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Abstract

Despite, the fact that we now have highly powerful and reliable CPU cores from
System on Chip (SoC) Intellectual Property (IP) giants, the silicon industry is
still leaning toward an efficient CPU core with an open-source Instruction Set
Architecture (ISA) at the moment, where RISC-V has proven to be extremely
successful. The aim to customize an open-source processor core, as described in
our thesis subject, in order to find a cheaper alternative to high-priced CPU cores
that can be tailored for specific applications is one of the key contribution of our
thesis. It was anticipated that after customization, the Ibex core will perform
better, so we employed three reference algorithms to customize the Ibex Core.
With a custom constructed profiler, the goal was to discover the bottlenecks in
the algorithm and build specific instructions to resolve them. Following that,
we added custom instructions support to both software and hardware. Finally,
after implementing custom instructions, hardware simulations were conducted and
synthesis was performed. Post-customization results delivered on the expected
promise by drastically reducing execution time while still maintaining a degree of
hardware or gate count optimization.
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Popular Science Summary

The RISC-V Instruction Set Architecture (ISA) is a free and open standard based
on Reduced Instruction Set Computer (RISC) concepts. The RISC-V ISA is free
to use because it is distributed under open-source licenses that do not charge a
fee. Through an open standard partnership, RISC-V has opened a new field of
processor innovation. On core architectures, the RISC-V ISA provides a new level
of open, extensible software and hardware flexibility, allowing implementation of
custom instruction while retaining design innovation.
According to the current survey of the CPU industry, there are primarily two
categories of CPU cores on the market. The first category uses an ISA that is
licensed, such as cores from ARM, Intel etc which is typically expensive to pur-
chase and the second category of CPU cores that are attempting to revolutionize
the semiconductor industry by using an open-source RISC-V ISA that would be
both freely available and customizable. This thesis aims to customize Ibex, a
lowRISC processor core that runs on RISC-V ISA, demonstrating the RISC-V
ISA’s groundbreaking features while also proving to be a great alternative for sim-
ple, smaller applications. Ibex is a parameterizable open-source 32-bit RISC-V
CPU core that is good for embedded applications. It is focused on hardware de-
signers who want to integrate Ibex into their designs, as well as software developers
who would like to create software running on Ibex. Since Ibex is open source, any
Ibex user is encouraged to explore how the Ibex core can be used in their design
and thus contribute to the open-source silicon development process. The Ibex
core can be incorporated into any design that requires a compact, simple, and
high-performance open-source processor core.
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Chapter1
Introduction

1.1 Thesis Motivation

The aim of this thesis is to evaluate the performance of an open-source Ibex Cen-
tral Processing Unit (CPU) core derived from lowRISC by tuning various hard-
ware configurations and implementing unique RISC-V Instruction Set Architecture
(ISA) extensions in software, such as the GNU toolchain and Spike Instruction Set
Simulator (ISS). A processor is one of the key units in an electronic chip that han-
dles computational, control, and data storage operations. But unfortunately, most
current processor cores are expensive, and they are not always needed for small
and simple applications for example bit-wise operations, simple arithmetic oper-
ations, control operations, etc. On the other hand, the fact that RISC-V is an
open-source ISA and that Ibex works on RISC-V ISA core is the sole incentive for
us to experiment and justify the core as a less expensive alternative to high-priced
CPU cores that can be suitable for simple applications while still being robust and
high-performing.

1.2 Goals and Challenges

Goals:

• Add custom instructions to the Ibex core to make it compatible with refer-
ence algorithms designed for specific application.

• To ensure that the Ibex processor core’s performance and efficiency for all
reference algorithms improves after customization.

• Reduce the number of processor gates used by reference algorithms for ac-
tivity detection based on data from a radar sensor.

Challenges:

• The complexity level of ISA, the way instructions are organized in the dis-
assembly, and the type of instructions that need to be mapped with trace log
to get the cycle count for the real hardware are the reasons which made pro-
filing of the reference algorithms for the lowest level of compiler optimization
-O0 really challenging.

1



2 Introduction

• After optimizing to the highest level (-O3), it was discovered that the in-
structions are structured out of sequence, making the building of a line
profiler for (-O3) extremely difficult.

• Since both the RISC-V ISA and the Ibex core are open-source platforms,
and are going through a continuous phase of update, implementing custom
instructions in the Ibex processor core for specific application was possibly
challenging.

• Adding custom instruction support to the toolchain, ISS, and hardware
was difficult because we had to make sure that the functionality of any
given custom instruction was properly implemented in all the platforms
mentioned above so that when that instruction was run, the expected result
was obtained.

• To ensure that the custom instructions implemented are compatible with
both the Integer Multiplication Compressed (IMC) and Embedded Multi-
plication Compressed (EMC) baseline configurations, as the IMC configu-
ration has 32 General Purpose Registers (GPRs) each of 32 bits in size, and
the EMC configuration has 16 GPRs each of 32 bits in size.

• Following the evaluation of the synthesis results, hardware reuse and opti-
mization proved to be a challenge because we wanted to achieve some sort
of area optimization while not compromising on the execution time or per-
formance already achieved, as we know that changing the hardware has a
significant impact on the execution time.

1.3 Related Work

In terms of previous work on the Ibex processor core, formerly known as the
Zero-Riscy, we have referred to a few papers that are important to the case study
we will be conducting. Performance of three RISC-V cores, Riscy, Zero-Riscy,
now known as the Ibex, and Micro-Riscy, were evaluated for their appropriate-
ness in Internet of Things (IoT) applications that need high-end computational
capability for IoT nodes, extreme energy efficiency, and low-cost implementation
[1]. Since they are in sleep mode for most of the time, IoT devices must be able
to work with extremely time-varying behaviour. At the same time, they must
be responsive to external events, so that when they wake up, they must perform
heterogeneous tasks such as managing interfaces to collect data from environmen-
tal sensors, storing data into memories, and so on. They must conduct relatively
heavy digital signal processing in addition to the previously listed tasks in order
to extract relevant information from sensor data [2]. Because of the wide range of
computational requirements in application workloads, different cores can be used
to serve the needs of different applications. So, essentially, an in-depth comparison
of three cores is done in terms of area, output, power, and energy efficiency. The
cores were compared using three application workloads, i. 2D-convolution which
primarily included Digital Signal Processing (DSP) computations, ii. CoreMark
which combines arithmetic and control code tasks and iii. Runtime workload that
focuses on a simple set of embedded-system Runtime functions. Although the
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Riscy core outperforms the Zero-Riscy core in DSP applications, there is no dis-
cernible difference in efficiency between the Riscy and Zero-Riscy cores, which
are primarily designed for arithmetic and control mixed applications [1]. Further-
more, Zero-Riscy is 2 times smaller and consumes 2 times less power than the
Riscy core [3]. Therefore, although Zero-Riscy is optimized for small area and
low power, it still has hardware resources for multiplication and division, which
are needed for signal processing algorithms like 2D-convolution, where Zero-Riscy
can implement the hardware multiplication instructions. Zero-Riscy uses the least
amount of energy in arithmetic-control mixed applications like CoreMark. Zero-
Riscy’s execution period is only 1.3 times longer than Riscy’s, yet it consumes
significantly less power. In terms of power and energy consumption, there is no
discernible difference between the Zero-Riscy and Micro-Riscy for tasks involving
only control code. Despite having a larger area than Micro-Riscy, Zero-Riscy is
still the winner because it is 8.8 times faster and supports hardware resources for
DSP applications [1]. In relation to our thesis, the previous study has provided us
with a quick summary of the Zero-riscy core, now known as Ibex, in terms of area,
performance, power and energy consumption, and current state when compared to
two other cores working on similar ISA. When compared to other processor cores,
the Zero-riscy or the Ibex core’s suitability for IoT or embedded applications was a
major motivator for us to focus more on the Zero-riscy or Ibex core and customize
it for even better performance.

1.4 Thesis Methodologies and Outline

With the objective for the thesis defined, the steps taken to reach the goal are
outlined below.

1. For proper execution and consistency of the reference algorithms, build
the GNU compiler toolchain with baseline configurations RV32IMC and
RV32EMC.

2. Build the ISS and execute the reference algorithms compiled with baseline
configurations to verify the behavior of the real hardware.

3. Add support for both the baseline configurations to the Ibex software model,
modify the reference algorithms to make them compatible with the Ibex
model, execute them on the Ibex model with -O0 and -O3 compiler opti-
mization to get the initial cycle count of the processor core.

4. Create a line profiler to profile the reference algorithms and obtain the initial
cycle count for each line of code.

5. Analyze the output of the profiler and recommend custom instructions to
ensure better performance.

6. Complete the implementation of the custom instructions by adding support
for them to the GNU toolchain, ISS, and Ibex core.

7. Run the line profiler on reference algorithms after customizing the Ibex
processor core to evaluate the difference in cycle count and ensure that
performance has improved.
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8. Analyze the area and gate count using synthesis on the customized Ibex
core. Then, by modifying the Register Transfer Level (RTL) specification
and reusing existing hardware, the same tailored features with a reduced
area and fewer gates can be achieved.

9. Calculate the dynamic and leakage power using static timing analysis.

The rest of the thesis is outlined as follows:

• Chapter 2: Ibex Processor Core – This chapter begins with a brief overview
of the Ibex processor core, accompanied by a thorough summary of the Ibex
architecture and its current state.

• Chapter 3: Algorithms and their Profiling – The reference algorithms used,
the construction of a line profiler, the effects of algorithm profiling for the
(-O0 and -O3) optimization levels of the compiler, and the results obtained
after profiling are all covered in this chapter.

• Chapter 4: SDK Setup and Custom Instructions Implementation – This
chapter begins with a brief overview of the Software Development Kit (SDK)
setup including ISS and custom instructions and their importance, then
moves on to the custom instructions used in the reference algorithms. The
process of adding custom instruction support to the toolchain, ISS (Spike),
and Ibex hardware is then described in detail.

• Chapter 5: Simulation and Synthesis Results – This chapter examines the
simulation results from commercial and open-source Electronic Design Au-
tomation (EDA) tools, analyzing the profiling results obtained after custom
instruction implementation, as well as the synthesis results from open-source
synthesis tool and commercial synthesis tool, and their analysis to determine
a viable configuration for embedded applications.

• Chapter 6: Conclusion and Future Work – This chapter concludes our thesis,
sheds light on some key results, and leaves space for future research.



Chapter2
Ibex Processor Core

2.1 Introduction to Ibex

Originally, this core was developed as part of the PULP platform [4] by a team
from ETH Zurich under the name ”Zero-Riscy”. This core was later contributed to
a non-profit company named lowRISC headquartered in United Kingdom under
the name ”Ibex,” which is now in charge of maintaining and enhancing the core
with additional features. The Ibex core is in a state of active growth, with several
functional additions and enhancements to the current code. The Ibex CPU core is
written in System Verilog and can be simulated using Verilator [5], an open-source
simulator, as well as commercial simulators from Cadence, Synopsys, Aldec, etc.
Design Verification (DV) of the CPU core is based on a Universal Verification
Methodology (UVM) testbench and RTL simulation, which allows UVM to per-
form proper design verification. As previously mentioned, the Ibex core is highly
parameterizable due to multiple configurations which can be tuned to analyze the
results with different combinations. LowRISC, the company behind the Ibex core,
is also working on the OpenTitan project with Google, which is an open-source
initiative aimed at creating transparent, high-quality reference design and inte-
gration guidelines for silicon Root of Trust (RoT) chips [6]. By transparent we
mean anyone can inspect, analyze, and add to this design to create more trustwor-
thy chips. OpenTitan aims to create and sustain a logically stable architecture,
including reference firmware, by using high-quality components.

2.2 Ibex Architecture

The architecture of the Ibex core is shown in figure 2.1.

5
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Figure 2.1: Ibex architecture [7]

2.2.1 Instruction Fetch (IF)

The prefetch buffer fetches instructions from memory and is capable of fetching one
instruction per cycle if the memory subsystem allows it. If the instruction cache
or instruction memory can serve one instruction per cycle, the IF stage of the core
can supply one instruction to the Instruction Decode (ID) stage per cycle. For
optimum output and timing termination, instructions are fetched into a prefetch
buffer. This buffer only fetches instructions until it is complete. In the fetch First
In First Out (FIFO), the instructions are stored along with the Program Counter
(PC) from which they originated.

The instruction fetch stage manages the prefetch buffer (flushing it on branches,
jumps, and exceptions, and starting prefetching from the required new PC), as well
as supplying new instructions to the ID/EX stage with their PC. Despite the fact
that compressed instructions are extended by the compressed decoder in the IF
stage, so that the ID stage receives uncompressed instructions, the ID stage will
still receive compressed instructions if an illegal instruction exception occurs. If
Ibex is configured with an instruction cache rather than memory, the cache must
be enabled by setting the parameter “ICache” to 1. The “icache” module has the
same interfaces as the prefetch buffer, with two exceptions. First, a signal is sent
to enable the cache, which is triggered by a custom Control and Status Register
(CSR). Second, every time a "fence.i" instruction is executed, a signal to flush the
cache is set.

By setting the “BranchPrediction” parameter to 1, Ibex can be configured
to use static branch prediction. This increases efficiency by predicting that any
branch with a negative offset will be taken, while any branch with a positive offset
will be avoided. When the prediction is right, it eliminates a stall period from
a taken branch. If a branch is incorrectly predicted to be taken, there is a mis-
predict penalty. The penalty is at least one cycle, or at least two cycles if the
instruction is uncompressed or not aligned.
It should be noted that the "Branch Prediction" function is still in its early stages
of development and has not been thoroughly tested.
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Instruction Memory Interfaces
This interface is a condensed version of the data interface defined in the Load-Store
Unit section. The key difference is that the instruction interface does not support
write transactions, resulting in less signals being needed. The signals used, as well
as their intended purpose, are tabulated in table 2.1.

Table 2.1: Instruction Fetch signals [7]

Signal Direction Description

instr_req_o output
Request valid, must stay high
until instr_gnt_i is high for
one cycle

instr_addr_o[31:0] output Address, word aligned

instr_gnt_i input
The other side accepted the
request. instr_req_o may be
deasserted in the next cycle

instr_rvalid_i input

instr_rdata_i holds valid
data when instr_rvalid_i
is high. This signal will be
high for exactly one cycle per
request

instr_rdata_i[31:0] input Data read from memory

instr_err_i input Memory access error

2.2.2 Instruction Decode

This stage decodes and executes the fetched instruction, which includes register
read and write operations. This stage will be halted until all multi-cycle instruc-
tions have been completed.
Note: To flow down the pipeline, all instructions need at least two cycles. There
will be one cycle in the IF stage and one in the ID/EX stage. Since not all in-
structions can be completed in one cycle in the ID/EX stage, they will occupy
that stage until they complete. When multi-cycle instructions are not used, Ibex’s
overall Instructions Per Cycle (IPC) is one.
The Instruction Decode and Execute stage uses data from the instruction fetch
stage to decode and execute instructions (which have been converted to the un-
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compressed representation in the compressed instruction case). The instructions,
including the register read and write, are decoded, and executed in a single cycle.
The stage is divided into several sub-blocks, each of which is listed below.

Instruction Decode Block
The ID is in charge of the entire decoding and execution phase. It houses the mul-
tiplexers that determine what goes into the Arithmetic Logic Unit (ALU) inputs
and where the write data for the register file come from. To control multi-cycle
instructions, a small state machine is used, which stalls the entire stage while the
multi-cycle instruction is being executed.

Controller
The state machine that controls the processor’s overall execution is found in the
Controller. It is in charge of:

• Handling core start-up from reset.

• Setting the PC for the IF stage on jumps/branches.

• Handling exceptions/interrupts (jump to acceptable PC, set specific CSR
values).

• Controlling sleep/wakeup on Wait For Interrupt (WFI).

Decoder
The decoder receives uncompressed instruction data and sends appropriate control
signals to the other blocks, allowing the instruction to be executed.

Register File
If the RV32E extension is disabled, Ibex has 32 registers each of size 32 bits and if
it is enabled then Ibex has 16 registers each of size 32 bits. Register x0 is statically
bound to 0 and has no sequential logic; it can only be read. The register file has
two read ports and one write port, and data from the register file is available the
same cycle that a read request is made. Since there is no write to read forwarding
path, if one register is read and written at the same time, the read will return the
current value instead of the value being written.

Execute Block
The ALU and multiplier/divider blocks are contained in the execute block.

Load Store Unit (LSU)
The core’s LSU is in charge of accessing the data memory. Words (32 bits), half
words (16 bits), and bytes (8 bits) can be loaded and stored. Any load or store will
cause the ID/EX stage to stall for at least one cycle while waiting for an answer
(whether that is awaiting load data or a response indicating whether an error has
been seen for a store).

Data Memory Interface
Table 2.2 shows the signals used by the LSU.
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Table 2.2: LSU Signals [7]

Signal Dierction Description

data_req_o output
Request valid, must stay high un-
til data_gnt_i is high for one cy-
cle

data_addr_o[31:0] output Address, word aligned

data_we_o output
Write Enable, high for writes, low
for reads. Sent together with
data_req_o

data_be_o[3:0] output
Byte Enable. Is set for the bytes
to write/read, sent together with
data_req_o

data_wdata_o[31:0] output Data to be written to memory,
sent together with data_req_o

data_gnt_i input
The other side accepted the re-
quest. Outputs may change in
the next cycle

data_rvalid_i input

data_err_i and data_rdata_i
hold valid data when
data_rvalid_i is high. This
signal will be high for exactly
one cycle per request

data_err_i input

Error response from the bus or
the memory: request cannot be
handled. High in case of an er-
ror.

data_rdata_i[31:0] input Data read from memory

CSR
All of the CSRs (control/status registers) are included in the CSR. This block
handles all CSR reads and writes, and it additionally stores performance counters
and increments them as required. Data from a CSR can be read in the same cycle
as it is requested.

ALU
ALU is a strictly combinational block in the RV32I RISC-V Specification [8] that
implements operations needed for integer computational instructions and compar-
ison operations required for control transfer instructions. The ALU is used by
other blocks for the following tasks:

• As part of the multiplication and division algorithms, Mult/Div uses it to
perform addition.
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• It uses PC + Imm to calculate branch targets.

• It uses Reg + Imm to calculate memory addresses for loads and stores.

• When performing two accesses to manage an unaligned access, the LSU uses
it to increment addresses.

Multiplier/Divider Block (MULT/DIV)
The Multiplier/Divider (MULT/DIV) is a multiplication and division block pow-
ered by a state machine. The only difference between the fast and slow models is
this block. The long division algorithm is the same in all versions and uses the
ALU block.

2.3 Current state of Ibex

2.3.1 Ibex configurations

Ibex currently uses parameters that are divided into two categories, which are
fully verified and experimental. A fully verified parameter is one that is com-
pletely supported by most tools, while experimental means that the parameter is
still being developed and needs to be updated. Some of the parameters in the fully
verified category are RV32E (Embedded Extension), RV32M (Multiplication ex-
tension), RV32C (Compressed Extension), RV32B (Bit-Manipulation Extension)
etc. RV32I (Integer extension) is the default configuration, with 32 GPRs of 32
bits each while RV32E is a configuration of 16 GPRs of 32 bits each.

RV32M allows the selection of three multiplication modes assisted by the Ibex
core design.

• RV32MSingleCycle - Three parallel multiplier units are used in the single-
cycle multiplier, which are mapped to hardware multiplier primitives on
Field Programmable Gate Array (FPGA). As a result, it is the first choice
for FPGA synthesis. This mode performs multiplication in one cycle, re-
quiring three parallel 17-bit×17-bit multiplication units. The synthesis of
Application Specific Integrated Circuit (ASIC) has not yet been checked,
but it is estimated to take up 3-4 times the area of the fast multiplier.

• RV32MFast - The fast multi-cycle multiplier achieves a good balance of area
and efficiency. For ASIC synthesis, it is the first option. Multiplication is
done in three cycles. It uses a Multiplication and Accumulation (MAC),
which is an internal multiplication and division block that can perform 17-
bit×17-bit multiplication with a 34-bit accumulator.

• RV32MSlow - Performs multiplication at normal speed, requiring 30 to 33
clock cycles. The ALU block is used for addition.

The bit manipulation extension is included in RV32B, which is disabled by default.
This parameter consists of three sub-extensions RV32BNone(default), RV32BBalanced,



Ibex Processor Core 11

and RV32BFull. In addition to these parameters, Ibex CPU core has parameters
for selecting a register file from one of the three options: “RegFileFF” (default),
”RegFileLatch”, and ”RegFileFPGA”. Since Ibex core is an open-source core, there
are several parameters that are still in the experimental stage, but to name a few,
it has BranchTargetALU - This parameter provisions the use of a separate ALU for
calculating branch target, allowing it to eliminate stall cycles from taken branches
and increase the performance. WriteBackStage improves the performance of loads
and stores.

2.3.2 Verification of Ibex

Figure 2.2 shows the verification structure of Ibex

Random 
Instruction
generator

Assembly
Programs GCC Compile Test

binary

ISS 
Simulation

ISS
log

Trace
csv

Ibex
trace
log

Trace
csv       Ibex Core

Fetch intf
Agent

LSU intf
Agent

Mem
Model

Trace
Compare regr.log

Tracer

Instruction
Generator

RISCV Compilation

ISS Simulation

RTL Simulation

Post Comparison

Figure 2.2: Ibex verification setup [7]

Ibex environment uses a SytemVerilog UVM testbench for verification. In
order to run the above co-simulation flow we need some pre-requisites.

• A SystemVerilog simulator that supports UVM.

• A RISC-V ISS such as Spike.

• The RISC-V toolchain is used to compile or assemble the created programs
prior to simulation.

At high level, the testbench generates compiled instruction binaries using an
open-source RISCV-DV random instruction generator which is already integrated
in Ibex generates assembly programs related to a specific set of instructions. These
assembly instructions are then further compiled using the RISC-V toolchain and
converted into corresponding binaries. These program files or binaries are loaded
into the memory model of Ibex as well as supplied to the ISS. The final stage of this
flow deals with log comparisons in order to assess the correctness of a simulation.
The trace logs provided by the core and the chosen golden model ISS are both
parsed to collect information about all register writebacks that occur. The data
from these two sets of register writebacks are compared to ensure that the core is
writing the correct data to the correct registers in the correct order.
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2.3.3 Synthesis of Ibex

To help the readers concentrate on the current state of Ibex, we have put together
a table that shows an in-depth overview of the Ibex core in different configurations.
Table 2.3 shows the synthesis results of the Ibex simple system with an open-source
synthesis tool, Yosys [9], timing analysis tool, OpenSTA [10] in terms of area and
performance. Results are based on open-source standard cell library Nangate45
[11]. The output figures are currently based on CoreMark running on the Ibex
simple system platform, while the Yosys synthesis area figures are based on the
Ibex basic synthesis flow using a latch-based register file. When we look at the
verification status, we can see that red indicates that a configuration has been
properly checked, green indicates that it has been properly verified according to
industry requirements, and amber indicates that some verification has been done
but the configuration is still in the experimental stage.

Table 2.3: Synthesis state of Ibex [12]

Config micro small maxperf

Features RV32EC RV32IMC, 3 cy-
cle mult

RV32IMC, 1 cycle
mult, Branch tar-
get ALU, Write-
back stage

Performance
(CoreMark/MHz) 0.904 2.47 3.13

Area - Yosys
(kGE) 17.44 26.06 35.64

Area - Commer-
cial (estimated
kGE)

∼16 ∼24 ∼33

Verification Sta-
tus Red Green Amber



Chapter3
Algorithms and their Profiling

3.1 Algorithms

Three reference algorithms used in this thesis are as follows

• Fast Fourier Transform (FFT)

• Variance

• Convolution

For radar signal processing, these three algorithms are the most widely utilized.
The variance algorithm is used to detect activity in the channel when the radar
subsystem wakes up. It is also known as the activity detection algorithm since
it is used to identify activity in the channel once the subsystem comes out of the
sleep mode. Convolution is a popular signal processing operation that is used for
filtering, and in this case it is accomplished using a triangular smoothing filter.
The FFT algorithm is used to analyze complex processes in frequency domain.
It is also utilized for sensor calibration, some form of speed measurement, and
gesture control.

3.1.1 FFT

Figure 3.1: Radix-2 FFT [13]

13
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Figure 3.1 shows the basic structure of a raidx-2 FFT. FFT is implemented using
radix-2 Cooley-Tukey algorithm with decimation-in-time (DIT) [13]. With each
recursive step, the radix-2 implementation divides the FFT of size N into two
interleaved FFTs of size N/2. Radix-2 DIT computes the FFT of even-indexed
and odd-indexed inputs separately before combining the two results to obtain the
FFT of the entire series. The operation is performed with fixed-point precision
on 64 input samples of complex data type. This algorithm is based on 16-bit
integer arithmetic. Due to the fact that it is an integer arithmetic, FFT scaling
has been used. For an FFT that works with 16 bits per complex component, there
are 3 common approaches for handling the scaling; First one is the allocation
of some 16 bits of each number to an exponent and use so called half-precision
floating point numbers. This is a good choice if you add hardware support for that
number representation, but it introduces a lot of overhead on a processor without
such hardware support. Second one is the use of a common exponent for the
full data array and adapt the scaling of the data as the calculation proceeds and
last one is selection of a fixed scaling convention with no exponent in the output.
This is the simplest but the least flexible approach, and if the characteristics of
the input data are not very well-known, this approach is likely to lead to loss of
precision or integer overflow. However, each radix-2 stage involves data additions
and subtractions, with one of the operands being a complex number with unit
absolute value multiplied, which implies that if the input data contains values that
are too close to the 16-bit integer representation’s limits, the result can overflow.
It also means that the stored complex numbers absolute values can only increase
by a factor of two. As a result, one or zero bits from the data must be shifted out.
If the data is shifted, the exponent must be increased to maintain the represented
values, even if rounding errors occur. The FFT algorithm is also Single Input
Multiple Data (SIMD) friendly, which means it can use compositely packed data
to perform parallel operations.

3.1.2 Variance

Variance algorithm initializes or updates a statistics state array with the variance
score of the most recent input data sample from a data array containing all input
data samples. This algorithms deals with 60,000 input samples, which is a huge
amount. The 16-bit integer data type is used for the input data samples. In
relation to the cumulative averages and variance, this algorithm computes and
returns the variation score of the most recent input results. The variance score
has a high rating, indicating that the most recent data varies greatly from the
distribution of the most recent updates. The parameters used to construct this
algorithm are mentioned as follows.

• Data array which contains all the input data samples.

• Data length which is the number of elements in the input data

• State array for the statistics state with the same number of elements as the
data array. This state array is used for the purpose of updating the variation
score.

• The weight of an update is determined by the smoothing shift parameter.
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The smoothing change determines how often the average value and variance esti-
mates are modified. The statistics state array is initialized with a zero smoothing
shift, and the state array is updated with a positive smoothing shift. The up-
date is slower for a larger smoothing shift, and the last sweep is measured against
a longer background of sweep data, while a smaller smoothing shift results in
faster dynamics, and the detector accepts a new static reflection as baseline after
a shorter period.

3.1.3 Convolution

This algorithm is implemented using the triangular smoothing approach to an
array of 16-bit complex type data. A running average is applied twice to the data
sequence to form the triangular filter. The length of the running average is given
by the “side_length” parameter. The output y at index n becomes: y[n] = (s *
x[n] + sum_k = 1, ..., s - 1 (s - k) * (x[n - k] + x[n + k])) / s** 2, where x is the
input data and s is the “side_length” parameter. The input data is padded with
“pad_before” for negative indices and padded with “pad_after” for indices larger
than or equal to “data_length”. The primary sum is the first running sum before
it is divided by the number of elements in the sum to calculate the first running
average. This running average is buffered in the smoothing buffer array. This
array contains just the number of elements needed to form the second running
sum. Circular buffering is used as smoothing buffer and an element is overwritten
as soon as it is no longer needed. The access index of the buffer wraps around
to the beginning when it reaches the end of the array. The computations in the
triangular smoothing function of the algorithm are split into three for loops to
handle the boundary conditions at the start and end of the input data separately
from the main computations in the middle of the input data. The parameters used
to implement the convolution algorithm are as follows.

• Data array with complex data to be smoothed.

• “data_length” is the number of complex numbers in the data array.

• “smoothing_buffer” array with side_length complex numbers to serve as
work memory.

• “side_length” is the length of the running average that is used to form
triangular smoothing.

• “pad_before” is the input pad value to be applied before the input data
array.

• “pad_after ” is the input pad value to be applied after the input data array.

3.2 Profiler

To speed up the processor’s execution, custom instructions are designed. The bot-
tlenecks of the algorithms must be closely examined in order to generate custom
instructions. On the Ibex processor, the study involves which sections of the al-
gorithms require the most instructions and cycles to execute a particular feature.



16 Algorithms and their Profiling

As a result, algorithm profiling is needed to identify the critical areas. None of the
open source ISSs support profiling, especially profiling at the line-by-line level.

Dis- assembly
file

Trace log

Profiler

Line by line
profiled

data
(for -O0)

Functional
profiled

data

Figure 3.2: Profiler

Figure 3.2 shows the basic structure of the profiler. It is developed from
scratch using python, that calculates the number of cycles elapsed in the actual
Ibex hardware framework for the algorithm. The profiler can perform both line-
by-line and functional profiling of the algorithm. Two files are required to estimate
the cycles: one is the dis-assembly file, and the other is the trace log created by the
Ibex software model. The object dump command creates a dis-assembly file from
an executable(.elf) file. This file includes the C source code as well as the assembly
format for it. To get the C source code and the assembly in the dis-assembly file,
use the "-S" and "-D" switches with the object dump command. After running
the algorithm on the Ibex SoftWare (SW) system, a trace file is created. The PC
value/address, executed instruction, cycle number, and so on are all stored in this
file.

The line profiler calculates the number of cycles spent on each line of the
algorithm, allowing the user to see which areas of the algorithm consume the
most and which consume the least. For the optimization stage -O0, line-by-line
profiling is performed. Since the data within the dis-assembly file will be shuffled
for optimization level -O3, line-by-line profiling will be ineffective. The line profiled
data will be saved in a file named "<algo_name>.txt" by the profiler.

Profiling is often performed at the functional level in order to get a detailed
understanding of the algorithm. The functional profiling logic implemented in the
profiler is used to estimate the cycles spent exclusively and inclusively for each
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function in the algorithm. Functional profiling requires the same input files as
line-by-line profiling. Functional profiling is also possible at both the -O0 and -O3
compiler optimization levels. The functional profiled data will be saved in a file
called "<algo_name>_functional.txt" by the profiler.

The following is a brief description of the steps taken to build the profiler:

• Generate the executable and dis-assembly file by compiling the algorithm
using the RISC-V GNU Toolchain with the appropriate optimization level.

• Create the trace log by simulating the executable (.vmem) file created for
the algorithm on Ibex.

• Pass the dis-assembly and trace file to the profiler.

• After removing the unwanted data from the dis-assembly file, the profiler
will generate a list that only contains the required data such as C source
code, PC value/address, and assembly information.

• As a next step, a list with the PC value/address and cycle number from the
trace log is generated.

• After that, the assembly list and trace list are processed for line profiling
and functional profiling.

Figure 3.3 shows the output sample of a line profiler. The first column gives the
details of the functional flow, second column provides the corresponding C source
code and the last column shows the number of cycles elapsed for that particular
line.



18 Algorithms and their Profiling

Figure 3.3: Line profiler sample output

Figure 3.4 shows the output sample of functional profiled data. First column shows
the function name, second column shows the cycles elapsed exclusively for that
particular function and the last column shows the total cycles elapsed inclusively
for that function.

Figure 3.4: Functional profiler sample output

3.3 Algorithm analysis using profiler

Profiler is used to analyse the bottlenecks of the three algorithms in terms of the
number of cycles it consumes in each line of source code. Analysis example for
one bottleneck in each algorithm is explained below.
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3.3.1 FFT

Source code

int32_t r e a l = ( int32_t ) a . r e a l ∗ ( int32_t )b . r e a l − ( int32_t ) a .
imag ∗ ( int32_t )b . imag

Bottlenecks:

i This source code calculates the real part of the complex multiplication.

ii We discovered that a considerable number of cycles had elapsed for this
particular source code after evaluating the results given by the line-profiler,
most likely because this code belongs to the complex arithmetic function
that is utilized most frequently in the algorithm.

iii This source code also requires a lot of instructions to obtain the outcome
we see in the dis-assembly, thus the instruction count was too high, which
was one of the bottlenecks that prompted us to seek for ways to improve it.

iv From the profiler results in table 5.4 this operation takes 19 cycles at a time
by using 10 instructions before implementing custom instruction.

Potential improvements:

i Reduce the number of instructions by implementing the custom instruction,
resulting in a lower cycle count when the total FFT algorithm is executed.

ii Since the source code uses two 16-bit data packed into a 32-bit register, one
possible enhancement strategy is to employ SIMD, which takes advantage
of the parallel operations between the compositely packed data.

3.3.2 Variance

Source code

i f ( sample >= average ) {
abs_di f f = ( uint32_t ) sample − ( uint32_t ) average ;
} e l s e {
abs_di f f = ( uint32_t ) average − ( uint32_t ) sample ;
}

Bottlenecks:

i This source code contains conditional branch instructions, which are im-
plemented in the “statistics update” function, which is used to update the
variation score in each iteration, resulting in a high cycle count when the
entire algorithm is run.

ii The dis-assembly file revealed an instruction count of 12.

iii Profiler results in table 5.4 shows this operation takes 16 cycles to execute
without the support of custom instruction.
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Potential improvements:

i Implementing custom instruction to execute the same operation with just
one instruction, can reduce the total number of instructions.

ii Reusing the existing functionalities and operators in hardware to implement
the custom instruction can reduce the area.

3.3.3 Convolution

Source code

r e a l = ( value . r e a l ∗ f a c t o r + 0x8000 ) >> 16

Bottlenecks:

i This source code is part of the convolution algorithm and is used to calculate
the real part of a number in a scaling function.

ii As a result, a considerable number of cycles are elapsed when the scaling
function is employed for triangle smoothing implementation on an array of
16-bit complex type data.

iii The number of instructions required to get the desired result is quite signif-
icant.

iv Profiler results in table 5.4 show this operation takes 9 cycles to execute by
using 6 instructions with normal instructions.

Potential improvements:

i Reduce the number of instructions by replacing them with a single instruc-
tion that performs the same operation.

ii Possibility of saving hardware resources by reusing them.



Chapter4
SDK Setup and Custom Instructions

Implementation

4.1 SDK Setup

4.1.1 Toolchain

The RISC-V GNU Compiler toolchain consists of cross-compilers for RISC-V C
and C++. They have two different build modes.

1. ELF/Newlib toolchain (Generic)

2. Linux-ELF/glibc toolchain is sophisticated.

A riscv32-elf toolchain, which uses Newlib, is designed for embedded work. A
riscv32-linux toolchain uses glibc and is intended for linux work. The embedded
ELF toolchain is more straightforward to set up and use. To create linux ap-
plications or programs that use linux system calls, the linux toolchain is needed.
The embedded ELF toolchain is used to compile small test programs or embedded
applications. However, despite the availability of a Newlib port for RV32E, there
is no linux glibc port for it. The ELF/Newlib toolchain was chosen for the thesis
since it allows both IMC and EMC configurations.

4.1.2 ISS

An ISS is a simulation model that mimics the behavior of a mainframe or micro-
processor by "reading" instructions and maintaining internal state that represents
the processor’s registers. It is normally written in a high-level programming lan-
guage. An ISS is also provided with debugger in order to debug the algorithms
before we proceed with the porting of algorithms in the target hardware.
Spike, riscv-ovpsim, Imperas Professional, Whisper and sail-riscv are the ISS’s
avaialble for RISC-V ISA. First three of these have been evaluated for the thesis
work because of the proper guidelines and support.

21
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The selection criteria for the ISS are shown in the table 4.1.

Table 4.1: ISS Selection Matrix

ISS
Custom
instruction
support

EMC
support

Simulation
cycles Profiling Open-

source

Spike X X
riscv-ovpsim X X X X

Imperas Profes-
sional X

Spike was chosen as the ideal ISS for the thesis work since it is open-source, and
custom instruction support can be added to it. Spike, the RISC-V ISA simulator,
implements the functional model of one or more RISC-V harts.

4.2 Custom Instruction Implementation Support

Custom instruction support is divided into two categories software support and
hardware support.

Software support is further divided into 3 sub-categories:

(i) Adding support to the RISC-V GNU toolchain by updating the instructions
in “riscv-binutils” and “riscv-gdb”. Binutils is a collection of programming
tools for creating and managing binary programs, object files, libraries, pro-
file data, and assembly source code while GNU Debugger (GDB) is the
debugging tool that comes with the GNU Toolchain. Debugger helps us to
step through source code line-by-line and debug the issues.

(ii) Adding instruction support to the Spike.

(iii) Adding custom instructions to the algorithms with the help of inline assem-
bly which is basically embedding the assembly instructions in the C program.
This thesis demanded addition of inline assembly to the algorithms in both
toolchain and Ibex software model.

After the software support has been given, we change the current hardware ar-
chitecture to add custom instruction support to the hardware, which is the Ibex
CPU core we are using.

4.2.1 Toolchain Support

To add custom instruction support to the GNU toolchain modification of three
files are needed. In the “riscv-binutils” and “riscv-gdb” of the “ricv-gnu-toolchain”
repository. The files and their directory structure inside riscv-binutils and riscv-
gdb are shown in figure 4.1 and figure 4.2 respectively.
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riscv-opc.h

riscv-opc.c

riscv-
gnu-

toolchain

riscv-
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opcode
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Figure 4.1: Binutils directory tree structure
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Figure 4.2: GDB directory tree structure
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As a first step in adding custom instruction support to the toolchain, an opcode
is created for each custom instruction in the "riscv-opc.h" file, which is present
in both riscv-binutils and riscv-gbd with the appropriate mask and match bit.
Following the generation of the opcode, "DECLARE INSN" is used to declare
the newly created instruction on the same file. A sample of the contents inside
"riscv-opc.h" is shown in figure 4.3.

#define MATCH_ABS 0x10006033
#define MASK_ABS 0xfe00707f

DECLARE_INSN ( abs ,
MATCH_ABS, MASK_ABS)

risc-opc.h

Figure 4.3: Sample of riscv-opc.h contents

The riscv opcode structure in "riscv-opc.c" holds all of the instructions available
in the RISC-V ISA, and the custom instruction is defined in a very similar fashion.
The structure of an instruction is described below along with a description of each
field in table 4.2.

Const s t r u c t r iscv_opcode r i scv_opcodes [ ]=
{ . . .
{"abs" , 0 , INSN_CLASS_I, "d , s , t " , MATCH_ABS, MASK_ABS,

match_opcode , 0 } ,
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Table 4.2: Instruction format

Field Description

0
xlen: Indicates Base ISA required for this in-
struction. 32 for (RV32), 64 for (RV64) and
0 for both.

INSN_CLASS_I

Instruction class. These are defined in: in-
clude/opcode/riscv.h
enum_riscv_insn_class
. . . .
INSN_CLASS_I;

“d,s,t” Instruction operands

MATCH_ABS

Instruction’s primary opcode.
This opcode is changed by arguments during
assembly to generate the actual opcodes that
are used.

MASK_ABS

Bit mask for the appropriate portions of the
opcode when disassembling if pinfo is not
INSN MACRO.
Right instruction if the actual opcode anded
with the match field equals the opcode field.
This field is the macro identifier if pinfo is
INSN MACRO.

match_opcode

A function to determine if a word corresponds
to this instruction.
It computes logic for match and mask as:
(insn_encoding & mask == match)

0

Pinfo: This is INSN MACRO for a macro.
Aside from that, it is just a set of bits that
describe the instruction, including any appli-
cable hazard information.

If the custom instruction belongs to the existing instruction class or already has
the instruction encoding bit length set, then there is no need to modify else we
need to make modifications in the “riscv.h” header file which also contains the
instruction format as mentioned in 4.2.

After the addition of custom instruction support to the toolchain, the instruction
was implemented in the algorithm using inline assembly. The algorithm was com-
piled and an object dump on the executable file was conducted to ensure that the
custom instruction appeared in the dis-assembly file, suggesting that the instruc-
tion support had been properly implemented. Below is the sample of an inline
assembly implementation of the "abs" custom instruction.
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asm v o l a t i l e
(
"abs %[z ] , %[x ] , %[y ] \ n\ t " // performs the abso lu t e
d i f f e r e n c e o f 2 s igned 32−b i t va lue s .

: [ z ] "=r " ( abs_di f f )
: [ x ] " r " ( sample ) , [ y ] " r " ( average )
) ;

Where, z is an output register for the result of the "abs" instruction, which is
"abs diff," and x and y are input registers for the input parameters "sample" and
"average". Here “r” is used to indicate that the x, y, and z are used as registers in
the inline assembly. The output register z is marked by the symbol "=r," where
the "=" sign indicates that the register can only be read once a value has been set
to it, whereas "+r" indicates that the output register can be read and written.
Source code is compiled and an object dump is generated to verify that the custom
instruction is present in the dis-assembly file.

4.2.2 ISS Support

riscv.mk.in

riscv-
isa-sim

disasm

Instruction 
header

File

disasm.ccencoding.h

riscv

insns

Figure 4.4: Spike directory tree structure

Figure 4.4 shows the directory structure of the files which need modification for
adding custom instruction support in Spike. Custom instruction support begins
with the addition of an appropriate mask and match bit to produce an opcode,
as well as the declaration of each custom instruction using "DECLARE INSN"
in the "encoding.h" file. Following this, custom instruction functionality must
be developed in the form of an instruction header file and stored in the “insns”
folder, which also contains the header file for all other instruction functions, so that
Spike can recognize the operation performed by the custom instruction. For the
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instruction to be decoded, the type of instruction must be stated in the “disasm.cc”
file. Finally, we must add the instruction extension or instruction class to the
“riscv.mk.in” file, which is basically a makefile for building support for certain
classes of instructions in Spike. After the support has been properly implemented,
the executable file generated by compiling the algorithm in the toolchain was run
with the Spike executable command to ensure that the algorithm’s output was
correct.

4.2.3 Hardware Support

In order to implement the custom instruction “abs” functionality in the Ibex hard-
ware three design files need to be modified. The directory structure of the files is
shown in figure 4.5

Ibex

rtl

ibex_pkg.sv ibex_decoder.sv ibex_alu.sv

Figure 4.5: Ibex RTL directory structure

• First, “ibex_pkg.sv” file has been modified. The opcodes are defined under
the “opcode_e” which is of type “enum” and the custom instructions are
declared under “alu_op_e” which is also of type “enum”.

• Second, “ibex_decoder.sv” file has been modified in two places: 1. “al-
ways_comb” block of the “Decoder” section 2. “always_comb” block of the
“Decoder for ALU section”.

• Finally “ibex_alu.sv ” file has been modified to implement the functionality
or the working of the instruction with hardware resources.

4.2.4 Implemented Custom Instructions

Custom instructions are categorized into 2 types.

1. SIMD - SIMD is an acronym for Single Input Multiple Data. SIMD oper-
ations allow multiple data to be processed with a single instruction. This
type of instruction works with packed data and allows parallel operations
to be performed on the packed data. This type of instruction is well-known
for taking use of data-level parallelism.
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2. Non-SIMD - Non-SIMD which is also a normal instruction and is not con-
cerned with packed data.

Table 4.3 shows the 11 custom instructions implemented in Ibex and their opera-
tion.

Table 4.3: Custom Instructions Implemented

Instruction Description Algorithm Category

abs Absolute difference between
two numbers Variance Non-SIMD

rsra Rounding after right shift op-
eration Variance Non-SIMD

srsub Subtraction followed by arith-
metic right shift Variance Non-SIMD

sradd Addition followed by arith-
metic right shift Variance Non-SIMD

smdrs Computes real part of com-
plex multiplication FFT SIMD

kmxda Computes imaginary part of
complex multiplication FFT SIMD

sadd Shift with rounding on com-
plex number FFT Non-SIMD

kmda Computes complex absolute
square FFT SIMD

rsub16 16-bit signed parallel subtrac-
tion with 1 step right shift FFT SIMD

radd16 16-bit signed parallel addition
with 1 step right shift FFT SIMD

mas Multiplication and addition
followed by right shift Convolution Non-SIMD
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The custom instructions listed in the table 4.3 were built while keeping the algo-
rithm bottlenecks in mind, as described 3.3. The instructions were implemented
in the reference algorithms through inline assembly, as previously discussed in the
toolchain support section and then the algorithms were made to execute on the
core after providing suitable hardware support for the custom instructions.
Potential improvements for the bottlenecks which has been found out in 3.3 is
implemented in hardware. The functionality of the custom instructions are im-
plemented in ALU. Figures 4.6, 4.7 and 4.8 depict the hardware implementation
of only three custom instructions, which are used in the algorithms listed in table
4.3. They are implemented to address the bottlenecks mentioned in 3.3.1, 3.3.2
and 3.3.3 respectively.
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Figure 4.6: SMDRS custom instruction logic in ALU
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Figure 4.8: MAS custom instruction logic in ALU

Custom instructions were originally implemented to improve performance by re-
ducing execution time, but when we implemented the functionality in hardware,
we discovered that the instructions used a lot of extra logic, which introduced a
lot of extra hardware resources, resulting in a huge increase in area, as indicated
by the initial synthesis results. Following the examination of preliminary synthesis
results, we attempted to build the functionality for the custom instructions listed
in the table using currently available hardware resources. Following the hardware
reuse methodology, we ran synthesis again, and the results showed that the area
had been greatly optimized while still maintaining better performance. Figure 4.9
shows the initial hardware implementation of the three custom instructions SM-
DRS, KMXDA and KMDA which use dedicated hardware resources to perform
the respective operations. Applying hardware reuse we were able to reduce the
number of multipliers from 6 to 2 and the number of adders to 4 to 1 which can
be reused for other instructions of type SIMD such as KMXDA and KMDA with
the same operators as shown in figure 4.6. The MAS instruction showed in figure
4.8 also uses the same multiplier units.
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Chapter5
Simulation and Synthesis

5.1 Configurations used for Simulation and Synthesis

Simulation and synthesis is carried out for 32 different configurations of Ibex in-
cluding IMC/EMC, custom instruction, branch target ALU and write back sup-
port. Table 5.1 and 5.2 shows the ibex configuration nomenclature formation.
From these tables 32 configurations have been formulated.

Table 5.1: Ibex prefix nomenclature formation

Configuration base name ISA Multiplier Custom
instructions

rv32imc_mfast_noci IMC mfast X
rv32imc_mfast_ci IMC mfast

rv32imc_msingle_noci IMC msingle X
rv32imc_msingle_ci IMC msingle
rv32emc_mfast_noci EMC mfast X
rv32emc_mfast_ci EMC mfast

rv32emc_msingle_noci EMC msingle X
rv32emc_msingle_ci EMC msingle

Table 5.2: Ibex suffix nomenclature formation

Configuration suffix Branch Target Writeback
nobt_nowb X X
bt_nowb X
nobt_wb X
bt_wb

31
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5.2 Simulation

For simulation of algorithms with Ibex, two EDA tools are used.

1. An open-source tool which uses FuseSoC as a hardware package manager.

2. A commercial EDA tool.

Simulation process usually follows the steps below

1. Build the simulation model using FuseSoC when using an open source sim-
ulator. For commercial EDA tool this step is excluded.

2. Generate the Memory (vmem) file or elf file to load in the Ibex memory
model, by compiling the algorithm using the RISC-V toolchain.

3. After building the simulator and software feed the elf file or the vmem file
to the memory model already built and run the simulation.

Ibex was used to simulate the reference algorithms using IMC and EMC ISA.
These algorithms are compiled with -O3 optimization, which is the highest level of
compiler optimization, prior to simulation. "-O3" optimization was performed to
see if, once the compiler has completed its highest level of optimization, customiza-
tion, or in other words, custom instructions, may be used to boost performance
even more. The simulation results of the reference algorithms with a comparison
of IMC and EMC settings, is shown in the table 5.3. There is an increase in the
number of simulation cycles for EMC when compared to IMC ISA. This is due to
the EMC architecture’s register configuration. In general, when the number of reg-
isters increases or decreases, the number of execution cycles reduces or increases,
suggesting an increase or reduction in speed efficiency.

Table 5.3: IMC and EMC simulation cycle comparison

Algorithm IMC/EMC
Simulation cycles

% ReductionPre-custom
instruction imple-
mentation

post-custom
instruction im-
plementation

FFT IMC 18887 16328 13.54
EMC 23093 18230 21.05

Variance IMC 2790587 2276744 18.41
EMC 2804842 2378142 15.21

Convolution
IMC 140505 121428 13.57
EMC 201674 173546 13.94

Table 5.4 shows the instruction count and simulation cycles for each functional-
ity without custom instruction and with custom instruction. These data have been
collected from the profiler and dis-assembly file with -O0 compiler optimisation.
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Table 5.4: Instruction and cycles count for custom instructions

Functionality
Pre-custom instruction
implementation

Post-custom instruction implemen-
tation

Number of
instructions

Number of
cycles Instruction Number of

instructions
Number of
cycles

Absolute difference between
two numbers 12 16 abs 4 6

Rounding after right shift op-
eration 9 15 rsra 6 11

Subtraction followed by arith-
metic right shift 6 10 srsub 4 7

Addition followed by arith-
metic right shift 6 10 sradd 5 9

Computes real part of com-
plex multiplication 10 19 smdrs 4 7

Computes imaginary part of
complex multiplication 10 19 kmxda 4 7

Shift with rounding on com-
plex number 5 7 sadd 4 6

Computes complex absolute
square 7 14 kmda 4 7

16-bit signed parallel subtrac-
tion with 1 step right shift 14 21 rsub16 13 20

16-bit signed parallel addi-
tionwith 1 step right shift 14 21 radd16 13 20

Multiplication and addition
followed by right shift 6 9 mas 4 7

1 For post-custom instruction implementation the number of instructions include the surrounding instructions relevant
to the execution of the custom instruction.

5.3 Synthesis

The Ibex core was synthesized with the aid of the open-source standard cell library
Nangate45. This library is provided primarily for testing, research projects, and
the exploration of various EDA flows, and it is non-manufacturable. A commercial
synthesis tool was used for the thesis work.

5.3.1 Yosys Synthesis Flow

Design Files
in

systemverilog

sv2V
Converter Yosys Open STA

Timing
Report

Figure 5.1: Yosys synthesis flow
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Ibex’s current configuration uses the open-source tool Yosys for synthesis and the
open-source tool OpenSTA for producing timing reports. The model for synthe-
sis using Yosys is shown in figure 5.1. Ibex employs SystemVerilog language for
the design work. Yosys does not accept any of the SystemVerilog constructs that
were available in Ibex. To convert design files from SystemVerilog to Verilog, an
open-source converter called "sv2v" is used. With an emphasis on synthesizable
language constructs, the sv2v converter converts SystemVerilog (IEEE 1800-2017)
to Verilog (IEEE 1364-2005). Using the sv2v converter, the SystemVerilog Ibex de-
sign files are translated to Verilog, and the resulting Verilog design files are parsed
into Yosys, which synthesizes the design by mapping it into the corresponding
standard cell library. The resulting netlist is then parsed into the open-source
timing analysis tool "OpenSTA." OpenSTA is a gate-level static timing verifier.
It can be used as a stand-alone executable to verify a specification’s timing. Open-
STA generates timing reports, and the netlist provided by Yosys generates an area
use report. The Ibex synthesis results using the Yosys flow are shown in Table 2.3.

5.3.2 Synthesis Using Commercial tool

Synthesis has been performed for 32 different Ibex configurations formulated from
tables 5.1 and 5.2.

5.3.2.1 Baseline and custom configuration comparison

The table 5.5 compares the baseline and custom configurations in terms of area and
maximum frequency. The baseline configuration is “rv32imc_mfast_noci_nobt_
nowb” and the custom configuration is “rv32imc_mfast_ci_nobt_nowb”. Because
of the inclusion of custom instruction logic on Ibex core, the custom configuration
has considerably more area than the baseline configuration. As compared to the
baseline configuration, the custom instruction configuration takes up 21.63 percent
more space.

Table 5.5: Area and maximum frequency comparison

Configuration
Synthesis data

Area(µm2) Time Period(ps) Max. Frequency(MHz)
rv32imc_mfast_noci_nobt_nowb 21901.38 10100 99
rv32imc_mfast_ci_nobt_nowb 26639.37 10100 99

5.3.2.2 Execution Time and Area

Figure 5.2, 5.3 and 5.4 show the relation between execution time and area of FFT,
variance and convolution algorithm.
While the figures for area based on synthesis results, the execution time is calcu-
lated as the product of the time-period used in synthesis and the cycles elapsed
during simulation for the corresponding configuration and algorithm. Execution
time is given by equation 5.3.2.1.

Execution T ime = Time period(syn) ∗ Execution cycles(sim) (5.3.2.1)
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Figure 5.2: Execution time and area for FFT

Figure 5.3: Execution time and area for variance
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Figure 5.4: Execution time and area for convolution

According to the graphs, the EMC configuration with fast multiplier and disabled
custom instruction, branch target, and write back support takes up less space,
while the IMC configuration with single multiplier along with custom instruction,
branch target, and writeback support takes up the most area. On the other hand,
IMC configuration with single multiplier along with custom instruction, branch
target, and writeback support has the fastest execution time, while the EMC
configuration with fast multiplier and disabled custom instruction, branch target,
and writeback has the slowest execution time. This pattern shows that as the area
increases, the execution time decreases. The behavior is the same for all three
reference algorithms.
The execution time for algorithms with baseline and custom configuration with
"mfast" multiplier configuration is shown in table 5.6. After introducing custom
instructions, FFT execution time decreased by 15.78%, while variance and convo-
lution execution times decreased by 18.41% and 13.47%, respectively.

Table 5.6: Execution time for baseline and custom configuration

Algorithm Configuration Execution Time(ms)

FFT
rv32imc_mfast_noci_nobt_nowb 0.19
rv32imc_mfast_ci_nobt_nowb 0.16

Variance
rv32imc_mfast_noci_nobt_nowb 28.18
rv32imc_mfast_ci_nobt_nowb 22.99

Convolution
rv32imc_mfast_noci_nobt_nowb 1.41
rv32imc_mfast_ci_nobt_nowb 1.22
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5.3.2.3 Power consumption

Power in semiconductor devices is mainly classified into two categories.

1. Leakage power

2. Dynamic power

Leakage Power
The pattern between leakage power and area is shown in figure 5.5. The rela-
tionship between leakage power and area is linear, which means that as the area
grows, so does the leakage power. With fast multiplier and custom instruction,
branch target, and write back support disabled, the EMC configuration has less
leakage power and takes up less area. IMC configuration with single multiplier
along with custom instruction, branch target and writeback support enabled con-
sumes more leakage power among all 32 configurations due to more area. The
leakage power(static power) dissipated by a transistor is calculated as follows:

Pleakage = VDD ∗ Ileakage (5.3.2.2)

where, VDD is the supply voltage and Ileakage is the current that flows in
transistors in the absence of switching activity.

Figure 5.5: Leakage power in Ibex

Table 5.7 shows the leakage power and area consumption for baseline and cus-
tom configurations for "mfast" multiplier configuration. There is a 27.66% increase
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in leakage power from baseline to custom configuration.

Table 5.7: Leakage power for baseline and custom configuration

Configuration
Synthesis data

Leakage power(mW) Area (µm2)

rv32imc_mfast_noci_nobt_nowb 0.394 21901.38
rv32imc_mfast_ci_nobt_nowb 0.503 26639.37

Area(µm2)Time Period(ps)Max Frequency(MHz)
Dynamic Power

Sum of switching and short-circuit power determines the dynamic power of a
circuit. When charging or dis-charging internal and net capacitances, switching
power is dissipated. The power dissipated by short-circuit connection between the
supply voltage and the ground at the time the gate switches state is known as
short-circuit power. Dynamic Power is given by the equation 5.3.2.3.

Pdyn = Pswitching + Pshort−circuit (5.3.2.3)

where, Pswitching is the switching power and Pshort−circuit is the short-circuit
power.

Switching power is given by the equation 5.3.2.4

Pswitching = α ∗ f ∗ Ceff ∗ V 2
DD (5.3.2.4)

where, α is the switching activity, f is the switching frequency, Ceff is the
effective capacitance and VDD is the supply voltage.

Short-circuit power is given by the equation 5.3.2.5.

Pshort−circuit = Isc ∗ VDD ∗ f (5.3.2.5)

where, Isc is the short-circuit current during switching, VDD is the supply
voltage and f is the switching frequency.

Figure 5.6 shows the dynamic power consumption for the baseline configuration
and custom configuration with "mfast" multiplier configuration. Since these two
configurations are the only completely tested configurations in the Ibex, dynamic
power is only plotted for them. The switching activities of the signals are used to
calculate dynamic power. For power analysis, synthesis tool reads a Value Change
Dump (VCD) file created from simulation. The knowledge about signal value
changes in the design is stored in a VCD file. This file is created by attaching
VCD system tasks to a Verilog or Very High Speed Integrated Circuit Hardware
Description Language (VHDL) source file using a simulator. The VCD generation
is done with the help of a commercial simulator.
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Figure 5.6: Dynamic power in Ibex

Since variance algorithm uses 60000 samples of data, the dynamic power for this
algorithm is more when compared to FFT and convolution because it causes more
changes in signal values. When comparing baseline and custom configuration, the
dynamic power of the custom configuration increased by 9.03% on average.

5.3.2.4 Energy Consumption

Figure 5.7 shows the Energy consumption for the baseline configuration
“rv32imc_mfast_noci_nobt_nowb” and “rv32imc_mfast_ci_nobt_nowb” which
is of custom configuration. Energy consumption is plotted only for these configura-
tions since these two are the only fully verified configurations. Energy consumption
is calculated using the following formula,

Total Energy = Total Power ∗ Execution time (5.3.2.6)

where, Total Power is given by equation 5.3.2.7 and execution time is given by
5.3.2.1.

Total Power = Pswitching + Pshort−circuit + Pleakage (5.3.2.7)

As compared to FFT and convolution, the variance algorithm uses more energy.
This is due to the fact that variance uses 60000 data samples, which means that
more variations in signal values equals more dynamic power and energy. When
comparing baseline and custom configuration, the custom configuration has an
average energy consumption rise of 9.48%.
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Figure 5.7: Energy consumption in Ibex

5.4 Design Feasibility
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When comparing the synthesis results of 32 different configurations, it was dis-
covered that as area increased, so did power and energy, although execution time
decreased significantly. As a result, we came up with six optimal configurations,
three for IMC and three for EMC, as shown in figure 5.8 as a radar map.
The five metrics of area, leakage power, dynamic power, energy consumption, and
execution time were compared between the setups. After analyzing the data from
synthesis, we scaled the five metrics or parameters described previously in the
range of (0.5-5.5) since the radar plot was constructed with the purpose of deter-
mining whether the design was feasible for embedded applications. For all factors
in their respective domains, scale 0.5 is the worst and scale 5.5 is the best. In
terms of all the criteria, scale 4.5 is slightly inferior to scale 5.5, while scale 1.5
is slightly superior to scale 0.5, and scale 2.5 and 3.5 is essentially an average.
Both the IMC and EMC configurations are scaled in terms of increasing area and
decreasing execution time. The first of the six configurations has the smallest area,
consumes very low power, and uses extremely low energy, thereby making it ideal
for embedded applications. So, we have come to a conclusion that if we want a
feasible embedded application setup, we shall have to trade off execution time in
exchange for low area and power. However, if the user wants a configuration with
better performance, or in other words, a shorter execution time, they must pay a
high hardware cost, as well as a high power and energy consumption. Among all
six configurations that show gains in terms of area, power, and energy consump-
tion, the radar plot clearly indicates that the configuration with the smallest area
consumes the least amount of power and energy, whereas the configuration with
the highest area has a shorter execution time or better performance.
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Chapter6
Conclusion and Future Work

6.1 Conclusion

We now live in the world of SoCs, where the processor core serves as the SoC’s
heart. Multiple cores allow for different processes to run at the same time, which
increases the speed of the system as it enables your computer to perform multiple
operations at the same time. With the ongoing advancement of SoCs, the proces-
sor core selection criteria has become one of the most essential factors nowadays.
When it comes to the key selection criterion, both cost and performance are im-
portant considerations. Our thesis focuses on modifying or customizing a core
that can be a cheaper option to many other cores presently on the market in order
to attain almost the same level of performance as the more expensive processor
cores. We were able to modify the Ibex core used in our thesis since it runs on
an open-source RISC-V ISA. This allowed us to improve the core’s performance.
We tried to customize the core by implementing custom instructions in some of
the algorithms that are really beneficial in radar signal processing, and then run-
ning those algorithms on the core to verify performance after customization. The
results achieved strongly suggest that by implementing custom instructions, the
bottlenecks observed in the reference algorithms were overcome or in other words
we were able to find an open-source core that could still be modified to improve
performance based on the requirements with low cost implementation.

6.2 Future work

Finally, our thesis resulted in a finding that leaves opportunity for more research.
We examined the performance of the No-inline and Inline implementations for
-O0 optimization and discovered that there was no difference between the two ap-
proaches for -O0 optimization since instructions could be properly mapped, or in
other words, the inline assembly implementation was exactly mirrored as the No-
inline assembly version. However, at -O3 optimization, the highest level of compiler
optimization, it was discovered that the No-inline implementation outperformed
the Inline implementation due to the compiler optimization’s instruction schedul-
ing.

To make the most of instruction scheduling and take advantage of compiler
optimization, it is required to replace inline assembly and attempt to offer instruc-
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tion support at the compiler level, which necessitates compiler adjustments and
hence remains a further scope of research topic.
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