
Login hardening with Multi-factor Authentication

MICHAELA BERGMAN
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2021

M
IC

H
A

ELA
 B

ER
G

M
A

N
Login hardening w

ith M
ulti-factor A

uthentication
LU

N
D

 2021

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2021-828
http://www.eit.lth.se

Login hardening with Multi-factor Authentication

Michaela Bergman
elt12mlu@student.lu.se

Department of Electrical and Information Technology
Lund University

Supervisor: Ben Smeets

Supervisor at Axis Communications: Reza Shams Amiri

Examiner: Tomas Johansson

June 23, 2021

© 2021
Printed in Sweden
Tryckeriet i E-huset, Lund

Abstract

The aim with this Master’s Thesis work was to conduct research about different
available authenticators, as well as implementing a multi-factor authenticator into
the currently used login-application. The research included biometric authentica-
tion technologies, and investigation of how to implement these to create a highly
secure and customizable multi-factor authentication for My Axis-accounts for Axis
Communications in Lund. A part of the research was to investigate and compare
weaknesses, vulnerabilities, trade-offs, practical considerations, and security stor-
age for common authenticators, as well as recovery and support for the loss of
an authentication factor. The method used to achieve these goals was to collect
information from research papers, books, and studies about authentication and
authenticators, to do a small study about account recovery, and to investigate
and analyze the currently used authentication system to implement a multi-factor
authenticator that extends the system. The key objectives of the project were
gaining an in-depth knowledge of multi-factor authentication, the OpenID Con-
nect protocol and how it can be used in a system, and the implementation of a
multi-factor authenticator that would utilize a combination of username/password
authentication (knowledge factor), a smartphone (ownership factor), and biomet-
ric authentication (biometric factor). The implementation consists of a plugin that
extends the current system and an Android application. The application authen-
ticates the user with the built-in fingerprint sensor and creates a time-based one
time password (TOTP), i.e., the application is an authenticator that combines
TOTP with fingerprint so that the fingerprint never leaves the device, which miti-
gates the risk of biometric factor leaks. A key conclusion of this project is that the
security level of the authenticator is decreased to the security level of its fallback
method, in the case where the fallback method is less secure. This fallback method
is used in case the user loses, for example, its email address or device.

i

ii

Preface

This project was carried out during the winter and spring of 2020-2021 at Axis
Communications in Lund. Currently Axis has an authentication solution in use
requiring a traditional username and password login to access their personal My
Axis-accounts. The basis for this research and implementation project was to in-
crease the account security for My Axis-accounts, by implementing a multi-factor
authenticator into the Axis external accounts, which will provide the user to choose
between different authenticators to prove their identity when signing in through
various applications.

First and foremost, I want to thank my supervisor Reza Shams Amiri at Axis.
You have been a mentor, a teacher, and a friend during these weeks at Axis. A
big thank you to the User Services team, for all the support and help, all the fikas
and team activities, all the daily scrums, and above all, for making me feel like a
part of your team during these isolated Corona-times.

I also want to say thank you to my supervisor at LTH, Ben Smeets. Your course
in Advanced Computer Security got me interested in computer security and multi-
factor authentication, and your knowledge about multi-factor authentication has
been very valuable during this project.

iii

iv

Contents

1 Introduction 1
1.1 Methodology . 2

2 Multi-factor Authentication 5
2.1 Commonly used Authenticator Methods based on Authentication Factors 6

3 The OAuth 2.0 Authorization Framework, RFC6749 21
3.1 Client Types, Profiles, Registration, Authentication and Identifier . . 23
3.2 Protocol Endpoints . 24
3.3 Tokens . 24
3.4 HTTP Redirections . 26
3.5 Authorization Code Flow . 27
3.6 Implicit Flow . 28
3.7 Resource Owner Password Credentials Flow 29
3.8 Client Credentials Flow . 30

4 OpenID Connect Protocol 33
4.1 Terminology . 33
4.2 Authentication . 34
4.3 Requesting Claims using Scope Values 34
4.4 Client Authentication . 35
4.5 ID Token . 37
4.6 UserInfo Endpoint . 39
4.7 Authorization Code Flow . 41
4.8 Implicit Flow . 42
4.9 Hybrid Flow . 43

5 Proof Key for Code Exchange by OAuth Public Clients 45
5.1 Authorization Code Interception Attack Flow 45
5.2 PKCE Protocol Flow . 46

6 Security Threats 51
6.1 Cross-Site Request Forgery . 51
6.2 Brute Force Attacks . 53

v

6.3 Replay Attack . 53
6.4 Clickjacking . 54

7 Results 55
7.1 The Authentication and Authorization Process 55
7.2 Multi-Factor Authenticator . 58
7.3 Implementation . 62

8 Conclusion 69
8.1 Improvements and Changes . 70

Bibliography 73

A The OAuth 2.0 Authorization Framework 79
A.1 Authorization Code Flow . 79
A.2 Implicit Flow . 82
A.3 Resource Owner Password Credentials Flow 85
A.4 Client Credentials Flow . 86

B OpenID Connect 1.0 89
B.1 Authorization Code Flow . 89
B.2 Implicit Flow . 97
B.3 Hybrid Flow . 100

vi

List of Figures

3.1 An overview of the authorization code flow. 27
3.2 An overview of the implicit flow. 28
3.3 An overview of the resource owner password credentials flow. 30
3.4 An overview of the client credentials flow. 30

4.1 An overview of Authentication using the Authorization Code Flow. . 41
4.2 An overview of Authentication using the Implicit Flow. 43
4.3 An overview of Authentication using the Hybrid Flow. 44

5.1 An overview of an Authorization Code Interception Attack. 45
5.2 An overview of the PKCE Protocol Flow. 47

6.1 An overview of a Cross-Site Request Forgery Attack. 51

7.1 An overview of the authorization code flow and where the authenti-
cation by the multi-factor authenticator will be executed. 57

7.2 The page of the HTML-login. 63
7.3 The page that is displayed to the user if there is no device registered

for the user. 64
7.4 The registration page. 64
7.5 The authentication page. 65
7.6 App view, Authentication Failed . 66
7.7 App view, Authentication Help . 67
7.8 App view, Authentication Success 68

vii

viii

List of Tables

2.1 Account recovery strategies of 10 popular web services. 16
2.2 Authentication time for common authenticator methods [33]. 18

4.1 OpenID Connect Authentication Flows 34

ix

x

Chapter1
Introduction

The CIA triad is a model that describes the three key objectives or goals of infor-
mation security: Confidentiality, Integrity and Availability. Confidentiality limits
access to information, i.e., only those with permission to a resource are able to
get access to it. Integrity assures that the data is trustworthy and accurate, and
that the data has not been modified by unauthorized users. Availability ensures
that authorized users have reliable access to data when they request it. Examples
of computer attacks effecting CIA are malicious software, phishing, and denial of
service. The three core services in an ICT (Information and Communications Tech-
nology) system that support the methods to distinguish between authorized and
non-authorized user coupled to the CIA model are referred to as AAA: Authentica-
tion, Authorization, and Accountability. While there are other services that have
a role in achieving the CIA objectives we will in this thesis focus on authentication.

Authentication is the process of uniquely identifying an individual, authorization
is the process of specifying access rights to resources (data, information, services,
files, networks, etc.). Accountability enables a system administrator to track and
monitor system interactions of individuals. [20]

User authentication (sometimes also just called identification) is a process that
consists of two parts: identity claiming and verification [39]. Identity claiming
refers to the process where the user, sometimes called the claimant, presents an
identifier to a security system, e.g. a username. Verification means that the user
verifies its claimed identity, e.g., a password. There are different means of au-
thentication (authentication factors), which can be used successively and this is
referred to as multi-factor authentication. [21] Systems that rely on single factor
authentication have been found to be vulnerable to different security attacks, and
in order to increase the security there has been an increase in usage of multi-factor
authentication [38]. The selection of authentication factors that are used in an au-
thentication process determines the performance of the multi-factor authenticator
as a whole [29].

Today, Axis uses a traditional username and password login procedure for users
to access their personal My Axis-accounts. The My Axis-accounts are available
for anyone that has a unique email address, and during registration an email ver-
ification is needed. If the account holder’s password is compromised, the user will

1

2 Introduction

no longer be able to authenticate itself. Therefore, to increase account security,
Axis would like to implement multi-factor authentication into the Axis external
accounts, which will provide the user to choose between different authenticators to
prove their identity when signing in through various applications, e.g., fingerprint
authentication or a one-time password.

The goals of this project are:

• Gain in-depth knowledge of the OpenID Connect Protocol and Multi-Factor
Authentication, since these protocols will be central in our approach to
integrate a flexible and secure authentication framework.

• Find a highly secure and user-friendly authentication method for a certain
use case. Therefore, conduct research about common authentication meth-
ods and technologies based on authentication factors: Knowledge factors
(passwords, PINs, security questions), Possession factors (ID cards, secu-
rity tokens, one-time passwords, smartphones), Biometric factors (finger-
print, retina, iris, hand geometry, facial characteristics). In particular look
at the following aspects:

– Weaknesses, vulnerabilities, trade-offs, practical considerations and se-
curity token storage

– Recovery and support for lost authentication factors

• Implement a multi-factor authenticator into the currently used login-application

This report is organized as follows: A brief methodology section, see Section 1.1, is
included in this introduction chapter with information about the theories, meth-
ods, and tools that were applied in the project. Chapter 2 gives an introduction
to multi-factor authenticators based on different authentication factors, a shorter
study of the account recovery process of 10 common web services, and a compari-
son of commonly used authenticators. Chapters 3, 4 and 5 give a summary about
the OAuth 2.0 protocol, the OpenID Connect protocol, and the Proof Key for
Code Exchange by OAuth Public Clients protocol, respectively. These protocols
are widely used and describe the processes of authentication and authorization.
Some security threats that are related to the authentication and authorization
process are described in Chapter 6. The results and the conclusions of this project
are given in Chapters 7 and 8, respectively.

User (entity) authentication can be divided into two types depending on the type
of user: machine by machine, or machine by human (user authentication) [29].
The focus of this project is on user authentication. Particularly, the scope of the
project is limited to user authentication in the context of a login process, i.e., login
to a web service.

1.1 Methodology

We start our research on different available authenticators and technologies, to in-
vestigate how to implement a highly secure multi-level authentication, by acquiring

Introduction 3

in-depth knowledge of available authentication methods and technologies. To limit
the scope of the project, the general concepts and technologies of the authentica-
tors were studied, rather than the authenticators that are available on the market.
To gain knowledge, both primary and secondary data was collected. Primary data
means collecting data from the founders of the authenticators or technologies, and
peer-reviewed articles and papers. Secondary data means collecting data from
other resources, e.g., applications that are using a specific authenticator method
or technology.

In parallel with the research, a prototype of a multi-factor authentication was
implemented into the currently used login-application. The implementation was
an evaluation and investigation of the data collected. As a consequence we need
to acquire an in-depth understanding of the OAuth 2.0 and OpenID protocols.
To implement the multi-factor authenticator that extends the currently used au-
thentication system, the system was investigated and analyzed. A Linux based
laptop with all the necessary apps needed for development was used, as well as an
Android device, Samsung Galaxy S8.

Finally, knowledge from research and experience from the implementation work
was used to arrive at a set of conclusions and recommendations for further im-
provements.

4 Introduction

Chapter2
Multi-factor Authentication

This chapter contains an introduction to multi-factor authentication. Specifically
we present commonly used authenticators (authentication methods or technolo-
gies) based on authentication factors, a shorter study of the account recovery
process of 10 common web services, and a comparison between the commonly
used authenticators.

Authentication contains the process of verifying the identity of someone or some-
thing, in our case a user. Organizations can, by the process of authentication,
keep their networks more secure by permitting only authenticated users to access
protected resources.

The user authentication process consists of an identity claim and a verification
process of a user. The identity claim consists of a user presenting an identifier
to a security system, e.g., a username. Verification means that the user verifies
its claimed identity, e.g., a password. There are different means of authentication
(authentication factors), which can be used successively and this is referred to
as multi-factor authentication. [21] Due to a number of security threats, it was
realized that authentication with just a single factor is not reliable to provide ad-
equate protection [27]. Therefore, two-factor authentication (2FA) was proposed,
which couples the representative data (username/password combination) with the
ownership factor, such as a smartcard or a phone [28], [30]. Systems that rely on
single factor authentication have been found to be vulnerable to different security
attacks, and in order to increase the security there has been an increase in usage of
multi-factor authentication [38]. The selection of which authentication factors are
used in an authentication process determines the performance of the multi-factor
authenticator as a whole [29].

One main challenge with MFA is the correlation between the user instance and the
instance of the smart sensor on the device (e.g., fingerprint sensor or face recog-
nition camera on a smartphone). The correlation between the user instance and
the instance of the application or sensor in the smartphone must be established
for security reasons. It is important that only the authenticated user, which is
authenticated with the first-factor authenticator, has access rights to the appli-
cation or sensor. There are also trade-offs to be made, mainly between usability
and security, that need to be considered when integrating and/or implementing a

5

6 Multi-factor Authentication

multi-factor authenticator. [22]

2.1 Commonly used Authenticator Methods based on Au-
thentication Factors

Different authentication factor groups that are available today to verify the identity
of a user is:

• Something that the user knows : Password, passphrase, PIN

• Something that the user has: Smart card, physical key, smartphone,
personal ID card

• Something that the user is: fingerprint, retina, iris, hand geometry,
facial characteristics

• Something that the user does: voice recognition, handwriting, be-
haviour pattern, typing rhythm

• Where the user is: geolocation security checks

The commonly used authenticator methods that will be investigated and compared
in this chapter are based on one of the following authentication factor groups:
Knowledge Factor (what the user knows), Ownership Factor (what the user has),
and Biometric Factor (what the user is).

2.1.1 Commonly used Authenticator Methods based on Knowledge Fac-
tors

One commonly used authentication method that is based on knowledge factors
is the traditional username/password authenticator. This authentication method
was initially, and still is, used because of its simplicity and user friendliness [22].
Authentication methods that are based on knowledge factors usually work in the
same way as the username/password authenticator, i.e., a HTML login form, ex-
cept that the password is replaced with, for example, a PIN.

A large-scale study of web password habits [23], published in 2007, have found
that the average user:

• logs into 25 different online services in the course of a three month period,

• only has seven passwords,

• and reuses one password for about three accounts on average.

This means that if one password is compromised, usually more than one protected
resource will be unprotected. If the password is shared, it is no longer a safe au-
thentication method since the account can be compromised immediately. Even if a
password is not shared, an unauthorized user can gain access to the account by uti-
lizing the dictionary attack, rainbow tables, or social engineering techniques [22].
The complexity (and length) of the password should have a minimum requirement

Multi-factor Authentication 7

enforced by the system if a username/password authenticator is used [31].

The password has to be stored and connected to the user ID. Here, two approaches
are used depending on how the authentication verification process is realized. One
approach of verifying the knowledge of the password is to request the user to
send the password (assuming that sending/entering the password does not lead
the password is leaked). For this type of approach, the password should never be
stored in plain text. The best practices of storing a password includes generating
a random string salt that is concatenated with the password to protect against
dictionary attacks. This generated string should then be hashed with a crypto-
graphic hash function (e.g., SHA256), and the hashed string is then stored instead
of the plain text password. [32] The other type of approach is that the security
systems stores the password and conducts a so called challenge-response scheme.
Here the user is requested to send a response that is computed from the password
and challenge value it received. In this case, the security system must be designed
to hold the passwords securely confidentiality protected.

2.1.2 Commonly used Authenticator Methods based on Ownership Fac-
tors

A study on five common two-factor authentication methods [33] showed that com-
mon authentication methods or technologies based on ownership factors are:

• SMS

• Time-based One Time Password (TOTP)

• Pre-generated codes

• Push notifications

• U2F Security Keys

However, all the above methods are two-factor authenticators, and not one-factor
authenticators, since they both include something that the user has (a mobile
phone or a security key) and something that the user knows (a verification code
or a TOTP). The following sections is a summary of the presented two-factor
authentication methods in the study.

SMS

The user is sent a one-time verification code through a text message to their mo-
bile phone. The reason why this authenticator is common is because most users
already have a mobile phone that can receive text messages.

Usability advantages and disadvantages:

• Advantages:

– most users already has a mobile phone that can receive text message
(99% of US)

8 Multi-factor Authentication

• Disadvantages:

– delayed delivery

– lack of cellular service

– miscopying the code from phone to computer

Security threats:

• man-in-the-middle attack (SIM-swapping attack), mobile networks do not
encrypt SMS messages in transit

• brute force attack on a stolen hashed code, since the server (relying party)
must store the one-time code (salted and hashed) for later verification while
the SMS message is sent

• targeted phishing attacks of SMS codes

TOTP

A time-based one time password (TOTP) is usually generated through a smart-
phone application. By scanning a QR code, the smartphone gets the secret key
from the provider. A TOTP is generated by hashing and truncating the value of
a combination of the secret with a time-interval. The result is typically a 6 or 7
digits long human readable code. The server verifies the TOTP by using the same
method that is used to generate the TOTP.

Usability advantages and disadvantages:

• Advantages:

– no delayed deliver

– works with any kind of internet connectivity

– not requiring cellular service

• Disadvantages:

– miscopying the code from phone to computer

– the user usually only has 30 seconds to enter the code

– there are not as many users that owns a smartphone, which enables a
TOTP application, compared to the number of users that has a mobile
phone that can receive text messages (77% of US)

Security threats:

• an attacker steals the TOTP secret from the server or the phone

Multi-factor Authentication 9

Pre-generated codes

A pre-generated code is usually given to the user during registration of a two-
factor authentication, see Section 2.1.4. If the user is unable to access its primary
two-factor authenticator, for example, if the user loses its smartphone, the pre-
generated code serves as a backup method. The user usually either prints or writes
the verification code(s) down. Both the user and the server have to keep the codes
secure.

Usability advantages and disadvantages:

• Advantages:

– backup authentication mechanism for the user to recover its account

• Disadvantages:

– a greater risk for user error when entering codes, since the codes usually
are longer than SMS or TOTP codes

– the user has to be careful not to lose the medium or device where the
code is stored

Security threats:

• an attacker steals the code from the user or the server

• the codes are vulnerable to offline brute-force attacks due to long-time stor-
age on the server

Push notifications

The user receives a push notification on their smartphone. The user can either
approve or reject the login attempt.

Usability advantages and disadvantages:

• Advantages:

– user-friendly since the user only has to press a button on the screen
instead of typing a code

• Disadvantages:

– requires Internet connection

Security threats:

• push notifications are sent to the wrong device

• communication between the user’s device and the server is not secure

10 Multi-factor Authentication

U2F Security Keys

Universal 2nd Factor (U2F) Security Keys is an open standard for authentication
using a USB hardware device. The user connects the device to their computer and
activates the device when prompted by the website.

Usability advantages and disadvantages:

• Advantage:

– user-friendly since the user only has to connect a USB to their com-
puter and press a button

• Disadvantage:

– does not work with all kind of devices (differences in USB connec-
tors/HW)

Security threats:

• the user loses its device (but this is a risk for all authenticators that has the
ownership factor included)

2.1.3 Commonly used Authenticator Methods based on Biometric Fac-
tors

Authenticator methods based on biometric factors verifies an individual’s iden-
tity based on their behavioural and biological characteristics, e.g., fingerprint, face
recognition, and behaviour recognition [22].

A study on biometric authentication on iPhone and Android [34] states that the
fingerprint scanner provides the most widely integrated biometric authenticator,
since it is the most common integrated biometric interface of today’s smartphones.
Some of the advantages and disadvantages with fingerprint authentication via
smartphones were given as a conclusion of the study:

• Advantages:

– (security) there is a strong relationship between the user and its bio-
metric data,

– (usability) because people will want to use their phone in a dark area
more often than when they have wet fingers, fingerprint authentication
is more user-friendly than face recognition,

– (usability) the majority of current and former users felt fingerprint
unlock a little or a lot more secure than a PIN (but this is not true
due to PIN being a fallback mechanism on most smartphones).

• Disadvantages:

– (security) an attacker can intercept the information and replay it, since
the information that the user provides is generally similar at each
authentication attempt,

Multi-factor Authentication 11

– (security) fingerprint authenticators can be fooled with molds of fin-
gerprints,

– (usability) the fingerprint sensor did not work when the user’s fingers
were wet,

– (cost) good biometric sensors are expensive.

The main security advantage of the authenticator methods based on biometric
factors is that there is a strong relationship between the user and its biometric data.
A security threat of biometric authentication is that an attacker can intercept the
information and replay it, since the information that the user provides is generally
similar at each authentication attempt. It is not recommended to use biometric
authentication as a standalone authentication method [35]. There might be a cost-
factor to some biometric authentication systems since the use of any biometrics
often require a set of separate sensing devices. But if the sensing devices already
are integrated in the users’ smartphones, the costs can be reduced.

2.1.4 Study: Account Recovery of 10 popular Web Services

To investigate how web services handle account recovery and what type of security
that is in place to protect the accounts, 10 popular web service’s account recovery
was studied. Some had better layers of security than others. The web services
that were included in the study was:

• Email-providers:

– Gmail

– Yahoo

– Microsoft’s Outlook.com

• Social networking platforms:

– Facebook

– Twitter

– LinkedIn

• Tech hubs:

– GitHub

• File Hosting Service:

– Dropbox

• Online Retailers:

– Amazon

– Apple

12 Multi-factor Authentication

The account recovery solution is an important part of the authentication process.
If a user, for example, forgets its password/credentials or loses its device, there
must be an account recovery process for it. If the account recovery process does
not contain layers of security that are equivalent to the level of security the authen-
ticator itself brings, the authenticator’s level of security will be the reduced to the
account recovery’s level of security [34]. An equivalent level of security means, in
this study, using the same number of authentication factors in the account recovery
process as in the authentication process, as well as using the same authentication
factors for the account recovery process as for authentication process. The aim
with the study is to investigate if the layer of security is equivalent to the layer of
security the authenticator itself brings of 10 popular web services.

There are different types of recovery strategies: alternate email addresses and
phone numbers, a form of personal identification (driver’s license or passport),
recovery keys or trusted devices. These strategies all have their trade-offs in se-
curity, usability (how user-friendly/complicated the process is for the user), as
well as cost (the amount of manual support required for reviews of, for example,
personal identifiers or time required for implementation of account recovery pro-
cesses). Two-step verification was enabled for all web services and, if available,
recovery email address was registered. Recovery phone number was registered for
all web services.

Each web service was investigated as follows:

1. What type/types of recovery strategy/strategies are available if the user
forgets its email address?

2. What type/types of recovery strategy/strategies are available if the user
forgets its password?

The results of the study are summarized in Table 2.1.

Gmail:
Enabled two-step verification, verification code to phone number.

1. Forgot email?

(a) Enter your recovery phone or recovery email.

2. Forgot password?

(a) Tap yes on your phone or tablet.

(b) Send verification code to current email address (if signed in on another
device).

(c) Send verification code to registered phone number.

(d) Send verification code to registered recovery email address.

(e) Enter the last password you remember using with this Google Account.

(f) Not able to recover account.

Multi-factor Authentication 13

Yahoo:
Enabled two-step verification, verification code to phone number.

1. Forgot email?

(a) Enter your recovery phone or recovery email.

2. Forgot password?

(a) Send verification code to phone number.
(b) Verify with registered Google-account (registered recovery email ad-

dress).
(c) Send verification code to registered recovery email address.
(d) all the premium support number.
(e) Visit the free help website (contains information about the previous

verification steps).

Outlook.com:
Enabled two-step verification, verification code to phone number.

1. Forgot email?

(a) Enter your recovery phone or recovery email.

2. Forgot password?

(a) Send verification code to registered email address. After this step the
user has to verify via phone number or account recovery code. If no
phone number or account recovery code is given, replacing the security
info of the account will take 30 days.

(b) Send verification code to phone number. After this step the user has
to verify via recovery email address or account recovery code. If no
email address or account recovery code is given, replacing the security
info of the account will take 30 days.

(c) Enter account recovery code, possible to receive when logged in. Re-
placing the security info of the account will take 30 days after entering
the account recovery code.

(d) Contact support with another email address.

Facebook:
Enabled two-step verification, verification code to phone number.

1. Forgot email?

(a) Enter your recovery phone or recovery email.

2. Forgot password?

(a) Enter full name, email address or phone number. The user will then
be asked to enter its password.

(b) Not able to recover account.

14 Multi-factor Authentication

Twitter:
Enabled two-step verification, verification code to phone number.

1. Forgot email?

(a) Possible to log in with username, phone number, or email address.

2. Forgot password?

(a) Send verification code to registered email address. After this step the
user has to verify either via phone number or authentication code.
Otherwise, contact support.

(b) Contact support.

LinkedIn:
Enabled two-step verification, verification code to phone number.

1. Forgot email?

(a) Possible to log in with email address or phone number.

2. Forgot password?

(a) Send verification code to phone number. After this step the user has
to verify via email address, where a verification code is sent. If the
user does not have access to the email address, a new email address
can be registered for the account. But to be able to change the email
address, the user has to provide a government-issued ID, which will be
reviewed.

(b) Send verification code to email address. After this step the user has
to verify by the verification code sent to the phone number. If the
user don’t have access to its phone, the user has to contact customer
service and provide a government-issued ID.

GitHub:
Enabled two-step verification, verification code to phone number.

1. Forgot email?

(a) Possible to log in with email address or phone number.

2. Forgot password?

(a) Enter email address, a verification link is sent to the email address.
The verification link redirects to a page where the user provides the
verification code sent to the phone number. If the user has lost the
phone, it is possible to provide the recovery codes given to the user
during the enabling of 2-step verification.

(b) Not able to recover account.

Dropbox:
Enabled two-step verification, verification code to phone number.

Multi-factor Authentication 15

1. Forgot email?

(a) No support, contact email provider.

2. Forgot password?

(a) Enter email address, a verification link is sent to the email address.
The verification link redirects to a page where the user enters a new
password. After this step the user is redirected to a page where the user
provides the verification code sent to the phone number. If the user has
lost the phone, it is possible to provide one of the recovery codes given
to the user during the enabling of 2-step verification. However, even
if the user does not provide the verification code sent to the phone, or
one of the recovery codes, the password can be changed after verifying
the email through the verification link.

(b) Not able to recover account.

Amazon:
Enabled two-step verification, verification code to phone number.

1. Forgot email?

(a) Possible to log in with email address or phone number.

2. Forgot password?

(a) Send verification code to the email address. The verification link redi-
rects to a page where the user enters a new password. After this step
the user is requested to log in using the new password, and after that
a verification code is sent to the phone number.

(b) Contact customer service to recover the account.

Apple:
Enabled two-step verification, verification code to registered device.

1. Forgot email?

(a) Possible to log in with Apple-ID or enter first name, last name, and
email address.

2. Forgot password?

(a) Enter Apple-ID and enter phone number. If the device is lost, the user
can reset its password while signing in on a new device, use someone
else’s iOS device, or contact apple support and wait for them to verify
the user’s identity.

16 Multi-factor Authentication

Web Service Two-Step Verifi-
cation for account
recovery

Authentication factors for the
account recovery process is
the same as for the authenti-
cation process

Gmail No No
Yahoo No No
Outlook.com Yes No
Facebook ? ?
Twitter Yes Yes
LinkedIn Yes Yes
GitHub Yes Yes
Dropbox Yes Yes
Amazon Yes Yes
Apple Yes Yes

Table 2.1: Account recovery strategies of 10 popular web services.

During this study, it was not possible to register another email address for a Face-
book account. Even though two-step verification was added for the authentication
process, it was not possible to recover the account without knowing the password.

As expected, the web services that were included in the study had different levels
of security in the account recovery process. Gmail only had one-step verification
for the account recovery. This means that if the user’s email address is compro-
mised or the user’s device is lost, the Gmail account can easily be compromised.
This was also the case for Yahoo.

Outlook.com had a two-step verification for the account recovery, but did not
use the same factors for the account recovery process as for the authentication
process. If the user verifies via email, i.e., a verification code is sent to the user’s
registered email address, then it is possible to enter a account recovery code. In
this study, the account recovery codes (referred to as "pre-generated codes" in
Section 2.1.2) were in most cases 25 character long codes that contained charac-
ters and numbers. These codes were in most cases given during the process of
enabling the two-step verification for the account. This can be seen more as an
ownership factor than a knowledge factor, since it is not reasonable to remember a
25 character long randomized code and the user has to save it somewhere. Because
of the fact that it was possible to replace the security info of the account (recover
the account) after 30 days without the ownership factor (phone or recovery codes),
a time-factor was added and the authentication factors for the account recovery
process was not the same as for the authentication process. If a time-factor of 30
days achieves the same level of security as the ownership factor is not a part of this
study. Therefore, there is no conclusion about whether the level of security of the
account recovery process is equivalent to the level of security of the authentication
process for Outlook.com accounts.

Multi-factor Authentication 17

The level of security is important in the account recovery process. However, it
is not user-friendly if the user is not able to recover its account if the registered
devices, recovery codes, passwords or email addresses are lost or compromised.
This is the case for Gmail, GitHub and Dropbox. Other web services have added
manual customer support if this situation should occur, e.g., Yahoo, Outlook,
Twitter, LinkedIn, Amazon and Apple. The trade-off of having the manual cus-
tomer support as a part of the account recovery is an increase in usability, but
might also be an increase of cost due to time and personnel.

2.1.5 Comparison of Commonly used Authenticator Methods

One of the critical drivers of designing an authentication system is the fundamental
trade-off between usability and security [29]. While security is the main objective
of secure systems, the user shall not be the weakest component of the authenti-
cation system. The user behaviour is an important aspect of the design of secure
systems. If the user behaviour is not taken into consideration, the user’s wishes of
which authenticators to use for authentication might be faulty due to how much
time is required to authenticate, or having too much confidence in authenticators
that has a lower level of security. The cost-factor is also important when design-
ing an authentication system. However, an authenticator that requires the user’s
mobile phone as a second-factor authenticator does not introduce additional costs
and can be implemented relatively easy, since most users usually carry their phone
all the time. Well-known companies that provide authentication that involves a
mobile phone as a second-factor are Amazon, Apple, Dropbox, Google, Microsoft,
Twitter, Yahoo, and many more, including a large number of financial institu-
tions [26].

The traditional username/password authenticator is the weakest level of authenti-
cation [24], [25]. By having a minimum requirement of the complexity and length of
the password, the level of security is increased, but it is still lower than the authen-
ticator methods based on ownership factors and biometric factors. The ownership
factors presented in Section 2.1.2 are all two-factor authentication methods, since
they all include something that the user has and something that the user knows.
The fingerprint authenticator has the strongest relationship between the user and
its biometric data. Therefore, the username/password authenticator should be
considered as low in security but high in usability. The user only needs to remem-
ber a password, a passphrase, or a PIN, and therefore, this authentication method
is one of the most user-friendly.

A comparison of the subjective time it takes for a user to authenticate with the
authentication methods used in the study presented in Section 2.1.2 is shown in
Table 2.2.

18 Multi-factor Authentication

Authentication Method Authentication
Time (1-5),
1=fastest,
5=slowest

SMS 3
TOTP 4
Pre-generated codes 5
Push notifications 2
U2F Security Keys 1

Table 2.2: Authentication time for common authenticator methods
[33].

The pre-generated codes are, according to the study, the authentication method
that requires most authentication time for the user, i.e., the authentication method
that is least user-friendly when looking at authentication time. There is also a
greater risk for user-error when the user enters the codes since they usually are
longer than SMS or TOTP codes. Moreover, there are security risks with storing
a code for a long time period (which is required in this method) on a server, due
to offline brute-force attacks or if an attacker steals the code from the user or
the server in another way. The other authenticators that requires secret or code
storage are SMS, TOTP and U2F security keys. Even if the TOTP authentica-
tion method requires more time than the SMS authentication method, it has a
higher level of security, since the SMS authenticator might be exposed to man-in-
the-middle-attacks (SIM-swapping attacks [43]), brute force attacks and targeted
phishing attacks. Even if the TOTP secret is hashed on the server, it can be stolen
by an attacker from the server or the phone (as for the SMS authenticator code),
but the TOTP authenticator does not involve sending any codes via SMS or to
the server.

The push notifications and the U2F security keys are more user-friendly when
it comes to authentication time. The U2F security key is an open standard for
authentication using a USB hardware device. To compare the push notification’s
and security key’s level of security, a formal security analysis and risk analysis of
push-based authentication has to be made to define its security vulnerabilities and
threats (this is out of scope for this Thesis). The U2F security keys are designed
to be both highly secure and usable, but it might be costly to provide each user
with a security key.

There is no authentication factor in any other authenticator that has a stronger
relationship to the user than a biometric factor in the biometric authenticators.
The use of a biometric factor has the potential to bring a high level of security.
The usability of a fingerprint authentication process can be compared to the push
notification authenticator, since it does not require much more effort from the user
than holding a fingerprint sensor on the phone instead of pressing a button on the
screen on the phone. Therefore, the authentication time for a fingerprint authen-

Multi-factor Authentication 19

ticator will not differ much from the authentication time for a push notification
authenticator. However, there are security risks with biometric factors that leaves
a local device since an attacker can intercept the biometric information and replay
it. There is also a cost-factor that depends on if the sensing devices are integrated
in the users’ smartphones or not. Otherwise, there might be increase costs, since
the use of any biometrics often require a set of separate sensing devices. But
the most important thing to consider when it comes to security of the biometric
authenticator is that it does not have a higher level of security than its fallback
authenticator, in the case where the fallback method is less secure. This means
that if the user looses its smartphone, another sensing device that can process
biometric data must take its place to maintain the level of security that biometric
authentication brings.

The overall conclusions of this chapter that are used in the results of this project
are:

• The traditional username/password authenticator is low in security but high
in usability. It is one of the most user-friendly authentication methods based
on the knowledge factor.

• The SMS authentication method might requires less authentication time for
the user than the TOTP authentication method, but the TOTP method has
a higher level of security.

• If push-notification authentication is used, a formal security analysis and
risk analysis should be made.

• Using U2F security keys is both highly secure and usable, but it is costly
to provide each user with a security key. To reduce costs, another authen-
tication method based on the ownership factor is user authentication with
something that the user already has, e.g., a smartphone.

• There is no authentication factor in any other authenticatior that has a
stronger relationship to the user than a biometric factor. Moreover, if the
user owns a smartphone with a biometric sensor, costs can be reduced.

• If biometric data is used in an authentication process, there are security
risks and privacy concerns with biometric factors that leaves a local device
or is stored in a database. In other words, biometric data should not be
stored or leave any local device.

20 Multi-factor Authentication

Chapter3
The OAuth 2.0 Authorization Framework,

RFC6749

The OpenID Connect protocol is a widely used protocol that is an extension to
OAuth 2.0. To be able to easily integrate a system with another system (if needed),
there are benefits with using industry-standard protocols for authorization and au-
thentication, i.e., OAuth 2.0 and OpenID Connect. Inventing a protocol on your
own is a possibility. However, research, development, and a lot of effort has been
put into these protocols to define everything between security vulnerabilities to
requirements for a client. In order to gain in-depth knowledge of the OpenID
Connect protocol, in-depth knowledge for OAuth 2.0 is also required. This chap-
ter gives a summary of the flows and the basics of the OAuth 2.0 Authorization
Framework [3]. For the thesis implementation work it was important to truly un-
derstand the OAuth protocol.

The Internet Engineering Task Force (IETF) is a large open international orga-
nization that writes specifications that standardize different parts of the Internet
to make the Internet work better. IETF is a community of network designers,
operators, vendors and researchers concerned with the evolution of the Internet
architecture and the smooth operation of the Internet. [1]

An RFC, Request For Comments, is a document or a document series that contains
technical and organizational notes about the Internet, e.g., protocols, research,
standards, programs and concepts. The RFCs are published with approval from
the IETF. [2]

The OAuth 2.0 Authorization Framework is an Internet Standards Track doc-
ument, a protocol that enables a third-party application to obtain limited access
to an HTTP service.

In traditional client-server authentication models, the client authenticates with
the server using the resource owner’s credentials. In order for third-party applica-
tions to get access to protected resources, the resource owner shares its credentials
with the third-party. There are several problems and limitations with this:

• The third-party application stores the resource owner’s credentials for future

21

22 The OAuth 2.0 Authorization Framework, RFC6749

use, e.g., resource owner’s password in clear text.

• The servers are required to support authentication, e.g., password authen-
tication.

• The resource owner is unable to limit the scope (see below) of the resources
that are accessed by the third-party application.

• The resource owner can only remove the access that one third-party appli-
cation has by removing the access that all third-party applications have, by
changing the third party’s password.

• If the third-party application is compromised, the third-party’s password is
compromised, and the resources that are protected by the password can be
exposed.

In OAuth, the "scope" parameter is used by an app to specify what access is
needed, e.g., user information, such as home address. The authorization server (see
below) uses the "scope" parameter to respond with the access that was granted
(if the granted access is different from the requested access). The OAuth 2.0
introduces an authorization layer, where the client requests access to resources
that are controlled by the resource owner and hosted by the resource server, and
is issued a different set of credentials than those of the resource owner. There are
four roles defined in this protocol:

• Resource Owner: If the resource owner is a person, it is referred to as an
end-user. The resource owner is capable of granting access to a protected
resource.

• Resource Server: The resource server accepts or denies resource requests
that contains access tokens.

• Client: The client is an application that makes protected resource requests
on behalf of the resource owner with its authentication and authorization.
See more information about clients in Section 3.1.

• Authorization Server: The authorization server issues the access tokens
to the client after authenticating the resource owner and obtaining autho-
rization.

The resource server and the authorization server can, for example, be the same
server but exist as different endpoints on this server.

An authorization grant expresses the authorization that the client uses to request
an access token or a refresh token. The authorization is obtained from the re-
source owner. The OAuth 2.0 protocol describes four different grant types, i.e.,
four protocol flows:

• Authorization Code Grant

• Implicit Grant

• Resource Owner Password Credentials Grant

• Client Credentials Grant

The OAuth 2.0 Authorization Framework, RFC6749 23

(The protocol also describes an extensibility mechanism for defining additional
types, which is out of scope for this Thesis.)

3.1 Client Types, Profiles, Registration, Authentication and
Identifier

The two different client types, defined by the OAuth 2.0 protocol are confi-
dential clients and public clients. A confidential client is capable of maintaining
confidential information (requires a trusted back-end server to store the secret(s))
or able to securely authenticate with the authorization server. Public clients are
not capable of maintaining confidential information (e.g, client is executing on a
web-browser based application) and are not able to securely authenticate.

The OAuth 2.0 protocol is designed around three different client profiles: web
application, user-agent-based application and native application. The web appli-
cation is a confidential client running on a web server. Client credentials, tokens
and other confidential information are stored on the web server, i.e., confidential
information is not exposed to the resource owner. The user-agent-based applica-
tion is a public client, where the client code is downloaded from a web server and
executes on a user agent (e.g., web browser) on the device that is used by the re-
source owner. Client credentials are in this case visible/accessible by the resource
owner. A native application is a public client that is installed and executed on
the device used by the resource owner. Client credentials and protocol data are
visible/accessible by the resource owner, but are protected from other servers and
applications.

The OAuth 2.0 protocol does not specify how the client should register with the
authorization server, but it typically involves end-user interaction with an HTML
registration form. The main purpose of client registration is to establish a trust
relation and obtain the client properties (e.g., redirection URI and client type)
that are required by the authorization server. Registration can, for example, be
accomplished using a self-issued or third-party-issued assertion, or by the autho-
rization server performing client discovery using a trusted channel. When the
client is registered, the client developer shall specify the client type, provide the
client redirection URIs and include any other information that is required by the
authorization server. Registration is a crucial process and depending on the use
case, and if the user interaction and vetting process is very involved or not. We
do not consider the registration process in this thesis.

Client authentication for confidential clients can be done with any form or
method that is meeting the authorization server’s security requirements. The
confidential clients are usually issued a set of client credentials used for authenti-
cating with the authorization server (e.g., client password). Client authentication
for public clients may be established with the authorization server, but the au-
thorization server must not rely on public client authentication for the purpose of
identifying the client. Confidential clients or other clients that are issued client

24 The OAuth 2.0 Authorization Framework, RFC6749

credentials must authenticate with the authorization server when making requests
to the token endpoint. Client authentication is used for:

• Refresh tokens, see Section 3.3.1, and authorization codes are bound to the
client they were issued to. The client authentication is extra important
when the authorization code is issued over an insecure channel or when the
redirection URI has not been registered in full.

• It is more efficient to change a single set of client credentials than revoking
an entire set of refresh tokens, in the case where a client gets compromised,
i.e., preventing an attacker from abusing stolen refresh tokens (they can not
be used without the client credentials or identifier).

• Periodic credential rotation is recommended when implementing authenti-
cation management best practices. It is also in this case easier to rotate
a single set of client credentials, instead of rotating an entire set of refresh
tokens.

The client identifier is a unique string that is representing the registration infor-
mation provided by the client. The client identifier is issued by the authorization
server and is unique to the server. The identifier is not a secret and it is exposed
to the resource owner. Therefore, the client identifier must not be used alone for
client authentication.

3.2 Protocol Endpoints

There are three endpoints defined by the OAuth 2.0 protocol: the authorization
endpoint, the token endpoint and the redirection endpoint. The two authorization
server endpoints (HTTP resources) are the authorization endpoint and the token
endpoint, while the redirection endpoint is the client endpoint. Both the autho-
rization server endpoints are not used by all the authorization grants defined in
this protocol.

3.3 Tokens

This section describes the tokens that are used in the OAuth 2.0 protocol to access
protected resources. The two tokens defined in the protocol are access tokens and
refresh tokens.

3.3.1 Access Tokens and Refresh Tokens

An access token is a credential that is used to access protected resources. It is an
opaque string or a JSON web token that is issued to the client, which is repre-
senting an authorization instead of using different authorization constructs, e.g.,
username and password. The tokens can be generated using different algorithms,
have different life-time and size, have different scopes of access, and have crypto-
graphic properties.

The OAuth 2.0 Authorization Framework, RFC6749 25

A refresh token is a credential that is used to obtain new or additional access
tokens from the authorization server. An access token may have expired or a dif-
ferent scope (than the current access token has) might be requested by the client.
In both cases, the client can send a refresh token to the authorization server to
obtain a new access token. Only the access tokens, and not the refresh tokens, are
sent to the resource server.

3.3.2 Issuing an Access Token

This section describes the successful response and the error response to an access
token request.

3.3.3 Successful Response

An access token and, optionally, a refresh token is sent from the authorization
server to the client if the access token request is valid and authorized. The following
parameters are included in the access token response:

//REQUIRED PARAMETERS:
access_token

The ac c e s s token
token_type

The type o f the token that i s i s su ed by the
au tho r i z a t i on se rver , examples o f a c c e s s token types
are " bearer " and "mac"

//RECOMMENDED PARAMETERS:
exp i re s_in

The ac c e s s token ’ s l i f e t im e in seconds , from the
time that the re sponse was generated

//OPTIONAL PARAMETERS:
re f resh_token

The r e f r e s h token
scope //REQUIRED IF PRESENT IN REQUEST

A l i s t o f space−de l imited , case−s e n s i t i v e s t r i n g s
that s p e c i f i e s the scope o f the r eques t

The "application/json" media type is used for the HTTP response, which includes
the parameters above. The parameters are included as JSON strings and JSON
numbers into a JSON object. The HTTP "Cache-Control" with the value "no-
store" and "Pragma" with the value "no-cache" must be included in the response.
An example of a successful access token response:

HTTP/1 .1 200 OK
Content−Type : app l i c a t i o n / j son ; cha r s e t=UTF−8
Cache−Control : no−s t o r e
Pragma : no−cache

{
" access_token " :"2YotnFZFEjr1zCsicMWpAA" ,

26 The OAuth 2.0 Authorization Framework, RFC6749

"token_type " :" example " ,
" exp i re s_in " :3600 ,
" re f resh_token " :"tGzv3JOkF0XG5Qx2TlKWIA" ,
"example_parameter " :" example_value"

}

3.3.4 Error Response

The following parameters are included in the error response:

//REQUIRED PARAMETERS
e r r o r

An ASCII e r r o r code form the f o l l ow i ng :
inva l id_reques t
i n v a l i d_c l i e n t
inva l id_grant
unauthor i zed_c l i ent
unsupported_grant_type
inva l id_scope

//OPTIONAL PARAMETERS
e r ro r_de s c r i p t i on

Human−r eadab le ASCII with add i t i ona l in fo rmat ion
er ro r_ur i

URI to a web page with human−r eadab le in fo rmat ion about
the e r r o r

The "application/json" media type is used for the HTTP response, which includes
the parameters above. The parameters are included as JSON strings and JSON
numbers into a JSON object. The HTTP "Cache-Control" with the value "no-
store" and "Pragma" with the value "no-cache" must be included in the response.
An example of an error response:

HTTP/1 .1 400 Bad Request
Content−Type : app l i c a t i o n / j son ; cha r s e t=UTF−8
Cache−Control : no−s t o r e
Pragma : no−cache

{
" e r r o r " : " inva l id_reques t "

}

3.4 HTTP Redirections

The protocol uses HTTP 302 status code for HTTP redirections. However, other
methods are allowed and are considered to be implementation details. The HTTP
redirections in the different OAuth 2.0 flows are used to redirect the resource
owner’s user-agent to other destinations. The redirections are made by the client
or the authorization server.

The OAuth 2.0 Authorization Framework, RFC6749 27

3.5 Authorization Code Flow

This section describes the authorization code flow of the OAuth 2.0 protocol. The
purpose of the messages in Figure 3.1 are briefly explained below, and subsequently
we describe messages 1, 3, 4, and 5 in more detail in Appendix A.1. OAuth 2.0
is not an authentication protocol. Therefore, the user authentication, i.e., message
2, is not explained in detail in this OAuth 2.0 summary.

• Obtain both access tokens and refresh tokens

• Optimized for confidential clients

• Redirection-based flow, see Section 3.4, which means that the client must
be capable of interacting with the resource owner’s user-agent and receiving
incoming requests from the authorization server (via redirection)

Figure 3.1: An overview of the authorization code flow.

Message 1: Client directs the resource owner’s user-agent to the authorization
endpoint. Client identifier, requested scope, local state and redirection URI is
included. See Section A.1.1 for more details.

Message 2: The authorization server authenticates the resource owner via the
user-agent and determines if the resource owner grants or denies the client’s access
request.

Message 3: If the resource owner grants access, the authorizations server redi-
rects the user-agent back to client (using the redirection URI that also includes
an authorization code and any local state from message 1). See Section A.1.2 and
A.1.3 for more details.

Message 4: Client authenticates with the autorization server and requests an
access token from the authroization server’s token endpoint. The request includes
the redirection URI from message 1 and the authorization code from message 3.
See Section A.1.4 for more details.

28 The OAuth 2.0 Authorization Framework, RFC6749

Message 5: The authorization server authenticates the client, validates the au-
throization code and ensure that the redirection URI is the same as the one in
message 3. If the client is authenticated and the code and the redirection URI is
valid, the authorization server responds with an access token and (optionally) a
refresh token. See Section A.1.5 for more details.

3.6 Implicit Flow

This section describes the implicit flow of the OAuth 2.0 protocol. This flow
is optimized for public clients, compared to the authorization code flow that is
optimized for confidential clients. The purpose of the messages in Figure 3.2 are
briefly explained below, and subsequently we describe messages 1 and 3 in more
detail in Appendix A.2.

• Obtain access tokens

• Optimized for public clients, known to operate at a particular redirection
URI

• Redirection-based flow, see Section 3.4, which means that the client must
be capable of interacting with the resource owner’s user-agent and receiving
incoming requests from the authorization server (via redirection)

• Client receives token response as a result of the authorization request (the
authorization server only has one endpoint in this case)

• No client authentication is performed by the authorization server in this
flow.

• Relies on the presence of the resource owner and the registration of the redi-
rection URI. The access token is encoded into the redirection URI. There-
fore, the access token may be exposed to the resource owner and other
applications on the same device.

Figure 3.2: An overview of the implicit flow.

Message 1: Client directs the resource owner’s user-agent to the authorization
endpoint. Client identifier, requested scope, local state and redirection URI is
included. See Section A.2.1 for more details.

The OAuth 2.0 Authorization Framework, RFC6749 29

Message 2: The authorization server authenticates the resource owner via the
user-agent and determines if the resource owner grants or denies the client’s access
request.

Message 3: If the resource owner grants access, the authorizations server redi-
rects the user-agent back to client (using the redirection URI that also includes the
access token in the URI fragment). See Section A.2.2 for more details. Otherwise,
an error response is sent (see Section A.2.3).

Message 4: The user-agent makes a request to the web-hosted client resource
by following the redirection instructions. The user-agent retains the fragment
information locally, and does not include the fragment in the request to the web-
hosted client resource.

Message 5: The web-hosted client resource returns a web page that can ac-
cess the full redirection URI, as well as the user-agent’s locally retained fragment
(e.g., extraction of access token is possible).

Execute Script: The user-agent executes the script received from the web-hosted
client resource locally, which extracts the access token.

Message 6: The user-agent passes the access token to the client.

3.7 Resource Owner Password Credentials Flow

This section describes the resource owner password credentials flow of the OAuth
2.0 protocol. The purpose of the messages in Figure 3.3 are briefly explained
below, and subsequently we describe all messages in more detail in Appendix A.3.

• Suitable when the resource owner has a trust relationship with the client
(e.g., device operating system or a highly privileged application)

• This flow should only be used when other flows are not viable

• Suitable for clients that are able to obtain the resource owner’s credentials
(username and password, using an interactive form)

• Also used to migrate existing clients

30 The OAuth 2.0 Authorization Framework, RFC6749

Figure 3.3: An overview of the resource owner password credentials
flow.

Message 1: The resource owner sends its username and password to the client.
See Section A.3.1 for more details.

Message 2: The client sends the username and password, received in message 1,
to the token endpoint at the authorization server to request an access token. The
client also authenticates with the authorization server when making the request.
See Section A.3.2 for more details.

Message 3: The authorization server authenticates the client, validates the re-
source owner credentials and issues an access token if client is authenticated and
the credentials are valid. See Section A.3.3 for more details.

3.8 Client Credentials Flow

This section describes the client credentials flow of the OAuth 2.0 protocol.

In this flow, the client uses its credentials to request an access token. This means
that the client authentication is used as the authorization grant, i.e., no additional
authorization request is needed.

The purpose of the messages in Figure 3.4 are briefly explained below, and subse-
quently we describe all messages in more detail in Appendix A.4.

Figure 3.4: An overview of the client credentials flow.

Message 1: The client authenticates with the authorization server and requests
an access token from the token endpoint at the authorization server. See Section

The OAuth 2.0 Authorization Framework, RFC6749 31

A.4.1 for more details.
Message 2: The authorization server authenticates the client, and issues an access
token if the client authentication is valid. See Section A.4.2 for more details.

32 The OAuth 2.0 Authorization Framework, RFC6749

Chapter4
OpenID Connect Protocol

This chapter is a summary of OpenID Connect, which is an identity layer on top
of the OAuth 2.0 protocol [8]. This part describes the differences and additions of
OpenID Connect to the OAuth 2.0 protocol. The description of the flows of the
OAuth 2.0 protocol can be found in Chapter 3.

OpenID Connect enables clients to verify the identity of the end-user based on
authentication performed by an authorization sever. An ID token is a primary
extension to the OAuth 2.0 protocol, and the ID token extends the OAuth 2.0
protocol to also include authentication of end-users, see Section 4.5. OpenID Con-
nect also enables clients to obtain basic profile information about the end-user by
using claims (in an interoperable and REST-like manner).

4.1 Terminology

The following terms are defined by the OpenID Connect specification:

Authentication Context: A client (RP, see below) can require an authentica-
tion context, i.e., information, before making a decision about an authentication
response. The information can, for example, include the authentication method
used.

Authentication Context Class: A set of authentication methods or proce-
dures that are considered to be equivalent in a specific context.

Authentication Context Class Reference: Identifier of an authentication
context class.

Claim: A piece of information that is asserted about an entity, e.g., an end-
user.

OpenID Provider (OP): An authorization server, defined in the OAuth 2.0
protocol, that also is capable of authenticating the end-user and providing claims
to a client (RP) about the authentication event and the end-user.

33

34 OpenID Connect Protocol

Relying Party (RP): A client application, defined in the OAuth 2.0 proto-
col, that also requires end-used authentication and claims from an authorization
server (OP).

Subject Identifier: A locally unique and never reassigned identifier within the
issuer (the entity that issues a set of claims) for the end-user, which is intended to
be consumed by the client.

4.2 Authentication

The process of authentication is used to achieve sufficient confidence in the bind-
ing between the entity (e.g., an end-user) and the presented identity (i.e., value
that uniquely characterizes an entity in a specific context). The result of the au-
thentication defined by this protocol is the ID Token, see Section 4.5, and the
authentication is performed to log in the end-user or to determine that the end-
user already is logged in. The result of the authentication (the ID token) that is
performed by the server is returned to the client in a secure manner, so that the
client can rely on it. This is the reason why the client is called the relying party
(RP) in this protocol.

The flows that are defined and used in the OpenID Connect protocol are the
authorization code flow, the implicit flow, and the hybrid flow. The flows deter-
mine how the ID token and the access token are returned to the client. Table 4.1
gives a summary of the three flows, and is a guidance to help choose which flow
to use depending on context.

Property Authorization Code Flow Implicit Flow Hybrid Flow
All tokens returned from Authorization Endpoint no yes no

All tokens returned from Token Endpoint yes no no
Tokens not revealed to User Agent yes no no

Client can be authenticated yes no yes
Refresh Token possible yes no yes

Communication in one round trip no yes no
Most communication server-to-server yes no varies

Table 4.1: OpenID Connect Authentication Flows

4.3 Requesting Claims using Scope Values

Claims can be requested using scope values, which specifies what access privileges
are being requested for access tokens, i.e., what resources will be available when
they are used to access OAuth 2.0 protected endpoints. Multiple scopes may be
requested by creating a space delimited, case sensitive list of ASCII scope values.
The following scope values are defined by the OpenID Connect specification to
request claims:

//OPTIONAL VALUES:
p r o f i l e

The end−user ’ s d e f au l t p r o f i l e c la ims ("name" ,

OpenID Connect Protocol 35

"family_name " , "given_name" , "middle_name" ,
"nickname " , " preferred_username " , " p r o f i l e " ,
" p i c tu r e " , "webs i te " , " gender " , " b i r thdat e " ,
" zone in f o " , " l o c a l e " , and "updated_at ")

emai l
The " emai l " and the " ema i l_ve r i f i ed " c la ims

address
The " address " c la im

phone
The "phone_number" and "phone_number_verified"
c la ims

o f f l i n e_a c c e s s
Requests that an OAuth 2 .0 r e f r e s h token i s i s su ed
that can be used to obta in an ac c e s s token that
grants a c c e s s to the end−user ’ s u s e r i n f o endpoint ,
even i f the end−user i s not logged in

The claims of the scope values profile, email, address and phone are returned from
the UserInfo Endpoint, see Section 4.6. But when no access token is issued (e.g.,
when the "response_type" has the value "id_token"), the claims are returned in
the ID token.

A "prompt" parameter with the value "consent" must be present for permitting
offline access (unless specified otherwise). The authorization server (OP) must
always obtain a consent when returning a refresh token that gives offline access,
since it is not always sufficient with a previous consent. The authorization server
(OP) must also: ignore the "offline_access" request if "response_type" value is
"code", receive or have consent for all clients (RPs) when the "application_type"
is "web" (the authorization server (OP) should receive or have consent for all
clients (RPs) when the "application_type" is "native").

Example of a scope request:

scope=openid p r o f i l e emai l phone

4.4 Client Authentication

The following client authentication methods are defined for clients to authenticate
with the authorization server when using the token endpoint (if no client method
is registered, the default method is "client_secret_basic"):

c l i en t_se c r e t_bas i c
C l i en t has a c l i e n t_ s e c r e t va lue from the
au tho r i z a t i on se rver , au then t i c a t e s with the
au tho r i z a t i on s e r v e r us ing the HTTP bas i c
au then t i c a t i on scheme

c l i en t_sec r e t_pos t
C l i en t has a c l i e n t_ s e c r e t va lue from the

36 OpenID Connect Protocol

au tho r i z a t i on se rver , au then t i c a t e s with the
au tho r i z a t i on s e r v e r by in c l ud ing the c l i e n t
c r e d e n t i a l s in the r eques t body

c l i en t_sec re t_jwt
C l i en t has a c l i e n t_ s e c r e t va lue from the
au tho r i z a t i on se rver , au then t i c a t e s with the
au tho r i z a t i on s e r v e r by c r e a t i n g a JWT (us ing HMAC
SHA algorithm , e . g . , HMAC SHA−256 , by us ing the
o c t e t s o f the UTF−9 r ep r e s en t a t i on o f the
c l i e n t_ s e c r e t as the shared key) , the f o l l ow i ng
c la ims are inc luded in the JWT:

//REQUIRED CLAIMS:
i s s
sub
aud
j t i
exp
//OPTIONAL CLAIMS:
i a t

The au then t i c a t i on token must be sent as the value
o f the " c l i e n t_a s s e r t i o n " parameter , and the value
o f the " c l i en t_as se r t i on_type " must be
"urn : i e t f : params : oauth : c l i e n t −a s s e r t i on−type : jwt−bearer

" .
See JSON Web Token (JWT) P r o f i l e f o r OAuth 2 .0
C l i en t Authent icat ion and Author i zat ion Grants [13]
and Asse r t i on Framework f o r OAuth 2 .0 C l i en t
Authent icat ion and Author i zat ion Grants [14] f o r more
in fo rmat ion .

private_key_jwt
C l i en t has r e g i s t e r e d a pub l i c key , the JWT i s
s igned us ing that key , the f o l l ow i ng c la ims are
inc luded in the JWT:

//REQUIRED CLAIMS:
i s s
sub
aud
j t i
exp
//OPTIONAL CLAIMS:
i a t

The au then t i c a t i on token must be sent as the value
o f the " c l i e n t_a s s e r t i o n " parameter , and the value
o f the " c l i en t_as se r t i on_type " must be
"urn : i e t f : params : oauth : c l i e n t −a s s e r t i on−type
: jwt−bearer " . See JSON Web Token (JWT) P r o f i l e f o r
OAuth 2 .0 C l i en t Authent icat ion and Author i zat ion

OpenID Connect Protocol 37

Grants [13] and Asse r t i on
Framework f o r OAuth 2 .0 C l i en t Authent icat ion and
Author i zat ion Grants [14] f o r more in fo rmat ion .

The f o l l ow i ng i s an example o f a token request , a
HTTP POST, invo l v i ng c l i e n t authent i ca t i on , sent
by the c l i e n t to the token endpoint :

POST / token HTTP/1 .1
Host : s e r v e r . example . com
Content−Type : app l i c a t i o n /x−www−form−ur lencoded

grant_type=author izat ion_code&
code=i1WsRn1uB1&
c l i en t_ id=s6BhdRkqt3&
c l i en t_as se r t i on_type=urn%3Ai e t f%3Aparams

%3Aoauth%3Acl ient−a s s e r t i on−type
%3Ajwt−bearer&

c l i e n t_a s s e r t i o n=PHNhbWxwOl . . . ZT
none

C l i en t does not authent i ca t e with the token
endpoint , which might be the case in the imp l i c i t
f low (the token endpoint i s not used in t h i s f low)
or f o r a pub l i c c l i e n t (no c l i e n t c r e d e n t i a l s)

4.5 ID Token

An ID token is a primary extension to the OAuth 2.0 protocol. The ID token is
represented as a JSON Web Token (JWT) and is a security token that contains
claims about the authentication performed by an authorization server of an end-
user, when the end-user is using a client. In other words, the ID token extends
the OAuth 2.0 protocol to also include authentication of end-users. The following
claims are defined in the OpenID Connect, which are used within the ID Token:

//REQUIRED CLAIMS:
i s s

A case s e n s i t i v e URL that uses the https scheme ,
conta in ing scheme , host , and opt i ona l l y , port
number and path components , and i s the i s s u e r
i d e n t i f i e r f o r the i s s u e r o f the response

sub
A case s e n s i t i v e s t r i n g that i s the sub j e c t i d e n t i f i e r ,

s e e Sec t i on 4.1
aud

A s i n g l e case s e n s i t i v e s t r i n g that d e f i n e s the
audience that the ID token i s intended for , must
conta in the OAuth 2 .0 " c l i en t_ id " o f the c l i e n t (RP

38 OpenID Connect Protocol

) , may a l s o conta in other i d e n t i f i e r s f o r aud iences
(an array o f case s e n t i t i v e s t r i n g s)

exp
JSON number r ep r e s en t i ng the exp i r a t i on time (in

seconds) on or a f t e r which the ID token must not be
accepted f o r p ro c e s s i ng

i a t
JSON number r ep r e s en t i ng the time (in seconds) at which

the JWT was i s su ed
//OPTIONAL CLAIMS:
auth_time //REQUIRED IF "max_age" OR "auth_time" IS PRESENT

IN REQUEST
JSON number r ep r e s en t i ng the time (in seconds) at which

the end−user au then t i c a t i on occurred
nonce //REQUIRED IF PRESENT IN REQUEST

A case s e n s i t i v e s t r i n g that a s s o c i a t e s a c l i e n t
s e s s i o n with an ID token to mi t i ga t e r ep lay attacks
, passed on unmodif ied from the au then t i c a t i on
reque s t

acr
A case s e n s i t i v e s t r i n g that i s the au then t i c a t i on

context c l a s s r e f e r en c e , where value "0" means that
the au then t i c a t i on o f the end−user did not meet

the requi rements (s p e c i f i e d in ISO/IEC 29115 [10])
f o r l e v e l 1 , " l e v e l 0" au then t i c a t i on can , f o r
example , be appropr ia te f o r au then t i c a t i on us ing a
long−l i v e d browser cook i e but not appropr ia te f o r
au tho r i z a t i on o f any r e sou r c e o f monetary value

amr
JSON array o f case s e n s i t i v e s t r i n g s that are the

au then t i c a t i on methods r e f e r en c e s , i . e . , the
au then t i c a t i on methods used in the au then t i c a t i on

azp
A case s e n s i t i v e s t r i n g conta in ing a StringOrURI value

that r ep r e s en t s the author i zed party to which the
ID token was i s sued , i t must conta in the OAuth 2 .0
c l i e n t ID o f t h i s party , the c la im i s only needed
when the ID token has a s i n g l e audience value and
that audience i s d i f f e r e n t than the author i zed
party

The ID tokens must be signed using JSON Web Signature (JWS) and, optionally,
also encrypted using JSON Web Encryption (JWE). If the ID token is both singed
and encrypted, it is referred to as a Nested JWT and is providing authentication,
integrity, non-repudiation and confidentiality. Unless the response type returns no
ID token from the authorization endpoint (or the client explicitly requested the
use of "none" at registration time), the id tokens must not use the "alg" value
"none". The references to keys used are communicated in advance using (the au-

OpenID Connect Protocol 39

thorization server’s (OP’s)) discovery and registration parameters.

An example of a set of claims in an ID token:

{
" i s s " : " https : // s e r v e r . example . com" ,
"sub " : "24400320" ,
"aud " : "s6BhdRkqt3 " ,
"nonce " : "n−0S6_WzA2Mj" ,
"exp " : 1311281970 ,
" i a t " : 1311280970 ,
"auth_time " : 1311280969 ,
" acr " : "urn : mace : incommon : iap : s i l v e r "

}

4.6 UserInfo Endpoint

The userinfo endpoint at the authorization server is an OAuth 2.0 protected re-
source that returns claims to the client (RP) about the authenticated end-user, in
response to a userinfo request with an access token included. The claims in the
userinfo response are usually name/value-pairs of a JSON object. All communi-
cation with the userinfo endpoint must utilize TLS. The userinfo endpoint must
support the HTTP GET and HTTP POST methods, and accept access tokens as
bearer tokens (see OAuth 2.0 Bearer Token Usage [11]).

4.6.1 UserInfo Request

A userinfo request is sent from the client (RP) to the userinfo endpoint at the
authorization server by using the HTTP GET or the HTTP POST method. How-
ever, the HTTP GET method is recommended, as well as the access token being
sent using the authorization header field. The access token must be sent as a
bearer token.

An example of a userinfo request:

GET / u s e r i n f o HTTP/1 .1
Host : s e r v e r . example . com
Author i zat ion : Bearer SlAV32hkKG

4.6.2 UserInfo Response

A userinfo response is sent from the userinfo endpoint at the authorization server
to the client (RP). If the userinfo request sent does not create an error condition,
a successful userinfo response is sent (see Section 4.6.2). Otherwise, an authenti-
cation error response is sent (see Section 4.6.2).

40 OpenID Connect Protocol

Successful UserInfo Response

If the userinfo response body is a text JSON object, the "application/json" format
must be used for the userinfo response, sent from the userinfo endpoint to the client
(RP). If the userinfo response is signed and/or encrypted, the "application/jwt"
format must be used for the userinfo response, since the claims are returned in a
JWT in this case. The userinfo endpoint must return a content-type header to
indicate which format is being used. If the userinfo response is signed, it should
contain the "iss" (authorization server’s (OP’s) issuer identifier URL) and "aud"
(client id value) claims.

The userinfo response includes the claims that were included in the userinfo re-
quest, except for values that the authorization server (OP) may elect due to privacy
reasons. The "sub" claim must always be returned in the userinfo response.

Example of a userinfo response, a HTTP response:

HTTP/1 .1 200 OK
Content−Type : app l i c a t i o n / j son

{
"sub " : "248289761001" ,
"name" : "Jane Doe" ,
"given_name " : "Jane " ,
" family_name " : "Doe" ,
" preferred_username " : " j . doe " ,
" emai l " : " janedoe@example . com" ,
" p i c tu r e " : " http :// example . com/ janedoe /me . jpg "

}

UserInfo Error Response

If an error condition occurs, the userinfo endpoint at the authorization server will
send a userinfo error response to the client (RP), defined in Section 3 of OAuth
2.0 Bearer Token Usage [12].

Example of a userinfo error response, a HTTP response:

HTTP/1 .1 401 Unauthorized
WWW−Authent icate : e r r o r="inval id_token " ,

e r r o r_de s c r i p t i on="The Access Token exp i red "

UserInfo Response Validation

The client (RP) must verify that the authorization server (OP) was the intended
server through a TLS certificate check. If the
"userinfo_encrypted_response_alg" parameter is provided by the client (RP) dur-
ing registration, the client must decrypt the response using the keys that are spec-

OpenID Connect Protocol 41

ified during registration. The client should validate the signature according to
JWS if the userinfo response was signed.

4.7 Authorization Code Flow

This section describes the authentication using the authorization code flow. The
purpose of the messages in Figure 4.1 are briefly explained below, and subsequently,
we describe the messages, the endpoints, and the ID and access tokens in more
detail in Appendix B.1.

• All tokens are returned from the token endpoint.

• The authorization endpoint returns an authorization code to the client,
which can be exchanged for an ID token and an access token at the token
endpoint. Hence, no tokens are exposed to the user-agent or other malicious
applications with access to the user-agent.

• The authorization server can authenticate the client before exchanging the
authorization code for an access token.

• Suitable for confidential clients.

Figure 4.1: An overview of Authentication using the Authorization
Code Flow.

Message 1: The end-user sends a resource request to the client.

Prepare Authentication Request: The client prepares the authentication re-
quest with the desired parameters. See Section B.1.4 for more details.

Message 2: The client sends the authentication request to the authorization
endpoint at the authorization server. See Section B.1.4 for more details.

42 OpenID Connect Protocol

Authenticate End-User: The authorization server authenticates the end-user.
See Section B.1.5 for more details.

End-User Consent/Authorization: The authorization server obtains the end-
user consent/authorization. See Section B.1.6 for more details.

Message 3: The authorization server sends the end-user back to the client with
the authorization code. See Section B.1.7 for more details.

Message 4: The client sends a token request to the token endpoint at the au-
thorization server using the authorization code. See Section B.1.8 for more details.

Message 5: The authorization server sends a token response to the client con-
taining an ID token and an access token (and optionally a refresh token). See
Section B.1.9 for more details.

Validate Token: The client validates the token. See Section B.1.9 for more
details.

Message 6: The client retrieves the end-user’s subject identifier.

4.8 Implicit Flow

This section describes the authentication using the implicit flow. The purpose
of the messages in Figure 4.2 are briefly explained below, and subsequently, we
describe the messages, the endpoints, and the ID and access tokens in more detail
in Appendix B.2.

• All tokens are returned from the authorization endpoint, the token endpoint
is not used.

• Clients are usually implemented in a browser using a scripting language.

• Access tokens and ID tokens might be exposed to end-users and applications
that have access to the end-user’s user-agent, since the access tokens and id
tokens are returned directly to the client.

• The authorization server does not perform client authentication.

OpenID Connect Protocol 43

Figure 4.2: An overview of Authentication using the Implicit Flow.

Message 1: The end-user sends a resource request to the client.

Prepare Authentication Request: The client prepares the authentication re-
quest with the desired parameters. See Section B.2.4 for more details.

Message 2: The client sends the authentication request to the authorization
endpoint at the authorization server. See Section B.2.4 for more details.

Authenticate End-User: The authorization server authenticates the end-user.
See Section B.2.5 for more details.

End-User Consent/Authorization: The authorization server obtains the end-
user consent/authorization. See Section B.2.6 for more details.

Message 3: The authorization server sends the end-user back to the client with
the ID token and, if requested, an access token. See Section B.2.7 for more details.

Validate Token: The client validates the ID token and, if requested, an ac-
cess token. See Section B.2.7 for more details.

Message 4: The client retrieves the end-user’s subject identifier.

4.9 Hybrid Flow

This section describes the authentication using the hybrid flow. The purpose
of the messages in Figure 4.3 are briefly explained below, and subsequently, we
describe the messages, the endpoints, and the ID and access tokens in more detail
in Appendix B.3.

• Tokens are returned both from the authorization endpoint and the token
endpoint.

44 OpenID Connect Protocol

Figure 4.3: An overview of Authentication using the Hybrid Flow.

Message 1: The end-user sends a resource request to the client.

Prepare Authentication Request: The client prepares the authentication re-
quest with the desired parameters. See Section B.3.5 for more details.

Message 2: The client sends the authentication request to the authorization
endpoint at the authorization server. See Section B.3.5 for more details.

Authenticate End-User: The authorization server authenticates the end-user.
See Section B.3.6 for more details.

End-User Consent/Authorization: The authorization server obtains the end-
user consent/authorization. See Section B.3.7 for more details.

Message 3: The authorization server sends the end-User back to the client with
the authorization code and one or more parameters (depending on the response
type). See Section B.3.8 for more details.

Message 4: The client sends a token request to the token endpoint at the au-
thorization server using the authorization code. See Section B.3.9 for more details.

Message 5: The authorization server sends a token response to the client contain-
ing an ID token and an access token (and optionally a refresh token). The tokens
are sent either from the authorization endpoint, the token endpoint or both the
authorization endpoint and the token endpoint. See Section B.3.10 for more de-
tails.

Validate Token: The client validates the token. See Section B.3.2 and B.3.3
for more details.

Message 6: The client retrieves the end-user’s subject identifier.

Chapter5
Proof Key for Code Exchange by OAuth

Public Clients

This chapter is a summary of a specification that specifies an attack that OAuth
2.0 public clients are exposed to, for which the technique Proof Key for Code Ex-
change (PKCE) provides a mitigation [9].

There is a security vulnerability in the OAuth 2.0 protocol for public clients in
the authorization code flow, see Section 3.5, that can be mitigated by dynami-
cally creating a cryptographically random key called "code verifier". The PKCE
specification adds additional parameters to some requests and responses in the au-
thorization code flow, to prevent an attacker from intercepting the authorization
code in the authorization code Flow.

5.1 Authorization Code Interception Attack Flow

This section describes how an interception attack can occur in the OAuth 2.0
authorization code flow.

Figure 5.1: An overview of an Authorization Code Interception At-
tack.

45

46 Proof Key for Code Exchange by OAuth Public Clients

Message 1: The application running at the end device makes an authorization
request to the authorization server via the operating system/browser. The mes-
sage sent from the application to the operating system/browser is sent through a
safe API that cannot be intercepted (may potentially be intercepted in advanced
attack scenarios). When the message is sent from the operating system/browser
to the authorization server it is protected by TLS (OAuth requirement), which
means that the message cannot be intercepted.

Message 2: The authorization server sends the authorization code to the op-
erating system/browser.

Message 3: The authorization code is sent to the requester (the application)
via the redirection endpoint URI that was given in the authorization request.
However, it is possible for a malicious application to register itself as a handler to
the legitimate application. This means that the malicious app can intercept the
authorization code.

Message 4: The malicious application sends a token request to the authorization
server by including the authorization code intercepted in the previous step.

Message 5: The authorization server sends a token response to the malicious
application.

However, there are pre-conditions for this attack to happen:

• The operating systems must allow multiple application registrations, since
the malicious application needs to be registered by the attacker on the client
device. A custom URI scheme must be enabled to be registered by multiple
applications.

• The OAuth 2.0 authorization code grant is used.

• The attacker has access to the "client_id" and the "client_secret", if pro-
visioned.

• The attacker is either able to observe the response from the authorization
endpoint at the authorization server via the installed application, or re-
sponses and requests. The attacker is not able to act as a man in the
middle. The first scenario is mitigated when "code_challenge_method"
value is "plain". The second (and first) scenario is mitigated when
"code_challenge_method" value is "S256" or another value defined by a
cryptographically secure "code_challenge_method" extension.

5.2 PKCE Protocol Flow

This section describes the PKCE protocol flow, that adds additional parameters
to the OAuth 2.0 authorization code flow to mitigate the attack described in the
previous section.

Proof Key for Code Exchange by OAuth Public Clients 47

Figure 5.2: An overview of the PKCE Protocol Flow.

Message 1: The client creates a secret, called "code_verifier", that it records.
See Section 5.2.1 for more details. The "code_verifier" is derived into a trans-
formed version "t(code_verifier)" that is called the
"code_challenge", i.e., "t(code_verifier)"="code_challenge". See Section 5.2.2
for more details. The "t(code_verifier)" is sent to the authorization server at the
authorization endpoint together with the authorization request and the transfor-
mation method "t_m". See Section 5.2.3 for more details.

Message 2: The authorization endpoint records the "t(code_verifier)" and the
transformation method "t_m". The authorization endpoint responds to the client
with an authorization code, see Section 5.2.4 for more details.

Message 3: When the client sends the access token request, it includes the au-
thorization code (as in the OAuth 2.0 protocol) and the "code_verifier" that it
stored before sending Message 1. See Section 5.2.5 for more details.

Message 4: The token endpoint at the authorization server transforms the
"code_verifier" and compares it to the "t(code_verifier)". See Section 5.2.6 for
more details. If they are equal, it sends a successful token response. Otherwise, it
sends a token error response.

5.2.1 Client Creates a Code Verifier

The code verifier is a high-entropy cryptograhpic random string, that has a length
between 43-128 characters. The code verifier should have enough entropy to make
it hard to guess, and it is recommended to create a 32-octet sequence (by using a
suitable random number generator). The octet sequence is then base64url-encoded
to produce a 43-octet URL safe string to use as the code verifier. The following is
the ABNF (Augmented Backus-Naur Form) for the code verifier:

code−v e r i f i e r = 43∗128 unreserved
unreserved = ALPHA / DIGIT / "−" / " ." / "_" / "~"
ALPHA = %x41−5A / %x61−7A

48 Proof Key for Code Exchange by OAuth Public Clients

DIGIT = %x30−39

5.2.2 Client Creates the Code Challenge

The code verifier is transformed into a code challenge by using the "plain" trans-
formation, or the "S256" transformation:

p l a i n
code_chal lenge = code_ve r i f i e r

S256
code_chal lenge = BASE64URL−ENCODE(SHA256(ASCII (

c od e_ve r i f i e r)))

The client must use the "S256" transformation if is capable of doing so, since it is
Mandatory To Implement (MTI) on the server.

The following is the ABNF for the code challenge:

code−cha l l eng e = 43∗128 unreserved
unreserved = ALPHA / DIGIT / "−" / " ." / "_" / "~"
ALPHA = %x41−5A / %x61−7A
DIGIT = %x30−39

5.2.3 Client Sends the Code Challenge with the Authorization Request,
Message 1

The parameters for the authorization request are defined in the OAuth 2.0 pro-
tocol, see Section A.1.1, except for the following additional parameters defined in
this protocol:

//REQUIRED PARAMETERS:
code_chal lenge

The code cha l l eng e
//OPTIONAL PARAMETERS:
code_challenge_method

The va lue s are "S256" or " p l a i n " , the d e f au l t va lue i s
" p l a i n " i f the parameter i s not inc luded

5.2.4 Server Returns the Code, Message 2

The server must associate the values of the "code_challenge" and the "code_challenge_method"
with the authorization code before sending the authorization response, either by
storing the values encrypted in the code or store them on the server associated with
the code. However, the server must not include the value of the "code_challenge"
in the client requests that in a form that other entities can extract.

Proof Key for Code Exchange by OAuth Public Clients 49

Error Response

The authorization endpoint at the authorization server must return an autho-
rization error response with the "error" value set to "invalid_request", if the
"code_challenge" parameter is not included in the request. The "error_description"
(or the response of the "error_uri") should be, for example, code challenge re-
quired. The authorization endpoint at the authorization server must return an
authorization error response with the "error" value set to "invalid_request", if the
requested transformation is not supported by the server. The "error_description"
(or the response of the "error_uri") should be, for example, transform algorithm
not supported.

5.2.5 Client Sends the Authorization Code and the Code Verifier to the
Token Endpoint, Message 3

The parameters for the token request are defined in the OAuth 2.0 protocol, see
Section A.1.4, except for the following additional parameters defined in this pro-
tocol:

//REQUIRED PARAMETERS:
c od e_ve r i f i e r

The code v e r i f i e r

5.2.6 Server Verifies code_verifier before Returning the Tokens

The token endpoint at the authorization server must verify the "code_verifier" by
using the "code_challenge_method" that was bound to the authorization code
before the authorization code was sent in Message 2. The token endpoint at the
authorization server does the following comparison to verify the code_verifier:

I f the "code_challenge_method" was "S256 " :
BASE64URL−ENCODE(SHA256(ASCII (c od e_ve r i f i e r))) ==

code_chal lenge
I f the "code_challenge_method" was " p l a i n " :

c od e_ve r i f i e r == code_chal lenge

If the values are equal, the token request will be validated according to the OAuth
2.0 protocol. Else, an error response with the "error" value set to "invalid_grant"
must be returned.

50 Proof Key for Code Exchange by OAuth Public Clients

Chapter6
Security Threats

This chapter describes some of the security threats related to the processes of
authentication and authorization. The reason why these specific security threats
are presented, is because they are mentioned in other parts of the report.

6.1 Cross-Site Request Forgery

Cross-Site Request Forgery (CSRF) is a malicious exploit of a website where an
attacker forces the victim user’s web browser to perform unauthorized commands
on a trusted website without the victim user’s interaction in that action. CSRF
is also known as one-click attack or session riding. CSRF is sometimes incorrectly
confused with XXS (Cross site scripting). However, since they are not the same
and protection against XXS does not protect against CSRF. In XXS, the user
trusts the website integrity, and gets tricked to give direct information to the
attacker. In CSRF, the website trusts the user’s requests and accomplishes any
kind of action that comes from his flagged authentication, which indirectly gives
advantages to the attacker.

Figure 6.1: An overview of a Cross-Site Request Forgery Attack.

51

52 Security Threats

Figure 6.1 provides an overview of a Cross-Site Request Forgery that includes a
victim user, a trusted site (Website A), and a malicious site (Website B).

1: The user logs in on a trusted website, website A. This creates an active valid
session with the trusted website.

2: While logged in to website A (working in a valid session), the user visits a
website, website B. On website B, an attacker has already posted a malicious link
that sends a HTTP request to website A when the link is clicked. This HTTP re-
quest requires a valid session of the user to perform some valid action on website A,
which is the case in this example. The user clicks the link on website B, by mistake.

3: The HTTP Request is sent to website A.

4: The HTTP Request uses the valid session of the user to perform some valid
action on website A.

The following is an example of a malicious link using an image tag:

<img s r c="http ://mybank . com/ t r a n s f e r . php? account=sender&
amount=amount&f o r=r e c i e v e r ">

There are more than one way of sending a malicious link to a victim user, e.g.,
by a third party website as explained above, by email, and on instant messaging.
Request forgeries require prior prior knowledge but is simple to exploit, and the
most popular ways to execute CSRF attacks is by using a HTML image tag or a
JavaScript image object.

6.1.1 Protection Against CSRF

There are some guidelines that help preventing a CSRF attack [4]:

1. Use random tokens that are unpredictable. Random tokens should be gener-
ated for each form submission and each authentication process. This means
that it’s difficult for the attacker to guess the next random pattern to fill in
malicious URL.

2. Use post for form submission rather than get. When using the get method
for form submission, the variables and values in the URL can be seen by an
anyone.

3. Limit the life-time of authentication cookies. If the user visits other websites,
the cookies will expire after a short period of time and the valid session will
expire.

4. Include damage limitation on websites to reduce the damage of CSRF. If
an attacker manages to perform a CSRF attack, actions performed by the
attack can be prevented if they require authentication every time.

5. Force user to use the form of the (trusted) website.

Security Threats 53

An example of a protection mechanism against CSRF is defined in the OpenID
Connect protocol. When making authentication requests defined in the OpenID
Connect protocol, see (for example) Section B.1.4, a request parameter "state" is
included. This is an opaque value that is used to maintain the state between the re-
quest and the callback. The value of the "state" parameter is usually cryptograph-
ically bound with a browser cookie, with the purpose of mitigating CSRF. [16]

6.2 Brute Force Attacks

A brute force attack, or a "password guessing attack", is an attack that discovers
a password by trying every possible combination of numbers and letters. A user
showing carelessness in choosing username and password, i.e., choosing a simple
password that might be based on user information, is vulnerable to a brute force
attack. There are tools available today that can be used for brute force attacks
that creates different password combinations. The tools use different IP addresses
on each try, which makes it more difficult to trace a single account for unsuccessful
password attacks.

6.2.1 Protection Against Brute Force Attacks

To prevent brute force attacks, passwords for user account should follow a certain
password policy, e.g., minimum password length, contain both upper and lower-
case letters, numeric characters, and special characters.

A common technique to avoid brute force attacks is to lock an account for a
certain period of time (e.g., one hour or one day) after a certain number of in-
correct password attempts. Another way to avoid brute force attacks is to use
CAPTCHA (Completed Automated Public Turing test to tell Computers and Hu-
mans Apart). This technique can help avoid brute force attacks, since machines
might have issues to enter the CAPTCHA codes [5]. However, modern advanced
technologies such as deep learning is capable of recognising captcha without hu-
man intervention [6].

In the resource owner password credentials flow, see Section 3.7, the authorization
server must protect the resource owner’s password against brute force attacks, since
the access token request from the client includes the resource owner’s password.
This can be done by, for example, using rate-limitation or generating alerts. [7]

6.3 Replay Attack

One definition of a replay attack is: "an attack on a security protocol using a
replay of messages from a different context into the intended (or original and
expected) context, thereby fooling the honest participant(s) into thinking they
have successfully completed the protocol run." [37].

54 Security Threats

6.3.1 An example of a protection mechanism against replay attacks

An example of a protection mechanism against replay attacks is defined in the
OpenID Connect protocol. When making authentication requests defined in the
OpenID Connect protocol, see (for example) Section B.1.4, a request parameter
"nonce" is included. This is a string value that is used to associate a client session
with an ID token and to mitigate replay attacks by having sufficient entropy of
the value. [16] E.g., a web server client can store a cryptographically random value
as a HttpOnly session cookie and use a cryptographic hash of the value as the
"nonce" parameter. The nonce in the returned ID token can then be compared to
the hash of the session cookie to detect ID token replay by third parties. [17]

6.4 Clickjacking

A clickjack attack is an attack on an Internet-based application, a social media sys-
tem, or a browser, which tricks the user into accessing malware [18]. Clickjacking
can be more harmless than other malicious threats, since many of the attacks are
intended to trick users into clicking on a picture or a link that will redirect the user
to sites that pay the perpetrator for page views. However, there are clickjacking
attacks that can use malicious scripts to deliver malware and junk mail, to phish
for account information or to trick users into signing up for unwanted services. [19]

An example of a clickjacking attack, described by the OAuth 2.0 protocol [3],
is when an end-user (resource owner) clicks a misleading visible button on a mali-
cious site that grants the attacker’s client access to a specific resource without the
end-user’s knowledge. This attack can happen if the attacker registers a legitimate
client and constructs a malicious site, and the malicious site loads the authoriza-
tion server’s authorization endpoint web page in a transparent iframe overlaid on
top of a set of dummy buttons (constructed to be placed under important buttons
on the authorization page).

Chapter7
Results

This chapter describes the results of this project. Section 7.1 gives the results
and overview of how the authentication process is a part of the OAuth 2.0 Au-
thorization Framework, OpenID Connect and Proof Key for Code Exchange. The
process, theory and background of the authentication process of the multi-factor
authenticator that is the result of this project is described in Section 7.2. The
implementation of the multi-factor authenticator is described in Section 7.3.

7.1 The Authentication and Authorization Process

There are several problems and limitations in the traditional client-server authen-
tication model. The client requests a protected resource on the server, using the
resource owner’s credentials for authentication. The resource owner’s credentials
are shared with third-party application, in order to provide the third-party appli-
cation to access restricted resources. This creates several problems, for example:

• the resource owner cannot revoke the access token to one third-party appli-
cation without revoking access to all third parties (by changing password),

• the third-party applications are required to store the resource owner’s cre-
dentials (password in clear-text),

• compromise of any of the third-party applications means compromise of the
resource owner’s credentials (the resource owner’s data is no longer pro-
tected),

• and despite the security weaknesses inherent in passwords, servers are re-
quired to support password authentication.

OAuth provides a method for users to grant third-party access to their resource
without sharing their passwords, as well as granting limited access to the resources,
e.g., limited scope (which resources the third-party can access), duration (how long
the third-party can access the resources), etc. In OAuth, the client requests access
to the resource that is controlled by the resource owner and hosted by the resource
server. The client is issued a different set of credentials than those of the resource
owner. Third-party clients are issued access tokens, with a specific scope, lifetime,
and other attributes, that is used to access the protected resources hosted by the
resource server.

55

56 Results

OpenID Connect provides extensions to the OAuth 2.0 authorization process by
enabling clients to verify the identity of the end-user based on the authentication
performed by an authorization server, it also enables clients to obtain basic profile
information about the end-user in an interoperable and REST-like manner. To
use the OpenID Connect as an extension to OAuth 2.0 the "openid" scope value is
included in the authorization request. The information about the authentication
is returned in an ID Token that is a JSON Web Token (JWT). In the process of
authorization and authentication process of the OpenID Connect, the following
main roles are:

• End-User/Resource Owner: The resource owner is an entity that is
capable of granting access to a protected user. It is referred to as an end-user
when the resource owner is a person.

• User-Agent: Typically a web browser that the end-user is interacting
with.

• OIDC Relying Party: The OpenID Connect Relying Party (RP) is
an OAuth 2.0 client application that requires end-user authentication and
claims from an OpenID provider.

• OIDC OpenID Provider: The OpenID Provider (OP) is an OAuth 2.0
authorization server that is capable of authenticating the end-user, as well
as providing claims to a relying party about the authentication process and
the end-user. The OP usually consists of an authorization endpoint, a token
endpoint and a userinfo endpoint.

As explained in Chapter 3, the OAuth 2.0 protocol defines four different flows:
authorization code, implicit, resource owner password credentials, client creden-
tials, as well as an extension mechanism for defining additional grant types. The
OpenID Connect provides its extended functionality to the following flows: au-
thorizaton code, implicit, and hybrid flow (a mix between the authorization code
flow and the implicit flow). Since the multi-factor authenticator that is a result of
this project is a part of the flow defined in the OpenID Connect protocol, all other
flows than the authorization code flow, the implicit flow, and the hybrid flow, are
ignored. The different flows determines how the ID token and access token are re-
turned to the client. The main difference between the authorization code flow and
the implicit flow is that the application receives the access token (and optionally
the ID token) directly from the server in the implicit flow, while the application
receives an authorization code in the authorization code flow. The implicit flow
should be used when the application (typically a JavaScript app) running within
a browser is not trusted with a client secret. The used client and login-application
running on Axis’s server in this project is considered to be trusted, which means
that the authorization code flow is used. The following picture shows the overview
of the authorization code flow and where the authentication by the multi-factor
authenticator will be executed:

Results 57

Figure 7.1: An overview of the authorization code flow and where
the authentication by the multi-factor authenticator will be ex-
ecuted.

More details about the authorization code flow can be found in Section 4.7.

The authorization code flow is optimized for confidential clients, i.e., clients that
are able to keep a client secret. If the authorization code flow is used with pub-
lic clients they are susceptible to the authorization code interception attack, see
Section 5.1. This attack is mitigated by dynamically create a cryptographically
random key called "code verifier". The PKCE specification adds additional param-
eters to some requests and responses in the authorization code flow, to prevent an
attacker from intercepting the authorization code in the authorization code flow.
The authorization code interception attack and the Proof Key for Code Exchange
is described more in Chapter 5.

58 Results

7.2 Multi-Factor Authenticator

The performance of a multi-factor authenticator is determined by the set of which
authentication factors that are used, see Chapter 2. The performance can be
measured in security, usability, and cost. The following factors were used in this
authenticator: knowledge factor, ownership factor, and biometric factor. This
multi-factor authenticator has the following higher-level authentication processes
for the user:

1. User identifies and verifies its identity with a traditional username/password
authenticator.

2. User opens the fingerprint application installed on its smartphone.

3. User authenticates by using the fingerprint sensor on the smartphone.

4. User is authenticated.

After the user is authenticated, an authorization code will be sent from the au-
thorization endpoint at the authorization server (OIDC OpenID Provider) to the
client (OIDC Relying Party), as shown in picture 7.1.

The multi-factor authenticator that is the result of this project describes solu-
tions to some of the challenges that are found and presented in this project for
multi-factor authenticators (that also involve the biometric authentication factor).
This is described in Section 7.2.4.

7.2.1 First step of Authentication, HTML login

The first step of authentication is the traditional username/password authentica-
tor, where the user identifies with its email and verifies with its password in a
HTML login form. This authenticator was already implemented in the current
Axis-login system. Therefore, technical implementation details were not inves-
tigated. However, studies have shown that the traditional username/password
authenticator is the weakest level of authentication, compared to authenticators
that includes other factors than the knowledge factor. The password should also
have minimum requirements of length and complexity. Since the username/pass-
word authenticator is considered to be low in security but high in usability, it is
appropriate to have it as a first-step authenticator. The user only needs to remem-
ber a password or a passphrase to authenticate in this step. This is only one step
of the authentication process of the multi-factor authenticator, which means that
the overall secuirty level of the authenticator is higher than the level of security of
the first-step authenticator. The second step of the authentication process of the
multi-factor authenticator is described in Section 7.2.2 and 7.2.3, if a device is not
registered or if a device is registered, respectively.

7.2.2 Second step of Authentication during Registration, Device regis-
tration

When the user has authenticated using the username/password authenticator, the
user ID of the authenticated user is fetched. If no devices are registered for the

Results 59

user, the user will be redirected to a page where the user can choose to register
a new device. If the user chooses to do so (which is needed for the user to be
authenticated with this authenticator), the user can click a link that redirects
the user to a page where a QR-code is displayed. The QR-code contains four
parameters:

• A link to the fingerprint application that will trigger a smartphone to open
the fingerprint application when the QR-code is scanned

• A link to the authentication endpoint

• A link to the registration endpoint

• A shared Time-Based One Time Password (TOTP) secret

The TOTP secret is a long randomized string. The register page with the QR-
code waits for a HTTP POST request from the registration endpoint. The HTTP
request from the registration endpoint will be sent to the register page after it has
received a HTTP GET request from the fingerprint application.

The user opens the smartphone’s camera, or any other QR-scanner application,
scans the QR code and gets a pop-up notification to open the fingerprint applica-
tion. When the fingerprint application opens, it saves the authentication endpoint,
the registration endpoint, and the TOTP secret in the background. The user is
asked to authenticate by placing its finger on the fingerprint sensor. The fingerprint
authenticator application will trigger an authentication success if the fingerprint is
the same as the fingerprint that is registered for the user on the device in advance
to the authentication. If there is a new registration endpoint, authentication end-
point, and TOTP secret registered in the fingerprint application, the fingerprint
application will generate a TOTP and include it in a HTTP GET request to the
registration endpoint (if there are no new endpoints or secrets, the application will
send the TOTP to the authentication endpoint).

The TOTP is generated by concatenating the TOTP secret with the current in-
terval (default value is 30 seconds), and hashing and truncating the concatenated
string. The hash is created by using a cryptographic hash function (default algo-
rithm is Secure Hash Algorithm 1, SHA-1), and the resulting TOTP is a 6 digits
long code.

After the HTTP GET request is received at the registration endpoint, the TOTP
will be validated. If the TOTP is valid, a HTTP POST request is sent to the
registration page, and a randomized device ID will also be created and added for
the user. The device ID will be saved and connected to the secret, the TOTP used
for registration, and the TOTP timestamp in the database.

The default value for a TOTP in this authenticator is 30 seconds, i.e., the user
has 30 seconds to scan the QR code, open the app and press its finger on the
fingerprint sensor. The TOTP will not be valid if the timestamp has exceeded
30 seconds. The user can choose to restart the registration process, which will
generate a new QR-code with a new randomized TOTP secret.

60 Results

7.2.3 Second step of Authentication, Device already registered

When the user has authenticated using the username/password authenticator, the
user ID of the authenticated user is fetched. If there is a device registered for the
user, the authentication page waits for a HTTP POST request from the authentica-
tion endpoint. The user then opens the fingerprint application on its smartphone.
When the fingerprint application opens, it already has the authentication end-
point, the registration endpoint, and the TOTP secret saved from the registration
described in Section 7.2.2. The user is asked to authenticate by placing its finger
on the by placing its finger on the fingerprint sensor. The fingerprint authenticator
application will trigger an authentication success if the fingerprint is the same as
the fingerprint that is registered for the user on the device in advance to the au-
thentication. The fingerprint application will generate a TOTP and include it in
a HTTP GET request to the authentication endpoint. The TOTP is generated by
concatenating the TOTP secret with the current interval (default value is 30 sec-
onds), and hashing and truncating the concatenated string. The hash is created by
using a cryptographic hash function (default algorithm is Secure Hash Algorithm
1, SHA-1), and the resulting TOTP is a 6 digits long code. After the HTTP GET
request is received at the authentication endpoint, the TOTP will be validated.
If the TOTP is valid, a HTTP POST request is sent to the authentication page,
and the device ID will be connected to the used TOTP, the used TOTP secret,
and the TOTP timestamp in the database. Since the default value for a TOTP
in this authenticator is 30 seconds, the user has 30 seconds to open the app and
press its finger on the fingerprint sensor. The TOTP will not be valid if the times-
tamp has exceeded 30 seconds. The user can choose to restart the authentication
process, which will generate a new TOTP and update the timestamp of when the
authentication process started.

7.2.4 Solutions to challenges of Multi-Factor Authenticators that in-
cludes Biometric Factors

Chapter 2 describes and compares commonly used authenticators based on differ-
ent authentication factors. There are several challenges or security threats that
are described in the chapter that the resulting multi-factor authenticator of this
project mitigates.

The correlation between the user identity and the identity of the smart sensor
on the device (e.g., fingerprint sensor or application) must be established for secu-
rity reasons. It is important that only the authenticated user has access rights to
the application or sensor. The solution to this challenge is to generate a random
device ID that is connected to the user ID during a successful registration, see Sec-
tion 7.2.2. It is only possible to fetch the user ID if there is an authenticated user,
i.e., if the user was successfully authenticated by the username/password authenti-
cator. The fingerprint application is only accessible if the user has a screen lock on
the smart phone, i.e., if the user has a PIN code, a fingerprint, iris recognition or
face recognition registered for screen lock. Otherwise, the fingerprint application
will give the user a warning and the user will not be able to authenticate using the
application. Moreover, the fingerprint application is not possible to use if there are

Results 61

no fingerprints registered for the user on the device, i.e., the user has to register a
fingerprint on the device in advance to using the fingerprint application.

The disadvantage of only allowing an application to fully function if the user
has enabled screen lock might decrease the usability, since it is another step for
the user. On the other hand, if the user has, for example, fingerprint verification
as a screen lock the user only has to press a button to unlock the screen.

The password has to be stored and connected to the user ID, but the password
should never be stored in plain text. The best practices of storing a password
includes generating a random string salt that is concatenated with the password
to protect against dictionary attacks. The generated string should then be hashed
with a cryptographic function and stored instead of the plain text password. In
this multi-factor authenticator, no password is stored in plain text, except for the
TOTP secret. However, the TOTP secret is not directly connected to the user
ID. The user ID is connected to the device ID, and the device ID is connected
to the TOTP secret. The TOTP secret is a random 30 byte string, and there is
a security vulnerability with storing it in case an attacker would be able to steal
it. On the other hand, the TOTP that is used for authentication is generated by
hashing and truncating the value of a combination of the secret ("salt") with the
current time-interval.

The danger of eavesdropping is eliminated when OTPs are used because once
an OTP is used, it is no longer useful. The motivation for using OTPs is that
if one OTP is compromised, it will not affect the security of sessions involving
another OTP. Furthermore, breaking a one-time password system that is imple-
mented properly, requires sophisticated, active attacks that are beyond the abil-
ities of most attackers [42]. Attackers can steal codes through targeted phishing
attacks. This is notably the case for the SMS authenticator. A way to mitigate
this type of threats is to invalidate a code after a short time, and limit the number
of failed attempts to log in with a code. This is one of the reasons why TOTPs
are used in this multi-factor authenticator instead of OTPs. The TOTP is only
valid for a short time period, regardless of whether the TOTP has been used
or not. The current time interval in the implementation is 30 seconds, which is
less user-friendly than a longer time-interval, but it brings a higher level of security.

A security threat of biometric authentication is that an attacker can intercept the
information and replay it, since the information that the user provides is generally
similar at each authentication attempt. The solution to this in this implemen-
tation is that the fingerprint never leaves the device. A fingerprint has features
of fingerprint ridges [36]. The TOTP that is generated in the application has no
relation to the fingerprint itself in terms of the features of the fingerprint. The
already built-in fingerprint sensor and manager in the smart phone determines if
the fingerprint is valid or not. If the fingerprint would leave the device, it could
be exposed to attacks and, if compromised, no longer safe to use for any authen-
tication process.

62 Results

A study, see Section 2.1.3, showed that users felt fingerprint unlock a little or a lot
more secure than a PIN, but this is not true due to PIN being a fallback mech-
anism on most smartphones. The same applies for authenticators. The fallback
mechanism, i.e., the case when the user loses its device and have to use another
authenticator, has to be of the same level of security as the original authenticator.
This means that the multi-factor authenticator that is the result of this project
must have a fallback authenticator that has the same level of security. If this same
level of security is defined to be using the same authentication factors, it must
have a fallback authenticator that includes biometric authentication. If the user
loses its device with the fingerprint authenticator, there must be another device
that the user can use to authenticate with biometrics (fingerprint, iris recognition,
face recognition, etc.) that has to be registered before this scenario occurs (rea-
sonably during registration of the first device). A study of account recovery of 10
popular web services was made during this project. This study showed that many
web services did not have a fallback authenticator that was of the same level of
security as the original authenticator. Hence, using biometric authenticators can
give users incorrect trust for some services.

Due to the importance that only the authenticated user has access rights to the
application or sensor, a biometric authenticator should not be used as a standalone
authenticator. As mentioned above, the correlation between the user identity and
the identity of the smart sensor must be established for security reasons. To con-
firm the correlation between the two identities and to give the user access rights
to the application or sensor, the user needs to be authenticated with some authen-
tication factor before using the hardware device with the biometric sensor. The
solution to this in the resulting authenticator is to have the traditional username/-
password as a prerequisite to the fingerprint authenticator.

NIST policy on hash functions [40], states that the use of the cryptographic hash
function SHA-1 may still be used in the context described above. However, the use
of SHA-2 or SHA-3 is considered more secure against some security attacks [41].

7.3 Implementation

The implementation results of a multi-factor authenticator into the currently used
login-application consists of a plugin and an application for Android devices. The
plugin implements the necessary functionality that is required for implementing
biometric authentication, via an Android device, into the currently used system.
The Android application uses the fingerprint sensor on the device to authenticate
the user. When the user is authenticated a time-based one time password (TOTP)
is generated and sent to one of the system’s endpoints (the registration endpoint
during device registration or the authentication endpoint). The plugin imple-
mentation is described in Section 7.3.1, and the implementation of the android
application is described in Section 7.3.2.

Results 63

7.3.1 Plugin implementation

The functionality of the current system can be extended through plugins. The
fingerprint authenticator plugin is a plugin JAR that contains implementations
of the current system’s extension points, as well as other library and dependency
JARs. The plugin JAR and the dependency JARs are installed on the server
after being dropped in a specific directory. The plugin is implemented in Java and
the development, deployment, and execution framework used for the plugin is the
Maven framework. The plugin contains all the necessary back-end functionality
and front-end implementations for the user interface. The plugin implements two
additional endpoints, a registration-endpoint and an authentication-endpoint. The
HTML-login, that is already implemented in the current system, is chosen as a
prerequisite to the fingerprint authenticator plugin. The front-end part of the
HTML-login is shown in Figure 7.2.

Figure 7.2: The page of the HTML-login.

After this step, the plugin checks if the user is authenticated. A requirement

64 Results

for the fingerprint plugin to work is that the user is authenticated by another
authenticator (username/password in this case). The user ID and the registered
devices for the user ID are fetched from the account manager. If a device is not
registered for the user, the front-end page shown in Figure 7.3 is displayed to the
user.

Figure 7.3: The page that is displayed to the user if there is no
device registered for the user.

If the user clicks the "Register new device" button a QR-code will be created
including the registration-endpoint, the authentication-endpoint and the TOTP
secret. The TOTP secret is a 20-bytes long randomized code. The registration
page, shown in Figure 7.4, waits for a HTTP POST request from the registration-
endpoint.

Figure 7.4: The registration page.

If the user clicks the "Restart the registration" button, a new QR-code will be
generated containing a different TOTP secret.

At the same time as the TOTP secret is generated, a nonce token issuer is is-
sued with the TOTPs generated from the secret as a reference. The reason why
two TOTPs are used as a reference is because there might be a delay window. A
delay window is a time difference that might occur if the current interval is cal-
culated with just a small time difference. This will create a different TOTP. The
current implementation has one delay window. Therefore, two different TOTPs

Results 65

are accepted. When the registration endpoint gets a HTTP GET request con-
taining a TOTP it is validated as a nonce token. If the TOTP is registered as a
nonce and a device ID belonging to the current user ID has a correlation to the
TOTP, the timestamp of the TOTP will be checked. If the timestamp is within
the current interval (30 seconds), the user is authenticated. If the timestamp is
not within the current interval, the user will have to restart the registration process.

The next time the user authenticates with the multi-factor authenticator a de-
vice is registered for the user, and the authentication page shown in Figure 7.5 is
displayed to the user.

Figure 7.5: The authentication page.

When the authentication page is shown to the user the TOTPs that are generated
from the TOTP secret are saved as a reference, in the same way as for the reg-
istration process. The TOTP that is sent to the authentication endpoint is also
validated in the same way as for the registration process. If the TOTP is valid, the
user is authenticated. The user can choose to "Restart the authentication", new
TOTPs will then be saved as references. The user can also choose to "Register
new device", which will trigger the registration process to start and if a new device
is registered it will replace the old one. If the same device is registered more than
once, the new registration will replace the old one.

7.3.2 Android Application

When the Android application is triggered by a QR-code, the parameters registration-
endpoint, authentication-endpoint and the TOTP secret will be saved in the ap-
plication. At the same time as these parameters are saved, the application will
send the generated TOTP to the registration-endpoint upon authentication suc-
cess. For the authentication process to start, there are a few conditions that are
checked:

1. The device needs to have a fingerprint sensor

2. The device must have a fingerprint registered for the user

3. The lock-screen needs to be protected with a PIN, a password, or any bio-
metric factor that is possible to register on the device

If the fingerprint is incorrect, the authentication fails and the app view in Figure
7.6 is displayed to the user.

66 Results

Figure 7.6: App view, Authentication Failed

If the fingerprint cannot be read, due to the finger not covering the whole sensor
or if the user does not hold the finger on the fingerprint sensor long enough, there
is an authentication help that is displayed to the user, see Figure 7.7.

Results 67

Figure 7.7: App view, Authentication Help

If there is an authentication error, for example, if the user closes the application
in the middle of an authentication process, an authentication error message will
be displayed.

On authentication success, a TOTP is created from the saved TOTP secret and
sent with a HTTP GET request either to the registration-endpoint or the authentication-
endpoint. The app view that is displayed to the user on authentication success
can be seen in Figure 7.8.

68 Results

Figure 7.8: App view, Authentication Success

Chapter8
Conclusion

The specified goals of this project were to gain in-depth knowledge of the OpenID
Connect Protocol and Multi-Factor Authentication in the efforts to implement an
improved solution of a multi-factor authenticator, do research about authentica-
tion methods and technologies based on authentication factors, and implement a
multi-factor authenticator into the currently user login-application.

In summary, all goals of this projects were achieved. However, the processes of
authentication and multi-factor authentication is constantly developing and im-
proved. The OpenID Connect protocol is a widely used protocol and is an identity
layer on top of the OAuth 2.0 protocol. To be able to gain in-depth knowledge
about the OpenID Connect protocol, it was also required to gain in-depth knowl-
edge about the OAuth 2.0 protocol. The core functionality of OpenID Connect is
to add authentication to OAuth 2.0 and use Claims to communicate information
about the end-user. There are also security and privacy considerations covered by
the protocol.

By implementing a multi-factor authenticator into the currently used login-application,
the security risks, usability concerns and challenges with user authentication were
easier to pinpoint. One main challenge with all authenticators, that relates to
security, is what to save and how to save it. Passwords, PINs, security tokens,
one-time passwords, or biometric data. The most important result that was found
during the research on commonly used authenticators based on authentication fac-
tors together with a study on popular web services, was that the overall level of
security of the authenticator is the minimum of the level of security of the factor
normally in use and to the level of security of its fallback method. The fallback
method is used in case the user loses, for example, its email address or device. If
the authenticator has a biometric factor, the fallback authenticator must have a
biometric factor to maintain the level of security that the biometric authenticator
brings. Another result is the importance of usability of an authenticator. If an
authenticator is too complicated for a user to use, in terms of authentication time
or user errors, it will not be a good authentication method. Furthermore, if the
user does not understand the importance or level of security (low or high) that one
authenticator brings, the user will be the weakest component of the authentication
system. There is always a trade-off in usability and security, but fast solutions like
pressing a finger on a fingerprint sensor brings both usability and security, it might

69

70 Conclusion

even be considered to be easier than entering a password.

The implemented multi-factor authenticator implements biometric authentication
in a way that does not involve biometric data leaving a local device or being
stored on a server, since it combines an automated process of time-based one time
passwords with biometric authentication. The reason for our approach was the
security vulnerability and the privacy aspect in biometric factors being stored on
a server or leaving a local device. A user’s biometric data cannot be changed if
compromised, compared to a password, and biometric data can identify a user for
their entire lifetime. The use of biometrics poses privacy concerns since biometric
data may reveal sensitive information about a person, facilitate discrimination,
profiling, and mass surveillance. The leakage of biometric data can lead to pri-
vacy concerns that lasts a lifetime. Biometric factors are unique for every person,
but if the factors get stolen or compromised, they might no longer be safe to use
in authentication processes. Moreover, the time-based one time password that is
created on the local device, via biometric authentication, is more secure than, for
example, a one time password, due to its time-limit. Due to the importance that
only the authenticated user has access rights to the application or sensor, a con-
clusion was to not use biometric authentication as a stand-alone authenticator.
The correlation between the user identity and the identity of the smart sensor
or application can be confirmed if the user is authenticated, and this is why the
first step of authentication in the implemented multi-factor authenticator is the
traditional and user-friendly username/password authentication. In other words,
the implemented multi-factor is based on the knowledge factor (password), the
ownership factor (smartphone), and the biometric factor (fingerprint).

8.1 Improvements and Changes

There are some improvements or changes that can be considered in connection to
the current implementation of the multi-factor authenticator.

The TOTPs that are generated in the fingerprint application are currently only
6 digits long. Since this is an automated process, i.e., the user does not have
to enter the TOTP anywhere, it is better that the TOTPs that are sent to the
registration- and authentication-endpoints should be longer. Dictionary attacks
are more complicated to execute if the codes that are sent are longer.

Multiple devices for one user is currently not implemented. However, the user
should be able to register more than one device if a fallback authentication method
that includes another device is to be implemented. It does not require a lot of
additional implementation effort, but any security issues with this should be in-
vestigated.

The user needs to complete the registration process, as well as the authentica-
tion process, within 30 seconds. This interval can be made longer to increase
usability, but the trade-off of doing this is a decrease in security.

Conclusion 71

The implemented Android application should be changed to support other bio-
metrics than fingerprint, e.g., face recognition or iris recognition. This will not
require a lot of additional implementation effort.

An improvement that can be made to the current plugin implementation is sending
push notifications to the fingerprint application. However, there are additional se-
curity vulnerabilities with doing this, as presented in Chapter 2, and these should
be carefully investigated.

The fingerprint application for the Android device can also be implemented for
other mobile operating systems, like iOS.

SHA-2 or SHA-3 is considered more secure against some security attacks compared
to SHA-1. SHA-1 may still be used in the context of this application, according to
NIST policy on hash functions [40]. However, enabling the use of SHA-2 and SHA-
3 is a security improvement and will not require a lot of additional implementation
effort.

72 Conclusion

Bibliography

[1] IETF. 2020. Mission and principles. [https://www.ietf.org/about/
mission/]. Accessed 2021-01-04.

[2] IETF. 2020. RFCs. [https://ietf.org/standards/rfcs/]. Accessed 2021-
01-04.

[3] IETF Trust, Hardt, D. (Ed.). 2012. The OAuth 2.0 Authorization Framework.
[https://tools.ietf.org/html/rfc6749]. Accessed 2021-01-04.

[4] Mohd. Shadab, S. Deepanker, V. 2011. Cross site request forgery: A common
web application weakness. [https://ieeexplore-ieee-org.ludwig.lub.
lu.se/stamp/stamp.jsp?tp=&arnumber=6014783]. Accessed 2020-01-11.

[5] Konark Truptiben, D. 2013. Brute-force Attack "Seeking but Distressing".
[http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.359.
8963&rep=rep1&type=pdf]. Accessed 2021-01-11.

[6] Gogineni, S. Suryanarayana, G. Swapna, N. 2020. Machine Learn-
ing Based Encoder-Decoder for Captcha Recognition. [http:
//resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=
EBSCO:edseee&genre=chapter&issn=edseee.IEEEConferenc&isbn=
9781728154619&volume=&issue=&date=20200901&spage=222&pages=
222-227&title=2020%20International%20Conference%20on%20Smart%
20Electronics%20and%20Communication%20%28ICOSEC%29%2C%20Smart%
20Electronics%20and%20Communication%20%28ICOSEC%29%2C%202020%
20International%20Conference%20on&atitle=Machine%20Learning%
20Based%20Encoder-Decoder%20for%20Captcha%20Recognition&btitle=
2020%20International%20Conference%20on%20Smart%20Electronics%
20and%20Communication%20%28ICOSEC%29%2C%20Smart%20Electronics%
20and%20Communication%20%28ICOSEC%29%2C%202020%20International%
20Conference%20on&jtitle=2020%20International%20Conference%
20on%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%
29%2C%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%
29%2C%202020%20International%20Conference%20on&series=&aulast=
Gogineni%2C%20Saikiran&id=DOI:10.1109/ICOSEC49089.2020.9215439].
Accessed 2021-01-11.

73

https://www.ietf.org/about/mission/
https://www.ietf.org/about/mission/
https://ietf.org/standards/rfcs/
https://tools.ietf.org/html/rfc6749
https://ieeexplore-ieee-org.ludwig.lub.lu.se/stamp/stamp.jsp?tp=&arnumber=6014783
https://ieeexplore-ieee-org.ludwig.lub.lu.se/stamp/stamp.jsp?tp=&arnumber=6014783
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.359.8963&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.359.8963&rep=rep1&type=pdf
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO:edseee&genre=chapter&issn=edseee.IEEEConferenc&isbn=9781728154619&volume=&issue=&date=20200901&spage=222&pages=222-227&title=2020%20International%20Conference%20on%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%202020%20International%20Conference%20on&atitle=Machine%20Learning%20Based%20Encoder-Decoder%20for%20Captcha%20Recognition&btitle=2020%20International%20Conference%20on%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%202020%20International%20Conference%20on&jtitle=2020%20International%20Conference%20on%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%202020%20International%20Conference%20on&series=&aulast=Gogineni%2C%20Saikiran&id=DOI:10.1109/ICOSEC49089.2020.9215439
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO:edseee&genre=chapter&issn=edseee.IEEEConferenc&isbn=9781728154619&volume=&issue=&date=20200901&spage=222&pages=222-227&title=2020%20International%20Conference%20on%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%202020%20International%20Conference%20on&atitle=Machine%20Learning%20Based%20Encoder-Decoder%20for%20Captcha%20Recognition&btitle=2020%20International%20Conference%20on%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%202020%20International%20Conference%20on&jtitle=2020%20International%20Conference%20on%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%202020%20International%20Conference%20on&series=&aulast=Gogineni%2C%20Saikiran&id=DOI:10.1109/ICOSEC49089.2020.9215439
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO:edseee&genre=chapter&issn=edseee.IEEEConferenc&isbn=9781728154619&volume=&issue=&date=20200901&spage=222&pages=222-227&title=2020%20International%20Conference%20on%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%202020%20International%20Conference%20on&atitle=Machine%20Learning%20Based%20Encoder-Decoder%20for%20Captcha%20Recognition&btitle=2020%20International%20Conference%20on%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%202020%20International%20Conference%20on&jtitle=2020%20International%20Conference%20on%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%202020%20International%20Conference%20on&series=&aulast=Gogineni%2C%20Saikiran&id=DOI:10.1109/ICOSEC49089.2020.9215439
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO:edseee&genre=chapter&issn=edseee.IEEEConferenc&isbn=9781728154619&volume=&issue=&date=20200901&spage=222&pages=222-227&title=2020%20International%20Conference%20on%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%202020%20International%20Conference%20on&atitle=Machine%20Learning%20Based%20Encoder-Decoder%20for%20Captcha%20Recognition&btitle=2020%20International%20Conference%20on%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%202020%20International%20Conference%20on&jtitle=2020%20International%20Conference%20on%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%202020%20International%20Conference%20on&series=&aulast=Gogineni%2C%20Saikiran&id=DOI:10.1109/ICOSEC49089.2020.9215439
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO:edseee&genre=chapter&issn=edseee.IEEEConferenc&isbn=9781728154619&volume=&issue=&date=20200901&spage=222&pages=222-227&title=2020%20International%20Conference%20on%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%202020%20International%20Conference%20on&atitle=Machine%20Learning%20Based%20Encoder-Decoder%20for%20Captcha%20Recognition&btitle=2020%20International%20Conference%20on%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%202020%20International%20Conference%20on&jtitle=2020%20International%20Conference%20on%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%202020%20International%20Conference%20on&series=&aulast=Gogineni%2C%20Saikiran&id=DOI:10.1109/ICOSEC49089.2020.9215439
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO:edseee&genre=chapter&issn=edseee.IEEEConferenc&isbn=9781728154619&volume=&issue=&date=20200901&spage=222&pages=222-227&title=2020%20International%20Conference%20on%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%202020%20International%20Conference%20on&atitle=Machine%20Learning%20Based%20Encoder-Decoder%20for%20Captcha%20Recognition&btitle=2020%20International%20Conference%20on%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%202020%20International%20Conference%20on&jtitle=2020%20International%20Conference%20on%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%202020%20International%20Conference%20on&series=&aulast=Gogineni%2C%20Saikiran&id=DOI:10.1109/ICOSEC49089.2020.9215439
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO:edseee&genre=chapter&issn=edseee.IEEEConferenc&isbn=9781728154619&volume=&issue=&date=20200901&spage=222&pages=222-227&title=2020%20International%20Conference%20on%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%202020%20International%20Conference%20on&atitle=Machine%20Learning%20Based%20Encoder-Decoder%20for%20Captcha%20Recognition&btitle=2020%20International%20Conference%20on%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%202020%20International%20Conference%20on&jtitle=2020%20International%20Conference%20on%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%202020%20International%20Conference%20on&series=&aulast=Gogineni%2C%20Saikiran&id=DOI:10.1109/ICOSEC49089.2020.9215439
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO:edseee&genre=chapter&issn=edseee.IEEEConferenc&isbn=9781728154619&volume=&issue=&date=20200901&spage=222&pages=222-227&title=2020%20International%20Conference%20on%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%202020%20International%20Conference%20on&atitle=Machine%20Learning%20Based%20Encoder-Decoder%20for%20Captcha%20Recognition&btitle=2020%20International%20Conference%20on%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%202020%20International%20Conference%20on&jtitle=2020%20International%20Conference%20on%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%202020%20International%20Conference%20on&series=&aulast=Gogineni%2C%20Saikiran&id=DOI:10.1109/ICOSEC49089.2020.9215439
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO:edseee&genre=chapter&issn=edseee.IEEEConferenc&isbn=9781728154619&volume=&issue=&date=20200901&spage=222&pages=222-227&title=2020%20International%20Conference%20on%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%202020%20International%20Conference%20on&atitle=Machine%20Learning%20Based%20Encoder-Decoder%20for%20Captcha%20Recognition&btitle=2020%20International%20Conference%20on%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%202020%20International%20Conference%20on&jtitle=2020%20International%20Conference%20on%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%202020%20International%20Conference%20on&series=&aulast=Gogineni%2C%20Saikiran&id=DOI:10.1109/ICOSEC49089.2020.9215439
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO:edseee&genre=chapter&issn=edseee.IEEEConferenc&isbn=9781728154619&volume=&issue=&date=20200901&spage=222&pages=222-227&title=2020%20International%20Conference%20on%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%202020%20International%20Conference%20on&atitle=Machine%20Learning%20Based%20Encoder-Decoder%20for%20Captcha%20Recognition&btitle=2020%20International%20Conference%20on%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%202020%20International%20Conference%20on&jtitle=2020%20International%20Conference%20on%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%202020%20International%20Conference%20on&series=&aulast=Gogineni%2C%20Saikiran&id=DOI:10.1109/ICOSEC49089.2020.9215439
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO:edseee&genre=chapter&issn=edseee.IEEEConferenc&isbn=9781728154619&volume=&issue=&date=20200901&spage=222&pages=222-227&title=2020%20International%20Conference%20on%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%202020%20International%20Conference%20on&atitle=Machine%20Learning%20Based%20Encoder-Decoder%20for%20Captcha%20Recognition&btitle=2020%20International%20Conference%20on%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%202020%20International%20Conference%20on&jtitle=2020%20International%20Conference%20on%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%202020%20International%20Conference%20on&series=&aulast=Gogineni%2C%20Saikiran&id=DOI:10.1109/ICOSEC49089.2020.9215439
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO:edseee&genre=chapter&issn=edseee.IEEEConferenc&isbn=9781728154619&volume=&issue=&date=20200901&spage=222&pages=222-227&title=2020%20International%20Conference%20on%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%202020%20International%20Conference%20on&atitle=Machine%20Learning%20Based%20Encoder-Decoder%20for%20Captcha%20Recognition&btitle=2020%20International%20Conference%20on%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%202020%20International%20Conference%20on&jtitle=2020%20International%20Conference%20on%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%202020%20International%20Conference%20on&series=&aulast=Gogineni%2C%20Saikiran&id=DOI:10.1109/ICOSEC49089.2020.9215439
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO:edseee&genre=chapter&issn=edseee.IEEEConferenc&isbn=9781728154619&volume=&issue=&date=20200901&spage=222&pages=222-227&title=2020%20International%20Conference%20on%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%202020%20International%20Conference%20on&atitle=Machine%20Learning%20Based%20Encoder-Decoder%20for%20Captcha%20Recognition&btitle=2020%20International%20Conference%20on%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%202020%20International%20Conference%20on&jtitle=2020%20International%20Conference%20on%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%202020%20International%20Conference%20on&series=&aulast=Gogineni%2C%20Saikiran&id=DOI:10.1109/ICOSEC49089.2020.9215439
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO:edseee&genre=chapter&issn=edseee.IEEEConferenc&isbn=9781728154619&volume=&issue=&date=20200901&spage=222&pages=222-227&title=2020%20International%20Conference%20on%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%202020%20International%20Conference%20on&atitle=Machine%20Learning%20Based%20Encoder-Decoder%20for%20Captcha%20Recognition&btitle=2020%20International%20Conference%20on%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%202020%20International%20Conference%20on&jtitle=2020%20International%20Conference%20on%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%202020%20International%20Conference%20on&series=&aulast=Gogineni%2C%20Saikiran&id=DOI:10.1109/ICOSEC49089.2020.9215439
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO:edseee&genre=chapter&issn=edseee.IEEEConferenc&isbn=9781728154619&volume=&issue=&date=20200901&spage=222&pages=222-227&title=2020%20International%20Conference%20on%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%202020%20International%20Conference%20on&atitle=Machine%20Learning%20Based%20Encoder-Decoder%20for%20Captcha%20Recognition&btitle=2020%20International%20Conference%20on%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%202020%20International%20Conference%20on&jtitle=2020%20International%20Conference%20on%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%202020%20International%20Conference%20on&series=&aulast=Gogineni%2C%20Saikiran&id=DOI:10.1109/ICOSEC49089.2020.9215439
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO:edseee&genre=chapter&issn=edseee.IEEEConferenc&isbn=9781728154619&volume=&issue=&date=20200901&spage=222&pages=222-227&title=2020%20International%20Conference%20on%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%202020%20International%20Conference%20on&atitle=Machine%20Learning%20Based%20Encoder-Decoder%20for%20Captcha%20Recognition&btitle=2020%20International%20Conference%20on%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%202020%20International%20Conference%20on&jtitle=2020%20International%20Conference%20on%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%202020%20International%20Conference%20on&series=&aulast=Gogineni%2C%20Saikiran&id=DOI:10.1109/ICOSEC49089.2020.9215439
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO:edseee&genre=chapter&issn=edseee.IEEEConferenc&isbn=9781728154619&volume=&issue=&date=20200901&spage=222&pages=222-227&title=2020%20International%20Conference%20on%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%202020%20International%20Conference%20on&atitle=Machine%20Learning%20Based%20Encoder-Decoder%20for%20Captcha%20Recognition&btitle=2020%20International%20Conference%20on%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%202020%20International%20Conference%20on&jtitle=2020%20International%20Conference%20on%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%20Smart%20Electronics%20and%20Communication%20%28ICOSEC%29%2C%202020%20International%20Conference%20on&series=&aulast=Gogineni%2C%20Saikiran&id=DOI:10.1109/ICOSEC49089.2020.9215439

74 Bibliography

[7] IETF Trust, Hardt, D. (Ed.). 2012. The OAuth 2.0 Authorization Framework.
[https://tools.ietf.org/html/rfc6749#section-4.3.2]. Accessed 2021-
01-11.

[8] The OpenID Foundation. Sakimura, N. Bradley, J. Jones, Michael B. de
Medeiros, B. Mortimore, C. 2014. OpenID Connect Core 1.0 incorporating er-
rata set 1. [https://openid.net/specs/openid-connect-core-1_0.html].
Accessed 2021-01-14.

[9] IETF Trust. Sakimura, N. Bradley, J. Agarwal, N. 2015. Proof Key for
Code Exchange by OAuth Public Clients. [https://tools.ietf.org/html/
rfc7636]. Accessed 2021-01-14.

[10] ISO. 2013. ISO/IEC 29115:2013. [https://www.iso.org/standard/45138.
html]. Accessed 2021-01-14.

[11] [https://tools.ietf.org/html/rfc6750]. Accessed 2021-01-14.

[12] IETF Trust. Jones, M. Hardt, D. 2012. The OAuth 2.0 Authoriza-
tion Framework: Bearer Token Usage. [https://tools.ietf.org/html/
rfc6750#section-3]. Accessed 2021-01-14.

[13] IETF Trust. Jones, M. Campbell, B. Mortimore, C. 2013. JSON Web
Token (JWT) Profile for OAuth 2.0 Client Authentication and Autho-
rization Grants draft-ietf-oauth-jwt-bearer-05. [https://tools.ietf.org/
html/draft-ietf-oauth-jwt-bearer-12]. Accessed 2021-01-15.

[14] IETF Trust. Jones, M. Campbell, B. Mortimore, C. Goland, Y. 2014. As-
sertion Framework for OAuth 2.0 Client Authentication and Authoriza-
tion Grants draft-ietf-oauth-assertions-18. [https://tools.ietf.org/html/
draft-ietf-oauth-assertions-18]. Accessed 2021-01-15.

[15] The OpenID Foundation. de Medeiros, B. (Ed.). Scurtescu, M. Tarjan, P.
Jones, M. 2014. OAuth 2.0 Multiple Response Type Encoding Practices.
[https://openid.net/specs/oauth-v2-multiple-response-types-1_0.
html#Combinations]. Accessed 2021-01-18.

[16] The OpenID Foundation. Sakimura, N. Bradley, J. Jones, Michael B. de
Medeiros, B. Mortimore, C. 2014. OpenID Connect Core 1.0 incorporating er-
rata set 1. [https://openid.net/specs/openid-connect-core-1_0.html#
AuthRequest]. Accessed 2021-01-19.

[17] The OpenID Foundation. Sakimura, N. Bradley, J. Jones, Michael B. de
Medeiros, B. Mortimore, C. 2014. OpenID Connect Core 1.0 incorporating er-
rata set 1. [https://openid.net/specs/openid-connect-core-1_0.html#
NonceNotes]. Accessed 2021-01-19.

[18] [http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=
EBSCO%3aedsoro&genre=chapter&issn=&isbn=9780191884276&volume=
&issue=&date=20191024&spage=&pages=&title=A+Dictionary+of+the+
Internet&atitle=clickjack+attack&btitle=A+Dictionary+of+the+
Internet&jtitle=A+Dictionary+of+the+Internet&series=&aulast=
Ince%2c+Darrel&id=DOI%3a10.1093%2facref%2f9780191884276.013.
4110&site=ftf-live]. Accessed 2021-01-19.

https://tools.ietf.org/html/rfc6749#section-4.3.2
https://openid.net/specs/openid-connect-core-1_0.html
https://tools.ietf.org/html/rfc7636
https://tools.ietf.org/html/rfc7636
https://www.iso.org/standard/45138.html
https://www.iso.org/standard/45138.html
https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc6750#section-3
https://tools.ietf.org/html/rfc6750#section-3
https://tools.ietf.org/html/draft-ietf-oauth-jwt-bearer-12
https://tools.ietf.org/html/draft-ietf-oauth-jwt-bearer-12
https://tools.ietf.org/html/draft-ietf-oauth-assertions-18
https://tools.ietf.org/html/draft-ietf-oauth-assertions-18
https://openid.net/specs/oauth-v2-multiple-response-types-1_0.html#Combinations
https://openid.net/specs/oauth-v2-multiple-response-types-1_0.html#Combinations
https://openid.net/specs/openid-connect-core-1_0.html#AuthRequest
https://openid.net/specs/openid-connect-core-1_0.html#AuthRequest
https://openid.net/specs/openid-connect-core-1_0.html#NonceNotes
https://openid.net/specs/openid-connect-core-1_0.html#NonceNotes
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO%3aedsoro&genre=chapter&issn=&isbn=9780191884276&volume=&issue=&date=20191024&spage=&pages=&title=A+Dictionary+of+the+Internet&atitle=clickjack+attack&btitle=A+Dictionary+of+the+Internet&jtitle=A+Dictionary+of+the+Internet&series=&aulast=Ince%2c+Darrel&id=DOI%3a10.1093%2facref%2f9780191884276.013.4110&site=ftf-live
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO%3aedsoro&genre=chapter&issn=&isbn=9780191884276&volume=&issue=&date=20191024&spage=&pages=&title=A+Dictionary+of+the+Internet&atitle=clickjack+attack&btitle=A+Dictionary+of+the+Internet&jtitle=A+Dictionary+of+the+Internet&series=&aulast=Ince%2c+Darrel&id=DOI%3a10.1093%2facref%2f9780191884276.013.4110&site=ftf-live
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO%3aedsoro&genre=chapter&issn=&isbn=9780191884276&volume=&issue=&date=20191024&spage=&pages=&title=A+Dictionary+of+the+Internet&atitle=clickjack+attack&btitle=A+Dictionary+of+the+Internet&jtitle=A+Dictionary+of+the+Internet&series=&aulast=Ince%2c+Darrel&id=DOI%3a10.1093%2facref%2f9780191884276.013.4110&site=ftf-live
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO%3aedsoro&genre=chapter&issn=&isbn=9780191884276&volume=&issue=&date=20191024&spage=&pages=&title=A+Dictionary+of+the+Internet&atitle=clickjack+attack&btitle=A+Dictionary+of+the+Internet&jtitle=A+Dictionary+of+the+Internet&series=&aulast=Ince%2c+Darrel&id=DOI%3a10.1093%2facref%2f9780191884276.013.4110&site=ftf-live
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO%3aedsoro&genre=chapter&issn=&isbn=9780191884276&volume=&issue=&date=20191024&spage=&pages=&title=A+Dictionary+of+the+Internet&atitle=clickjack+attack&btitle=A+Dictionary+of+the+Internet&jtitle=A+Dictionary+of+the+Internet&series=&aulast=Ince%2c+Darrel&id=DOI%3a10.1093%2facref%2f9780191884276.013.4110&site=ftf-live
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO%3aedsoro&genre=chapter&issn=&isbn=9780191884276&volume=&issue=&date=20191024&spage=&pages=&title=A+Dictionary+of+the+Internet&atitle=clickjack+attack&btitle=A+Dictionary+of+the+Internet&jtitle=A+Dictionary+of+the+Internet&series=&aulast=Ince%2c+Darrel&id=DOI%3a10.1093%2facref%2f9780191884276.013.4110&site=ftf-live
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO%3aedsoro&genre=chapter&issn=&isbn=9780191884276&volume=&issue=&date=20191024&spage=&pages=&title=A+Dictionary+of+the+Internet&atitle=clickjack+attack&btitle=A+Dictionary+of+the+Internet&jtitle=A+Dictionary+of+the+Internet&series=&aulast=Ince%2c+Darrel&id=DOI%3a10.1093%2facref%2f9780191884276.013.4110&site=ftf-live

Bibliography 75

[19] Ince, D. 2019. A Dictionary of the Internet (4 ed.). Oxford University
Press, published online. [http://resolver.ebscohost.com.ludwig.
lub.lu.se/openurl?sid=EBSCO:bwh&genre=article&issn=03624331&
isbn=&volume=160&issue=55403&date=20110512&spage=12&pages=
12-12&title=New%20York%20Times&atitle=How%20to%20Survive%20A%
20Clickjack%20Attack.&btitle=New%20York%20Times&jtitle=New%
20York%20Times&series=&aulast=Biersdorfer%2C%20J.%20D.&id=DOI:].
Accessed 2021-01-19.

[20] Clarke, N. 2011. Transparent User Authentication: Biometrics, RFID
and Behavioural Profiling. Springer-Verlag London Limited, published on-
line. [https://link-springer-com.ludwig.lub.lu.se/content/pdf/10.
1007%2F978-0-85729-805-8.pdf]. Transparent User Authentication. Ac-
cessed 2021-03-23.

[21] Hell, M. 2020. EITA25 Computer Security: User Authentication.
[https://www.eit.lth.se/fileadmin/eit/courses/eita25/lect/
EITA25_Lect4_User_Authentication.pdf]. Accessed 2021-03-23.

[22] Ometov, A. Bezzateev, S. Mäkitalo, N. Andreev, S. Mikkonen, T. Kouch-
eryavy, Y. 2018. Multi-Factor Authentication: A Survery. [https://www.
mdpi.com/2410-387X/2/1/1/htm]. Accessed 2021-03-23.

[23] Dinei, F. Cormac, H. 2007. A large-scale study of web password habits.
[https://dl.acm.org/doi/10.1145/1242572.1242661]. Accessed 2021-03-
23.

[24] Dipankar, D. Arunava, R. Abhijit, N. 2016. Toward the design of
adaptive selection strategies for multi-factor authentication. [https://
www.sciencedirect.com/science/article/pii/S016740481630102X]. Ac-
cessed 2021-03-23.

[25] Bonneau, J. Herley, C. 2015. Passwords and the evolution of imperfect authen-
tication. [https://dl.acm.org/doi/abs/10.1145/2699390]. Accessed 2021-
03-23.

[26] Krishnan Konoth, R. van der Veen, V. Bos, H. 2017. How Anywhere Com-
puting Just Killed Your Phone-Based Two-Factor Authentication. [https://
link.springer.com/chapter/10.1007/978-3-662-54970-4_24#Fn1]. Ac-
cessed 2021-03-24.

[27] Nancie, G. Diarmid, M. Hazel, M. Mervyn J. 2011. User perceptions of secu-
rity and usability of single-factor and two-factor authentication in automated
telephone banking. [https://www.sciencedirect.com/science/article/
pii/S0167404810001148]. Accessed 2021-03-28.

[28] Sun, J. Zhang, R. Zhang, J. Zhang, Y. 2014. TouchIn: Sight-
less two-factor authentication on multi-touch mobile devices.
[http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=
EBSCO%3aedseee&genre=chapter&issn=edseee.IEEEConferenc&isbn=
9781479958900&volume=&issue=&date=20141001&spage=436&pages=
436-444&title=2014+IEEE+Conference+on+Communications+and+

http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO:bwh&genre=article&issn=03624331&isbn=&volume=160&issue=55403&date=20110512&spage=12&pages=12-12&title=New%20York%20Times&atitle=How%20to%20Survive%20A%20Clickjack%20Attack.&btitle=New%20York%20Times&jtitle=New%20York%20Times&series=&aulast=Biersdorfer%2C%20J.%20D.&id=DOI:
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO:bwh&genre=article&issn=03624331&isbn=&volume=160&issue=55403&date=20110512&spage=12&pages=12-12&title=New%20York%20Times&atitle=How%20to%20Survive%20A%20Clickjack%20Attack.&btitle=New%20York%20Times&jtitle=New%20York%20Times&series=&aulast=Biersdorfer%2C%20J.%20D.&id=DOI:
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO:bwh&genre=article&issn=03624331&isbn=&volume=160&issue=55403&date=20110512&spage=12&pages=12-12&title=New%20York%20Times&atitle=How%20to%20Survive%20A%20Clickjack%20Attack.&btitle=New%20York%20Times&jtitle=New%20York%20Times&series=&aulast=Biersdorfer%2C%20J.%20D.&id=DOI:
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO:bwh&genre=article&issn=03624331&isbn=&volume=160&issue=55403&date=20110512&spage=12&pages=12-12&title=New%20York%20Times&atitle=How%20to%20Survive%20A%20Clickjack%20Attack.&btitle=New%20York%20Times&jtitle=New%20York%20Times&series=&aulast=Biersdorfer%2C%20J.%20D.&id=DOI:
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO:bwh&genre=article&issn=03624331&isbn=&volume=160&issue=55403&date=20110512&spage=12&pages=12-12&title=New%20York%20Times&atitle=How%20to%20Survive%20A%20Clickjack%20Attack.&btitle=New%20York%20Times&jtitle=New%20York%20Times&series=&aulast=Biersdorfer%2C%20J.%20D.&id=DOI:
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO:bwh&genre=article&issn=03624331&isbn=&volume=160&issue=55403&date=20110512&spage=12&pages=12-12&title=New%20York%20Times&atitle=How%20to%20Survive%20A%20Clickjack%20Attack.&btitle=New%20York%20Times&jtitle=New%20York%20Times&series=&aulast=Biersdorfer%2C%20J.%20D.&id=DOI:
https://link-springer-com.ludwig.lub.lu.se/content/pdf/10.1007%2F978-0-85729-805-8.pdf
https://link-springer-com.ludwig.lub.lu.se/content/pdf/10.1007%2F978-0-85729-805-8.pdf
https://www.eit.lth.se/fileadmin/eit/courses/eita25/lect/EITA25_Lect4_User_Authentication.pdf
https://www.eit.lth.se/fileadmin/eit/courses/eita25/lect/EITA25_Lect4_User_Authentication.pdf
https://www.mdpi.com/2410-387X/2/1/1/htm
https://www.mdpi.com/2410-387X/2/1/1/htm
https://dl.acm.org/doi/10.1145/1242572.1242661
https://www.sciencedirect.com/science/article/pii/S016740481630102X
https://www.sciencedirect.com/science/article/pii/S016740481630102X
https://dl.acm.org/doi/abs/10.1145/2699390
https://link.springer.com/chapter/10.1007/978-3-662-54970-4_24#Fn1
https://link.springer.com/chapter/10.1007/978-3-662-54970-4_24#Fn1
https://www.sciencedirect.com/science/article/pii/S0167404810001148
https://www.sciencedirect.com/science/article/pii/S0167404810001148
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO%3aedseee&genre=chapter&issn=edseee.IEEEConferenc&isbn=9781479958900&volume=&issue=&date=20141001&spage=436&pages=436-444&title=2014+IEEE+Conference+on+Communications+and+Network+Security%2c+Communications+and+Network+Security+(CNS)%2c+2014+IEEE+Conference+on&atitle=TouchIn%3a+Sightless+two-factor+authentication+on+multi-touch+mobile+devices&btitle=2014+IEEE+Conference+on+Communications+and+Network+Security%2c+Communications+and+Network+Security+(CNS)%2c+2014+IEEE+Conference+on&jtitle=2014+IEEE+Conference+on+Communications+and+Network+Security%2c+Communications+and+Network+Security+(CNS)%2c+2014+IEEE+Conference+on&series=&aulast=Jingchao+Sun&id=DOI%3a10.1109%2fCNS.2014.6997513&site=ftf-live
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO%3aedseee&genre=chapter&issn=edseee.IEEEConferenc&isbn=9781479958900&volume=&issue=&date=20141001&spage=436&pages=436-444&title=2014+IEEE+Conference+on+Communications+and+Network+Security%2c+Communications+and+Network+Security+(CNS)%2c+2014+IEEE+Conference+on&atitle=TouchIn%3a+Sightless+two-factor+authentication+on+multi-touch+mobile+devices&btitle=2014+IEEE+Conference+on+Communications+and+Network+Security%2c+Communications+and+Network+Security+(CNS)%2c+2014+IEEE+Conference+on&jtitle=2014+IEEE+Conference+on+Communications+and+Network+Security%2c+Communications+and+Network+Security+(CNS)%2c+2014+IEEE+Conference+on&series=&aulast=Jingchao+Sun&id=DOI%3a10.1109%2fCNS.2014.6997513&site=ftf-live
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO%3aedseee&genre=chapter&issn=edseee.IEEEConferenc&isbn=9781479958900&volume=&issue=&date=20141001&spage=436&pages=436-444&title=2014+IEEE+Conference+on+Communications+and+Network+Security%2c+Communications+and+Network+Security+(CNS)%2c+2014+IEEE+Conference+on&atitle=TouchIn%3a+Sightless+two-factor+authentication+on+multi-touch+mobile+devices&btitle=2014+IEEE+Conference+on+Communications+and+Network+Security%2c+Communications+and+Network+Security+(CNS)%2c+2014+IEEE+Conference+on&jtitle=2014+IEEE+Conference+on+Communications+and+Network+Security%2c+Communications+and+Network+Security+(CNS)%2c+2014+IEEE+Conference+on&series=&aulast=Jingchao+Sun&id=DOI%3a10.1109%2fCNS.2014.6997513&site=ftf-live
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO%3aedseee&genre=chapter&issn=edseee.IEEEConferenc&isbn=9781479958900&volume=&issue=&date=20141001&spage=436&pages=436-444&title=2014+IEEE+Conference+on+Communications+and+Network+Security%2c+Communications+and+Network+Security+(CNS)%2c+2014+IEEE+Conference+on&atitle=TouchIn%3a+Sightless+two-factor+authentication+on+multi-touch+mobile+devices&btitle=2014+IEEE+Conference+on+Communications+and+Network+Security%2c+Communications+and+Network+Security+(CNS)%2c+2014+IEEE+Conference+on&jtitle=2014+IEEE+Conference+on+Communications+and+Network+Security%2c+Communications+and+Network+Security+(CNS)%2c+2014+IEEE+Conference+on&series=&aulast=Jingchao+Sun&id=DOI%3a10.1109%2fCNS.2014.6997513&site=ftf-live
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO%3aedseee&genre=chapter&issn=edseee.IEEEConferenc&isbn=9781479958900&volume=&issue=&date=20141001&spage=436&pages=436-444&title=2014+IEEE+Conference+on+Communications+and+Network+Security%2c+Communications+and+Network+Security+(CNS)%2c+2014+IEEE+Conference+on&atitle=TouchIn%3a+Sightless+two-factor+authentication+on+multi-touch+mobile+devices&btitle=2014+IEEE+Conference+on+Communications+and+Network+Security%2c+Communications+and+Network+Security+(CNS)%2c+2014+IEEE+Conference+on&jtitle=2014+IEEE+Conference+on+Communications+and+Network+Security%2c+Communications+and+Network+Security+(CNS)%2c+2014+IEEE+Conference+on&series=&aulast=Jingchao+Sun&id=DOI%3a10.1109%2fCNS.2014.6997513&site=ftf-live
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO%3aedseee&genre=chapter&issn=edseee.IEEEConferenc&isbn=9781479958900&volume=&issue=&date=20141001&spage=436&pages=436-444&title=2014+IEEE+Conference+on+Communications+and+Network+Security%2c+Communications+and+Network+Security+(CNS)%2c+2014+IEEE+Conference+on&atitle=TouchIn%3a+Sightless+two-factor+authentication+on+multi-touch+mobile+devices&btitle=2014+IEEE+Conference+on+Communications+and+Network+Security%2c+Communications+and+Network+Security+(CNS)%2c+2014+IEEE+Conference+on&jtitle=2014+IEEE+Conference+on+Communications+and+Network+Security%2c+Communications+and+Network+Security+(CNS)%2c+2014+IEEE+Conference+on&series=&aulast=Jingchao+Sun&id=DOI%3a10.1109%2fCNS.2014.6997513&site=ftf-live

76 Bibliography

Network+Security%2c+Communications+and+Network+Security+
(CNS)%2c+2014+IEEE+Conference+on&atitle=TouchIn%3a+Sightless+
two-factor+authentication+on+multi-touch+mobile+devices&btitle=
2014+IEEE+Conference+on+Communications+and+Network+Security%
2c+Communications+and+Network+Security+(CNS)%2c+2014+IEEE+
Conference+on&jtitle=2014+IEEE+Conference+on+Communications+
and+Network+Security%2c+Communications+and+Network+Security+
(CNS)%2c+2014+IEEE+Conference+on&series=&aulast=Jingchao+Sun&
id=DOI%3a10.1109%2fCNS.2014.6997513&site=ftf-live]. Accessed 2021-
03-28.

[29] Kishore Kumar, K. Deepthishree A. M. 2019. Comparison-Based Analysis
of Different Authenticators. [https://link-springer-com.ludwig.lub.lu.
se/content/pdf/10.1007%2F978-981-13-0212-1_59.pdf]. Accessed 2021-
03-28.

[30] Bruun, A. Jensen, K. Kristensen, D. 2014. Usability of Single-
and Multi-factor Authentication Methods on Tabletops: A Compar-
ative Study. [https://link-springer-com.ludwig.lub.lu.se/chapter/
10.1007%2F978-3-662-44811-3_22]. Accessed 2021-03-28.

[31] Grassi, P. Fenton, J. Newton, E. Perlner, R. Regenscheid, A. Burr, W.
Richer, J. Lefkovitz, N. Danker, J. Choong, Y. Greene, K. Theofanos, M.
2017. Digital Identity Guidelines: Authentication and Lifecycle Management.
NIST Special Publication 800-63B. [https://nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-63b.pdf]. Accessed 2021-03-28.

[32] Klang, M. 2020. Database Technology: SQL. [https://fileadmin.cs.lth.
se/cs/Education/EDAF20/2020/lectures/f3/l3.pdf]. Accessed 2021-03-
28.

[33] Reese, K. Smith, T. Dutson, J. Armknecht, J. Cameron, J. Seamons, K.
2019. A Usability Study of Five Two-Factor Authentication Methods. [https:
//www.usenix.org/system/files/soups2019-reese.pdf]. Accessed 2021-
03-28.

[34] Bhagavatula, R. Ur, B. Iacovino, K. Kywe, S. Cranor, L. 2015. Biometric
authentication on iPhone and Android: Usability, perceptions, and influ-
ences on adoption. [https://ink.library.smu.edu.sg/cgi/viewcontent.
cgi?article=4969&context=sis_research]. Accessed 2021-03-28.

[35] Wimberly, H. Liebrock, L. 2011. Using Fingerprint Authentication to Reduce
System Security: An Empirical Study. [http://resolver.ebscohost.
com.ludwig.lub.lu.se/openurl?sid=EBSCO%3aedseee&genre=chapter&
issn=10816011&isbn=9781457701474&volume=&issue=&date=20110501&
spage=32&pages=32-46&title=2011+IEEE+Symposium+on+Security+and+
Privacy%2c+Security+and+Privacy+(SP)%2c+2011+IEEE+Symposium+
on&atitle=Using+Fingerprint+Authentication+to+Reduce+System+
Security%3a+An+Empirical+Study&btitle=2011+IEEE+Symposium+
on+Security+and+Privacy%2c+Security+and+Privacy+(SP)%2c+2011+
IEEE+Symposium+on&jtitle=2011+IEEE+Symposium+on+Security+and+

http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO%3aedseee&genre=chapter&issn=edseee.IEEEConferenc&isbn=9781479958900&volume=&issue=&date=20141001&spage=436&pages=436-444&title=2014+IEEE+Conference+on+Communications+and+Network+Security%2c+Communications+and+Network+Security+(CNS)%2c+2014+IEEE+Conference+on&atitle=TouchIn%3a+Sightless+two-factor+authentication+on+multi-touch+mobile+devices&btitle=2014+IEEE+Conference+on+Communications+and+Network+Security%2c+Communications+and+Network+Security+(CNS)%2c+2014+IEEE+Conference+on&jtitle=2014+IEEE+Conference+on+Communications+and+Network+Security%2c+Communications+and+Network+Security+(CNS)%2c+2014+IEEE+Conference+on&series=&aulast=Jingchao+Sun&id=DOI%3a10.1109%2fCNS.2014.6997513&site=ftf-live
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO%3aedseee&genre=chapter&issn=edseee.IEEEConferenc&isbn=9781479958900&volume=&issue=&date=20141001&spage=436&pages=436-444&title=2014+IEEE+Conference+on+Communications+and+Network+Security%2c+Communications+and+Network+Security+(CNS)%2c+2014+IEEE+Conference+on&atitle=TouchIn%3a+Sightless+two-factor+authentication+on+multi-touch+mobile+devices&btitle=2014+IEEE+Conference+on+Communications+and+Network+Security%2c+Communications+and+Network+Security+(CNS)%2c+2014+IEEE+Conference+on&jtitle=2014+IEEE+Conference+on+Communications+and+Network+Security%2c+Communications+and+Network+Security+(CNS)%2c+2014+IEEE+Conference+on&series=&aulast=Jingchao+Sun&id=DOI%3a10.1109%2fCNS.2014.6997513&site=ftf-live
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO%3aedseee&genre=chapter&issn=edseee.IEEEConferenc&isbn=9781479958900&volume=&issue=&date=20141001&spage=436&pages=436-444&title=2014+IEEE+Conference+on+Communications+and+Network+Security%2c+Communications+and+Network+Security+(CNS)%2c+2014+IEEE+Conference+on&atitle=TouchIn%3a+Sightless+two-factor+authentication+on+multi-touch+mobile+devices&btitle=2014+IEEE+Conference+on+Communications+and+Network+Security%2c+Communications+and+Network+Security+(CNS)%2c+2014+IEEE+Conference+on&jtitle=2014+IEEE+Conference+on+Communications+and+Network+Security%2c+Communications+and+Network+Security+(CNS)%2c+2014+IEEE+Conference+on&series=&aulast=Jingchao+Sun&id=DOI%3a10.1109%2fCNS.2014.6997513&site=ftf-live
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO%3aedseee&genre=chapter&issn=edseee.IEEEConferenc&isbn=9781479958900&volume=&issue=&date=20141001&spage=436&pages=436-444&title=2014+IEEE+Conference+on+Communications+and+Network+Security%2c+Communications+and+Network+Security+(CNS)%2c+2014+IEEE+Conference+on&atitle=TouchIn%3a+Sightless+two-factor+authentication+on+multi-touch+mobile+devices&btitle=2014+IEEE+Conference+on+Communications+and+Network+Security%2c+Communications+and+Network+Security+(CNS)%2c+2014+IEEE+Conference+on&jtitle=2014+IEEE+Conference+on+Communications+and+Network+Security%2c+Communications+and+Network+Security+(CNS)%2c+2014+IEEE+Conference+on&series=&aulast=Jingchao+Sun&id=DOI%3a10.1109%2fCNS.2014.6997513&site=ftf-live
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO%3aedseee&genre=chapter&issn=edseee.IEEEConferenc&isbn=9781479958900&volume=&issue=&date=20141001&spage=436&pages=436-444&title=2014+IEEE+Conference+on+Communications+and+Network+Security%2c+Communications+and+Network+Security+(CNS)%2c+2014+IEEE+Conference+on&atitle=TouchIn%3a+Sightless+two-factor+authentication+on+multi-touch+mobile+devices&btitle=2014+IEEE+Conference+on+Communications+and+Network+Security%2c+Communications+and+Network+Security+(CNS)%2c+2014+IEEE+Conference+on&jtitle=2014+IEEE+Conference+on+Communications+and+Network+Security%2c+Communications+and+Network+Security+(CNS)%2c+2014+IEEE+Conference+on&series=&aulast=Jingchao+Sun&id=DOI%3a10.1109%2fCNS.2014.6997513&site=ftf-live
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO%3aedseee&genre=chapter&issn=edseee.IEEEConferenc&isbn=9781479958900&volume=&issue=&date=20141001&spage=436&pages=436-444&title=2014+IEEE+Conference+on+Communications+and+Network+Security%2c+Communications+and+Network+Security+(CNS)%2c+2014+IEEE+Conference+on&atitle=TouchIn%3a+Sightless+two-factor+authentication+on+multi-touch+mobile+devices&btitle=2014+IEEE+Conference+on+Communications+and+Network+Security%2c+Communications+and+Network+Security+(CNS)%2c+2014+IEEE+Conference+on&jtitle=2014+IEEE+Conference+on+Communications+and+Network+Security%2c+Communications+and+Network+Security+(CNS)%2c+2014+IEEE+Conference+on&series=&aulast=Jingchao+Sun&id=DOI%3a10.1109%2fCNS.2014.6997513&site=ftf-live
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO%3aedseee&genre=chapter&issn=edseee.IEEEConferenc&isbn=9781479958900&volume=&issue=&date=20141001&spage=436&pages=436-444&title=2014+IEEE+Conference+on+Communications+and+Network+Security%2c+Communications+and+Network+Security+(CNS)%2c+2014+IEEE+Conference+on&atitle=TouchIn%3a+Sightless+two-factor+authentication+on+multi-touch+mobile+devices&btitle=2014+IEEE+Conference+on+Communications+and+Network+Security%2c+Communications+and+Network+Security+(CNS)%2c+2014+IEEE+Conference+on&jtitle=2014+IEEE+Conference+on+Communications+and+Network+Security%2c+Communications+and+Network+Security+(CNS)%2c+2014+IEEE+Conference+on&series=&aulast=Jingchao+Sun&id=DOI%3a10.1109%2fCNS.2014.6997513&site=ftf-live
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO%3aedseee&genre=chapter&issn=edseee.IEEEConferenc&isbn=9781479958900&volume=&issue=&date=20141001&spage=436&pages=436-444&title=2014+IEEE+Conference+on+Communications+and+Network+Security%2c+Communications+and+Network+Security+(CNS)%2c+2014+IEEE+Conference+on&atitle=TouchIn%3a+Sightless+two-factor+authentication+on+multi-touch+mobile+devices&btitle=2014+IEEE+Conference+on+Communications+and+Network+Security%2c+Communications+and+Network+Security+(CNS)%2c+2014+IEEE+Conference+on&jtitle=2014+IEEE+Conference+on+Communications+and+Network+Security%2c+Communications+and+Network+Security+(CNS)%2c+2014+IEEE+Conference+on&series=&aulast=Jingchao+Sun&id=DOI%3a10.1109%2fCNS.2014.6997513&site=ftf-live
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO%3aedseee&genre=chapter&issn=edseee.IEEEConferenc&isbn=9781479958900&volume=&issue=&date=20141001&spage=436&pages=436-444&title=2014+IEEE+Conference+on+Communications+and+Network+Security%2c+Communications+and+Network+Security+(CNS)%2c+2014+IEEE+Conference+on&atitle=TouchIn%3a+Sightless+two-factor+authentication+on+multi-touch+mobile+devices&btitle=2014+IEEE+Conference+on+Communications+and+Network+Security%2c+Communications+and+Network+Security+(CNS)%2c+2014+IEEE+Conference+on&jtitle=2014+IEEE+Conference+on+Communications+and+Network+Security%2c+Communications+and+Network+Security+(CNS)%2c+2014+IEEE+Conference+on&series=&aulast=Jingchao+Sun&id=DOI%3a10.1109%2fCNS.2014.6997513&site=ftf-live
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO%3aedseee&genre=chapter&issn=edseee.IEEEConferenc&isbn=9781479958900&volume=&issue=&date=20141001&spage=436&pages=436-444&title=2014+IEEE+Conference+on+Communications+and+Network+Security%2c+Communications+and+Network+Security+(CNS)%2c+2014+IEEE+Conference+on&atitle=TouchIn%3a+Sightless+two-factor+authentication+on+multi-touch+mobile+devices&btitle=2014+IEEE+Conference+on+Communications+and+Network+Security%2c+Communications+and+Network+Security+(CNS)%2c+2014+IEEE+Conference+on&jtitle=2014+IEEE+Conference+on+Communications+and+Network+Security%2c+Communications+and+Network+Security+(CNS)%2c+2014+IEEE+Conference+on&series=&aulast=Jingchao+Sun&id=DOI%3a10.1109%2fCNS.2014.6997513&site=ftf-live
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO%3aedseee&genre=chapter&issn=edseee.IEEEConferenc&isbn=9781479958900&volume=&issue=&date=20141001&spage=436&pages=436-444&title=2014+IEEE+Conference+on+Communications+and+Network+Security%2c+Communications+and+Network+Security+(CNS)%2c+2014+IEEE+Conference+on&atitle=TouchIn%3a+Sightless+two-factor+authentication+on+multi-touch+mobile+devices&btitle=2014+IEEE+Conference+on+Communications+and+Network+Security%2c+Communications+and+Network+Security+(CNS)%2c+2014+IEEE+Conference+on&jtitle=2014+IEEE+Conference+on+Communications+and+Network+Security%2c+Communications+and+Network+Security+(CNS)%2c+2014+IEEE+Conference+on&series=&aulast=Jingchao+Sun&id=DOI%3a10.1109%2fCNS.2014.6997513&site=ftf-live
https://link-springer-com.ludwig.lub.lu.se/content/pdf/10.1007%2F978-981-13-0212-1_59.pdf
https://link-springer-com.ludwig.lub.lu.se/content/pdf/10.1007%2F978-981-13-0212-1_59.pdf
https://link-springer-com.ludwig.lub.lu.se/chapter/10.1007%2F978-3-662-44811-3_22
https://link-springer-com.ludwig.lub.lu.se/chapter/10.1007%2F978-3-662-44811-3_22
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63b.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63b.pdf
https://fileadmin.cs.lth.se/cs/Education/EDAF20/2020/lectures/f3/l3.pdf
https://fileadmin.cs.lth.se/cs/Education/EDAF20/2020/lectures/f3/l3.pdf
https://www.usenix.org/system/files/soups2019-reese.pdf
https://www.usenix.org/system/files/soups2019-reese.pdf
https://ink.library.smu.edu.sg/cgi/viewcontent.cgi?article=4969&context=sis_research
https://ink.library.smu.edu.sg/cgi/viewcontent.cgi?article=4969&context=sis_research
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO%3aedseee&genre=chapter&issn=10816011&isbn=9781457701474&volume=&issue=&date=20110501&spage=32&pages=32-46&title=2011+IEEE+Symposium+on+Security+and+Privacy%2c+Security+and+Privacy+(SP)%2c+2011+IEEE+Symposium+on&atitle=Using+Fingerprint+Authentication+to+Reduce+System+Security%3a+An+Empirical+Study&btitle=2011+IEEE+Symposium+on+Security+and+Privacy%2c+Security+and+Privacy+(SP)%2c+2011+IEEE+Symposium+on&jtitle=2011+IEEE+Symposium+on+Security+and+Privacy%2c+Security+and+Privacy+(SP)%2c+2011+IEEE+Symposium+on&series=&aulast=Wimberly%2c+H.&id=DOI%3a10.1109%2fSP.2011.35&site=ftf-live
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO%3aedseee&genre=chapter&issn=10816011&isbn=9781457701474&volume=&issue=&date=20110501&spage=32&pages=32-46&title=2011+IEEE+Symposium+on+Security+and+Privacy%2c+Security+and+Privacy+(SP)%2c+2011+IEEE+Symposium+on&atitle=Using+Fingerprint+Authentication+to+Reduce+System+Security%3a+An+Empirical+Study&btitle=2011+IEEE+Symposium+on+Security+and+Privacy%2c+Security+and+Privacy+(SP)%2c+2011+IEEE+Symposium+on&jtitle=2011+IEEE+Symposium+on+Security+and+Privacy%2c+Security+and+Privacy+(SP)%2c+2011+IEEE+Symposium+on&series=&aulast=Wimberly%2c+H.&id=DOI%3a10.1109%2fSP.2011.35&site=ftf-live
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO%3aedseee&genre=chapter&issn=10816011&isbn=9781457701474&volume=&issue=&date=20110501&spage=32&pages=32-46&title=2011+IEEE+Symposium+on+Security+and+Privacy%2c+Security+and+Privacy+(SP)%2c+2011+IEEE+Symposium+on&atitle=Using+Fingerprint+Authentication+to+Reduce+System+Security%3a+An+Empirical+Study&btitle=2011+IEEE+Symposium+on+Security+and+Privacy%2c+Security+and+Privacy+(SP)%2c+2011+IEEE+Symposium+on&jtitle=2011+IEEE+Symposium+on+Security+and+Privacy%2c+Security+and+Privacy+(SP)%2c+2011+IEEE+Symposium+on&series=&aulast=Wimberly%2c+H.&id=DOI%3a10.1109%2fSP.2011.35&site=ftf-live
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO%3aedseee&genre=chapter&issn=10816011&isbn=9781457701474&volume=&issue=&date=20110501&spage=32&pages=32-46&title=2011+IEEE+Symposium+on+Security+and+Privacy%2c+Security+and+Privacy+(SP)%2c+2011+IEEE+Symposium+on&atitle=Using+Fingerprint+Authentication+to+Reduce+System+Security%3a+An+Empirical+Study&btitle=2011+IEEE+Symposium+on+Security+and+Privacy%2c+Security+and+Privacy+(SP)%2c+2011+IEEE+Symposium+on&jtitle=2011+IEEE+Symposium+on+Security+and+Privacy%2c+Security+and+Privacy+(SP)%2c+2011+IEEE+Symposium+on&series=&aulast=Wimberly%2c+H.&id=DOI%3a10.1109%2fSP.2011.35&site=ftf-live
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO%3aedseee&genre=chapter&issn=10816011&isbn=9781457701474&volume=&issue=&date=20110501&spage=32&pages=32-46&title=2011+IEEE+Symposium+on+Security+and+Privacy%2c+Security+and+Privacy+(SP)%2c+2011+IEEE+Symposium+on&atitle=Using+Fingerprint+Authentication+to+Reduce+System+Security%3a+An+Empirical+Study&btitle=2011+IEEE+Symposium+on+Security+and+Privacy%2c+Security+and+Privacy+(SP)%2c+2011+IEEE+Symposium+on&jtitle=2011+IEEE+Symposium+on+Security+and+Privacy%2c+Security+and+Privacy+(SP)%2c+2011+IEEE+Symposium+on&series=&aulast=Wimberly%2c+H.&id=DOI%3a10.1109%2fSP.2011.35&site=ftf-live
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO%3aedseee&genre=chapter&issn=10816011&isbn=9781457701474&volume=&issue=&date=20110501&spage=32&pages=32-46&title=2011+IEEE+Symposium+on+Security+and+Privacy%2c+Security+and+Privacy+(SP)%2c+2011+IEEE+Symposium+on&atitle=Using+Fingerprint+Authentication+to+Reduce+System+Security%3a+An+Empirical+Study&btitle=2011+IEEE+Symposium+on+Security+and+Privacy%2c+Security+and+Privacy+(SP)%2c+2011+IEEE+Symposium+on&jtitle=2011+IEEE+Symposium+on+Security+and+Privacy%2c+Security+and+Privacy+(SP)%2c+2011+IEEE+Symposium+on&series=&aulast=Wimberly%2c+H.&id=DOI%3a10.1109%2fSP.2011.35&site=ftf-live
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO%3aedseee&genre=chapter&issn=10816011&isbn=9781457701474&volume=&issue=&date=20110501&spage=32&pages=32-46&title=2011+IEEE+Symposium+on+Security+and+Privacy%2c+Security+and+Privacy+(SP)%2c+2011+IEEE+Symposium+on&atitle=Using+Fingerprint+Authentication+to+Reduce+System+Security%3a+An+Empirical+Study&btitle=2011+IEEE+Symposium+on+Security+and+Privacy%2c+Security+and+Privacy+(SP)%2c+2011+IEEE+Symposium+on&jtitle=2011+IEEE+Symposium+on+Security+and+Privacy%2c+Security+and+Privacy+(SP)%2c+2011+IEEE+Symposium+on&series=&aulast=Wimberly%2c+H.&id=DOI%3a10.1109%2fSP.2011.35&site=ftf-live
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO%3aedseee&genre=chapter&issn=10816011&isbn=9781457701474&volume=&issue=&date=20110501&spage=32&pages=32-46&title=2011+IEEE+Symposium+on+Security+and+Privacy%2c+Security+and+Privacy+(SP)%2c+2011+IEEE+Symposium+on&atitle=Using+Fingerprint+Authentication+to+Reduce+System+Security%3a+An+Empirical+Study&btitle=2011+IEEE+Symposium+on+Security+and+Privacy%2c+Security+and+Privacy+(SP)%2c+2011+IEEE+Symposium+on&jtitle=2011+IEEE+Symposium+on+Security+and+Privacy%2c+Security+and+Privacy+(SP)%2c+2011+IEEE+Symposium+on&series=&aulast=Wimberly%2c+H.&id=DOI%3a10.1109%2fSP.2011.35&site=ftf-live
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO%3aedseee&genre=chapter&issn=10816011&isbn=9781457701474&volume=&issue=&date=20110501&spage=32&pages=32-46&title=2011+IEEE+Symposium+on+Security+and+Privacy%2c+Security+and+Privacy+(SP)%2c+2011+IEEE+Symposium+on&atitle=Using+Fingerprint+Authentication+to+Reduce+System+Security%3a+An+Empirical+Study&btitle=2011+IEEE+Symposium+on+Security+and+Privacy%2c+Security+and+Privacy+(SP)%2c+2011+IEEE+Symposium+on&jtitle=2011+IEEE+Symposium+on+Security+and+Privacy%2c+Security+and+Privacy+(SP)%2c+2011+IEEE+Symposium+on&series=&aulast=Wimberly%2c+H.&id=DOI%3a10.1109%2fSP.2011.35&site=ftf-live
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO%3aedseee&genre=chapter&issn=10816011&isbn=9781457701474&volume=&issue=&date=20110501&spage=32&pages=32-46&title=2011+IEEE+Symposium+on+Security+and+Privacy%2c+Security+and+Privacy+(SP)%2c+2011+IEEE+Symposium+on&atitle=Using+Fingerprint+Authentication+to+Reduce+System+Security%3a+An+Empirical+Study&btitle=2011+IEEE+Symposium+on+Security+and+Privacy%2c+Security+and+Privacy+(SP)%2c+2011+IEEE+Symposium+on&jtitle=2011+IEEE+Symposium+on+Security+and+Privacy%2c+Security+and+Privacy+(SP)%2c+2011+IEEE+Symposium+on&series=&aulast=Wimberly%2c+H.&id=DOI%3a10.1109%2fSP.2011.35&site=ftf-live
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO%3aedseee&genre=chapter&issn=10816011&isbn=9781457701474&volume=&issue=&date=20110501&spage=32&pages=32-46&title=2011+IEEE+Symposium+on+Security+and+Privacy%2c+Security+and+Privacy+(SP)%2c+2011+IEEE+Symposium+on&atitle=Using+Fingerprint+Authentication+to+Reduce+System+Security%3a+An+Empirical+Study&btitle=2011+IEEE+Symposium+on+Security+and+Privacy%2c+Security+and+Privacy+(SP)%2c+2011+IEEE+Symposium+on&jtitle=2011+IEEE+Symposium+on+Security+and+Privacy%2c+Security+and+Privacy+(SP)%2c+2011+IEEE+Symposium+on&series=&aulast=Wimberly%2c+H.&id=DOI%3a10.1109%2fSP.2011.35&site=ftf-live

Bibliography 77

Privacy%2c+Security+and+Privacy+(SP)%2c+2011+IEEE+Symposium+
on&series=&aulast=Wimberly%2c+H.&id=DOI%3a10.1109%2fSP.2011.35&
site=ftf-live]. Accessed 2021-03-28.

[36] Wikipedia, The Free Encyclopedia. 2021. Fingerprint, Minutiae features.
[https://en.wikipedia.org/wiki/Fingerprint#Minutiae_features].
Accessed 2021-03-29.

[37] Malladi, S. Alves-Foss, J. Hechendorn, R. 2002. On Preventing Replay At-
tacks on Security Protocols. [https://apps.dtic.mil/dtic/tr/fulltext/
u2/a462295.pdf]. Accessed 2021-03-30.

[38] Harini, N. Padmanabhan, T.R. 2013. 2CAuth: A New Two Factor Authenti-
cation Scheme Using QR-Code. [http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.411.9555&rep=rep1&type=pdf]. Accessed 2021-04-
12.

[39] Grasse, P. Garcia, M. Fenton, J. 2017. NIST Special Publication 800-
63-3: Digital Identity Guidelines. [https://nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-63-3.pdf]. Accessed 2021-04-12.

[40] NIST. Dworkin, M. 2015. NIST Policy on Hash Functions. [https://csrc.
nist.gov/Projects/Hash-Functions/NIST-Policy-on-Hash-Functions].
Accessed 2021-04-13.

[41] Wikipedia. 2021. SHA-1. [https://en.wikipedia.org/wiki/SHA-1#
Comparison_of_SHA_functions]. Accessed 2021-04-13.

[42] Aravindhan, K. Karthiga, R. 2013. One-time Password: A Survey.
[https://www.researchgate.net/profile/Aravindhan-Kurunthachalam/
publication/344518837_One-time_Password_A_Survey/links/
5f7dd49592851c14bcb60412/One-time-Password-A-Survey.pdf]. Ac-
cessed 2021-04-13.

[43] Jover, R. 2020. Security Analysis of SMS: as a Second Factor of Authentica-
tion. [https://dl.acm.org/doi/pdf/10.1145/3424302.3425909]. Accessed
2021-04-19.

http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO%3aedseee&genre=chapter&issn=10816011&isbn=9781457701474&volume=&issue=&date=20110501&spage=32&pages=32-46&title=2011+IEEE+Symposium+on+Security+and+Privacy%2c+Security+and+Privacy+(SP)%2c+2011+IEEE+Symposium+on&atitle=Using+Fingerprint+Authentication+to+Reduce+System+Security%3a+An+Empirical+Study&btitle=2011+IEEE+Symposium+on+Security+and+Privacy%2c+Security+and+Privacy+(SP)%2c+2011+IEEE+Symposium+on&jtitle=2011+IEEE+Symposium+on+Security+and+Privacy%2c+Security+and+Privacy+(SP)%2c+2011+IEEE+Symposium+on&series=&aulast=Wimberly%2c+H.&id=DOI%3a10.1109%2fSP.2011.35&site=ftf-live
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO%3aedseee&genre=chapter&issn=10816011&isbn=9781457701474&volume=&issue=&date=20110501&spage=32&pages=32-46&title=2011+IEEE+Symposium+on+Security+and+Privacy%2c+Security+and+Privacy+(SP)%2c+2011+IEEE+Symposium+on&atitle=Using+Fingerprint+Authentication+to+Reduce+System+Security%3a+An+Empirical+Study&btitle=2011+IEEE+Symposium+on+Security+and+Privacy%2c+Security+and+Privacy+(SP)%2c+2011+IEEE+Symposium+on&jtitle=2011+IEEE+Symposium+on+Security+and+Privacy%2c+Security+and+Privacy+(SP)%2c+2011+IEEE+Symposium+on&series=&aulast=Wimberly%2c+H.&id=DOI%3a10.1109%2fSP.2011.35&site=ftf-live
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO%3aedseee&genre=chapter&issn=10816011&isbn=9781457701474&volume=&issue=&date=20110501&spage=32&pages=32-46&title=2011+IEEE+Symposium+on+Security+and+Privacy%2c+Security+and+Privacy+(SP)%2c+2011+IEEE+Symposium+on&atitle=Using+Fingerprint+Authentication+to+Reduce+System+Security%3a+An+Empirical+Study&btitle=2011+IEEE+Symposium+on+Security+and+Privacy%2c+Security+and+Privacy+(SP)%2c+2011+IEEE+Symposium+on&jtitle=2011+IEEE+Symposium+on+Security+and+Privacy%2c+Security+and+Privacy+(SP)%2c+2011+IEEE+Symposium+on&series=&aulast=Wimberly%2c+H.&id=DOI%3a10.1109%2fSP.2011.35&site=ftf-live
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO%3aedseee&genre=chapter&issn=10816011&isbn=9781457701474&volume=&issue=&date=20110501&spage=32&pages=32-46&title=2011+IEEE+Symposium+on+Security+and+Privacy%2c+Security+and+Privacy+(SP)%2c+2011+IEEE+Symposium+on&atitle=Using+Fingerprint+Authentication+to+Reduce+System+Security%3a+An+Empirical+Study&btitle=2011+IEEE+Symposium+on+Security+and+Privacy%2c+Security+and+Privacy+(SP)%2c+2011+IEEE+Symposium+on&jtitle=2011+IEEE+Symposium+on+Security+and+Privacy%2c+Security+and+Privacy+(SP)%2c+2011+IEEE+Symposium+on&series=&aulast=Wimberly%2c+H.&id=DOI%3a10.1109%2fSP.2011.35&site=ftf-live
http://resolver.ebscohost.com.ludwig.lub.lu.se/openurl?sid=EBSCO%3aedseee&genre=chapter&issn=10816011&isbn=9781457701474&volume=&issue=&date=20110501&spage=32&pages=32-46&title=2011+IEEE+Symposium+on+Security+and+Privacy%2c+Security+and+Privacy+(SP)%2c+2011+IEEE+Symposium+on&atitle=Using+Fingerprint+Authentication+to+Reduce+System+Security%3a+An+Empirical+Study&btitle=2011+IEEE+Symposium+on+Security+and+Privacy%2c+Security+and+Privacy+(SP)%2c+2011+IEEE+Symposium+on&jtitle=2011+IEEE+Symposium+on+Security+and+Privacy%2c+Security+and+Privacy+(SP)%2c+2011+IEEE+Symposium+on&series=&aulast=Wimberly%2c+H.&id=DOI%3a10.1109%2fSP.2011.35&site=ftf-live
https://en.wikipedia.org/wiki/Fingerprint#Minutiae_features
https://apps.dtic.mil/dtic/tr/fulltext/u2/a462295.pdf
https://apps.dtic.mil/dtic/tr/fulltext/u2/a462295.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.411.9555&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.411.9555&rep=rep1&type=pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-3.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-3.pdf
https://csrc.nist.gov/Projects/Hash-Functions/NIST-Policy-on-Hash-Functions
https://csrc.nist.gov/Projects/Hash-Functions/NIST-Policy-on-Hash-Functions
https://en.wikipedia.org/wiki/SHA-1#Comparison_of_SHA_functions
https://en.wikipedia.org/wiki/SHA-1#Comparison_of_SHA_functions
https://www.researchgate.net/profile/Aravindhan-Kurunthachalam/publication/344518837_One-time_Password_A_Survey/links/5f7dd49592851c14bcb60412/One-time-Password-A-Survey.pdf
https://www.researchgate.net/profile/Aravindhan-Kurunthachalam/publication/344518837_One-time_Password_A_Survey/links/5f7dd49592851c14bcb60412/One-time-Password-A-Survey.pdf
https://www.researchgate.net/profile/Aravindhan-Kurunthachalam/publication/344518837_One-time_Password_A_Survey/links/5f7dd49592851c14bcb60412/One-time-Password-A-Survey.pdf
https://dl.acm.org/doi/pdf/10.1145/3424302.3425909

78 Bibliography

AppendixA
The OAuth 2.0 Authorization Framework

This Appendix expands the description of OAuth 2.0 in Chapter 3 and gives
more detailed information about the authorization code flow, the implicit flow,
the resource owner password credentials flow, and the client credentials flow of the
OAuth 2.0 Authorization Framework.

A.1 Authorization Code Flow

This section describes the purpose of the messages 1, 3, 4, and 5 in Figure 3.1 of
the authorization code flow.

A.1.1 Authorization Request, Message 1

The "application/x-www-form-urlencoded" format is used for the authorization
request, sent from the client to the authorization endpoint at the authorization
server. The following parameters are included in the authorization request:

//REQUIRED PARAMETERS:
response_type

Value must be s e t to " code"
c l i en t_ id

The c l i e n t i d e n t i f i e r , s e e Sec t i on 3.1 f o r more
in fo rmat ion

//OPTIONAL PARAMETERS:
r ed i r e c t_ur i

An abso lu t e URI to which the au tho r i z a t i on endpoint
w i l l send the user−agent back to once a c c e s s i s
granted or denied

scope
A l i s t o f space−de l imited , case−s e n s i t i v e s t r i n g s
that s p e c i f i e s the scope o f the r eques t

//RECOMMENDED PARAMETERS:
s t a t e

An opaque value that i s used by the c l i e n t to maintain
a s t a t e between the reque s t and the ca l l ba ck . This
va lue i s inc luded , by the au tho r i z a t i on se rver ,

79

80 The OAuth 2.0 Authorization Framework

when r e d i r e c t i n g the user−agent back to the c l i e n t .
The parameter should be used f o r prevent ing cros s−s i t e
r eque s t f o r g e ry . See Sec t i on 6.1 f o r more
in fo rmat ion

Example of an authorization request, a HTTP GET request, using TLS:

GET / author i z e ? response_type=code&c l i en t_ id=s6BhdRkqt3
&s t a t e=xyz&red i r e c t_ur i=https%3A%2F%2Fc l i e n t
%2Eexample%2Ecom%2Fcb HTTP/1 .1
Host : s e r v e r . example . com

A.1.2 Authorization Response, Message 3

An authorization response is sent if the resource owner grants access in message
2. The "application/x-www-form-urlencoded" format is used for the authorization
response, sent from the authorization endpoint at the authorization server to the
client. The following parameters are included in the authorization response:

//REQUIRED PARAMETERS
code

The au th ro i z a t i on code i s generated by the
au tho r i z a t i on s e r v e r and must exp i r e s ho r t l y a f t e r
i t i s i s s u ed to mi t i ga t e the r i s k o f l eaks , a
maximum l i f e t im e o f 10 minutes i s recommended .
The au tho r i z a t i on code must not be used more than
once and the au tho r i z a t i on code i s bound to the
c l i e n t i d e n t i f i e r and the r e i d r e c t i o n URI .

s t a t e //REQUIRED IF PRESENT IN REQUEST
The value that was r e c e i v ed in the r eque s t from the
c l i e n t

Example of an authorization response, a HTTP response:

HTTP/1 .1 302 Found
Locat ion : https : // c l i e n t . example . com/cb?
code=SplxlOBeZQQYbYS6WxSbIA&s t a t e=xyz

A.1.3 Error Response, Message 3

An error response is sent if the resource owner denies access in message 2 or if
the request fails for reasons other than a missing or invalid redirection URI. In-
formation should be sent to the resource owner from the authorization server if
the request fails due to a missing or invalid client identifier, or a missing, invalid,
or mismatching redirection URI. The authorization server must not redirect the
user-agent to the invalid or mismatching redirection URI.

The "application/x-www-form-urlencoded" format is used for the error response,
sent from the authorization endpoint at the authorization server to the client. The
following parameters are included in the error response:

The OAuth 2.0 Authorization Framework 81

//REQUIRED PARAMETERS
e r r o r

An ASCII e r r o r code form the f o l l ow i ng :
inva l id_reques t
unauthor i zed_c l i ent
access_denied
unsupported_response_type
inva l id_scope
se rve r_er ro r
temporar i ly_unava i lab l e

s t a t e //REQUIRED IF PRESENT IN REQUEST
The value that was r e c e i v ed in the r eques t from the
c l i e n t

//OPTIONAL PARAMETERS
e r ro r_de s c r i p t i on

Human−r eadab le ASCII with add i t i ona l in fo rmat ion
er ro r_ur i

URI to a web page with human−r eadab le in fo rmat ion about
the e r r o r

Example of an error response, a HTTP response, where the authorization redirects
the user-agent to the redirection URI:

HTTP/1 .1 302 Found
Locat ion : https : // c l i e n t . example . com/cb? e r r o r=access_denied

&s t a t e=xyz

A.1.4 Access Token Request, Message 4

The "application/x-www-form-urlencoded" format is used for the token request,
sent from the client to the token endpoint at the authorization server. The follow-
ing parameters are included in the token request:

//REQUIRED PARAMETERS
grant_type

Value must be s e t to " author izat ion_code "
code

The au tho r i z a t i on code that was r e c e i v ed from the
au tho r i z a t i on s e r v e r

r ed i r e c t_ur i
The r e d i r e c t URI that was inc luded in the
au tho r i z a t i on request , the va lue
must be i d e n t i c a l to the value in the au tho r i z a t i on
request , s e e Sec t i on A.1.1 f o r more in fo rmat ion

c l i en t_ id //REQUIRED IF NO CLIENT AUTHENTICATION
See Sec t i on 3.1 f o r more in fo rmat ion

Example of an authorization request, a HTTP GET request, using TLS:

82 The OAuth 2.0 Authorization Framework

POST / token HTTP/1 .1
Host : s e r v e r . example . com
Author i zat ion : Bas ic czZCaGRSa3F0MzpnWDFmQmF0M2JW
Content−Type : app l i c a t i o n /x−www−form−ur lencoded

grant_type=author izat ion_code
&code=SplxlOBeZQQYbYS6WxSbIA
&red i r e c t_ur i=https%3A%2F%2Fc l i e n t%2Eexample%2Ecom%2Fcb

The authorization server must require client authentication for confidential clients
and authenticate the client if client authentication is included. The authorization
server must also ensure that the authorization code was issued to the authenticated
confidential client/the "client_id" for the public client, as well as verify that the
authorization code is valid. If the "redirect_uri" was present as a parameter in
the authorization request, the authorization server must verify that the value in
the token request is identical to the value provided in the authorization request
(see Section A.1.1).

A.1.5 Access Token Response, Message 5

An access token response containing an access token and, optionally, a refresh to-
ken is sent if the access token request is valid and authorized. Otherwise, an error
response is sent. See Section 3.3.2 for more details.

An example of a successful access token response:

HTTP/1 .1 200 OK
Content−Type : app l i c a t i o n / j son ; cha r s e t=UTF−8
Cache−Control : no−s t o r e
Pragma : no−cache

{
" access_token " :"2YotnFZFEjr1zCsicMWpAA" ,
" token_type " :" example " ,
" exp i re s_in " :3600 ,
" re f resh_token " :"tGzv3JOkF0XG5Qx2TlKWIA" ,
"example_parameter " :" example_value"

}

A.2 Implicit Flow

This section describes the purpose of the messages 1 and 3 in Figure 3.2 of the
authorization code flow.

A.2.1 Authorization Request, Message 1

The "application/x-www-form-urlencoded" format is used for the authorization
request, sent from the client to the authorization endpoint at the authorization

The OAuth 2.0 Authorization Framework 83

server. The following parameters are included in the authorization request:

//REQUIRED PARAMETERS:
response_type

Value must be s e t to " token"
c l i en t_ id

The c l i e n t i d e n t i f i e r , s e e Sec t i on 3.1 f o r more
in fo rmat ion

//OPTIONAL PARAMETERS:
r ed i r e c t_ur i

An abso lu t e URI to which the au tho r i z a t i on endpoint
w i l l send the user−agent back to once a c c e s s i s
granted or denied

scope
A l i s t o f space−de l imited , case−s e n s i t i v e s t r i n g s
that s p e c i f i e s the scope o f the r eques t

//RECOMMENDED PARAMETERS:
s t a t e

An opaque value that i s used by the c l i e n t to
maintain a s t a t e between the r eques t and the
ca l l b a ck . This va lue i s inc luded , by the
au tho r i z a t i on se rver , when r e d i r e c t i n g the
user−agent back to the c l i e n t . The parameter
should be used f o r prevent ing cros s−s i t e r eque s t
f o r g e ry . See Sec t i on 6.1 f o r more in fo rmat ion

Example of an authorization request, a HTTP GET request, using TLS:

GET / author i z e ? response_type=token&c l i en t_ id=s6BhdRkqt3
&s t a t e=xyz&red i r e c t_ur i=https%3A%2F%2Fc l i e n t
%2Eexample%2Ecom%2Fcb HTTP/1 .1

Host : s e r v e r . example . com

A.2.2 Access Token Response, Message 3

An access token response containing an access token is redirected to the client if
the resource owner grants the access request. Otherwise, an error response is sent.
The "application/x-www-form-urlencoded" format is used for the access token re-
sponse.

The following parameters are added to the fragment component of the redirec-
tion URI:

//REQUIRED PARAMETERS
access_token

The ac c e s s token that i s i s s u ed by the au tho r i z a t i on
s e r v e r

token_type
The type o f the token that i s i s su ed by the

84 The OAuth 2.0 Authorization Framework

au tho r i z a t i on se rver , examples o f a c c e s s token types
are " bearer " and "mac"

s t a t e //REQUIRED IF PRESENT IN REQUEST
The value that was r e c e i v ed in the r eque s t from the
c l i e n t

//RECOMMENDED PARAMETERS
expi re s_in

The ac c e s s token ’ s l i f e t im e in seconds , from the
time that the re sponse was generated

//OPTIONAL PARAMETERS
scope //REQUIRED IF NOT IDENTICAL TO REQUEST

A l i s t o f space−de l imited , case−s e n s i t i v e s t r i n g s
that s p e c i f i e s the scope o f the r eques t

An example of a successful access token response, that redirects the user-agent:

HTTP/1 .1 302 Found
Locat ion : http :// example . com/cb

#access_token=2YotnFZFEjr1zCsicMWpAA&s ta t e=xyz
&token_type=example&exp i re s_in=3600

A.2.3 Error Response, Message 3

An error response is sent if the resource owner denies access in message 2 or if
the request fails for reasons other than a missing or invalid redirection URI. In-
formation should be sent to the resource owner from the authorization server if
the request fails due to a missing or invalid client identifier, or a missing, invalid,
or mismatching redirection URI. The authorization server must not redirect the
user-agent to the invalid or mismatching redirection URI.

The "application/x-www-form-urlencoded" format is used for the error response,
sent from the authorization endpoint at the authorization server to the client. The
following parameters are included in the error response:

//REQUIRED PARAMETERS
e r r o r

An ASCII e r r o r code form the f o l l ow i ng :
inva l id_reques t
unauthor i zed_c l i ent
access_denied
unsupported_response_type
inva l id_scope
se rve r_er ro r
temporar i ly_unava i lab l e

s t a t e //REQUIRED IF PRESENT IN REQUEST
The value that was r e c e i v ed in the r eques t from the
c l i e n t

//OPTIONAL PARAMETERS

The OAuth 2.0 Authorization Framework 85

e r r o r_de s c r i p t i on
Human−r eadab le ASCII with add i t i ona l in fo rmat ion

er ro r_ur i
URI to a web page with human−r eadab le in fo rmat ion
about the e r r o r

Example of an error response, a HTTP response, where the authorization redirects
the user-agent to the redirection URI:

HTTP/1 .1 302 Found
Locat ion : https : // c l i e n t . example . com/cb

#e r r o r=access_denied&s t a t e=xyz

A.3 Resource Owner Password Credentials Flow

This section describes the purpose of the messages in Figure 3.3 of the resource
owner password credentials flow.

A.3.1 Authorization Request and Response, Message 1

The client must discard the resource owner credentials once the access token has
been received. The method through which the client obtains the resource owner
credentials is beyond the scope of this protocol.

A.3.2 Access Token Request, Message 2

The "application/x-www-form-urlencoded" format is used for the token request,
sent from the client to the token endpoint at the authorization server. The follow-
ing parameters are included in the token request:

//REQUIRED PARAMETERS
grant_type

Value must be s e t to "password"
username

The r e sou r c e owner username
password

The r e sou r c e owner password
//OPTIONAL PARAMETERS
scope

A l i s t o f space−de l imited , case−s e n s i t i v e s t r i n g s
that s p e c i f i e s the scope o f the r eques t

Example of an access token request, a HTTP POST, using TLS:

POST / token HTTP/1 .1
Host : s e r v e r . example . com
Author i zat ion : Bas ic czZCaGRSa3F0MzpnWDFmQmF0M2JW
Content−Type : app l i c a t i o n /x−www−form−ur lencoded

grant_type=password&username=johndoe&password=A3ddj3w

86 The OAuth 2.0 Authorization Framework

The authorization server must require client authentication for confidential clients
(or any client that was issued client credentials) and authenticate the client if
client authentication is included. The authorization server must also validate the
resource owner password credentials using its existing password validation algo-
rithm.

The access token request includes the resource owner’s password, which means
that it is vulnerable to brute force attacks, see Section 6.2. Therefore, the autho-
rization server must protect against brute force attacks.

A.3.3 Access Token Response, Message 3

An access token response containing an access token and, optionally, a refresh to-
ken is sent if the access token request is valid and authorized. Otherwise, an error
response is sent. See Section 3.3.2 for more details.

An example of a successful access token response:

HTTP/1 .1 200 OK
Content−Type : app l i c a t i o n / j son ; cha r s e t=UTF−8
Cache−Control : no−s t o r e
Pragma : no−cache

{
" access_token " :"2YotnFZFEjr1zCsicMWpAA" ,
" token_type " :" example " ,
" exp i re s_in " :3600 ,
" re f resh_token " :"tGzv3JOkF0XG5Qx2TlKWIA" ,
"example_parameter " :" example_value"

}

A.4 Client Credentials Flow

This section describes the purpose of the messages in Figure 3.4 of the client
credentials flow.

A.4.1 Access Token Request, Message 1

The "application/x-www-form-urlencoded" format is used for the token request,
sent from the client to the token endpoint at the authorization server. The follow-
ing parameters are included in the token request:

//REQUIRED PARAMETERS
grant_type

Value must be s e t to " c l i e n t_c r e d e n t i a l s "
//OPTIONAL PARAMETERS
scope

The OAuth 2.0 Authorization Framework 87

A l i s t o f space−de l imited , case−s e n s i t i v e s t r i n g s
that s p e c i f i e s the scope o f the r eques t

Example of an access token request, a HTTP POST, using TLS:

POST / token HTTP/1 .1
Host : s e r v e r . example . com
Author i zat ion : Bas ic czZCaGRSa3F0MzpnWDFmQmF0M2JW
Content−Type : app l i c a t i o n /x−www−form−ur lencoded

grant_type=c l i e n t_c r e d e n t i a l s

The authorization server must authenticate the client.

A.4.2 Access Token Response, Message 2

An access token response containing an access token is sent if the access token
request is valid and authorized. Otherwise, an error response is sent. See Section
3.3.2 for more details. A refresh token should not be included.

An example of a successful access token response:

HTTP/1 .1 200 OK
Content−Type : app l i c a t i o n / j son ; cha r s e t=UTF−8
Cache−Control : no−s t o r e
Pragma : no−cache

{
" access_token " :"2YotnFZFEjr1zCsicMWpAA" ,
" token_type " :" example " ,
" exp i re s_in " :3600 ,
"example_parameter " :" example_value"

}

88 The OAuth 2.0 Authorization Framework

AppendixB
OpenID Connect 1.0

This Appendix expands the description of OpenID in Chapter 4 and gives more
detailed information about the authorization code flow, the implicit flow, and the
hybrid flow of OpenID Connect 1.0.

B.1 Authorization Code Flow

This section describes the purpose of the messages in Figure 4.1, the endpoints,
and the ID and access tokens of the authorization code flow.

B.1.1 Endpoints

There are three endpoints at the authorization server in the authorization code
flow, the authorization endpoint, the token endpoint and the userinfo endpoint
(see Section 4.6).

Authorization Endpoint

The authorization endpoint at the authorization server performs authentication
and authorization of the end-user, by sending the user-agent to the authorization
endpoint. Communication with the authorization endpoint must utilize TLS.

Token Endpoint

The token endpoint at the authorization server receives token requests and issues
token responses to clients (RPs). Communication with the token endpoint must
utilize TLS.

B.1.2 ID Token

The additional claim for the ID token when using the authorization code flow is:

//OPTIONAL CLAIM:
at_hash

89

90 OpenID Connect 1.0

A case s e n s i t i v e s t r i n g r ep r e s en t i ng the ac c e s s token
hash value , where the hash a lgor i thm used i s the
hash a lgor i thm used in the " a lg " header parameter
o f the ID token ’ s JOSE header , the va lue i s the
base64ur l encoding o f the l e f t −most h a l f o f the
hash o f the o c t e t s o f the ASCII r ep r e s en t a t i on o f
the " access_token " value

ID Token Validation

The clients (RPs) must validate the ID token in the token response from the token
endpoint according to the following:

1. If the ID token is encrypted, decryption of the ID token is done using the
keys and algorithm specified during registration.

2. The "iss" value must be identical to the issuer identifier of the authorization
server (OP), usually obtained during discovery.

3. The "aud" claim must contain the "client_id" value present in the "iss"
claim. The "aud" claim may contain more than one value. However, the
ID token must be rejected if the audience claim contains audiences that are
not trusted by the client.

4. The "azp" claim should be present if the ID token contains multiple audi-
ences.

5. If the "azp" claim is present, the "client_id" should be its claim value.

6. The LST server may be used for validating the issuer instead of checking
the token signature. However, the signature of all other ID tokens must be
validated by the client according to JWS (using the algorithm specified in
the JWT "alg" header parameter). The client must use the keys provided
by the issuer.

7. The "alg" value should be the default of "RS256" or the algorithm value in
the "id_token_signed_response_alg" parameter that is sent during regis-
tration.

8. If the "alg" parameter is using a MAC based algorithm (e.g, "HS256",
"HS384" or "HS512"), the octets of the UTF-8 representation of the "client_secret"
corresponding to the "client_id" contained in the "aud" claim are used as
the key to validate the signature. The behaviour is unspecified if the "aud"
is multi-valued or if the "azp" value is present that is different than the
"aud" value.

9. The current time must be before the time that is specified in the "exp"
claim.

10. The time-value in the "iat" claim can be used to reject ID tokens that were
issued too far away from the current time. By limiting the time that the ID
tokens are valid, the time that the "nonce" value is stored is also limited,
which prevents attacks.

OpenID Connect 1.0 91

11. The value of the "nonce" claim must be present and identical to the authen-
tication request’s "nonce" parameter, if the "nonce" parameter was present
in the request. The "nonce" value should be checked for replay attacks (see
Section 6.3).

12. The asserted claim value of the "acr" claim should be checked if present.

13. The "auth_time" claim should be checked if requested (through a specific
request or through the "max_age" parameter), to determine if too much
time has past since the last end-user authentication.

B.1.3 Access Token Validation

If the ID token contains an "at_hash" claim, the access token and the id token
may be validated by the client (RP) as defined in Section B.2.3 (but in this code
flow the access token and the id token are returned from the token endpoint).

B.1.4 Authentication Request, Message 2

An authentication request is an OAuth 2.0 authorization request, which requests
authentication of the end-user at the authorization endpoint at the authorization
server. The following parameters are included in the request:

//REQUIRED PARAMETERS:
scope

The " openid " value must be inc luded in the scope
parameter , other scopes may be inc luded , s e e
Sec t i on 4.3 f o r more d e t a i l s

response_type
The value i s " code"

c l i en t_ id
The OAuth 2 .0 c l i e n t i d e n t i f i e r

r ed i r e c t_ur i
The r e d i r e c t i o n u r i to which the re sponse w i l l be sent ,

must exac t l y match one o f the r e d i r e c t i o n u r i
va lue s that are pre−r e g i s t e r e d at the openid
provider , r e d i r e c t i o n u r i should use https scheme (
may use http i f c l i e n t i s c o n f i d e n t i a l)

//RECOMMENDED PARAMETERS:
s t a t e

An opaque value that r ep r e s en t s the s t a t e between the
r eque s t and the ca l l b a ck

//OPTIONAL PARAMETERS:
response_mode

In fo rmat i ona l parameter to the au tho r i z a t i on s e r v e r
about the mechanism to be used f o r r e tu rn ing
parameters from the au tho r i z a t i on endpoint , not
recommended i f r e sponse mode i s the d e f au l t mode
s p e c i f i e d f o r the response_type

92 OpenID Connect 1.0

nonce
St r ing that a s s o c i a t e s a c l i e n t s e s s i o n with an ID

token and mi t i ga t e s r ep lay attacks , unmodif ied from
the authen t i c a t i on reque s t to the id token

d i sp l ay
ASCII s t r i n g value , s p e c i f i e s how the au tho r i z a t i on

s e r v e r d i s p l a y s the au then t i c a t i on and consent user
i n t e r f a c e pages to the end user , the de f ined

va lue s are :
page
popup
touch
wap

prompt
Space de l imited , case s e n s i t i v e l i s t o f ASCII s t r i n g

values , s p e c i f i e s whether the au tho r i z a t i on s e r v e r
prompts the end−user f o r r e au th en t i c a t i on and
consent , the de f ined va lue s are :
none

au tho r i z a t i on s e r v e r must not d i sp l ay any
authen t i c a t i on or consent user i n t e r f a c e
page , w i l l r e turn an e r r o r i f , f o r example ,
the end−user i s not authent icated , can be

used to check f o r e x i s t i n g au then t i c a t i on
and/or consent

l o g i n
au tho r i z a t i on s e r v e r should prompt end−user f o r

r e au th en t i c a t i on
consent

au tho r i z a t i on s e r v e r should prompt end−user f o r
consent be f o r e r e tu rn ing in fo rmat ion to

the c l i e n t
se l ec t_account

au tho r i z a t i on s e r v e r should prompt the end−user
to s e l e c t a user account

max_age
maximum authen t i c a t i on age in seconds s i n c e the l a s t

time the end−user was a c t i v e l y authent i ca ted by the
au tho r i z a t i on se rver , i f time i s e l apsed the end−

user must r e au then t i c a t e
u i_ l o ca l e s

end−user ’ s p r e f e r r e d languages and s c r i p t s f o r the user
i n t e r f a c e (language tag va lue s)

id_token_hint
h int about the id token p r ev i ou s l y i s su ed by the

au tho r i z a t i on se rver , about the end−user ’ s cur rent
or past authent i ca ted s e s s i o n with the c l i e n t

OpenID Connect 1.0 93

l og in_hint
h int about the l o g i n i d e n t i f i e r , e . g . , emai l or phone

number , the end−user might use to l og in
acr_values

au then t i c a t i on context c l a s s r e f e r e n c e va lue s that are
requested , s p e c i f i e s the acr va lue s that the
au tho r i z a t i on s e r v e r i s be ing reques ted to use f o r
p ro c e s s i ng t h i s au then t i c a t i on reque s t

Example of an HTTP 302 redirect response by the client, followed by a HTTP
GET request sent by the user-agent to the authorization server in response to the
HTTP 302 redirect response by the client:

HTTP/1 .1 302 Found
Locat ion : https : // s e r v e r . example . com/ author i z e ?

response_type=code
&scope=openid%20 p r o f i l e%20emai l
&c l i en t_ id=s6BhdRkqt3
&s t a t e=a f 0 i f j s l d k j
&r ed i r e c t_ur i=https%3A%2F%2Fc l i e n t . example . org%2Fc

GET / author i z e ?
response_type=code
&scope=openid%20 p r o f i l e%20emai l
&c l i en t_ id=s6BhdRkqt3
&s t a t e=a f 0 i f j s l d k j
&r ed i r e c t_ur i=https%3A%2F%2Fc l i e n t . example . org%2Fcb HTTP/1 .1

Host : s e r v e r . example . com

Authentication Request Validation

The authorization server must: validate the OAuth 2.0 parameters according to the
OAuth 2.0 specification, verify that a scope parameter is present with the openid
value, verify that all the required parameters are present and used correctly, and
only send a positive response when sub claim is requested with a specific value
for the ID token (in, for example, the "id_token_hint" parameter) if the end-user
identified by that sub value has an active session with the authorization server or
has been authenticated.

B.1.5 Authorization Server Authenticates End-User

If the authentication request is valid, the authorization server authenticates the
end-user (or determines if the end-user already is authenticated). The methods
used for authentication by the authorization server is beyond the scope of this
specification. If the authentication request contains the "prompt" parameter with
the value "login", the authorization server must authenticate the end-user even if
the end-user already is authenticated. If the "prompt" parameter has the value

94 OpenID Connect 1.0

"none", the authorization server must return an error if an end-user is already au-
thenticated. The authorization server must employ appropriate measures against
cross-site request forgery and clickjacking, see Sections 6.1 and 6.4, respectively.

B.1.6 Authorization Server Obtains End-User Consent/Authorization

Before releasing information to the client (RP), the authorization server must
obtain an authorization decision from the end-user after the end-user has been
authenticated.

B.1.7 Authentication Response, Message 3

An authentication response is an OAuth 2.0 authorization response that is sent
from the authorization endpoint at the authorization server (OP) to the client
(RP). If the authentication request sent is valid, end-user has been authenticated
and has given consent and authorization, a successful authentication response is
sent (see Section B.1.7). Else, an authentication error response is sent (see Section
B.1.7).

Successful Authentication Response

The "application/x-www-form-urlencoded" format is used for the authorization
response, sent from the authorization endpoint at the authorization server (OP)
to the client (RP). The parameters in the authentication response are defined in
the OAuth 2.0 protocol, see Section A.1.2, and added as query parameters to the
"redirect_uri" (unless specified otherwise). Example of an authorization response,
a HTTP response:

HTTP/1 .1 302 Found
Locat ion : https : // c l i e n t . example . org /cb?

code=SplxlOBeZQQYbYS6WxSbIA
&s t a t e=a f 0 i f j s l d k j

Authentication Error Response

If the end-user denies the authentication request or if the authentication of the
end-user fails, an authentication error response is sent from the authorization
server (OP) to the client (RP). The parameters in the authentication response are
defined in the OAuth 2.0 protocol, see Section A.1.3. If the redirection URI is
valid, the authorization server returns the client to the redirection URI specified
in the authorization request. The following parameters are additional error codes
to the OAuth 2.0 protocol and are specified by the OpenID Connect specification:

i n t e r a c t i on_requ i r ed
log in_requ i r ed
account_se l ec t ion_requ i red
consent_required
inva l id_reques t_ur i

OpenID Connect 1.0 95

i nva l id_reques t_objec t
request_not_supported
request_uri_not_supported
reg i s t rat ion_not_supported

Example of an authentication error response:

HTTP/1 .1 302 Found
Locat ion : https : // c l i e n t . example . org /cb?

e r r o r=inva l id_reques t
&e r r o r_de s c r i p t i on=Unsupported%20response_type%20value
&s t a t e=a f 0 i f j s l d k j

B.1.8 Token Request, Message 4

The parameters of a token request are defined by the OAuth 2.0 protocol, see
Section A.1.4. If the client is of client type confidential client, the client must
authenticate to the token endpoint using the authentication method registered for
its "client_id", see Section 4.4.

Example of a Token Request, using HTTP POST:

POST / token HTTP/1 .1
Host : s e r v e r . example . com
Content−Type : app l i c a t i o n /x−www−form−ur lencoded
Author i zat ion : Bas ic czZCaGRSa3F0MzpnWDFmQmF0M2JW

grant_type=author izat ion_code&code=
SplxlOBeZQQYbYS6WxSbIA

&red i r e c t_ur i=https%3A%2F%2Fc l i e n t . example . org%2Fcb

Token Request Validation

The authorization server must: authenticate the client if it was issued client cre-
dentials or if it uses another client authentication method according to Section 4.4,
ensure that the authorization code was issued to the authenticated client, verify
and validate the authorization code and check that it has not been previously used,
verify that the "redirect_uri" parameter is identical to the one in the authentica-
tion request, and verify that the authorization code was issued in response to an
OpenID Connect Authentication Request.

B.1.9 Token Response, Message 5

A token response is sent from the token endpoint at the authorization server (OP)
to the client (RP). If the token request sent is valid and authorized, a successful
token response is sent (see Section B.1.9). Else, an token error response is sent
(see Section B.1.9).

96 OpenID Connect 1.0

Successful Token Response

The "application/json" format is used for the token response, sent from the token
endpoint at the authorization server (OP) to the client (RP). The parameters in
the token response are defined in the OAuth 2.0 protocol, see Section A.1.5, and
additional parameters specified by the OpenID Connect protocol are:

//REQUIRED PARAMETERS:
id_token

ID token value a s s o c i a t ed with the authent i ca ted
s e s s i o n

Example of a token response, a HTTP response:

HTTP/1 .1 200 OK
Content−Type : app l i c a t i o n / j son
Cache−Control : no−s t o r e
Pragma : no−cache

{
" access_token " : "SlAV32hkKG" ,
" token_type " : "Bearer " ,
" re f resh_token " : "8xLOxBtZp8" ,
" exp i re s_in " : 3600 ,
" id_token " : "eyJhbGciOiJSUzI1NiIsImtpZCI6IjFlOWdkazcifQ

. ewogImlzcyI6ICJodHRwOi8 . . .
EEBLuVVk4XUVrWOLrLl0nx7RkKU8NXNHq−rvKMzqg"

}

Token Error Response

If the token request is invalid or unauthorized a token error response is sent from
the authorization server (OP) to the client (RP). The parameters in the authen-
tication response are defined in the OAuth 2.0 protocol, see Section 3.3.2. The
"application/json" format is used for the token response.

Example of an authentication error response:

HTTP/1 .1 400 Bad Request
Content−Type : app l i c a t i o n / j son
Cache−Control : no−s t o r e
Pragma : no−cache

{
" e r r o r " : " inva l id_reques t "

}

OpenID Connect 1.0 97

Token Response Validation

The client must: follow the validation rules specified in the OAuth 2.0 protocol,
follow the ID token and access token validation rules, see Section B.1.2 and B.1.3,
respectively.

B.2 Implicit Flow

This section describes the purpose of the messages in Figure 4.2, the endpoints,
and the ID and access tokens of the implicit flow.

B.2.1 Endpoints

There are two endpoints at the authorization server in the implicit flow, the au-
thorization endpoint and the userinfo endpoint (see Section 4.6).

Authorization Endpoint

Used in the same manner as for the authorization code flow, see Section B.1.1,
except for some details explained below.

B.2.2 ID Token

The additional requirements for claims of the ID token in the implicit flow defined
in this protocol are:

//REQUIRED PARAMETERS
nonce
at_hash //REQUIRED IF " response_type " VALUE IS " id_token

token" IN REQUEST
A case s e n s i t i v e s t r i n g r ep r e s en t i ng the ac c e s s token

hash value , where the hash a lgor i thm used i s the
hash a lgor i thm used in the " a lg " header parameter
o f the ID token ’ s JOSE header , the va lue i s the
base64ur l encoding o f the l e f t −most h a l f o f the
hash o f the o c t e t s o f the ASCII r ep r e s en t a t i on o f
the " access_token " value

ID Token Validation

The ID token validation must be done in the same manner in the implicit flow as
for the authorization code flow, see Section B.1.2, except for some details given in
this section.

The client must validate the signature of the ID token according to JWS (by
using the algorithm specified in the "alg" header parameter of the JOSE header).
The value of the "nonce" claim must be identical to the value in the authentication
request if present. The "nonce" value should be checked for replay attacks.

98 OpenID Connect 1.0

B.2.3 Access Token Validation

The client should hash the octets of the ASCII representation of the "access_token"
according to JWA (by using the algorithm specified in the "alg" header parameter
of the JOSE header), the left-most half of the hash should be base64url encoded
and the encoded value must match the "at_hash" value of the ID token.

B.2.4 Authentication Request, Message 2

The authentication request is sent from the client to the authorization endpoint at
the authorization server. The parameters in the authentication request are defined
in Section B.1.4, except for the following parameters:

//REQUIRED PARAMETERS:
response_type

The value i s " id_token token" (ID token and ac c e s s
token w i l l be returned) or " id_token" (ID token
w i l l be returned)

r ed i r e c t_ur i
The r e d i r e c t i o n URI to which the re sponse w i l l be sent ,

must match on o f the r e d i r e c t i o n URI va lue s f o r
the c l i e n t pre−r e g i s t e r e d at the OpenID provider ,
must not use the "http " scheme un l e s s the c l i e n t i s
a nat ive app l i c a t i o n that uses " l o c a l h o s t " as the

hostname
nonce

St r ing value that a s s o c i a t e s a c l i e n t s e s s i o n with an
ID token and mi t i ga t e s r ep lay attacks , unmodif ied
from the au then t i c a t i on reque s t to the id token

An example of an authentication request, a HTTP GET request, sent by the user-
agent to the authorization server in response to a HTTP 302 redirect response by
the client looks as follows:

GET / author i z e ?
response_type=id_token%20token
&c l i en t_ id=s6BhdRkqt3
&red i r e c t_ur i=https%3A%2F%2Fc l i e n t . example . org%2Fcb
&scope=openid%20 p r o f i l e
&s t a t e=a f 0 i f j s l d k j
&nonce=n−0S6_WzA2Mj HTTP/1 .1

Host : s e r v e r . example . com

Authentication Request Validation

The authentication request is validated in the same manner in the implicit flow as
for the authorization code flow, see Section B.1.4.

OpenID Connect 1.0 99

B.2.5 Authorization Server Authenticates End-User

The authorization server authenticates the end-user in the same manner in the
implicit flow as for the authorization code flow, see Section B.1.5.

B.2.6 Authorization Server Obtains End-User Consent/Authorization

The authorization server obtains the end-user consent in the same manner in the
implicit flow as for the authorization code flow, see Section B.1.6.

B.2.7 Authentication Response, Message 3

An authentication response is made in the same manner in the implicit flow as for
the authorization code flow, see Section B.1.7, except for some details given in this
section. If the authentication request sent is valid, end-user has been authenticated
and has given consent and authorization, a successful authentication response is
sent (see Section B.2.7). Else, an authentication error response is sent (see Section
B.2.7).

Successful Authentication Response

A successful authentication response is sent from the authorization endpoint at the
authorization server to the client. The response parameters in the authentication
response are sent in the fragment component of the redirection URI, unless a
different response mode was specified. The following parameters are included in
the authentication response:

access_token
An acc e s s token i s returned i f the " response_type " had

the value " id_token token" in the au tho r i z a t i on
reque s t

token_type
This i s returned i f an ac c e s s token i s inc luded in the

au then t i c a t i on response , the value must be "Bearer
" , un l e s s c l i e n t and au tho r i z a t i on s e r v e r has
s p e c i f i e d otherwi se

//REQUIRED PARAMETERS:
id_token

The ID token
s t a t e //REQUIRED IF PRESENT IN REQUEST

The OAuth 2 .0 s t a t e value , c l i e n t must v e r i f y that the
value i s i d e n t i c a l to the value in the
au tho r i z a t i on reque s t

//OPTIONAL PARAMETERS:
exp i re s_in

The ac c e s s token ’ s l i f e t im e in seconds , from the time
that the response was generated

An example of an authorization response, a HTTP response may look like:

100 OpenID Connect 1.0

HTTP/1.1 302 Found
Locat ion : https : // c l i e n t . example . org /cb#

access_token=SlAV32hkKG
&token_type=bearer
&id_token=eyJ0 . . . NiJ9 . eyJ1c . . . I 6 I j I i f X 0 .DeWt4Qu . . .

ZXso
&expi re s_in=3600
&s t a t e=a f 0 i f j s l d k j

Authentication Error Response

An authentication error response is made in the same manner in the implicit flow
as for the authorization code flow, see Section B.1.7, except for some details given
in this section.

The authorization server must return the error authorization response in the frag-
ment component of the redirection URI (unless response mode is specified other-
wise), if the end-user denies the request or the end-user authentication fails.

Redirect URI Fragment Handling

The user-agent needs to be able to parse the fragment encoded values and pass
them on to the client’s processing logic for consumption, since the response param-
eters of the authentication response are returned in the redirection URI fragment
value.

Authentication Response Validation

The client must verify that the response is according to Section 5 of the OAuth 2.0
Multiple Response Type Encoding Practices [15], as well as follow the validation
rules in the following Sections:

1. Access token response in the OAuth 2.0 protocol for the implicit flow, Section
A.2.2

2. Cross-site request forgery, Section 6.1

3. ID token validation according to the OpenID Connect protocol for the im-
plicit flow, Section B.2.2

4. If "response_type" is "id_token token", access token validation according
to the OpenID Connect protocol for the implicit flow, Section B.2.3

B.3 Hybrid Flow

This section describes the purpose of the messages in Figure 4.3, the endpoints,
and the ID and access tokens of the hybrid flow.

OpenID Connect 1.0 101

B.3.1 Endpoints

The endpoints are used in the same manner for the hybrid flow as for the au-
thorization code flow, see Section B.1.1, except for some details explained in this
section.

Authorization Endpoint

The authorization endpoint at the authorization server is used in the same manner
for the hybrid flow as for the authorization code flow, see Section B.1.1, except for
some details explained in Section B.3.5 and Section B.3.8.

Token Endpoint

The token endpoint at the authorization server is used in the same manner for the
hybrid flow as for the authorization code flow, see Section B.1.1, except for some
details explained in Sections B.3.9, B.3.10, B.3.2 and B.3.3.

B.3.2 ID Token

The contents of an ID token is defined differently for the hybrid flow, depending
on if the ID token is returned from the authorization endpoint or both the autho-
rization endpoint and the token endpoint.

ID Tokens returned from the Authorization Endpoint:

The additional requirements for claims of the ID token in the hybrid flow, re-
turned from the authorization endpoint at the authorization server, are:

//REQUIRED PARAMETERS
nonce
//OPTIONAL PARAMETERS
at_hash //REQUIRED IF " response_type " VALUE IS " id_token

token" IN REQUEST
A case s e n s i t i v e s t r i n g r ep r e s en t i ng the ac c e s s token

hash value , where the hash a lgor i thm used i s the
hash a lgor i thm used in the " a lg " header parameter
o f the ID token ’ s JOSE header , the va lue i s the
base64ur l encoding o f the l e f t −most h a l f o f the
hash o f the o c t e t s o f the ASCII r ep r e s en t a t i on o f
the " access_token " value

c_hash //REQUIRED IF " response_type " VALUE IS "code
id_token" OR "code id_token token"
A case s e n s i t i v e s t r i n g r ep r e s en t i ng the code hash

value , where the hash a lgor i thm used i s the hash
a lgor i thm used in the " a lg " header parameter o f the
ID token ’ s JOSE header , the va lue i s the base64ur l
encoding o f the l e f t −most h a l f o f the hash o f the

102 OpenID Connect 1.0

o c t e t s o f the ASCII r ep r e s en t a t i on o f the "
access_token " value

ID Tokens returned from the Authorization Endpoint and from the
Token Endpoint:

• The ID token is returned from both the authorization endpoint and the
token endpoint when "response_type" has the values "code id_token" and
"code id_token token".

• The values of the claims "iss" and "sub" must be identical in both ID tokens.

• All claims about the authentication event should be present in both ID
tokens.

• Any claims that are present in both ID tokens should have the same value
in both ID tokens.

• The authorization server (OP) may choose to return fewer claims about the
end-user from the authorization endpoint.

• The "at_hash" and "c_hash" claims may be omitted from the ID token
returned from the token endpoint.

ID Token Validation

The ID tokens are validated differently depending on if the ID tokens are returned
from the authorization endpoint or from the token endpoint. ID tokens that
are returned from the authorization endpoint at the authorization server must be
validated in the same manner in the hybrid flow as for the implicit flow, see Section
B.2.2. ID tokens that are returned from the token endpoint must be validated in
the same manner in the hybrid flow as for the authorization code flow, see Section
B.1.2.

B.3.3 Access Token

When the value of "response_type" is "code token" or "code id_token token",
the access token is returned from both the authorization endpoint and the token
endpoint at the authorization server. Because of, for example, different security
characteristics of the two endpoints, the values of the two access tokens may be the
same or may be different, e.g., different lifetimes and different access to resources.

Access Token Validation

The access tokens are validated differently depending on if the access tokens are
returned from the authorization endpoint or from the token endpoint. Access
tokens that are returned from the authorization endpoint at the authorization
server must be validated in the same manner in the hybrid flow as for the implicit
flow, see Section B.2.3. Access tokens that are returned from the token endpoint
must be validated in the same manner in the hybrid flow as for the authorization
code flow, see Section B.1.3.

OpenID Connect 1.0 103

B.3.4 Authorization Code Validation

The client should hash the octets of the ASCII representation of the "code" ac-
cording to JWA (by using the algorithm specified in the "alg" header parameter
of the ID token’s JOSE header), the left-most half of the hash should be base64url
encoded and the encoded value must match the "c_hash" value of the ID token.

B.3.5 Authentication Request, Message 2

An authentication request is made in the same manner in the hybrid flow as for
the authorization code flow, see Section B.1.4, except for the following parameters:

//REQUIRED PARAMETERS:
response_type

The value o f t h i s parameter determines which
au tho r i z a t i on p ro c e s s i ng f low that w i l l be used , as
we l l as what parameters w i l l be returned from

which endpoints , the va lue s are " code id_token " , "
code token" or " code id_token token"

Example of an authentication request, a HTTP GET request, sent by the user-
agent to the authorization server in response to a HTTP 302 redirect response by
the client:

GET / author i z e ?
response_type=code%20id_token
&c l i en t_ id=s6BhdRkqt3
&red i r e c t_ur i=https%3A%2F%2Fc l i e n t . example . org%2Fcb
&scope=openid%20 p r o f i l e%20emai l
&nonce=n−0S6_WzA2Mj
&s t a t e=a f 0 i f j s l d k j HTTP/1 .1

Host : s e r v e r . example . com

Authentication Request Validation

The authentication request is validated in the same manner in the hybrid flow as
for the authorization code flow, see Section B.1.4.

B.3.6 Authorization Server Authenticates End-User

The authorization server authenticates the end-user in the same manner in the
hybrid flow as for the authorization code flow, see Section B.1.5.

B.3.7 Authorization Server Obtains End-User Consent/Authorization

The authorization server obtains the end-user consent in the same manner in the
hybrid flow as for the authorization code flow, see Section B.1.6.

104 OpenID Connect 1.0

B.3.8 Authentication Response, Message 3

An authentication response is made in the same manner in the hybrid flow as for
the implicit flow, see Section B.2.7, except for some details given in this section. If
the authentication request sent is valid, end-user has been authenticated and has
given consent and authorization, a successful authentication response is sent (see
Section B.3.8). Else, an authentication error response is sent (see Section B.3.8).

Successful Authentication Response

A successful authentication response is made in the same manner in the hybrid
flow as for the implicit flow, see Section B.2.7, except for some details given in this
section.

The following parameters are included in the authentication response from the
authorization endpoint at the authorization server:

access_token
The ac c e s s token that i s returned toge the r with a "

token_type" value when the value o f " response_type "
in the au then t i c a t i on reque s t i s " code token" or "

code id_token token"
id_token

The ID token that i s returned when the value o f "
response_type " in the au then t i c a t i on reque s t i s "
code id_token" or " code id_token token"

code
The au tho r i z a t i on code , always returned

Example of an authorization response, a HTTP response:

HTTP/1 .1 302 Found
Locat ion : https : // c l i e n t . example . org /cb#

code=SplxlOBeZQQYbYS6WxSbIA
&id_token=eyJ0 . . . NiJ9 . eyJ1c . . . I 6 I j I i f X 0 .DeWt4Qu . . .

ZXso
&s t a t e=a f 0 i f j s l d k j

Authentication Error Response

An authentication error response is made in the same manner in the hybrid flow
as for the authorization code flow, see Section B.1.7, except for some details given
in this section.

If the end-user denies the authentication request or if the authentication of the
end-user fails, the authentication error response must be sent from the authoriza-
tion server (OP) in the fragment component of the redirection URI.

OpenID Connect 1.0 105

Redirect URI Fragment Handling

The requirements for redirect URI fragment handling are the same in the hybrid
flow as for the implicit flow, see Section B.2.7.

Authentication Response Validation

The client must verify that the response is according to Section 5 of the OAuth 2.0
Multiple Response Type Encoding Practices [15], as well as follow the validation
rules in the following Sections:

1. Access token response in the OAuth 2.0 protocol for the implicit flow, Section
A.2.2

2. Cross-site request forgery, Section 6.1

3. If "response_type" is "code id_token" or "code id_token token", ID token
validation according to Section B.3.2

4. If "response_type" is "code token" or "code id_token token", access token
validation according to Section B.3.3

5. If "response_type" is "code token" or "code id_token token", authorization
code validation according to Section B.3.4

B.3.9 Token Request, Message 4

Token requests are made in the same manner in the hybrid flow as for the autho-
rization code flow, see Section B.1.8.

Token Request Validation

Token requests are validated in the same manner in the hybrid flow as for the
authorization code flow, see Section B.1.8.

B.3.10 Token Response, Message 5

A token response is sent from the token endpoint at the authorization server (OP)
to the client (RP). If the token request sent is valid and authorized, a successful
token response is sent (see Section B.3.10). Else, a token error response is sent
(see Section B.3.10).

Successful Token Response

A token response is made in the same manner in the hybrid flow as for the autho-
rization code flow, see Section B.1.9.

Token Error Response

A token error response is made in the same manner in the hybrid flow as for the
authorization code flow, see Section B.1.9.

106 OpenID Connect 1.0

Token Response Validation

Token responses are validated in the same manner in the hybrid flow as for the
authorization code flow, see Section B.1.9.

Login hardening with Multi-factor Authentication

MICHAELA BERGMAN
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2021

M
IC

H
A

ELA
 B

ER
G

M
A

N
Login hardening w

ith M
ulti-factor A

uthentication
LU

N
D

 2021

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2021-828
http://www.eit.lth.se

	Exj Michaela Bergman_MasterThesis.pdf
	Introduction
	Methodology

	Multi-factor Authentication
	Commonly used Authenticator Methods based on Authentication Factors

	The OAuth 2.0 Authorization Framework, RFC6749
	Client Types, Profiles, Registration, Authentication and Identifier
	Protocol Endpoints
	Tokens
	HTTP Redirections
	Authorization Code Flow
	Implicit Flow
	Resource Owner Password Credentials Flow
	Client Credentials Flow

	OpenID Connect Protocol
	Terminology
	Authentication
	Requesting Claims using Scope Values
	Client Authentication
	ID Token
	UserInfo Endpoint
	Authorization Code Flow
	Implicit Flow
	Hybrid Flow

	Proof Key for Code Exchange by OAuth Public Clients
	Authorization Code Interception Attack Flow
	PKCE Protocol Flow

	Security Threats
	Cross-Site Request Forgery
	Brute Force Attacks
	Replay Attack
	Clickjacking

	Results
	The Authentication and Authorization Process
	Multi-Factor Authenticator
	Implementation

	Conclusion
	Improvements and Changes

	Bibliography
	The OAuth 2.0 Authorization Framework
	Authorization Code Flow
	Implicit Flow
	Resource Owner Password Credentials Flow
	Client Credentials Flow

	OpenID Connect 1.0
	Authorization Code Flow
	Implicit Flow
	Hybrid Flow

