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Abstract 
Low-Density Parity-Check (LDPC) codes are one of the most popular 

codes used in nowadays’ communication due to their high coding efficiency 
at low decoding complexity. With these characteristics, LDPC codes are 
suitable for high-speed information transmission systems. The widely used 
decoding algorithm for LDPC codes is Belief Propagation (BP) decoding 
with which the performance of LDPC codes can approach the Shannon limit. 

With the development of 5G, a lot of attention is given to the so-called 
ultra-reliable low latency communication scenario which needs the short code 
to transmit. However, short codes will not have a very good performance with 
BP decoding. To solve this problem, investigations have been done such as 
multiple-bases BP decoding. Although this decoding method has a better 
performance than BP decoding, it will cause a high complexity in the 
hardware implementation. Besides, an investigation on the stochastic 
decoding for short codes was proposed in 2003. This decoding method is 
hardware friendly, but the performance of it can only approach BP decoding. 

Inspired by multiple-bases BP decoding and stochastic decoding, binary 
stochastic decoding with parallel decoders is proposed in this thesis firstly. It 
represents stochastic sequences with multiple parallel Tanner graphs and uses 
hard-decision decoding in the iterative part because of the binary input bits. 
However, this decoding method has a severe performance loss compared to 
BP decoding. To avoid this problem, the enhancement method is used to 
make the binary sequences be non-binary sequences that can form more 
powerful parallel decoders. Then the non-binary symbols of these new 
sequences are transformed to their corresponding log-likelihood ratio which 
enables the iterative part to use BP decoding. In addition, combining with the 
ML decision of list decoding, the decision part of our stochastic decoder can 
fully utilize the output to increase the efficiency of the decoding method.  

After ensuring the performance of our non-binary stochastic decoding to 
be better than BP decoding, the complexity of the decoder is reduced to save 
the computational resources. Finally, with constant adjustments, the bit width 
of each non-binary symbol is determined to be 15, and the sequence length is 
reduced to 20 which can let the non-binary stochastic decoding has an 
acceptable complexity while keeping good performance.   
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1. Introduction 

1.1. Background 
In the process of transmitting digital signals, errors often occur in the 

transmitted data stream which will cause bad signals such as blurred images, 
discontinuous sound, and so on. Channel coding which can be divided into 
encoding and decoding is an important step in the whole communication 
system to protect the digital signals and correct the errors. In the encoding 
part, error correction codes (ECC) are used to encode digital signals. In the 
decoding part, the received signal can be corrected by corresponding 
decoding algorithms. Typically, the transmitted vector is ܝ , the encoded 
vector is ܞ, the received vector is ܚ, and the decoded codeword is ܞො. The 
simplified process of the basic transmission in AWGN (Additional White 
Gaussian Noise) channel is shown in the Fig. 1.1. 

 
Fig. 1.1 Basic transmission in AWGN channel 

An ECC called LDPC code was first proposed by Gallager in his doctoral 
dissertation in the 1960s [1]. But limited to the technical conditions at the 
time and lack of feasible decoding algorithms, LDPC codes were ignored in 
the following 35 years. In the meantime, Tanner popularized the LDPC code 
in 1981 and gave a graph representation of the LDPC codes [2], which was 
later called the Tanner graph. The Tanner graph also lays the foundation for 
LDPC decoding, which will be introduced in detail in the second part. Around 
1995, MacKay and Neal et al. [3] re-researched LDPC codes and proposed 
feasible decoding algorithms, which further discovered that LDPC codes 
have good performance close to the Shannon limit. 

1.2. Motivation 
In the context of 5G and beyond, a lot of attention is given to the so-called 

ultra-reliable low latency communication (URLLC) scenario, which is 
relevant for applications like smart transportation, factory automation, or 
robotic surgeries. In such a scenario the latency is a major concern, and code 
should not be very long. For short code, the traditional BP decoding is not the 
best option, because its performance will decrease as the code length gets 
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smaller [4]. Using maximum likelihood (ML) decoding with the LDPC code 
could avoid this problem. But the complexity of the ML algorithm will 
increase exponentially with the code length and become infeasible in practice. 
Thus, how to keep the low latency and high reliability at the same time is a 
major open problem with short LDPC codes. 

Based on the traditional algorithms used in the LDPC decoding, some 
research has already been done to tackle the decoding problem of short codes. 
Hehn et al. proposed a method called multiple-bases BP decoding in 2007 [5], 
which uses several graphs of the same code and decodes the code with the BP 
algorithm parallelly. This method can enhance the decoder against the impact 
of short cycles in the Tanner graph, but it causes the high complexity on the 
hardware implementation. And in 2019, Zhou et al. [6] applied some list 
decoding techniques to short 5G LDPC codes to reduce the gap to the ML 
decoding performance. Rapley et.al proposed the concept of stochastic 
decoding in 2003 [7], which can meet the performance of a BP decoder for 
the (7,4) Hamming code. Although this method will not cause a high physical 
complexity, it cannot beat the BP decoding. 

1.3. Contributions 
This master’s thesis work aims to investigate a specific solution to 

improve the performance of the stochastic decoder when decoding a short 
block code. Inspired by [5] and [7], firstly we will represent the inputs of 
different parallel graphs with binary stochastic sequences which can be seen 
as parallel decoders. However, the binary stochastic decoder cannot beat the 
BP decoding. Then, due to the weakness of the binary stochastic decoder, 
more powerful parallel decoders with non-binary sequences are proposed. 
Lastly, inspired by [6], we use average decision, hard ML decision and soft 
ML decision to deal with the outputs to see how we can increase the 
efficiency of our decoder. After comparing the results of these three decision 
methods, the soft ML decision is chosen to be the final decision method of 
our non-binary stochastic decoder. With non-binary sequences and soft ML 
decision, the performance of stochastic decoder is improved to be better than 
the performance of BP decoding. Next, in order to save the computational 
resources used by stochastic decoder, the complexity will be reduced while 
keeping the decoder a good performance. 

During the thesis work, the implementation in MATLAB and simulation 
study is carried out by Yuyuan and Haien together. About the writing of the 
thesis report, Yuyuan is in charge of Section 1-3 and Haien takes the response 
for Section 4-6. Section 7-8 are finished by Yuyuan and Haien together. 
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1.4. Structure of the Thesis 
In this thesis, Section 1 is about the brief background and structure of the 

thesis.  
Section 2 introduces the main knowledge of LDPC and its classic 

decoding algorithms. Besides these, Section 2 also introduces the basic 
stochastic decoding method to make a start for our decoding methods. 

Section 3 is mainly about our parallel decoders with hard-decision 
decoding and the regeneration method which can improve the performance 
of our binary stochastic decoding method.  

The combination of list decoding and binary stochastic decoding is 
introduced in Section 4. In Section 4, we also compare the performance of 
stochastic list decoding with hard input and the stochastic list decoding with 
soft input in order to state the inspiration of our non-binary stochastic 
decoding method.  

Then, Section 5 starts with the generation of the non-binary stochastic 
sequence to introduce our non-binary stochastic decoding method, and then 
adjust the parameters to reduce the decoding complexity while keeping a 
good performance.  

Section 6 shows the final result of our proposed decoding methods and 
the application of stochastic decoding with non-binary input sequences to 
other LDPC codes. 

 Then, Section 7 gives a brief summary of our thesis work. Finally, some 
future work is proposed in Section 8. 
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2. Background on LDPC Codes 

2.1. Structure of LDPC Codes 
LDPC stands for Low-Density Parity-Check. Low-density means that an 

LDPC code is a linear block code with a sparse parity-check matrix [1]. Due 
to the sparseness of parity-check matrix, its decoding complexity and code 
length are not in an exponential relationship, but in a linear relationship. 
Therefore, the code length of the LDPC code can be very long, reaching 
thousands to tens of thousands or even higher. One of the advantages brought 
by this is that the correlation length between the bits in a codeword is 
relatively long, and the correlation of the bits in the codeword is fully utilized 
in the decoding part to improve the decoding accuracy, and it also makes full 
use of the channel feature [8]. 

LDPC codes include regular LDPC codes and irregular LDPC codes. In 
a regular LDPC code, each column of the H matrix has the same number of 
ones, otherwise it is called an irregular LDPC code [1]. Suppose in a H matrix 
with size of ܰ − ܭ × ܰ, the number of ones in each column is ݀௩, the number 
of ones in each row is ݀௖. Then there should be ݀௩ ≪ ܰ − and ݀௖ ܭ ≪ ܰ, 
while ݀௩ represents column weight and ݀௖ represents row weight. Therefore, 
LDPC codes are usually represented by the above three parameters (N, ݀௩, ݀௖). Fig. 2.1 shows the example of the H matrix of (9,2,3) LDPC. 

In this work, we choose a (1024,3,6) LDPC code as long code and a 
(126,3,6) LDPC code as short code. The ݀௖  of these check matrices are both 
6, and the ݀௩ are both 3. 

 

Fig. 2.1 Parity-check matrix of (9,2,3) LDPC code 

In addition, in the H matrix, the condition that values of the same column 
in any two adjacent rows all equal to 1 cannot happen more than one time. 
That is, there should be no rectangle whose four corners are constructed by 
four ones in the H matrix. And such rectangle is called 4-cycle. Typically, the 
4-cycle will limit the performance of the LDPC code and cause the bit error 

۶ = ⎣⎢⎢⎢
⎢⎡1 1 1
1 0 0
0 0 0

0 0 0
1 0 0
1 1 1

0 0 0
1 0 0
0 0 0

0 1 0
0 0 0
0 0 1

0 1 0
0 0 0
0 0 1

0 1 0
1 1 1
0 0 1⎦⎥⎥

⎥⎥⎤ 
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rate of the decoder not to converge to the correct solution [9]. Fig. 2.2 shows 
an example of a 4-cycle. 

൦ ⋮ ⋮…… 1 11 1 ……⋮ ⋮ ൪ 
Fig. 2.2 An example of a 4-cycle in the H matrix 

 

2.2.  Tanner Graph 
The Tanner graph represents the parity-check matrix of an LDPC code 

[2]. It contains two types of nodes, variable nodes (VN) corresponding to each 
column of the parity-check matrix and check node (CN) corresponding to 
each row of the parity-check matrix. Each row of the parity-check matrix 
represents a parity-check equation, and each column represents a codeword 
bit. If a codeword bit is included in the corresponding check equation, then a 
connection is used to connect the involved VN and the CN, so the number of 
connections in the Tanner graph is equal to the number of ones in the check 
matrix. In the typical Tanner graph, VNs are represented by circles, and CNs 
are represented by squares [10]. Fig. 2.4 shows the Tanner graph of the (9,2,3) 
LDPC code from Fig. 2.3. 

 

Fig. 2.3 Tanner graph of a (9,2,3) LDPC code 

In Fig. 2.3, C1-C6 represent six CNs, that is, the 6 rows of the parity-
check matrix H from top to bottom. V1-V9 represent 9 VNs, that is the 9 
columns of the parity-check matrix H from left to right. In the H matrix, there 
are three ones in each row, which means that each CN is connected to three 
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VNs by some edges, so the degree of each CN is 3. In the same way, each 
VN will be connected to two CNs by some edges, because each column in 
the H matrix has 2 ones, and the degree of each VN is 2. Since ܞ ∙ ۶୘ = 0, 
The relationship between VNs and CNs can also be represented as 

ଵܸ ⊕ ଶܸ ⊕ ଷܸ = 0, ଵܸ ⊕ ସܸ ⊕ ଻ܸ = 0, ସܸ ⊕ ହܸ ⊕ ଺ܸ = 0,   ଶܸ ⊕ ହܸ ⊕ ଼ܸ = 0,   ଻ܸ ⊕ ଼ܸ ⊕ ଽܸ = 0, ଷܸ ⊕ ଺ܸ ⊕ ଽܸ = 0. 
(1) 

A cycle in the Tanner graph is composed of a group of nodes connected 
to each other in the graph. The cycle takes one of the group of nodes as the 
start and end at the same time. And it will pass through each node only once. 
The length of the cycle is defined as the number of lines it contains. The girth 
of the Tanner graph is defined as the smallest cycle length in the graph [10]. 
Continuing to use the Tanner graph of the (9, 2, 3) LDPC code as an example, 
we can see that the red line in Fig. 2.4 represents a cycle, the girth of this 
cycle is 8. In this Tanner graph, since there are no any other cycles whose 
length is smaller than 8, the girth of this Tanner graph is 8. 

 

Fig. 2.4 Girth of Tanner graph of a (9,2,3) LDPC code 

The classical iterative decoding is based on the Tanner graph, and the 
posterior probability message or the hard-decision result is transmitted 
between VNs and CNs [11]. This information will be transmitted again to the 
connected nodes after being updated by the algorithm. The condition for 
exiting iterative decoding is to obtain the valid codeword which is determined 
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by ܞො ∙ ۶୘ = 0  or reach the maximum number of iterations, ݅௠௔௫ . This 
stopping rule will be used in the whole thesis work. 

2.3. Decoding Algorithms 

2.3.1. Belief Propagation Decoding 
Belief propagation (BP), also known as sum-product algorithm, is a 

message passing algorithm that performs inference on a graph model and can 
be used in Bayesian networks and Markov random domains (e.g. AWGN 
channel). The belief propagation algorithm updates the current marking state 
of the entire Markov Random Field (MRF) by using the mutual information 
between CNs and VNs. It is an approximate calculation based on MRF. The 
algorithm is an iterative method that can solve the problem of probabilistic 
inference in the probabilistic graph model, and the dissemination of all 
information can be realized in parallel. After multiple iterations, the reliability 
of all nodes no longer changes. At this time, the mark of each node is said to 
be the optimal mark, and the MRF has also reached a state of convergence. 
For MRF without cycles the BP algorithm can converge to its optimal 
solution [12]. 

For LDPC codes, BP decoding is a soft decoding method. The Tanner 
graph is used as the transmission network, and the Log-Likelihood Ratio 
(LLR) is transmitted between the VN and the CN. The initial LLR from the 
channel, ܮ௖௛ , can be obtained by [13] ܮ௖௛ = ln ௉൫ݎหݒ = 0൯௉൫ݎหݒ = 1൯  . (2) 

In BP decoding, the update of the CN only needs to consider the 
information provided by the connected edges (VNs). The update of the VN 
must not only consider the information provided by the connected edges 
(CNs), but also consider the initial LLR, ܮ௖௛ [13]. 

Fig. 2.5 shows the information delivery process when updating the CN. 
Here, ܮ௩(݁ଵ) and ܮ௩(݁ଶ) represent the information passed from the VN to the 
CN. ܮ௖(݁ଷ) indicates that the CN will update the information and pass it to 
the target VN through the red line. 
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Fig. 2.5 Information delivery process of updating CNs 

Fig. 2.6 shows the message passing process when updating VNs. This 
process is similar to that of updating VNs. ܮ௖(݁ଵ) and ܮ௖(݁ଶ) represent the 
information passed from the CN to the VN, and ܮ௖௛  represents the initial 
channel output value. ܮ௩(݁ଷ) indicates that the updated information of the 
VN will be passed to the target CN through the red line. 

 

Fig. 2.6 Information delivery process of updating VNs 

The specific BP decoding process [14] is as follows: 
Step 1: Initial input is ܮ௖௛. Setting i=1, where i is the counter of iteration. 

And giving the initial input as the initial updated value to all of edges of the 
VNs, as shown in (3). ܮ௩(଴)൫ ௝݁൯ =  (3)   (ݒ)௖௛ܮ
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Step 2: Equation (4) is used to update the CNs. 

௖(௜)(݁௞)ܮ = 2tanhିଵ ൭ෑ tanh ൬12ܮ௩(௜ିଵ)(݁௞ᇱ)൰௞ᇱஷ௞ ൱ (4) 

Step 3: Equation (5) is used to update the VNs. ܮ௩(௜)( ௝݁) = (ݒ)௖௛ܮ + ෍ܮ௖(௜)( ௝݁ᇱ)௝ᇱஷ௝  (5) 

Step 4: If the number of iterations reaches the maximum value, ݅௠௔௫, the 
function that be used to calculate the output value of the current VN is shown 
in (6). ܮ௢௨௧ = (ݒ)௖௛ܮ + ෍ܮ௖(௜೘ೌೣ)( ௝݁)௝   (6) 

2.3.2. Hard-decision Decoding 
The basic principle of BP decoding can also be applied to the Binary 

Symmetric Channel (BSC). We call this decoding method iterative hard- 
decision decoding. In hard-decision decoding, the information transmitted 
between the VN and the CN is no longer Log-Likelihood, but 0/1 bit. The 
specific decoding steps [16] are as follows. 

Step 1: First, make a hard-decision based on the Log-Likelihood (ܮ௖௛) 
which is the output of the channel. When ܮ௖௛ is greater than 0, the judgment 
result is 0. On the contrary, the judgment result is 1. From this, we can get an 
initial sequence of 0/1, ߤ௖௛(ݒ). This sequence is the initial input that will be 
brought into the decoder. Thus, we can set i=1, where i is the counter of 
iterations. And giving the initial input as the initial updated value to all of 
edges of the VNs as (7) shows. ߤ௩(଴)(݁௞) =  (7) (ݒ)௖௛ߤ

Step 2: In order to satisfy all of the check equations. Equation (8) is used 
to update the CN. ߤ௖(௜)(݁௞) = ෍ ௩(௜ିଵ)(݁௞ᇱ)    mod 2௞ᇱஷ௞ߤ  (8) 
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Step 3: In the update of the VN, we use the majority rule to update the 
edge and final output as (9) shows. 

௩(௜)൫ߤ ௝݁൯ = ቐ̅ߤ௖௛(ݒ)       ݂݅ ቚቄ݆ᇱ: ߤ௖(௜) ≠ ,(ݒ)௖௛ߤ ݆′ ≠ ݆ቅቚ ≥ ݀௩ − 12 ݁ݏ݈݁            (ݒ)௖௛ߤ   (9) 

Among them, ݀௩  represents the degree of each VN as mentioned in 
Section 2.1, that is, the number of edges connected to each VN. This formula 
indicates that when the target edge is updated, the number of the remaining 
edges which provide different bit from the original input is calculated. If the 
counted number is greater than half of the degree of each VN, the initial value 
after the flip is assigned to this edge, that is, 0 becomes 1 or 1 becomes 0. In 
the same way, when updating the final output, we should count how many 
edges provide different information from the original input among all the 
edges. If the counted number is greater than half of the degree of each VN, 
the initial value after the flip is assigned to the final output, otherwise, the 
initial value is directly assigned to the final output. 

2.3.3. Stochastic Decoding 
The stochastic decoding is first proposed in [7]. This section only reviews 

the concept of the basic stochastic method which is the inspiration of our 
decoding method. 

The idea of basic stochastic decoding is based on the stochastic 
computation [7] that it converts the ܮ௖௛ obtained from the channel into a 
probability value, and then generates a stochastic sequence corresponding to 
each message based on its probability of 0/1. The detailed steps are as follows: 

Step 1: Based on (2), probability of 0/1 can be obtained from ܮ௖௛ . 
Equation (10) shows the calculation function of the probability. 

⎩⎨
⎧ ଴ܲ = ݁௅೎೓1 + ݁௅೎೓ଵܲ = 1 − ଴ܲ = 11 + ݁௅೎೓ (10) 

Step 2: Based on (10), the stochastic sequence of corresponding 
probability can be generated. Here, we assume the calculated probability of 1 
is 0.2 and length of sequence is 20. Then, the corresponding example 
sequence is shown in Fig. 2.7. 
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Fig. 2.7 A possible sequence for the probability of 0.2 

In Fig. 2.8, it can be clearly seen that the number of 0 and 1 in this 
possible sequence meets with the channel output probability of 0.8 and 0.2.  

In [7], the definition of the basic stochastic VN has been found. Taking ݀௩ = 3 as an example, each VN is connected to three edges (CNs). Except 
the destination sequence which need to be updated, the update of the VN is 
completed by the participation of two stochastic sequences and the initial 
input sequence. We can use the probability of 1 in each sequence, that is ஺ܲ =Pr (݁ଵ = 1), ஻ܲ = Pr (݁ଶ = 1)  and ௖ܲ௛ = Pr (ܵ௖௛ = 1)  to represent the 
three input stochastic sequences probability. According to the BP algorithm, 
the output probability ௒ܲ (݁ଷ_݁ݐܽ݀݌ݑ = 1) is calculated by 

௒ܲ = ௉ಲ௉ಳ௉೎೓௉ಲ௉ಳ௉೎೓ା(ଵି௉ಲ)(ଵି௉ಳ)(ଵି௉೎೓) . (11) 

Fig. 2.8 shows the hardware structure of the basic stochastic VN to 
perform (11). 

 

 

Fig. 2.8 Hardware structure of the basic stochastic VN 

In [7], the definition of the basic stochastic CN has also been found. 
Taking ݀௖ = 3 as an example, each CN is connected to three edges (VNs). 
Except the destination sequence which need to be updated, the update of the 
CN is completed by the participation of two stochastic sequence. Like the 
definition of the basic VN, the probability of occurrence of 1 in each sequence 
can still be used to represent the input stochastic sequences probability. 
According to the BP algorithm, the output probability ௒ܲ (݁ଷ_݁ݐܽ݀݌ݑ = 1) is 
calculated by 

௒ܲ = ஺ܲ(1 − ஻ܲ) + ஻ܲ(1 − ஺ܲ) . (12) 

଴ܲ = 0.8, ଵܲ = 0.2 0001000011100000000000 
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Fig. 2.9 is the hardware structure of the basic stochastic CN to perform 
(12). From this hardware structure, we can clearly see that the update of the 
CN is actually the XOR operation. 

 

 

Fig. 2.9 Hardware structure of the basic stochastic CN 
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3. Binary Stochastic Decoding with Regeneration 

3.1. Stochastic Decoding with Parallel Decoders 
The stochastic decoding with parallel decoders is proposed based on the 

hard-decision decoding and stochastic computation. This method which is 
hardware friendly has simpler circuit than multiple-bases BP decoding. But 
unlike the stochastic decoding in Section 2.3.3, the updated method of the 
variable node is majority decision instead of Fig. 2.8 in our decoding method. 

In the work of this section, the first step is that the ܮ௖௛ corresponding to 
each message is converted to the stochastic sequence as described in the 
stochastic computation. And then, we will have an input table. The example 
of the input table is shown in Fig. 3.1. The number of rows of this table is the 
length of sequence ܮ and the number of columns of this table is the number 
of VNs. Each row of this table can be seen as a candidate input, and all of the 
rows can be seen as the parallel decoders. 

 

Fig. 3.1 An example of the input table of (9,2,3) LDPC code 

These inputs will be taken into the iterative decoding separately. In the 
part of iterative decoding, the update of the CN and VN is the same as (8) and 
(9) of hard-decision decoding. When the iterative decoding ends, we will get 
an output table. Then, the majority rule can be used on each column of this 
table to get the final output of each VN. However, this stochastic decoding 
method has a severe performance loss whether it is used to decode long LDPC 
codes or short LDPC codes. Fig. 3.2 and Fig. 3.3, respectively, show the 

0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 1 1 0
0 1 0 0 1 0 1 1 0
0 0 1 0 0 0 1 0 0
0 0 1 0 0 1 1 0 0
1 1 1 0 1 1 1 1 0
0 0 0 0 0 0 0 0 0
1 0 1 0 1 1 1 0 0

0 0 0 0 0 0 0 0 0
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decoding performance of our stochastic decoding when applied to a (126,3,6) 
regular LDPC code and a (1024,3,6) LDPC code. It should be noted that ݅௠௔௫ 
used in all simulations in this thesis work is 64 which is an empirical value 
from [17]. 

 

Fig. 3.2 Comparison of stochastic decoding and BP decoding, (126,3,6) 
LDPC code, 1000=ܮ 

 

Fig. 3.3 Comparison of stochastic decoding and BP decoding, 
(1024,3,6) LDPC code, 1000=ܮ 
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3.2. Proposal of the Regeneration Method 
As mentioned above, the stochastic decoding in Section 3.2 has a severe 

performance loss. After making a research on [7], the reason why the 
stochastic decoding with parallel decoders has the bad performance has been 
found. 

According to the definition of the basic stochastic VN in [7], It can be 
seen from (11) that during the update process, the probability of the output 
sequence in the stochastic decoding should be equal to the output probability 
obtained in the BP decoding. In other words, in the update of VNs, we should 
pay more attention to the probability distribution of 0 and 1 of the entire 
output sequences. In the initial step of the iterative decoding process of 
Section 3.1, the input value of each VN has only one bit, so each update of 
the output value can only get one bit. However, we cannot judge whether the 
current updated output value satisfies the output probability obtained in BP 
decoding based on only one bit. Therefore, the whole input sequences of each 
message should be taken to participate in the iterative decoding part of 
stochastic decoding, so that the updated output value will also be a whole 
sequence. 

And in the hardware structure which is shown in Fig. 8, it should be noted 
that a JK flip-flop is used in the hardware structure. Thus, only when ݁ଵ =݁ଶ = ܵ௖௛, the output state of ݁ଷ can be regarded as a regular state. Otherwise, 
the output value will continue to use the output value of the previous iteration, 
and we call this state the hold state. Typically, the result of regular state is 
more reliable than the result of the hold state. The state diagram of the basic 
VN is shown in Table 1. 

 State diagram of the basic stochastic VN ݁ଵ ݁ଶ ܵ௖௛ ݁ଷ 

0 0 0 0 (regular state) 

1 1 1 1 (regular state) 

0 1 0 hold state 

1 0 1 hold state 

1 1 0 hold state 

0 1 1 hold state 
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Inspired by the concept of this hardware structure, we can find that only 

the results judged by 000 and 111 are the most reliable. But in the parallel 
decoding algorithm, it only uses the majority decision when updating VNs. 
When we focus on the probability of 0 judged by 000 and probability of 1 
judged by 111 in the output sequence generated by the majority decision, the 
actual probability of such 0 (regular state) and actual probability of such 1 
(regular state) cannot add up to 1.  

To revise the actual probability of 0/1 in the output sequence, we need to 
calculate the number of 0/1 judged by 000/111 to recalculate ଴ܲ and ଵܲ, and 
regenerate the output sequence. It will get ଴ܲ + ଵܲ = 1 in the output sequence. 
Based on (11), the formulas for calculating the new probability of the output 
sequence are derived  

ଵܲ௡௘௪ = ௉ಲభ௉ಳభ௉೎೓భ௉ಲభ௉ಳభ௉೎೓భ ା(ଵି௉ಲభ)(ଵି௉ಳభ)(ଵି௉೎೓భ ) = ௉ಲభ௉ಳభ௉೎೓భ௉ಲభ௉ಳభ௉೎೓భ ା௉ಲబ௉ಳబ௉೎೓బ  , (13) 

଴ܲ௡௘௪ = ௉ಲబ௉ಳబ௉೎೓బ௉ಲబ௉ಳబ௉೎೓బ ା(ଵି௉ಲబ)(ଵି௉ಳబ)(ଵି௉೎೓బ ) = ௉ಲబ௉ಳబ௉೎೓బ௉ಲబ௉ಳబ௉೎೓బ ା௉ಲభ௉ಳభ௉೎೓భ  . (14) 

3.3. Detailed Update Process with Regeneration 
Based on the above investigation on stochastic VNs, the update steps of 

VNs in our decoder are as follows: 
Step 1: The first step is similar to the VN update part in traditional hard-

decision decoding. Regardless of the sequence of the target edge that needs 
to be updated, a majority decision is made on the sequence of the remaining 
edges and the initial input sequence to obtain the initial output sequence. 
Consider an example with ܮ = 6 and the VN degree 3. Then when we update 
the sequence of the third edge ݁ଷ of current VN. The process of majority 
decision is shown in Table 2. 

 Majority decision of the sequences 

Input Output ݁ଵ ݁ଶ ܵ௖௛ ݁ଷ 

0 0 0 0 

1 1 1 1 
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0 1 0 0 

0 0 0 0 

0 0 0 0 

0 1 1 1 

0 0 1 0 

1 1 0 1 

In Table 2, the probability of 0 judged by 000 in the output is ଴ܲ௢௟ௗ = ଷ଼ , 
and the probability of 1 judged by 111 in the output is ଵܲ௢௟ௗ = ଵ଼ . These old 
probabilities cannot add up to 1. 

Step 2: Continuing to take Table 2 as an example, calculate the number 
of zeros judged by 000 in the sequence of ݁ଷ, that is, the number of zeros 
which are regular state in the output sequence. This number is recorded as ܰ݉ݑ଴ = 3. Similarly, the number of ones judged by 111, that is, the number 
of ones which are regular state in the output sequence. This number is 
recorded as ܰ݉ݑଵ = 1. According to (13) and (14), new ଴ܲ  and ଵܲ  of the 
sequence of ݁ଷ can be obtained, as shown in (15), and (16). 

଴ܲ௡௘௪ = ଴݉ݑ଴ܰ݉ݑܰ + ଵ݉ݑܰ = 34 (15) 

ଵܲ௡௘௪ = ଴݉ݑଵܰ݉ݑܰ + ଵ݉ݑܰ = 14 (16) 

Step 3: According to ଴ܲ௡௘௪  and ଵܲ௡௘௪ , the number of 0 and 1 in the 
original output sequence will be changed. But we only change 0 and 1 which 
are not judged by 000/111. When ଴ܲ௡௘௪ is greater than the original ଴ܲ௢௟ௗ, a 
part of 1 which are not judged by 111 in the output sequence will be changed 
to 0. Conversely, when ଵܲ௡௘௪  is greater than the original ଵܲ௢௟ௗ , a part of 0 
which are not judged by 000 in the output sequence will be changed to 1. An 
example of regeneration of the output in Table 2 can be seen in Table 3. 

In this example, with ܮ = 8, the regenerated number of 0 is 6 according 
to the probability in (15) and regenerated number of 1 is 2 according to the 
probability in (16). Comparing to the output sequence in Table 2, it is found 
that the number of 1 should be decreased from 3 to 2. There are two 1 which 
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are not judged by 111 in the example, and one of them should be changed. 
Here, the 1 judged by 011 is changed to 0 (the bolded value). 

 An example of regeneration 

Input Output Regenerated 
Output ݁ଵ ݁ଶ ܵ௖௛ ݁ଷ ݁ଷ௡௘௪ 

0 0 0 0 0 

1 1 1 1 1 

0 1 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 1 1 1 0 

0 0 1 0 0 

1 1 0 1 1 

Step 4: When generating the final result, it is similar to updating the edge 
of VNs. Using a new example in Table 4, we will bring all the edges and 
initial sequence into the majority decision in the step of generating the final 
result. Then, comparing the number of results judged by 0000 and the number 
of the result judged by 1111, the example of final decision process is shown 
in Table. 4. 

 Decision part of final result ݁ଵ ݁ଶ ݁ଷ ܵ௖௛ Output 
0 0 0 0 0 

1 1 1 1 1 

0 1 0 0 0 

0 0 0 0 0 
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0 0 0 0 0 

0 1 1 1 1 

0 0 1 0 0 

1 1 0 1 1 

 
In Table 4, the bolded values in the output sequence are 0 and 1 which 

are in regular state. Since the number of bolded zeros is more than the bolded 
ones, the final output of this example VN is 0. 

3.4. Simulation Performance 

3.4.1. Performance vs. Stochastic Sequence Length ܮ 
For our stochastic decoding method, the most important factor affecting 

its performance is the length of the stochastic sequence. Because in the initial 
stage of decoding, we need to generate the stochastic sequences based on the 
output probability from the channel. When the length of the sequence is 
longer, the distribution of 0 and 1 is more in line with the output probability 
of the channel, that is to say, the reliability of such a sequence is higher. If a 
highly reliable sequence is used as input in iterative decoding, the probability 
of the output sequence will be closer to the output value of BP decoding, so 
as to achieve better decoding performance.  

In this simulation, the simulation time of each SNR is too long to observe 
the situation of all SNR. Thus, we select a fixed SNR, let SNR=2.5dB. And 
select the sequence length ܮ distribution range from 100 to 1000 with an 
interval of 100. The simulation result is shown in Fig. 3.4. 
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Fig. 3.4 BER vs. sequence length ܮ, SNR=2.5dB 

From Fig. 3.4, it is not difficult to see that, as the length of the sequence 
increases, the BER is continuously reduced. When the sequence length ܮ 
changes from 100 to 400, the BER will decrease rapidly. When the sequence 
length ܮ changes from 400 to 1000, the downward trend of the BER gradually 
tends to be flat.  

Then, as shown in Fig. 3.5, we select the SNR from 1dB to 3dB to observe 
the changes in the bit error rate curves of different sequence length ܮ. 

In Fig. 3.5, when the sequence length ܮ  is greater than 400, the 
performance of the stochastic decoder is less affected by the sequence length ܮ . But in general, the longer stochastic sequence will still improve the 
performance of the decoder. 
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Fig. 3.5 BER of different sequence length 700=ܮ ,100=ܮ and 1000=ܮ 

3.4.2. Comparison of Stochastic Decoding and BP Decoding 
In our simulation, we firstly test our decoder based on the (1024, 3, 6) 

LDPC code, and observe the difference between binary stochastic decoder 
and BP decoder. In order to achieve better decoding results, the sequence 
length of stochastic decoding is ܮ = 1000. The simulation result is shown in 
Fig. 3.6. 

In Fig. 3.6 and Fig. 3.7, we can clearly see that the regeneration method 
can greatly improve the performance of binary stochastic decoding. 

From Fig. 3.6, we can also clearly see that for long LDPC codes, the 
performance of BP decoding and the performance of stochastic decoding are 
similar at low SNR. At high SNR, the performance of BP decoding will be 
much better than that of stochastic decoding. This also proves that BP 
decoding is suitable for decoding long codes, and as the code length is longer, 
the performance will approach the Shannon limit. 

From Fig. 3.7, we can clearly see that the decoding performance of BP 
decoding indeed decreases for short LDPC codes. In the low SNR region, the 
performance of stochastic decoding is slightly better than that of BP decoding, 
while in the high SNR region, the performance of stochastic decoding is 
slightly worse than BP decoding. Hence this method still needs to be 
improved. 
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Fig. 3.6 Comparison of different decoding methods, ܮ = 1000, (1024, 
3, 6) LDPC code 

 

Fig. 3.7 Comparison of different decoding methods, ܮ = 1000, (126, 
3, 6) LDPC code 
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4. Stochastic List Decoding 
Elias proposed list decoding in the 1950s in coding theory [18]. The main 

idea behind list decoding is that the decoding algorithm will not only output 
one decoding result but output multiple decoding results to form a list. 
Compared with the upper limit of error correction for unique decoding, list 
decoding can correct more errors. Although list decoding takes the similar 
decision procedure to ML decoding, there is still a little difference between 
them. In the typical ML decoding, the decoder will output a decoding result 
that is closest to the received vector among all of the possible codewords as 
the final result based on the Euclidean distance. However, list decoding only 
correlates the received vector with a part of possible codewords instead of 
correlating with all of the possible codewords to do the final decision. Thus, 
list decoding has a lower decoding complexity than ML decoding while it still 
can take the advantage of ML decision. 

Inspired by [6], our stochastic decoding can be combined with list 
decoding to take the advantage of the ML decision part. In this section, the 
performance of stochastic list decoding with hard input (0/1 bit) and 
stochastic list decoding with soft input (designed LLR) will be discussed, 
respectively. Hard stochastic list decoding is proposed on the basis of the 
stochastic decoding with regeneration method which is mentioned in Section 
3. Soft stochastic list decoding is proposed based on the advantage of the BP 
decoding algorithm. 

4.1. Stochastic List Decoding with Hard Input 
As mentioned in Section 3, the stochastic sequences can be generated to 

form an input table in the first step of stochastic list decoding. Then, each row 
of the input table is taken into the designed decoder (Tanner graph). After 
iterative decoding, the decoder will output a result table before the final 
decision. In the decision part of the current decoding method, the hard ML 
decision method is used due to the hard input. The hard ML decision means 
that the result table after decoding just includes 0 and 1, and the row of this 
binary result table is correlated with the received symbol after the BPSK 
modulation. The general ML decision process can be expressed as ܞො = arg max௜∈ଵ,…,௅൫ܞపෝ ∙  ୘൯. (17)ܚ
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Here, ܞොଵto ܞො௅ are the possible output codewords of our stochastic decoder. 
The performance of stochastic list decoding will be compared with 

stochastic decoding with regeneration method and BP decoding. The 
sequence length of the stochastic sequence is ܮ = 1000 . The simulation 
result is shown in Fig. 4.1. 

 

Fig. 4.1 Performance of stochastic list decoding, stochastic decoding 
and BP decoding, ܮ = 1000 

One might think that the performance of stochastic list decoding should 
be better than stochastic decoding with regeneration, because the list method 
replaces one result with multiple candidate results, which makes the 
probability of successful decoding higher.  However, from Fig. 4.1, we can 
find that the performance of stochastic list decoding is even worse than 
stochastic decoding with regeneration. In the high SNR region, the gap 
between BP decoding and stochastic list decoding becomes large. It’s not as 
good as the expected performance. This bad performance is mainly because 
we only let one row of the result table to join in the correlation. In every 
correlation, only one codeword joining cannot provide the high reliability, so 
it is too weak to decode the code successfully for stochastic list decoding. 

4.2. Enhanced Stochastic List Decoding with Hard Input 
Based on the conclusion in Section 4.1, the reliability of each decoded 

codeword needs to be enhanced. Thus, the output after iterative decoding 
needs to be pre-processed before the decision part. In order to make these 
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outputs more robust, every five bits of each original output sequences are 
combined to generate an enhanced bit with majority decision. Fig. 4.2 shows 
an example of the process of enhancement. In Fig. 4.2, the length of sequence 
is assumed to be 15 and V1-V6 represent the six VNs.  After the process of 
the enhancement, a new output table can be obtained. Every bit in this table 
is generated from the combination of the five bits in the original output table. 

 

Fig. 4.2 An example of the process of the enhancement 

In the simulation of this decoding method, the sequence length ܮ is the 
same as the simulation in Section 4.1.  Fig. 4.3 shows the comparison of the 
enhanced stochastic list decoding, stochastic list decoding and BP decoding. 

Unlike the expectation, the performance of the enhanced stochastic list 
decoding is similar to original stochastic list decoding in the low SNR region, 
and just a little better than the original one in the high SNR region. This bad 
performance may be caused by the iterative hard-decision decoding. 
Typically, hard-decision decoding always has a worse performance than the 
BP decoding in the iterative decoding part [19]. 

 

0 1 0 1 0 1
1 1 0 0 0 0
0 1 0 1 0 1
0 1 1 0 1 1
0 0 0 0 1 1
1 1 0 1 0 0
0 1 1 0 1 0
1 1 0 1 0 0
0 0 1 0 0 1
0 1 0 1 1 1
0 1 1 0 1 1
0 1 0 1 1 0
1 1 0 0 1 0
0 0 0 1 1 1
1 1 0 0 1 0

V1 V2 V3 V4 V5 V6 V1
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V2
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      Enhanced Outputs
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0 1 0 0 1 0

1 0 0 0 1
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Fig. 4.3 Performance of enhanced stochastic list decoding, stochastic 
list decoding and BP decoding, ܮ = 1000 

4.3. Stochastic List Decoding with Soft Input 
According to the bad performance of two decoding methods in Section 

4.1 and Section 4.2, a stochastic list decoding with soft input becomes the 
new direction to study. In order to combine the BP decoding algorithm instead 
of the hard-decision decoding with the list method, we need to adjust the input 
stochastic sequence to let the message passing between the CNs and VNs be 
soft values (LLR) rather than binary symbols. When the input table is 
generated, we can convert every binary symbol to their corresponding LLR. 
Equations (18) and (19) are derived from (2) to realize the transformation of 
the 0 and 1 respectively. 

0 → ଴ܮ = lnݔ)݌ = ݏ|0 = ݔ)݌(0 = ݏ|1 = 0) = ln 10 = ∞ (18) 

1 → ଵܮ = lnݔ)݌ = ݏ|0 = ݔ)݌(1 = ݏ|1 = 1) = ln 01 = −∞ (19) 

Here, ݏ  is the existing value of the current bit which needs to be 
transformed and ݔ  is the possible value that the current bit could be. ݔ)݌ = ݏ|0 = 0) stands for the posterior probability of current bit equal to 0 
under the existing condition of current bit equal to 0. Here, only one bit needs 
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to be transformed each time. Thus, if the current bit is 0, then ݔ)݌ = ݏ|0 = 0) 
is 1. In the same way, if the current bit is 1, then the ݔ)݌ = ݏ|1 = 1) is 1. The 
positive infinity ܮ௠௔௫  in (18) and the negative infinity −ܮ௠௔௫  in (19) are 
represented with the empirical value ܮ௠௔௫ = 8 and −ܮ௠௔௫ = −8, the choice 
of which will be further discussed in Section 5.  Fig. 4.4 shows an example 
of the transformation of the binary input table to the log-likelihood ratio input 
table 

 

Fig. 4.4 An example of the transformation from binary input table to 
log-likelihood ratio input table 

Then, each row of the log-likelihood ratio input table is taken into the 
iterative decoding part with the BP decoding algorithm. After simulation with 
the same sequence length of ܮ = 1000 as the ones used in Section 4.2 and 
Section 4.1, the comparison of the performance of stochastic list decoding 
with soft input, enhanced stochastic list decoding with hard input, original 
stochastic list decoding, stochastic decoding with regeneration and BP 
decoding can be seen in Fig. 4.5. We can clearly find that the stochastic list 
decoding with soft input can significantly improve the performance of the 
stochastic decoder. 

0 1 0 1 0 1 8 -8 8 -8 8 -8
1 1 0 0 0 0 -8 -8 8 8 8 8
0 1 0 1 0 1 8 -8 8 -8 8 -8
0 1 1 0 1 1 8 -8 -8 8 -8 -8
0 0 0 0 1 1 8 8 8 8 -8 -8
1 1 0 1 0 0 -8 -8 8 -8 8 8
0 1 1 0 1 0 8 -8 -8 8 -8 8
1 1 0 1 0 0 -8 -8 8 -8 8 8

V1 V2 V3 V4 V5 V6 V1 V2 V3 V4 V5 V6

Binary Input Table Log-likelihood Ratio Input Table
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Fig. 4.5 Comparison of different stochastic list decoding and BP 
decoding, ܮ =  ௠௔௫=8 in soft list decodingܮ .1000
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5. Stochastic Decoding with Non-Binary Quantized 
Input Sequence 

In Section 3, a stochastic decoding with binary input stochastic sequence 
is introduced, while this decoding method doesn’t achieve a very good 
performance with a sequence length of ܮ = 1000 . Even though the ML 
decision is applied to the output list of the binary stochastic decoding in 
Section 4.1, the performance of this decoding method still has a severe loss. 
However, the performance of the stochastic decoder gets a little improvement 
with enhancement method in the high SNR region in Section 4.2, and the 
performance gets much better than BP decoding with the transformation of 
the binary input sequences in Section 4.3. Thus, inspired by Section 4.2 and 
Section 4.3, the stochastic decoding with non-binary quantized input 
sequence is proposed in this section. 

5.1. Detailed Decoding Process 
The decoding process of stochastic decoding with non-binary quantized 

input sequence can be divided into three steps. The first step is the generation 
of the non-binary quantized sequence on the basis of the binary stochastic 
sequence which is mentioned in Section 2.3.3 and Section 3.1. The second 
step is to transform the non-binary symbol to the LLR and do the iterative 
decoding with the BP decoding algorithm. The third step is the decision 
process which will be operated with soft ML decision, hard ML decision and 
average decision separately. The decoding process can be seen in Fig. 5.1. 

 

Fig. 5.1 The decoding process of the non-binary stochastic decoding 
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5.1.1. Generation of the Non-Binary Quantized Input Sequence 
At the beginning of the generation of the non-binary quantized input 

sequence, the binary quantized input sequence is divided into several sub-
sequences on the basis of the enhancement method mentioned in Section 4.2. 
These sub-sequences will be transferred to the non-binary symbol with the 
quantization method. Here, the number of the bits combined each time (length 
of the sub-sequence) is called as bit width which is defined as ݓ. The length 
of the original binary stochastic sequence is defined as ܮ௕ and the length of 
the resulted non-binary stochastic sequence is defined as ܮ௦. The relationship 
of these three parameters is ܮ௕ = ݓ ∙  ௦ . (20)ܮ

Then, in order to get the non-binary symbol ௜ܵ, the quantization method 
is operated by adding all of the bits up in one sub-sequence rather than using 
the majority decision on these bits. Table 5 shows an example of the 
quantization of the bit width of ݓ = 3. 

 An example of the quantization of the 3-bit sub-sequence  

Possible 
Sub-

sequences 

0 0 0 1 1 1 0 1 

0 0 1 0 1 0 1 1 

 ૚ 0ࡼ 3 2 1 0 ࢏ࡿ 1 1 1 0 0 0 1 0
13 

23 1 

In Table 5, 3-bit means that each sub-sequence is composed of 3 bits, 
which leads to 8 possible sub-sequences with ݓ = 3. Besides, ଵܲ represents 
the probability of 1 in the 3-bit sub-sequence. In other words, bit width ݓ will 
cause 2௪ possible sub-sequences and the value of the quantized symbol will 
be an integer from 0 to ݓ. Then, the non-binary sequence can be generated 
according to the quantization method. Fig. 5.2 shows an example of the 
generation of a non-binary stochastic sequence with ݓ = 3. 
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Fig. 5.2 An example of the generation of the 3-bit quantized sequence 

In Fig. 5.2, the probability of 1 in the binary stochastic sequence is ௕ܲଵ =଻ଵହ . In the non-binary quantized sequence, the probability of the 1 in the 
possible sub-sequence is also shown in the Table 5. 

Based on Table 5, the probability of 1 in the non-binary quantized 
sequence is ௡ܲ௕ଵ = ଵହ ∙ 0 + ଶହ ∙ ଵଷ + ଵହ ∙ ଶଷ + ଵହ ∙ 1 = ଻ଵହ. Hence, probabilities of 1 
in binary stochastic sequence and non-binary stochastic sequence are the 
same. 

5.1.2. Transformation of the Non-Binary Quantized Input Sequence 
Inspired by stochastic list decoding with soft input in Section 4.3, the 

quantized symbols in the non-binary quantized sequence need to be 
transformed to the LLR in order to use the BP algorithm in the iterative 
decoding part. 

Based on (18) and (19), the LLR of the corresponding quantized symbols 
in the non-binary input sequence can be calculated with  ܮௌ೔ = ln ௉൫ݔ = 0ห ௜ܵ൯௉൫ݔ = 1ห ௜ܵ൯ .       (21) 

Binary Stochastic 
Sequence

Lb=15

5 Sub Sequences
w=3

Non-binary 
Quantized Sequence

Ls=5             
1 1
1 1
1 1
1 1
0 0
1 1
1 1
0 0
0 0
0 0
1 1
0 0
0 0
0 0
0 0

→

→

3

2

1

1

0

→

→

→

→
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A little unlike (18) and (19), the ௜ܵ in (21) is composed of multiple binary 
bits which belong to the original binary stochastic sequence rather than 
equaling to the bit itself, and ݔ is a bit included in the ௜ܵ. Thus, according to 
the Bayes’ theorem, the posterior probability of the binary bit ݔ under the 
condition of the corresponding symbol ௜ܵ can be described with ܲ(ݔ = 0| ௜ܵ) = ௉൫ ௜ܵหݔ = 0൯௉(௫ୀ଴)௉(ௌ೔)  , (22) 

ݔ)ܲ = 1| ௜ܵ) = ௉൫ ௜ܵหݔ = 1൯௉(௫ୀଵ)௉(ௌ೔)  . (23) 

In (22) and (23), ܲ(ݔ = 0) equals to ଴ܲ which is the priori probability of 
0 bit in the original binary sequence and ܲ(ݔ = 1) equals to ଵܲ. ܲ( ௜ܵ|x = 0) 
is the likelihood of ݔ = 0 based on observing ௜ܵ under the condition of one 
bit included in ௜ܵ equaling to 0. This likelihood can be calculated with 

ܲ( ௜ܵ|ݔ = 0) = ቊ0                             ,     ௜ܵ = ቀ௪ିଵௌ೔ݓ ቁ ଴ܲ௪ିௌ೔ିଵ ଵܲௌ೔ ,  ௜ܵ ≠ ݓ  .        (24) 

In the same way,  ܲ( ௜ܵ|x = 1) can be calculated with 

ܲ( ௜ܵ|ݔ = 1) = ቊ0                             ,     ௜ܵ = 0ቀ௪ିଵௌ೔ିଵቁ ଴ܲ௪ିௌ೔ ଵܲௌ೔ିଵ,  ௜ܵ ≠ 0 .       (25) 

ܲ( ௜ܵ) in (22) and (23) is the probability of the symbols which can be 
calculated with ܲ( ௜ܵ) = ቀ௪ௌ೔ቁ ଴ܲ௪ିௌ೔ ଵܲௌ೔ . (26) 

Based on (24) – (26), (22) and (23) can be rewritten to ܲ(ݔ = 0| ௜ܵ) = ௪ିௌ೔௪  ,    
ݔ)ܲ (27) = 1| ௜ܵ) = ௌ೔௪ . (28) 

Thus, the LLR of the corresponding quantized symbols of (21) can be 
rewritten to 
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ௌ೔ܮ = ln ௉൫ݔ = 0หܵ௜൯௉൫ݔ = 1หܵ௜൯ = ln௪ିௌ೔ௌ೔  .       (29) 

What should be noted in (29) is that the value of bit width ݓ cannot be 
an even value, since when the quantized symbol ௜ܵ  is equal to ௪ଶ , the 
corresponding LLR will be 0. If the LLR is 0, it will cause the problem in the 
updated process of CN. As (4) shown in Section 2.3.1, value of 0 will force 
the result of the multiplication be 0 and force all of the updated result to be 0 
with the iteration going.  

Then, taking the non-binary quantized sequence with a bit width of ݓ =5 as an example (5=ݓ is an odd value), the corresponding ܮௌ೔ of the quantized 
symbols can be seen in Table 6. 

 An example of transformantion to ܮௌ೔ 
Non-binary 

Quantized Sequence 

Corresponding ܮௌ೔  Sequence 

0 +∞ 

1 ln 14 

2 ln 23 

3 −ln 23 

4 −ln 14 

5 −∞ 

In Table 6, ௜ܵ =5 in the non-binary quantized sequence means the 
corresponding sub-sequence of this symbol is full-one and ௜ܵ=0 means the 
corresponding sequence is full-zero. These two kinds of sub-sequences will 
cause the corresponding LLR be positive infinity and negative infinity 
respectively. In order to realize the BP algorithm in the iterative decoding 
part, these infinity values should be replaced with ܮ௠௔௫  and −ܮ௠௔௫ . In 
Section 4.3, an empirical value of 8 is used to represent the infinity. However, 
it seems that different values will cause the different performance of the 
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stochastic decoder. Thus, the detailed choice and analysis of this value will 
be discussed later. 

5.1.3. Different Decision Methods 
After iterative decoding, the output table should be taken into the decision 

part, which is designed to decode the sequence. In this section, the averaged 
decision method, hard-decision method, and soft-decision method are 
introduced. 

The averaged decision is the simplest decision method which is similar 
to the majority decision method. In the results table after iterative decoding, 
each final output of VN is represented by a stochastic output sequence 
composed of non-binary LLR values. Hence, the majority decision method 
cannot simply be used, instead, the averaged method can be used. In this 
method, summing up the whole sequence, when the sum value is greater than 
0, the judgment result is 0 and on the contrary, the judgment result is 1. 

As mentioned in Section 4, the ML decision method has a good 
performance typically. Two kinds of ML decision methods can be taken into 
consideration which are the hard-decision method and the soft-decision 
method. In the hard-decision method, firstly to transform the result table after 
iterative decoding when ܮ௢௨௧ of the iterative output is greater than 0, the 
result should be replaced with 0, and on the contrary, the result should be 
replaced with 1. Composed of the binary sequence, the transformed new 
result table can be used to calculate the optimal result with ML hard-decision 
as mentioned in Section 4.1. In the soft-decision method, the correlation 
between the LLR sequence after iterative decoding and the original LLR 
sequence of the channel output is calculated to make an optimal decision. 

Based on the simulation results and the empirical results, it can be 
supposed that the soft-decision method will have a better performance. So, 
the soft-decision method is firstly used to study the performance of stochastic 
decoder with the non-binary input sequence, while the performance of other 
decision methods will be discussed in Section 5.2.4. 

5.2. Simulation Performance 
Based on the decoding algorithm, three parameters have the impact on 

the performance of the whole decoder, which are quantized value ܮ௠௔௫, bit 
width ݓ, and sequence length ܮ௦. Here, the quantized value is the value which 
can stand for the positive infinity and negative infinity of LLR as mentioned 
in Section 5.1.2. Then, bit width ݓ is a variable that should be taken into 
consideration in the simulation, since it can change the diversity of the 
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sequence. Besides, non-binary sequence length ܮ௦ also has an impact on the 
complexity and the gain of the decoder. Consequently, after determining the 
suitable parameters, the simulation can be designed to study the performance 
of different decoding methods. And all of the simulation in this section will 
be operated with the (126,3,6) LDPC code. 

5.2.1. Influence of Quantized Value ݔܽ݉ܮ 
Firstly, how the quantized value ܮ௠௔௫ influences the performance of the 

decoder should be studied. In this simulation, the initial bit width is ݓ = 7 
and the sequence length is ܮ௦ = 1000. Different quantized values ܮ௠௔௫ have 
been chosen randomly in the interval of [4,25] to generate a bit error rate 
curve with SNR of 1 to 4 and the simulation result is shown in Fig. 5.3. 

 

Fig. 5.3 Comparison with different quantized values ܮ௠௔௫ ݓ , = 7 ௦ܮ , = 1000, BER 

In Fig. 5.3, the decoders with ܮ௠௔௫ = 4  and ܮ௠௔௫ = 25  show a bad 
performance compared to the BP decoding algorithm while other decoders 
show a similar performance which is much better than the BP decoding 
algorithm, and the ܮ௠௔௫ = 8 is the best among them. Thus, ܮ௠௔௫ = 8 can be 
used in the continued simulation to maintain a good performance. 
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5.2.2. Influence of Bit Width ݓ 
In this section, the impact of the bit width ݓ is studied with ܮ௠௔௫ = 8 as 

mentioned above, and the sequence length of ܮ௦ = 1000. The simulation 
result of this experiment is shown in Fig. 5.4. 

 

Fig. 5.4 Comparison with different bit widths ܮ ,ݓ௠௔௫ = ௦ܮ ,8 =1000, BER 

In Fig. 5.4, the performance of the decoder with the non-binary input is 
much better than the one using binary input. Besides, although the 
performance becomes better with increasing bit width ݓ. Since the step of 
quantifying the sequence is completed before the iteration, a large bit width ݓ can be used in non-binary sequence generation without the high cost. So, 
7-bit is chosen to get better performance. 

5.2.3. Influence of Non-Binary Sequence Length ܮ௦ 
Based on the simulated results in Section 5.2.1 and Section 5.2.2, the 

quantized value can be ܮ௠௔௫ = 8 and the bit width can be ݓ = 7 to study 
how the non-binary sequence length ܮ௦  affects the bit error rate. The 
simulation result is shown in Fig. 5.5. 

In Fig. 5.5, with the sequence length ܮ௦ increased, the bit error rate 
performance improves. However, when a larger sequence length ܮ௦ is used, 
the decoder pays the price of increased complexity. As can be shown in the 
Fig. 5.5, even though the complexity increases 10 times, the performance of 



37 
 
 

the decoder with ܮ௦ = 1000 just improves a little compared to the decoder 
with ܮ௦ =100. So, considering the balance between complexity and 
performance, a sequence length of ܮ௦=100 can be chosen to reduce the 
computational resource. 

 

Fig. 5.5 Comparison with different quantized input sequence lengths ܮ௦, ܮ௠௔௫ = ݓ ,8 = 7, BER 

5.2.4. Comparison of Different Decision Methods 
Based on the simulation result above, with ܮ௦ = 100 ݓ , = 7 , and ܮ௠௔௫ = 8, the performance of the stochastic decoder is better than the BP 

decoder. Then we still need to compare the performance of the others decision 
methods to decide which decision method is the best one. By using the same 
parameters as the soft-decision method, the performance of the hard-decision 
method and the average decision method can be simulated. The simulation 
results are shown in Fig. 5.6. 

Based on the simulation results, the decoder using the average decision 
method has the worst performance which is worse than BP decoding, and the 
decoder with the hard-decision method has a higher bit error rate than the 
decoder with the soft-decision. Hence, the soft-decision method can be 
chosen as the final decision method for the decoder to get the best 
performance. 
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Fig. 5.6 Comparison of different decision methods, ܮ௦ = ݓ ,100 = 7, 
and ܮ௠௔௫ = 8, BER 

5.3. Complexity Reduction 
In Section 5.2, how the quantized value ܮ௠௔௫, bit width ݓ, input non-

binary sequence length ܮ௦ , and the decision method influence the 
performance of the decoding has been studied. The decoder that can achieve 
the best performance with low complexity is the decoder with the soft ML 
decision method, ܮ௠௔௫ = ݓ ,8 = 7, and ܮ௦ = 100. However, typically when 
a quantized sequence length of ܮ௦ = 100 is used in a stochastic decoding 
method, 100 times the price of the complexity is paid compared to the BP 
decoding algorithm. So, how to reduce the complexity should be considered 
so that the computational resources of the decoder can be reduced. 

5.3.1. Complexity Reduction with Bit Width of ݓ = 7 
Based on the simulation result in Section 5.2.3, the length of the non-

binary input sequence can be reduced to decrease the complexity. Aiming to 
balance the complexity and the performance of the decoding error rate, four 
different parameters which are bit error rate, frame error rate, the average 
number of iterations, and the computational complexity, can be observed to 
evaluate the performance and the complexity of the decoder. These four 
parameters will be introduced below. 
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Showing how the algorithm performs in decoding, the bit error rate is the 
probability of bit transmission errors during data transmission, while the 
frame error rate refers to the probability of frame transmission errors. Besides, 
the average number of iterations which is defined as ܫ௔௩  calculates the 
average iteration times in the simulation, and computational complexity, 
which can intuitively observe complexity, counts the number of operations in 
the iteration decoding part and the decision part. With average iteration times ܫ௔௩ and computational complexity, the complexity of decoding can be 
evaluated. Among all these parameters, the BER, FER, and average iteration 
times ܫ௔௩  can be directly observed in the simulation result, but the 
computational complexity should be calculated by analyzing the algorithm. 

To analyze the computational complexity of the decoding algorithm in 
this paper, the computational complexity of the BP algorithm for one frame 
decoding can be calculated as a standard, based on the BP decoding algorithm 
introduced in Section 2.3.1. The operands for one frame of BP algorithm is 
shown in Table 7.  

 The computational complexity of BP decoding algorithm 

 
When the BP algorithm is used to decode a frame with a length of 126 

bits, the sum of all the operations that need to be performed is ܱ(ܲܤ)݀݊ܽݎ݁݌ = 7182 ∙  ௔௩.        (28)ܫ

With the operands of the algorithm, the computational complexity can be 
observed. 

Total Operation of all Iterations: 7182·I av

60
9Add

Hyperbolic Tangent
Inverse Hyperbolic 6

Total in One Iteration 6048 1134

30

Operation Calculation of SPA decoding in One Iteraion

Operation Check node Variable Node
Multiplication
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For the reason that the stochastic algorithm introduced in Section 5 uses 
the same iteration method with BP decoding, the operand of the stochastic 
algorithm can be calculated based on the operand of the BP decoding 
algorithm. Table 8 shows the statistics of the stochastic algorithm operand, 
and ܮ௦ refers to the length of the non-binary input sequence. 

 The computational complexity of stochastic decoding algorithm 

 
The operand of the stochastic decoding is ܱ݀݊ܽݎ݁݌(ܱܵܶ) = (7433 ∙ ௦ܮ + 1) ∙ ݒܽܫ + 126 ∙ (4 +  ௦) .          (30)ܮ

TimesOperation 

Operation Calculation of ML Decision

Add 125·Ls
Comparison 1

126·LsMultiplication

Total Operation: (7433·Ls +1)·I av +126·(4+Ls )

Total in One Iteration 251·Ls +1

Operation 

Total in One Iteration

Operation Calculation of BP Decoding in One Iteraion

Check node Variable Node

6048·Ls 1134·Ls

1

Mapping Ls

Total

Operation calculation of the generation of the non-binary quantized sequence

Operation 

Multiplication

Add

Exponentiation

126·(4+Ls )

Operand

1

2
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With these four parameters, how to balance the performance and the 
complexity of the algorithm can be studied. 

The simulations are designed to see how the system performs with a 
sequence length of ܮ௦ = ௦ܮ ,10 = 20, and ܮ௦ = 100, in which ݓ = 7 and ܮ௠௔௫ = 8 are used. Fig. 5.7-5.10 show BER, FER, the average number of 
iterations ܫ௔௩, and computational complexity vs. SNR curve in the simulation. 
From Fig. 5.7 and Fig. 5.8, with an input sequence length of ܮ௦ = 10, the 
stochastic decoding with non-binary input sequences shows similar 
performance to the BP decoding in BER, while the decoding performance 
even worse than the BP decoding when considering the FER. Consequently, 
to obtain good performance, the lowest sequence length that can be used is ܮ௦ = 20 with the bit width of ݓ = 7 and a quantized value of ܮ௠௔௫ = 8.  

In Fig. 5.7 and Fig. 5.8, the stochastic decoder with an input sequence 
length of  ܮ௦ = 20 gets an approximately 9 times enhancement compared to 
the BP algorithm at SNR=4dB, while in Fig. 5.9 and Fig. 5.10, compared to 
the BP algorithm, even though it has a smaller average iteration time ܫ௔௩, the 
stochastic decoder has more than ten times the computational complexity. 
Hence, the decoder needs to be improved to reduce the complexity and 
increase the performance. 

 

Fig. 5.7 Comparison of different non-binary input sequence lengths ܮ௦, ݓ = ௠௔௫ܮ ,7 = 8, BER 
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Fig. 5.8 Comparison of different non-binary input sequence lengths ܮ௦, ݓ = ௠௔௫ܮ ,7 = 8, FER 

 

 

Fig. 5.9 Comparison of different non-binary input sequence lengths  ܮ௦, ݓ = ௠௔௫ܮ ,7 = 8, average iteration times ܫ௔௩ 
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Fig. 5.10 Comparison of different non-binary input sequence lengths  ܮ௦, ݓ = ௠௔௫ܮ ,7 = 8, computational complexity 

5.3.2. Further Complexity Reduction 
To further reduce the complexity, how to improve the performance of the 

algorithm without increasing the complexity too much should be considered. 
Based on the result in Section 5.2.2, the performance of the algorithm 
improves with the increasing bit width ݓ. As can be seen in Table 8, the 
computational complexity of the non-binary sequence generation part in the 
algorithm is relatively low compared to other parts. Based on (29) the 
computational complexity of the algorithm is not affected much by the bit 
width ݓ of the input sequence. Hence, the bit width ݓ can be increased to 
improve the performance of the algorithm without increasing the 
computational complexity. To study whether the performance can further 
improve, 7-bit, 15-bit, and 31-bit can be chosen as the bit width ݓ in the 
simulation with a non-binary input sequence length of  ܮ௦ = 20  and the 
quantized value of ܮ௠௔௫ = 8. The simulation results are shown in Fig. 5.11-
Fig. 5.14. 

Fig. 5.11 and Fig. 5.12 show the comparison of the BP decoding method 
and the stochastic algorithm in BER and FER. With the same sequence length 
of ܮ௦ = 20, 7-bit, 15-bit, and 31-bit all have a better performance than BP 
decoding, among which the decoder with a bit width of ݓ = 15 shows the 
best performance. 
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Fig. 5.11 Comparison of different bit widths ݓ ௦ܮ , = 20 ௠௔௫ܮ , = 8 , 
BER  

 

Fig. 5.12 Comparison of different bit widths ݓ ௦ܮ , = 20 ௠௔௫ܮ , = 8 , 
FER 

When considering the computational complexity in Fig. 5.13 and Fig. 
5.14, with the bit width w increased, the average iteration time ܫ௔௩ decreases, 
leading to a slight decrease in the complexity. However, compared to the BP 
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algorithm they have similar complexity which is approximately 20 times 
larger. 

 

Fig. 5.13 Comparison of different bit widths ݓ ௦ܮ , = 20 ௠௔௫ܮ , = 8 , 
average iteration times ܫ௔௩ 

 

Fig. 5.14 Comparison of different bit widths ݓ ௦ܮ , = 20 ௠௔௫ܮ , = 8 , 
computational complexity 
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Based on the simulation results, it can be supposed that with a large bit 
width ݓ , the length of the non-binary quantized input sequence can be 
decreased without reducing the performance severely. Consequently, 
decoders with different combinations of sequence length ܮ௦ and sequence bit 
width ݓ can be used to study their performance. Fig. 5.15-Fig. 5.18 show the 
performance of stochastic decoder with different combinations of the bit 
width ݓ  and sequence length ܮ௦ . Compared to the BP decoding method, 
stochastic decoding with different input sequence parameters show similar 
performance in the low SNR region in Fig. 5.15 and Fig. 5.16. However, in 
the high SNR region, the decoder with a bit width of ݓ = 7 and non-binary 
sequence length of ܮ௦ = 20  shows a good tendency to have better 
performance. When it comes to complexity, in Fig. 5.17 and Fig. 5.18, the 
decoder with a bit width of ݓ = 31 and non-binary input sequence length of ܮ௦ = 5, has the lowest computational complexity as the theory. 

However, when the non-binary sequence length ܮ௦ is lower than 20, the 
performance of the stochastic decoder decreases too much to get the expected 
coding gain though the complexity is reduced. Consequently, to obtain a good 
performance in the high SNR region, the decoder with the quantized value of ܮ௠௔௫ = 8, non-binary sequence length of ܮ௦ = 20, and bit width of ݓ = 15 
can be chosen finally. 

 

Fig. 5.15 Performance of different combinations, ܮ௠௔௫ = 8, BER 
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Fig. 5.16 Performance of different combinations, ܮ௠௔௫ = 8, FER 

 

Fig. 5.17 Performance of different combinations, ܮ௠௔௫ = 8 , average 
iteration times ܫ௔௩  
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Fig. 5.18 Performance of different combinations, ܮ௠௔௫ = 8 , 
computational complexity 
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6. Results 

6.1. Comparison of Different Decoding Methods 
The comparison of the performance of different decoding methods is 

shown in Fig. 6.1.  

 

Fig. 6.1 Comparison of different decoding methods 

From Fig. 6.1, among all decoding methods, the initial stochastic 
decoding (the blue curve) shows the worst performance. In Section 3, 
stochastic decoding with the regeneration method (the red curve) is put 
forward, resulting in improved performance. However, even with the 
regeneration method, stochastic decoding with the majority decision method 
can’t achieve a better performance compared to the BP decoding algorithm. 
Hence, in Section 4 list decoding method has been studied to improve the 
performance. With the soft input sequence, the stochastic list decoding with 
the soft ML decision method (the yellow curve) achieves a good performance 
which is much lower than the one of BP decoding in high SNR region. With 
the consideration of reducing the complexity and further improving the 
performance, in Section 5, stochastic decoding with the non-binary quantized 
input sequence (the purple curve) is proposed. This method has a very low 
complexity which is about 20 times that of the BP algorithm, while stochastic 
list decoding has thousand times of complexity compared to the BP algorithm. 
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With such a low computational complexity, this decoding method can still 
achieve a much better performance compared to BP decoding.  

6.2. Simulation Results with Other LDPC Codes 
In order to verify that the designed stochastic decoder always has a good 

performance, some other kinds of the short LDPC codes are chosen to do the 
simulation with our decoder. Section 6.2.1 will focus on the influence of the 
4-cycle existing in the short LDPC codes on the basis of the quasi-cyclic 
LDPC code which has better structure than the typical LDPC code. Section 
6.2.2 will emphasize on the effect caused by the LDPC codes with large 
degree as (128,4,8) LDPC code. The parameters of the stochastic decoder 
keep the same as the ones determined in Section 5.3.2 which are quantized 
value of ܮ௠௔௫ = 8, non-binary sequence length of ܮ௦ = 20, and bit width of ݓ = 15 to have the low complexity and good performance. 

6.2.1. (126, 3, 6) QC LDPC Codes without 4-Cycle 
Typically, LDPC code as the (126, 3, 6) LDPC code used in the previous 

simulations is constructed with random construction method. However, the 
LDPC parity-check matrix constructed in this way has the problems such as 
difficulties in storing the check matrix and high coding complexity. Thus, in 
order to avoid such problems brought with the classic LDPC codes, a quasi-
cyclic (QC) LDPC code has been proposed in recent years. QC LDPC code 
is the most important kind of LDPC code, and it means that a codeword is 
still a codeword by shifting the sign bit of a fixed number of bits to the right 
or left. Its parity check matrix can be divided into multiple square matrices of 
equal size. Each square matrix is a cyclic shift matrix of the identity matrix 
or an all-zero matrix, which is very convenient for storage and addressing of 
the memory, thus greatly reducing the encoding, and decoding complexity of 
LDPC codes. A quasi-cyclic LDPC code with a repeating accumulation 
structure can realize fast coding with linear complexity [20]. 

Besides, unlike the (126, 3, 6) LDPC code used from Section 3 to Section 
5.3, the (126, 3, 6) QC LDPC code in this section has no 4-cycle which will 
decrease the performance of the decoding method as mentioned in Section 
2.1. The comparison of the (126, 3, 6) LDPC code and (126, 3, 6) QC LDPC 
code is shown in the Fig. 6.2 and Fig. 6.3. 

From Fig. 6.2 and Fig. 6.3, the performance of the stochastic decoding 
with non-binary stochastic sequence will not be influenced by the 4-cycle in 
the low SNR region. However, with the SNR increasing, the performance of 
QC LDPC code without 4-cycle will get better than the (126, 3, 6) LDPC 
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code gradually which proves the bad effect of the 4-cycle. But in general, the 
performance of the stochastic decoding is better than the BP decoding 
whether with typical LDPC or with QC LDPC without 4-cycle. 

 

Fig. 6.2 Comparison of (126, 3, 6) LDPC code and (126, 3, 6) QC 
LDPC code, ܮ௠௔௫ = ௦ܮ ,8 = ݓ ,20 = 15, BER 

 

Fig. 6.3 Comparison of (126, 3, 6) LDPC code and (126, 3, 6) QC 
LDPC code, ܮ௠௔௫ = ௦ܮ ,8 = ݓ ,20 = 15, FER 
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6.2.2. (128, 4, 8) QC LDPC Codes without 4-Cycle 
Besides the effect of the girth distribution mentioned in Section 5.4.2 on 

the stochastic decoder, the degree of the nodes of LDPC codes is also a 
significant factor which can influence the performance of the decoding 
method. Fig. 6.4 and Fig. 6.5 show the comparison of the (126, 3, 6) LDPC 
code and (128, 4, 8) QC LDPC code. 

 

Fig. 6.4 Comparison of (126, 3, 6) LDPC code and (128, 4, 8) QC 
LDPC code, ܮ௠௔௫ = ௦ܮ ,8 = ݓ ,20 = 15, BER 

Fig. 6.4 and Fig. 6.5 clearly show the influence of large degree which 
decreases performance of both stochastic decoding and BP decoding in the 
low SNR region, since large degree causes the high density of the check 
matrix. However, the waterfall region of (128, 4, 8) QC LDPC code is much 
broader than the one of (126, 3, 6) LDPC code, which means the error rate of 
the high degree LDPC codes decreases more rapidly. Because with the large 
degree, every node can get more information from more adjacent nodes to 
output a higher reliable result. Thus, the BER and FER of (128, 4, 8) QC 
LDPC code becomes better than the performance of (126, 3, 6) LDPC code 
after SNR of 4dB. Comparing with the BP decoding, the stochastic decoding 
with non-binary quantized stochastic sequence can still keep a better 
performance than the BP decoding with (128, 4, 8) QC LDPC code as it does 
with (126, 3, 6) LDPC code. 
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Fig. 6.5 Comparison of (126, 3, 6) LDPC code and (128, 4, 8) QC 
LDPC code, ܮ௠௔௫ = ௦ܮ ,8 = ݓ ,20 = 15, FER 
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7. Conclusions 
This thesis proposes several decoding methods to enhance the decoding 

of short LDPC codes with the stochastic sequence in the background of the 
URLLC scenario. 

In Section 3, inspired by [5] and [7], stochastic decoding with parallel 
decoders is proposed although its performance turns out to be not better than 
BP decoding. After making research on [7], stochastic decoding is improved 
with the regeneration method. However, the performance of such a stochastic 
decoding method can only be slightly better than BP decoding in the low SNR 
region but is worse in the high SNR region. 

Based on the bad performance of stochastic decoding introduced in 
Section 3, a stochastic list decoding algorithm whose decision method is ML 
decision on the outputs of the stochastic decoder is introduced in Section 4. 
Firstly, stochastic list decoding is simulated based on the stochastic decoding 
with regeneration, but its performance is even worse than the previous 
stochastic decoding method. Then, since only one codeword is too weak to 
decode the list with the ML decision method, an enhancement method 
stochastically combining every 5 resulting codewords after iterative decoding 
is proposed in Section 4.2. This enhancement method improves the 
performance of the initial stochastic list decoding, but still cannot let the 
stochastic list decoder be superior to BP decoding. Thus, in Section 4.3, a 
stochastic list decoding which transforms the binary bit input to the 
corresponding LLR is constructed, and it uses the BP decoding algorithm in 
the iterative decoding part. After the simulation, the stochastic decoding with 
the soft input can perform better than BP decoding, and the gap between them 
becomes larger with the SNR increasing. 

Then, inspired by Section 4.2 and Section 4.3, stochastic decoding with 
non-binary sequences is proposed in Section 5. The non-binary sequence is 
generated with the combination of the binary input. And then, these non-
binary sequences are transformed to the corresponding LLR and taken into 
the iterative decoding part with the BP algorithm. The best decision method 
after iterative decoding is found as the soft ML decision in Section 5.2.4. 
Finally, after several simulations on the parameters which can affect the 
performance, the non-binary stochastic decoder with the bit width of ݓ = 15, 
quantized value of ܮ௠௔௫ = 8, and non-binary sequence length of ܮ௦ = 20  is 
determined to have a low decoding complexity and remarkable performance. 
In Section 6.2, the non-binary stochastic decoder is verified to still have a 
good performance with other short LDPC codes. 
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8. Future work 
For the future work, the performance of the current designed stochastic 

decoder could be further verified with other kinds of short codes like BCH 
codes and Reed-Solomon code. Besides, the complexity of the non-binary 
stochastic decoder is mainly calculated from the operand in the iterative 
decoding which is actually a little inaccurate in our thesis. The actual 
complexity should be based on the implementation of the hardware, so 
implementation of our stochastic decoder in the hardware could be further 
investigated in the future. In addition, our stochastic decoder will be 
compared with the multiple bases BP decoder to further determine the 
performance.   
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