
Efficient Security Protocol for 
RESTful IoT devices
KARNARJUN KANTHARAJAN AND SAHAR SHIRAFKAN
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2020

K
A

R
N

A
R

JU
N

 K
A

N
TH

A
R

A
JA

N
 A

N
D

 SA
H

A
R

 SH
IR

A
FK

A
N

Effi
cient Security Protocol for R

EST
ful IoT

 devices
LU

N
D

 2020

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2020-793
http://www.eit.lth.se



i 
 

 

             

                   

 

  

 

 
 

Master’s Thesis 
 
 

Efficient Security Protocol for 
RESTful IoT devices 

 
By 
 

Karnarjun Kantharajan and Sahar Shirafkan 
 ka7830ka-s@student.lu.se - sa2408sh-s@student.lu.se 

 
   

 
 
 

Department of Electrical and Information Technology 
Faculty of Engineering, LTH, Lund University 

SE-221 00 Lund, Sweden 
  



ii 
 

Abstract 
In this thesis, we presented comparisons with respect to Energy 
Consumption, bandwidth, Constraint Application protocol (CoAP) 
transaction time and throughput for four different security protocols. 
We simulated and implemented the Datagram Transport Layer 
Protection (DTLS) version 1.2, Transport Layer Protocol (TLS) 
version 1.2 & 1.3, and Object Protection for Restricted RESTful 
Environments (OSCORE). All of the above security protocols allow 
client / server applications to communicate over the internet with 
message forgery, eavesdropping, and tampering protection. In 
particular, we compared the simulation and implementation results of 
the mentioned protocols to extrapolate the performance of the DTLS 
version 1.3. 

  

Keywords: Internet of Things (IoT), TLS 1.2 & 1.3, DTLS 1.2, 
OSCORE, CoAP, Security Protocols. 
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Popular Science Summary 

The Internet of Things (IoT) has become a concept that defines the 
billions of connected devices that are intelligent. IoT covers everything 
from connected devices, mobile home products, roadside cameras, 
production control equipment, medical equipment, vehicles, and more. 
To drive innovation and improve customer satisfaction, companies use 
IoT to transform their business and develop new revenue streams. 
There are three crucial reasons for illustrating the need for security in 
IoT devices, such as the sheer volume and diversity of applications and 
data sensitivity. By the early future, there will be an estimated 25 
billion IoT devices worldwide, and about 25% of cyber-attacks will 
target IoT devices. Although many companies can recognize that IoT 
security is necessary to protect consumers and clients, the problem may 
rapidly become complicated. As the market continues to evolve, there 
is a lack of best practices and recommendations for securing the IoT 
device. Also, the other factor to be addressed when designing an IoT 
system is the power consumption of the system. With the rise of the 
Internet of Things, the development of battery-operated devices is a 
significant aspect that can make a huge difference in the device's 
efficiency. Device power consumption in IoT is challenging since the 
device should still be powered up and could be placed anywhere. 
Mostly, IoT devices are remotely placed and need to use a battery to 
operate. 

Considering the current challenges facing IoT security, in this thesis, 
we picked four separate security protocols, including TLS 1.2, TLS 1.3, 
DTLS 1.2, and OSCORE for securing IoT device. To compare the 
security protocol's efficiency, we simulated and implemented the 
mentioned security protocol in a real environment. We compared the 
security protocols with the data transmission time and throughput and 
security overhead in the simulation by running the client and the server 
on PC. While in implementation using the Stand-alone multi-radio 
modules (NINA-W102) as a client, we compared the security protocols 
with the data transmission time and throughput, security overhead, and 
even calculated the energy consumption of the IoT unit, which is one 
of the issues in IoT system's design.   
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CHAPTER 1 

Introduction 
1.1 Background  

The Internet of Things (IoT) is the new global connectivity paradigm 
allowing billions of devices to communicate among themselves and 
with the rest of the Internet. Hence, IoT security is one of the top 
research topics. IoT has three layers consisting of layers of perception, 
network, and application. Security at the application layer offers an 
appealing alternative to secure applications on the Internet of Things 
(IoT), especially where protection of transport layers is not adequate or 
where safety needs to operate through a range of underlying protocols. 
A variety of safety standards can be used in each layer to achieve a 
reliable realization of IoT. Many new IoT protocols have been released, 
aimed at protecting critical data such as Datagram Transport Layer 
Security (DTLS) [1], Transport Layer Security (TLS) [2], and Object 
Security for Constrained RESTful Environments (OSCORE) [3] and 
Ephemeral Diffie-Hellman Over COSE (EDHOC) [4]. IoT devices can 
be restricted in various ways including memory, storage, processing 
capacity, and energy, so finding the most efficient security protocols 
for RESTful IoT units is an important issue. 

The Constrained Application Protocol (CoAP) is a specialized Internet 
Application layer Protocol, as specified in [9] for constrained devices. 
The lightweight protocol CoAP is intended to be used and considered 
as a replacement of HTTP for being an IoT application layer protocol. 
This allows certain constrained devices called "nodes" to connect using 
common protocols to the broader Internet. Also, it is designed to be 
used between devices on the same constrained network (e.g., low-
power, loss networks), between devices and general nodes on the 
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Internet, and between Devices on different constrained networks that 
are also linked to the Internet [10]. CoAP is also used by other 
channels, for example, SMS on mobile communication networks. 
CoAP is a service layer protocol intended for use in resource-
constrained internet applications, such as network nodes with wireless 
sensors. It can run on most devices supporting User Datagram Protocol 
(UDP) or Transmission Control Protocol (TCP). 

The TLS protocol's primary aim is to provide authentication, 
confidentially and integrity protection between two communicating 
peers. TLS runs over the transport layer protocol and generates security 
services for application layer protocols. TLS requires a connection-
oriented transport channel-usually TCP. The protocol is released in 
different versions and has been upgraded throughout the years. The 
very first version was TLS 1.0 which was released in 1999 [21], TLS 
1.1 was released in 2006 [22], and TLS 1.2 in 2008 [23]. The several 
weaknesses found in TLS 1.2 and below, as well as the growing 
demand to enhance protocol efficiency, motivated by introducing the 
next version of the protocol, TLS 1.3, in the spring of 2014. The 
Datagram Transport Layer Security (DTLS) protocol has been 
developed for applications that use UDP as a transport layer to provide 
secure communication between peers who communicate. DTLS is 
intentionally designed to be as similar as possible to TLS, both to 
eliminate innovation in protection and to increase the amount of reuse 
of code and infrastructure. The DTLS protocol has also been releases 
in different versions. DTLS 1.0 that was originally defined as a delta 
from TLS 1.0, DTLS 1.2 [5] was defined as a series of deltas to TLS 
1.2 [6] and DTLS 1.3 protocol is based on the Transport Layer Security 
(TLS) 1.3 protocol and provides equivalent security guarantees.  

OSCORE is a method for application-layer security of CoAP, using 
Concise Binary Object Representation (CBOR) a method for 
protecting individual messages at the application layer suitable for 
constrained devices is provided by CBOR Object Signing and 
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Encryption (COSE) [16]). OSCORE provides end-to-end protection 
between endpoints that communicate via CoAP or CoAP-mappable 
HTTP. This method is designed for constrained nodes and networks. 
OSCOE uses a small message size offering low complexity 
implementation as well as low memory requirements [15].  

1.2 Problem 

IoT security is characterized by a high-priority research interest as it is 
an evolution of the conventional, unsecured Internet paradigm where 
communications in the digital world reach the physical world. IoT 
systems often deal with personal information, valuable business data, 
and actuators interacting with the physical world. Not only do such 
systems need security and privacy, they often need end-to-end 
protection with source authentication and perfect-forward secrecy. In 
particular, IoT security frameworks must tackle conventional 
networking attacks and, at the same time, provide safe communications 
for all forms of interactions like human-to-machine and machine-to-
machine. User data is protected by security protocols such as TLS, 
DTLS, OSCORE, and EDHOC. The selection of efficient security 
protocols for IoT devices is a critical issue as IoT devices can be 
restricted in various ways including memory, storage, processing 
capacity, and energy. Also, an important risk of IoT systems is 
cryptographic key exposure [7]. Network nodes can be physically open 
to attackers, so securing keys and collected data on the server end is 
also critical, as it is typical for IoT systems to collect a large amount of 
sensitive data. 

There are lots of challenges that security protocols have to address in 
general like per-packet message size, overheads, transmission times, 
and power consumption. The message size of a key exchange protocol 
can have a major impact on the performance of an IoT device, 
particularly in noisy environments that show the need to have a security 
protocol with a small key exchange message size.  In addition, the 
power usage of wireless devices is highly dependent on the 
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transmitting, listening and receiving of messages, which indicates the 
need to use the appropriate security protocol depending on the 
transmitting of the data byte [4]. In this thesis, we will evaluate and test 
the per-packet message size overheads, transmission times, and power 
consumption for TLS 1.2 & 1.3, DTLS 1.2, and OSCORE that run 
above CoAP, to get a good view of which security protocol is the most 
efficient for IoT devices. The purpose for including security protocols 
above CoAP is that we are going to evaluate the performance of DTLS 
1.3 from the results of the security protocols listed above.  

1.3 Methodology 

The thesis project will be based on the discovery of efficient security 
protocols in power and bandwidth for IoT devices. We are coding the 
software required for the embedded IoT device and perform power and 
overhead measurements on the IoT device. Software tools such as the 
Visual Studio and the Eclipse IDE are used to simulate security 
protocols, and Wireshark is used as a network analyzer. The open-
source JAVA code of Californium is used for servers of CoAP, DTLS, 
and OSCORE. The client is coded in the Visual Studio for the CoAP, 
TLS 1.2 & 1.3, DTLS 1.2, OSCORE, and Wireshark for viewing the 
packet exchange. These security protocols are implemented into a 
NINA-W10 device to measure the power efficiency and overhead and 
compare the results to choose the appropriate one.  

1.4 Outline 

In this thesis chapter, 1 consists of the basic introduction of the thesis. 
It also contains Thesis Problems, Methodology, and Outline. Chapter 
2, is an overview of IoT devices, considered application protocol, and 
security protocols. Chapter 3, is presenting the simulation of 
considered security protocols and the output results of simulation. 
Chapter 4, is representing the implementation of the mentioned 
security protocols over CoAP and the results of implementation. 
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Finally, Chapter 5 concludes the implementation and simulation of this 
thesis work. 
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CHAPTER 2 

Overview of considered security protocols 
2.1 The CoAP protocol 

Constrained Application Protocol (CoAP) [9] is a light application 
layer protocol for constrained nodes and networks in IoT devices. 
CoAP with different request/response methods supports interaction 
between application endpoints with low overhead, multicast support, 
and simplicity for constraint environment. 

Representational State Transfer (REST) is a software design style that 
specifies a series of constraints to be used when developing web 
services. Web services that fit with the REST architecture form, called 
RESTful Web Services. The aim of the Constrained RESTful 
Environments (CoRE) work is to implement the REST architecture in 
an acceptable form for the most constrained nodes and networks. One 
solution for the REST architect's deployment of constrained devices is 
the fragmentation of packets, which has the downside of reducing the 
throughput. CoAP comes with a new approach in REST architect 
deployment for restricted devices as it eliminates the need for 
fragmentation while keeping the overhead small. Important features of 
CoAP are:  

 Fulfilling M2M requirements in constrained environments. 
 Low header overhead and parsing complexity. 
 URI and Content-type support. 
 Simple proxy and caching capabilities. 
 Functionality of mapping to HTTP and operating with 

protocols that are based on HTTP. 
 Ability of binding to UDP and security protocols like DTLS. 
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In addition, CoAP must also be implemented through reliable 
transport, such as TCP or Transport Layer Security (TLS), in some 
situations, such as when networks do not forward UDP packets or are 
rate-limiting UDP traffic. 

The CoAP protocol is dividing into two layers like Requests/Responses 
and Messages Figure 1. The next sections will introduce these layers. 

 
Application 

 

 

 
UDP 

 

Figure 1: CoAP Layers 

2.1.1 Message Layer 

The CoAP messaging model is based on the transfer of messages 
between endpoints via UDP/TCP. 

The CoAP message format includes fixed-size 4-byte header, variable-
length Token value, options, and payload shown in Figure 2. 

 

 

 

    Requests/Responses 

            Messages CoAP 
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Figure 2: CoAP Message Format 

CoAP message header includes: 

 Version (Ver): This field is 2-bit unsigned integer shows the 
CoAP version. 

 Type (T): This field is 2-bit unsigned integer shows message 
type. There are four different message types for CoAP like 
Confirmable message (CON), Non-Confirmable message 
(NON), Acknowledgement message (ACK), and Reset 
message (RST). An ACK and RST are CoAP server response 
type where ACK message recognizes the arrival of a particular 
Confirmable message and RST message shows the missing of 
some context in CON and NON. CON and NON messages are 
CoAP Request/Response methods. CON is for showing the 
reliability of a message and it needs ACK. NON is a message 
that does not require reliable transmission and ACK but it has 
a duplication identification Message-ID. 

 Token Length (TKL): This field is 4-bit unsigned integer 
shows the length of the Token field (0-8 bytes). 

 Code: This field is 8-bit unsigned integer, which is explained 
in the section 2.1.2. 

 Message ID: This field is 16-bit unsigned integer which is used 
to match messages of types CON/NON with ACK/RST and 
detecting message duplication. 
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The second part of the message format is the Token value used to 
correlate requests and responses, which can be between 0 to 8 bytes 
long. The next field is filled when there are CoAP options otherwise, 
it is a sequence of zeros. Finally, the last part is filled with an optional 
payload. One-byte Payload Marker (0xFF) shows the payload's 
presence, and without this marker, the payload is zero. 

The Message Layer is responsible for reliability and sequencing with 
different types of CoAP messages like CON, NON, ACK. 

2.1.2 Request/Responses Layer 

In the request/response layer, the CoAP client sends one or more CoAP 
requests to the server. The server that receives the Request will reply 
with the CoAP Response. The Request and the Response are 
exchanged asynchronously via CoAP messages. The CoAP message 
carries a method code or Response code. Also, the CoAP message 
carries some optional Request and Response information like URI, 
payload media type, and Token to match requests and responses. The 
CoAP Request methods are: 

 
 GET: The GET method is used to obtain information that 

currently corresponds to the resource defined by the URI 
request. 

 POST: The POST method recommends that the description 
used in the Request be processed. 

 PUT: The PUT method recommends that the resource specified 
by the URI requirement be changed or generated with the 
enclosed representation. 

 DELETE: The DELETE method recommends that the resource 
specified by the URI request be removed. 

 
Based on the CoAP request methods, CoAP response codes are: 
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 2.xx (Success): This code indicates that the client Request 
received, understood, and accepted successfully. Where the last 
two. xx denotes: .01 (Created), .02 (Deleted), .03 (Valid), .04 
(Changed), and .05(Content). 

 4.xx (Client Error): This code shows that the server did not 
understand the request. Where the last two .xx denotes .00 (Bad 
Request), .01 (Unauthorized), .02 (Bad Option), .03 
(Forbidden), .04 (Not Found), .05 (Method not Allowed), .06 
(Not Acceptable), .12 (Precondition Failed), .13(Request entity 
too large), and .15 (Unsupported Content-Format). 

 5.xx (Server Error): This code shows server error where the last 
two .xx indicates: .00 (Internal Server Error), .01 (Not 
Implemented), .02 (Bad Gateway), .03 (Server Unavailable), 
.04 (Gateway Timeout), and .05 (Proxy Not Supported). 
 

In this thesis, the CoAP Request and Response Carried in 
Confirmable Message (CON) was selected as seen in Figure 3: 

 
 

Figure 3: CoAP Message Transmission 
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2.2 The DTLS Security Protocol 

Many techniques are used to secure network traffic. Transport Layer 
Security (TLS) [2] is one such technique that is the most widely used 
protocol for securing email and web traffic. It operates in a transparent 
connection-oriented channel and runs over reliable transport channels 
such as Transmission Control Protocol (TCP). Over the past few years, 
the usage of the User Datagram Protocol (UDP) has increased in many 
application protocols. The CoAP protocol is used for communication 
in IoT devices operating over UDP and TCP. There is also a need for 
a TLS compatible datagram variant. To mitigate innovation on security 
and to increase the amount of reuse of code and infrastructure IETF 
has proposed Datagram Transport Layer Security (DTLS) [1] [5].  

Unreliability in TLS causes problems at two levels i.e.  

1. Individual records are not independently decrypted by TLS, so 
if record N is not obtained the integrity check is on the sequence 
number, then the integrity check on record N+1 will be based 
on the incorrect sequence number and will thus fail. 

2. If the messages are lost, the TLS handshake layer assumes that 
the handshake messages are delivered reliably and breaks. 

For securing the communication and preventing eavesdropping, 
tampering, message forgery between the two different peers, the 
Datagram Transport Layer Security (DTLS) protocol can be used. 
Datagram transports applications include media streaming, Internet 
telephony, and online gaming for communication. All these 
applications are characterized by being delay-sensitive. Applications 
with such behaviors are unchanged when DTLS protocol is used for 
securing communication since the DTLS protocol does not compensate 
for lost or reordered data traffic. It is designed to run in application 
space and doesn’t need any kernel modifications. As discussed in 
Section 1.1, there are different versions of DTLS, this thesis focuses 
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on DTLS 1.2. Below, we discuss how DTLS handles the different 
problems related to datagram transport. 

2.2.1 Providing Handshake Reliability 

In TLS, messages are mismatched and produce errors if the order is not 
defined correctly. So, messages must be defined in the order. This is 
incompatible with reordering and message loss. Also, TLS handshake 
messages create a problem of IP fragmentation for sending over 
datagram, as these messages are larger than the datagram's size. DTLS 
provides fixes for these two problems. 

2.2.2 Loss of Packets 

DTLS uses a retransmission timer to fix the issue of packet loss. The 
client sends the client hello message to the server during the initial 
process of the DTLS handshake and hopes to receive a hello verify 
request from the server. When the client does not receive the hello 
verify request within the specified period then the timer expires and the 
client knows that the request has been lost either to the client, hello, or 
from server hello. The client retransmits the message and retransmits 
it when the server receives the retransmission. The server also has the 
retransmission timer, and when the timer ends, it retransmits. For hello 
verify request, the timeout and retransmission do not apply. The hello 
verify request is designed to be small enough not to be broken by itself, 
thus eliminating the issues of multiple hello verifying requests. 

2.2.3 Message Re-ordering 

A specific sequence number has been assigned to handshake messages 
within that handshake in DTLS. The receiver, which receives this 
handshake, regulates the next upcoming message, which is as 
expected, or not. If the received message is not the same then it is put 
up in the queue for future handing; else if the message is as expected it 
proceeds with further processing. 
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2.2.4 Length of the Message 

In DTLS and TLS, the length of the handshake messages is actually 
larger when it is compared with the length of the UDP datagram. DTLS 
handshake messages are fragmented into separate DTLS record layers. 
Each recording layer is intended to fit in a single IP datagram and this 
is the solution to solve the issue. Fragment offset and length consist of 
individual handshake messages. Hence, the receiver occupies all the 
bytes of handshake message and reassembles the original 
unfragmented message. 

2.2.5 The DTLS Handshake Protocol 

Seeing from Figure 4, DTLS uses almost the same handshake and flow 
communications as TLS, except for three critical modifications: 

1. To avoid Denial of Service (DoS), a stateless cookie exchange 
has been added in DTLS. 

2. Modifications have been made in the DTLS handshake header 
to handle message loss, reordering, and IP fragmentation.  

3. To handle message loss, a retransmission timer has been added 
in DTLS.  

In addition to the examples mentioned above, DTLS message formats 
flow, and logic is similar to TLS. 
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Figure 4: DTLS Handshake 

2.2.6 Countermeasures on denial of service 

A Denial-of - Service (DoS) attack is an attack designed to lock down 
a system or network, making it difficult for the intended users to reach 
it. DTLS contains two types of DOS attacks that are of major concern: 

1. By transmitting a series of handshake initiation requests, an 
attacker can consume excessive resources on the server, this 
causes the server to perform expensive cryptographic 
operations and allocate TLS session state data. 
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2. By using the server as the amplifier, an attacker can send a 
connection initiation message with a forged source of the 
victim.  

DTLS uses stateless cookie technique to protect the system against 
these two types of DoS attacks. When the client sends the client hello 
to the server, the server will respond with a hello verify request 
containing a stateless cookie generated by using the technique 
of PHOTURIS [28]. The client then responds back with client hello 
adding the cookie. Then the server verifies the cookie and proceeds 
with the handshake only if the cookie is valid. DoS attacks with 
spoofed IP addresses can be potentially stopped using this mechanism 
since it forces the attacker/ clients to be received with cookies; but still 
this method does not guarantee any defense against DoS attack with a 
valid IP address.  

2.2.7 Cipher Suites 

The cipher suite [41] is generated with a group of algorithms to secure 
the network connections, which uses TLS. As DTLS is based on TLS, 
the cipher suite used for DTLS in this thesis is 
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256. The 
mentioned cipher suite uses authenticated encryption with additional 
data algorithm AEAD_AES_128_GCM, and it is the combination of 
authentication, encryption, and message authentication code (MAC) 
algorithms. AEAD is a form of encryption that provides confidentiality 
for the plaintext and a way to check its integrity and authenticity. 

Three parts of this cipher suite include: 

 ECDHE_RSA algorithm uses ephemeral elliptic curve Diffie-
Hellman to exchange keys. During a handshake, the key 
exchange algorithm is used to decide whether and how the 
client and server can authenticate. 
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  AES_128_GCM with 128 bits is used to encrypt the message 
stream with a block cipher. 

 SHA256, a message authentication algorithm, is used for 
ensuring message integrity. 

2.2.8 Certificate 

While analyzing the DTLS handshake, the certificate is divided into 
two parts, like Client and Server Certificate. The client certificate acts 
as a way for the end-user to claim their identity on the server, and the 
server certificate verifies and validates the certificate holder's identity 
before authenticating it. Implementations are responsible for verifying 
certificate integrity and should generally support messages for 
certificate revocation. Certificates will also be checked by a reputable 
Certificate Authority (CA) to guarantee a correct signature. Selecting 
and introducing trustworthy CAs will be handled with considerable 
care. Users should be able to view certificate information and root CA 
information.  

  

2.3 The TLS 1.3 Security Protocol 
 

TLS version 1.3 is modified version of TLS 1.2 with some important 
improvements. In this section, we will address the major difference 
between TLS 1.3 [43] and TLS 1.2. TLS 1.3 has increased security and 
speed. The list of main functional differences is as follows: 

 All algorithms that are considered legacy have been removed 
from the list of approved symmetric algorithms, and the 
remaining algorithms are using Authenticated Encryption with 
Associated Data (AEAD).  

 Since all public-key based key exchange mechanisms now 
provide forward secrecy, the Static Diffie-Hellman cipher suite 
has been removed. 
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 In the TLS 1.2 handshake, messages after Server Hello were 
not encrypted, however in TLS 1.3, all handshake messages 
after Server Hello were encrypted. 

 The Extract-and-Expand Key Derivation Function (HKDF) 
based on HMAC is used as a key deviation function. This 
newly introduced function has improved key separation 
properties that make it easier for cryptographers to analyze.  

  For more consistent and needless messages, such as Change 
Cipher Spec, The handshake state machine has been 
substantially restructured.  

  Due to the reduction in the handshake the speed has been 
improved.  

  TLS 1.3 just need only one round-trip time before the client 
sends the application data. Whereas the older version of TLS 
requires two round-trip time. Also, the server will send the 
application data in response to the client's first handshake 
reply. This means that network latency has less effect on the 
time taken to create a stable link. 

Figure 5 shows the handshake of TLS 1.3. 
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Figure 5: TLS 1.3 Handshake 

2.4 The OSCORE Security Protocol 

Object Security for Constraint RESTful Environments (OSCORE) protocol 
is an application-layer security method for the Constraint Application 
Protocol (CoAP) by means of CBOR Object Signing and Encryption (COSE). 
CBOR is a data format designed for small code size and small message size, 
which modified the JavaScript Object Notation (JSON) data model by 
allowing for binary data, among other changes. CBORE is used for compact 
encoding in OSCORE. The COSE structure arranges all of the security 
messages based on the CBOR array type, which is used for encryption and 
key derivation structures. In Figure 6 below, we give a schematic overview 
of the message exchanges of OSCORE when used by CoAP.  
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Figure 6: OSCORE Handshake 

OSCORE can be used for both unreliable and reliable transport as these 
methods differ only in the CoAP messaging layer, which is not 
protected with OSCORE. In addition, OSCORE protects the RESTful 
interactions like the request method, the requested resource, and the 
payload of the message that is shown in Figure 7. As OSCORE protects 
only the relevant application layer information, the message overhead 
is minimal.  

Application 

Request / Response / Signaling 
OSCORE 

Messaging Layer / Message Framing 
UDP / TCP / … 

 

Figure 7: CoAP + OSCORE Layers 

 CoAP 
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OSCORE protects the plaintext of CoAP messages. Not all CoAP 
fields are equally protected but fields are separated into protected and 
unprotected fields. Table 1 below, gives an overview of how the CoAP 
header and payload fields are protected with OSCORE. 

Field Encrypt and Integrity 
Protect 

Encrypt and Integrity 
Unprotect 

Version  x 

Type  x 

Length  x 

Token 
Length 

 x 

Code x  

Message ID  x 

Token  x 

Payload x  

 

Table 1: Protection of CoAP Header Fields and Payload [18] 

OSCORE can provide end-to-end protection between endpoints 
including CoAP-to-CoAP, HTTP-to-CoAP, and CoAP-to-HTTP 
proxies. 
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2.4.1 The OSCORE Option 

The OSCORE header option indicates that the CoAP message is 
protected by the OSCORE security protocol, and it contains the 
compressed COSE object. The Object-Security option is critical, safe 
to forward, part of the cache key, not repeatable.  

In Figure 8, the OSCORE header option includes OSCORE flag bits 
that occupy the first byte, Partial IV parameter that occupies n bytes, 
the kid context flag that occupies 1 byte to encode the length of the 
flag, s bytes to encode the kid context, and the remaining bytes to 
encode the kid's value. Where h is the kid context flag and k is the kid 
flag.  

 

0   1  2  3  4  5  6  7  <---------- n bytes ---------->  0  1  2  3  4  5  6  7  < ------
- s bytes ------->                             

0 0 0 h k n Partial IV (if any) S (if 
any) 

Kid context (if 
any) 

Kid (if 
any) 

 

Figure 8: OSCORE Header Options 

2.4.2 OSCORE Security Context 

The security context is a set of parameters that link the security 
protocol to the environment and allow the server and the client to 
interact. OSCORE uses pre-shared keys that may have been generated 
out-of-band or with a key setup protocol that requires that the client 
and server establish a shared security context used to process the COSE 
objects. The security context is the set of elements of data necessary to 
perform cryptographic operations in OSCORE. There are three types 
of security contexts:  

1. The Sender Context, which is used to secure the messages to 
be sent, includes: 
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a) Sender ID:  

Sender ID is bytes of string used to identify the sender context, 
derive AEAD keys, Common IV, and to ensure unique AEAD 
nonces. AEAD Algorithm determines the maximum length of 
the sender ID, and it should be pre-established. 

b) Sender Key:  

Sender Key is bytes of a string containing the symmetric 
AEAD key to protect messages to send. It is derived from 
Common Context and Sender ID. AEAD Algorithm defines 
Sender key length. 

c) Sender Sequence Number: 

Sender Sequence Number is a non-negative integer used to list 
requests and certain responses where the AEAD Algorithm 
determines the maximum value of it. 

2. The Receiver Context, which is used to confirm the messages 
received, includes: 

a) Recipient ID:  

Recipient ID is bytes of string used to identify the recipient 
context, derive AEAD keys, Common IV, and to ensure unique 
AEAD nonces. AEAD Algorithm determines the maximum 
length of it, and the value of the recipient ID should be pre-
established. 

b) Recipient Key:  

Recipient Key is bytes of a string containing the symmetric 
AEAD key to verify messages received. It is derived from the 
Common Context and Recipient ID, and the AEAD Algorithm 
defines its length. 
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c) Replay Window:  

Replay Window is on the server-side to evaluate requests 
received. DTLS-type replay protection and a window size of 32 
will use as default values for Replay Window parameters. 

3. The common context from which all contexts derive includes:  

a) Authenticated Encryption with Associated Data (AEAD) 
Algorithm:  

The COSE AEAD algorithm, which is used for encryption, has 
the default value of AES-CCM-16-64-128 (COSE encoding 
algorithm: 10). 

b) HKDF Algorithm:  

An HMAC-based key derivation function (HKDF), which is 
used to derive Sender Key, Recipient Key, and Common IV, 
has the Default value of HKDF SHA-256. 

c) Master Secret:  

Master Secret contains variable length and random byte string 
to derive AEAD keys and Common IV. The master secret must 
be pre-configured into the peers. 

d) Master Salt:  

Optional byte string with variable length containing the salt 
used to derive AEAD keys and Common IV with the default 
value of empty byte string. 

e) ID Context:  

Optional variable-length byte string providing additional 
information to identify the Common Context and to derive 
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AEAD keys and Common IV. The use of ID Context is 
described in. 

f) Common IV:  

Byte string derived from Master Secret, Master Salt, and ID 
Context. They are used to generate the AEAD Nonce. 

 

Finally, some OSCORE differences with other security protocols 
include key negotiation and session management as it protects each 
payload with a pre-shared key, unlike (DTLS) which protects hop-by - 
hop messages, OSCORE protects the payload message with an end-to 
- end protection process. As a result, we can save power, bandwidth 
and computational resources. In addition, OSCORE enables translation 
of the HTTP-CoAP protocol at a gateway or a proxy that enables the 
use of OSCORE over TCP. 
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CHAPTER 3 

Simulation Results 

In this chapter we explain the simulation test we have performed for 
the different security protocols, such, we investigate, i.e., TLS 1.2, TLS 
1.3, DTLS 1.2, and OSCORE over CoAP. We compared the security 
overhead, handshake time/throughput, and CoAP transaction (CoAP 
GET Request + Response) time/throughput for these selected 
protocols. The tests were performed using Visual Studio as a 
development environment on windows 32/64 bit processor platform, 
where we simulate both client and server on the same PC with the local 
IP address using the open sources like Contiki-NG and WolfSSL 
Libraries. All tests were simulated for 20 iterations, and the results 
reported are the average values.  

3.1 Simulation Set-Up and Achieved Results 

In this thesis, the transfer of CoAP packet between client and server is 
simulated with different security protocol selections. We utilized open 
sources libraries to build the simulations. WolfSSL [33], and Contiki-
NG [34] was used as main security protocol implementation libraries. 
The WolfSSL library is a C-language-based SSL/TLS library designed 
for IoT, embedded, and RTOS environments. The advantages of this 
library, among other open sources, are the size, speed, feature set, and 
ability to support TLS 1.2, TLS 1.3, and DTLS 1.2. Since the WolfSSL 
library does not support OSCORE, a branch of Contiki-NG [34] open 
source was used for simulating OSCORE. Contiki-NG is an open-
source library used for next-generation IoT applications, which focuses 
on low-power communication and standard protocols. Visual Studio 
Community Version 2019 was used to simulate the server and client 
on the same Computer with the Windows 32/64 bit processor and the 
specified libraries. Finally, Wireshark tool was used to capture the 
packets and analyze security performance. Figure 9 is the simulation 
set-up: 
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Figure 9: Simulation Set-Up 

3.2 TLS 1.2 Simulation Results 

WolfSSL open source master version was used to simulate the TLS 1.2 
client and server. A WolfSSL library was built using Visual Studio 
Community Version 2019. WolfSSL provides the user-settings.h 
header file to enable protocols and methods. This we utilized in the 
simulations. No changes to the user-setting.h file was needed for the 
TLS 1.2 simulation. In the simulations, we run the CoAP GET request 
with 7 bytes length and the responses from the server were set to the 
CoAP GET response with the size of 17 bytes and 94 bytes. 

We run the simulations with the client and server default certificate 
(./certs/server-cert.pem) and the default key file (./certs/server-
key.pem). It would have been possible for us to use another certificate, 
but as we are mainly interested in making a performance test, the 
default certificate fulfills our requirements. The cipher suite used 
during the SSL handshake for TLS 1.2 was 
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, a 
combination of authentication, encryption, and message authentication 
code (MAC) algorithms. This cipher suite was chosen from the list of 
Elliptic Curve Cryptography (ECC) cipher suites, which are supported 
by the WolfSSL library. This is a cipher suite recommended for many 
cloud servers as it has a good security level small overhead in with 
respect to TLS record layer header, encryption algorithm padding, and 
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the MAC tag. We run TLS with the configurations and commands 
described in Appendix A. 

 For analyzing the performance of TLS 1.2, we calculated four 
different performance indicators:  

 Handshake Time Analysis  
 CoAP Transaction Time and Throughput Analysis 
 Security Overhead 

Handshake time is calculated using Wireshark tool analyzer from the 
first Client Hello until end of the handshake. For TLS 1.2 the average 
handshake time achieved for 20 iterations are 174.8 ms for total of 13 
packets. 

The following equation is used to calculate the CoAP Transaction 
throughput: 

            (1) 

In Equation (1), the data is the total length of input data achieved from 
the CoAP Request and Response size. To calculate the time and 
throughput for the CoAP transaction, we were simulating 20 iterations 
with 500 GET Request/Response and two different response size to 
check the efficiency. For the 7 bytes GET request with a response size 
of 17 bytes, the achieved average time and throughput for one CoAP 
transaction is 2.59 ms and 74.131 kbps. Similarly, for 94 bytes 
response size, the average time and throughput are 4.35 ms and 
185.747 kbps.  

The security overhead was measured from Wireshark by the difference 
between the length of the record layer of the application data and the 
CoAP packet length for the GET request/response. Therefore, the 
security overhead for TLS 1.2 is 29 bytes.  
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3.3 TLS 1.3 Simulation Results 

The simulation set-up used for TLS 1.3 was the same as those for TLS 
1.2. Furthermore, we used the same data and certificates are used as for 
TLS 1.2 simulations. The different configurations steps needed are 
listed in Appendix A.  

We used a different cipher suite for TLS 1.3, as the handshake is 
different from the old TLS versions. In TLS 1.3, all encryption and 
authentication algorithms are combined in authenticated encryption 
with associated data (AEAD) encryption algorithm. Therefore, static 
RSA and Diffie-Helman cipher suites have been removed to make the 
protocol more secure. So, the TLS_AES_ 128_GCM _SHA256 cipher 
suite was chosen among the TLS 1.3 supported cipher suites.  

When we analyzed the performance of TLS 1.3, we used the same 
measurements parameters as for the TLS 1.2 runs. 

For handshake time analysis, the average time achieved for 20 
iterations was 143.33 ms for total of 10 packets.  

For CoAP transaction time and throughput analysis, the average time 
and throughput for one CoAP transaction was 2.19 ms, and 87.671 
kbps, which is for 7 bytes GET request with a response size of 17 bytes. 
Similarly, the average time and throughput are 4.175 ms and 193.532 
kbps for the response size of 94 bytes. Moreover, the security overhead 
for TLS 1.3 is 22 bytes. 

3.4 DTLS 1.2 Simulation Results 

The simulation set-up we used was the same as mentioned in Section 
3.1. In addition, the same data, certificates, and cipher suite are used as 
TLS 1.2 as we want to compare security protocols. The different 
configurations steps needed are listed in Appendix A. 

For analyzing the performance of DTLS 1.2, the same parameters are 
measured, as mentioned in section 3.2. 
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For handshake time analysis, the average time achieved for 20 
iterations was 169.55 ms for 14 packets.  

For CoAP transaction time and throughput analysis, the average time 
and throughput for one CoAP transaction was 2.24 ms, and 85.714 
kbps, which is for 7 bytes GET request with a response size of 17 bytes. 
Similarly, the average time and throughput are 4.32 ms and 187.037 
kbps for the response size of 94 bytes. Moreover, the security overhead 
for DTLS 1.2 is 37 bytes. 

3.5 OSCORE Simulation Results 

Contiki-NG [34] was used for the simulation of OSCORE with the 
same CoAP packet as mentioned in section 3.1. Eclipse/Californium 
was used as an OSCORE server that is running on port 5683 for the 
simulation part. The input parameters we used for establishment of 
security context between client and server are the following: 

 AEAD Algorithm is AES-CCM-16-64-128 

As OSCORE uses an untagged COSE Encrypt0 structure with 
an Authenticated Additional Data Encryption (AEAD) 
Algorithm for encryption, the AES-CCM-16-64-128 algorithm 
suggested with the OSCORE IETF draft was used in our tests. 
The reason for selecting the AES-CCM method in OSCORE 
was that the message authentication is done on the plaintext, 
compared with the GCM method, which is for message 
authentication on the ciphertext. In the selected algorithm, the 
authentication field's size is 64 bits, the size of the length field 
is 16 bits, and the length of the Sender Key and Recipient Key 
is 128 bits. 

 Master Salt and Master secret  

Master Salt and Master Secret for derivation of AEAD 
algorithm are set to the same values of the OSCORE server in 
our tests. 
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 HKDF Algorithm was HKDF SHA-256. 

HKDF Algorithm was used as a key derivation algorithm in 
OSCORE with the IETF draft's default method, which is SHA-
256, and it is similar to other protocols in our tests. 

 Replay Window size  

Replay Window size is selected as the default value that is 
DTLS-type replay protection with a window size of 32 in the 
IETF draft. 

 Sender ID and Recipient ID  

To drive the communication between client and server, the 
client's SID value should be matched with the server's RID 
value, which is chosen as SID = {0x01} and RID = {0x02} in 
our tests. Also, to keep the packet size minimum, we selected 
one byte SID and RID. 

When we analyzed the performance of OSCORE in simulation, three 
performance parameters were calculated: 

 Time and Throughput for Packet Exchange 
 Security Overhead 

To calculate the time and throughput for packet exchange, we were 
simulating 20 iterations with 500 CoAP + OSCORE GET 
Request/Response and two different response size to check the 
efficiency. The 7 bytes CoAP GET request with a response size of 17 
bytes for one packet exchange, the achieved average time, and 
throughput for one packet exchange was 0.593 ms and 323.777 kbps. 
Similarly, for 94 bytes response size, the average time and throughput 
are 0.661 ms and 1222.39 kbps. Moreover, the request overhead was 
14 bytes, and the response overhead was 10 bytes.  
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 3.6 CoAP Simulation Results 

To evaluate and compare the performance parameters described in 
section 3.5, we simulated a CoAP transaction without the addition of a 
security protocol. The open-source Contiki-NG was used to simulate 
the CoAP client, and the UDP socket was used as the server. 

For analyzing the performance of CoAP in simulation, two 
performance parameters were calculated: 

 Time and Throughput of the CoAP transaction 

To calculate the time and throughput for packet exchange, we were 
simulating 20 iterations with 500 CoAP GET Request/Response and 
two different response size to check the efficiency. For the 7 bytes 
CoAP GET request with a response size of 17 bytes for one packet 
exchange, the achieved average time and throughput are 0.342 ms and 
397.66 kbps. Similarly, for 94 bytes response size, the average time 
and throughput are 0.633 ms and 1276.461 kbps. 

3.7 Simulation Summary 

Figure 10 shows the handshake analysis's simulation results for the 
three security protocols, TLS 1.2, TLS 1.3, and DTLS 1.2. It is clear 
that the average time for TLS 1.3 outperforms comparing with the other 
two protocols, and it will affect the performance when there is a need 
to send data with multiple handshakes. 
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Figure 10: Simulation Handshake Time (ms) 

Figure 11 shows how the CoAP Transaction Time will change for the 
different security protocols. While the response size increased, the 
average CoAP Transaction time will increase. CoAP Transaction time 
with OSCORE is shorter than other security protocols. Although there 
is not much difference between TLS 1.2, TLS 1.3, and DTLS 1.2, TLS 
1.3 is faster than the others in transferring packets. 
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Figure 11: Simulation Average CoAP Transaction Time (ms) 

From the specified table 2, we can note that the OSCORE security 
protocol contributes lower overhead to the CoAP GET 
request/response than all other protocols. With respect to the 
handshake security protocols, TLS 1.3 provides a significantly lower 
overhead than other protocols. 

 

Security 
Protocol 

Security Overhead 
(bytes) Request 

 Security Overhead (bytes) 
Response 

TLS 1.2 + 
CoAP 

29 29 

TLS 1.3 + 
CoAP 

22 22 

DTLS 1.2 + 
CoAP 

37 37 

OSCORE + 
CoAP 

14 10 

 

Table 2: Security Overhead 

TLS 1.2 +
CoAP

TLS 1.3 +
CoAP

DTLS 1.2
+ CoAP

OSCORE
+ CoAP CoAP

17 Bytes Response Size 2.59 2.19 2.24 0.593 0.342
  94 Bytes Response Size 4.35 4.175 4.32 0.661 0.633
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Figure 12 shows the Average CoAP Transaction Throughput. By 
adding security over CoAP, the throughput is reduced, TLS 1.2 + 
CoAP has more security overheads than the others. OSCORE on the 
other hand, with lower security overhead, has also a lower impact on 
the CoAP transaction throughput.   

 

Figure 12: Simulation Average CoAP Transaction Throughput (kbps) 
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CHAPTER 4 

Implementation Results 

This chapter presents performance results for implementation on IoT 
units of the previously presented security protocols TLS 1.2, TLS 1.3, 
DTLS 1.2, and OSCORE. For this purpose, we used a PC and NINA-
W102 with ESP32 chip support as server/client; both are connected to 
the same Wi-Fi to communicate. We compared these protocols with 
their security overhead, handshake time and throughput, CoAP 
transaction time and throughput, and client current consumption. 
While the server was the same as used for the simulations. The client-
side tests were performed using VisualGDB, which is a cross-platform 
for visual studio to build and debug the NINA-W102 unit, on windows 
32/64 bit processor. The packet exchange between client and server is 
captured using Wireshark. All tests were simulated for 20 iterations, 
and reported results are the average values. 

4.1 Implementation Set-Up and Results 

The WolfSSL [33] and ESP-IDF [37] open sources were used to 
implement security protocols. WolfSSL was explained in chapter 3.  

ESP-IDF is an IoT Development Framework, officially developed for 
ESP32, which provides necessary hardware, software libraries, source 
code, and scripts [39]. There are different versions of the ESP-IDF. 
Version 4.0 and Master are used for our implementation. Version 4.0 
is one of the new updates available until October 2021 and supports the 
WolfSSL library. While for implementing DTLS 1.2, the latest version 
of ESP-IDF was used, the master version. 

The NINA-W102 unit has opted for this work, which is mounted with 
an ESP32 chip. ESP32 is a series of low power and cost system-on-
chip microcontrollers with Bluetooth and Wi-Fi dual-mode 
compatibility. It is optimized for smartphones, portable devices, and 
Internet-of-Things (IoT) devices. It features all state-of-the-art low-
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power chip characteristics, including fine-grained clock gating, various 
operation modes, and dynamic power scaling. The low-duty cycle is 
used to reduce the energy consumed by the chip. The power amplifier's 
performance is also flexible, leading to an optimum trade-off between 
contact frequency, data rate, and power usage [38]. These features 
motivate us to use the NINA-W102 unit for the implementation of the 
security protocols. 

NINA-W102 [36] comes under the series of NINA-W10 series, and it 
is the product of U-blox. The NINA-W10 series are stand-alone multi-
radio MCU modules that incorporate a powerful microcontroller 
(MCU) and a wireless radio. Customers will build specialized 
applications running on the 32-bit dual-core MCU utilizing the free 
CPU architectureNINA-W10 series modules that have a dual-core 
system with two Harvard Architecture Xtensa LX6 CPUs operating at 
a maximum of 240 MHz internal clock frequency. The internal NINA-
W10 memory's main features include 448 Kbyte ROM for booting and 
core functions and 520 Kbyte SRAM for data and instruction. The 
radio supports 802.11b / g / n Wi-Fi in the 2.4 GHz ISM and Bluetooth 
v4.2 (Bluetooth BR / EDR and Bluetooth Low) band Communications 
Power (LE). NINA-W10 series modules are suitable for telematics, 
low power sensors, connected factories, connected buildings 
(appliances and surveillance), and point-of-sale, enabling advanced 
cryptographic hardware accelerators, health devices, and other design 
solutions which require the highest level of protection. The system's 
underlying architecture helps the developers to use an external antenna 
(NINA-W101) or the internal antenna (NINA-W102 and NINA-
W106) in the application design. The NINA-W102 module contains a 
PIFA antenna. The RF signal is not attached to a pin on any board. The 
size of the panel is 10.0 x 14.0 mm, and the height is 3.8 mm. The 
maximum module supply voltage is 3.6 V, and the maximum current 
range is 500 mA. This module has 16/32 Mbit FLASH for code storage, 
including hardware encryption to protect programs. The product is 
shown in Figure 13: 
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Figure 13: NINA-W10 

VisualGDB is an extension to Visual Studio that allows building 
embedded applications using GCC and debugging them using GDB. 
GDB or GNU Debugger is a GNU project that helps debug software 
applications and analyze what is happening during program execution. 
VisualGDB supports both local debugging (e.g., using an embedded 
simulator) and remote debugging. It also supports IoT modules; 
Barebone embedded systems, ESP32, and Arduino targets. VisualGDB 
will install and configure the required tools automatically [40]. 

Figure 14 shows the implementation set-up we has used for the 
experimental evaluations. The hardware used is the ESP32 NINA-
W102 board connected to a windows operating computer using a USB 
cable for the client. Besides, we used software toolchains like GCC to 
compile the code, CMake, and ninja were used to build the tools with 
the help of Visual GDB application, and ESP-IDF to operate the 
toolchain. Also, Visual Studio Community 2019 was used as the text 
to write programs for projects in C. For the server, we have the same 
set-up, as mentioned in the simulation part chapter 3. To capture the 
packets, Wireshark was connected to the same Wi-Fi on the PC. 
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Figure 14: Implementation Set-Up 

4.2 TLS 1.2 Implementation Results 

ESP-IDF and WolfSSL open sources are used to implement the TLS 
1.2 client, which described in Appendix B. NINA-W102 used as the 
client while the same server was used, as mentioned in section 3.2. To 
have the same status in all tests, certificate files, CoAP 
request/response, and cipher suite were the same for the simulation. 

The first step of running the TLS 1.2 client is to add the WolfSSL 
library to the ESP-IDF and open a WolfSSL client project with the help 
of VisualGDB. The second step is to build and flash the TLS 1.2 client 
code to the NINA-W102. Finally, when we run the client, it was 
connected to the server with its IP address and port (5684) using Wi-
Fi. 
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The performance parameters are the same as those used for the 
simulation part as we described in, Chapter 3, Section 3.2. In addition, 
the client current consumption during the implementation of TLS 1.2 
is measured as a new performance parameter. To measure current 
consumption in each iteration during implementation time, the NINA-
W102 ESP32 was connected to the DC Power Analyzer, and the 
current is monitored. The Wi-Fi connection is closed after the last flight 
in each iteration to reduce the noise and interferences during the current 
measurements. Figure 15, shown below, represents the client current 
measurement set-up: 

 

Figure 15: Client Current Measurements Set-Up 

With average current consumption and time, we calculated the energy 
consumption of NINA-W102 for one full handshake and one 
request/response using the formula: 

             (2) 

In Equation (2) V is the DC power analyzer's voltage, which is set to 
the specified 3.3 V (recommended voltage of the power supply for 
ESP32). Also, I is the average current consumption and T is the average 
time which are captured from DC power analyzer.  
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The measurement of the handshake time was carried out in the same 
way as described in section 3.1. For TLS 1.2, the average handshake 
time achieved for 20 iterations was 2.117 s. 

To calculate the CoAP transaction time and throughput, we were using 
the same method as was used in the simulation. For the 7 bytes GET 
request with a response size of 17 bytes, the achieved average time and 
throughput for one CoAP transaction are 18.21 ms and 10.54 kbps. 
Similarly, for 94 bytes response size, the average time and throughput 
are 21.05 ms and 38.38 kbps. Also, the security overhead for TLS 1.2 
was 29 bytes.  

After considering 20 times of iterations, the average current 
consumption was measured as 80.91 mA in 8.061 s for 7 bytes GET 
request with a response size of 17 bytes. Similarly, for 94 bytes 
response, the average current consumption was measured as 81.08 mA 
in 8.494 s. Figure 16, shown below, represents the client current 
measurement for a single iteration for two different responses:  

 

Figure 16: TLS 1.2 Current Consumption 
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In addition, the average energy consumption was calculated as 2.1523 
J for 7 bytes GET request with a response size of 17 bytes. Similarly, 
for 94 bytes response, the average energy consumption was calculated 
as 2.2726 J.  

4.3 TLS 1.3 Implementation Results 

The implantation set-up we used was the same as we described in 
section 4.1. Also, all tests, certificate files, CoAP request/response, and 
cipher suites have the same status as in the simulation of TLS 1.3 in 
section 3.3. 

For analyzing the performance of TLS 1.3, the same parameters were 
measured, as those mentioned in section 4.2. 

For handshake time analysis, the average time achieved for 20 
iterations was 1.163 s.  

For CoAP transaction time and throughput analysis, the average time 
and throughput for one CoAP transaction was 18.19 ms, and 10.55 
kbps, which is for 7 bytes GET request with a response size 17 bytes. 
Similarly, the average time and throughput are 20.3 ms and 39.802 
kbps for the response size of 94 bytes. Moreover, the security overhead 
for TLS 1.3 was 22 bytes. 

Current consumption was measured in the same way as we described 
in Section 4.1. The average current consumption was measured as 
82.47 mA in 6.818 s for 7 bytes GET requests with a response size of 
17 bytes. Similarly, for 94 bytes response, the average current 
consumption was measured as 84.29 mA in 7.169 s. Figure 17, shown 
below, represents the client current measurement for a single iteration 
for two different responses:  
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Figure 17: TLS 1.3 Current Consumption 

The calculation for the average energy consumption was carried out in 
the same way as described in Section 4.2. The average energy 
consumption was calculated as 1.8555 J for 7 bytes GET request with 
a response size of 17 bytes. Similarly, for 94 bytes response, the 
average energy consumption was calculated as 1.994 J.  

4.4 DTLS 1.2 Implementation Results 

The implantation set-up we used was the same as we described in 
section 4.1. Also, all tests, certificate files, CoAP request/response, and 
cipher suites have the same status as in the simulation of TLS 1.2 in 
section 4.2. 

For analyzing the performance of DTLS 1.2, the same parameters were 
measured, as those mentioned in section 4.2. 

For handshake time analysis, the average time and throughput achieved 
for 20 iterations were 2.494 s.  



43 
 

For CoAP transaction time and throughput analysis, the average time 
and throughput for one CoAP transaction was 130.159 ms, and 1.475 
kbps, which is for 7 bytes GET request with a response size 17 bytes. 
Similarly, the average time and throughput are 162.8 ms and 4.963 
kbps for the response size of 94 bytes. Moreover, the security overhead 
for DTLS 1.2 was 37 bytes. 

Current consumption was measured in the same way as we described 
in Section 4.2. The average current consumption was measured as 88.4 
mA in 17.6  s for 7 bytes GET requests with a response size of 17 bytes. 
Similarly, for 94 bytes response, the average current consumption was 
measured as 88.6 mA in 8.392 s. Figure 18, shown below, represents 
the client current measurement for a single iteration for two different 
responses:  

 

Figure 18: DTLS 1.2 Current Consumption 

The average energy consumption was carried out, as mentioned in 
Section 4.2. The average energy consumption was 2.219 J for 7 bytes 



44 
 

GET request with a response size of 17 bytes. Similarly, for 94 bytes 
response, the average energy consumption was calculated as 2.453 J.  

4.5 OSCORE Implementation Results 

The UDP client example from ESP-IDF open source version 4.0 was 
used to implement the OSCORE client. Also, the same OSCORE + 
CoAP packet that was used in the simulation and described in Section 
3.5, was used for the implementation evaluation. The open-source 
Eclipse / Californium was used as server. 

The following results were achieved for the analysis of the 
performance of OSCORE using the same simulation method as we 
described in Section 3.5. For the 7 bytes CoAP GET request with a 
response size of 17 bytes for one packet exchange, the achieved 
average time and throughput for one packet exchange were 15.49 ms 
and 12.395 kbps. Similarly, for 94 bytes response size, the average time 
and throughput are 16.67 ms and 48.47 kbps. Moreover, the request 
overhead was 14 bytes, and the response overhead was 10 bytes.  

Current consumption was measured in the same way as we described 
in Section 4.2. The average current consumption was measured as 
97.72 mA in 3.366 s for 7 bytes GET requests with a response size of 
17 bytes. Similarly, for 94 bytes response, the average current 
consumption was measured as 98.1 mA in 3.61 s. Figure 19, shown 
below, represents the client current measurement for a single iteration 
for two different responses:  
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Figure 19: OSCORE Current Consumption 

The average energy consumption was carried out as mentioned in 
Section 4.2. The average energy consumption was 1.085 J for 7 bytes 
GET request with a response size of 17 bytes. Similarly, for 94 bytes 
response, the average energy consumption was calculated as 1.169 J. 

4.6 CoAP Implementation Results 

The UDP client example from ESP-IDF open source version 4.0 was 
used to implement the CoAP client. Also, the same server with CoAP 
packet was used as described in Section 3.6.  

The following results were achieved for the analysis of the 
performance of CoAP using the same simulation method as described 
in section 3.6. For the 7 bytes CoAP GET request with a response size 
of 17 bytes for one packet exchange, the achieved average time and 
throughput for one packet exchange were 15 ms and 12.8 kbps. 
Similarly, for 94 bytes response size, the average time and throughput 
were 15.6 ms and 51.79 kbps. 
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Current consumption was measured in the same way as described in 
Section 4.2. The average current consumption was measured as 97.9 
mA in 3.355 s for 7 bytes GET requests with a response size of 17 
bytes. Similarly, for 94 bytes response, the average current 
consumption was measured as 98.22 mA in 3.457 s. Figure 20, shown 
below, represents the client current measurement for a single iteration 
for two different responses:  

 

Figure 20: CoAP Current Consumption 

The average energy consumption was carried out as mentioned in 
Section 4.2. The average energy consumption was 1.083 J for 7 bytes 
GET request with a response size of 17 bytes. Similarly, for 94 bytes 
response, the average energy consumption was calculated as 1.120 J. 

4.7 Implementation Summary 

Figure 21 shows the three security protocols' handshake analysis, 
including TLS 1.2, TLS 1.3, and DTLS 1.2. Due to the new handshake 
pattern mentioned in chapter 2, the average handshake time for TLS 
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1.3 outperforms the contrast with the other two protocols, which will 
affect performance, as multiple handshakes need to be sent for 
transferring data. Also, DTLS 1.2 has a lower handshake delay than 
TLS 1.2 as it is sending packets over the UDP socket. 

 

Figure 21: Average Handshake Time (ms) 

Figure 22 shows average CoAP transaction time for mentioned 
Security protocols with 17 and 94 bytes response size. By increasing 
the response size, we can see more delays in the transmission of data. 
OSCORE delay for data transfer is shorter than for other security 
protocols. As DTLS 1.2 sends data over UDP, it outperforms TLS 1.2 
and TLS 1.3. 
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Figure 22: Average CoAP Transaction Time (ms) 

Figure 23 shows average CoAP transaction throughput for mentioned 
Security protocols with two different response size. By adding a 
security protocol over CoAP, the overhead will increase, which 
decreases the throughput. Also, DTLS 1.2, with more overhead, has a 
better throughput than TLS 1.2 & TLS 1.3 since it has a smaller latency 
when transmitting data.  

 

Figure 23: Average CoAP Transaction Throughput (kbps) 
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Figure 24 shows the average current consumption and time captured 
from the DC power analyzer for one full handshake + application data 
for TLS 1.2, TLS 1.3, and DTLS 1.2 with two different responses. 
Similarly, the mentioned parameters are shown for one exchange of 
OSCORE and CoAP packets. As seen in the figure, the average current 
consumption is high for security protocols with a lower average time 
as the throughput (bps) is higher. 

 

Figure 24: Average Current Consumption (mA) and Average Time (s) 

The following Figure shows the average energy consumption of the 
NINA-W102 device with the same condition as mentioned in the 
previous paragraph. OSCORE will consume less energy for sending 
data while comparing with the other protocols. Seeing Figure 25, 
DTLS 1.2 consumes more energy than TLS 1.2. As mentioned in the 
Equation 2 the energy consumption is related to average current 
consumption and the average transmission time, so if we use one full 
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handshake + application data, the average current would affect energy 
consumption more than the time as we can see in Figure 24. Thus, for 
scenarios where we have multiple handshakes or application data, 
DTLS 1.2 may outperform, as it is faster than TLS 1.2.  

 

Figure 25: Average Energy Consumption (J) 
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CHAPTER 5 

Discussion and Conclusions 

In this chapter, we will conclude the results of the implementation and 
simulation comparison of mentioned security protocols in chapter 3 
and 4. In addition, we are going to discuss future work. 

5.1 Comparison of Simulation and Implementation 
Results 

Figure 26 shows the average CoAP transaction time results for 
simulation and implementation of mentioned security protocols. As 
can be seen in the figure there is a large difference between the 
simulations and the implementation. The simulation response time is 
as expected, much smaller in the simulations than for the device 
implementation. However, there is in general a good conformity for the 
two realizations, with respect to response time differences between the 
protocols. When switching from simulation to implementation, time 
will reduce more for OSCORE and CoAP than other protocols. In 
comparison, DTLS 1.2 faces a smaller time reduction between 
simulation and implementation than other protocols. OSCORE and 
DTLS 1.2 can perform competitively in implementation, and with 
these two security protocols, there is not so much difference in time, 
although there is a considerable difference in simulation between them. 
Among the security protocols with a handshake, DTLS 1.2 
outperforms data transmission during implementation, despite no 
significant difference between DTLS 1.2 and TLS 1.3 in simulation. 
As in the simulation, the client and server communicate through 
localhost, and even the security overhead of DTLS 1.2 is higher as 
compared to TLS 1.3, there is not much difference between DTLS 1.2 
and TLS 1.3 in CoAP Transaction Time. On the other hand, while the 
client and server are connected to Wi-Fi, TLS over TCP would indicate 
more latency than DTLS over UDP. 
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Figure 26: Average CoAP Transaction Time (ms) 

Figure 27 shows the average CoAP transaction throughput results for 
the simulation and implementation of the security protocols described 
above. When moving from simulation to implementation, the 
throughput will decrease as the average CoAP transaction time 
increases. OSCORE has a higher throughput in both simulation and 
implementation than other security protocols since it is faster. DTLS 
1.2 outperforms the implementation of TLS 1.2 and TLS 1.3 as it 
transfers data over UDP. In the simulation, DTLS 1.2 and TLS 1.3 are 
not so different in throughput as there is not so much variation in CoAP 
transaction time in simulation between them.   
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Figure 27: Average CoAP Transaction Throughput (kbps) 

5.2 Conclusion  

In this thesis, we simulated and implemented different security 
protocols such as TLS 1.2, TLS 1.3, DTLS 1.2, and OSCORE to find 
the most effective one out of it. Different evaluation parameters were 
used to calculate the performance of these security protocols. Through 
evaluating the performance of the simulation and implementation, we 
can infer that OSCORE outperforms all other security protocols as it 
has lower latency, higher throughput, and lower energy consumption 
for NINA-W102 in data transmission because it does not have a key 
exchange protocol. However, we should consider that the algorithm 
used for OSCORE encryption is not the same as the other security 
protocols used in this thesis. Among security protocols that have a 
handshake, TLS 1.3 outperforms with a lower handshake latency and 
security overhead, while DTLS 1.2 outperforms in application data 
latency. These results are suggesting the need to switch from TLS 1.3 
to DTLS 1.3. As DTLS 1.3 has TLS 1.3 handshake messages and 
flows, with some minor improvements, and the DTLS 1.3 application 
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data is as fast as DTLS 1.2, we can conclude that DTLS 1.3 has lower 
latency than DTLS 1.2, TLS 1.2, and TLS 1.3. As a result, DTLS 1.3 
would have less data transmission latency, greater CoAP message 
throughput, and reduced energy consumption than other handshake 
security protocols. Finally, in this thesis, for extrapolating DTLS 1.3, 
the handshake time and CoAP transaction time of DTLS 1.3 is chosen 
the same as TLS 1.3 handshake time and DTLS 1.2 CoAP transaction 
time. 

Figure 28 shows the average time and throughput of the CoAP 
transaction of 94 bytes of response size for the security protocols 
specified. This response size was used as an example for extrapolating 
DTLS 1.3 to see the effectiveness of the implementation. Seeing the 
figure, DTLS 1.3 is supposed to be as fast as DTLS 1.2 when sending 
the data. As a result, the average CoAP transaction throughput for 
DTLS 1.3 became approximately as high as DTLS 1.2. 

 

Figure 28: Average CoAP Transaction Time (s) and Throughput (kbps) 

Figure 29 indicates the average delay and energy consumption of 94 
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comparable to TLS 1.3. Also, due to the lower latency of DTLS 1.3, 
lower energy consumption is expected. 

 

Figure 29: Handshake Delay (s) and Average Energy Consumption (J) 

 

5.3 Future Work  
 

The critical role of security in the real world would open up various 
fields of research in security protocols, one of which is to add key 
exchange protocols such as EDHOC over OSCORE to enhance the 
efficiency of data transmission. In addition, the implementation of 
stronger security protocol cipher suites would reduce power 
consumption and memory use on IoT devices and make 
communications more secure. One more work to be added is the 
development of DTSL 1.3, which is supposed to have reduced latency 
and higher throughput in data transmission.    
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APPENDIX A 
 
A.1 TLS and DTLS simulation setup 
 
TLS 1.2: 

TLS 1.2 server example starts working with the following commands 
in the Windows Command Prompt after building the library: 

>cd wolfssl-master/Debug 

>server.exe –v 3 

TLS 1.2 client example starts working with the following commands 
in the Windows Command Prompt after building the library: 

>cd wolfssl-master/Debug 

>client.exe –v 3 

TLS 1.3: 

To simulate TLS 1.3, some functions should be enabled in 
user_settings.h file: 

#define WOLFSSL_TLS13 

#define HAVE_TLS_EXTENSIONS 

#define HAVE_SUPPORTED_CURVES 

#define HAVE_ECC 

#define HAVE_HKDF 
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#define HAVE_FFDHE_8192 

#define WC_RSA_PSS 

TLS 1.3 server example starts working with the following commands 
in the Windows Command Prompt after building the library: 

>cd wolfssl-master/Debug 

>server.exe –v 4 

TLS 1.3 client example starts working with the following commands 
in the Windows Command Prompt after building the library: 

>cd wolfssl-master/Debug 

> client.exe –v 4 

DTLS 1.2 

Using the user_settings.h header file DTLS 1.2 can be enabled by: 

#define WOLFSSL_DTLS 

 DTLS 1.2 server example starts working with the following 
commands in the Windows Command Prompt after building the 
library: 

>cd wolfssl-master/Debug 

>server.exe  –u  –v  3 

DTLS 1.2 client example starts working with the following commands 
in the Windows Command Prompt after building the library: 

>cd wolfssl-master/Debug 

> client.exe  –u  –v  3. 
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APPENDIX B 

 
B.1 TLS and DTLS Setup On NINA-W10 

Setup Instructions: 

 Windows PC running TLS server from WolfSSL. 
 NINA-W10 running TLS client from WolfSSL. 
 Wi-Fi Access point to which both the server and client are 

connected. 
 

Instruction for TLS and DTLS client: 

1. Download VisualGDB version 5.5. 
2. Start Visual Studio, create a new project and open the 

VisualGDB ESP32 project wizard. 
3. On the first page of the wizard select, the CMake build 

subsystem. 
4. Install and select the latest ESP32 under toolchain and the ESP-

IDF version 4.0 under SDK Checkout. 
5. Set the ESP-IDF path on environment variables to the version 

4.0 path. 
6. Download WolfSSL library from GitHub. 
7. Run setup.sh from wolfssl/IDE/espressif/ESP-IDF to deploy 

files into the ESP-IDF tree. 
8. Uncomment out “#define WOLFSSL_ESPIDF” in path to 

wolfssl/wolfssl/wolfcrypt/settings.h. 
9. Go back to VisualGDB and select Wolfssl Client from project 

samples. 
10. On the Debug settings page, select the JTAG debugger (e.g. 

Olimex ARM-USB-OCD-H). 
11.  Press, “Finish” to generate the project. Once the project is 

loaded, open the “client-tls.c” and replace WolfSSL method to 
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DTLS 1.2/TLS 1.3/TLS 1.2. Also, to run DTLS there is a need 
to change the socket to UDP. 

12. Make menuconfig to configure the project.    
12.1. Example Configuration: 

Set up Wi-Fi SSID.  

         Set up Wi-Fi Password. 
13. Target host IP address: Set the server IP address in “#define 

WEB_SERVER” in the main code. 
14. Flash and run the project. 
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