memory Subsystem Controller Manufacturer ID:

Unknown
Memory Subsystem Controller Product ID: Unknown
Non -Volatile Size: None
Volatile Size: 16 GB
Cache Size: None
Logical Size: None

Figure A.4: Memory - Handle 0x001D

Figures 39

Figure A.5: Remediation using a graph data structure strategy - 10
node graph

Figure A.6: Remediation using a graph data structure strategy -
100 node graph

40 Figures

Figure A.7: Remediation using a graph data structure strategy -
1000 node graph

Figure A.8: Remediation using a graph data structure strategy - 10k
node graph

Automating vulnerability remediation in Maven

CARL TERNBY & VIKTOR PETTERSSON
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2021

C
A

R
L TER

N
B

Y
 &

 V
IK

TO
R

 PETTER
SSO

N
A

utom
ating vulnerability rem

ediation in M
aven

LU
N

D
 2021

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2021-848
http://www.eit.lth.se

	Automating_vulnerability_remediation_in_Maven.pdf
	Acknowledgements
	Popular Science Summary
	Introduction
	Debricked
	Goals & Challenges
	Problem statement
	Hardware
	Contributions
	Outline

	Theory
	Packages/Dependencies
	Maven
	Software vulnerabilities
	Relational Databases
	Graph Databases

	Implementation
	Remediation using a brute force strategy
	Remediation using a graph database structure strategy
	Simulations

	Results
	Remediation using a brute force strategy
	Remediation using a graph data structure strategy
	Most common dependency depths for Maven packages
	Package version count in the Maven registry

	Analysis
	Remediation using a brute force strategy
	Remediation using a graph data structure strategy
	Most common dependency depths for Maven packages
	Other observations

	Conclusions
	Future work
	Develop simpler strategies for remediation
	Scaling the graph database solution for production
	Keeping the graph representation up to date
	Widening the scope to more languages
	The economic aspect

	References
	Figures

