
Efficient Security Protocol for
RESTful IoT devices
KARNARJUN KANTHARAJAN AND SAHAR SHIRAFKAN
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2020

K
A

R
N

A
R

JU
N

 K
A

N
TH

A
R

A
JA

N
 A

N
D

 SA
H

A
R

 SH
IR

A
FK

A
N

Effi
cient Security Protocol for R

EST
ful IoT

 devices
LU

N
D

 2020

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2020-793
http://www.eit.lth.se

i

Master’s Thesis

Efficient Security Protocol for
RESTful IoT devices

By

Karnarjun Kantharajan and Sahar Shirafkan
 ka7830ka-s@student.lu.se - sa2408sh-s@student.lu.se

Department of Electrical and Information Technology
Faculty of Engineering, LTH, Lund University

SE-221 00 Lund, Sweden

ii

Abstract
In this thesis, we presented comparisons with respect to Energy
Consumption, bandwidth, Constraint Application protocol (CoAP)
transaction time and throughput for four different security protocols.
We simulated and implemented the Datagram Transport Layer
Protection (DTLS) version 1.2, Transport Layer Protocol (TLS)
version 1.2 & 1.3, and Object Protection for Restricted RESTful
Environments (OSCORE). All of the above security protocols allow
client / server applications to communicate over the internet with
message forgery, eavesdropping, and tampering protection. In
particular, we compared the simulation and implementation results of
the mentioned protocols to extrapolate the performance of the DTLS
version 1.3.

Keywords: Internet of Things (IoT), TLS 1.2 & 1.3, DTLS 1.2,
OSCORE, CoAP, Security Protocols.

iii

Popular Science Summary

The Internet of Things (IoT) has become a concept that defines the
billions of connected devices that are intelligent. IoT covers everything
from connected devices, mobile home products, roadside cameras,
production control equipment, medical equipment, vehicles, and more.
To drive innovation and improve customer satisfaction, companies use
IoT to transform their business and develop new revenue streams.
There are three crucial reasons for illustrating the need for security in
IoT devices, such as the sheer volume and diversity of applications and
data sensitivity. By the early future, there will be an estimated 25
billion IoT devices worldwide, and about 25% of cyber-attacks will
target IoT devices. Although many companies can recognize that IoT
security is necessary to protect consumers and clients, the problem may
rapidly become complicated. As the market continues to evolve, there
is a lack of best practices and recommendations for securing the IoT
device. Also, the other factor to be addressed when designing an IoT
system is the power consumption of the system. With the rise of the
Internet of Things, the development of battery-operated devices is a
significant aspect that can make a huge difference in the device's
efficiency. Device power consumption in IoT is challenging since the
device should still be powered up and could be placed anywhere.
Mostly, IoT devices are remotely placed and need to use a battery to
operate.

Considering the current challenges facing IoT security, in this thesis,
we picked four separate security protocols, including TLS 1.2, TLS 1.3,
DTLS 1.2, and OSCORE for securing IoT device. To compare the
security protocol's efficiency, we simulated and implemented the
mentioned security protocol in a real environment. We compared the
security protocols with the data transmission time and throughput and
security overhead in the simulation by running the client and the server
on PC. While in implementation using the Stand-alone multi-radio
modules (NINA-W102) as a client, we compared the security protocols
with the data transmission time and throughput, security overhead, and
even calculated the energy consumption of the IoT unit, which is one
of the issues in IoT system's design.

iv

Acknowledgments

I want to express a major thank you to my supervisor at U-blox Malmo,
Peter Karlsson, and Hari Vigneswaran for the opportunity and positive
help during the study.

 I would also like to thank the examiner Thomas Johansson and the
LTH supervisor Christian Gehrmann for the advice, feedback, and
written orders they have provided.

Sahar Shirafkan and Karnarjun Kantharajan

v

Table of Contents
Abstract ... ii

Popular Science Summary .. iii

Acknowledgments .. iv

Introduction ... 1

1.1 Background .. 1

1.2 Problem .. 3

1.3 Methodology .. 4

1.4 Outline ... 4

Overview of considered security protocols ... 6

2.1 The CoAP protocol .. 6

2.1.1 Message Layer .. 7

2.1.2 Request/Responses Layer ... 9

2.2 The DTLS Security Protocol ... 11

2.2.1 Providing Handshake Reliability 12

2.2.2 Loss of Packets .. 12

2.2.3 Message Re-ordering .. 12

2.2.4 Length of the Message .. 13

2.2.5 The DTLS Handshake Protocol .. 13

2.2.6 Countermeasures on denial of service 14

2.2.7 Cipher Suites ... 15

2.2.8 Certificate .. 16

2.3 The TLS 1.3 Security Protocol .. 16

2.4 The OSCORE Security Protocol ... 18

2.4.1 The OSCORE Option .. 21

2.4.2 OSCORE Security Context ... 21

vi

Simulation Results ... 25

3.1 Simulation Set-Up and Achieved Results................................ 25

3.2 TLS 1.2 Simulation Results ... 26

3.3 TLS 1.3 Simulation Results ... 28

3.4 DTLS 1.2 Simulation Results .. 28

3.5 OSCORE Simulation Results .. 29

3.6 CoAP Simulation Results .. 31

3.7 Simulation Summary ... 31

Implementation Results ... 35

4.1 Implementation Set-Up and Results .. 35

4.2 TLS 1.2 Implementation Results ... 38

4.3 TLS 1.3 Implementation Results ... 41

4.4 DTLS 1.2 Implementation Results .. 42

4.5 OSCORE Implementation Results .. 44

4.6 CoAP Implementation Results .. 45

4.7 Implementation Summary ... 46

Discussion and Conclusions .. 51

5.1 Comparison of Simulation and Implementation Results 51

5.2 Conclusion ... 53

5.3 Future Work ... 55

References ... 56

APPENDIX A ... 61

vii

List of Figures
Figure 1: CoAP Layers ... 7
Figure 2: CoAP Message Format ... 8
Figure 3: CoAP Message Transmission ... 10
Figure 4: DTLS Handshake .. 14
Figure 5: TLS 1.3 Handshake ... 18
Figure 6: OSCORE Handshake .. 19
Figure 7: CoAP + OSCORE Layers ... 19
Figure 8: OSCORE Header Options .. 21
Figure 9: Simulation Set-Up ... 26
Figure 10: Simulation Handshake Time (ms) 32
Figure 11: Simulation Average CoAP Transaction Time (ms) 33
Figure 12: Simulation Average CoAP Transaction Throughput
(kbps) .. 34
Figure 13: NINA-W10 ... 37
Figure 14: Implementation Set-Up ... 38
Figure 15: Client Current Measurements Set-Up 39
Figure 16: TLS 1.2 Current Consumption .. 40
Figure 17: TLS 1.3 Current Consumption .. 42
Figure 18: DTLS 1.2 Current Consumption 43
Figure 19: OSCORE Current Consumption 45
Figure 20: CoAP Current Consumption ... 46
Figure 21: Average Handshake Time (ms) .. 47
Figure 22: Average CoAP Transaction Time (ms) 48
Figure 23: Average CoAP Transaction Throughput (kbps) 48
Figure 24: Average Current Consumption (mA) and Average Time
(s) .. 49
Figure 25: Average Energy Consumption (J) 50
Figure 26: Average CoAP Transaction Time (ms) 52
Figure 27: Average CoAP Transaction Throughput (kbps) 53
Figure 28: Average CoAP Transaction Time (s) and Throughput
(kbps) .. 54

viii

Figure 29: Handshake Delay (s) and Average Energy Consumption
(J) .. 55

ix

List of Tables

Table 1: Protection of CoAP Header Fields and Payload [18] 20
Table 2: Security Overhead .. 33

1

CHAPTER 1

Introduction
1.1 Background

The Internet of Things (IoT) is the new global connectivity paradigm
allowing billions of devices to communicate among themselves and
with the rest of the Internet. Hence, IoT security is one of the top
research topics. IoT has three layers consisting of layers of perception,
network, and application. Security at the application layer offers an
appealing alternative to secure applications on the Internet of Things
(IoT), especially where protection of transport layers is not adequate or
where safety needs to operate through a range of underlying protocols.
A variety of safety standards can be used in each layer to achieve a
reliable realization of IoT. Many new IoT protocols have been released,
aimed at protecting critical data such as Datagram Transport Layer
Security (DTLS) [1], Transport Layer Security (TLS) [2], and Object
Security for Constrained RESTful Environments (OSCORE) [3] and
Ephemeral Diffie-Hellman Over COSE (EDHOC) [4]. IoT devices can
be restricted in various ways including memory, storage, processing
capacity, and energy, so finding the most efficient security protocols
for RESTful IoT units is an important issue.

The Constrained Application Protocol (CoAP) is a specialized Internet
Application layer Protocol, as specified in [9] for constrained devices.
The lightweight protocol CoAP is intended to be used and considered
as a replacement of HTTP for being an IoT application layer protocol.
This allows certain constrained devices called "nodes" to connect using
common protocols to the broader Internet. Also, it is designed to be
used between devices on the same constrained network (e.g., low-
power, loss networks), between devices and general nodes on the

2

Internet, and between Devices on different constrained networks that
are also linked to the Internet [10]. CoAP is also used by other
channels, for example, SMS on mobile communication networks.
CoAP is a service layer protocol intended for use in resource-
constrained internet applications, such as network nodes with wireless
sensors. It can run on most devices supporting User Datagram Protocol
(UDP) or Transmission Control Protocol (TCP).

The TLS protocol's primary aim is to provide authentication,
confidentially and integrity protection between two communicating
peers. TLS runs over the transport layer protocol and generates security
services for application layer protocols. TLS requires a connection-
oriented transport channel-usually TCP. The protocol is released in
different versions and has been upgraded throughout the years. The
very first version was TLS 1.0 which was released in 1999 [21], TLS
1.1 was released in 2006 [22], and TLS 1.2 in 2008 [23]. The several
weaknesses found in TLS 1.2 and below, as well as the growing
demand to enhance protocol efficiency, motivated by introducing the
next version of the protocol, TLS 1.3, in the spring of 2014. The
Datagram Transport Layer Security (DTLS) protocol has been
developed for applications that use UDP as a transport layer to provide
secure communication between peers who communicate. DTLS is
intentionally designed to be as similar as possible to TLS, both to
eliminate innovation in protection and to increase the amount of reuse
of code and infrastructure. The DTLS protocol has also been releases
in different versions. DTLS 1.0 that was originally defined as a delta
from TLS 1.0, DTLS 1.2 [5] was defined as a series of deltas to TLS
1.2 [6] and DTLS 1.3 protocol is based on the Transport Layer Security
(TLS) 1.3 protocol and provides equivalent security guarantees.

OSCORE is a method for application-layer security of CoAP, using
Concise Binary Object Representation (CBOR) a method for
protecting individual messages at the application layer suitable for
constrained devices is provided by CBOR Object Signing and

3

Encryption (COSE) [16]). OSCORE provides end-to-end protection
between endpoints that communicate via CoAP or CoAP-mappable
HTTP. This method is designed for constrained nodes and networks.
OSCOE uses a small message size offering low complexity
implementation as well as low memory requirements [15].

1.2 Problem

IoT security is characterized by a high-priority research interest as it is
an evolution of the conventional, unsecured Internet paradigm where
communications in the digital world reach the physical world. IoT
systems often deal with personal information, valuable business data,
and actuators interacting with the physical world. Not only do such
systems need security and privacy, they often need end-to-end
protection with source authentication and perfect-forward secrecy. In
particular, IoT security frameworks must tackle conventional
networking attacks and, at the same time, provide safe communications
for all forms of interactions like human-to-machine and machine-to-
machine. User data is protected by security protocols such as TLS,
DTLS, OSCORE, and EDHOC. The selection of efficient security
protocols for IoT devices is a critical issue as IoT devices can be
restricted in various ways including memory, storage, processing
capacity, and energy. Also, an important risk of IoT systems is
cryptographic key exposure [7]. Network nodes can be physically open
to attackers, so securing keys and collected data on the server end is
also critical, as it is typical for IoT systems to collect a large amount of
sensitive data.

There are lots of challenges that security protocols have to address in
general like per-packet message size, overheads, transmission times,
and power consumption. The message size of a key exchange protocol
can have a major impact on the performance of an IoT device,
particularly in noisy environments that show the need to have a security
protocol with a small key exchange message size. In addition, the
power usage of wireless devices is highly dependent on the

4

transmitting, listening and receiving of messages, which indicates the
need to use the appropriate security protocol depending on the
transmitting of the data byte [4]. In this thesis, we will evaluate and test
the per-packet message size overheads, transmission times, and power
consumption for TLS 1.2 & 1.3, DTLS 1.2, and OSCORE that run
above CoAP, to get a good view of which security protocol is the most
efficient for IoT devices. The purpose for including security protocols
above CoAP is that we are going to evaluate the performance of DTLS
1.3 from the results of the security protocols listed above.

1.3 Methodology

The thesis project will be based on the discovery of efficient security
protocols in power and bandwidth for IoT devices. We are coding the
software required for the embedded IoT device and perform power and
overhead measurements on the IoT device. Software tools such as the
Visual Studio and the Eclipse IDE are used to simulate security
protocols, and Wireshark is used as a network analyzer. The open-
source JAVA code of Californium is used for servers of CoAP, DTLS,
and OSCORE. The client is coded in the Visual Studio for the CoAP,
TLS 1.2 & 1.3, DTLS 1.2, OSCORE, and Wireshark for viewing the
packet exchange. These security protocols are implemented into a
NINA-W10 device to measure the power efficiency and overhead and
compare the results to choose the appropriate one.

1.4 Outline

In this thesis chapter, 1 consists of the basic introduction of the thesis.
It also contains Thesis Problems, Methodology, and Outline. Chapter
2, is an overview of IoT devices, considered application protocol, and
security protocols. Chapter 3, is presenting the simulation of
considered security protocols and the output results of simulation.
Chapter 4, is representing the implementation of the mentioned
security protocols over CoAP and the results of implementation.

5

Finally, Chapter 5 concludes the implementation and simulation of this
thesis work.

6

CHAPTER 2

Overview of considered security protocols
2.1 The CoAP protocol

Constrained Application Protocol (CoAP) [9] is a light application
layer protocol for constrained nodes and networks in IoT devices.
CoAP with different request/response methods supports interaction
between application endpoints with low overhead, multicast support,
and simplicity for constraint environment.

Representational State Transfer (REST) is a software design style that
specifies a series of constraints to be used when developing web
services. Web services that fit with the REST architecture form, called
RESTful Web Services. The aim of the Constrained RESTful
Environments (CoRE) work is to implement the REST architecture in
an acceptable form for the most constrained nodes and networks. One
solution for the REST architect's deployment of constrained devices is
the fragmentation of packets, which has the downside of reducing the
throughput. CoAP comes with a new approach in REST architect
deployment for restricted devices as it eliminates the need for
fragmentation while keeping the overhead small. Important features of
CoAP are:

 Fulfilling M2M requirements in constrained environments.
 Low header overhead and parsing complexity.
 URI and Content-type support.
 Simple proxy and caching capabilities.
 Functionality of mapping to HTTP and operating with

protocols that are based on HTTP.
 Ability of binding to UDP and security protocols like DTLS.

7

In addition, CoAP must also be implemented through reliable
transport, such as TCP or Transport Layer Security (TLS), in some
situations, such as when networks do not forward UDP packets or are
rate-limiting UDP traffic.

The CoAP protocol is dividing into two layers like Requests/Responses
and Messages Figure 1. The next sections will introduce these layers.

Application

UDP

Figure 1: CoAP Layers

2.1.1 Message Layer

The CoAP messaging model is based on the transfer of messages
between endpoints via UDP/TCP.

The CoAP message format includes fixed-size 4-byte header, variable-
length Token value, options, and payload shown in Figure 2.

 Requests/Responses

 Messages CoAP

8

Figure 2: CoAP Message Format

CoAP message header includes:

 Version (Ver): This field is 2-bit unsigned integer shows the
CoAP version.

 Type (T): This field is 2-bit unsigned integer shows message
type. There are four different message types for CoAP like
Confirmable message (CON), Non-Confirmable message
(NON), Acknowledgement message (ACK), and Reset
message (RST). An ACK and RST are CoAP server response
type where ACK message recognizes the arrival of a particular
Confirmable message and RST message shows the missing of
some context in CON and NON. CON and NON messages are
CoAP Request/Response methods. CON is for showing the
reliability of a message and it needs ACK. NON is a message
that does not require reliable transmission and ACK but it has
a duplication identification Message-ID.

 Token Length (TKL): This field is 4-bit unsigned integer
shows the length of the Token field (0-8 bytes).

 Code: This field is 8-bit unsigned integer, which is explained
in the section 2.1.2.

 Message ID: This field is 16-bit unsigned integer which is used
to match messages of types CON/NON with ACK/RST and
detecting message duplication.

9

The second part of the message format is the Token value used to
correlate requests and responses, which can be between 0 to 8 bytes
long. The next field is filled when there are CoAP options otherwise,
it is a sequence of zeros. Finally, the last part is filled with an optional
payload. One-byte Payload Marker (0xFF) shows the payload's
presence, and without this marker, the payload is zero.

The Message Layer is responsible for reliability and sequencing with
different types of CoAP messages like CON, NON, ACK.

2.1.2 Request/Responses Layer

In the request/response layer, the CoAP client sends one or more CoAP
requests to the server. The server that receives the Request will reply
with the CoAP Response. The Request and the Response are
exchanged asynchronously via CoAP messages. The CoAP message
carries a method code or Response code. Also, the CoAP message
carries some optional Request and Response information like URI,
payload media type, and Token to match requests and responses. The
CoAP Request methods are:

 GET: The GET method is used to obtain information that

currently corresponds to the resource defined by the URI
request.

 POST: The POST method recommends that the description
used in the Request be processed.

 PUT: The PUT method recommends that the resource specified
by the URI requirement be changed or generated with the
enclosed representation.

 DELETE: The DELETE method recommends that the resource
specified by the URI request be removed.

Based on the CoAP request methods, CoAP response codes are:

10

 2.xx (Success): This code indicates that the client Request
received, understood, and accepted successfully. Where the last
two. xx denotes: .01 (Created), .02 (Deleted), .03 (Valid), .04
(Changed), and .05(Content).

 4.xx (Client Error): This code shows that the server did not
understand the request. Where the last two .xx denotes .00 (Bad
Request), .01 (Unauthorized), .02 (Bad Option), .03
(Forbidden), .04 (Not Found), .05 (Method not Allowed), .06
(Not Acceptable), .12 (Precondition Failed), .13(Request entity
too large), and .15 (Unsupported Content-Format).

 5.xx (Server Error): This code shows server error where the last
two .xx indicates: .00 (Internal Server Error), .01 (Not
Implemented), .02 (Bad Gateway), .03 (Server Unavailable),
.04 (Gateway Timeout), and .05 (Proxy Not Supported).

In this thesis, the CoAP Request and Response Carried in
Confirmable Message (CON) was selected as seen in Figure 3:

Figure 3: CoAP Message Transmission

11

2.2 The DTLS Security Protocol

Many techniques are used to secure network traffic. Transport Layer
Security (TLS) [2] is one such technique that is the most widely used
protocol for securing email and web traffic. It operates in a transparent
connection-oriented channel and runs over reliable transport channels
such as Transmission Control Protocol (TCP). Over the past few years,
the usage of the User Datagram Protocol (UDP) has increased in many
application protocols. The CoAP protocol is used for communication
in IoT devices operating over UDP and TCP. There is also a need for
a TLS compatible datagram variant. To mitigate innovation on security
and to increase the amount of reuse of code and infrastructure IETF
has proposed Datagram Transport Layer Security (DTLS) [1] [5].

Unreliability in TLS causes problems at two levels i.e.

1. Individual records are not independently decrypted by TLS, so
if record N is not obtained the integrity check is on the sequence
number, then the integrity check on record N+1 will be based
on the incorrect sequence number and will thus fail.

2. If the messages are lost, the TLS handshake layer assumes that
the handshake messages are delivered reliably and breaks.

For securing the communication and preventing eavesdropping,
tampering, message forgery between the two different peers, the
Datagram Transport Layer Security (DTLS) protocol can be used.
Datagram transports applications include media streaming, Internet
telephony, and online gaming for communication. All these
applications are characterized by being delay-sensitive. Applications
with such behaviors are unchanged when DTLS protocol is used for
securing communication since the DTLS protocol does not compensate
for lost or reordered data traffic. It is designed to run in application
space and doesn’t need any kernel modifications. As discussed in
Section 1.1, there are different versions of DTLS, this thesis focuses

12

on DTLS 1.2. Below, we discuss how DTLS handles the different
problems related to datagram transport.

2.2.1 Providing Handshake Reliability

In TLS, messages are mismatched and produce errors if the order is not
defined correctly. So, messages must be defined in the order. This is
incompatible with reordering and message loss. Also, TLS handshake
messages create a problem of IP fragmentation for sending over
datagram, as these messages are larger than the datagram's size. DTLS
provides fixes for these two problems.

2.2.2 Loss of Packets

DTLS uses a retransmission timer to fix the issue of packet loss. The
client sends the client hello message to the server during the initial
process of the DTLS handshake and hopes to receive a hello verify
request from the server. When the client does not receive the hello
verify request within the specified period then the timer expires and the
client knows that the request has been lost either to the client, hello, or
from server hello. The client retransmits the message and retransmits
it when the server receives the retransmission. The server also has the
retransmission timer, and when the timer ends, it retransmits. For hello
verify request, the timeout and retransmission do not apply. The hello
verify request is designed to be small enough not to be broken by itself,
thus eliminating the issues of multiple hello verifying requests.

2.2.3 Message Re-ordering

A specific sequence number has been assigned to handshake messages
within that handshake in DTLS. The receiver, which receives this
handshake, regulates the next upcoming message, which is as
expected, or not. If the received message is not the same then it is put
up in the queue for future handing; else if the message is as expected it
proceeds with further processing.

13

2.2.4 Length of the Message

In DTLS and TLS, the length of the handshake messages is actually
larger when it is compared with the length of the UDP datagram. DTLS
handshake messages are fragmented into separate DTLS record layers.
Each recording layer is intended to fit in a single IP datagram and this
is the solution to solve the issue. Fragment offset and length consist of
individual handshake messages. Hence, the receiver occupies all the
bytes of handshake message and reassembles the original
unfragmented message.

2.2.5 The DTLS Handshake Protocol

Seeing from Figure 4, DTLS uses almost the same handshake and flow
communications as TLS, except for three critical modifications:

1. To avoid Denial of Service (DoS), a stateless cookie exchange
has been added in DTLS.

2. Modifications have been made in the DTLS handshake header
to handle message loss, reordering, and IP fragmentation.

3. To handle message loss, a retransmission timer has been added
in DTLS.

In addition to the examples mentioned above, DTLS message formats
flow, and logic is similar to TLS.

14

Figure 4: DTLS Handshake

2.2.6 Countermeasures on denial of service

A Denial-of - Service (DoS) attack is an attack designed to lock down
a system or network, making it difficult for the intended users to reach
it. DTLS contains two types of DOS attacks that are of major concern:

1. By transmitting a series of handshake initiation requests, an
attacker can consume excessive resources on the server, this
causes the server to perform expensive cryptographic
operations and allocate TLS session state data.

15

2. By using the server as the amplifier, an attacker can send a
connection initiation message with a forged source of the
victim.

DTLS uses stateless cookie technique to protect the system against
these two types of DoS attacks. When the client sends the client hello
to the server, the server will respond with a hello verify request
containing a stateless cookie generated by using the technique
of PHOTURIS [28]. The client then responds back with client hello
adding the cookie. Then the server verifies the cookie and proceeds
with the handshake only if the cookie is valid. DoS attacks with
spoofed IP addresses can be potentially stopped using this mechanism
since it forces the attacker/ clients to be received with cookies; but still
this method does not guarantee any defense against DoS attack with a
valid IP address.

2.2.7 Cipher Suites

The cipher suite [41] is generated with a group of algorithms to secure
the network connections, which uses TLS. As DTLS is based on TLS,
the cipher suite used for DTLS in this thesis is
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256. The
mentioned cipher suite uses authenticated encryption with additional
data algorithm AEAD_AES_128_GCM, and it is the combination of
authentication, encryption, and message authentication code (MAC)
algorithms. AEAD is a form of encryption that provides confidentiality
for the plaintext and a way to check its integrity and authenticity.

Three parts of this cipher suite include:

 ECDHE_RSA algorithm uses ephemeral elliptic curve Diffie-
Hellman to exchange keys. During a handshake, the key
exchange algorithm is used to decide whether and how the
client and server can authenticate.

16

 AES_128_GCM with 128 bits is used to encrypt the message
stream with a block cipher.

 SHA256, a message authentication algorithm, is used for
ensuring message integrity.

2.2.8 Certificate

While analyzing the DTLS handshake, the certificate is divided into
two parts, like Client and Server Certificate. The client certificate acts
as a way for the end-user to claim their identity on the server, and the
server certificate verifies and validates the certificate holder's identity
before authenticating it. Implementations are responsible for verifying
certificate integrity and should generally support messages for
certificate revocation. Certificates will also be checked by a reputable
Certificate Authority (CA) to guarantee a correct signature. Selecting
and introducing trustworthy CAs will be handled with considerable
care. Users should be able to view certificate information and root CA
information.

2.3 The TLS 1.3 Security Protocol

TLS version 1.3 is modified version of TLS 1.2 with some important
improvements. In this section, we will address the major difference
between TLS 1.3 [43] and TLS 1.2. TLS 1.3 has increased security and
speed. The list of main functional differences is as follows:

 All algorithms that are considered legacy have been removed
from the list of approved symmetric algorithms, and the
remaining algorithms are using Authenticated Encryption with
Associated Data (AEAD).

 Since all public-key based key exchange mechanisms now
provide forward secrecy, the Static Diffie-Hellman cipher suite
has been removed.

17

 In the TLS 1.2 handshake, messages after Server Hello were
not encrypted, however in TLS 1.3, all handshake messages
after Server Hello were encrypted.

 The Extract-and-Expand Key Derivation Function (HKDF)
based on HMAC is used as a key deviation function. This
newly introduced function has improved key separation
properties that make it easier for cryptographers to analyze.

 For more consistent and needless messages, such as Change
Cipher Spec, The handshake state machine has been
substantially restructured.

 Due to the reduction in the handshake the speed has been
improved.

 TLS 1.3 just need only one round-trip time before the client
sends the application data. Whereas the older version of TLS
requires two round-trip time. Also, the server will send the
application data in response to the client's first handshake
reply. This means that network latency has less effect on the
time taken to create a stable link.

Figure 5 shows the handshake of TLS 1.3.

18

Figure 5: TLS 1.3 Handshake

2.4 The OSCORE Security Protocol

Object Security for Constraint RESTful Environments (OSCORE) protocol
is an application-layer security method for the Constraint Application
Protocol (CoAP) by means of CBOR Object Signing and Encryption (COSE).
CBOR is a data format designed for small code size and small message size,
which modified the JavaScript Object Notation (JSON) data model by
allowing for binary data, among other changes. CBORE is used for compact
encoding in OSCORE. The COSE structure arranges all of the security
messages based on the CBOR array type, which is used for encryption and
key derivation structures. In Figure 6 below, we give a schematic overview
of the message exchanges of OSCORE when used by CoAP.

19

Figure 6: OSCORE Handshake

OSCORE can be used for both unreliable and reliable transport as these
methods differ only in the CoAP messaging layer, which is not
protected with OSCORE. In addition, OSCORE protects the RESTful
interactions like the request method, the requested resource, and the
payload of the message that is shown in Figure 7. As OSCORE protects
only the relevant application layer information, the message overhead
is minimal.

Application

Request / Response / Signaling
OSCORE

Messaging Layer / Message Framing
UDP / TCP / …

Figure 7: CoAP + OSCORE Layers

 CoAP

20

OSCORE protects the plaintext of CoAP messages. Not all CoAP
fields are equally protected but fields are separated into protected and
unprotected fields. Table 1 below, gives an overview of how the CoAP
header and payload fields are protected with OSCORE.

Field Encrypt and Integrity
Protect

Encrypt and Integrity
Unprotect

Version x

Type x

Length x

Token
Length

 x

Code x

Message ID x

Token x

Payload x

Table 1: Protection of CoAP Header Fields and Payload [18]

OSCORE can provide end-to-end protection between endpoints
including CoAP-to-CoAP, HTTP-to-CoAP, and CoAP-to-HTTP
proxies.

21

2.4.1 The OSCORE Option

The OSCORE header option indicates that the CoAP message is
protected by the OSCORE security protocol, and it contains the
compressed COSE object. The Object-Security option is critical, safe
to forward, part of the cache key, not repeatable.

In Figure 8, the OSCORE header option includes OSCORE flag bits
that occupy the first byte, Partial IV parameter that occupies n bytes,
the kid context flag that occupies 1 byte to encode the length of the
flag, s bytes to encode the kid context, and the remaining bytes to
encode the kid's value. Where h is the kid context flag and k is the kid
flag.

0 1 2 3 4 5 6 7 <---------- n bytes ----------> 0 1 2 3 4 5 6 7 < ------
- s bytes ------->

0 0 0 h k n Partial IV (if any) S (if
any)

Kid context (if
any)

Kid (if
any)

Figure 8: OSCORE Header Options

2.4.2 OSCORE Security Context

The security context is a set of parameters that link the security
protocol to the environment and allow the server and the client to
interact. OSCORE uses pre-shared keys that may have been generated
out-of-band or with a key setup protocol that requires that the client
and server establish a shared security context used to process the COSE
objects. The security context is the set of elements of data necessary to
perform cryptographic operations in OSCORE. There are three types
of security contexts:

1. The Sender Context, which is used to secure the messages to
be sent, includes:

22

a) Sender ID:

Sender ID is bytes of string used to identify the sender context,
derive AEAD keys, Common IV, and to ensure unique AEAD
nonces. AEAD Algorithm determines the maximum length of
the sender ID, and it should be pre-established.

b) Sender Key:

Sender Key is bytes of a string containing the symmetric
AEAD key to protect messages to send. It is derived from
Common Context and Sender ID. AEAD Algorithm defines
Sender key length.

c) Sender Sequence Number:

Sender Sequence Number is a non-negative integer used to list
requests and certain responses where the AEAD Algorithm
determines the maximum value of it.

2. The Receiver Context, which is used to confirm the messages
received, includes:

a) Recipient ID:

Recipient ID is bytes of string used to identify the recipient
context, derive AEAD keys, Common IV, and to ensure unique
AEAD nonces. AEAD Algorithm determines the maximum
length of it, and the value of the recipient ID should be pre-
established.

b) Recipient Key:

Recipient Key is bytes of a string containing the symmetric
AEAD key to verify messages received. It is derived from the
Common Context and Recipient ID, and the AEAD Algorithm
defines its length.

23

c) Replay Window:

Replay Window is on the server-side to evaluate requests
received. DTLS-type replay protection and a window size of 32
will use as default values for Replay Window parameters.

3. The common context from which all contexts derive includes:

a) Authenticated Encryption with Associated Data (AEAD)
Algorithm:

The COSE AEAD algorithm, which is used for encryption, has
the default value of AES-CCM-16-64-128 (COSE encoding
algorithm: 10).

b) HKDF Algorithm:

An HMAC-based key derivation function (HKDF), which is
used to derive Sender Key, Recipient Key, and Common IV,
has the Default value of HKDF SHA-256.

c) Master Secret:

Master Secret contains variable length and random byte string
to derive AEAD keys and Common IV. The master secret must
be pre-configured into the peers.

d) Master Salt:

Optional byte string with variable length containing the salt
used to derive AEAD keys and Common IV with the default
value of empty byte string.

e) ID Context:

Optional variable-length byte string providing additional
information to identify the Common Context and to derive

24

AEAD keys and Common IV. The use of ID Context is
described in.

f) Common IV:

Byte string derived from Master Secret, Master Salt, and ID
Context. They are used to generate the AEAD Nonce.

Finally, some OSCORE differences with other security protocols
include key negotiation and session management as it protects each
payload with a pre-shared key, unlike (DTLS) which protects hop-by -
hop messages, OSCORE protects the payload message with an end-to
- end protection process. As a result, we can save power, bandwidth
and computational resources. In addition, OSCORE enables translation
of the HTTP-CoAP protocol at a gateway or a proxy that enables the
use of OSCORE over TCP.

25

CHAPTER 3

Simulation Results

In this chapter we explain the simulation test we have performed for
the different security protocols, such, we investigate, i.e., TLS 1.2, TLS
1.3, DTLS 1.2, and OSCORE over CoAP. We compared the security
overhead, handshake time/throughput, and CoAP transaction (CoAP
GET Request + Response) time/throughput for these selected
protocols. The tests were performed using Visual Studio as a
development environment on windows 32/64 bit processor platform,
where we simulate both client and server on the same PC with the local
IP address using the open sources like Contiki-NG and WolfSSL
Libraries. All tests were simulated for 20 iterations, and the results
reported are the average values.

3.1 Simulation Set-Up and Achieved Results

In this thesis, the transfer of CoAP packet between client and server is
simulated with different security protocol selections. We utilized open
sources libraries to build the simulations. WolfSSL [33], and Contiki-
NG [34] was used as main security protocol implementation libraries.
The WolfSSL library is a C-language-based SSL/TLS library designed
for IoT, embedded, and RTOS environments. The advantages of this
library, among other open sources, are the size, speed, feature set, and
ability to support TLS 1.2, TLS 1.3, and DTLS 1.2. Since the WolfSSL
library does not support OSCORE, a branch of Contiki-NG [34] open
source was used for simulating OSCORE. Contiki-NG is an open-
source library used for next-generation IoT applications, which focuses
on low-power communication and standard protocols. Visual Studio
Community Version 2019 was used to simulate the server and client
on the same Computer with the Windows 32/64 bit processor and the
specified libraries. Finally, Wireshark tool was used to capture the
packets and analyze security performance. Figure 9 is the simulation
set-up:

26

Figure 9: Simulation Set-Up

3.2 TLS 1.2 Simulation Results

WolfSSL open source master version was used to simulate the TLS 1.2
client and server. A WolfSSL library was built using Visual Studio
Community Version 2019. WolfSSL provides the user-settings.h
header file to enable protocols and methods. This we utilized in the
simulations. No changes to the user-setting.h file was needed for the
TLS 1.2 simulation. In the simulations, we run the CoAP GET request
with 7 bytes length and the responses from the server were set to the
CoAP GET response with the size of 17 bytes and 94 bytes.

We run the simulations with the client and server default certificate
(./certs/server-cert.pem) and the default key file (./certs/server-
key.pem). It would have been possible for us to use another certificate,
but as we are mainly interested in making a performance test, the
default certificate fulfills our requirements. The cipher suite used
during the SSL handshake for TLS 1.2 was
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, a
combination of authentication, encryption, and message authentication
code (MAC) algorithms. This cipher suite was chosen from the list of
Elliptic Curve Cryptography (ECC) cipher suites, which are supported
by the WolfSSL library. This is a cipher suite recommended for many
cloud servers as it has a good security level small overhead in with
respect to TLS record layer header, encryption algorithm padding, and

27

the MAC tag. We run TLS with the configurations and commands
described in Appendix A.

 For analyzing the performance of TLS 1.2, we calculated four
different performance indicators:

 Handshake Time Analysis
 CoAP Transaction Time and Throughput Analysis
 Security Overhead

Handshake time is calculated using Wireshark tool analyzer from the
first Client Hello until end of the handshake. For TLS 1.2 the average
handshake time achieved for 20 iterations are 174.8 ms for total of 13
packets.

The following equation is used to calculate the CoAP Transaction
throughput:

 (1)

In Equation (1), the data is the total length of input data achieved from
the CoAP Request and Response size. To calculate the time and
throughput for the CoAP transaction, we were simulating 20 iterations
with 500 GET Request/Response and two different response size to
check the efficiency. For the 7 bytes GET request with a response size
of 17 bytes, the achieved average time and throughput for one CoAP
transaction is 2.59 ms and 74.131 kbps. Similarly, for 94 bytes
response size, the average time and throughput are 4.35 ms and
185.747 kbps.

The security overhead was measured from Wireshark by the difference
between the length of the record layer of the application data and the
CoAP packet length for the GET request/response. Therefore, the
security overhead for TLS 1.2 is 29 bytes.

28

3.3 TLS 1.3 Simulation Results

The simulation set-up used for TLS 1.3 was the same as those for TLS
1.2. Furthermore, we used the same data and certificates are used as for
TLS 1.2 simulations. The different configurations steps needed are
listed in Appendix A.

We used a different cipher suite for TLS 1.3, as the handshake is
different from the old TLS versions. In TLS 1.3, all encryption and
authentication algorithms are combined in authenticated encryption
with associated data (AEAD) encryption algorithm. Therefore, static
RSA and Diffie-Helman cipher suites have been removed to make the
protocol more secure. So, the TLS_AES_ 128_GCM _SHA256 cipher
suite was chosen among the TLS 1.3 supported cipher suites.

When we analyzed the performance of TLS 1.3, we used the same
measurements parameters as for the TLS 1.2 runs.

For handshake time analysis, the average time achieved for 20
iterations was 143.33 ms for total of 10 packets.

For CoAP transaction time and throughput analysis, the average time
and throughput for one CoAP transaction was 2.19 ms, and 87.671
kbps, which is for 7 bytes GET request with a response size of 17 bytes.
Similarly, the average time and throughput are 4.175 ms and 193.532
kbps for the response size of 94 bytes. Moreover, the security overhead
for TLS 1.3 is 22 bytes.

3.4 DTLS 1.2 Simulation Results

The simulation set-up we used was the same as mentioned in Section
3.1. In addition, the same data, certificates, and cipher suite are used as
TLS 1.2 as we want to compare security protocols. The different
configurations steps needed are listed in Appendix A.

For analyzing the performance of DTLS 1.2, the same parameters are
measured, as mentioned in section 3.2.

29

For handshake time analysis, the average time achieved for 20
iterations was 169.55 ms for 14 packets.

For CoAP transaction time and throughput analysis, the average time
and throughput for one CoAP transaction was 2.24 ms, and 85.714
kbps, which is for 7 bytes GET request with a response size of 17 bytes.
Similarly, the average time and throughput are 4.32 ms and 187.037
kbps for the response size of 94 bytes. Moreover, the security overhead
for DTLS 1.2 is 37 bytes.

3.5 OSCORE Simulation Results

Contiki-NG [34] was used for the simulation of OSCORE with the
same CoAP packet as mentioned in section 3.1. Eclipse/Californium
was used as an OSCORE server that is running on port 5683 for the
simulation part. The input parameters we used for establishment of
security context between client and server are the following:

 AEAD Algorithm is AES-CCM-16-64-128

As OSCORE uses an untagged COSE Encrypt0 structure with
an Authenticated Additional Data Encryption (AEAD)
Algorithm for encryption, the AES-CCM-16-64-128 algorithm
suggested with the OSCORE IETF draft was used in our tests.
The reason for selecting the AES-CCM method in OSCORE
was that the message authentication is done on the plaintext,
compared with the GCM method, which is for message
authentication on the ciphertext. In the selected algorithm, the
authentication field's size is 64 bits, the size of the length field
is 16 bits, and the length of the Sender Key and Recipient Key
is 128 bits.

 Master Salt and Master secret

Master Salt and Master Secret for derivation of AEAD
algorithm are set to the same values of the OSCORE server in
our tests.

30

 HKDF Algorithm was HKDF SHA-256.

HKDF Algorithm was used as a key derivation algorithm in
OSCORE with the IETF draft's default method, which is SHA-
256, and it is similar to other protocols in our tests.

 Replay Window size

Replay Window size is selected as the default value that is
DTLS-type replay protection with a window size of 32 in the
IETF draft.

 Sender ID and Recipient ID

To drive the communication between client and server, the
client's SID value should be matched with the server's RID
value, which is chosen as SID = {0x01} and RID = {0x02} in
our tests. Also, to keep the packet size minimum, we selected
one byte SID and RID.

When we analyzed the performance of OSCORE in simulation, three
performance parameters were calculated:

 Time and Throughput for Packet Exchange
 Security Overhead

To calculate the time and throughput for packet exchange, we were
simulating 20 iterations with 500 CoAP + OSCORE GET
Request/Response and two different response size to check the
efficiency. The 7 bytes CoAP GET request with a response size of 17
bytes for one packet exchange, the achieved average time, and
throughput for one packet exchange was 0.593 ms and 323.777 kbps.
Similarly, for 94 bytes response size, the average time and throughput
are 0.661 ms and 1222.39 kbps. Moreover, the request overhead was
14 bytes, and the response overhead was 10 bytes.

31

 3.6 CoAP Simulation Results

To evaluate and compare the performance parameters described in
section 3.5, we simulated a CoAP transaction without the addition of a
security protocol. The open-source Contiki-NG was used to simulate
the CoAP client, and the UDP socket was used as the server.

For analyzing the performance of CoAP in simulation, two
performance parameters were calculated:

 Time and Throughput of the CoAP transaction

To calculate the time and throughput for packet exchange, we were
simulating 20 iterations with 500 CoAP GET Request/Response and
two different response size to check the efficiency. For the 7 bytes
CoAP GET request with a response size of 17 bytes for one packet
exchange, the achieved average time and throughput are 0.342 ms and
397.66 kbps. Similarly, for 94 bytes response size, the average time
and throughput are 0.633 ms and 1276.461 kbps.

3.7 Simulation Summary

Figure 10 shows the handshake analysis's simulation results for the
three security protocols, TLS 1.2, TLS 1.3, and DTLS 1.2. It is clear
that the average time for TLS 1.3 outperforms comparing with the other
two protocols, and it will affect the performance when there is a need
to send data with multiple handshakes.

32

Figure 10: Simulation Handshake Time (ms)

Figure 11 shows how the CoAP Transaction Time will change for the
different security protocols. While the response size increased, the
average CoAP Transaction time will increase. CoAP Transaction time
with OSCORE is shorter than other security protocols. Although there
is not much difference between TLS 1.2, TLS 1.3, and DTLS 1.2, TLS
1.3 is faster than the others in transferring packets.

TLS 1.2 TLS 1.3 DTLS 1.2
Average Handshake Time

(ms) 174.8 143.33 169.55

0

20

40

60

80

100

120

140

160

180

200

33

Figure 11: Simulation Average CoAP Transaction Time (ms)

From the specified table 2, we can note that the OSCORE security
protocol contributes lower overhead to the CoAP GET
request/response than all other protocols. With respect to the
handshake security protocols, TLS 1.3 provides a significantly lower
overhead than other protocols.

Security
Protocol

Security Overhead
(bytes) Request

 Security Overhead (bytes)
Response

TLS 1.2 +
CoAP

29 29

TLS 1.3 +
CoAP

22 22

DTLS 1.2 +
CoAP

37 37

OSCORE +
CoAP

14 10

Table 2: Security Overhead

TLS 1.2 +
CoAP

TLS 1.3 +
CoAP

DTLS 1.2
+ CoAP

OSCORE
+ CoAP CoAP

17 Bytes Response Size 2.59 2.19 2.24 0.593 0.342
 94 Bytes Response Size 4.35 4.175 4.32 0.661 0.633

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

34

Figure 12 shows the Average CoAP Transaction Throughput. By
adding security over CoAP, the throughput is reduced, TLS 1.2 +
CoAP has more security overheads than the others. OSCORE on the
other hand, with lower security overhead, has also a lower impact on
the CoAP transaction throughput.

Figure 12: Simulation Average CoAP Transaction Throughput (kbps)

TLS 1.2
+ CoAP

TLS 1.3
+ CoAP

DTLS
1.2 +
CoAP

OSCORE
+ CoAP CoAP

17 Bytes Response Size 74.13 87.671 85.714 323.777 397.66
 94 Bytes Response Size 185.74 193.532 187.037 1222.39 1276.461

0

200

400

600

800

1000

1200

1400

35

CHAPTER 4

Implementation Results

This chapter presents performance results for implementation on IoT
units of the previously presented security protocols TLS 1.2, TLS 1.3,
DTLS 1.2, and OSCORE. For this purpose, we used a PC and NINA-
W102 with ESP32 chip support as server/client; both are connected to
the same Wi-Fi to communicate. We compared these protocols with
their security overhead, handshake time and throughput, CoAP
transaction time and throughput, and client current consumption.
While the server was the same as used for the simulations. The client-
side tests were performed using VisualGDB, which is a cross-platform
for visual studio to build and debug the NINA-W102 unit, on windows
32/64 bit processor. The packet exchange between client and server is
captured using Wireshark. All tests were simulated for 20 iterations,
and reported results are the average values.

4.1 Implementation Set-Up and Results

The WolfSSL [33] and ESP-IDF [37] open sources were used to
implement security protocols. WolfSSL was explained in chapter 3.

ESP-IDF is an IoT Development Framework, officially developed for
ESP32, which provides necessary hardware, software libraries, source
code, and scripts [39]. There are different versions of the ESP-IDF.
Version 4.0 and Master are used for our implementation. Version 4.0
is one of the new updates available until October 2021 and supports the
WolfSSL library. While for implementing DTLS 1.2, the latest version
of ESP-IDF was used, the master version.

The NINA-W102 unit has opted for this work, which is mounted with
an ESP32 chip. ESP32 is a series of low power and cost system-on-
chip microcontrollers with Bluetooth and Wi-Fi dual-mode
compatibility. It is optimized for smartphones, portable devices, and
Internet-of-Things (IoT) devices. It features all state-of-the-art low-

36

power chip characteristics, including fine-grained clock gating, various
operation modes, and dynamic power scaling. The low-duty cycle is
used to reduce the energy consumed by the chip. The power amplifier's
performance is also flexible, leading to an optimum trade-off between
contact frequency, data rate, and power usage [38]. These features
motivate us to use the NINA-W102 unit for the implementation of the
security protocols.

NINA-W102 [36] comes under the series of NINA-W10 series, and it
is the product of U-blox. The NINA-W10 series are stand-alone multi-
radio MCU modules that incorporate a powerful microcontroller
(MCU) and a wireless radio. Customers will build specialized
applications running on the 32-bit dual-core MCU utilizing the free
CPU architectureNINA-W10 series modules that have a dual-core
system with two Harvard Architecture Xtensa LX6 CPUs operating at
a maximum of 240 MHz internal clock frequency. The internal NINA-
W10 memory's main features include 448 Kbyte ROM for booting and
core functions and 520 Kbyte SRAM for data and instruction. The
radio supports 802.11b / g / n Wi-Fi in the 2.4 GHz ISM and Bluetooth
v4.2 (Bluetooth BR / EDR and Bluetooth Low) band Communications
Power (LE). NINA-W10 series modules are suitable for telematics,
low power sensors, connected factories, connected buildings
(appliances and surveillance), and point-of-sale, enabling advanced
cryptographic hardware accelerators, health devices, and other design
solutions which require the highest level of protection. The system's
underlying architecture helps the developers to use an external antenna
(NINA-W101) or the internal antenna (NINA-W102 and NINA-
W106) in the application design. The NINA-W102 module contains a
PIFA antenna. The RF signal is not attached to a pin on any board. The
size of the panel is 10.0 x 14.0 mm, and the height is 3.8 mm. The
maximum module supply voltage is 3.6 V, and the maximum current
range is 500 mA. This module has 16/32 Mbit FLASH for code storage,
including hardware encryption to protect programs. The product is
shown in Figure 13:

37

Figure 13: NINA-W10

VisualGDB is an extension to Visual Studio that allows building
embedded applications using GCC and debugging them using GDB.
GDB or GNU Debugger is a GNU project that helps debug software
applications and analyze what is happening during program execution.
VisualGDB supports both local debugging (e.g., using an embedded
simulator) and remote debugging. It also supports IoT modules;
Barebone embedded systems, ESP32, and Arduino targets. VisualGDB
will install and configure the required tools automatically [40].

Figure 14 shows the implementation set-up we has used for the
experimental evaluations. The hardware used is the ESP32 NINA-
W102 board connected to a windows operating computer using a USB
cable for the client. Besides, we used software toolchains like GCC to
compile the code, CMake, and ninja were used to build the tools with
the help of Visual GDB application, and ESP-IDF to operate the
toolchain. Also, Visual Studio Community 2019 was used as the text
to write programs for projects in C. For the server, we have the same
set-up, as mentioned in the simulation part chapter 3. To capture the
packets, Wireshark was connected to the same Wi-Fi on the PC.

38

Figure 14: Implementation Set-Up

4.2 TLS 1.2 Implementation Results

ESP-IDF and WolfSSL open sources are used to implement the TLS
1.2 client, which described in Appendix B. NINA-W102 used as the
client while the same server was used, as mentioned in section 3.2. To
have the same status in all tests, certificate files, CoAP
request/response, and cipher suite were the same for the simulation.

The first step of running the TLS 1.2 client is to add the WolfSSL
library to the ESP-IDF and open a WolfSSL client project with the help
of VisualGDB. The second step is to build and flash the TLS 1.2 client
code to the NINA-W102. Finally, when we run the client, it was
connected to the server with its IP address and port (5684) using Wi-
Fi.

39

The performance parameters are the same as those used for the
simulation part as we described in, Chapter 3, Section 3.2. In addition,
the client current consumption during the implementation of TLS 1.2
is measured as a new performance parameter. To measure current
consumption in each iteration during implementation time, the NINA-
W102 ESP32 was connected to the DC Power Analyzer, and the
current is monitored. The Wi-Fi connection is closed after the last flight
in each iteration to reduce the noise and interferences during the current
measurements. Figure 15, shown below, represents the client current
measurement set-up:

Figure 15: Client Current Measurements Set-Up

With average current consumption and time, we calculated the energy
consumption of NINA-W102 for one full handshake and one
request/response using the formula:

 (2)

In Equation (2) V is the DC power analyzer's voltage, which is set to
the specified 3.3 V (recommended voltage of the power supply for
ESP32). Also, I is the average current consumption and T is the average
time which are captured from DC power analyzer.

40

The measurement of the handshake time was carried out in the same
way as described in section 3.1. For TLS 1.2, the average handshake
time achieved for 20 iterations was 2.117 s.

To calculate the CoAP transaction time and throughput, we were using
the same method as was used in the simulation. For the 7 bytes GET
request with a response size of 17 bytes, the achieved average time and
throughput for one CoAP transaction are 18.21 ms and 10.54 kbps.
Similarly, for 94 bytes response size, the average time and throughput
are 21.05 ms and 38.38 kbps. Also, the security overhead for TLS 1.2
was 29 bytes.

After considering 20 times of iterations, the average current
consumption was measured as 80.91 mA in 8.061 s for 7 bytes GET
request with a response size of 17 bytes. Similarly, for 94 bytes
response, the average current consumption was measured as 81.08 mA
in 8.494 s. Figure 16, shown below, represents the client current
measurement for a single iteration for two different responses:

Figure 16: TLS 1.2 Current Consumption

41

In addition, the average energy consumption was calculated as 2.1523
J for 7 bytes GET request with a response size of 17 bytes. Similarly,
for 94 bytes response, the average energy consumption was calculated
as 2.2726 J.

4.3 TLS 1.3 Implementation Results

The implantation set-up we used was the same as we described in
section 4.1. Also, all tests, certificate files, CoAP request/response, and
cipher suites have the same status as in the simulation of TLS 1.3 in
section 3.3.

For analyzing the performance of TLS 1.3, the same parameters were
measured, as those mentioned in section 4.2.

For handshake time analysis, the average time achieved for 20
iterations was 1.163 s.

For CoAP transaction time and throughput analysis, the average time
and throughput for one CoAP transaction was 18.19 ms, and 10.55
kbps, which is for 7 bytes GET request with a response size 17 bytes.
Similarly, the average time and throughput are 20.3 ms and 39.802
kbps for the response size of 94 bytes. Moreover, the security overhead
for TLS 1.3 was 22 bytes.

Current consumption was measured in the same way as we described
in Section 4.1. The average current consumption was measured as
82.47 mA in 6.818 s for 7 bytes GET requests with a response size of
17 bytes. Similarly, for 94 bytes response, the average current
consumption was measured as 84.29 mA in 7.169 s. Figure 17, shown
below, represents the client current measurement for a single iteration
for two different responses:

42

Figure 17: TLS 1.3 Current Consumption

The calculation for the average energy consumption was carried out in
the same way as described in Section 4.2. The average energy
consumption was calculated as 1.8555 J for 7 bytes GET request with
a response size of 17 bytes. Similarly, for 94 bytes response, the
average energy consumption was calculated as 1.994 J.

4.4 DTLS 1.2 Implementation Results

The implantation set-up we used was the same as we described in
section 4.1. Also, all tests, certificate files, CoAP request/response, and
cipher suites have the same status as in the simulation of TLS 1.2 in
section 4.2.

For analyzing the performance of DTLS 1.2, the same parameters were
measured, as those mentioned in section 4.2.

For handshake time analysis, the average time and throughput achieved
for 20 iterations were 2.494 s.

43

For CoAP transaction time and throughput analysis, the average time
and throughput for one CoAP transaction was 130.159 ms, and 1.475
kbps, which is for 7 bytes GET request with a response size 17 bytes.
Similarly, the average time and throughput are 162.8 ms and 4.963
kbps for the response size of 94 bytes. Moreover, the security overhead
for DTLS 1.2 was 37 bytes.

Current consumption was measured in the same way as we described
in Section 4.2. The average current consumption was measured as 88.4
mA in 17.6 s for 7 bytes GET requests with a response size of 17 bytes.
Similarly, for 94 bytes response, the average current consumption was
measured as 88.6 mA in 8.392 s. Figure 18, shown below, represents
the client current measurement for a single iteration for two different
responses:

Figure 18: DTLS 1.2 Current Consumption

The average energy consumption was carried out, as mentioned in
Section 4.2. The average energy consumption was 2.219 J for 7 bytes

44

GET request with a response size of 17 bytes. Similarly, for 94 bytes
response, the average energy consumption was calculated as 2.453 J.

4.5 OSCORE Implementation Results

The UDP client example from ESP-IDF open source version 4.0 was
used to implement the OSCORE client. Also, the same OSCORE +
CoAP packet that was used in the simulation and described in Section
3.5, was used for the implementation evaluation. The open-source
Eclipse / Californium was used as server.

The following results were achieved for the analysis of the
performance of OSCORE using the same simulation method as we
described in Section 3.5. For the 7 bytes CoAP GET request with a
response size of 17 bytes for one packet exchange, the achieved
average time and throughput for one packet exchange were 15.49 ms
and 12.395 kbps. Similarly, for 94 bytes response size, the average time
and throughput are 16.67 ms and 48.47 kbps. Moreover, the request
overhead was 14 bytes, and the response overhead was 10 bytes.

Current consumption was measured in the same way as we described
in Section 4.2. The average current consumption was measured as
97.72 mA in 3.366 s for 7 bytes GET requests with a response size of
17 bytes. Similarly, for 94 bytes response, the average current
consumption was measured as 98.1 mA in 3.61 s. Figure 19, shown
below, represents the client current measurement for a single iteration
for two different responses:

45

Figure 19: OSCORE Current Consumption

The average energy consumption was carried out as mentioned in
Section 4.2. The average energy consumption was 1.085 J for 7 bytes
GET request with a response size of 17 bytes. Similarly, for 94 bytes
response, the average energy consumption was calculated as 1.169 J.

4.6 CoAP Implementation Results

The UDP client example from ESP-IDF open source version 4.0 was
used to implement the CoAP client. Also, the same server with CoAP
packet was used as described in Section 3.6.

The following results were achieved for the analysis of the
performance of CoAP using the same simulation method as described
in section 3.6. For the 7 bytes CoAP GET request with a response size
of 17 bytes for one packet exchange, the achieved average time and
throughput for one packet exchange were 15 ms and 12.8 kbps.
Similarly, for 94 bytes response size, the average time and throughput
were 15.6 ms and 51.79 kbps.

46

Current consumption was measured in the same way as described in
Section 4.2. The average current consumption was measured as 97.9
mA in 3.355 s for 7 bytes GET requests with a response size of 17
bytes. Similarly, for 94 bytes response, the average current
consumption was measured as 98.22 mA in 3.457 s. Figure 20, shown
below, represents the client current measurement for a single iteration
for two different responses:

Figure 20: CoAP Current Consumption

The average energy consumption was carried out as mentioned in
Section 4.2. The average energy consumption was 1.083 J for 7 bytes
GET request with a response size of 17 bytes. Similarly, for 94 bytes
response, the average energy consumption was calculated as 1.120 J.

4.7 Implementation Summary

Figure 21 shows the three security protocols' handshake analysis,
including TLS 1.2, TLS 1.3, and DTLS 1.2. Due to the new handshake
pattern mentioned in chapter 2, the average handshake time for TLS

47

1.3 outperforms the contrast with the other two protocols, which will
affect performance, as multiple handshakes need to be sent for
transferring data. Also, DTLS 1.2 has a lower handshake delay than
TLS 1.2 as it is sending packets over the UDP socket.

Figure 21: Average Handshake Time (ms)

Figure 22 shows average CoAP transaction time for mentioned
Security protocols with 17 and 94 bytes response size. By increasing
the response size, we can see more delays in the transmission of data.
OSCORE delay for data transfer is shorter than for other security
protocols. As DTLS 1.2 sends data over UDP, it outperforms TLS 1.2
and TLS 1.3.

TLS 1.2 TLS 1.3 DTLS 1.2
Average Handshake

Time (ms) 2117 1163 1891

0

500

1000

1500

2000

2500

48

Figure 22: Average CoAP Transaction Time (ms)

Figure 23 shows average CoAP transaction throughput for mentioned
Security protocols with two different response size. By adding a
security protocol over CoAP, the overhead will increase, which
decreases the throughput. Also, DTLS 1.2, with more overhead, has a
better throughput than TLS 1.2 & TLS 1.3 since it has a smaller latency
when transmitting data.

Figure 23: Average CoAP Transaction Throughput (kbps)

TLS 1.2 TLS 1.3 DTLS
1.2

OSCOR
E CoAP

17 Bytes Response Size 18.21 18.19 15.52 15.49 15
94 Bytes Response Size 21.05 20.3 16.7 16.67 15.6

0

5

10

15

20

25

TLS 1.2 TLS 1.3 DTLS 1.2 OSCORE CoAP
17 Bytes Response Size 10.54 10.55 12.368 12.395 12.8
94 Bytes Response Size 38.38 39.802 48.383 48.47 51.79

0

10

20

30

40

50

60

49

Figure 24 shows the average current consumption and time captured
from the DC power analyzer for one full handshake + application data
for TLS 1.2, TLS 1.3, and DTLS 1.2 with two different responses.
Similarly, the mentioned parameters are shown for one exchange of
OSCORE and CoAP packets. As seen in the figure, the average current
consumption is high for security protocols with a lower average time
as the throughput (bps) is higher.

Figure 24: Average Current Consumption (mA) and Average Time (s)

The following Figure shows the average energy consumption of the
NINA-W102 device with the same condition as mentioned in the
previous paragraph. OSCORE will consume less energy for sending
data while comparing with the other protocols. Seeing Figure 25,
DTLS 1.2 consumes more energy than TLS 1.2. As mentioned in the
Equation 2 the energy consumption is related to average current
consumption and the average transmission time, so if we use one full

TLS 1.2 TLS 1.3 DTLS 1.2 OSCORE CoAP
Average Time (s) for 17

bytes 8.061 6.818 7.61 3.366 3.355

Average current (mA) for
17 bytes 80.91 82.47 88.4 97.72 97.9

Average Time (s) for 94
bytes 8.494 7.169 8.392 3.612 3.457

Average current (mA) for
94 bytes 81.08 84.29 88.6 98.1 98.22

0

20

40

60

80

100

120

50

handshake + application data, the average current would affect energy
consumption more than the time as we can see in Figure 24. Thus, for
scenarios where we have multiple handshakes or application data,
DTLS 1.2 may outperform, as it is faster than TLS 1.2.

Figure 25: Average Energy Consumption (J)

TLS 1.2 TLS 1.3 DTLS 1.2 OSCORE CoAP
17 Bytes Response Size 2.1523 1.8555 2.219 1.0854 1.0838
94 Bytes Response Size 2.2726 1.994 2.453 1.1693 1.1205

0

0.5

1

1.5

2

2.5

3

Average Energy Consumption (J)

51

CHAPTER 5

Discussion and Conclusions

In this chapter, we will conclude the results of the implementation and
simulation comparison of mentioned security protocols in chapter 3
and 4. In addition, we are going to discuss future work.

5.1 Comparison of Simulation and Implementation
Results

Figure 26 shows the average CoAP transaction time results for
simulation and implementation of mentioned security protocols. As
can be seen in the figure there is a large difference between the
simulations and the implementation. The simulation response time is
as expected, much smaller in the simulations than for the device
implementation. However, there is in general a good conformity for the
two realizations, with respect to response time differences between the
protocols. When switching from simulation to implementation, time
will reduce more for OSCORE and CoAP than other protocols. In
comparison, DTLS 1.2 faces a smaller time reduction between
simulation and implementation than other protocols. OSCORE and
DTLS 1.2 can perform competitively in implementation, and with
these two security protocols, there is not so much difference in time,
although there is a considerable difference in simulation between them.
Among the security protocols with a handshake, DTLS 1.2
outperforms data transmission during implementation, despite no
significant difference between DTLS 1.2 and TLS 1.3 in simulation.
As in the simulation, the client and server communicate through
localhost, and even the security overhead of DTLS 1.2 is higher as
compared to TLS 1.3, there is not much difference between DTLS 1.2
and TLS 1.3 in CoAP Transaction Time. On the other hand, while the
client and server are connected to Wi-Fi, TLS over TCP would indicate
more latency than DTLS over UDP.

52

Figure 26: Average CoAP Transaction Time (ms)

Figure 27 shows the average CoAP transaction throughput results for
the simulation and implementation of the security protocols described
above. When moving from simulation to implementation, the
throughput will decrease as the average CoAP transaction time
increases. OSCORE has a higher throughput in both simulation and
implementation than other security protocols since it is faster. DTLS
1.2 outperforms the implementation of TLS 1.2 and TLS 1.3 as it
transfers data over UDP. In the simulation, DTLS 1.2 and TLS 1.3 are
not so different in throughput as there is not so much variation in CoAP
transaction time in simulation between them.

TLS 1.2 TLS 1.3 DTLS 1.2 OSCORE CoAP
17 Bytes Response Size

(Simulation) 2.59 2.19 2.24 0.593 0.342

94 Bytes Response Size
(Simulation) 4.35 4.175 4.32 0.661 0.633

17 Bytes Response Size
(Implementation) 18.21 18.19 15.52 15.49 15

94 Bytes Response Size
(Implementation) 21.05 20.3 16.7 16.67 15.6

0

5

10

15

20

25

53

Figure 27: Average CoAP Transaction Throughput (kbps)

5.2 Conclusion

In this thesis, we simulated and implemented different security
protocols such as TLS 1.2, TLS 1.3, DTLS 1.2, and OSCORE to find
the most effective one out of it. Different evaluation parameters were
used to calculate the performance of these security protocols. Through
evaluating the performance of the simulation and implementation, we
can infer that OSCORE outperforms all other security protocols as it
has lower latency, higher throughput, and lower energy consumption
for NINA-W102 in data transmission because it does not have a key
exchange protocol. However, we should consider that the algorithm
used for OSCORE encryption is not the same as the other security
protocols used in this thesis. Among security protocols that have a
handshake, TLS 1.3 outperforms with a lower handshake latency and
security overhead, while DTLS 1.2 outperforms in application data
latency. These results are suggesting the need to switch from TLS 1.3
to DTLS 1.3. As DTLS 1.3 has TLS 1.3 handshake messages and
flows, with some minor improvements, and the DTLS 1.3 application

TLS 1.2 TLS 1.3 DTLS 1.2 OSCORE CoAP
17 Bytes Response Size

(Simulation) 74.13 87.679 85.714 323.777 397.66

94 Bytes Response Size
(Simulation) 185.74 193.532 187.037 1222.39 1276.461

17 Bytes Response Size
(Implementation) 10.54 10.55 12.368 12.395 12.8

94 Bytes Response Size
(Implementation) 38.38 39.802 48.383 48.47 51.79

0

200

400

600

800

1000

1200

1400

54

data is as fast as DTLS 1.2, we can conclude that DTLS 1.3 has lower
latency than DTLS 1.2, TLS 1.2, and TLS 1.3. As a result, DTLS 1.3
would have less data transmission latency, greater CoAP message
throughput, and reduced energy consumption than other handshake
security protocols. Finally, in this thesis, for extrapolating DTLS 1.3,
the handshake time and CoAP transaction time of DTLS 1.3 is chosen
the same as TLS 1.3 handshake time and DTLS 1.2 CoAP transaction
time.

Figure 28 shows the average time and throughput of the CoAP
transaction of 94 bytes of response size for the security protocols
specified. This response size was used as an example for extrapolating
DTLS 1.3 to see the effectiveness of the implementation. Seeing the
figure, DTLS 1.3 is supposed to be as fast as DTLS 1.2 when sending
the data. As a result, the average CoAP transaction throughput for
DTLS 1.3 became approximately as high as DTLS 1.2.

Figure 28: Average CoAP Transaction Time (s) and Throughput (kbps)

Figure 29 indicates the average delay and energy consumption of 94
bytes of response size for the security protocols listed below. Seeing
the figure, the extrapolated DTLS 1.3 has a low handshake latency

0

10

20

30

40

50

60

Average CoAP
Transaction

Time (s)

Average CoAP
Transaction
Throughput

(kbps)

TLS 1.2

TLS 1.3

DTLS 1.2

DTLS 1.3

55

comparable to TLS 1.3. Also, due to the lower latency of DTLS 1.3,
lower energy consumption is expected.

Figure 29: Handshake Delay (s) and Average Energy Consumption (J)

5.3 Future Work

The critical role of security in the real world would open up various
fields of research in security protocols, one of which is to add key
exchange protocols such as EDHOC over OSCORE to enhance the
efficiency of data transmission. In addition, the implementation of
stronger security protocol cipher suites would reduce power
consumption and memory use on IoT devices and make
communications more secure. One more work to be added is the
development of DTSL 1.3, which is supposed to have reduced latency
and higher throughput in data transmission.

0

0.5

1

1.5

2

2.5

3

Handshake Delay (s) Average Energy Consumption (J)

TLS 1.2

TLS 1.3

DTLS 1.2

DTLS 1.3

56

References
 [1] E. Rescorla, “Datagram Transport Layer Security”, RFC 4347 -
Datagram Transport Layer Security, April 2006.

[2] T. Dierks, “The TLS Protocol Version 1.0”, RFC 2246 - The TLS
Protocol Version 1.0, January 1999.

[3] G. Selander, J. Mattsson, and F. Palombini, “Object Security for
Constrained RESTful Environments (OSCORE)”, RFC 8613 - Object
Security for Constrained RESTful Environments (OSCORE), July
2019.

[4] G. Selander, J. Mattsson, and F. Palombini, “Ephemeral Diffie-
Hellman Over COSE (EDHOC) draft-selander-ace-cose-ecdhe-
10”,draft-selander-ace-cose-ecdhe-10 - Ephemeral Diffie-Hellman
Over COSE (EDHOC), September 18, 2018.

[5] E. Rescorla, and N. Modadugu, “Datagram Transport Layer
Security Version 1.2”, RFC 6347 - Datagram Transport Layer Security
Version 1.2, January 2012.

[6] T. Dierks, and E. Rescorla, “The Transport Layer Security (TLS)
Protocol Version 1.2”, RFC 5246 - The Transport Layer Security
(TLS) Protocol Version 1.2, August 2008.

[7] E. Rescorla, H. Tschofenig, and N. Modadugu, “Datagram
Transport Layer Security Version 1.3”, draft-ietf-tls-dtls13-34 - The
Datagram Transport Layer Security (DTLS) Protocol Version 1.3,
March 2020.

[8] E. Rescorla, and Mozilla, “The Transport Layer Security (TLS)
Protocol Version 1.3”, RFC 8446 - The Transport Layer Security
(TLS) Protocol Version 1.3, August 2018.

57

[9] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained
Application Protocol (CoAP)”, RFC 7252 - The Constrained
Application Protocol (CoAP), June 2014.

[10] C. Bormann, M. Ersue, and A. Keranen, “Terminology for
Constrained-Node Networks”, RFC 7228 - Terminology for
Constrained-Node Networks, May 2014.

[11] A. Castellani, S. Loreto, A. Rahman, T. Fossati, and E. Dijk,
“Guidelines for Mapping Implementations: HTTP to the Constrained
Application Protocol (CoAP)”, RFC 8075 - Guidelines for Mapping
Implementations: HTTP to the Constrained Application Protocol
(CoAP), February 2017.

[12] K. Hartke, “Observing Resources in the Constrained Application
Protocol (CoAP)”, RFC 7641 - Observing Resources in the
Constrained Application Protocol (CoAP), September 2015.

[13] C. Bormann, and Z. Shelby, Ed, “Block-Wise Transfers in the
Constrained Application Protocol (CoAP)”, RFC 7959 - Block-Wise
Transfers in the Constrained Application Protocol (CoAP), August
2016.

[14] A. Bhattacharyya, S. Bandyopadhyay, A. Pal, and T. Bose,
“Constrained Application Protocol (CoAP) Option for No Server
Response”, RFC 7967 - Constrained Application Protocol (CoAP)
Option for No Server Response, August 2016.

[15] G. Selander, J. Mattsson, F. Palombini, and L. Seitz, “Object
Security for Constrained RESTful Environments (OSCORE)”, RFC
8613 - Object Security for Constrained RESTful Environments
(OSCORE), July 2019.

[16] J. Schaad, “CBOR Object Signing and Encryption (COSE)”, RFC
8152 - CBOR Object Signing and Encryption (COSE), July 2017.

58

[17] C. Bormann, and P. Hoffman, “Concise Binary Object
Representation (CBOR) draft-ietf-cbor-7049bis-13”, draft-ietf-cbor-
7049bis-13 - Concise Binary Object Representation (CBOR), March
2020.

[18] L. Seitz, F. Palombini, M. Gunnarsson, and G. Selander,
“OSCORE profile of the Authentication and Authorization for
Constrained Environments Framework draft-ietf-ace-oscore-profile-
02”, draft-ietf-ace-oscore-profile-02 - OSCORE profile of the
Authentication and Authorization for Constrained Environments
Framework, June 2018.

[19] J. Mattsson, F. Palombini, and M. Vucinic, “Comparison of CoAP
Security Protocols draft-ietf-lwig-security-protocol-comparison-
04”,draft-ietf-lwig-security-protocol-comparison-04-Comparison of
CoAP Security Protocols, March 2020.

[20] G. Selander, J. Mattsson, and F. Palombini, “OSCORE: A look at
the new IoT security protocol”, OSCORE: A look at the new IoT
security protocol, November 2019.

[21] T. Dierks and C. Allen. “The TLS Protocol Version 1.0”, RFC
2246 - The TLS Protocol Version 1.0, January 1999.

[22] T. Dierks and E. Rescorla. “The Transport Layer Security (TLS)
Protocol Version 1.1”, RFC 4346 - The Transport Layer Security
(TLS) Protocol Version 1.1, April 2006.

[23] T. Dierks and E. Rescorla. “The Transport Layer Security (TLS)
Protocol Version 1.2”, RFC 5246 - The Transport Layer Security
(TLS) Protocol Version 1.2, August 2008.

[24] M. Crispin, “Internet Message Access Protocol (IMAP) - Version
4rev1”, RFC 3501 - INTERNET MESSAGE ACCESS PROTOCOL -
VERSION 4rev1. March 2003.

59

[25] M. Rose, “Post Office Protocol (POP) - Version 3”, RFC 1081 -
Post Office Protocol: Version 3. November 1988.

[26] E. Rescorla and N. Modadugu, “Datagram Transport Layer
Security”, RFC 4347 - Datagram Transport Layer Security. April
2006.

[27] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J.
Peterson, R. Sparks, M. Handley, and E. Schooler, “SIP: Session
Initiation Protocol”, RFC 3261 - SIP: Session Initiation Protocol. June
2002.

[28] P. Karn, Qualcomm, and W. Simpson, “Photuris: Session-Key
Management Protocol”, https://tools.ietf.org/pdf/rfc2522.pdf. March
1999.

[29]Bernstein, D., “ChaCha, a variant of Salsa20”, ChaCha, a variant
of Salsa20, January 2008.

[30] Babbage, S., DeCanniere, C., Cantenaut, A., Cid, C., Gilbert, H.,
Johansson, T., Parker, M., Preneel, B., Rijmen, V., and M. Robshaw,
“The eSTREAM Portfolio (rev. 1)”, The eSTREAM
Project. September 2008.

[31] Y. Nir, and A. Langley, “ChaCha20 and Poly1305 for IETF
Protocols”, RFC 7539 - ChaCha20 and Poly1305 for IETF Protocols,
May 2015.

[31] Bernstein, D., "The Poly1305-AES message-authentication code",
The Poly1305-AES message-authentication code, February 2005.

[32] Isobe, T., Ohigashi, T., Watanabe, Y., and M. Morii, “Full
Plaintext Recovery Attack on Broadcast RC4”, Full Plaintext Recovery
Attack on Broadcast RC4.

[33] https://github.com/wolfSSL.

60

[34] https://github.com/contiki-ng/contiki-ng.

[35] https://github.com/eclipse/californium.

[36] https://www.u-blox.com/sites/default/files/NINA-
W10_DataSheet_%28UBX-17065507%29.pdf.

[37] https://www.u-blox.com/en/docs/UBX-17051775.

[38]
https://www.espressif.com/sites/default/files/documentation/esp32_da
tasheet_en.pdf.

[39] https://docs.espressif.com/projects/esp-idf/en/latest/esp32/get-
started/index.html.

[40] https://visualgdb.com/download/.

[41]
https://en.wikipedia.org/wiki/Cipher_suite#DTLS_with_cipher_suites
.

[42] https://www.wolfssl.com/differences-between-tls-1-2-and-tls-1-
3/.

[43] https://tools.ietf.org/html/rfc8446#page-8.

61

APPENDIX A

A.1 TLS and DTLS simulation setup

TLS 1.2:

TLS 1.2 server example starts working with the following commands
in the Windows Command Prompt after building the library:

>cd wolfssl-master/Debug

>server.exe –v 3

TLS 1.2 client example starts working with the following commands
in the Windows Command Prompt after building the library:

>cd wolfssl-master/Debug

>client.exe –v 3

TLS 1.3:

To simulate TLS 1.3, some functions should be enabled in
user_settings.h file:

#define WOLFSSL_TLS13

#define HAVE_TLS_EXTENSIONS

#define HAVE_SUPPORTED_CURVES

#define HAVE_ECC

#define HAVE_HKDF

62

#define HAVE_FFDHE_8192

#define WC_RSA_PSS

TLS 1.3 server example starts working with the following commands
in the Windows Command Prompt after building the library:

>cd wolfssl-master/Debug

>server.exe –v 4

TLS 1.3 client example starts working with the following commands
in the Windows Command Prompt after building the library:

>cd wolfssl-master/Debug

> client.exe –v 4

DTLS 1.2

Using the user_settings.h header file DTLS 1.2 can be enabled by:

#define WOLFSSL_DTLS

 DTLS 1.2 server example starts working with the following
commands in the Windows Command Prompt after building the
library:

>cd wolfssl-master/Debug

>server.exe –u –v 3

DTLS 1.2 client example starts working with the following commands
in the Windows Command Prompt after building the library:

>cd wolfssl-master/Debug

> client.exe –u –v 3.

63

APPENDIX B

B.1 TLS and DTLS Setup On NINA-W10

Setup Instructions:

 Windows PC running TLS server from WolfSSL.
 NINA-W10 running TLS client from WolfSSL.
 Wi-Fi Access point to which both the server and client are

connected.

Instruction for TLS and DTLS client:

1. Download VisualGDB version 5.5.
2. Start Visual Studio, create a new project and open the

VisualGDB ESP32 project wizard.
3. On the first page of the wizard select, the CMake build

subsystem.
4. Install and select the latest ESP32 under toolchain and the ESP-

IDF version 4.0 under SDK Checkout.
5. Set the ESP-IDF path on environment variables to the version

4.0 path.
6. Download WolfSSL library from GitHub.
7. Run setup.sh from wolfssl/IDE/espressif/ESP-IDF to deploy

files into the ESP-IDF tree.
8. Uncomment out “#define WOLFSSL_ESPIDF” in path to

wolfssl/wolfssl/wolfcrypt/settings.h.
9. Go back to VisualGDB and select Wolfssl Client from project

samples.
10. On the Debug settings page, select the JTAG debugger (e.g.

Olimex ARM-USB-OCD-H).
11. Press, “Finish” to generate the project. Once the project is

loaded, open the “client-tls.c” and replace WolfSSL method to

64

DTLS 1.2/TLS 1.3/TLS 1.2. Also, to run DTLS there is a need
to change the socket to UDP.

12. Make menuconfig to configure the project.
12.1. Example Configuration:

Set up Wi-Fi SSID.

 Set up Wi-Fi Password.
13. Target host IP address: Set the server IP address in “#define

WEB_SERVER” in the main code.
14. Flash and run the project.

Efficient Security Protocol for
RESTful IoT devices
KARNARJUN KANTHARAJAN AND SAHAR SHIRAFKAN
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2020

K
A

R
N

A
R

JU
N

 K
A

N
TH

A
R

A
JA

N
 A

N
D

 SA
H

A
R

 SH
IR

A
FK

A
N

Effi
cient Security Protocol for R

EST
ful IoT

 devices
LU

N
D

 2020

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2020-793
http://www.eit.lth.se

