
A Study on Efficient Memory Utilization in
Machine Learning and Memory Intensive Systems

JONES EMMANUEL
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2021

JO
N

ES EM
M

A
N

U
EL

A
 Study on Effi

cient M
em

ory U
tilization in M

achine Learning and M
em

ory Intensive System
s

LU
N

D
 2021

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2021-850
http://www.eit.lth.se



A Study on E�cient Memory Utilization in

Machine Learning and Memory Intensive Systems

Jones Emmanuel

jo8026em-s@student.lu.se

Department of Electrical and Information Technology

Lund University

Supervisor: Joachim Rodrigues

Masoud Nouripayam

Arturo Prieto

Examiner: Erik Larsson

October 3, 2021



© 2021
Printed in Sweden
Tryckeriet i E-huset, Lund



Acknowledgement

I would like to thank my supervisors Joachim Rodrigues, Masoud Nouripayam,
and Arturo Prieto for giving me this opportunity and supporting me through this
thesis. I am very grateful for the valuable feedback and guidance you provided. A
special thanks to my examiner Erik Larsson and my opponent Vignajeth Kuttuva
Kishorelal for all the helpful feedback provided during the presentation. Finally,
I would like to express my deepest gratitude to my family and friends for the
motivation and support you provided.

i



ii



Abstract

As neural networks �nd more and more practical applications targeted for edge
devices, the implementation of energy-e�cient architectures is becoming very cru-
cial. Despite the advancements in process technology, power and performance
of memories remain to be a bottleneck for most computing platforms. The aim
of this thesis is to study the e�ect of the breakdown structure of memories on
power cost with a focus on a dedicated hardware accelerator in neural network
applications. The evaluation test suite of this study consists of a RISC-V based
System-on-Chip (SoC), PULPissimo, integrated with an accelerator designed for
a convolutional neural network (CNN) application. The memory organization
of the CNN hardware accelerator is implemented as a �exible and con�gurable
wrapper for studying di�erent breakdown structures. Moreover, di�erent opti-
mization techniques are also utilized to put area and power costs in the de�ned
design budget. Multiple memory breakdown structures, suitable for the acceler-
ator's memory sub-system, were analyzed for power consumption, as part of the
study. The study reveals a non-linear increase in power consumption with the size
of the static random-access memory (SRAM) modules and the limits of memory
partitioning while using SRAM. It also revealed the power and area limitations of
D �ip-�op based standard cell memory (SCM) in comparison with SRAM.

iii



iv



Popular Science Summary

The �eld of arti�cial intelligence is making fast progress these days. It is �nding
more practical applications like image recognition, self-driving cars, healthcare,
and speech recognition that are relevant in day to day life. New smartphones are
the best example of devices that are capable to perform machine learning tasks
that �nd everyday use. In 2017, Google released a new smartphone app called
Lens. This app, using the phone's camera and machine learning techniques, can
perform many image recognition tasks such as identifying plants or animals, read-
ing and translating text, and scanning QR codes or barcodes. Another example is
the voice assistants available with phones or smart speakers. The speech recogni-
tion systems for these applications also use machine learning to classify the words
spoken by the user. But for all these applications to work, a stable connection to
the internet is necessary. The data is sent to powerful data centers located in the
cloud to perform the demanding computations. However, with the rising concerns
about privacy and due to bandwidth limitations, it is desirable to perform these
tasks on the device itself instead of sending it over to a data center. This ap-
proach requires devices powerful enough to process the complex machine learning
algorithms but highly energy-e�cient at the same time so that they can still be
powered by batteries.

Rapid draining of batteries on today's laptops, smartphones, smartwatches,
and many other portable devices can be attributed to several reasons. One of
the reasons is the internal memory of such battery-powered devices. Despite the
advancements in technology and design architecture, the memories consume a sig-
ni�cant amount of the energy budget. Hence, in order to achieve better battery
life on such devices, it is important to have an energy-e�cient memory sub-system.
This thesis aims to analyze di�erent memory con�gurations to improve energy ef-
�ciency for the memory sub-system in a hardware designed for image classi�cation
using machine learning.

v



vi



List of Acronyms

NN Neural networks

SRAM Static random-access memory

SCM Standard cell memory

SoC System-on-chip

CNN Convolutional neural network

PnR Place and route

ANN Arti�cial neural network

MLP Multi-layer perceptron

ReLU Recti�ed linear units

CMOS Complementary metal-oxide-semiconductor

WL Word Line

BL Bit-line

CMAC Convolution multiply-accumulate

P14 Pixel 14

MAC Multiply-accumulate

IO Input/Output

kB Kilobytes

vii



CS Chip select

VCD Value change dump

ROM Read-only memory

viii



Table of Contents

1 Introduction 1
1.1 Scope of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis Structure and Organization . . . . . . . . . . . . . . . . . . . 3

2 Background 5
2.1 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Accelerator Design and Implementation 11
3.1 CNN Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Memory Analysis and Results 23
4.1 Memory Configurations . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Primary Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Post-Layout Power Analysis . . . . . . . . . . . . . . . . . . . . . . 27
4.4 Additional Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 PULPissimo Integration 29
5.1 Accelerator Integration and Functional Verification . . . . . . . . . . 29

6 Conclusion 33
6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

ix



x



List of Figures

2.1 Basic architecture of a single layer neural network [22]. . . . . . . . . 6
2.2 Basic architecture of a multi-layer neural network [22]. . . . . . . . . 6
2.3 SRAM architecture [31]. . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Architecture of the CNN implemented in the hardware accelerator. . . 12
3.2 Simplified block diagram of the accelerator. . . . . . . . . . . . . . . 14
3.3 Simplified architecture of the convolution unit. . . . . . . . . . . . . . 16
3.4 Visualization of data reuse using the pixel registers. . . . . . . . . . 17
3.5 Visualization of weights and pixels used in each cycle to compute one

output pixel during convolution. . . . . . . . . . . . . . . . . . . . . 18
3.6 Sequence of movement of filter along the image and corresponding

output pixels during convolution. . . . . . . . . . . . . . . . . . . . . 19
3.7 Simplified architecture of the dense unit. . . . . . . . . . . . . . . . 21

4.1 Visualization of address space division in some of the configurations. 25
4.2 Power per word access gain for the SRAM modules compared to a

0.0625kB SRAM module. . . . . . . . . . . . . . . . . . . . . . . . 27

5.1 Simplified architecture of PULPissimo with the CNN accelerator at-
tached [39]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

xi



xii



List of Tables

4.1 Details of the memory configurations analyzed. . . . . . . . . . . . . 24
4.2 Post-synthesis results. . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 Post-layout results. . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4 SRAM vs SCM comparison. . . . . . . . . . . . . . . . . . . . . . . 28

xiii



xiv



Chapter1
Introduction

In recent years, there has been immense growth in the �eld of machine learning
and neural networks (NN). The wide utilization of neural networks in a variety of
applications such as speech recognition [1], sign language translation [2], face de-
tection [3], healthcare [4], self-driving [5], and voice assistants [6] demands looking
for �exible approaches capable of ful�lling current e�ciency requirement trends.

NNs are highly complex and expensive in terms of computation, power, and
memory. For many NN applications on edge devices [7] the common approach is to
transfer the data to the cloud to perform the neural network related computations.
However, this approach comes with its own drawbacks such as the requirement of
a stable internet connection, privacy concerns over sensitive data, and the band-
width limitation of the internet [8][9].

Due to these concerns, for many NN applications, processing at the edge de-
vices would be more e�cient [7]. But edge devices are resource-constrained with
limited memory and power budget. As NNs �nd more and more applications, the
need for e�cient low-power devices capable of implementing complex NNs is on
the rise [10].

One of the big contributors to power consumption in NN hardware is memory.
In fact, the memory can be the bottleneck of the hardware in terms of power,
performance, and area [10][11]. Having an e�cient memory sub-system is very
essential for low-power edge devices. This master's thesis project aims to explore
and study e�cient memory breakdown structures for low-power dedicated hard-
ware accelerators at the edge.

1.1 Scope of Thesis

The goal of this project is to analyze di�erent memory breakdown structures,
to �nd and propose an e�cient solution to be implemented in a NN hardware
with an aim to reduce power consumption. These memory breakdown structures
can be comprised of conventional static random-access memory (SRAM) and/or
standard cell memory (SCM). The NN hardware consists of a hardware accelerator
integrated into the open-source RISC-V based System-on-chip (SoC), PULPissimo

1



2 Introduction

[12][13].

To this purpose, a convolutional neural network (CNN)[14] was designed and
trained to classify the images of handwritten digits from the MNIST database
[15]. MNIST database is a collection of handwritten digits that is commonly used
to train various machine learning networks and acts as a base case for new im-
plementations. The CNN model was constructed and optimized for the speci�ed
accuracy, performance, and memory requirements.

The next task was to design and implement a hardware accelerator for the in-
ferencing of the CNN. The accelerator uses �xed-point numbers for reduced energy
and area consumption. A behavioral model of CNN was developed in MATLAB
with both the �oating-point and �xed-point numbers. This model was used to
analyze the network data and the intermediate results to �nd the optimum pa-
rameters for quantization and the word length for the hardware implementation.

The memory sub-system of the accelerator has a generic design to facilitate
the evaluation of other memory techniques in the future. Based on the structure,
organization, and size of di�erent memory units within the accelerator, di�erent
breakdown structures are selected for the analysis. These breakdown structures
are then integrated into the accelerator and synthesized with a 28nm process tech-
nology. Later, based on post-synthesis results, selected con�gurations are pushed
into the place and route (PnR) �ow for more realistic power analysis.

1.2 Related Work

There have been studies about using memory hierarchy and partitioning to achieve
better performance and power numbers. Su and Despain explored both vertical
and horizontal partitioning as low power cache design techniques in [16]. The idea
behind the vertical cache partitioning was to create hierarchical levels, whereas
horizontal partitioning was to use segmented memory. With both the partitioning
combined, and for certain cache parameters, they were able to achieve 90% power
savings.

The usage of hierarchical designs and partitioned memories is discussed in a
comprehensive survey on technologies, architectures, and optimization techniques
for energy-aware embedded memory designs [17]. Partitioned memories within a
vertical hierarchical level will help to reduce the power consumption at the expense
of area and wiring overhead, and communication power.

Meinerzhagen et al. [18] explore di�erent SCM architectures for area and
power compared with a base case scenario of an SRAM implementation. This
report shows that SCMs compared to SRAMs can provide up to 37% power savings,
however, with 50% area overhead. In this case, the memory blocks were larger
than 3 kilobits, and at those sizes, SRAM tends to have a lower area than SCM.
The analysis shows that using SCM allows the place and route tool to place the



Introduction 3

memories near the logic, thereby reducing the routing length.

1.3 Thesis Structure and Organization

This thesis work is organized into 6 chapters.

Chapter 1: Introduction, provides an insight into the problem, how this study
is relevant to the problem, and an outline about the target system.

Chapter 2: Background, explains the theory behind NN, CNN, embedded
memory, and power consumption.

Chapter 3: Accelerator Design and Implementation, discuss the CNN model
training and testing, various optimization techniques used for the hardware im-
plementation of the CNN, architecture of the design, and the working of the core
units of the accelerator.

Chapter 4: Memory Analysis and Results, explains the study on the memory
breakdown structures and the results.

Chapter 5: PULPissimo Integration, discuss the process of integrating the
CNN hardware accelerator to PULPissimo.

Chapter 6: Conclusion, presents the �nal analysis and the future plans regard-
ing the study.



4 Introduction



Chapter2
Background

This chapter discusses the background of NN, CNN, embedded memory, and power
consumption considered in this study.

2.1 Artificial Neural Networks

First introduced in the 1940s, arti�cial neural networks (ANN) or neural networks
are one of the earliest examples of a machine learning model. These networks are
inspired by the structure and operation of the human nervous system. NNs �nd
wide use in pattern recognition, visual scene interpretation, and speech recognition
[19][20][21].

The basic structure of a NN consists of interconnected computational units
which are commonly referred to as neurons. Each of these connections is scaled
with an intermediate parameter known as weight. NNs use weights to compute a
mathematical function at the neuron from its inputs. Figure 2.1 shows the basic
architecture of a simple NN. It is by changing the magnitude of the weights, the
learning in a NN occurs. The data employed for training provides feedback to the
network about the correctness of the weights based on the extent to which the
predicted output matches the output label for the corresponding input. Based on
the feedback, the weights in the network are changed in a mathematically justi�ed
way to modify the computed function, so that errors are reduced and future pre-
dictions become more accurate. By repeating this process over multiple iterations
with many di�erent input-output pairs of data, and by adjusting the weights be-
tween the neurons in the network successively, the neural network is re�ned over
time, to make more accurate predictions [20][22].

Neural networks can be single-layer or multi-layer networks, where a layer is
a set of neurons that compute the same output function. A single-layer network,
also referred to as a perceptron is shown in Figure 2.1, where x1 to x5 represent the
feature variables or input nodes, w1 to w5 represent the weights, and b represent a
bias value. It consists of an input layer and a single node output layer. The input
nodes or neurons are directly mapped to the output using a generalized linear
function. The input layer does not perform any computation. The edges between
the input nodes and the output node have the weights, to which the feature values

5



6 Background

Figure 2.1: Basic architecture of a single layer neural network [22].

from the input layer are multiplied and the products are added at the output node.
In order to capture any invariant part of the prediction, an additional bias value
might be used. The computed value after the bias addition is then passed through
an activation function to the output [22].

Multi-layer networks or multi-layer perceptron (MLP) have one or more in-
termediate computation layers known as hidden layers in between the input and
output layers. These additional layers will help the network to learn more complex
functions. Each layer has a separate activation function, which adds nonlinearity
to the output of a neuron. Figure 2.2 shows the basic architecture of a multi-layer
neural network [22].

Figure 2.2: Basic architecture of a multi-layer neural network [22].

One critical part of a neural network design is the selection of the activation
functions. The use of nonlinear activation functions is signi�cant for multi-layer
networks as they help to increase the modeling power of a network. Depending



Background 7

on the target function of the network, di�erent activation functions such as sig-
moid, hyperbolic tangents, recti�ed linear units (ReLU), or softmax can be used
in di�erent layers. These are generally part of the neurons. The output node in
Figure 2.1 has two parts. The �rst one shows the summation of the products from
multiplying the weights and input feature values and the bias value. The second
one denotes the nonlinear activation function [22].

2.1.1 Convolutional Neural Networks

CNN use the mathematical operation convolution in at least one layer, to pro-
cess grid-structured inputs with strong spatial dependencies. The time-series data
which can be considered as a 1-dimensional grid with samples at regular intervals,
or an image which can be considered as a 2-dimensional grid of pixels are some
examples for such grid-structured data [22][23].

In a convolutional neural network, there are three types of layers: convolu-
tional, ReLU and pooling. In addition, there is a �nal set of fully connected layers
which are mapped to the output nodes [22].

Convolutional Layer

The convolutional layer performs the convolution operation between weights and
inputs. In the convolutional layer, weights are organized as sets of 3-D arrays
known as �lters or kernels. In spatial dimensions, the �lters are generally square-
shaped and have much smaller dimensions compared to the input on which they
are applied. The convolution operation is a dot product between the weights and
the matching input pixels to generate a 2-dimensional output, known as feature
maps or activation maps. Every �lter will generate an activation map arranged
along the depth dimension to generate the full output of a convolutional layer.
The depth of the output feature map for a layer will be de�ned by the number of
the �lters used in that layer [22][24][25].

ReLU

Generally, the convolution is followed by an activation function that adds non-
linearity to the network. One popular choice of the activation function in the
hidden layers is the ReLU function represented by equation 2.1. This function is
applied to all the output feature values before passing them to the next layer and
is generally considered to be a part of the convolutional layer [22][26].

f(x) = max(0, x) (2.1)

Pooling

The function of the pooling layer in a convolutional neural network is to merge
reasonably similar features into one output feature. The pooling operation reduces
the spatial dimensions of the feature maps while keeping the same depth. The
pooling operation works on small patches of a feature map. The size of these



8 Background

patches is decided by the kernel. In max-pooling, the type of pooling used in
the CNN for this study, for each of those small patches, the maximum value of
the neurons is forwarded to the output.The most common setting for pooling is
max-pooling with a kernel size of 2x2 and a stride of 2 [22][23][24].

Fully Connected Layer

The fully connected layers are stacked between the convolutional layers or the
pooling layers and the output node. The �rst fully connected layer is formed by
connecting each neuron from the last spatial layer to each neuron in the fully con-
nected layer. It is possible to use more than one fully connected layer. Since the
fully connected layers connect all the neurons of one layer to the next layer, these
layers will dominate the number of weights used in the entire network [22].

Generally, the last fully connected layer uses the softmax activation when the
�nal output is meant to be a k-way classi�cation, where k denotes the number
of classes or the number of nodes in the output layer. It is used to predict the
probabilities of each class. It converts a vector of k real values into a probability
distribution. The softmax function is very complex for implementation in hard-
ware. To reduce the complexity, many alternatives and approximations have been
proposed in di�erent works.

2.2 Memory

Despite the improvements in memory density and interface speed, the new mul-
tiprocessing systems experience a performance bottleneck due to memory band-
width, known as the �Memory Wall� [27]. In many advanced processing systems,
the memory sub-system and the clocks are the most power-consuming domains.
As far as edge devices are concerned, energy is one of their crucial requirements.
With the constraints becoming stringent and performance requirements getting
stronger driven by more sophisticated applications, the design of low-power sys-
tems will be a challenge to the SoC architects and designers. Reducing memory
power with the use of new technologies and clever architectures will play a crucial
role in achieving the target constraints.

In complementary metal-oxide-semiconductor (CMOS) technology, the power
consumed by its gates can be broken down into three components. Dynamic power,
short-circuit power, and static power. Dynamic power consumption is of special
importance for this study. It is caused by the charging and discharging of the
capacitances present at the output of the gate when it switches from logic `0' to
`1' and vice-versa. These capacitances are comprised of the parasitic capacitances
internal to the transistors, the load capacitance, and the capacitance of the wire
connecting the load to the gate output. Dynamic power is also dependent on the
number of transitions per second and the supply voltage, and can be represented
by equation 2.2 [28].

P dyn = αCV DD
2f (2.2)



Background 9

Where C represents the total capacitance, i. e. Cinternal + Cwire + Cload, VDD

represents the supply voltage, f represents the frequency at which the circuit is
working and α is a constant representing the switching factor for the circuit.

Any memory that is integrated within the chip along with the logic can be
termed as embedded memory. High performance and e�cient embedded memories
are a critical element in the modern SoC and ASIC designs as it helps to reduce the
o�-chip data transfers. Among the many di�erent embedded memory techniques,
SRAM is the most commonly used one. The main advantage of SRAM over other
options like Flash or DRAM is its process compatibility with logic and faster
operation. The basic building blocks of the memory are the storage elements, also
known as memory cells or bitcells. These storage elements are capable of storing
a single bit of data. Compared to a SCM which uses a �ip-�op or latch as the
storage element, SRAM has a smaller bitcell leading to a better density. This
helps to pack more storage in a given real estate and when it comes to modern
memory-hungry architectures and applications, having a faster and larger on-chip
memory is critical [10][17][18][29][30].

Figure 2.3: SRAM architecture [31].

A complete memory unit consists of an array of storage elements along with
some peripheral circuits. In the case of an SRAM, these peripheral circuits in-
clude address decoders, sense ampli�ers, and pre-charge circuits which assist the
read/write operation of the memory array. Figure 2.3 shows the classic SRAM
architecture with a standard 6-Transistor SRAM cell. The bitcell consists of a



10 Background

pair of cross-coupled inverters (M3, M1 and M4, M2) and two access transistors
(M5 and M6). The cross-coupled inverter pair holds the single bit of data and its
complement between them, whereas the access transistors control the read/write
operations into the cell. The word line (WL) signal, connected to the gates of the
access transistors, selects the cell for an operation and the data transfer happens
through the bit-lines (BL and BL). Pre-charge circuits are used to pre-charge the
bit-lines to a voltage level before the read operation. Sense ampli�ers, on the other
hand, amplify the signal from the bitcell into a voltage level as required by the IO.
Due to design limitations on the capacitance and resistance of the bit-lines and
word lines, the bitcells are arranged in multiple blocks of 2-dimensional arrays to
achieve the required size. The address will then be split into 3 parts, one to select
the block, one to select the row, and one to select the column. Decoders are used
to reduce the number of the address lines [28][31].

The bit-line capacitance is a crucial factor in determining the power consump-
tion and the speed of operation of the SRAM. Dynamic power consumption is
directly proportional to the capacitance (equation 2.2) and hence an increase in
bit-line capacitance will result in an increase in dynamic power, and thereby the
total power of the SRAM. Similarly, the higher capacitance will lead to a larger
propagation delay a�ecting the performance of the SRAM adversely. Due to these
factors, in some cases, it will be bene�cial to break down a larger memory into
many smaller memories in a single and continuous address space. This thesis eval-
uates such breakdown structures, which can help to reduce the power consumption.

SCM, as another type of memory, uses a �ip-�op or latch as the storage el-
ement. The memory has an array of �ip-�ops/latches and a set of peripheral
circuitries to handle the read/write operations. When compared with a typical
SRAM bitcell, the SCM bitcell is larger in size. Despite the bigger storage ele-
ment, the SCM has an advantage when it comes to memories with smaller storage
capacity. The SRAM memories require a lot more peripheral circuits compared to
SCM, like the sense ampli�ers and logic for pre-charge. Due to these additional
circuitries, SRAM memories tend to consume more area than SCM when the re-
quired storage capacity is small. However, when the storage size increases, SRAM
has a clear advantage [18][32].

Compared to SRAM, SCM has other advantages too. Since it uses the stan-
dard cells from the library and can be described using a hardware description
language, it is more �exible to design compared to SRAM. The next advantage for
SCM comes during the place and route phase. SRAM blocks need to be manually
placed by the designer. The SCMs on the other hand can go through the stan-
dard placement process and can be placed very close to the computation blocks.
By placing the SCM near the computation blocks, the routing length from mem-
ory to logic blocks can be reduced, which in turn can help to reduce the energy
consumption [18][32].



Chapter3
Accelerator Design and

Implementation

This chapter presents the details about the CNN model selected for implemen-
tation, the architecture and design of the accelerator, and various optimizations
used.

3.1 CNN Model

The �rst major task in the implementation of the hardware accelerator is to �nd a
hardware-friendly CNN with reasonably high accuracy. By increasing the number
of layers in the network or by using more kernels per convolutional layer, very high
accuracy can be achieved. But this requires more computations and memory ac-
cesses. Hence, it is very important to balance the computations, memory accesses,
area, and accuracy in the accelerator aimed for low-power hardware.

To �nd a suitable network for this study, di�erent networks with di�erent
number of layers, or di�erent kernel parameters, were trained and analyzed for the
storage requirement, computations and resulting throughput of the system, and
the accuracy. The initial training and analysis of the networks were performed us-
ing Python and Keras. Based on the results, four networks were selected for further
analysis. In the next stage, a behavioral model was developed in MATLAB with
�oating-point numbers, and each of the networks was analyzed for accuracy and
the range of values of the intermediate results. These networks were further ana-
lyzed using �xed-point numbers.

Based on the results after the �xed-point behavioral model analysis, the net-
work for the implementation in the accelerator was chosen. The selected network,
shown in Figure 3.1, has only one convolutional layer and 3x3x8 kernels. The
convolutional layer accepts an input of size 28x28 pixels and produces an output
of size 26x26x8. It is followed by a ReLU layer which is then followed by a max-
pooling layer with a �lter size of 2x2 which reduces the size of the feature map
into 13x13x8 pixels. The output from the max-pooling layer is then �attened into
a 1352x1 matrix and is fed into the fully connected layer, which converts the 1352

11



12 Accelerator Design and Implementation

neurons into 10 neurons. The softmax function in the last layer converts the values
of 10 neurons into a vector of 10 values, with sum 1. This set of �nal values can
be interpreted as the probability for each digit.

Figure 3.1: Architecture of the CNN implemented in the hardware
accelerator.

3.2 Optimizations

To improve the performance of the accelerator, and to conserve area and power,
certain optimizations were implemented. Since both the computations and mem-
ory accesses consume a signi�cant portion of the power budget of the hardware,
it is important to reduce both these processes, but without a�ecting the accuracy
drastically. Similarly, the major chunk of area for any modern-day hardware is
consumed by the memory. Reducing the total memory size will thereby help to
reduce the area and cost and also the static power consumption of the hardware.

3.2.1 Fixed-Point Computation and Quantization

One method generally used in hardware implementations to reduce the resource
requirements is the �xed-point arithmetic system. Compared to a �oating-point
system, a �xed-point system is less complex to implement, faster in computations,
and less power and area consuming. In [33] Hashemi et al show that using an 8-bit
�xed-point arithmetic system reduces power by 85%, and area by 80% compared
to a �oating-point system with no accuracy loss for classi�cation on the MNIST
database.

One critical step in implementing the �xed-point system is quantization. This
process maps the numbers from a large and continuous set to a smaller and discrete
set reducing the precision, and hence the word length and the memory require-
ment. Quantization is necessary due to the fact that the network was trained
using 32-bit �oating-point numbers and hence the �nal weights exported are all
represented in 32-bit �oating-point numbers. But the process of quantization will



Accelerator Design and Implementation 13

lead to a class of errors commonly known as quantization errors. These errors can
adversely a�ect the accuracy of the network. Hence, the quantization parameters
such as word length and the position of the decimal point must be �xed after
proper analysis so that the loss in accuracy is minimized [34].

The weights and input pixels for the network are quantized into 8-bit �xed-
point numbers using the built-in functions available in MATLAB. The word length
for the intermediate layers is set to 16 bits as 8 bits were not su�cient to represent
the full range of values producing an over�ow. The position of the decimal point
changes depending on the layer and was set based on the analysis of the values at
each stage.

3.2.2 Removal of Softmax

Softmax function includes exponential and division operations and its implemen-
tation in hardware is complex and computationally challenging. Many di�erent
approximations have been suggested over the years, but those were with the aim
to �nd the �nal probability of each class. If the probability is not a requirement,
the softmax layer can be removed completely. To �nd the �nal classi�cation result,
only a simple logic to �nd the output node with the maximum value in the last
fully connected layer is required. The output nodes will have a range of values
including negative, zero, and positive values. Among these nodes, the one with the
maximum value is likely to be the �nal class. This implementation is e�cient in
terms of area, power, and throughput as it can save a lot of hardware and is faster.
Since the requirement for this project was only the classi�cation, the softmax func-
tion in the software model was removed and a logic to �nd the maximum values in
the �nal fully-connected layer was added. Prior to the hardware implementation,
the design was veri�ed in MATLAB and was ensured there is no accuracy loss.

3.2.3 Memory Optimization

Two main approaches were taken to optimize the power consumption in memory
utilization. Reducing the storage requirement, and increasing the data reuse.

To reduce the storage requirement, the accelerator was designed to consume
the pixels generated in one stage by the next stage immediately. The pixels gen-
erated by one computation stage are sent directly to the next stage which then
performs the required processing. This reduces the required storage between the
stages signi�cantly. The parallelization of computations, the order in which con-
volution operation generates the output pixels, and the organization of weights
within the memory enabled this optimization.

Data reuse can help to reduce memory transactions signi�cantly. Convolution
operation on an image requires pixels to be processed multiple times. Instead of
reading the pixels from the main memory every time, reading the pixels from local
registers can help to reduce the power consumption. In this accelerator, a set
of registers called pixel registers are used to store the pixels temporarily. Pixel



14 Accelerator Design and Implementation

registers combined with the convolution algorithm used in the system signi�cantly
improves the data reuse in the system.

3.3 Architecture

The hardware accelerator was designed to be integrated within PULPissimo and
to perform the classi�cation of a 28x28 pixel image into one of the 10 classes as-
signed for the digits 0 to 9. It was designed with a dedicated memory system
and a set of computational units for the e�cient implementation of the selected
convolutional neural network. The memory sub-system was designed with an aim
to improve data reuse and to reduce the routing distance between the memory and
the computational units. Special care was taken to design the memory sub-system
with some �exibility to try di�erent memory breakdown structures. Computation
units and the data �ow through di�erent layers were designed to reduce memory
usage for storing results of the intermediate layers.

The general architecture of the accelerator is shown in Figure 3.2. The con-
volution unit performs the convolution operation on the input image whereas the
dense unit handles the operations of the fully connected layer. The max-pooling
unit is responsible to perform max-pooling on the output from the convolution
unit. Finally, the max-�nder unit �nds the �nal class from the values of the 10
neurons of the output layer. The convolution unit and the dense unit have speci�c
memory sub-units to store the input image and the weights. The weight loader
unit is responsible to direct the weights coming from the CPU into the respective
memories. Each of the blocks will be discussed in detail in the coming subsections.

Figure 3.2: Simplified block diagram of the accelerator.

3.3.1 Weight Loader and Input Loader

The weight loader unit is responsible to load the weights received from the CPU
into the right memory sub-units, keeps a track of the weights received, and informs
the main controller when all the weights have been loaded into the memory.

Input loader is a simple module to handle the input pixels received. It redirects
the pixels into the input memory and keeps a track of the number of pixels it



Accelerator Design and Implementation 15

received. It also informs the main controller and the convolution controller once
all the pixels have been sent to the input memory.

3.3.2 Main Controller

This module handles the busy status signal of the accelerator based on the status
of loading weights, input pixels, and the convolution operation. The CPU mon-
itors this signal to decide when to send an input image into the accelerator for
processing. During initialization, the main controller asserts the busy signal until
all the weights are loaded into the memories. This is to ensure that the input pixels
are not sent for processing before the accelerator has all the weights required for
the computation.

Once all the weights are loaded, the busy signal is de-asserted, so that the
CPU can send in the pixels of the input image one by one. When all the pixels are
loaded, the busy signal is asserted until the convolution operation is completed.

3.3.3 Convolution Unit

The convolution unit consists of two di�erent memory sub-systems, one for in-
put and the other for weights. For computation, it has 8 convolution multiply-
accumulate (CMAC) units, along with 8 registers to store the intermediate results.
Each of these CMAC units consists of 3 multipliers and 2 adders. In addition, the
convolution unit has 8 adders for bias addition, 8 ReLU units to perform the
non-linear ReLU activation function, and a controller for tracking and managing
the convolution operations. The architecture of the convolution unit is shown in
Figure 3.3. For simplicity, only datapaths are shown and the control modules and
control paths are omitted.

Since the input image has 784 pixels with each pixel of size 8 bits, the input
memory is designed with a word length of 8 bits and has a total capacity of 784
words. A memory controller module controls the read and write operations to the
memory and is responsible for the address translation during the read operation.
The input memory sub-system is designed in such a way to enable using both
SCM or SRAM as the storage unit with minimum modi�cations. Additionally,
while using SRAM as the storage unit, the memory can use either a single SRAM
or a combination of smaller SRAMs.

The convolution weight memory sub-system has two parts. One for storing
the main weights used for convolution and another used to store the bias weights
used in the bias adder. Main weight memory consists of 8 banks of size 3x24 bits
each. The convolutional layer has 8 �lters of size 3x3, and each weight within the
�lter is 8 bits long. Each bank has a word length of 24 bits (3 weights) and is
connected directly to only one CMAC unit. This ensures that each computation
unit is associated with a separate memory bank and always accesses the same
bank. This arrangement helps to place the computation unit and the associated
memory bank as close as possible. All the banks are accessed in parallel so that in



16 Accelerator Design and Implementation

Figure 3.3: Simplified architecture of the convolution unit.

a cycle, 24 weights will be sent from the memory to the multipliers to enable 24
parallel multiplications. Since the convolution main weight memories are small in
size, they are realized using registers. Bias weights are stored in registers added
within the bias adder module to make sure those are closer to the adders that use
the register contents.

The main computation unit has twenty-four 8-bit multipliers, 3 each for 8
channels, and is partitioned into 8 individual CMAC units with each having 3
multipliers and 2 adders. In addition, there are 8 registers to store the intermedi-
ate results and another 8 adders to add the values in the registers with the output
from the CMAC units. The �nal output from the computation unit is truncated
into 16 bits. Bias adder modules perform the bias addition on the neurons for all
8 channels in parallel. The ReLU operation is also performed on all 8 channels in
parallel using 8 ReLU units.

The convolution controller is responsible to read the image pixels and weights,
track and manage convolution operation, and control the CMAC units. It also
ensures synchronization and informs the main controller when a convolution oper-
ation is completed. A set of 4 registers called the pixel registers, is integrated into
the convolution controller. Each pixel register is 24 bits wide and can store 3 pixels
of the input image at a time. These registers serve two purposes. One, it enables
3 multiplications per channel in a single cycle, thereby increasing parallelization.
The second purpose is to improve the data reuse and to reduce the read operations



Accelerator Design and Implementation 17

on the input memory. Once a pixel is read into the pixel registers, it can be reused
as many as 6 times depending on its position in the original image. This helps
to reduce the memory reads. Figure 3.4 shows the contents of the pixel registers
when each output pixel is generated. Pixel 14 (P14) is a good example to show
the data reuse, and hence it is highlighted to make the tracking easy. P14, once
read from the input memory, is shifted within the pixel register and is used in 6
computations to produce output pixels from R0 to R5.

Figure 3.4: Visualization of data reuse using the pixel registers.

Operation

As mentioned before, the convolution process is completely managed by the con-
volution controller. Since the �lter size is 3x3 per channel, to produce one output
pixel per channel, 9 multiplications are required. Since there are only 3 multi-
pliers allocated for a channel, it takes 3 cycles to compute one output pixel. For
simplicity, the operations for one channel are described below. The same set of
operations are performed in parallel for all the 8 channels.

At �rst, the pixel registers in the convolution controller are loaded with the
initial 3 pixels from rows 0 to 3 of the image. After the initial loading, in the �rst
cycle of computation, 3 image pixels are multiplied with the corresponding weights
from the �rst row of the �lter, and the result is accumulated and stored in the
register for intermediate results. A visualization of weights and pixels selected for
multiplication in each cycle is shown in Figure 3.5. The weights and pixels sent to
the multipliers in a particular clock cycle are highlighted in red. For simplicity, the
sample image in the �gure is truncated to a size of 6x6 pixels. Figure 3.5 shows
that in cycle 1 of the computation, weights W0, W1, and W2 along with pixels
P0, P1, and P2 are selected to compute the partial sum as shown in equation 3.1,



18 Accelerator Design and Implementation

which is then stored in the register.

Partial_Sum =W0 ∗ P0 +W1 ∗ P1 +W2 ∗ P2. (3.1)

In cycle 2 (as in �gure 3.5), weights W3, W4, and W5, and pixels P6, P7,
and P8 are multiplied and the result is added to the previous result stored in the
register. The partial sum generated in this cycle is then stored in the register. In
cycle 3 (as in �gure 3.5), the last set of image pixels are multiplied with the last
row of weights and the result is added to the value in the register to get the �nal
value of the output pixel. Equation 3.2 shows all the weights and pixels used to
compute the �rst output pixel.

Final_Pixel_V alue =W0 ∗ P0 +W1 ∗ P1 +W2 ∗ P2
+W3 ∗ P6 +W4 ∗ P7 +W5 ∗ P8
+W6 ∗ P12 +W7 ∗ P13 +W8 ∗ P14

(3.2)

This result is then truncated into 16 bits and sent out to the bias adder. The bias
adder module then adds the bias value to the pixel in the next clock cycle and
sends the result to the ReLU unit which performs the ReLU activation function
on the pixel. Both the bias addition and the ReLU operation happens in the same
clock cycle. The result from the ReLU unit is then forwarded to the max-pooling
unit.

Figure 3.5: Visualization of weights and pixels used in each cycle to
compute one output pixel during convolution.

As mentioned earlier, the accelerator was designed to reduce memory usage
by consuming the pixels as soon as they are generated. In the convolutional layer,



Accelerator Design and Implementation 19

this idea was implemented by designing the convolution operation to produce a
set of 4 pixels required for a max-pooling operation consecutively. This way, the
pixels will be consumed by the max-pooling unit and is not required extra storage.
Figure 3.6 shows the sequence in which the �lter is moved along the image and the
corresponding output pixels. In step 1, the output pixel R0 is produced when the
�lter is at the very beginning of the image covering the pixels in rows 0 to 2 and
columns 0 to 2. In the next step, the �lter moves down by 1 row and generates the
output pixel R1. In step 3, when the output pixel R2 is produced, the �lter covers
rows 0 to 2 and columns 1 to 3. Finally, in step 4 the �lter moves down again by
1 row to generate the output pixel R3. Now by step 4, all the 4 pixels required for
one max-pooling operation are produced. By moving the �lter along the image in
this sequence of steps, it can be ensured that the batch of 4 pixels required for a
max-pooling operation will be produced in succession. So the max-pooling unit
can consume the pixel as soon as it is produced and only needs a single 16-bit
register to store the temporary result.

Figure 3.6: Sequence of movement of filter along the image and
corresponding output pixels during convolution.

3.3.4 Max-Pooling Unit

The max-pooling unit consists of 8 max-pooling sub-modules, with one sub-module
allocated for each channel. Each sub-module mainly consists of a comparator, a
multiplexer, a register to store the intermediate results, and a counter. It im-
plements max-pooling operation on the output from the convolution and ReLU
operation and downsizes the spatial dimensions of the feature map by 75%.

Operation

The max-pooling unit performs the max-pooling operation on the pixels from all
8 channels in parallel. For simplicity, the operations for one channel are described
here. The max-pooling sub-module gets its input from the ReLU unit. Since all the
4 pixels required for a max-pooling operation are received successively, the max-
pooling sub-module just needs to keep track of the number of pixels and perform



20 Accelerator Design and Implementation

a comparison on these pixels. At the beginning of a max-pooling operation, the
max-pooling sub-module stores the �rst pixel into its register. For the second and
third pixels, the stored pixel is compared with the incoming pixel. If the value of
the incoming pixel is higher, then the content in the register is replaced with the
incoming pixel. If not, the pixel in the register will be retained. For the fourth
pixel, it again compares the pixel in the register and the incoming pixel and will
send the pixel with the larger value to its output. In the same cycle, the register
will be cleared to prepare for the next max-pooling operation.

3.3.5 Dense Unit

The dense unit, shown in Figure 3.7, performs the operations for the fully con-
nected layers in the network. It consists of two memory sub-systems for storing
the weights, 10 multiply-accumulate (MAC) units for computation, 10 registers to
store the intermediate results, a controller unit, and 10 bias adders. It also has a
set of 8 registers to store the results from the max-pooling unit.

Similar to the convolution weight memory sub-system, the dense weight mem-
ory sub-system also consists of two parts. The �rst one is for the main weights and
the second for the bias weights. Main weight memory consists of 10 banks of word
length 8 bits and each of these banks is connected to only one multiplier. While
loading the weights only one bank is accessed at a time. But during computation,
all the 10 banks are read in parallel so that 10 weights will be sent to all the 10
multipliers in a cycle. The bias weights are stored in registers integrated within
the bias adder unit.

Dense main weight memories are the biggest memory units within the acceler-
ator and these memories provide good opportunities to experiment with di�erent
memory breakdown structures.

The computation unit has 10 MAC units with each having a 16x8 multiplier.
Along with these, there are 10 registers to store the intermediate results. All the
data �ow and operations associated with the dense layer are controlled by the dense
controller unit. Other responsibilities of this unit include tracking the address for
weights, handling the data received from the max-pooling unit, and sending out
necessary synchronization signals to the max-�nder unit. For storing the data sent
out from the max-pooling unit, the dense unit has eight 16-bit registers known as
the max-pool bu�er.

Operation

The dense controller receives the pixels for all the 8 channels from the max-pooling
unit and stores them in eight 16-bit registers. It sends one pixel at a time to the
MACs thereby completing one set of operations in 8 cycles. Each pixel is sent to
all the 10 multipliers and is multiplied with 10 di�erent weights read from the 10
banks in the dense main weight memory. The result from each of the multipliers



Accelerator Design and Implementation 21

Figure 3.7: Simplified architecture of the dense unit.

is then added to the contents of the intermediate result registers and are stored
back into these registers.

Once all pixels are processed, the values from each of the 10 registers are
truncated into 16 bits and are sent to the bias adders. Bias adders then add the
bias value to all the 10 pixels and send the results to the max-�nder unit.

3.3.6 Max-Finder Unit

This module is responsible to �nd the neuron with the maximum value that de�nes
the result digit. It has a comparator, a counter, 10 registers to store the results
from the dense unit, and 2 registers to store the temporary results of the maximum
value and the index of the neuron that has the maximum value.

Operation

The max-�nder unit saves the results from the dense unit into ten 16-bit registers
and then �nds the maximum value out of those 10 neurons. Initially, it compares
the values of �rst and second neurons and saves the higher value into the register
for the temporary maximum value. Depending on which neuron has the maximum
value, the corresponding index, i. e. either 0 or 1, is stored into the register for the
temporary index value. Here the index of the neurons is in the range 0 to 9, with
each index pointing to the respective digit. From cycle 2 onwards, it compares
the value in the register for the temporary maximum value, with the value of the
next neuron. If the value of the neuron exceeds the value in the register, then
the register is overwritten and the register for the temporary index is updated.
This process is continued until all the 10 neurons are processed. The �nal results
forwarded to the output are the index of the neuron with the maximum value and
the value of that neuron.



22 Accelerator Design and Implementation

3.4 Verification

The hardware accelerator design was veri�ed using the simulation tool QuestaSim
with the help of a testbench designed for the top module. The testbench handled
all the �le read/write operations for weights, input images, and the �nal results.
The �nal classi�cation results of the hardware accelerator matched with the results
from the MATLAB �xed-point model resulting in an accuracy of 98.25%.



Chapter4
Memory Analysis and Results

This chapter presents the study results of various memory breakdown structures
(or con�gurations). The analysis was done only for the memory dedicated to the
dense layer (hereafter, called dense memory) of the CNN model introduced in
previous chapters. The selection of dense memory for this study is due to the
fact that its size allows for the study of a wider range of con�gurations. The
primary analysis was with synthesis results and a selected set of con�gurations
were pushed into the PNR �ow for more realistic power and area analysis. All
the ASIC design steps have been done using ST 28nm FD-SOI process technology
with the PVT parameters of typical-typical at nominal 25C, and low threshold
voltage transistors. The target clock frequency for the synthesis was 200 MHz.

4.1 Memory Configurations

A total of 12 di�erent memory con�gurations, using only SRAM, were analyzed
in the initial part of the study. Each con�guration creates a continuous address
space from a combination of di�erent SRAM sizes arranged within a wrapper,
which works as an Input/Output (IO) interface between memories and other com-
putational logics. As mentioned before, the dense memory consists of 10 banks
with each bank covering 1352 Bytes (1352x8 bits). The selected set of SRAM sizes
for this study comprises of 1024x8, 512x8, 256x8, 128x8, and 64x8 bit macros.
Since all the macros have the same word length, the representation is done in
terms of size in Kilobytes (kB). In addition to these 12 SRAM based con�gura-
tions, a few additional con�gurations comprised of both SRAM and SCM were
analyzed, and the details will be presented towards the end of this chapter.

Table 4.1 shows the analyzed SRAM memory con�gurations. All the con�g-
urations were designed such that the size of one bank is 1408 words. This is the
minimum size that can be satis�ed with the available SRAMs and can meet the
minimum size requirement of 1352 words.

A separate wrapper was designed for each con�guration in which the required
SRAM modules were instantiated. All these wrappers had identical interfaces and
the same total size of 1408x8 bits. The interface consists of an 8-bit data-in bus,
another 8-bit data-out bus, an 11-bit address bus, together with the clock, reset,

23



24 Memory Analysis and Results

Table 4.1: Details of the memory configurations analyzed.

Con�guration Con�guration Breakdown Total Modules

con�g0 1kB, 0.25kB, 0.125kB 3

con�g1 1kB, 3x0.125kB 4

con�g2 2x0.5kB, 0.25kB, 0.125kB 4

con�g3 2x0.5kB, 3x0.125kB 5

con�g4 0.5kB, 3x0.25kB, 0.125kB 5

con�g5 0.5kB, 2x0.25kB, 3x0.125kB 6

con�g6 0.5kB, 0.25kB, 5x0.125kB 7

con�g7 0.5kB, 3x0.25kB, 2x0.0625kB 6

con�g8 5x0.25kB, 0.125kB 6

con�g9 11x0.125kB 11

con�g10 0.5kB, 2x0.25kB, 2x0.125kB,
2x0.0625kB

7

con�g11 2x0.5kB, 2x0.125kB, 2x0.0625kB 6

and the chip select (CS) signals. The wrappers have additional logic to enable the
CS signal of the right SRAM module based on the address range. The address also
acts as the select signal for the data out multiplexer and the selector for the data
in and address buses. Figure 4.1 shows how the address space is divided among
di�erent SRAM modules in some of the con�gurations. Numbers on the left side
of each block shows the address range for that block.

4.2 Primary Analysis

Since all the 10 banks of the dense memory have the same access pattern (all banks
have the same number of read and write operations), multiple con�gurations were
analyzed at the same time. Each con�guration is evaluated in one bank of the
dense memory. This arrangement made it possible to run the analysis for a maxi-
mum of 10 con�gurations at a time and helped to make the procedure e�cient and
fast. The power consumption for all con�gurations was analyzed carefully up to
the post-synthesis phase. Post-synthesis power analysis was done with Synopsys
PrimeTime tool and a value change dump (VCD) �le of length 1 ms.

Post-synthesis results are presented in Table 4.2. Con�g2 is the most e�cient
con�guration in terms of power, whereas con�g0 is the most e�cient in terms of
the number of modules and area. Con�g9, a case for extreme partitioning has
shown ine�ciency in terms of both area and power. It is the most power and
area-hungry con�guration and acts as the baseline for the comparison.



Memory Analysis and Results 25

Figure 4.1: Visualization of address space division in some of the
configurations.

Table 4.2: Post-synthesis results.

Con�guration Con�guration Breakdown Power Gain Area Gain

con�g0 1kB, 0.25kB, 0.125kB 15.43% 59.30%

con�g1 1kB, 3x0.125kB 11.73% 52.04%

con�g2 2x0.5kB, 0.25kB, 0.125kB 26.54% 50.87%

con�g3 2x0.5kB, 3x0.125kB 22.22% 43.56%

con�g4 0.5kB, 3x0.25kB, 0.125kB 23.46% 43.61%

con�g5 0.5kB, 2x0.25kB, 3x0.125kB 19.14% 36.33%

con�g6 0.5kB, 0.25kB, 5x0.125kB 15.43% 29.06%

con�g7 0.5kB, 3x0.25kB, 2x0.0625kB 19.14% 36.38%

con�g8 5x0.25kB, 0.125kB 20.99% 36.40%

con�g9 11x0.125kB 0.00% 0.00%

con�g10 0.5kB, 2x0.25kB, 2x0.125kB,
2x0.0625kB

15.43% 29.08%

con�g11 2x0.5kB, 2x0.125kB, 2x0.0625kB 18.52% 36.34%



26 Memory Analysis and Results

Con�g0 uses just 3 SRAM modules to reach the size of 1408x8 bits. But, in
terms of power consumption, it is the 8th best con�guration and provides only
15.13% gain compared to con�g9, whereas con�g2, the most power-e�cient con-
�guration provides 26.54% gain. When it comes to area, con�g0 provides 59.3%
gain as against the 50.87% gain provided by con�g2.

The only di�erence between con�g0 and con�g2 is the use of two 0.5kB SRAM
modules in con�g2 instead of one 1kB SRAM module used in con�g0. The higher
power for the 1kB SRAMmodule can be attributed to a larger bit-line capacitance.
As per equation 2.2, the dynamic power is directly proportional to the capacitance
which in this case is the bit-line capacitance. In the case of the 0.5kB SRAM mod-
ule, the bit-lines are smaller in length and fewer transistors are connected, resulting
in less wire capacitance and parasitic capacitance leading to signi�cant power sav-
ings.

However, this observation does not stay true for all the sizes. Comparison be-
tween con�g2 and con�g4 provides more details. The second 0.5kB SRAM module
in con�g2 is split into two 0.25kB SRAM modules for con�g4. This change has
resulted in a decrease in power gain by 3.1%. This result does not follow the trend
observed in the case of con�g0 and con�g2. The reason for the increase in power
in the case of two 0.25kB SRAM modules despite having a smaller bit-line capac-
itance is the auxiliary circuits. For example, the sense ampli�ers and other read
support circuits like the pre-charge circuit will remain the same irrespective of the
bitcell array size as long as the word length is the same. Compared to the 0.5kB
SRAM module, in the 0.25kB SRAM module, the share of these sense ampli�ers
and other support circuits of the overall power budget will be higher. This trend
applies to the address decoder as well. Even though the decoder becomes smaller
and uses fewer transistors, there are still two distinct decoders for the two 0.25kB
modules resulting in an increase in the net count of transistors. Due to these
facts, the savings gained by splitting the bitcell array into two can be less than
the extra power required for the additional auxiliary circuits such as decoders,
sense ampli�ers, and other drivers. This is the reason behind the increased power
consumption in con�g4 compared to con�g2. However, in the case of con�g0 and
con�g2, the savings from splitting the bitcell array is more than the extra power
consumed by the additional set of auxiliary circuits, thereby providing net savings.

This observation is reiterated in the case of con�g9, which uses eleven 0.125kB
SRAM modules. Despite having a small bitcell array and bit-line capacitance, the
power consumption by eleven sets of auxiliary circuits is dominating, making it
the most power-hungry con�guration. The same observation applies to the area
as well.

This trend in the change in power consumption with the size of the SRAM
module is evident from the power gain data for the SRAM modules also. Figure
4.2 shows the power per word access (total power of an SRAM module divided by
the number of words in the module) gain for all the SRAM modules compared to
a 0.0625kB SRAM module. For the access patterns in this hardware accelerator,



Memory Analysis and Results 27

Figure 4.2: Power per word access gain for the SRAM modules
compared to a 0.0625kB SRAM module.

0.5kB is the most e�cient macro size with the highest power per word access
gain, followed by 0.25kB. This is re�ected in the power numbers of the di�erent
con�gurations as well. Con�g2 makes the best use of the most e�cient modules,
and as a result, has become the most e�cient con�guration in terms of power.

4.3 Post-Layout Power Analysis

Following the primary analysis, �ve con�gurations were selected for further anal-
ysis using the post-pnr netlist and the parasitic data for more realistic power
numbers. For place and route, the tool Innovus from Cadence was used. The
post-pnr netlist was then veri�ed and then the power was analyzed using Prime-
time and a 1ms long VCD �le. The results are presented in the Table 4.3.

The post-pnr results follow the same trend as the post-synthesis results. Con-
�g2 is the most e�cient con�guration in terms of power consumption whereas,
con�g0 is the most area-e�cient con�guration. For both area and power, con�g9
is the least e�cient one. Con�g2 provides 34.66% gain in power and con�g0 pro-
vides 25.57% gain compared to con�g9. Con�g2 provides 49.13% gain in terms of
area compared to con�g9, whereas con�g0 provides 57.31%. Based on the results
from the post-pnr analysis, con�g2, the most power-e�cient con�guration is se-
lected for the �nal implementation.



28 Memory Analysis and Results

Table 4.3: Post-layout results.

Con�guration Con�guration Breakdown Power Gain Area Gain

con�g0 1kB, 0.25kB, 0.125kB 25.57% 57.31%

con�g1 1kB, 3x0.125kB 19.89% 50.28%

con�g2 2x0.5kB, 0.25kB, 0.125kB 34.66% 49.13%

con�g9 11x0.125kB 0.00% 0.00%

con�g11 2x0.5kB, 2x0.125kB, 2x0.0625kB 23.86% 35.11%

4.4 Additional Analysis

Since the smaller SRAM modules were not so e�cient in terms of area and power,
few additional con�gurations made up of a combination of SRAM and SCM were
analyzed. The SCM used for this analysis had D �ip-�op based storage elements
and did not have any clock gating. However, these con�gurations turned out to
be much more expensive than the SRAM only con�gurations.

One of these con�gurations was pushed into the PNR stage for more realistic
analysis. This con�guration is similar to con�g11 and uses two 0.5kB SRAM mod-
ules and SCM for memory modules of size 0.125kB and 0.0625kB. The results are
shown in Table 4.4. In terms of both power and area, the SRAM only con�gura-
tion proved to be much better. SRAM only con�guration has a whopping 95.71%
gain in power and 52.44% gain in area compared to the con�guration with SCM.

Table 4.4: SRAM vs SCM comparison.

Con�guration Con�guration Breakdown Power Gain Area Gain

SRAM SCM

con�g11 2x0.5kB,
2x0.125kB,
2x0.0625kB

0x0 95.71% 52.44%

con�g26 2x0.5kB 2x0.125kB,
2x0.0625kB

0.00% 0.00%

More studies are required in the SCM design space as part of future work.
Even though the SCM generally tends to have fewer and smaller auxiliary circuits
[18], large storage elements made up of D �ip-�ops have resulted in excess power
consumption. Instead of using a D �ip-�op, a more area and power-e�cient latch-
based storage element could provide substantial savings in both area and power.
Furthermore, adding clock gating techniques can present a signi�cant e�ect on
power reduction. An SCM with these changes needs to be analyzed to see if it can
replace some of the smaller SRAM modules for a more power-e�cient solution.



Chapter5
PULPissimo Integration

The PULP platform was started as a joint project between ETH Zürich and the
University of Bologna with an aim to develop an open-source, scalable ultra-low-
power processing platform. It is a RISC-V instruction set architecture based im-
plementation. PULPissimo is a SoC that can be con�gured to use multiple cores
from the PULP platform. The version of PULPissimo used in this project has a
single core of 32-bit RI5CY [35] as its main core. PULPissimo supports the loga-
rithmic interconnect [36], an e�cient I/O subsystem using µ-DMA [37], hardware
accelerators [38], and a wide variety of peripherals such as camera interface, QSPI,
JTAG, GPIO, I2C, I2S, etc. PULPissimo includes 512KB of L2 memory and a
Read-only memory (ROM) for storing the boot code. The low latency logarithmic
interconnect supports multiple access ports and enables direct memory access to
the L2 memory for the µ-DMA subsystem or the optional hardware accelerator.
The hardware accelerator can be connected directly to the logarithmic intercon-
nect, or through the AXI plug which supports the AXI4 or AXI-Lite protocol.
Figure 5.1 shows the simpli�ed architecture of PULPissimo with the CNN accel-
erator.

5.1 Accelerator Integration and Functional Verification

There are two methods for the integration of custom-developed hardware acceler-
ators into the PULPissimo. The �rst method, as proposed in [38], is more suitable
when the accelerator requires frequent access to the L2 cache memory. The dat-
apath of the accelerator is connected to the logarithmic interconnect whereas the
control is memory-mapped and accessed through the peripheral interconnect. The
connection to the logarithmic interconnect ensures that the accelerator has direct
access to the L2 memory.

The second method is to connect the accelerator to the parameterized AXI
crossbar within the soc interconnect. PULP platform supports both AXI4 and
AXI-Lite standards and provides support for the protocol conversion [40]. Since
the CNN accelerator used in this project has its own dedicated memory and does
not need frequent access to L2 memory, it was connected to the system using an

29



30 PULPissimo Integration

Figure 5.1: Simplified architecture of PULPissimo with the CNN ac-
celerator attached [39].

AXI-Lite bus with a 32-bit data bus.

To connect the accelerator with the soc interconnect via the AXI-Lite bus, an
axi interface module was designed. The module has six 32-bit registers, out of
which, three act as status registers, one as a control register, one as a data input
bu�er to store the data sent from the core, and the �nal one as a bu�er to store the
output from the accelerator. Apart from handling the protocol for the interface,
it also handles the data transfer between the bu�er registers and the accelerator.
Each of the registers is mapped to a unique address within PULPissimo's address
space.

Depending on the value written in the control register, the subsequent input to
the interface module from the core will be sent to either the weight loader unit or
the input loader unit of the accelerator with the appropriate request signals. The
busy signal of the accelerator is mapped to the busy status register in the interface
module, which the core can read. This signal is set to '1' on two occasions. First,
this signal is asserted immediately after the initialization and is kept high until the
accelerator receives all the weights. The second occasion is when the accelerator
is running the convolution operation on an image. At the end of processing an
image, the accelerator sends the result to the interface module, which then stores
it in its result bu�er and changes the result status to '1' to show that a valid result
is available.

The SoC integrated with the accelerator was tested and veri�ed using a cus-
tom C program and behavioral simulations. The C program handles the loading of
weights and inputs into the accelerator from a �le, monitoring the status registers,



PULPissimo Integration 31

and reading and displaying the �nal output. The program starts with loading the
weights after the initialization sequence of the system. Once all the weights are
loaded, it starts sending the input pixels of the �rst image. While sending data to
the accelerator, it monitors the write-status register to properly time the data to
prevent any data loss.

Once the input pixels are sent, the program monitors the busy-status register
and when the busy-status becomes '0', it sends the pixels for the next image. Af-
ter sending the pixels for the second image, the program checks the value in the
result-status register. If the value is '1', then the program will read the result of
the �rst image from the result register and displays it.



32 PULPissimo Integration



Chapter6
Conclusion

As neural networks become popular and �nd new practical use cases for battery-
powered edge devices, the need for power-e�cient hardware is on the rise. This
project aimed to study and de�ne a memory breakdown structure for improving
the energy e�ciency of low-power neural network hardware implementations. For
this study, a hardware accelerator was designed, optimized, and integrated into
an open-source low-power PULPissimo SoC. The accelerator performs inference of
a CNN, capable of classifying the images of handwritten digits from the MNIST
database.

To reduce the area and power cost and improve the performance, various op-
timization techniques were employed. By using the quantization and �xed-point
computations, memory requirement was reduced by 75%. An e�cient implementa-
tion of convolution optimized the memory utilization by reducing the frequency of
memory write-back for the intermediate results. The use of multiple banks enabled
higher bandwidth and power e�ciency for memories. Finally, to generate the �nal
output, the computation-intensive softmax activation function was replaced with
a simple algorithm to �nd the neuron in the output layer with the maximum value.

The presented study led to some interesting observations about memory break-
down structure as a combination of di�erent memory macro sizes. The power con-
sumption for the SRAM macros is not directly proportional to the size. Among the
SRAM macros used for the study, the most power-e�cient one is the macro of size
0.5kB (512x8 bits) closely followed by the one with the size of 0.25kB (256x8 bits).
But, "the smaller, the more e�cient" approach does not work for all sizes. In fact,
going below a threshold will result in much higher power consumption. The small-
est SRAM module with the size of 0.0625kB (64x8 bits), had the highest power
per word access consumption. Compared to this one, the most power-e�cient
SRAM module with the size of 0.5kB and the largest SRAM module with the size
of 1kB (1024x8 bits) provided 51.85% and 42.36% gain in power per word access,
respectively.

For the dense memory in the accelerator, the most power-e�cient memory
breakdown con�guration consists of two 0.5kB, one 0.25kB, and one 0.125kB
SRAM macros. The most area-e�cient con�guration, on the other hand, is a

33



34 Conclusion

breakdown structure as a combination of 1kB, 0.25kB, and 0.125kB SRAMmacros.
An extremely partitioned con�guration evaluated involving eleven 0.125kB SRAM
modules turned out to be a highly expensive con�guration in terms of both
area and power. Compared with the extremely partitioned con�guration, the
most power-e�cient con�guration provides 34.66% power gain and the most area-
e�cient con�guration provides 25.57% power gain. Through the study, it was
learned that for SRAM based memories, partitioning can help to reduce the power
consumption to some extent, but partitioning to extremely small modules will cre-
ate a reverse e�ect.

Since the smaller sized SRAMs proved to be very expensive, a few additional
con�gurations involving a combination of SRAM and D �ip-�op based SCM were
analyzed to evaluate an improvement in power consumption. However, the con-
�gurations with the SCM turned out to be more power and area-consuming than
the SRAM only con�gurations, due to the much larger storage elements compared
to the SRAM bitcells.

6.1 Future Work

There are many opportunities to explore and expand this study in the future.
Among those, the �rst one would be to explore an SCM with smaller latch based
storage elements and with clock-gating techniques enabled for both read and write
circuits. Such an SCM needs to be evaluated to see if it can reduce the power, to
an extent that it can replace some of the smaller SRAM modules.

There are options to explore more in the SRAM only con�gurations as well.
First of all, SRAMs with a larger word length than 8 bits can be tried in the dense
memory to see if it helps to improve the power consumption. Secondly, another
study can be performed with a larger network with bigger memories, allowing to
experiment with more breakdown structures.

Another topic to explore is the integration of the accelerator with PULPis-
simo. In order to improve the performance and e�ciency, the accelerator can be
connected directly to the logarithmic interconnect. This will help to remove the
AXI-4 and AXI-Lite interfaces, and the protocol conversions to and from AXI-4
and AXI-Lite.



Bibliography

[1] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A.
Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, et al., �Deep neu-
ral networks for acoustic modeling in speech recognition: The shared
views of four research groups,� IEEE Signal processing magazine,
vol. 29, no. 6, pp. 82�97, 2012.

[2] B. Fang, J. Co, and M. Zhang, �Deepasl: Enabling ubiquitous and
non-intrusive word and sentence-level sign language translation,� in
Proceedings of the 15th ACM Conference on Embedded Network Sen-

sor Systems, 2017, pp. 1�13.

[3] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, �Deepface: Closing
the gap to human-level performance in face veri�cation,� in Proceed-

ings of the IEEE conference on computer vision and pattern recogni-

tion, 2014, pp. 1701�1708.

[4] P. A. Keane and E. J. Topol, With an eye to ai and autonomous

diagnosis, 2018.

[5] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, �Man vs. com-
puter: Benchmarking machine learning algorithms for tra�c sign recog-
nition,� Neural networks, vol. 32, pp. 323�332, 2012.

[6] E. Polyakov, M. Mazhanov, A. Rolich, L. Voskov, M. Kachalova,
and S. Polyakov, �Investigation and development of the intelligent
voice assistant for the internet of things using machine learning,� in
2018 Moscow Workshop on Electronic and Networking Technologies

(MWENT), IEEE, 2018, pp. 1�5.

[7] W. Shi and S. Dustdar, �The promise of edge computing,� Computer,
vol. 49, no. 5, pp. 78�81, 2016.

35



36 BIBLIOGRAPHY

[8] J. Lau, B. Zimmerman, and F. Schaub, �Alexa, are you listening? pri-
vacy perceptions, concerns and privacy-seeking behaviors with smart
speakers,� Proceedings of the ACM on Human-Computer Interaction,
vol. 2, no. CSCW, pp. 1�31, 2018.

[9] M. Zhang, F. Zhang, N. D. Lane, Y. Shu, X. Zeng, B. Fang, S. Yan,
and H. Xu, �Deep learning in the era of edge computing: Challenges
and opportunities,� Fog Computing: Theory and Practice, pp. 67�78,
2020.

[10] F. Conti, M. Rusci, and L. Benini, �The memory challenge in ultra-low
power deep learning,� in NANO-CHIPS 2030, Springer, 2020, pp. 323�
349.

[11] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, �E�cient processing
of deep neural networks: A tutorial and survey,� Proceedings of the

IEEE, vol. 105, no. 12, pp. 2295�2329, 2017.

[12] D. Rossi, F. Conti, A. Marongiu, A. Pullini, I. Loi, M. Gautschi, G.
Tagliavini, A. Capotondi, P. Flatresse, and L. Benini, �Pulp: A parallel
ultra low power platform for next generation iot applications,� in 2015
IEEE Hot Chips 27 Symposium (HCS), IEEE, 2015, pp. 1�39.

[13] P. D. Schiavone, D. Rossi, A. Pullini, A. Di Mauro, F. Conti, and L.
Benini, �Quentin: An ultra-low-power pulpissimo soc in 22nm fdx,� in
2018 IEEE SOI-3D-Subthreshold Microelectronics Technology Uni�ed

Conference (S3S), IEEE, 2018, pp. 1�3.

[14] Y. Le Cun, L. D. Jackel, B. Boser, J. S. Denker, H. P. Graf, I. Guyon,
D. Henderson, R. E. Howard, and W. Hubbard, �Handwritten digit
recognition: Applications of neural network chips and automatic learn-
ing,� IEEE Communications Magazine, vol. 27, no. 11, pp. 41�46,
1989.

[15] L. Deng, �The mnist database of handwritten digit images for machine
learning research [best of the web],� IEEE Signal Processing Magazine,
vol. 29, no. 6, pp. 141�142, 2012.

[16] C.-L. Su and A. M. Despain, �Cache design trade-o�s for power and
performance optimization: A case study,� in Proceedings of the 1995

international symposium on Low power design, 1995, pp. 63�68.

[17] L. Benini, A. Macii, and M. Poncino, �Energy-aware design of em-
bedded memories: A survey of technologies, architectures, and op-
timization techniques,� ACM Transactions on Embedded Computing

Systems (TECS), vol. 2, no. 1, pp. 5�32, 2003.



BIBLIOGRAPHY 37

[18] P. Meinerzhagen, C. Roth, and A. Burg, �Towards generic low-power
area-e�cient standard cell based memory architectures,� in 2010 53rd

IEEE International Midwest Symposium on Circuits and Systems,
IEEE, 2010, pp. 129�132.

[19] C. M. Bishop, Pattern recognition and machine learning. springer,
2006.

[20] T. M. Mitchell, Machine Learning. New York: McGraw-Hill, 1997,
isbn: 978-0-07-042807-2.

[21] J. Heaton, �Applications of deep neural networks,� arXiv preprint

arXiv:2009.05673, 2020.

[22] C. C. Aggarwal et al., �Neural networks and deep learning,� Springer,
vol. 10, pp. 978�3, 2018.

[23] Y. LeCun, Y. Bengio, and G. Hinton, �Deep learning,� nature, vol. 521,
no. 7553, pp. 436�444, 2015.

[24] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning,
2. MIT press Cambridge, 2016, vol. 1.

[25] K. O'Shea and R. Nash, �An introduction to convolutional neural
networks,� arXiv preprint arXiv:1511.08458, 2015.

[26] A. Krizhevsky, I. Sutskever, and G. E. Hinton, �Imagenet classi�ca-
tion with deep convolutional neural networks,� Advances in neural

information processing systems, vol. 25, pp. 1097�1105, 2012.

[27] W. A. Wulf and S. A. McKee, �Hitting the memory wall: Implications
of the obvious,� ACM SIGARCH computer architecture news, vol. 23,
no. 1, pp. 20�24, 1995.

[28] J. M. Rabaey, A. P. Chandrakasan, and B. Nikoli¢, Digital integrated
circuits: a design perspective. Pearson education Upper Saddle River,
NJ, 2003, vol. 7.

[29] M. Horowitz, �1.1 computing's energy problem (and what we can do
about it),� in 2014 IEEE International Solid-State Circuits Confer-

ence Digest of Technical Papers (ISSCC), IEEE, 2014, pp. 10�14.

[30] S. Natarajan, S. Chung, L. Paris, and A. Keshavarzi, �Searching for
the dream embedded memory,� IEEE Solid-state circuits magazine,
vol. 1, no. 3, pp. 34�44, 2009.

[31] K. Tanaka, Embedded Systems: Theory and Design Methodology. BoD�
Books on Demand, 2012.



38 BIBLIOGRAPHY

[32] O. Andersson, B. Mohammadi, P. Meinerzhagen, A. Burg, and J. N.
Rodrigues, �Ultra low voltage synthesizable memories: A trade-o� dis-
cussion in 65 nm cmos,� IEEE Transactions on Circuits and Systems

I: Regular Papers, vol. 63, no. 6, pp. 806�817, 2016.

[33] S. Hashemi, N. Anthony, H. Tann, R. I. Bahar, and S. Reda, �Un-
derstanding the impact of precision quantization on the accuracy and
energy of neural networks,� in Design, Automation & Test in Europe

Conference & Exhibition (DATE), 2017, IEEE, 2017, pp. 1474�1479.

[34] R. Goyal, J. Vanschoren, V. Van Acht, and S. Nijssen, �Fixed-point
quantization of convolutional neural networks for quantized inference
on embedded platforms,� arXiv preprint arXiv:2102.02147, 2021.

[35] M. Gautschi, P. D. Schiavone, A. Traber, I. Loi, A. Pullini, D. Rossi,
E. Flamand, F. K. Gürkaynak, and L. Benini, �Near-threshold risc-
v core with dsp extensions for scalable iot endpoint devices,� IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25,
no. 10, pp. 2700�2713, 2017.

[36] A. Rahimi, I. Loi, M. R. Kakoee, and L. Benini, �A fully-synthesizable
single-cycle interconnection network for shared-l1 processor clusters,�
in 2011 Design, Automation & Test in Europe, IEEE, 2011, pp. 1�6.

[37] A. Pullini, D. Rossi, G. Haugou, and L. Benini, �µDma: An au-
tonomous i/o subsystem for iot end-nodes,� in 2017 27th Interna-

tional Symposium on Power and Timing Modeling, Optimization and

Simulation (PATMOS), IEEE, 2017, pp. 1�8.

[38] F. Conti, P. D. Schiavone, and L. Benini, �Xnor neural engine: A
hardware accelerator ip for 21.6-fj/op binary neural network infer-
ence,� IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 37, no. 11, pp. 2940�2951, 2018.

[39] T. P. Team. PULPissimo: Datasheet. https://github.com/pulp-

platform/pulpissimo/blob/master/doc/datasheet/datasheet.

pdf, Accessed: February, 2021.

[40] A. Kurth, W. Rönninger, T. Benz, M. Cavalcante, F. Schuiki, F.
Zaruba, and L. Benini, �An open-source platform for high-performance
non-coherent on-chip communication,� arXiv preprint arXiv:2009.05334,
2020.

https://github.com/pulp-platform/pulpissimo/blob/master/doc/datasheet/datasheet.pdf
https://github.com/pulp-platform/pulpissimo/blob/master/doc/datasheet/datasheet.pdf
https://github.com/pulp-platform/pulpissimo/blob/master/doc/datasheet/datasheet.pdf


A Study on Efficient Memory Utilization in
Machine Learning and Memory Intensive Systems

JONES EMMANUEL
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2021

JO
N

ES EM
M

A
N

U
EL

A
 Study on Effi

cient M
em

ory U
tilization in M

achine Learning and M
em

ory Intensive System
s

LU
N

D
 2021

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2021-850
http://www.eit.lth.se


	Jones_Thesis_Report_Final.pdf
	Introduction
	Scope of Thesis
	Related Work
	Thesis Structure and Organization

	Background
	Artificial Neural Networks
	Memory

	Accelerator Design and Implementation
	CNN Model
	Optimizations
	Architecture
	Verification

	Memory Analysis and Results
	Memory Configurations
	Primary Analysis
	Post-Layout Power Analysis
	Additional Analysis

	PULPissimo Integration
	Accelerator Integration and Functional Verification

	Conclusion
	Future Work



