
Enhancing Analysis of Hardware Design
Verification Metrics Using Machine Learning &

Data Visualization

OSCAR UGGLA
AXEL VOSS
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2021

O
SC

A
R

 U
G

G
LA

 &
 A

X
EL V

O
SS

Enhancing A
nalysis of H

ardw
are D

esign Verification M
etrics U

sing M
achine Learning &

 D
ata V

isualization
LU

N
D

 2021

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2021-812
http://www.eit.lth.se

Enhancing Analysis of Hardware Design
Verification Metrics Using Machine Learning &

Data Visualization

Oscar Uggla
elt15oug@student.lth.se

Axel Voss
elt15avo@student.lth.se

Department of Electrical and Information Technology
Lund University

Supervisor: Erik Larsson

Examiner: Pietro Andreani

May 26, 2021

c© 2021
Printed in Sweden
Tryckeriet i E-huset, Lund

Abstract

Closing coverage holes during verification of digital integrated circuits is an iter-
ative process to guarantee all parts are verified before fabrication. The time and
manpower it takes to close coverage holes extend with the increasing complexity
and size of a digital circuit.

In this thesis unsupervised machine learning is used to cluster together related
coverage holes, providing aid for a verification engineer to see a connection between
uncovered coverage holes present in a digital RTL design. The coverage metrics
are first extracted from a coverage database along with information of the RTL,
the data is then pre-processed to prepare it for clustering. The coverage holes are
clustered together with the OPTICS, affinity propagation and k-means algorithms.

Observation shows that clustering together the coverage holes can reveal which
holes are related to each other and that a potential solution for one of them have
a high chance at also fixing the related holes.

This can be used by verification engineers to optimize the task of closing
coverage holes. The resources spent on verification can then be reduced to save
cost on development.

i

ii

Populärvetenskaplig Sammanfattning

Integrerade kretsar är en central del i elektronikutrustning som mobiltelefoner,
datorer, kameror och andra elektroniska apparater vi använder dagligen. Det har
blivit en självklarhet att ha någon form av integrerade kretsar när du producerar
modern elektronik. Med hjälp av integrerade kretsar så kan du reducera kostnad,
storlek och hastighet jämfört med enskilda komponenter på ett kretskort. Under
åren så har antalet transistorer som bygger upp en integrerad krets ökat markant,
en krets kan idag bestå av flera miljoner olika transistorer som tillsammans bygger
upp kretsens funktion. Förr i tiden så var integrerade kretsar små sett till antalet
transistorer, du kunde då skapa en ny krets och började om från början när nästa
version skulle ges ut. Nu har kretsarna blivit så avancerade att det inte längre är
lönsamt att börja om från början när du designar en ny krets. Istället återanvänder
du och delar upp dina integrerade kretsar i så kallade ip-block. När en ny version
av en integrerad krets ska utvecklas så återanvänder du dessa ip-block till nästa
version. När du återanvänder ip-block i en ny krets så måste du vara säker på
att de blocken du använder fungerar som de ska. Detta kräver att kretsen har
verifierats grundligt med tydliga tester för att säkerställa att ip-blocket fungerar
som det ska.

Verifikationen av integrerade kretsar görs med en simulator. Kretsens beteende
simuleras och testas innan den skickas iväg till produktion. Med större och större
kretsar så har det blivit omöjligt att testa alla möjliga kombinationer av stimuli
en krets simuleras med. Det finns inte tillräckligt med datorkraft att simulera alla
möjliga kombinationer. Istället nöjer man sig med att testa en en del av kretsen
och spara olika mätvärden från simuleringen. Man nöjer sig med att uppnå dessa
mätvärden för att säga att kretsen har testats fullt ut. Du som verifikationsingenjör
skapar nya tester och simuleringar för att uppnå dessa mätvärden. Verifikationen
av kretsar tar tid, något som är dyrbart när konkurrensen är hård och du vill vara
först ut på marknaden med den nya tekniken.

För att minska tiden det tar att uppnå tillräckligt bra simuleringsresultat så
undersöker det här projektet om maskininlärning kan hjälpa till som verktyg i
verifikationsprocessen. Det syftar till att studera om maskininlärning som ett
hjälpmedel kan användas för att snabbare hitta mönster och se samband i en krets
för att reducera bearbetningstiden.

iii

iv

Popular Science Summary

Integrated circuits play a vital role in electronics such as mobile phones, computers,
cameras and other electronic appliances we use daily. Including integrated circuits
in some form is almost a must when producing modern electronics. With the help
of integrated circuits, you can reduce the cost, size and speed compared to using
conventional digital components on a circuit board. The number of transistors that
build up an integrated circuit have increased. One circuit can contain millions of
transistors that together give a circuit its function. In the early days, the number
of transistors in an integrated circuit was relatively small. You could then start
over from scratch when designing the next version. The circuits have become
so advanced now that it is no longer profitable to start over when you design a
new integrated circuit. Instead, you split up and reuse the design in so-called ip-
blocks. Parts of the previously developed ip-blocks are used as a starting point for
the next version of your integrated circuit. When you reuse an ip-block you need to
be certain that it works exactly as expected according to the specifications. This
requires thorough verification with proper testing to ensure that the functionality
of the ip-block still that works as it should.

The verification of integrated circuits is performed with a simulator. The
circuit’s behaviour is simulated and tested before it is sent out for production.
With larger and larger circuits it is unfeasible to test all possible combinations of
stimuli that a circuit should be able to handle. Instead you randomize the stimuli
and use different metrics and scores to measure the completeness of the verification.
A circuit is said to be fully covered when all different metrics have reached your
desired goal. You as a verification engineer create new test and simulation runs to
reach full coverage. The verification of integrated circuits takes time, something
that is quite expensive when the competition is fierce and you want to be first on
the market with your product.

This project examines if machine learning can be used as a tool to help reduce
the time it takes to achieve a satisfactory simulation result. The purpose is to see if
machine learning can help a user see patterns and connections between uncovered
coverage holes and thus reduce the time dedicated towards verification.

v

vi

Acknowledgements

We would like to thank Patrik Lislén and Lars Viklund at Axis Communications
for composing and proposing this thesis to us. We also thank Lars Viklund and
Gabriel Jönsson for giving invaluable support and guidance as our supervisors at
Axis Communications.

We also thank Erik Larsson, our supervisor at Lund University that helped us
throughout this journey with guidance to complete our thesis.

vii

viii

Table of Contents

1 Introduction 1
1.1 Hardware Verification Pre-silicon . 1
1.2 Related Work . 5
1.3 Disposition . 7
1.4 Method . 7
1.5 Limitations . 7

2 Theoretical Background 9
2.1 Clustering . 9
2.2 Dimensionality Reduction . 11
2.3 Regularization . 15
2.4 Visualization . 16
2.5 Feature Engineering . 18
2.6 Cluster Evaluation . 20

3 Implementation 23
3.1 Coverage Database . 23
3.2 Construction of Dataset . 23
3.3 Dimensionality Reduction . 28
3.4 Further Dimensional Reduction . 30
3.5 Clustering . 31

4 Result 33
4.1 Evaluation . 33
4.2 Evaluation Combinations . 35
4.3 Evaluation Results . 35

5 Discussion and Conclusions 39
5.1 Experiences . 40

References 43

A Latent Space 47

ix

B UMAP 67

C PCA 87

x

List of Figures

1.1 A simple abstraction of a testbench where a DUV is stimulated and
the I/O to the DUV is monitored. A scoreboard can tell how well the
DUV passed the simulation. 3

1.2 A simple abstraction of coverage driven verification with a test gen-
erator providing stimuli to the DUV, a driver that takes a high-level
test and translates it to a low-level abstraction for the simulation.
The checker detects failures in the design, and the coverage collector
records the quality of the generated tests for a coverage model. . . . 4

2.1 Two randomly placed centroids are moved after multiple iterations
until they no longer move. 10

2.2 Figure (a) shows responsibility messages being sent out. Figure (b)
shows availability commands being sent around. 10

2.3 DBSCAN creates clusters depending on the density ε. 11
2.4 Illustration of PCA on a set of data points. 13
2.5 Basic structure of an Autoencoder. 14
2.6 Two cell RNN. 14
2.7 LSTM cell compromising of an forget, input and output gate. 15
2.8 Visualising the sweet spot. 15
2.9 One-hot encoded values for three entries using table2.1. 19

3.1 Illustration of cascading holes for concatenation of two signals and
bitwise logic operations. 24

3.2 A simple circuit with 9 signals A, B, C, D, E, F, G, H, I and 2x AND,
1x OR and 1x XOR gate. 25

3.3 A tree graph of the signals in the circuit shown in figure 3.2. 25
3.4 Vocabulary created from 4 name entries. 26
3.5 Name entries transformed to feature vectors, here shown in a matrix,

coloured squares represent that a word is present for that data point. 27
3.6 Tree graph to binary matrix representation. 27
3.7 Four different feature entries consisting of 8 dimensions and 4 times-

tamps, t0, t1, t2 and t3. 28
3.8 Layers in the Variational Autoencoder model 29
3.9 Layers used for operator dependencies 29

xi

3.10 Layers used for signal dependencies 30
3.11 Each row in each matrix represent one data point, and each column

represents one specific feature. The autoencoders are trained on their
respective datasets, and the output in latent space that is combined
is from only one data point. 30

3.12 Cumulative explained variance ratio as a function of components. . . 31

A.1 Visualization for feature combination INOS. 52
A.2 Visualization for feature combination INO. 53
A.3 Visualization for feature combination INS. 54
A.4 Visualization for feature combination IOS. 55
A.5 Visualization for feature combination NOS. 56
A.6 Visualization for feature combination IN. 57
A.7 Visualization for feature combination IO. 58
A.8 Visualization for feature combination NO. 59
A.9 Visualization for feature combination IS. 60
A.10 Visualization for feature combination NS. 61
A.11 Visualization for feature combination OS. 62
A.12 Visualization for feature combination I. 63
A.13 Visualization for feature combination N. 64
A.14 Visualization for feature combination O. 65
A.15 Visualization for feature combination S. 66

B.1 Visualization for feature combination INOS. 72
B.2 Visualization for feature combination INO. 73
B.3 Visualization for feature combination INS. 74
B.4 Visualization for feature combination IOS. 75
B.5 Visualization for feature combination NOS. 76
B.6 Visualization for feature combination IN. 77
B.7 Visualization for feature combination IO. 78
B.8 Visualization for feature combination NO. 79
B.9 Visualization for feature combination IS. 80
B.10 Visualization for feature combination NS. 81
B.11 Visualization for feature combination OS. 82
B.12 Visualization for feature combination I. 83
B.13 Visualization for feature combination N. 84
B.14 Visualization for feature combination O. 85
B.15 Visualization for feature combination S. 86

C.1 Visualization for feature combination INOS. 92
C.2 Visualization for feature combination INO. 93
C.3 Visualization for feature combination INS. 94
C.4 Visualization for feature combination IOS. 95
C.5 Visualization for feature combination NOS. 96
C.6 Visualization for feature combination IN. 97
C.7 Visualization for feature combination IO. 98
C.8 Visualization for feature combination NO. 99
C.9 Visualization for feature combination IS. 100

xii

C.10 Visualization for feature combination NS. 101
C.11 Visualization for feature combination OS. 102
C.12 Visualization for feature combination I. 103
C.13 Visualization for feature combination N. 104
C.14 Visualization for feature combination O. 105
C.15 Visualization for feature combination S. 106

xiii

xiv

List of Tables

2.1 Example showcasing a vocabulary for different operands in digital cir-
cuits. 19

3.1 Features and their abbreviations. 25

A.1 Scores for the feature combination IOS. 47
A.2 Scores for the feature combination IO. 47
A.3 Scores for the feature combination IS. 47
A.4 Scores for the feature combination I. 48
A.5 Scores for the feature combination OS. 48
A.6 Scores for the feature combination O. 48
A.7 Scores for the feature combination S. 48
A.8 Scores for the feature combination INOS. 48
A.9 Scores for the feature combination INO. 48
A.10 Scores for the feature combination INS. 49
A.11 Scores for the feature combination IN. 49
A.12 Scores for the feature combination NOS. 49
A.13 Scores for the feature combination NO. 49
A.14 Scores for the feature combination NS. 49
A.15 Scores for the feature combination N. 49
A.16 Scores for Affinity and all feature combinations. 50
A.17 Scores for k-means and all feature combinations. 51
A.18 Scores for OPTICS and all feature combinations. 51

B.1 Scores for the feature combination IOS. 67
B.2 Scores for the feature combination IO. 67
B.3 Scores for the feature combination IS. 67
B.4 Scores for the feature combination I. 68
B.5 Scores for the feature combination OS. 68
B.6 Scores for the feature combination O. 68
B.7 Scores for the feature combination S. 68
B.8 Scores for the feature combination INOS. 68
B.9 Scores for the feature combination INO. 68
B.10 Scores for the feature combination INS. 69

xv

B.11 Scores for the feature combination IN. 69
B.12 Scores for the feature combination NOS. 69
B.13 Scores for the feature combination NO. 69
B.14 Scores for the feature combination NS. 69
B.15 Scores for the feature combination N. 69
B.16 Scores for Affinity and all feature combinations. 70
B.17 Scores for k-means and all feature combinations. 70
B.18 Scores for OPTICS and all feature combinations. 71

C.1 Scores for the feature combination IOS. 87
C.2 Scores for the feature combination IO. 87
C.3 Scores for the feature combination IS. 87
C.4 Scores for the feature combination I. 88
C.5 Scores for the feature combination OS. 88
C.6 Scores for the feature combination O. 88
C.7 Scores for the feature combination S. 88
C.8 Scores for the feature combination INOS. 88
C.9 Scores for the feature combination INO. 88
C.10 Scores for the feature combination INS. 89
C.11 Scores for the feature combination IN. 89
C.12 Scores for the feature combination NOS. 89
C.13 Scores for the feature combination NO. 89
C.14 Scores for the feature combination NS. 89
C.15 Scores for the feature combination N. 89
C.16 Scores for Affinity and all feature combinations. 90
C.17 Scores for k-means and all feature combinations. 90
C.18 Scores for OPTICS and all feature combinations. 91

xvi

Chapter 1
Introduction

Today, verifying digital hardware designs pre-silicon is primarily done using sim-
ulation and techniques such as coverage-driven constrained random verification.
Metrics, including functional, assertion, line, toggle, and condition coverage, play
a fundamental role in measuring the verification completeness and progress. Ver-
ification engineers study these metrics to answer questions such as:

• Have we verified the design adequately?

• What aspects have not been exercised sufficiently in the design?

• How do we improve test coverage to reach the verification goal?

• What kind of test cases contribute to the most relevant stimuli?

• How much progress are we making?

Ideally, the verification metrics view should allow verification engineers to
quickly get a relevant overview of the current status, identify patterns, and see
what progress has been made. With the growing complexity of digital hardware
designs, the time and effort required to verify a design properly increase. Veri-
fication engineers spend a considerable amount of time and resources adequately
simulating, verifying, and testing new or refurbished designs.

What can be interesting is to see if this process can be sped up with the
advent of machine learning to automate part of the process, thus reducing the
time required to reach 100% coverage.

To understand how we can facilitate the digital design verification process and
identify the parts where it is possible to apply machine learning, we will introduce
the reader to how engineers commonly perform hardware verification for digital
circuits before fabrication.

1.1 Hardware Verification Pre-silicon

With more advanced circuits appearing, produced by an ever-growing code base,
it is impossible to test and simulate all possible inputs [1] that a circuit should
support. It is not feasible to try all potential input vectors as the simulations would
consume a significant amount of time and resources. For example, to thoroughly
test a 32-bit full adder, all 2(64) possible combinations need to be checked. It is

1

2 Introduction

easy to understand that this is impractical and a waste of both simulation time
and resources. Instead, the design should be thoroughly tested with a satisfactory
result that confines to a specification. A design should be verified to make sure
that it works under normal operation and that all functions have been tested and
verified one way or another.

Traditional verification techniques are based on pre-silicon simulations and
formal verification[2]. In a simulation environment, the design is placed in a test-
bench where input vectors are applied to test the device under verification (DUV).
This environment is more often than not design specific, challenging to adapt to
another design and takes a considerable amount of time to set up.

Formal verification attempts to prove the correctness of the design with math-
ematical certainty [1]. The difference between the two is that simulation-based
verification tests the design while formal verification verifies if the written code
should behave correctly [1]. In this thesis we focus on the former, how to improve
simulation-based verification.

Currently, there exist tools and methods that automate the process based on
pseudo-random test generations with coverage metrics [1]. A random generator
generates input vectors used to test the DUV, and with a set of constraints, ver-
ification engineers can guide the generator to achieve different scenarios. The
constraints are fine-tuned until satisfactory results are reached. This process of
fine-tuning the constraints and changing the tests goes on until the design has
reached sufficient coverage.

Setting up a testing environment has become even more straightforward with
the advent of Universal Verification Methodology (UVM). UVM is a framework
of classes in SystemVerilog that provides building blocks for test benches [3]. This
methodology has the advantages of being portable and reusable. Thus, the envi-
ronment with random test vectors can be applied to more than one design, reducing
the time needed to simulate and verify a new design.

1.1.1 Simulation Based Verification

Simulation-based verification uses test benches to stimulate a DUV and monitor
how it behaves and responds. A simple setup can be seen in figure 1.1. Engineers
must carry out extensive simulations to capture all possible bugs that may exist,
and manual tweaking is necessary to capture the complete functionality. They
also need to take much care in finding corner cases that may break the design’s
functionality.

Coverage driven verification is a form of functional verification by simulation
of a DUV. It is a systematic approach where tests are generated to provide closure
of coverage holes in the design [4]. The design is placed in a testbench containing
the various parts, as in figure 1.2.

The test generator provides different test scenarios as input to the system. For
example, this can be a picture from a camera sensor representing a surveillance
camera’s real-world scenario. The stimulus driver creates stimuli suited for a
particular DUV. The stimuli driver acts as the outer environment encapsulating
the DUV. The DUV is monitored by a checker that detects possible failures during
the simulation The coverage collector records the quality of the test to be reviewed.

Introduction 3

Figure 1.1: A simple abstraction of a testbench where a DUV is
stimulated and the I/O to the DUV is monitored. A scoreboard
can tell how well the DUV passed the simulation.

There exist different coverage metrics that provide information on how well a
design has been verified. The recorded metrics are used to verify if the design is
fully covered or not and act as a sort of input, deciding whether to run more tests
or create a new directed test to close the remaining coverage holes.

It is an iterative process to review the coverage recordings and update the test
generator to close even more coverage holes. When enough coverage holes have
been closed and the coverage report reports an acceptable level of coverage, the
design is fully covered.

1.1.2 Tests and Coverage Bins

A verification engineer must write tests to verify a design, providing constraints
for random test vectors and, in some cases, create directed tests. Separate tests
with custom constraints are created to test as much as possible of the design. It is
often unnecessary and complex for a test to check the design’s full functionality.
Instead, multiple tests that focus on subsets of features can be combined to provide
test coverage for the whole design.

The input vectors and the design’s behaviour can be compared against a golden
model to confirm the written RTL code’s functional properties. This can be time-
consuming to set up and adequately verify. Coverage metrics provide a report on
the coverage holes that were detected during a simulation. The coverage metrics
are recorded in different coverage bins, containing all information about when and
how a signal, module, or design achieved a metric. There are various coverage
metrics available in a verification engineers toolbox. Some of them are explained
below.

1.1.3 Functional Coverage

Functional coverage is the metric on how much of the functionality of the design
has been executed [1]. A functionality could, for example, be a design connected

4 Introduction

Figure 1.2: A simple abstraction of coverage driven verification with
a test generator providing stimuli to the DUV, a driver that takes
a high-level test and translates it to a low-level abstraction for
the simulation. The checker detects failures in the design, and
the coverage collector records the quality of the generated tests
for a coverage model.

to a bus, then you need to exercise all the features of the bus protocol. Functional
coverage does not prove that the features were exercised correctly or for the right
reason, only that the functionality was executed somehow.

1.1.4 Structural Coverage

Structural coverage, or code coverage, ties into the implementation and represen-
tation of the design. Below are a few types of structural coverage explained in
more detail.

Line Coverage

Line coverage is a metric that indicates which lines have been executed during
the simulations. Line coverage that is not fully covered can imply that there is
dead or unreachable code present in the design [1]. A higher level of coverage
can be achieved by running more tests, writing directed tests to target previously
unreached parts, removing unused parts or excluding them as they might not be
used in the current configuration.

Toggle Coverage

The toggle coverage metric collects information whether a signal or latch in the
design has toggled from high to low or vice versa [1]. It is up to the verification
engineer to go through the toggle metric and see whether a signal should be able
to toggle or not. Signals that have not toggled might indicate that more directed

Introduction 5

tests are needed to cover these toggles. It can also be possible that this is ex-
pected behaviour and that some signals should never toggle. In that case, such an
occurrence shall be excluded from the report. Toggle coverage is seen as the most
uncomplicated structural coverage metric to implement in a verification flow [1].

Condition Coverage

Conditional coverage is a metric that indicates if we have been able to exercise
all possible combinations of conditional statements during simulations. Just as
with line and toggle coverage, we might need to run more tests to get sufficient
coverage of this metric. Exclusions might be needed to suppress warnings for when
two signals cannot reach a particular combination in the design [1].

A design is said to be closed when it has reached 100% coverage in all these
metrics. The way to get there differs from design to design. The random gen-
erator is not intelligent and does not know what to test. A verification engineer
has to look at the missed coverage bins and see if they should be excluded, fixed
in code or if directed tests should be written to cover these uncovered coverage
holes. The time required to reach 80% of the coverage only requires 20% of the
total verification time. Thus the last 20% can take up to 80% of the development
time to reach [2]. In this thesis, we strive to improve the verification process to
reduce the time spent on design verification.

1.2 Related Work

There has been a drive to improve the verification process in various stages to
reduce the required engineering effort. Many of these solutions use artificial in-
telligence or machine learning to automate the process and create an effective
verification process with minimal engineering effort.

E. E. Mandouh et al. tries to simplify the coverage analysis by clustering
functional coverage goals that share similar items [5]. They do this in a two-stage
process. First, they look at the association between cover-crosses by making a bi-
nary connectivity matrix. After that, K-means clustering, with Jaccard similarity
for the distance, is applied and groups together highly correlated cover-crosses.
Then another clustering iteration is made to sub-group the previous clusters so
that clusters with low coverage ratios are selected first for coverage hole analysis.

A. Wahba et al. used machine learning on regression data from previously
failed simulations and their signatures to cluster faults together [6]. They used
machine learning and rule learning to find signatures in faulty code and priori-
tize RTL simulation defects over verification check failures. The idea was that
prioritizing RTL-defects would yield better RTL quality and more efficient design
development cycles.

D. Maksimovic et al. combined affinity propagation and a support vector
machine to find the root cause of a failure in source code [7]. They use a three-part
system to clustering together potential faults. They look at faults in the RTL code
combined with possible faulty commits in version control and regression testing to
pinpoint where the root cause exists in the defective code. By transforming the

6 Introduction

affected start- and end-lines to a point graph for each affected file, the defective
RTL code could be clustered together with affinity propagation and Euclidean
distance as the distance function. The clusters could then be reviewed collectively
as a starting point for the verification engineers debugging process.

Golagha, Mojdeh et al. conducted a study to find faults without looking at
coverage data. Instead, using sources not tied to the RTL code to cluster failing
tests [8]. They used agglomerative clustering to group failing tests based on non-
coverage data such as Jira log history, general features and fail/pass-history. Using
historical data, they transform each test into a binary matrix representation and
use agglomerative clustering to cluster the faults together. They based the number
of clusters on historical data of several failed tests and confirmed faults.

There has also been a review by Eder, Kerstin I. et al. showcasing the possibil-
ities of using coverage Derived test Generation, coverage derived test generation,
powered by machine learning to speed up the testing of digital circuits [2]. They
discuss how AI-driven randomization of input stimuli can help cover hard to reach
coverage points faster and more efficiently than just using pure randomization in-
put, as seen in figure 1.2. Their proposed methods can capture and cover coverage
holes that would otherwise have been missed in a normal simulation.

Digital circuits are generated from a top-level RTL description synthesized
into a netlist and then placed during routing on silicon or an FPGA. The netlist
is a description of the circuit and its function. We hypothesize that some features
shared between missing coverage holes can be captured from this. Therefore, it is
also interesting to look at how previous work has tried to measure the similarity
between circuits. Some of the proposed methods could hopefully be applicable to
our model.

Two separate papers try to find similarities in circuits to facilitate place, route
[9] and IP reuse theft protection [10]. Both papers discuss a method of represent-
ing the circuit as a graph and use graph comparisons to find similar circuits or
similarities in a subset of a circuit. Graph comparison is complex and takes exces-
sive computational time when applied to larger circuits and should, therefore, be
avoided when employed as a one-to-many search. Instead, it is more sustainable
to opt for simpler matching and a smaller subsection of the design. Zeng discusses
how different synthesized netlists can look different but have the same functional-
ity [10], a simple XOR gate may be realized in different ways, which is something
that needs to be considered when trying to find circuit similarity. Both papers
suggest that deconstruction of a circuit down to a graph-representation can help
find similarities among circuits or sub-circuits.

We were unable to find anyone applying machine learning on the holes in the
coverage metrics from our research. We hypothesize that the current verification
process can be optimized by applying machine learning to cluster uncovered cov-
erage points to find similarities among them. Data visualization techniques can
then be used later to facilitate the analysis of the machine learning algorithms
results.

Introduction 7

1.3 Disposition

The disposition of the thesis is as follows. In the first chapter, we provide a general
introduction to the verification of digital circuits and the methodology that exists
today. In chapter two, we provide the reader with a theoretical background of
the subject. This chapter will go through all methods used in the final prototype
and focus on three major topics: cluster algorithms, dimensionality reduction
techniques and evaluation. The development of our proposed implementation will
be explained in chapter three. In this chapter, we will give the reader a complete
understanding of our proposed solution. An evaluation of the said solution is
given in chapter four, with the result covering the performance. A discussion of
the thesis and our conclusions can subsequently be found in chapter five.

1.4 Method

Here we will briefly explain our method consisting of the phases: preparation
and research, data exploration, feature extraction, prototype implementation and
evaluation of the said prototype.

First, we studied the coverage database and the currently available tools used
to analyze coverage from simulations at Axis. From this foundation, we gath-
ered information on different clustering algorithms used in a similar setting that
could cluster the coverage information. We also went through possible visualiza-
tion methods during this phase and how different clustering algorithms could be
visualized in a later stage.

Next, we explored what information and features could be extracted directly
from the coverage database as input to a clustering algorithm. We investigated in
what different ways we could represent holes in the coverage and how we, at a later
stage, could compare the representations to each other both individually and in
combinations. We wanted to conduct a study to evaluate which features best por-
tray similarities between the coverage holes. A working prototype implementation
was developed with this in mind.

Together with engineers from Axis, we chose to evaluate a design that had
reached 100% coverage. By looking at a design with full coverage, we could use a
backward approach to iteratively remove some of the tests and manually induce
holes in the design to evaluate the results.

1.5 Limitations

We have limited our scope to only focus on toggle coverage and no other coverage
metrics. Our thought process is, if it works for toggle coverage, which is a simple
coverage metric, it can be further expanded to include more, if not all, coverage
metrics mentioned above.

8 Introduction

Chapter 2
Theoretical Background

In this chapter, we will discuss the theoretical background of our work. We will
begin explaining machine learning and, more explicitly, clustering. We will go
through what clustering is, and some commonly used clustering algorithms. We
also go through dimensional reduction methods, as they play a crucial part in pro-
ducing valid results since most cluster algorithms work better in a lower dimension.
After that, we go through how a dataset should be produced and encoded in order
to facilitate clustering. Following is an overview of how to evaluate a clustering
method and how it can be given a tangible success score.

2.1 Clustering

There exist many methods for clustering a dataset, each with its pros and cons. In
this section, we go through some of the more prominent in the machine learning
field. The basics for a clustering algorithm are to group similar data points together
and see connections and similarities between different data points, something that
can aid us in finding related coverage holes. A data point is often represented as a
feature vector, and multiple data points form a dataset. A feature vector contains
tangible values that can be compared against one another to judge how close or
far apart two data points are.

2.1.1 k-means

k-means clustering is one of the simplest clustering methods. It is based on picking
k randomly selected centroids, the centre of an imaginary cluster. Each data point
is assigned to be part of the nearest cluster. After that, the centre of the centroid
is moved to the mean position of all data point in its cluster. This is repeated
until no changes happen between two consecutive runs [11]. This method’s major
drawback is that it is not good at detecting complex shapes of scattered data
points. The k variable also needs to be set, which means that one must know the
expected number of clusters before evaluation. Therefore, k-means is only suitable
if you have some knowledge of the expected number of clusters beforehand and is
ill-suited for a clustering problem with an unknown number of real clusters.

9

10 Theoretical Background

Figure 2.1: Two randomly placed centroids are moved after multiple
iterations until they no longer move.

2.1.2 Affinity Propagation

Affinity propagation is a clustering algorithm [12] where data points, called nodes,
send messages between each other about their preferences. The nodes pass two
types of messages around: “responsibility” and “availability”. A responsibility mes-
sage tells the receiving node the accumulative evidence for it being suitable as a
potential exemplar from the sending node. The availability message goes in the
opposite direction and tells the receiving node the accumulative evidence that the
receiving node should take the sending node as an exemplar. The messages will
update each node’s preference until close to no change can be seen in the network
or until a predetermined number of iterations are reached. This algorithm does
not need to know a predetermined number of clusters beforehand, as the network
will determine by itself how suited each node is to be an exemplar. All points
sharing the same exemplar belong to the same cluster. Affinity propagation has
some good characteristics. The data points do not need to be in continuous space,
as each node only sends a metric of evidence about the suitability to another node.
The major drawback of this design is that the method will operate with the time
complexity O(n2) [12].

Figure 2.2: Figure (a) shows responsibility messages being sent out.
Figure (b) shows availability commands being sent around.

2.1.3 DBSCAN

Density-based spatial clustering of applications with noise (DBSCAN) [13], has the
major advantage that it does not need to know the number of clusters beforehand.

Theoretical Background 11

It works with two input parameters, ε and minPts specifying the radius of a
points neighbourhood and the minimum number of neighbour points for it to be
considered a core point. A border point is a point ε distance from a core point but
with fewer neighbouring points than the threshold for a core point. The algorithm
is based on three key definitions, directly density-reachable, density-reachable and
density-connected. A cluster is made out of one or more core points density-
connected to each other and possibly one or more border points directly density-
reachable from a cluster’s core point. Points not directly density-reachable from
any core point are considered noise and not included in any cluster. DBSCAN can
find any arbitrarily shaped clusters and even clusters inside other clusters (if the
clusters are separated with a distance greater than ε). It can also ignore clustering
noise points [13].

The disadvantage of DBSCAN is that it is not deterministic. If a point can be
a border point to more than one cluster, it is not clear to which cluster the point
should belong. DBSCAN also depends on the distance function and is therefore
prone to high-dimensional data and ill-suited for datasets with a significant differ-
ence in densities [14]. The performance of the algorithm will degrade with varying
densities.

Figure 2.3: DBSCAN creates clusters depending on the density ε.

2.1.4 OPTICS

OPTICS (Ordering Points To Identify the Clustering Structure) can be seen as
an extension to DBSCAN that tries to fix some of its flaws. The algorithm can
detect clusters with varying densities, something that is a major drawback with
DBSCAN. It achieves this by linearly ordering the database so that spatially close
points become neighbours in the ordered database [15].

OPTICS only requires two input parameters, εmax and minPts. With these,
the algorithm calculates the core-distance and the reachability-distance for each
point. This metric can be shown in a reachability-plot where clusters can be seen
in the valleys and where dense clusters have deeper valleys than scattered clusters.

2.2 Dimensionality Reduction

One common problem among clustering algorithms is what’s called the curse of
dimensionality, that a clustering algorithm’s performance will degrade with an
ever-increasing dimensional dataset [16]. The problem arises when using Euclidean

12 Theoretical Background

distance-based measurements between two data points. With increasing dimen-
sions, the total volume will increase to the point where all data points in the
dataset appear to be sparse [17], thus making it harder to classify two points as
belonging to the same cluster. There are two major ways to reduce the number
of features in a dataset, feature selection and feature extraction. Feature selec-
tion focuses on reducing the number of features that represent a data point. It
is undesired to have a feature that only produces noise and no meaningful value
when clustered. It will degrade the performance for most learning algorithms [18].
This has a more significant focus on supervised learning problems compared to
unsupervised, as there is no clear way to know the relevance of a feature without
knowing the label of the data point [18]. The number of clusters for unsupervised
clustering is interrelated with the features, making the selection even harder [18].
Feature extraction (also known as feature projection) is based on mapping fea-
tures in the high-dimensional space to a lower-dimensional space and at the same
time minimize the information loss [19]. One of the more well-known methods is
the Principal component analysis (PCA), an unsupervised method that projects
data into a subspace of the original dimensions and hopefully manages to reduce
it. Using autoencoders is a different method that comes in various variations and
uses neural networks to reduce the number of dimensions. The customization with
autoencoders has its roots in the neural network with one or more hidden layers.
It is easy to stack hidden layers on top of each other, reducing the dimensions even
more than with just one layer. The ability to customize the hidden layers can help
with achieving accurate dimensionality reduction for a specific application.

2.2.1 Principal Component Analysis

Principal component analysis (PCA) aims to reduce a dataset’s dimensionality
while still retaining the variations. A set of observations is described with a set
of principal components that retain the maximum variance of the original obser-
vations [20]. The first principal component is a line that best fits all observations
in the high dimensionality space. Each other principal component is made to fit
all observations while being orthonormal to each previous principal component.
The observations can then be projected onto the axes to get a reduced number of
dimensions representing each observation.

The good thing with PCA for reducing the dimensionality is that it retains
the similarity between two points if the clustering is done with Euclidian distance
[20]. The distance between two points will be unchanged if there are the same
number of principal components used as the number of dimensions in the original
observations. By projecting the observation on the first m principal components,
the pairwise similarity between two different points becomes an approximation to
the similarity metric in the original dimensions.

2.2.2 Autoencoders

An autoencoder reduction algorithm can be described as five different parts; input
layer, encoder, latent space, decoder and output layer, connected in that order as
seen in figure 2.5. It uses neural networks (NN) to build up both its encoder and

Theoretical Background 13

Figure 2.4: Illustration of PCA on a set of data points.

decoder. The encoder will take the input data, x ∈ RN , and reduce the number of
features to a more manageable size, z ∈ RM whereM < N . This compressed data
in latent space should be a new way to describe the original data fed through the
encoder. The decoders job is to do the reverse. It tries to generate an accurate
representation x̃ ∈ RN of x from the encoded data z in the latent space. The
encoder and decoder are trained on a training dataset to produce an accurate
reconstruction of x̃ for all data points. With the encoder trained, a data point feed
through the network will get a dimensionality reduced representation in the latent
space. Clustering algorithms can then use the reduced dimensions in latent space
to find similarities between other dimensionality reduced data points. The use of
autoencoders as dimensionality reduction algorithm has been used for single-cell
RNA analysis [21] and have proven good results in making complex data available
to view in a lower-dimensional space.

2.2.3 RNN and LSTM

A recurrent neural network (RNN) is a neutral network that behaves the same
as an ordinary neural network but contains a memory of the last output, that is
to be passed as an input to the network. This makes it possible to train on a
sequence of data assumed to depend on each other of an indefinite length. This
means the RNN can train on variable input sequences without a problem and can
be represented as non-sequence data in latent space. However, RNN has a problem
that is called vanishing gradient decent.

As the RNN is trained with backpropagation and gradient-based methods, the

14 Theoretical Background

Figure 2.5: Basic structure of an Autoencoder.

Figure 2.6: Two cell RNN.

update to the weights will tend to go to zero or infinity. The weights get updated
by a portion of the derivative of the error during a training iteration. The gradient
can sometimes be minimal with stacking cells, and thus the gradient will be close
to zero, preventing changes to the weights. In figure 2.6, you can only see two
cells. In such an example, this would not be a problem, but with more and more
cells after each other, the vanishing gradient descent problem occurs.

Long short-term memory (LSTM) is a solution to the problem mentioned
above of RNN. It uses the tanh and sigmoid functions to transform the input
while keeping its cell state and hidden state. An LSTM cell can be seen in figure
2.7 with the hidden state and cell state entering the cell from the left and respec-
tive state exiting on the right. The current input will enter from below. LSTM
works by forgetting irrelevant information from the input and the hidden layers
with a sigmoid function. After that, the cell state is updated with only relevant
information, squashed in the range −1to1 with the tanh function. The output
stage decides what parts of the hidden state should be carried over to the next cell
from the current cell state. The cell state is passed through a tanh function again

Theoretical Background 15

to keep the output bounded.

Figure 2.7: LSTM cell compromising of an forget, input and output
gate.

2.2.4 LSTM Autoencoder

As an autoencoder uses a neural network as an encoder, we can exchange it for
an LSTM network instead to support sequences of data. The LSTM takes the
regular fully connected layers place in the encoder to combine the positive sides of
autoencoders with the advantage of handling the sequences supported by LSTM.
The two principles are the same but must be implemented differently in practice
when realizing a system.

2.3 Regularization

One common challenge with neural networks is over-fitting. When training a
network, one often strives to achieve a good but generalized model. A model with
too much capacity might lead to it being overfitted or overtrained on the specific
training data, whereas a model with too little capacity cannot learn the problem
at all. The challenge lies in finding this sweet spot.

Figure 2.8: Visualising the sweet spot.

16 Theoretical Background

Many methods exist in aiding with this problem. The easiest is to simplify the
model and constrain the overall complexity by reducing the number of neurons
directly in the layers or the actual layers themselves. However, for complicated
problems, this may be impossible and lead to the model being unable to learn
anything. Another straight forward approach is to train the model on more data,
but this places demands on data availability which could be challenging in a real-
world scenario. Thankfully we have methods such as “dropout”, where a random
amount of neurons are dropped each iteration, forcing generalization by training
multiple subsets of the full network.

2.3.1 Variational Autoencoders

One way to regularize autoencoders is to use a variational model. The variational
autoencoder tackles the over-fitting problem using a distribution where a data
point might be in latent space instead of a single point. During training, the
input point’s position to the decoder in latent space will differ from its actual
position, as it is sampled from a distribution around the point. This means that
the autoencoder is trained to reconstruct the data point from the latent space
distribution instead of the actual point. Variational autoencoders have the effect
that quite similar data points will appear closer together in latent space than a
regular autoencoder where two completely different data points could be situated
at a close proximity [22]. Variational autoencoders have also been proven to reduce
the number of dimensions for datasets where the number of dimensions is far
greater than the number of data points in the dataset [23].

2.3.2 Regularizing LSTM Autoencoders

To reduce over-fitting in a recurrent network, dropout can be applied. One ap-
proach is a Variational LSTM that applies the dropout at each time step [24].

2.4 Visualization

There exist dimensionality reduction methods that are adapted to visualize the
result for the human eye. They specialize in transforming high-dimensional data
down to just a few dimensions suitable to produce visually pleasing results. Two
of them are mentioned below, t-SNE and the follow-up adaptation UMAP. They
are both destructive in keeping density information from the original dataset and
should therefore be used for their purpose of visualization.

2.4.1 t-SNE

The t-SNE method is specialized in turning high dimensionality data into 1, 2 or
3 dimensions that can be plotted. The algorithm works by taking all data points
and randomly placing them on a line (in 1-D) or a graph (in 2-D). Now all points
are evenly distributed in the plane, and similar points might be either close or far
away. Iteratively each point is moved in the direction with the highest positive
force. Similar data points attract each other, while unrelated data points repel

Theoretical Background 17

each other. This process will go over all data points until all data points have
reached their desired place in the graph, where similar points are closer together
than dissimilar points.

For one point pi the force between each other point in the data set needs to
be calculated. This is done by using a Gaussian distribution. Each other data
point will have a certain distance from pi and will be placed in that distribution.
The closer a data point is to pi, the higher the density value it will be assigned.
This density value is the force relationship between two different points in the
original high dimensional space. These density values are all normalized to combat
the problem where one point has a large number of close neighbours while other
neighbours are far away. The normalization is done so that the combined density
for one point pi will always sum up to 1.

In the low dimensional space, each point’s relationship does not use the Gaus-
sian distribution but instead, the t-distribution. T-distribution prevents most of
the data points from gathering at the centre and forcing them to spread out, mak-
ing it easier and more transparent for visualization. The t-SNE algorithm tries
to minimize the Kullback–Leibler divergence, how much one distribution differs
from another, between the distributions in high and low dimensional space. This
fitted t-distribution is then used, as described above, to move the points in the
low dimensional space around until each data point is close to its neighbours [25].

2.4.2 UMAP

Uniform Manifold Approximation and Projection (UMAP) [26] is an algorithm
with its base in maths as a dimensionality reduction algorithm. Just as t-SNE, it
tries to tackle the problem of reducing a high dimensionality data set into fewer
dimensions and still retaining valuable relation between data points in the new
feature dimension [26].

As the name suggests, UMAP takes advantage of manifold approximation and
learning techniques. It boils down to the thought that the dimensionality is artifi-
cially high. Instead, each data point can be described with only a few parameters
representing the actual dimensions of the data set. Meaning a high dimension-
ality feature set should only depend on a small number of parameters. UMAP
construct this manifold by producing local approximations and then stitch them
together, constructing a topological approximation. After the manifold approxi-
mation has been evaluated, UMAP constructs fuzzy sets that can be represented
on the manifold. The high dimensionality topological representation can then be
put down into a low dimensional representation by reducing the error between the
two topological representations. This can be reduced to two or three dimensions
to help visualize the data for the human eye.

Each point on the manifold represents another point in space for each data
point in the dataset. To find the connection between two data points and their
relation, UMAP tries to create geometric blocks of simplices. A geometric shape
that is of k dimensions is called k-simplex. A 0-simplex is a point, 1-simplex is a
line, 2-simplex is a triangle, and a 3-simplex is a tetrahedron and so forth. This
structure can be easily represented by a set of objects and their faces. On their
own, these simplices do not provide any valuable information for the algorithm.

18 Theoretical Background

It comes from when two simplices are put together with their faces against each
other and provides a simplicial set. We choose not to delve deeper into the maths
behind the simplicial set, as it will have little to no use for this thesis’s point. These
simplicial set will be the building block between the data points. How these points
get connected will be covered later. First, we need to look at how these should be
connected on the manifold. A Simplex should be created of the nearest neighbours
between data points. This is done by looking in a radius around each point, to
judge which points are close to each other. The problem arises in empirical data
when data points are clumped together. This will result in a high dimensional
simplex, which is undesired and defeats the purpose of what we are trying to
achieve. It is solved by assuming that all points are uniformly distributed on the
manifold, then there won’t be a problem to pick the perfect radius to avoid these
high dimension simplices. In the real world, the data points won’t be uniformly
distributed. Therefore the radius for each point needs to be chosen individually
to reach the k-th nearest neighbour. In a theoretical 2-dimensional space, this
radius from a data point represents a projection on the manifold in what can be
euclidean space, if points are separated by euclidean distances, of the distance
between two points. Two neighbouring points with an overlapping patch in the
high dimensional space will also have an overlapping patch on the manifold. Each
point can then assume that the points it can see are a certain length away.

Now with the concept of the radius, we replace it with a fuzzy cover to give a
meaningful distance from one point to another. This fuzzy cover provides a value
between 0 and 1 for how far away a data point is from the source point, instead of
just labelling if a data point is inside or outside the source point radius. The fuzzy
cover of a point needs to reach at least its closest neighbour. The reason to use
this fuzzy cover with a variable length is to combat the curse of dimensionality.
The distance between each point in the high dimensional space will not be affected
by it. Instead, the normalized distance between the data points will not depend
on the number of dimensions.

After the fuzzy sets have been created with the simplices, they can be trans-
formed into a lower-dimensional space, using parts of t-SNE and other repelling
forces between data points to create a reduced feature dimension representation
of the data set. For a deeper knowledge of how UMAP work, readers are advised
to take a look at the paper [26] for UMAP, or the informative talk by one of the
authors [27].

UMAP should have an advantage over t-SNE on high dimensional data set
according to the authors [26] and is fast and reliable to use as a dimensionality
reduction stage in a clustering problem. The implementation of UMAP that is
used in this thesis comes from the authors own python module [28].

2.5 Feature Engineering

A clustering algorithm or other machine learning algorithms can theoretically be
crafted to produce a pleasing result. They do, however, depend heavily on the
dataset with its features. A machine learning problem and solution can only be
as good as the input it is provided with. With faulty or incorrect data, the result

Theoretical Background 19

is not satisfactory and should be discarded as a solution.
A machine learning model must be carefully constructed based on the de-

sign and availability of the data set. While it is possible to provide any number
of features, the question still stands how relevant these features are. Are they
character-defining and should be kept, or should they be dropped completely?

2.5.1 Encoding

Most clustering algorithms only work with numerical input. Therefore, some
datasets need to be transformed and encoded to comply. Some necessary trans-
formations need to be done.

1. Convert non-numerical data into numerical.

2. Resize input vectors to match the rest of the samples if dissimilarities in size
exist.

Non-numerical data, such as categorical data, have to be represented as a
number in some way. One example is primitive operands such as AND, OR and
XOR that exist in digital circuits. They all represent one type of operation, but
there is no way of measuring a meaningful numerical distance between the three.
The naïve approach would be to assign each operand a number {1, 2, 3}, but that
would assume an ordinal relationship between the operands and could lead to
unwanted results. One solution to this problem is to use a one-hot encoding. In a
one-hot representation of the data, one bit represents one value in the vocabulary.
The vocabulary contains a list of all the possible values a categorical feature can
take. The previous example can be seen in table 2.1, where part of a vocabulary
of operands is illustrated.

Table 2.1: Example showcasing a vocabulary for different operands
in digital circuits.

AND 0
OR 1
XOR 2
· · ·

A feature indicating that the AND operation was present is expressed as a
vector with a value of “1” on the operands index in the vocabulary. In figure 2.9
the first entry represents the AND operand, the second XOR and the last entry is
an OR.

[[1.0 0.0 0.0],
[0.0 0.0 1.0],

· · ·
[0.0 1.0 0.0]]

Figure 2.9: One-hot encoded values for three entries using table2.1.

20 Theoretical Background

The combination of the presence of both an AND and an OR operation can
be binary encoded into the following vector [1.0 1.0 0.0].

There are additional transformations that can be made to produce a better
dataset. By normalizing numerical features to be in the range [0, 1] or [−1, 1] the
performance of the algorithm can be enhanced [29]. Normalizing features also
removes the possibility that some feature becomes too dominant over others.

2.6 Cluster Evaluation

To determine if a clustering algorithm succeeded to cluster relevant data points
together and to assess its overall performance, one needs to perform an evaluation
analysis. This analysis can be done either by looking at the internal structure or
using external information to validate the result. The internal cluster structure can
be evaluated using methods such as C index, Calinski-Harabasz, Davies-Bouldin,
Dunn, Silhouette, Xie-Beni [30]. These methods give a score on how good the
algorithms performed from a pure clustering perspective. The clusters can be
externally evaluated by looking at which tests hit a coverage bin for a given signal
in a cluster. The more similar the covering tests for each data point in a cluster
are, the better. The theory is if one test hits multiple signals in a cluster, there
would be a greater chance that a new tests or a slightly changed test for one signal
would also cover the other signals in the same cluster. It should be noted that this
only works if you look at a 100% covered design.

2.6.1 Davies-Bouldin

The Davies-Bouldin index gives a metric on how well-spaced clusters are and how
dense the clusters themselves are [31], a lower score indicating good clustering char-
acteristics. This index is chosen to give a score for how good the 2-D visualization
will be. The score is defined as

DB =
1

n

n∑
i=1

max
j 6=i

(
σi + σj
d(ci, cj)

)
(2.1)

where n is the number of clusters; σi and σj is the dispersion of clusters i and j;
and finally d(ci, cj) is the distance between the two clusters i and j. The distance
metric is evaluated in euclidean space, as the clustering will use euclidean distance.

2.6.2 Silhouette

The Silhouette index is, at its core, a tool to evaluate and aid in graphical vali-
dation of clusters [32]. The original paper used the Silhouettes method to create
dendrograms to visualize the clusters. Later, it has become used as an index coef-
ficient to measure a cluster algorithm’s performance and to indicate if the number
of clusters is acceptable [33]. Silhouette is a distance-based metric that compares
the mean distance from a data point i and all other data points (equation 2.2) and
the smallest mean distance to other clusters (equation 2.3).

Theoretical Background 21

a(i) =
1

|Ci| − 1

∑
j∈Ci,i6=j

d(i, j) (2.2)

b(i) = min
k 6=i

1

|Ci|
∑
j∈Ck

d(i, j) (2.3)

where Ci defines the cluster that point i is in; d(i, j) is the distance between two
points i and j in the same cluster; and Ck is any cluster that point i is not part
of. The score for one point is then given by

s(i) =
b(i)− a(i)

max{a(i), b(i)}
, if |Ci| > 1 (2.4)

which will give a score [−1, 1] for point i. A value close to 1 indicates a strong
similarity between other points in the same cluster as point i. If point i is more
similar to another cluster and thus probably should belong to that cluster, the
value will go down towards −1. The silhouette coefficient is defined as:

SC = max
k

s̃(k) (2.5)

where s̃(k) is the mean of s(i) for the chosen number of clusters k [33]. This score
can help indicate if the clustering algorithm performed a good clustering with
distinct silhouettes.

2.6.3 Multiple Site Similarity

In biology, it is often interesting to calculate how similar the composition of species
in different locations are. One way of doing this is with the Sørensen similarity
index [34], which defines the similarity between two sites of species A and B by

Cs =
2ab

a+ b
(2.6)

where ab is the number of shared species between the two sites A and B; a
and b is the number of species found in A and B respectively. The index is bound
within [0, 1]. The index gives valuable information about how alike the populations
on different sites are. This can be applied to our problem with how similar two
signals are depending on the test that hit a related coverage bin for the respective
signals.

The proposed solution for using Sørensens similarity index for more than one
site [35] can be used to find multi-class similarity for all data points in a cluster.
The equation is given by

Cs =
T

T − 1

(
1− ST∑

i ai

)
(2.7)

where T is the number of sites used to bound the index to [0, 1]; ai the number of
species in site i; and ST is

ST =
∑
i

ai −
∑
i<j

aij +
∑

i<j<k

aijk − ... (2.8)

22 Theoretical Background

where aij is the number of shared species between the two sites i and j. The same
applies to aijk which is the number of shared species in all three sites i, j and k.

Chapter 3
Implementation

This chapter will explain our implementation of the prototype we developed to ex-
amine different clustering algorithms and feature combinations. First, we will go
through the available coverage database, the information it contains and a simpli-
fied netlist created for the simulation of a design. From there on, we will describe
how the dataset was constructed and how the chosen features were extracted,
encoded, and reduced, both for clustering and visualization.

3.1 Coverage Database

The coverage information exists in a coverage database. This database is filled
with information about the coverage metrics; functional coverage, line coverage,
toggle coverage, branch and condition coverage for a set of simulations on a design.
It is from this database that the coverage information is extracted. The database
recorded every hit a test caused during a simulation when a line or branch was
executed, a condition was satisfied or when a bit toggled back and forth. From
this information, we could get the signal names and the status of each coverage
bin. There was also information on whether a signal should be excluded from the
report. An excluded signal is ignored in the total score of the coverage report. This
information only covered the names of the signals and the signal sizes and indexes
for signal vectors. From this information, connections and potential clusters could
be identified for a fully covered design with the help of the test results. However,
this information was not enough to facilitate the creation of a dataset with present
coverage holes. There was too little information to make valid connections between
coverage holes. Instead, we chose to look at a netlist representation of the design
to make connections between coverage holes. This was done with the hypothesis
that the design and the netlist could represent the relations between signals and
signal bits. This netlist was used to further expand our dataset that would be
used for clustering.

3.2 Construction of Dataset

To facilitate clustering, distinct features of the signals had to be both extracted and
constructed. We extracted information regarding the name, size, and bit position

23

24 Implementation

directly from the coverage database for each signal. From the netlist, we managed
to construct a graph representation of both signal and operator dependencies.

From the coverage database, both the size and bit position information were
interesting. In the past, at Axis, there had been noted that the least significant
bit of a signal vector of a certain size was never covered, as the vector represented
an even number. Another case is when big ranges of bits in some signals are
left uncovered because of the same underlying cause. It is interesting to see if
this behaviour can be seen on multiple signals throughout the design and later
clustered together using the size and index as a feature.

We also looked at the signal names and how they were constructed—this metric
varied on a design basis. In our initial study, we found that certain designs had
a strict naming scheme for determining the signal’s use and purpose. For such
designs, we wanted to see if this information could further enhance similarities
between the signals. Names constructed with multiple words were particularly
interesting, as each word could give us a clue to the signals full use and relations.

The signal and operator dependencies were our way of representing relation-
ships and similarities between signals on a “deeper level" compared to just the
naming, size and index information that could be extracted directly from the cov-
erage database. Our idea was to capture any possible prerequisite signals or op-
erators present in multiple holes throughout the design, as an uncovered coverage
point could propagate to other coverage points, see figure 3.1.

Figure 3.1: Illustration of cascading holes for concatenation of two
signals and bitwise logic operations.

When traversing the netlist, the signal and operator dependencies can be rep-
resented as a tree graph with the selected signal as the root and each operator
dependency as a leaf with the signal dependency as the branches connecting the
leaves. This tree grows exponentially as each dependency can branch out in an
unknown number of branches. This is problematic concerning both the time it
takes to extract the features and the resulting feature vector’s size. As mentioned
in section 2.2, the curse of dimensionality says that in high dimensional space, all
data appear to be sparse and objects are dissimilar [16]. This negatively affects
any clustering algorithms ability to produce a trustworthy result.

Figure 3.2 shows a simple circuit that can be translated into a tree graph with
different branches as seen in figure 3.3.

Implementation 25

Figure 3.2: A simple circuit with 9 signals A, B, C, D, E, F, G, H, I
and 2x AND, 1x OR and 1x XOR gate.

Figure 3.3: A tree graph of the signals in the circuit shown in figure
3.2.

Tracing every signal back to its origin would also cause every signal to share
a large subset of features even if they don’t have a close relationship. We decided
to limit our dependency search backwards to the last occurring register or latch
to avoid this.

The features we decided to use are listed in table 3.1 with abbreviations that
will be used later for presenting the result.

Table 3.1: Features and their abbreviations.

Feature description Abbrv.
Signal information (Size and Index) I

Name N
Operator dependencies for 1 CC O
Signal dependencies for 1 CC S

26 Implementation

3.2.1 Encoding

Since most of our researched cluster algorithms work by comparing distances be-
tween points, some of our feature sets had to be transformed or encoded to a
metric data type. It did not make sense to compare the distance between points
represented by nominal or ordinal data. We had two types of problematic datasets,
the name set and the two dependency sets. The size and index features are already
discrete numerical by nature and did not need to be transformed. In this section,
we will explain how the problematic datasets were encoded.

Name Encoding

As mentioned before, the names features was extracted directly from the coverage
database. With the robust naming scheme present for certain designs, we hoped
that we would be able to cluster the signals based on these features. Along with
the need to transform the data into a metric data type, another problematic aspect
that needed to be addressed was the fact that the names are unique.

Using purely unique names would give rise to a dataset equal to an identity
matrix where each entry in the set would be equally separated from all other
entries. A clustering algorithm operating on this set would produce the same
number of clusters as there are entries, something that is unwanted. In the de-
signs we had at our disposal to investigate, each name comprised of one or many
shorter, nonunique words with an underscore “_” as a delimiter. By dividing
names into shorter words, we could successfully construct a dataset with shared
features between the entries.

Figure 3.4: Vocabulary created from 4 name entries.

As the last step, we transformed this nominal data into something more usable
for our algorithms by encoding it in a binary matrix. The resulting matrix is of
the dimension N ×M , where N is the number of entries in the original dataset,
and M is the size of the total vocabulary found across all entries when splitting
the names. The feature vector for the name has a “1” in the resulting locations
representing the presence of a certain word, while a “0” marks the absence of a
word in the name.

Implementation 27

Figure 3.5: Name entries transformed to feature vectors, here shown
in a matrix, coloured squares represent that a word is present
for that data point.

Signal and Operation Encoding

Just as with the name encoding, a vocabulary was created for both signal and op-
eration dependencies. The vocabulary for signal dependencies referred to specific
signals in the design, while the operation dependencies were encoded by their type,
as in the example in section 2.5.1. Both feature vectors also used binary encoding
to represent the dependencies. The difference between the name and dependency
feature sets is that the latter has an added dimension. The purpose of this is to
try to capture both the sequence and branching of the dependencies. Suppose a
signal has multiple dependencies on other signals and operators, as seen in figure
3.2. In that case, we want to capture the order in which these signals and opera-
tors relate to each other. For each step backwards in a signal’s dependencies, we
extract the immediate relations and construct the resulting binary matrix from the
vocabulary, as seen in figure 3.6. Then, we merge the matrices from each branch
at the same distance from the original signal into one. The result is a matrix of
dimension N ×M ×K where N is the number of entries in the original dataset,
M is the size of the total vocabulary found across all entries, and K is the number
of steps taken backwards in the dependencies, an example of this can be seen in
figure 3.7.

Figure 3.6: Tree graph to binary matrix representation.

28 Implementation

Figure 3.7: Four different feature entries consisting of 8 dimensions
and 4 timestamps, t0, t1, t2 and t3.

3.3 Dimensionality Reduction

Before running the cluster algorithms on our datasets, we wanted to reduce the
number of dimensions in the sets. Dimensionality reduction is a common method-
ology to deal with the curse of dimensionality. Our approach was to reduce di-
mensions with the help of autoencoders. Two types of autoencoder models were
used for the two different types of complex datasets. We omitted this technique
on the simple set, consisting of just the size and index, since it already had a
low dimension and did not have to be encoded in the previous step. Many other
dimensionality reduction techniques exist, such as PCA and LDA, to name a few
[36]. However, using autoencoders on our complex sets with sequences also had
the added trait of simplifying and homogenizing the timestamped feature vector’s
representation to a reduced vector representation. This was helpful as the different
sets of features could be combined freely in all possible combinations.

3.3.1 Variational Autoencoder

We used a deep variational autoencoder model to reduce the features to a more
manageable number for the name set. The motivation for using a regularized model
with a variational approach was to prevent overfitting and force the network to
create meaningful connections between the features in latent space. Since our
dataset’s size was very limited and the fact that it was not possible to split the
dataset into the typical train, validation and test sets, we had to tackle this problem
in another way. We determined that not having the regularization in place would
be a too naïve approach. The variational autoencoder was made in Python with
Tensorflow Keras [37] Python library, a library for realizing and solving machine
learning problems.

3.3.2 LSTM Autoencoder

For the two sequential datasets of operator and signal dependencies, we used a
recurrent network model with long short-term memory (LSTM). This architecture
is similar to the Seq2Seq technique often used in language translation [38].

Implementation 29

Figure 3.8: Layers in the Variational Autoencoder model

Our LSTM Autoencoder was trained to produce the input dependency se-
quence in reverse, as it has been proved to yield better learning results for Seq2Seq
[38]. To avoid overfitting, we used a recurrent dropout regularization approach [39].

Figure 3.9: Layers used for operator dependencies

3.3.3 Handling Multiple Features

With the complex sets transformed into a simpler and homogeneous one-dimensional
representation, they could be combined freely. The representations in the latent
space were also normalized to give the same weight to each kind of feature. This
is illustrated in figure 3.11 where a vector representation in latent space from each
autoencoder is appended together with the simpler set, creating reduced feature
representation for a data point.

As the last step in this section, we also performed some analysis with PCA.
We looked at the cumulative explained variance ratio as a function of each com-

30 Implementation

Figure 3.10: Layers used for signal dependencies

Figure 3.11: Each row in each matrix represent one data point, and
each column represents one specific feature. The autoencoders
are trained on their respective datasets, and the output in latent
space that is combined is from only one data point.

bination’s number of components. The plot can be seen in figure 3.12 and also in
Appendix C. From these plots, we could conclude that a large amount of variance
is contained within a smaller subset of components. We could thus, advanta-
geously, use PCA on our datasets in the latent space to give a fairer comparison
in the later evaluation with every combination having the same dimension. In all
feature combinations, the PCA with five components were able to explain over
85% of the variance.

3.4 Further Dimensional Reduction

The reduced number of features present a lower feature dimension than before.
However, the feature space was still too large and had to be reduced further to
be visualized. The dimensionality reduction algorithm UMAP was used to reduce
the number of features down to two, ideal for visualization. The implementation
of UMAP that we used comes from the creators of the original paper [28] with the

Implementation 31

Figure 3.12: Cumulative explained variance ratio as a function of
components.

implementation of their algorithm in Python.

3.5 Clustering

Any clustering algorithm that requires the number of clusters to be pre-defined
beforehand is not recommended to use as the number of clusters is unknown. If a
clustering algorithm needs a pre-defined number of clusters, then that information
must come from another source. We chose to cluster with OPTICS and affinity
propagation from scikit-learns [40]. We also clustered with k-means using the
number of clusters found by OPTICS as k. We did this to examine if OPTICS
characteristic to not cluster noise points affected the results or not.

32 Implementation

Chapter 4
Result

4.1 Evaluation

To evaluate the clustering, we wanted to see if the clustering created well-defined
clusters and if they contained signals with shared similarities. To measure the
distinctness of the produced clusters, the two indexes Davies-Bouldin [31] and
Silhouette [32] were selected. We chose to use these two indexes to measure how
distinct and separated the different clusters were, with the motivation that more
spaced-out and dense clusters will make the visualization better.

With the multiple site similarity index [34], we could see if the same tests had
hit the same coverage points in a cluster. With this index, we could measure both
the similarities within a cluster and the dissimilarity of other clusters.

4.1.1 Davies-Bouldin and Silhouette

Both Davies-Bouldin and Silhouette were used to obtain valuable information on
the clustering. Neither algorithm needs any additional information about the data,
as they are both internal cluster evaluation indexes. Silhouette rates the clusters
with a score between −1 and 1, where a higher value represents a more distinct
clustering. Davies-Bouldin, on the other hand, gives a score close to 0 on a well-
separated clustering. We chose these two metrics as the problem is geared towards
visualization, and having more distinct clusters makes the result of this project
more palpable. We could not look at or validate the clusters in higher dimensions
so these indexes were used as a score to confirm if the output was reasonable or if
we had to perform further tweaking.

4.1.2 Multiple Site Similarity

While examining the clusters solely based on their structure and distinctiveness
from each other is fairly straight forward, validating their actual data and retriev-
ing information is not.

In most cases, the need for a ground truth or a label is inevitable to prove that
the clusters contain data points that belong to each other and that they are not
just placed close to each other.

In our case, we did not have any labels or categories of the clustered data points
at hand. If we had, there would not have been a need for this thesis. Instead,

33

34 Result

we had to develop a way of verifying the similarities of our data points from an
outside perspective.

Multi Label Problem

We created pseudo-labels by using the tests that hit each data point and hypoth-
esized that similar tests hit similar data points, or more generally, that there will
be a more significant overlap of data points hit by certain tests within the same
cluster. This hypothesis can also be inverted when viewing and comparing the
actual clusters, where the overlap instead should be kept low.

These pseudo labels set the stage for a multi-label problem, where each data
point in the cluster could belong to multiple labels where each label represents one
test. Conventional methods for evaluating classification based on multi-labels need
to perform a comparison against a ground truth. This would not be a problem in
a classification problem since the classification algorithm itself would assign the
labels to each signal. On the other hand, clustering does not predict what labels
a certain cluster represents, and thus we have to look elsewhere to evaluate the
clusters based on labels.

As we want a high similarity among present tests in a cluster, we strove to
calculate the similarity among all data points in a cluster. The Multiple site
similarity, as explained in section 2.6.3, seeks to compare two or more sites against
each other and see how similar they are to each other. We treat each data point in
our cluster as a site with the covering tests acting as its species. We can then get
a score for each cluster representing the intra-cluster similarities. We calculated
an average score of the internal similarity for each cluster. The scores for all
the individual clusters were then combined to get an average score of the clusters’
internal similarities. We did this as we want the score of a cluster to be independent
of the number of points in it, preventing one big cluster from dominating the score
negatively or positively.

Inter Cluster Similarity

It is also interesting to compare how different the clusters are to each other, in-
dicating if certain tests toggled only a small number of signals in few clusters or
if they toggled all signals in every cluster. If the inter-cluster similarity is high,
it may suggest that some of the tests managed to toggle a large number of the
signals in a design. If the similarities between clusters are high, that may suggest
that they could be merged into one cluster.

To calculate the inter-cluster similarity, we applied multiple site similarity
on all clusters to determine how similar the found clusters are. To do this, we
now represent a cluster as a site with its species. We used multi-class labels of the
different sets of test combinations present in a cluster to represent the species, from
which an inter-cluster similarity could be calculated when applying the multiple
site similarity algorithm.

Result 35

4.2 Evaluation Combinations

The clustering results depended heavily on the choice of both selected features
and cluster algorithm. The four feature sets, seen in table 3.1 presents 15 different
combinations of feature vectors that were evaluated for each clustering algorithm:

• OPTICS

• Affinity propagation

• k-means

A combined average score for MSS was calculated with the following formula:

MSStot =
MSSInternal + (1−MSSExternal)

2
(4.1)

4.3 Evaluation Results

We evaluated our implementation on a design that had reached full toggle coverage,
all signals had either been toggled or been excluded from toggling, making it
possible to evaluate with our MSS approach. We extracted scores from three
stages in our implementation:

• Directly on the latent space.

• After applying UMAP to reduce the features to two dimensions.

• Before UMAP but reduced feature space with PCA.

Complete tabular with all the experiments’ scores can be found in appendixes
A, B, and C.

4.3.1 Latent space

When clustering on the latent space from the autoencoders, we can observe that:

• The O feature set often produces a better result than S for all clustering
algorithms, see table A.16, A.17 and A.18.

• Affinity propagation produces a greater number of clusters compared to
other clustering algorithms, see table A.16.

• For OPTICS, in table A.18, the best score is 0.85 and is achieved with
the features INOS, closely followed by IO and OS. Notably, OS produces
better results when combined instead of just S or O features which differs
from Affinity and k-means in A.16 and A.17.

• Using the feature set I more often than not gave a better result than not
using it. As seen in A.16, A.17, A.18.

• Using the feature set N, more often than not, actually produced worse
results than leaving it out with affinity A.16 and k-means A.17. The same
does not apply to OPTICS A.18.

• Overall, clustering with OPTICS produced the best result, as seen both
with internal and external MSS score.

36 Result

4.3.2 After UMAP

Moreover, when using autoencoder and clustering after applying UMAP for di-
mensionality reduction, we can observe:

• When using affinity propagation, see table B.16, the feature combination
INO, IS, and IO all produce high MSS scores. With DB and silhouette
scores in mind, IO gives the best result.

• The features O and S should not be combined as a feature. See table B.17
with k-means and feature combination IOS, OS, S, and O. In all cases S
and O produce better results when they are not combined. We can see that
there are better results if the I feature is combined with another feature
combination and must be included to get a good score. With the above two
observations in mind, we can see that only six combinations are relevant,
IO, IS, I, INO, INS, and IN. From these six feature combinations, we
can see that solely using the I feature will net the best score for DB and
silhouette and give a good MSS score, but produces fewer clusters.

• The feature I gives the best MSS score overall when using OPTICS, see
table B.18, and produces the lowest number of clusters, 4, compared to the
average of 8-9 clusters. The second best one is IN, followed by IO, IS, and
INS.

• All feature combinations produced better results when paired with the I set.
This is true for all cluster algorithms B.16, B.17 and B.18.

• The feature set N produced worse results paired with other combinations
than when it was left out for all different cluster algorithms B.17, B.17 and
B.18.

4.3.3 After PCA

By homogenizing the latent space features with PCA, we can observe that:

• With using affinity propagation we observe a large number of clusters com-
pared to the other experiments, see table C.16. The scores lack the external
MSS score that can be explained by the high number of clusters.

• We can see that the cluster scores for k-means clustering in table C.17 have
better scores for Davies Bouldin and Silhouette than OPTICS (see table
C.18). However, the MSS scores show better results when using OPTICS.

• The highest total MSS score was reached with the INO feature combination
when using PCA and clustering with OPTICS.

• With all cluster algorithms, including the feature set I in the combinations
almost always produced a better result.

• Using the N features produced a worse result in some combinations with
Affinity and k-means but produced a better result with OPTICS. Over-
all, the performance drop caused by the N set were lower when PCA was
applied.

Result 37

• Using both O and S together often gave a performance gain compared to
just using one of them in the combinations. This differs from the previous
result where clustering algorithms were applied without PCA directly on
the latent space, with and without UMAP.

• The N feature contributed to the spread of the features. Figure C.12 shows
only the N feature and how all data points are scattered around. Compared
to C.11 that contains small isolated clusters in distinct corners.

Overall, we observe that the I feature played a vital role in a signal’s charac-
teristics as they appear at the top for all three feature combinations in all three
result sets in appendix A, B, and C. There is no clear winner with an excellent
MSS that also gives good Davies Bouldin and silhouette indices. From figures A.1
to A.15 and figures C.1 to C.15, we can see that the visualization for the different
feature combinations is, as expected, quite different. Some feature combinations
give distinct clusters that the human eye can easily distinguish, see figure C.6
for the IO features, while the best MSS score is given by the INO combination
in table C.18, see figure C.2, which has a more evenly spread out distribution of
data points. From the figures, we also note that the clustering algorithms found
clusters that were relatively close to each other as in figure C.1, C.2, and C.3, thus
reducing the effectiveness and relevance of both the Davies-Bouldin and silhouette
scores.

38 Result

Chapter 5
Discussion and Conclusions

We can conclude from the recorded cluster evaluation that some features were
better to use for clustering than others. If we consider only the clustering evaluated
with the MSS score, then INO using Optics and PCA is the best method to
cluster together coverage holes for hole analysis, see table D.18. This method
outperformed the other feature combination and clustering algorithms. Moreover,
from the visualization in figure D.2 we can conclude optics were able to find possible
clusters inside the two separated groups of points. We believe this combination
may be the best one. However, there needs to be further experiments on other
designs of various sizes to see if the result differs. The name feature on its own
did not provide any good result for the clustering. We studied the name feature
because it is one of the few information sources directly available in the coverage
database. Evaluating if the name feature is good or not all comes down to the
design that is to be clustered. An RTL design can have utterly unique, nonsensical
names and still synthesize to a netlist. Therefore, the value of the name features is
questionable. It all depends on a design philosophy with coherent and strict coding
guidelines, as a deviation to them could make the clustering start to identify other
coding patterns. For example if different designers are working on a project.

An interesting observation from our experiments is that PCA managed to
remove noise from the latent space when combining both the O and S features.
The reason might be that the underlying features these sets describe are very
similar, and combining them does not provide any new information, only raise
the number of dimensions. Applying PCA on the latent space provided a boost
to the clustering result and should be investigated more as a final dimensionality
reduction method. Using UMAP to produce clusters and identify coverage holes
has not proved to be sufficient from a pure visualization standpoint. The results
are vastly different depending on the features selected and the randomness of the
algorithms. We could get completely different images from a set of latent space
features, and as mentioned by UMAPs authors, this is normal for the algorithm.
However, the nature of UMAP could lead to clusters tearing apart, and in some
cases, even the creation of new imaginary clusters. These issues are one of the
caveats with trying to find a reduced dimensional representation. All figures in
appendix A, B and C are just one variation of possibly endless two-dimensional
representations that could be generated from UMAP, and the perfect visualization
will always be unknown. The clustering directly on the latent space or after PCA
reduction does not have the same issues as they preserve density and do not

39

40 Discussion and Conclusions

depend on the randomness of the algorithm. However, they fail to deliver a two-
dimensional visualizable image. During the late stages of this thesis, we had a
thorough discussion about the goal of the visualization aspect of the prototype.
In the beginning, we had the idea that a graphical representation could aid a
verification engineer in structuring the work left to close coverage by pinpointing
holes that should be analyzed together or even prioritize what to focus on first. For
example, the graphical representation could be read left to right or larger clusters
first followed by the smaller ones. In retrospective, we are not sure that this is
the most effective way of providing helpful input. A simple priority list with sizes
of the clusters, their members and anomalies would probably suffice in achieving
this, hence removing the problem of further dimensionality reduction completely.

5.1 Experiences

We would like to briefly talk about our experiences encountered during our work
on this thesis, the problems we have faced and possible solutions we have not been
able to reach.

5.1.1 Creating a Dataset

We tackled the problem as a cluster-based problem at first, that machine learn-
ing should be the core in discovering the connection between uncovered coverage
holes. What we discovered during our work on this thesis was the difficulty of
accurately representing the connection between two different signals in the same
circuit. Should the connection be drawn from the netlist, the RTL, extract data
before, during or after simulations. This made it hard to construct a meaningful
dataset that we thought could be used to accurately represent the relations in a
circuit. We strongly suggest doing future work examining the best possible way
of representing similarities and connections in digital circuits for machine learning
problems. One suggestion is to try Graph Neural Networks (GNN) [41].

When we started to look at the toggle coverage, we hypothesized that this
would also be the most straightforward coverage metric to cluster. Though basing
the model solely on the available coverage database, the name, signal size, and
index position would not be enough information to cluster the toggle coverage
holes. When we started extracting the signal and operational dependencies from
the netlist, we had to condense the information and reduce it to a more manageable
size for the clustering algorithms. Using an autoencoder was not a certainty when
we started looking at this problem. Instead, we started using autoencoders during
our work with this project as they solved multiple issues, e.g. reducing the number
of features and provided a numerical representation of categorical features. It could
be interesting to investigate a similar model with autoencoders on line, condition
or branch coverage with a similar approach. Such a method could theoretically be
able to gather information from nearby lines and statements. Consider a “nested
if” statement that may have prevented one part of the code from execution and
thus not yielding either condition, toggle or code coverage for that branch. It is
probably easier to capture why a branch, condition or line metric is uncovered

Discussion and Conclusions 41

by looking at the surrounding environment rather than looking for general toggle
coverage points.

The LSTM autoencoders that we used do not capture any branching and the
performance could potentially be enhanced by upgrading it to a variational graph
autoencoder [42], thus capturing more of the depth of the connections in a netlist.

5.1.2 Creating a General Clustering Solution

One of the core features that we strove to achieve with our implementation was
simplicity to use and to quickly give verification engineers an overview of the cur-
rent closure status without too much work. By simplicity, we mean that a person
should be able to use the tool and find it helpful without being an expert in both
machine learning and hardware verification. In a way, both fields are an art as well
as a science. Creating good models or analyzing and closing coverage requires ex-
perience and extensive knowledge about the domain in question. In the beginning,
we found it hard to know what kind of features we could extract and even harder
to determine which of them could be interesting. With the autoencoder concept,
we attempted to overcome this barrier and avoid the need to become proficient in
another field outside our usual work area.

We initially thought and later confirmed that there had to be a considerable
amount of hyperparameter tuning to achieve a good result with the clustering
algorithms and the overall model. Even getting a result in the first place required
a significant chunk of fine-tuning for our specific dataset. We have proven that
there is some underlying connection between the coverage points that could be
captured and highlighted what type of features worked out for us. However, since
we have only proven this for one particular design, which required substantial extra
work, it is safe to say that we were unable to create a generalized and easy-to-use
solution. Integrating this into a verifications engineers everyday toolbox is not
worthwile yet. At the end of this section, we will discuss this further and propose
alternative solutions.

5.1.3 Actual Categorisation

At the end of the thesis, we came over more detailed information for how the
verification progress proceeded. We got to know better how these problems where
analyzed and grouped them up into three categories.

1. Coverage holes that have been excluded. Holes that a designer do not care
for. The signal might be from a configuration register and will not change
in the current design configuration. It might be a combination of signals
that can never happen in the design.

2. Coverage holes that rely on more targeted testing. The random testing
generator might not have been able to fully cover what it is intended to do.
Therefore, the number of test iterations might need to be increased to hit
all coverage holes.

42 Discussion and Conclusions

3. Coverage holes that require new tests to be made. A completely new test
might be needed with a specific configuration to target one part of the
design.

Our goal was to aid the verification engineer with identifying and solving these
root causes simultaneously. We had seen before that [2] with their Coverage Driven
test Generation could use ML to help close coverage holes in the second point
before even reaching the stage we analyzed them at, meaning that by employing
CDG the effort could theoretically be focused on fixing the first and third points
instead.

Formal tools are often used to accelerate coverage closure. These tools builds
mathematical models to prove that certain coverage points are impossible to cover
and should be excluded. The tools very powerful but not perfect and may not
be able to prove all the coverage points. The verification engineer would analyze
the code and realize that the automatically excluded signals might be connected
to other uncovered coverage points further down into the design. These coverage
points can also be excluded. Our implementation could potentially aid with this
analysis, since it could be easy to identify the uncovered coverage holes missed by
the formal coverage analysis. Even more static analysis of this problem should be
done to further enhance the automatic exclusion process and give a more complete
answer.

We believe the third point is what the next version of this kind of tool should
be more focused on. Here the similarities between signals and coverage bins would
play a central part in reducing the number of new tests that have to be made.

References

[1] B. Wile, J. Goss, and W. Roesner, Comprehensive Functional Verification:
The Complete Industry Cycle (Systems on Silicon). San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2005.

[2] C. Ioannides and K. I. Eder, “Coverage-directed test generation automated
by machine learning – a review,” ACM Trans. Des. Autom. Electron. Syst.,
vol. 17, Jan. 2012.

[3] “Uvm introduction.” https://www.chipverify.com/uvm/
uvm-introduction. Accessed: 2020-10-31.

[4] D. Araiza-Illan, D. Western, A. Pipe, and K. Eder, “Coverage-driven verifica-
tion —,” in Hardware and Software: Verification and Testing (N. Piterman,
ed.), (Cham), pp. 69–84, Springer International Publishing, 2015.

[5] E. E. Mandouh, A. Salem, M. Amer, and A. G. Wassal, “Cross-product func-
tional coverage analysis using machine learning clustering techniques,” in 2018
13th International Conference on Design Technology of Integrated Systems In
Nanoscale Era (DTIS), pp. 1–2, 2018.

[6] A. Wahba, J. Hohnerlein, and F. Rahman, “Expediting design bug discovery
in regressions of x86 processors using machine learning,” in 2019 20th In-
ternational Workshop on Microprocessor/SoC Test, Security and Verification
(MTV), pp. 1–6, Dec 2019.

[7] D. Maksimovic, A. Veneris, and Z. Poulos, “Clustering-based revision debug
in regression verification,” in 2015 33rd IEEE International Conference on
Computer Design (ICCD), pp. 32–37, 2015.

[8] M. Golagha, C. Lehnhoff, A. Pretschner, and H. Ilmberger, “Failure clustering
without coverage,” in Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2019, (New York, NY,
USA), p. 134–145, Association for Computing Machinery, 2019.

[9] X. Shi, D. Zeng, Y. Hu, G. Lin, and O. Zaïane, “Enhancement of incremental
design for fpgas using circuit similarity,” in 2011 12th International Sympo-
sium on Quality Electronic Design, pp. 1 – 8, 04 2011.

[10] K. Zeng, An Exploration of Circuit Similarity for Discovering and Predicting
Reusable Hardware. PhD thesis, Virginia Tech, 2016.

43

44 References

[11] J. MacQueen, “Some methods for classification and analysis of multivariate
observations,” in Proceedings of the Fifth Berkeley Symposium on Mathe-
matical Statistics and Probability, Volume 1: Statistics, (Berkeley, Calif.),
pp. 281–297, University of California Press, 1967.

[12] B. J. Frey and D. Dueck, “Clustering by passing messages between data
points,” Science, vol. 315, no. 5814, pp. 972–976, 2007.

[13] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm
for discovering clusters in large spatial databases with noise,” in Proceedings
of the Second International Conference on Knowledge Discovery and Data
Mining, KDD’96, p. 226–231, AAAI Press, 1996.

[14] P. H. Ahmad and S. Dang, “Performance evaluation of clustering algorithm
using different datasets,” International Journal of Advance Research in Com-
puter Science and Management Studies, vol. 3, pp. 167–173, 2015.

[15] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “Optics: Ordering
points to identify the clustering structure,” in Proceedings of the 1999 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’99,
(New York, NY, USA), p. 49–60, Association for Computing Machinery, 1999.

[16] M. Steinbach, L. Ertöz, and V. Kumar, “The challenges of clustering high
dimensional data,” in New directions in statistical physics, pp. 273–309,
Springer, 2004.

[17] A. Zimek, E. Schubert, and H.-P. Kriegel, “A survey on unsupervised outlier
detection in high-dimensional numerical data,” Statistical Analysis and Data
Mining: The ASA Data Science Journal, vol. 5, no. 5, pp. 363–387, 2012.

[18] M. H. C. Law, M. A. T. Figueiredo, and A. K. Jain, “Simultaneous feature se-
lection and clustering using mixture models,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 26, no. 9, pp. 1154–1166, 2004.

[19] Q. Meng, D. Catchpoole, D. Skillicom, and P. J. Kennedy, “Relational au-
toencoder for feature extraction,” in 2017 International Joint Conference on
Neural Networks (IJCNN), pp. 364–371, 2017.

[20] K. Y. Yeung and W. L. Ruzzo, “An empirical study on principal component
analysis for clustering gene expression data,” Bioinformatics, vol. 17, no. 9,
pp. 763–774, 2001.

[21] E. Lin, S. Mukherjee, and S. Kannan, “A deep adversarial variational au-
toencoder model for dimensionality reduction in single-cell rna sequencing
analysis,” BMC bioinformatics, vol. 21, no. 1, pp. 1–11, 2020.

[22] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” 2013.

[23] M. S. Mahmud and X. Fu, “Unsupervised classification of high-dimension
and low-sample data with variational autoencoder based dimensionality re-
duction,” in 2019 IEEE 4th International Conference on Advanced Robotics
and Mechatronics (ICARM), pp. 498–503, 2019.

References 45

[24] Y. Gal and Z. Ghahramani, “A theoretically grounded application of dropout
in recurrent neural networks,” 2016.

[25] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of
machine learning research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[26] L. McInnes, J. Healy, and J. Melville, “Umap: Uniform manifold approxima-
tion and projection for dimension reduction,” 2018.

[27] L. McInnes, “Umap uniform manifold approximation and projection for di-
mension reduction,” 2018. Scipy2018, https://www.youtube.com/watch?v=
nq6iPZVUxZU.

[28] L. McInnes, J. Healy, N. Saul, and L. Grossberger, “Umap: Uniform manifold
approximation and projection,” The Journal of Open Source Software, vol. 3,
no. 29, p. 861, 2018.

[29] “Normalization,” Oct 2 2020. Accessed on: Nov 23-2020. [On-
line]. Available: https://developers.google.com/machine-learning/data-
prep/transform/normalization.

[30] W. Shao, F. Salim, A. Song, and A. Bouguettaya, “Clustering big
spatiotemporal-interval data,” IEEE Transactions on Big Data, vol. 2, pp. 190
– 203, 07 2016.

[31] D. L. Davies and D. W. Bouldin, “A cluster separation measure,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. PAMI-1, no. 2,
pp. 224–227, 1979.

[32] P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and valida-
tion of cluster analysis,” Journal of computational and applied mathematics,
vol. 20, pp. 53–65, 1987.

[33] L. Kaufman, P. Leonard Kaufman, and P. Rousseeuw, Finding Groups in
Data: An Introduction to Cluster Analysis. A Wiley-Interscience publication,
John Wiley & Sons, 1990.

[34] T. Sørensen, A Method of Establishing Groups of Equal Amplitude in Plant
Sociology Based on Similarity of Species Content and Its Application to Anal-
yses of the Vegetation on Danish Commons. Biologiske skrifter, I kommission
hos E. Munksgaard, 1948.

[35] O. H. Diserud and F. Ødegaard, “A multiple-site similarity measure,” Biology
letters, vol. 3, no. 1, pp. 20–22, 2007.

[36] A. Sarveniazi, “An actual survey of dimensionality reduction,” American Jour-
nal of Computational Mathematics, vol. 04, pp. 55–72, 01 2014.

[37] F. Chollet et al., “Keras.” https://keras.io, 2015.

[38] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with
neural networks,” in Advances in Neural Information Processing Systems
(Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Q. Weinberger,
eds.), vol. 27, pp. 3104–3112, Curran Associates, Inc., 2014.

46 References

[39] S. Semeniuta, A. Severyn, and E. Barth, “Recurrent dropout without memory
loss,” arXiv preprint arXiv:1603.05118, 2016.

[40] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn:
Machine learning in Python,” Journal of Machine Learning Research, vol. 12,
pp. 2825–2830, 2011.

[41] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and
M. Sun, “Graph neural networks: A review of methods and applications,”
2021.

[42] T. N. Kipf and M. Welling, “Variational graph auto-encoders,” arXiv preprint
arXiv:1611.07308, 2016.

Appendix A
Latent Space

IOS n Davies Bouldin Silhouette MSS-External MSS-Internal Tot
Affinity 14 0.72 0.47 0.84 0.81 0.48
k-means 6 0.87 0.47 0.67 0.83 0.58
OPTICS 6 1.76 0.13 0.52 0.79 0.64

Table A.1: Scores for the feature combination IOS.

IO n Davies Bouldin Silhouette MSS-External MSS-Internal Tot
Affinity 12 0.64 0.52 0.79 0.85 0.53
k-means 4 0.92 0.51 0.64 0.90 0.63
OPTICS 4 1.26 0.19 0.34 0.90 0.78

Table A.2: Scores for the feature combination IO.

IS n Davies Bouldin Silhouette MSS-External MSS-Internal Tot
Affinity 11 0.82 0.46 0.80 0.84 0.52
k-means 7 0.77 0.54 0.73 0.86 0.57
OPTICS 7 1.86 0.13 0.71 0.78 0.53

Table A.3: Scores for the feature combination IS.

47

48 Latent Space

I n Davies Bouldin Silhouette MSS-External MSS-Internal Tot
Affinity 0 N/A N/A N/A N/A N/A
k-means 3 0.39 0.90 0.35 0.94 0.79
OPTICS 3 0.44 0.97 0.35 0.94 0.80

Table A.4: Scores for the feature combination I.

OS n Davies Bouldin Silhouette MSS-External MSS-Internal Tot
Affinity 17 0.52 0.52 0.87 0.66 0.39
k-means 5 0.84 0.50 0.76 0.81 0.53
OPTICS 5 2.04 0.05 0.27 0.81 0.77

Table A.5: Scores for the feature combination OS.

O n Davies Bouldin Silhouette MSS-External MSS-Internal Tot
Affinity 13 0.48 0.59 0.83 0.77 0.47
k-means 4 0.60 0.61 0.73 0.82 0.55
OPTICS 4 1.41 0.15 0.67 0.61 0.47

Table A.6: Scores for the feature combination O.

S n Davies Bouldin Silhouette MSS-External MSS-Internal Tot
Affinity 11 0.50 0.57 0.84 0.71 0.44
k-means 6 0.73 0.50 0.81 0.74 0.47
OPTICS 6 1.83 0.06 0.57 0.78 0.60

Table A.7: Scores for the feature combination S.

INOS n Davies Bouldin Silhouette MSS-External MSS-Internal Tot
Affinity 17 0.82 0.38 0.86 0.77 0.45
k-means 4 1.09 0.38 0.70 0.82 0.56
OPTICS 4 2.16 -0.05 0.20 0.91 0.85

Table A.8: Scores for the feature combination INOS.

INO n Davies Bouldin Silhouette MSS-External MSS-Internal Tot
Affinity 16 0.92 0.30 0.83 0.80 0.48
k-means 4 1.25 0.33 0.64 0.90 0.63
OPTICS 4 1.72 -0.11 0.14 0.69 0.77

Table A.9: Scores for the feature combination INO.

Latent Space 49

INS n Davies Bouldin Silhouette MSS-External MSS-Internal Tot
Affinity 13 0.84 0.39 0.81 0.82 0.51
k-means 6 0.96 0.36 0.63 0.89 0.63
OPTICS 6 1.93 0.04 0.65 0.80 0.58

Table A.10: Scores for the feature combination INS.

IN n Davies Bouldin Silhouette MSS-External MSS-Internal Tot
Affinity 9 0.95 0.34 0.65 0.89 0.62
k-means 5 0.84 0.44 0.53 0.91 0.69
OPTICS 5 1.67 -0.06 0.65 0.91 0.63

Table A.11: Scores for the feature combination IN.

NOS n Davies Bouldin Silhouette MSS-External MSS-Internal Tot
Affinity 18 0.62 0.44 0.88 0.61 0.37
k-means 4 1.07 0.37 0.72 0.82 0.55
OPTICS 4 2.44 -0.12 0.29 0.92 0.81

Table A.12: Scores for the feature combination NOS.

NO n Davies Bouldin Silhouette MSS-External MSS-Internal Tot
Affinity 15 0.71 0.35 0.85 0.72 0.43
k-means 4 1.20 0.28 0.77 0.76 0.49
OPTICS 4 1.78 -0.11 0.40 0.54 0.57

Table A.13: Scores for the feature combination NO.

NS n Davies Bouldin Silhouette MSS-External MSS-Internal Tot
Affinity 15 0.73 0.46 0.84 0.72 0.44
k-means 6 0.95 0.31 0.72 0.74 0.51
OPTICS 6 1.84 0.03 0.76 0.85 0.55

Table A.14: Scores for the feature combination NS.

N n Davies Bouldin Silhouette MSS-External MSS-Internal Tot
Affinity 9 0.72 0.42 0.79 0.78 0.50
k-means 6 0.74 0.41 0.75 0.76 0.51
OPTICS 6 1.32 0.03 0.76 0.70 0.47

Table A.15: Scores for the feature combination N.

50 Latent Space

Affinity n Davies Bouldin Silhouette MSS-External MSS-Internal Tot
IOS 14 0.72 0.47 0.84 0.81 0.48
IO 12 0.64 0.52 0.79 0.85 0.53
IS 11 0.82 0.46 0.80 0.84 0.52
I 0 N/A N/A N/A N/A N/A
OS 17 0.52 0.52 0.87 0.66 0.39
O 13 0.48 0.59 0.83 0.77 0.47
S 11 0.50 0.57 0.84 0.71 0.44
INOS 17 0.82 0.38 0.86 0.77 0.45
INO 16 0.92 0.30 0.83 0.80 0.48
INS 13 0.84 0.39 0.81 0.82 0.51
IN 9 0.95 0.34 0.65 0.89 0.62
NOS 18 0.62 0.44 0.88 0.61 0.37
NO 15 0.71 0.35 0.85 0.72 0.43
NS 15 0.73 0.46 0.84 0.72 0.44
N 9 0.72 0.42 0.79 0.78 0.50

Table A.16: Scores for Affinity and all feature combinations.

Latent Space 51

k-means n Davies Bouldin Silhouette MSS-External MSS-Internal Tot
IOS 6 0.87 0.47 0.67 0.83 0.58
IO 4 0.92 0.51 0.64 0.90 0.63
IS 7 0.77 0.54 0.73 0.86 0.57
I 3 0.39 0.90 0.35 0.94 0.79
OS 5 0.84 0.50 0.76 0.81 0.53
O 4 0.60 0.61 0.73 0.82 0.55
S 6 0.73 0.50 0.81 0.74 0.47
INOS 4 1.09 0.38 0.70 0.82 0.56
INO 4 1.25 0.33 0.64 0.90 0.63
INS 6 0.96 0.36 0.63 0.89 0.63
IN 5 0.84 0.44 0.53 0.91 0.69
NOS 4 1.07 0.37 0.72 0.82 0.55
NO 4 1.20 0.28 0.77 0.76 0.49
NS 6 0.95 0.31 0.72 0.74 0.51
N 6 0.74 0.41 0.75 0.76 0.51

Table A.17: Scores for k-means and all feature combinations.

OPTICS n Davies Bouldin Silhouette MSS-External MSS-Internal Tot
IOS 6 1.76 0.13 0.52 0.79 0.64
IO 4 1.26 0.19 0.34 0.90 0.78
IS 7 1.86 0.13 0.71 0.78 0.53
I 3 0.44 0.97 0.35 0.94 0.80
OS 5 2.04 0.05 0.27 0.81 0.77
O 4 1.41 0.15 0.67 0.61 0.47
S 6 1.83 0.06 0.57 0.78 0.60
INOS 4 2.16 -0.05 0.20 0.91 0.85
INO 4 1.72 -0.11 0.14 0.69 0.77
INS 6 1.93 0.04 0.65 0.80 0.58
IN 5 1.67 -0.06 0.65 0.91 0.63
NOS 4 2.44 -0.12 0.29 0.92 0.81
NO 4 1.78 -0.11 0.40 0.54 0.57
NS 6 1.84 0.03 0.76 0.85 0.55
N 6 1.32 0.03 0.76 0.70 0.47

Table A.18: Scores for OPTICS and all feature combinations.

52 Latent Space

Figure A.1: Visualization for feature combination INOS.

Latent Space 53

Figure A.2: Visualization for feature combination INO.

54 Latent Space

Figure A.3: Visualization for feature combination INS.

Latent Space 55

Figure A.4: Visualization for feature combination IOS.

56 Latent Space

Figure A.5: Visualization for feature combination NOS.

Latent Space 57

Figure A.6: Visualization for feature combination IN.

58 Latent Space

Figure A.7: Visualization for feature combination IO.

Latent Space 59

Figure A.8: Visualization for feature combination NO.

60 Latent Space

Figure A.9: Visualization for feature combination IS.

Latent Space 61

Figure A.10: Visualization for feature combination NS.

62 Latent Space

Figure A.11: Visualization for feature combination OS.

Latent Space 63

Figure A.12: Visualization for feature combination I.

64 Latent Space

Figure A.13: Visualization for feature combination N.

Latent Space 65

Figure A.14: Visualization for feature combination O.

66 Latent Space

Figure A.15: Visualization for feature combination S.

Appendix B
UMAP

Table B.1: Scores for the feature combination IOS.

IOS n Davies Bouldin Silhouette MSS-External MSS-Internal Tot
Affinity 6 0.44 0.67 0.68 0.86 0.59
k-means 6 0.44 0.67 0.68 0.86 0.59
OPTICS 9 1.22 0.44 0.72 0.76 0.52

Table B.2: Scores for the feature combination IO.

IO n Davies Bouldin Silhouette MSS-External MSS-Internal Tot
Affinity 4 0.37 0.73 0.54 0.90 0.68
k-means 4 0.37 0.73 0.54 0.90 0.68
OPTICS 9 1.20 0.29 0.71 0.85 0.57

Table B.3: Scores for the feature combination IS.

IS n Davies Bouldin Silhouette MSS-External MSS-Internal Tot
Affinity 5 0.43 0.68 0.53 0.91 0.69
k-means 5 0.43 0.68 0.53 0.91 0.69
OPTICS 8 0.97 0.60 0.74 0.85 0.55

67

68 UMAP

Table B.4: Scores for the feature combination I.

I n Davies Bouldin Silhouette MSS-External MSS-Internal Tot
Affinity 0 N/A N/A N/A N/A N/A
k-means 3 0.04 0.97 0.35 0.94 0.79
OPTICS 4 1.05 -0.13 0.34 0.85 0.75

Table B.5: Scores for the feature combination OS.

OS n Davies Bouldin Silhouette MSS-External MSS-Internal Tot
Affinity 7 0.52 0.62 0.79 0.78 0.50
k-means 7 0.50 0.63 0.79 0.78 0.50
OPTICS 6 1.04 0.34 0.70 0.79 0.55

Table B.6: Scores for the feature combination O.

O n Davies Bouldin Silhouette MSS-External MSS-Internal Tot
Affinity 5 0.51 0.59 0.73 0.80 0.53
k-means 5 0.48 0.61 0.73 0.79 0.53
OPTICS 9 1.03 0.20 0.80 0.71 0.46

Table B.7: Scores for the feature combination S.

S n Davies Bouldin Silhouette MSS-External MSS-Internal Tot
Affinity 5 0.51 0.62 0.78 0.82 0.52
k-means 5 0.45 0.64 0.78 0.84 0.53
OPTICS 8 1.30 0.35 0.74 0.81 0.54

Table B.8: Scores for the feature combination INOS.

INOS n Davies Bouldin Silhouette MSS-External MSS-Internal Tot
Affinity 7 0.62 0.55 0.71 0.84 0.56
k-means 7 0.61 0.56 0.71 0.83 0.56
OPTICS 8 1.11 0.22 0.71 0.74 0.51

Table B.9: Scores for the feature combination INO.

INO n Davies Bouldin Silhouette MSS-External MSS-Internal Tot
Affinity 4 0.62 0.56 0.54 0.91 0.69
k-means 4 0.62 0.56 0.54 0.91 0.69
OPTICS 10 1.08 0.05 0.71 0.74 0.51

UMAP 69

Table B.10: Scores for the feature combination INS.

INS n Davies Bouldin Silhouette MSS-External MSS-Internal Tot
Affinity 5 0.69 0.52 0.66 0.90 0.62
k-means 5 0.69 0.52 0.66 0.90 0.62
OPTICS 9 1.28 0.27 0.68 0.79 0.55

Table B.11: Scores for the feature combination IN.

IN n Davies Bouldin Silhouette MSS-External MSS-Internal Tot
Affinity 5 0.55 0.61 0.60 0.90 0.65
k-means 5 0.56 0.61 0.60 0.90 0.65
OPTICS 9 1.38 0.15 0.63 0.82 0.59

Table B.12: Scores for the feature combination NOS.

NOS n Davies Bouldin Silhouette MSS-External MSS-Internal Tot
Affinity 7 0.74 0.45 0.79 0.76 0.48
k-means 7 0.72 0.47 0.78 0.78 0.50
OPTICS 9 1.37 0.24 0.75 0.64 0.45

Table B.13: Scores for the feature combination NO.

NO n Davies Bouldin Silhouette MSS-External MSS-Internal Tot
Affinity 8 0.71 0.43 0.80 0.79 0.50
k-means 8 0.73 0.43 0.80 0.77 0.49
OPTICS 8 1.54 0.21 0.72 0.61 0.45

Table B.14: Scores for the feature combination NS.

NS n Davies Bouldin Silhouette MSS-External MSS-Internal Tot
Affinity 8 0.61 0.52 0.79 0.77 0.49
k-means 8 0.59 0.53 0.78 0.77 0.49
OPTICS 9 1.42 0.34 0.72 0.74 0.51

Table B.15: Scores for the feature combination N.

N n Davies Bouldin Silhouette MSS-External MSS-Internal Tot
Affinity 8 0.55 0.55 0.79 0.79 0.50
k-means 8 0.54 0.54 0.79 0.79 0.50
OPTICS 9 1.08 0.24 0.81 0.71 0.45

70 UMAP

Table B.16: Scores for Affinity and all feature combinations.

Affinity n Davies Bouldin Silhouette MSS-External MSS-Internal Tot
IOS 6 0.44 0.67 0.68 0.86 0.59
IO 4 0.37 0.73 0.54 0.90 0.68
IS 5 0.43 0.68 0.53 0.91 0.69
I 0 N/A N/A N/A N/A N/A
OS 7 0.52 0.62 0.79 0.78 0.50
O 5 0.51 0.59 0.73 0.80 0.53
S 5 0.51 0.62 0.78 0.82 0.52
INOS 7 0.62 0.55 0.71 0.84 0.56
INO 4 0.62 0.56 0.54 0.91 0.69
INS 5 0.69 0.52 0.66 0.90 0.62
IN 5 0.55 0.61 0.60 0.90 0.65
NOS 7 0.74 0.45 0.79 0.76 0.48
NO 8 0.71 0.43 0.80 0.79 0.50
NS 8 0.61 0.52 0.79 0.77 0.49
N 8 0.55 0.55 0.79 0.79 0.50

Table B.17: Scores for k-means and all feature combinations.

k-means n Davies Bouldin Silhouette MSS-External MSS-Internal Tot
IOS 6 0.44 0.67 0.68 0.86 0.59
IO 4 0.37 0.73 0.54 0.90 0.68
IS 5 0.43 0.68 0.53 0.91 0.69
I 3 0.04 0.97 0.35 0.94 0.79
OS 7 0.50 0.63 0.79 0.78 0.50
O 5 0.48 0.61 0.73 0.79 0.53
S 5 0.45 0.64 0.78 0.84 0.53
INOS 7 0.61 0.56 0.71 0.83 0.56
INO 4 0.62 0.56 0.54 0.91 0.69
INS 5 0.69 0.52 0.66 0.90 0.62
IN 5 0.56 0.61 0.60 0.90 0.65
NOS 7 0.72 0.47 0.78 0.78 0.50
NO 8 0.73 0.43 0.80 0.77 0.49
NS 8 0.59 0.53 0.78 0.77 0.49
N 8 0.54 0.54 0.79 0.79 0.50

UMAP 71

Table B.18: Scores for OPTICS and all feature combinations.

OPTICS n Davies Bouldin Silhouette MSS-External MSS-Internal Tot
IOS 9 1.22 0.44 0.72 0.76 0.52
IO 9 1.20 0.29 0.71 0.85 0.57
IS 8 0.97 0.60 0.74 0.85 0.55
I 4 1.05 -0.13 0.34 0.85 0.75
OS 6 1.04 0.34 0.70 0.79 0.55
O 9 1.03 0.20 0.80 0.71 0.46
S 8 1.30 0.35 0.74 0.81 0.54
INOS 8 1.11 0.22 0.71 0.74 0.51
INO 10 1.08 0.05 0.71 0.74 0.51
INS 9 1.28 0.27 0.68 0.79 0.55
IN 9 1.38 0.15 0.63 0.82 0.59
NOS 9 1.37 0.24 0.75 0.64 0.45
NO 8 1.54 0.21 0.72 0.61 0.45
NS 9 1.42 0.34 0.72 0.74 0.51
N 9 1.08 0.24 0.81 0.71 0.45

72 UMAP

Figure B.1: Visualization for feature combination INOS.

UMAP 73

Figure B.2: Visualization for feature combination INO.

74 UMAP

Figure B.3: Visualization for feature combination INS.

UMAP 75

Figure B.4: Visualization for feature combination IOS.

76 UMAP

Figure B.5: Visualization for feature combination NOS.

UMAP 77

Figure B.6: Visualization for feature combination IN.

78 UMAP

Figure B.7: Visualization for feature combination IO.

UMAP 79

Figure B.8: Visualization for feature combination NO.

80 UMAP

Figure B.9: Visualization for feature combination IS.

UMAP 81

Figure B.10: Visualization for feature combination NS.

82 UMAP

Figure B.11: Visualization for feature combination OS.

UMAP 83

Figure B.12: Visualization for feature combination I.

84 UMAP

Figure B.13: Visualization for feature combination N.

UMAP 85

Figure B.14: Visualization for feature combination O.

86 UMAP

Figure B.15: Visualization for feature combination S.

Appendix C
PCA

Table C.1: Scores for the feature combination IOS.

IOS n Davies Bouldin Silhouette MSS-External MSS-Internal Tot
Affinity 0 N/A N/A N/A N/A N/A
k-means 6 0.98 0.46 0.62 0.89 0.63
OPTICS 6 1.94 0.13 0.52 0.78 0.63

Table C.2: Scores for the feature combination IO.

IO n Davies Bouldin Silhouette MSS-External MSS-Internal Tot
Affinity 10 0.64 0.53 0.75 0.85 0.55
k-means 4 0.92 0.51 0.64 0.90 0.63
OPTICS 4 1.29 0.20 0.34 0.91 0.78

Table C.3: Scores for the feature combination IS.

IS n Davies Bouldin Silhouette MSS-External MSS-Internal Tot
Affinity 10 0.80 0.46 0.79 0.84 0.53
k-means 7 0.77 0.54 0.73 0.86 0.57
OPTICS 7 1.94 0.14 0.70 0.77 0.53

87

88 PCA

Table C.4: Scores for the feature combination I.

I n Davies Bouldin Silhouette MSS-External MSS-Internal Tot
Affinity 0 N/A N/A N/A N/A N/A
k-means 3 0.39 0.90 0.35 0.94 0.79
OPTICS 3 0.44 0.97 0.35 0.94 0.80

Table C.5: Scores for the feature combination OS.

OS n Davies Bouldin Silhouette MSS-External MSS-Internal Tot
Affinity 14 0.73 0.50 0.86 0.68 0.41
k-means 6 0.85 0.50 0.73 0.78 0.53
OPTICS 6 2.12 0.13 0.56 0.80 0.62

Table C.6: Scores for the feature combination O.

O n Davies Bouldin Silhouette MSS-External MSS-Internal Tot
Affinity 12 0.69 0.47 0.84 0.72 0.44
k-means 5 0.53 0.64 0.76 0.81 0.53
OPTICS 5 1.57 0.14 0.71 0.61 0.45

Table C.7: Scores for the feature combination S.

S n Davies Bouldin Silhouette MSS-External MSS-Internal Tot
Affinity 11 0.51 0.57 0.84 0.71 0.44
k-means 6 0.66 0.48 0.74 0.78 0.52
OPTICS 6 1.96 0.13 0.67 0.71 0.52

Table C.8: Scores for the feature combination INOS.

INOS n Davies Bouldin Silhouette MSS-External MSS-Internal Tot
Affinity 11 1.07 0.31 0.80 0.80 0.50
k-means 5 1.20 0.35 0.72 0.82 0.55
OPTICS 5 1.86 -0.03 0.49 0.78 0.65

Table C.9: Scores for the feature combination INO.

INO n Davies Bouldin Silhouette MSS-External MSS-Internal Tot
Affinity 13 1.11 0.27 0.81 0.82 0.51
k-means 4 1.25 0.33 0.64 0.90 0.63
OPTICS 4 2.23 -0.06 0.10 0.83 0.86

PCA 89

Table C.10: Scores for the feature combination INS.

INS n Davies Bouldin Silhouette MSS-External MSS-Internal Tot
Affinity 13 0.80 0.40 0.81 0.82 0.51
k-means 8 0.92 0.36 0.69 0.86 0.58
OPTICS 8 1.95 0.13 0.70 0.78 0.54

Table C.11: Scores for the feature combination IN.

IN n Davies Bouldin Silhouette MSS-External MSS-Internal Tot
Affinity 9 0.95 0.34 0.65 0.89 0.62
k-means 5 0.84 0.44 0.53 0.91 0.69
OPTICS 5 1.67 -0.06 0.65 0.91 0.63

Table C.12: Scores for the feature combination NOS.

NOS n Davies Bouldin Silhouette MSS-External MSS-Internal Tot
Affinity 13 1.05 0.34 0.84 0.69 0.42
k-means 4 1.07 0.37 0.72 0.82 0.55
OPTICS 4 2.21 -0.08 0.37 0.69 0.66

Table C.13: Scores for the feature combination NO.

NO n Davies Bouldin Silhouette MSS-External MSS-Internal Tot
Affinity 14 0.89 0.32 0.84 0.71 0.43
k-means 4 1.23 0.27 0.77 0.76 0.49
OPTICS 4 1.74 -0.13 0.41 0.52 0.56

Table C.14: Scores for the feature combination NS.

NS n Davies Bouldin Silhouette MSS-External MSS-Internal Tot
Affinity 13 0.84 0.41 0.82 0.74 0.46
k-means 6 0.94 0.32 0.74 0.76 0.51
OPTICS 6 1.86 0.02 0.75 0.85 0.55

Table C.15: Scores for the feature combination N.

N n Davies Bouldin Silhouette MSS-External MSS-Internal Tot
Affinity 9 0.72 0.42 0.79 0.78 0.50
k-means 6 0.75 0.41 0.78 0.77 0.49
OPTICS 6 1.32 0.03 0.76 0.70 0.47

90 PCA

Table C.16: Scores for Affinity and all feature combinations.

Affinity n Davies Bouldin Silhouette MSS-External MSS-Internal Tot
IOS 0 N/A N/A N/A N/A N/A
IO 10 0.64 0.53 0.75 0.85 0.55
IS 10 0.80 0.46 0.79 0.84 0.53
I 0 N/A N/A N/A N/A N/A
OS 14 0.73 0.50 0.86 0.68 0.41
O 12 0.69 0.47 0.84 0.72 0.44
S 11 0.51 0.57 0.84 0.71 0.44
INOS 11 1.07 0.31 0.80 0.80 0.50
INO 13 1.11 0.27 0.81 0.82 0.51
INS 13 0.80 0.40 0.81 0.82 0.51
IN 9 0.95 0.34 0.65 0.89 0.62
NOS 13 1.05 0.34 0.84 0.69 0.42
NO 14 0.89 0.32 0.84 0.71 0.43
NS 13 0.84 0.41 0.82 0.74 0.46
N 9 0.72 0.42 0.79 0.78 0.50

Table C.17: Scores for k-means and all feature combinations.

k-means n Davies Bouldin Silhouette MSS-External MSS-Internal Tot
IOS 6 0.98 0.46 0.62 0.89 0.63
IO 4 0.92 0.51 0.64 0.90 0.63
IS 7 0.77 0.54 0.73 0.86 0.57
I 3 0.39 0.90 0.35 0.94 0.79
OS 6 0.85 0.50 0.73 0.78 0.53
O 5 0.53 0.64 0.76 0.81 0.53
S 6 0.66 0.48 0.74 0.78 0.52
INOS 5 1.20 0.35 0.72 0.82 0.55
INO 4 1.25 0.33 0.64 0.90 0.63
INS 8 0.92 0.36 0.69 0.86 0.58
IN 5 0.84 0.44 0.53 0.91 0.69
NOS 4 1.07 0.37 0.72 0.82 0.55
NO 4 1.23 0.27 0.77 0.76 0.49
NS 6 0.94 0.32 0.74 0.76 0.51
N 6 0.75 0.41 0.78 0.77 0.49

PCA 91

Table C.18: Scores for OPTICS and all feature combinations.

OPTICS n Davies Bouldin Silhouette MSS-External MSS-Internal Tot
IOS 6 1.94 0.13 0.52 0.78 0.63
IO 4 1.29 0.20 0.34 0.91 0.78
IS 7 1.94 0.14 0.70 0.77 0.53
I 3 0.44 0.97 0.35 0.94 0.80
OS 6 2.12 0.13 0.56 0.80 0.62
O 5 1.57 0.14 0.71 0.61 0.45
S 6 1.96 0.13 0.67 0.71 0.52
INOS 5 1.86 -0.03 0.49 0.78 0.65
INO 4 2.23 -0.06 0.10 0.83 0.86
INS 8 1.95 0.13 0.70 0.78 0.54
IN 5 1.67 -0.06 0.65 0.91 0.63
NOS 4 2.21 -0.08 0.37 0.69 0.66
NO 4 1.74 -0.13 0.41 0.52 0.56
NS 6 1.86 0.02 0.75 0.85 0.55
N 6 1.32 0.03 0.76 0.70 0.47

92 PCA

Figure C.1: Visualization for feature combination INOS.

PCA 93

Figure C.2: Visualization for feature combination INO.

94 PCA

Figure C.3: Visualization for feature combination INS.

PCA 95

Figure C.4: Visualization for feature combination IOS.

96 PCA

Figure C.5: Visualization for feature combination NOS.

PCA 97

Figure C.6: Visualization for feature combination IN.

98 PCA

Figure C.7: Visualization for feature combination IO.

PCA 99

Figure C.8: Visualization for feature combination NO.

100 PCA

Figure C.9: Visualization for feature combination IS.

PCA 101

Figure C.10: Visualization for feature combination NS.

102 PCA

Figure C.11: Visualization for feature combination OS.

PCA 103

Figure C.12: Visualization for feature combination I.

104 PCA

Figure C.13: Visualization for feature combination N.

PCA 105

Figure C.14: Visualization for feature combination O.

106 PCA

Figure C.15: Visualization for feature combination S.

Enhancing Analysis of Hardware Design
Verification Metrics Using Machine Learning &

Data Visualization

OSCAR UGGLA
AXEL VOSS
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2021

O
SC

A
R

 U
G

G
LA

 &
 A

X
EL V

O
SS

Enhancing A
nalysis of H

ardw
are D

esign Verification M
etrics U

sing M
achine Learning &

 D
ata V

isualization
LU

N
D

 2021

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2021-812
http://www.eit.lth.se

