
FPGA Implementation of an Anonymization
Algorithm

NIKLAS KJELLMAN
REHENUMA TARANNUM
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2020

N
IK

LA
S K

JELLM
A

N
 &

 R
EH

EN
U

M
A

 TA
R

A
N

N
U

M
FP

G
A

 Im
plem

entation of an A
nonym

ization A
lgorithm

LU
N

D
 2020

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2020-777
http://www.eit.lth.se

FPGA Implementation of an Anonymization
Algorithm

Niklas Kjellman, Rehenuma Tarannum

Axis Communications

Supervisor: Daniel Falk (Axis Communications)
Joachim Rodrigues (Lund University)

Examiner: Pietro Andreani (Lund University)

2020/06/26

© 2020
Printed in Sweden
Tryckeriet i E-huset, Lund

Abstract

With the large amount of surveillance cameras in our public spaces there has
been much discussion about their effects on privacy. Axis communications has an
algorithm that tries to remedy this by making it hard to see who is in an image but
still have it possible for a neural network to detect that there is a person present.
This thesis explores how this algorithm needs to be adapted to be implementable
on an FPGA that operates on the image stream directly from the sensor. Resulting
in an anonymization that is much harder to turn off or bypass. The anonymization
is performed by blurring the image with a box filter and edges are highlighted with
a Sobel operator. These operations is performed in parallel and the edges from the
Sobel operator is overlaid the blurred image from the box filter. The alterations
made to the algorithm is tested in regards to how they affect the performance of
Axis communications person detector.

The detector requires the images to look similar to the result from the reference
algorithm. The implementation then need to replicate parts of the Image Pro-
cessing pipeline in the camera system and its inverse. This is done by adding a
demosaic and remosaic stage before and after the algorithm, so that both the in
and out image is on Bayer form but the anonymization is performed on images in
RGB form. The change from floating point calculations to fixed point arithmetic
is also done to improve how implementable the design would be and to reduce area
consumption. Down sampling is suggested and implemented, to reduce the size
of the largest block the box filter. The amount of decimal points needed in the
overlaying stage is also tested and the block is simplified. The problem of not re-
training the detector is discussed and some solution that could improve hardware
utilization without loosing detector performance is suggested.

i

ii

Acknowledgments

Looking back at this project there are many people who have contributed to make
it happen. First of all we would like to thank our supervisor at Axis, Daniel Falk
for his guidance, positive energy and tireless dedication. Secondly we would like
to thank Andreas Karlsson for his help with the FPGA and answering our every
question regarding digital hardware. We would also like to thank our supervisor
at Lund University Joachim Rodrigues, for his valuable input. Lastly we would
like express a more general thanks to anyone else who have been involved in our
thesis in any way, Axis communication in general, our friends and families.

iii

iv

Acronyms, Notation and Symbols

Acronyms
AMBA-AXI Advanced Micro Controller Architecture-Advanced

eXtensible Interface: Bus architecture developed by arm.
ASIC Application Specific Integrated Circuit: Integrated Circuit

that is designed for a specific task.
B-RAM Block-Random Access Memory: Dedicated RAM cells in

and FPGA with a fixed capacity.
CPU Central Processing Unit: Processor that process the main

instructions of a system.
CNN Convolutional Neural Network: A deep learning based neu-

ral network often used in object detectors.
DSP Digital Signal Processor: Hardware device-purpose built to

speed up specific types of calculations.
FF Flip Flop: A digital register.
FIFO First In, First Out: A type of data queue.
FPGA Field Programmable Gate Array: Hardware platform that

can be re-programmed in the field.
HW HardWare: Specifically digital hardware, either in FPGA

or ASIC form.
GDPR General Data Protection Regulation: Law of the European

Union that regulates the handling of personal data.
IP Intelectual Property: In this context it refers to hardware

blocks that have been developed by third parties and made
available for use.

IPP Image Processing Pipeline: All of the processing done on
an image in an Axis camer before it is ready to be viewed.

LUT Look Up Table: Array that hold pre-computed values. Can
in FPGAs be used to model logic.

v

LUT-RAM Look Up Table-Random Access Memory: Distributed
RAM blocks, used to make a memory whose capacity is set
during synthesis.

MUX MultipleXer: Block that selects output from a selection of
inputs and a control signal.

RAM Random Access Memory: Hardware device that store data
in a volatile way.

RGB Red, Green, Blue: Refers to the RGB color model.

Notation
0xFA23 A hexadecimal number.
10 10102 A binary number.
x16 Variable x with 16 as subscript.
f1(x) Function f with subscript 1 and argument x.
v The vector v. Note lower case.
M The matrix M. Note upper case.
F Variable F, Note not bold.
∆f The differential of the function f .
∇f Vector differential operator or vector gradient of f .
RN The set of real value numbers in N dimensional vector space.
||v||x Magnitude calculation using the x norm.
⌊x⌋ The variable x is rounded down to the closest integer.
⌈x⌉ The variable x is rounded up to the closest integer.
1 << 32 The number 1 is bit shifted 32 bits to the left.
1 >> 32 The number 1 is bit shifted 32 bits to the right.

vi

Popular Science Summary

A privacy friendly camera system
Despite of the wide use of surveil-

lance camera for security purpose,
over the time it has turned more
controversial as a threat to pri-
vacy. If a privacy breach is abused
it can even threaten people’s secu-
rity.

In our daily life we are constantly close
to a camera. We use them in our phones
and laptops to communicate and record
memories, or in the watchful eye of a
surveillance cameras to improve our se-
curity. In recent years a new usage of
cameras have been popularized, where
they are used as sensors in a computer-
vision system. These can for instance,
be used for counting the lengths of
queues or detecting how many people
enters and exits a room. With these sen-
sor cameras, however, it is not always
strictly necessary to be able to recognize
a person, instead only to observe their
presence. This thesis have aimed to im-
prove and safeguard the privacy of the
people being observed, the video stream
from the camera is anonymized, which
signifies the removal of details and fea-
ture of the person. This was done by
blurring the entire image in the stream

and re-highlighting the strongest edges.
The blur is performing the anonymiza-
tion by hiding the finer features of a per-
son. The edges is re-highlighted to make
it easier for a computer vision system
to detect a person. This idea was im-
plemented on an FPGA. An FPGA is
a Digital hardware circuit and is there-
fore harder to re-configure compared
to if it was implemented in software.
The FPGA implementation is therefore
a stronger anonymization, that people
can trust as it will be hard to deacti-
vate. This have the benefit of making it
easier to have a computer vision system
that complies with the European GDPR
law, or that would make it more likely
to get the required permissions to install
a stationary camera.

When developing the anonymization fil-
ter it was discovered that the filter that
adds the blur is a very large operation
and requires a lot of hardware to be im-
plemented. The level of blurring and
the width of the image was the factor
that scaled the hardware utilization the
most. A solution for this, is to perform
downsampling around the block. Down-
sampling is a method were the number

vii

of data points are reduced. The amount
of hardware reduction was proportional

to fraction of an image that was skipped.

viii

Table of Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Objective . 2
1.3 Thesis Structure . 3

2 Reference Algorithm 5
2.1 Images and Color Representation 5
2.2 Spatial Filters and Convolutions . 6

2.2.1 Box Filter 7
2.2.2 Sobel Operator 7

2.3 Merging the Two Images . 10
2.4 Configuration . 10

3 Detector Evaluation Process 13
3.1 Evaluation Parameters . 13
3.2 Detection Evaluation Methodology 16

4 Required Adaptations of the Algorithm 17
4.1 Bayer Image Model . 18

4.1.1 Demosaic 18
4.1.2 Remosaic 19

4.2 Number Representation . 20
4.3 Unfolding . 21

4.3.1 Digital Signal Processing 21
4.3.2 Unfolding 22

5 Implementation 23
5.1 Sub-matrix Generation . 24
5.2 Sobel Operator . 26
5.3 RGB to Gray . 28

ix

5.4 Demosaic . 28
5.5 Remosaic . 29
5.6 Box Filter . 29
5.7 Merge . 33
5.8 Hardware Utilization . 33
5.9 Human Vision Comparison . 35
5.10 Detector Results . 36

6 Algorithmic Adjustments 39
6.1 Merge . 39

6.1.1 Fractional Bit Reduction 39
6.1.2 Division Approximation 40

6.2 Box Filter . 41
6.2.1 Downsampling 41

6.3 Implementation . 43

7 Conclusion 47
7.1 Implementations and Improvements 47

7.1.1 Spatial Filters and FIFO 47
7.1.2 RGB to Gray and Merge 48

7.2 Future Work . 48
7.2.1 Sobel Operator 48
7.2.2 Demosaic 50

x

List of Figures

2.1 Block diagram of how the data flows through the reference algorithm
and its major components. 5

2.2 The top field is how an ideal straight edge looks. The lower its gra-
dient. The transition is immediate between two mono-colored fields
next to each other. 8

2.3 The top filed is how a more realistic edge looks. The lower is its
gradient. It generally have a gradual transition between two mono-
colored fields next to each other. 8

2.4 Triangle used to demonstrate norm calculations of the vector v = [x, y]. 10

3.1 Confusion matrix . 14
3.2 Visualization of precision and recall 15
3.3 Structure of the detector quality tests. 16

4.1 Block diagram of the development platform used to realize the anonymiza-
tion. 17

4.2 The basic color multiplexing concept to form Bayer image from an
RGB image . 20

4.3 Datapath for the gradient function in a digital signal process 21
4.4 Unfolded gradient function in a digital signal process with an unfolding

factor of J = 3. 22

5.1 Block diagram of the first implementation of the algorithm. 24
5.2 Sub-matrix of an image in a shift register. The latest pixel is x(n)

and the oldest one is x(n− 2 ∗ w − 3) where w is the image width. . 25
5.3 Representation of a 3x3 sub-matrix of an image with shift register

indexes. 25
5.4 Representation of two 3x3 sub-matrices of an image with shift register

indexes and two input signals. 26
5.5 Datapath of the Sobel operator . 27
5.6 The different patterns for color calculation for performing demosaicking. 28
5.7 The basic color Mux of remosaic block based on row parity signal . . 29

xi

5.8 Simplified shift sum structure in the box filter. The shift reg contains
an 30 rows worth of pixel data and out of it is collected a 30x2 sub-
matrix. 32

5.9 Data path for the merge block. 33
5.10 RGB images where the left image is without the transformation, the

middle one with the reference algorithm applied to it and the right
image have gone through the FPGA implementation and the IPP. . . 36

6.1 Comparison between a downsampled image and its original. 42
6.2 Resulting anonymized images from the first hardware implementa-

tion (left), the approximated merge block (middle) and with box filter
downsampling (right). 45

7.1 Edge detection with a 3x3 kernel. 49
7.2 Visualization of how grayscale conversion can hide edges. The left

fields are of color and the right field is both colors grayscale value. . 49
7.3 Anonymized image where same gray value caused an edge to disappear

between the body and the pillow. 50
7.4 Image that is using one Sobel operator per color channel and uses the

maximum to calculate the alpha channel. 51

xii

List of Tables

4.1 What spatial filters are used to build an RGB pixel from Bayer data.
A visualization of the filters can be seen in Figure 5.6. 19

5.1 Fixed point conversions of the RGB to gray constants. 28
5.2 Hardware utilization of the first implementation 34
5.3 Detector performance of the reference algorithm and first implemen-

tation. 36

6.1 Detector performance of the FPGA algorithms and bit reductions in
the merge. The number of bits given are the fractional bits. 40

6.2 Detector’s evaluation metric values of the First implementation and
the division approximation in the merge block. The number of bits
given are the fractional bits. 41

6.3 Detector performance of the First algorithm and the downsampling
adjustment.Here, DS stands for DownSampling. 42

6.4 Hardware utilization of the new adjustments. Here, DS stands for
DownSampling. 44

xiii

xiv

Chapter 1
Introduction

Surveillance cameras, or sometimes known as CCTV(close circuit television) are
being used for monitoring public and private spaces and observing people. It was
first utilized in 1942 during world war two by German scientists to monitor rocket
launches. CCTV used to only be connected to a local network system for the
broadcasting of its video. The video was therefore limited over distance and who
could see it. With the development of technology, the CCTV Cameras started
to interconnect through IP-network systems. This made surveillance lower in cost
and could be accessed from any part of the world with the correct access right. The
amelioration in surveillance boosts up the security but also added other complexity
like threats to privacy. The thesis is constructed aiming of privacy friendly camera
that transforms the regular image into a indistinct image in hardware to safe guard
the transformation. The following sections in this chapter states the background
of the thesis along with its purpose and structure of conducting research.

1.1 Motivation
The advancement in surveillance cameras made it prevalent in various sectors like
crime prevention, traffic control, queue monitoring, industrial process monitoring,
and many more. The extensive use of cameras is therefore responsible for capturing
a large amount of identifiable information and details. If this data is abused then
it can lead to a grave infringement of privacy as it is no longer a ”closed circuit”.
Therefore the legislators in many countries have enacted strict regulations and
require anyone who wants to install a surveillance camera to seek permission.
Moreover, in Europe, the General Data Protection Regulation known as GDPR is
one of the strictest privacy and security laws in the whole world. This regulation
makes it mandatory for any company to maintain the privacy of data concerning
people living in the European Union. This puts limitations on video surveillance
for use-cases where the individual’s recognizable features are not important. For
instance in a queue monitor or when counting how many people have entered and
exited a room. For these applications, it is enough to see that a person is present
and what he or she is doing. The camera can be utilized more like a sensor for an

1

2 Introduction

analytic system as the identity of the person mostly likely irrelevant. This case
is getting more and more common nowadays. Anonymization in these use-cases
would make it easier to comply with GDPR and improve the privacy of those in
view of the camera.

This concern is substantial to the network surveillance camera producer Axis Com-
munications (often referred as Axis). They are pioneers in network-attached prod-
ucts and the world’s largest supplier of networked surveillance cameras. Axis
developed an anonymization algorithm for use in their cameras. In the technologi-
cal field, the act of anonymization on personal data means to sanitize recognizable
features of a person so that the person can no longer be identified. This can es-
pecially be applied to images where the data to be made anonymous, consists of
a person’s recognizable features. They want to utilize this anonymized camera
as an analytic camera that is more privacy friendly. To do so, they developed
their in house detector that can detect people on an anonymized image stream. In
Axis algorithm the anonymization was performed on a CPU. However, there is a
problem when executing it on the CPU. The transformation of the image can be
turned off by anyone with root access to the camera and its Linux system. It may
put the anonymization in question. This is what the thesis aims to solve.

The focus of the thesis is to implement the algorithm in hardware so that the im-
age conversion is done before reaching the CPU, which would make the transform
much harder to disable or bypass. It would lead to a more strongly anonymized
camera. To make the anonymization irretrievable hardware implementation is
more feasible compared to alternative solutions like using a dedicated micropro-
cessor. However, the requirement of a frame rate of 30 frames per second and a
resolution of 1920 by 1080 would make the bit rate very high, which would not
be suitable for the microprocessor to process efficiently. In contrast, a hardware
implementation can perform it much faster. An ASIC would be the fastest a but
they are very cumbersome and expensive to develop. As a prototype an FPGA
implementation is preferable. Hence, for this thesis, the anonymization will be im-
plemented on an FPGA. In addition, different hardware optimizations is explored
in order to achieve a suitable implementation without compromising the detector’s
performance noticeably.

1.2 Objective
The main goal with the thesis is to: Illuminate how hardware requirements and
limitations will affect Axis’ anonymization algorithm and the implementation of
it. To do this a number of sub-objectives have been defined.

1. Implement the predefined anonymization algorithm on an FPGA.

2. Iteratively communicate what parts of the algorithm that are restraining
the hardware implementation and how the implementation restrains the
algorithm. Based on the analysis, new suggestions and changes will be
incorporated in the algorithm as well as in the hardware design.

Introduction 3

3. Evaluate the accuracy loss of a deep-learning-based people detection algo-
rithm (supplied by Axis), caused by the hardware implementation. It should
be compared to the reference algorithm. This will be done by taking a set
of images where the location of all the people in it is known and let the
detector find people. The comparison between the detected and the actual
people will be used to evaluate the performance of an algorithm.

1.3 Thesis Structure
The thesis follows the following chapters framework and their content is described
below:

• Introduction Introduction chapter address the problem that this thesis
aims to solve.

• Reference Algorithm This chapter briefly describes the operations and
general mathematical approaches in the existing reference algorithm.

• Detector Evaluation Process Provides brief background of the computer
vision and detection evaluation matrices. It also includes the detection
methodology used in this thesis.

• Required Adaptation of the Algorithm Overview of adaptations that
had to be made to make the algorithm implementable in hardware and still
emulate the effects of the reference model.

• Implementation Describes how the algorithm is implemented in hardware.
The implementation described in this chapter will be called First Implemen-
tation. The general design of each block and FPGA utilization of the block
is discussed here.

• Algorithmic Adjustments This chapter focus on observing, describing
and evaluating adjustments that can be made to the algorithm to improve
hardware utilization. Some of the suggested improvements are also imple-
mented and their final utilization is compared with the original.

• Conclusion The overall experience of the thesis and proposals to future
work is discussed.

4 Introduction

Chapter 2
Reference Algorithm

The anonymization algorithm, this thesis builds on was written at Axis commu-
nications. The chapter illustrates relevant background of image processing that
the algorithim utilized. It accomplished with three main parts. A Sobel operator
(also called Sobel filter), a box filter, and a merge function. The Sobel operator
detects edges and highlight these (see more in section 2.2.2). The box filter blurs
the image and obfuscates any recognizable features (see section 2.2.1). Lastly, the
merge function blends the result from the two previous filters into a single image
(see section 2.3). A simple block diagram of how the data flows through the algo-
rithm and its components can be seen in Figure 2.1. The algorithm was workable
for the RGB image color model and to execute the functionality of Sobel operator
and box filter convolution was used.

Sobel operator

Box filter

Merge

Image Anonymized Image

Figure 2.1: Block diagram of how the data flows through the refer-
ence algorithm and its major components.

2.1 Images and Color Representation
The most simple form when model an image digitally is to assume that all light
have no specific color. Then a pixel in the image only stores the intensity or
luminance of the light reaching the sensor in one small point. The resulting image

5

6 Reference Algorithm

or frame in a video stream will look gray to a human. It is a simple representation
and only one value is needed to be stored per pixel [1]. This model will be called
a grayscale image.

There are many options available to represent color. The most common [1] and
the one used in this thesis is the RGB model. In it, each pixel contains three
luminance values to represent the light of colors; red (R), green (G), and blue (B).
These three build a Cartesian coordinate system that contains most of the visible
colors [1].

To transfer an RGB color model image to a grayscale image, the three luminance
values need to be weighted together [2]. The library openCV (from opencv.org)
uses the following transform from R3 → R1 to scale the values to better represent
the human eyes ability to see different colors [1].

Gray pixel = Red · 0.299 +Green · 0.587 +Blue · 0.114 (2.1)

Humans are best at observing green and its weight is therefore the largest [1].
Blue is less observed and therefore the smallest [1]. The function is applied to
each RGB pixel in an image to make a grayscale image.

2.2 Spatial Filters and Convolutions
Spatial filters aim to preform filtering on a pixel in regards to its neighborhood
and a weight matrix [1]. The weight matrix is often called kernel or mask [1], but
for this thesis kernel will mostly be used. A general kernel G can be seen in the
following Equation 2.2, where ω(x,y) are the kernel weights, n is the number of
rows and m is the number of columns in the matrix. The sum of all of the weights
equal to n ∗m, the division is meant to normalize the kernel so that the element
sum of G equal to 1 and this would ensure that the average pixel brightness is
retained [1].

G =
1

n ·m

ω(0,0) ω(0,1) ... ω(0,m−1)

ω(1,0) ω(1,m−1)

. .

. .

. .
ω(n−1,0) ω(n−1,m−1)

 (2.2)

The kernel G is used by sliding it over the image and element-wise multiplying
the weights with the values in the image and take the sum of the result. A general
function on how to calculate a filtered pixel g(x, y) can be seen in the following
Equation 2.3 and 2.4, where f(x, y) is the pixel to be filtered, ω(s,t) is the kernel
values from Matrix 2.2. a = ⌊n

2 ⌋, b = ⌊m
2 ⌋ and both n and m are odd:

g(x, y) =
1

n ·m

a∑
s=−a

+b∑
t=−b

ω(s,t)f(x+ s, y + t) (2.3)

opencv.org

Reference Algorithm 7

If n and m are even:

g(x, y) =
1

n ·m

a∑
s=−a+1

+b∑
t=−b+1

ω(s,t)f(x+ s, y + t) (2.4)

These two calculations is very similar to the concept of convolutions [1] and is
only valid for a one or two-dimensional space. So it either needs to operate on a
grayscale image or on all three color planes in an RGB image in parallel, so that
Equation 2.4 and 2.3 only would calculate gred(x, y), ggreen(x, y) or gblue(x, y).
At the edges when the kernel covers indexes outside of the image, the pixel values
need to be estimated. There are many methods of extrapolating around the edges,
but the simplest is to just assume that those values are zero [1]. This method is
called zero padding [1]. Using it will make the rim of the image darker but with an
image resolution that is much larger than the kernel size, the effect is negligible.

2.2.1 Box Filter
To smooth out color transitions in an image and remove high frequency content
in the spatial domain, a low pass filter can be used [1]. A simple low pass filter
is an averaging filter, often called a box filter. It takes an average of the values
around a pixel and uses that as the new pixel value to get a smoother and blurrier
image [1]. It is a spatial filter with all of the weights in Matrix 2.2 set to 1. The
filter that Rafael and Richard [1] describes is over the values in a grayscale image.
Nevertheless, the filter can be applied to all three color planes separately to have
the same effect.

2.2.2 Sobel Operator
An edge in an image is a location where there is a change in the luminance values
[1]. The most ideal edge is two mono-colored fields that are located next to each
other. In real images there is generally more of a gradual transition over some
pixel widths worth of space. What both of these examples have in common is that
the color gradient is non zero at this transition and zero for the rest of the image.
For the ideal transition, the gradient is only non-zero at the thin edge, whereas
for the gradual transition, the gradient will be non zero for the entire edge. For
an example of a straight edge and its gradient see Figure 2.2. A gradient edge and
its gradient can be seen in Figure 2.3. For the gradients, a higher magnitude is
indicated with a darker color.

To calculate the gradient of the function f , either the right or the left derivative
[3] can be estimated. In the discrete plane the left can be as closely as possible
estimated with ∆f left

x

∆x = f(x)−f(x−1)
∆x and the right ∆fright

x

∆x = f(x)−f(x+1)
∆x . How-

ever, both of these estimations are biased in a specific direction. The mean of
the two are un-biased and therefore a better estimation. It is calculated with the
symmetric derivative [4]:

8 Reference Algorithm

Figure 2.2: The top field is how an ideal straight edge looks. The
lower its gradient. The transition is immediate between two
mono-colored fields next to each other.

Figure 2.3: The top filed is how a more realistic edge looks. The
lower is its gradient. It generally have a gradual transition be-
tween two mono-colored fields next to each other.

∆fsym
x

∆x
=

f(x+ 1)− f(x− 1)

∆x
(2.5)

Gradient estimations can be performed with spatial filters. The following two
kernels [5] calculates the gradients in Equation 2.5. The resulting index is in the
middle of the kernel and the first kernel estimates the gradient in the x direction:

Gx =
[
−1 0 1

]
(2.6)

And the second kernel is in the y direction:

Gy =

−1
0
1

 (2.7)

OpenCV describes these two Kernels (2.7 and 2.6) as a Sobel operator [5]. In
other literature the kernels that are generally mentioned as Sobel operators are
the following two kernels:

Gx =

−1 0 1
−2 0 2
−1 0 1

 (2.8)

Reference Algorithm 9

Gy =

−1 −2 −1
0 0 0
1 2 1

 (2.9)

These kernels also achieve some smoothing and noise reduction, as well as finding
the gradient [1].

If an edge is parallel to a gradient kernel it will not be discovered by that gradient
kernel, since there is no change in luminance in that direction. For instance the
y-gradient kernel would not find the edges in Figure 2.3 or 2.2. It is therefore
useful to use both the x and y gradients in a two dimensional vector gradient and
take the magnitude of them [1]. The following Equation 2.10 describes how the
two dimensional gradient ∇f should be assigned and its magnitude ∇f :

∇f =
[
∆fx
∆fy

]
, ∇f = ||∇f|| (2.10)

When calculating the magnitude of a two dimensional vector v, the distance that
the elements x and y build is the hypotenuse between point A and C in Figure 2.4
[6]. The most exact way of calculating this is with the euclidean norm (or 2-norm)
[6]. The two-norm of the vector v can be expressed mathematically as below:

||v||2 =
√
x2 + y2 (2.11)

In some cases the 1-norm or the ∞-norm [6] can be used to trade accuracy for
reduced computational complexity. The 1-norm simply adds up the distances of x
and y together [6]. It will lead to a larger magnitude then sought after unless one
of the distance is 0, which will give an exact result. This can very intuitively be
seen in Figure 2.4. It has the following Equation:

||v||1 = |x|+ |y| (2.12)

The ∞-norm only takes the maximum value of the two distances [6]. So it will
generally be shorter then the other two (see Figure 2.4), unless one of x or y is 0,
which will also lead to an exact result.

||v||∞ = max(|x|, |y|) (2.13)

10 Reference Algorithm

A x B

y

C

||v||∞

||v||2

||v||1

Figure 2.4: Triangle used to demonstrate norm calculations of the
vector v = [x, y].

2.3 Merging the Two Images
The merge overlays the Sobel edges on top of the filtered image. It does this by
using the Sobel image as an alpha channel and perform an alpha scaling between
the box filtered image and an image that is completely white, where white means
that all pixels have its maximum value assigned to it. For instance, if a regular
8-bit RGB image is used then max bit value = 28 − 1 = 255 = 0xFF . The alpha
channel is deciding how opaque [7] the box filtered image will be. The opaqueness
is used to make the filtered image transparent when an edge is detected and firm
when there is no edge. This will keep the color of the filtered image but the
edges will be highlighted in white. Alpha scaling in one pixel follows the following
Equation 2.14 :

pixelout = (1− α)box filter pixel + α ∗max bit value (2.14)

The α value is calculated by α = Sobel pixel
max bit value , which will make the α value to be

between 0 and 1 [7]. Simplifying the Equation 2.14 leads to the following Equation
2.15 :

pixelout = (1− Sobel pixel

max bit value
)box filter pixel + Sobel pixel (2.15)

This Equation 2.15 eliminates the need for the white image, and the Sobel edges
can be used directly. Since the Sobel image is a grayscale image and the box
filtered one is a RGB, the edges need to be assigned equally to all three color
planes. The resulting image is therefore in RGB form.

2.4 Configuration
The reference algorithm was configured to use RGB images as in- and output, with
8 bits per color in a pixel. It utilized the openCV functions to perform the filtering

Reference Algorithm 11

and image color model conversion. The Sobel filter expected a grayscale image as
input and it performed the color conversion as described in the Equation 2.1. The
Sobel used the gradient kernels in Equation 2.7 and 2.6 and for the magnitude
calculation of gradient vectors, the euclidean norm was chosen in the openCV
function. For the box filter, a kernel size of 30x30 was specified to optimize the
blur to people 6 meters away from the sensor.

12 Reference Algorithm

Chapter 3
Detector Evaluation Process

Apart from the implementation of the anonymization algorithm, this thesis fo-
cuses on an analogy between the hardware implementation and the reference algo-
rithm both from a human vision and computer vision perspective. Human vision
comparison is made later on the implementation chapter 5 that shows the visual
comparison of the hardware implantation in contrary to the software implemen-
tation of the reference algorithm. Computer vision is an artificial intelligence that
enables computers to identify, measure and classify objects in a digital image or
video. It discerns the object as well as processes the information and response of
what it sees. Detection is one of the most important use cases of it. A detector
uses different computer vision techniques to determine the presence of a particular
item in the image or video from a common generic set of objects that it is trained
for (for example a human, car or a dog). The detector used in this thesis builds
on a deep learning technique with a convolutional neural network to perform the
detection. For better understanding the performance of a detector, this chapter
explains necessary concepts in evaluation matrices and a brief methodology to
perform it. Improving this detection algorithm is beyond the scope of this thesis.
However, comparing the detector’s performances between the reference algorithm
and the hardware-implemented algorithm are noteworthy.

3.1 Evaluation Parameters
In general, no system is irreproachable and it is always hard to determine in a
concrete way how good or bad a system is. Several aspects need to be considered
when it comes to measuring the performance of a detector. Therefore the evalu-
ation depends on what use-cases the detector is used for [8]. Several evaluation
matrices are being used to analyze performance. For detection, a set of images
with annotated objects are introduced to the system to train it. A test data-set
that is not part of the training set is then run by the system to observe how well it
can detect objects. To visualize the performance, a binary output representation
of detection and annotated objects are considered. It is represented below in a
2x2 matrix called ”confusion matrix” (see Figure 3.1). It shows all four possible

13

14 Detector Evaluation Process

outcomes of a detection mentioned in the ”Computer and Information Security
Handbook” [9].

• True Positive (TP): Detection and actual case both are positive. A person
is present and detected. So, the detection is correct.

• True Negative (TN): Detection case is negative when the actual case is also
negative. It means the detection says no person is present and it is accurate.
The detector used in this thesis did not calculate the true negative. Because,
all of the pixels that do not consist of a person and the detector acknowledges
it correctly, would be considered as a TN. In general, the number of pixels
that do not contain a person by far surpasses the number of pixels with a
person. Therefore, the quantity of TN cases would be very high which can
mislead the evaluation metrics. To avoid this phenomena TN was ignored.

• False Negative(FN): The detected case is negative, which implies no person
is detected whereas the actual case says positive. It means the prediction is
inaccurate.

• False Positive(FP): The actual case contains no person where the detector
detects a person.

P
o
s
i
t
i
v
e

N
e
g
a
t
i
v
e

Positive Negative

Predicted Detections

A
c
t
u
a
l

C
a
s
e
s True

Positive
 (TP)

 False
Negative
 (FN)

 False
Positive
 (FP)

 True
Negative
 (TN)

Figure 3.1: Confusion matrix

Using the confusion matrix, different evaluation matrices can be formulated. As
True negative cases are not well defined the evaluation matrices used by Axis
detector are briefly discussed below based on the reference of ”Computer and
Information Security Handbook” in chapter six [9]:

• Precision: It describes the accuracy of detection among all detected in-
stances. A detector that does not use more detections then it is certain to
be correct will have a higher precision. A detector that finds less TP can
have higher precision than one that finds more, but that also finds more FP.
High precision might not mean that it is finding everything. In Figure 3.2
it can be visualized with the amount in the overlap out of the right circle.

Precision =
TP

TP + FP
(3.1)

Detector Evaluation Process 15

• Recall: It provides information on how accurate the detection is out of total
relevant instances. A detector that finds as many TP as possible will have
a high recall. Even if it also finds many FP. A High recall value might not
mean that it is finding the right objects. In Figure 3.2 it can be visualized
with the amount in the overlap out of the left circle.

Recall =
TP

TP + FN
(3.2)

Recall Precision

Actual Predicted

True
Positive
[TP]

Relevant
Element
[FN]

Irrelevant
Element
[FP]

Figure 3.2: Visualization of precision and recall

• F1-Score: It gives an idea of detection accuracy combining precision and
recall. A detector with both high recall and precision will find as many TP
as possible and only a few FP. The F1-score is a weighted harmonic mean
and it is a pessimistic mean calculation, where the smallest of the two will
have more effect on the score. This is intended to lower the score if one
drops even if the other increase by the same amount. [10]

F1-Score = 2 ∗ TP
2 ∗ TP + FP + FN

(3.3)

To be able to better evaluate the performance of the detector, its use-cases need to
be known. It will affect how the evaluation matrices are interpreted. To illustrate
it, a system with high precision can still be ineffectual. Precision only measures
the number of correct predictions out of the total predictions, not necessarily the
success of a system. For instance, a diagnosis machine diagnoses cancer or not
cancer. If it correctly detects 10 cancer patients among 100 patients, where 40
patients had cancer. then precision will be at 100%. Even though the machine
itself is very faulty and would have a recall of only 10

40 = 25%. Hence, a single
measuring metric is not always effective to describe the performance of a detector.
Therefore, other parameters also need to be taken into account.

16 Detector Evaluation Process

3.2 Detection Evaluation Methodology
The detector’s accuracy depends on the correct localization and recognition of the
object. To evaluate the detector’s performance a large set of 1216 images where
peoples location was annotated, is anonymized by both the reference algorithm and
a bit-exact model of the implementation written in the programming language C .
The detector is then run on both sets of images and the results are evaluated. To
compare the quality of the algorithm from a detection standpoint the precision,
recall and F1 score matrices are utilized. The detector’s function is in this thesis
considered as a black box that deliverers the number of TN, FP and FN. The
following Figure shows a simple block diagram of the detector testing methodology:

Set of
annotated
images

Reference
algorithm

Bit exact
C version
of our
algorithm

Person
Detector

Evaluate
detector
results
with
missed
and faulty
detections

Compare
quality

Black box

Figure 3.3: Structure of the detector quality tests.

Chapter 4
Required Adaptations of the Algorithm

In a regular digital camera a lot of processing is done on an image before it is ready
to be viewed by a human. In this thesis, the term Image Processing Pipeline (IPP)
will be used to describe these steps. For the camera used in this thesis the most
drastic step is when the image from the sensor is taken from Bayer form (see
section 4.1) to an RGB image. After passing through the IPP the finished image
is available to the camera’s CPU and can be sent out on the network for further
use. In this thesis both the IPP and the CPU is integrated in the same Artpec
chip, developed by Axis Communications.

The development platform used to realize this thesis consist of an image sensor, a
Xilinx FPGA and an Artpec chip. A block diagram of this can be seen in Figure
4.1. The FPGA is placed directly after the image sensor and it is here that the
algorithm will be implemented. The image sensor delivers pixel values 12 bits wide
and two pixels per clock cycle to the FPGA. To adapt to the datarate Unfolding
and Digital Signal Processing (see section 4.3) are used. The software that is
synthesizing and placing the design for the FPGA is Xilinx’s Vivado 2016.3.

The reference algorithm took an image in the RGB model after the IPP. This
transform and the anonymization could be modeled as two transforms. One
that performs the IPP processing (TIPP) and another to actually perform the

Figure 4.1: Block diagram of the development platform used to
realize the anonymization.

17

18 Required Adaptations of the Algorithm

anonymization (Aanon). An Equation for the transformation can be seen below:

Imageanonymized = Imagesensor Aout (4.1)

Aout = TIPP Aanon (4.2)

When the algorithm is moved directly to the sensor data TIPP and Aanon effec-
tively switch places. Since the transforms are not commutative Aanon needs to be
changed to A∗

anon. To be able to replicate the reference algorithm, A∗
anon has to

perform an estimation of the effects of the IPP and its inverse T−1
IPP :

Aout = TIPP Aanon = (TIPP Aanon T−1
IPP) TIPP = A∗

anon TIPP (4.3)

A∗
anon = TIPP Aanon T−1

IPP (4.4)

The transform of the IPP is very complex and has many steps, all of which might
not be active in all situations. It is therefore necessary to estimate it. In this
thesis, it will be approximated to only be the most drastic step of taking the data
from Bayer form to RGB form.

4.1 Bayer Image Model
The Bayer image model is an image representation that is common in many digital
cameras [7]. It represents an image with one value per pixel, but with each pixel
only representing one color in a pattern. The pattern used by the sensor in the
development platform can be seen in Equation 4.5, where each pixels color is given
as R for red, G for green or B for blue. The sensor has a color filter before each
pixel to only sample the luminescence value of that specific color [7]. It has a
higher density of green pixels since the human eye is more sensitive to green light
than red or blue [7].

B00 G01 B02 G03 . . .
G10 R11 G12 R13

B20 G21 B22 G23

G30 R31 G32 R33

. .

. .

. .

(4.5)

4.1.1 Demosaic
The act of transforming a Bayer model image to an RGB image is generally called
demosaicking [11]. There are many methods to perform this and some of them
are compared by Ramanath [11]. One of the simpler methods, that is also used
in the IPP, is to perform bilinear interpolation. It estimates the missing color
information by taking an arithmetic mean of the pixels in its direct vicinity (eight
pixels surrounding it), with the same color as the one sought after [11].

Required Adaptations of the Algorithm 19

For instance, to calculate the RGB values in (1, 1) in Matrix 4.5, the red value
already exist, but the pixels Green and blue need to be determined. The green is
calculated by averaging the four green values around the pixel:

G11 =
G01 +G10 +G21 +G12

4
(4.6)

Blue is in the same manner:

B11 =
B00 +B02 +B20 +B22

4
(4.7)

For the next pixel (1, 2), green is present, red and blue is calculated with:

R12 =
R11 +R13

2
(4.8)

B12 =
B02 +B22

2
(4.9)

This kind of pattern then continues for the rest of the image. This method can
be seen as using four different spatial filters. The kernels would contain ones at
the indexes where they need to take pixel data from, zeros from the rest and
then divide the result by the number of ones, normalizing the kernel. To build an
RGB pixel it needs to take pixels from the filtered images in regards to the Bayer
pattern. Equation 4.6 describes a Plus, 4.7 a Cross, 4.8 a Horizontal line, 4.9 a
Vertical line and the present color pixel is the Mid pixel. The following Table
shows what filter pixels will be used for the top left corner. The same pattern
repeats over the entire image:

Table 4.1: What spatial filters are used to build an RGB pixel from
Bayer data. A visualization of the filters can be seen in Figure
5.6.

Index Red Green Blue
(0,0) Cross Plus Mid
(0,1) Vertical Mid Horizontal
(1,0) Horizontal Mid Vertical
(1,1) Mid Plus Cross

The edges of the image need to be handled by extrapolating or zero padding. This
thesis will use zero padding.

4.1.2 Remosaic
The reverse act of demosaicking is remosaicking. It filters an RGB image to Bayer
image color form. This topic is seldom discussed in literature, so none have been
referenced in the making of this stage. The simplest method to remosaic is just to
pick out the colors in the Bayer pattern from the RGB image:

20 Required Adaptations of the Algorithm

pixels

RGB Image

Input

pixels

Bayer Image

Remosaic

Figure 4.2: The basic color multiplexing concept to form Bayer
image from an RGB image

The marked colors on the left-hand side are the colors that will generate the Bayer
image on the right-hand side. The remosiac transform Tremosaic intends to be the
inverse of the demosaic. This method will therefore fulfill the following Equation
where Ieye is the identity matrix and Tdemosiac is a bilinear interpolation.:

Tdemosaic Tremosaic = Ieye (4.10)

Since demosaic is performing upsampling and remosaic downsampling, there ex-
ist at least one transform A, where A is not the identity transform, that fulfill
Equation:

Tdemosaic A Tremosaic = Ieye (4.11)

For instance, the transform that sets the green RGB value to zero in pixel (1, 1),
will be ignored since that index is reserved for a red pixel. And if a white line (all
colors is set to max value) is drawn through green only pixels. It will be interpreted
as a green line after the remosiacking stage. It is a drawback that it introduces
this kind of color noise. However, due to its simplicity and that it fulfills Equation
4.10 it will be used anyway.

4.2 Number Representation
The reference algorithm was designed with rational numbers in mind. It used
python’s floating-point representation of the IEEE-754 standard. In digital hard-
ware, however, floating point representation is complex and and its standard [12]
is extensive. According to the book Digital Signal Processing [13] floating point
operations is hard to implement in hardware [13]. Third-party IPs from FPGA
vendors like Xilinx can be used to make the implementation easier. Yet they are
still large and slow. Simulating these IPs can also be a problem when a simulator
that is not from the specific vendor is used. This is the case for this thesis. Xilinx
floating-point IPs for the FPGA in the development platform, is not possible to
simulate in the environment available for this thesis.

To replace the floating point operations, fixed-point arithmetic is used. It rep-
resents numbers with a fixed number of bits and what value each bit represents
is always the same [14]. All values to the left of the decimal point represent

Required Adaptations of the Algorithm 21

2distance to dot and right 2−distance to dot. The following example shows how the
value 10.3125 can be represented with 8-bits and no sign bit:

1010.01012 = 10.312510 (4.12)

The fixed point values also have a constant distance between each other [14]. The
distance is the value of the least significant bit or 2−N where N is the number of
fractional bits, whereas the distance between floating-point numbers is not con-
stant [12]. It is large for large values and small for small [12].

4.3 Unfolding
Unfolding is a structured way to achieve parallel processing [15]. It allows a process
to calculate multiple output values each clock cycle [15]. It is performed on a digital
signal process which is briefly explained below:

4.3.1 Digital Signal Processing
In digital signal processing, algorithms are non-terminating and described as func-
tions of previous inputs, outputs and constants [15]. A spatial filter is not non-
terminating and will end when a full image is processed. Since the images contain
a lot of pixels, the filter’s datapath can be modeled in a non-terminating man-
ner and then made terminating with some extra control logic. The gradient in
Equation 2.5 could be written as y(n) = x(n+ 1)− x(n− 1) where n is the time
instance, y(n) is the output signal and x(n) is the input. Since time instances
ahead of time (n + [≥ 1]) is not possible, a delay to y(n) needs to be added. A
more implementable Equation would be:

y(n) = x(n)− x(n− 2) (4.13)

The datapath representation of this Equation can be seen in the following Figure
4.3:

+
x(n)

2D

_

y(n)

x(n-2)

Figure 4.3: Datapath for the gradient function in a digital signal
process

To make this datapath handle the edges in an image, add a MUX before the input
of the adders. Then use it to set the signals to zero if they are outside of the
image.

22 Required Adaptations of the Algorithm

4.3.2 Unfolding
When performing unfolding more output functions are added [15]. The number
of outputs is decided by the unfolding factor J [15]. They would be marked from
y(n) to y(n+J − 1). The same applies to the inputs with x(n) to x(n+J − 1). In
this case signals with n+ [≥ 1] is allowed as long as they exist as in or out signals
[15].

To get a minimum number of delays and a correct signal assignment the functions
need to be modified [15]. The n should be replaced with Jk and the signals should
be re-written so that all have a format like:

y(J(k − d) + p) (4.14)

Where d assigns the number of delays and p decides which input or output node to
take the delayed signal from. To continue the previous example with the gradient
function and an unfolding factor of J = 3. It would lead to the following three
Equations:

y(n) = y(3k) = x(3k)− x(3k − 2) = x(3k)− x(3(k − 1) + 1) (4.15)

y(n+1) = y(3k+1) = x(3k+1)−x(3k− 1) = x(3k+1)−x(3(k− 1)+2) (4.16)
y(n+ 2) = y(3k + 2) = x(3k + 2)− x(3k) = x(3k + 2)− x(3k) (4.17)

They would translate to the following datapath in Figure 4.4:

+
x(3k)

D

_

y(3k)

+
x(3k+1)

D

_

y(3k+1)

+
x(3k+2) y(3k+2)

_

Figure 4.4: Unfolded gradient function in a digital signal process
with an unfolding factor of J = 3.

Unfolding increases the throughput of a process as many times as the unfolding
factor, without changing the number of registers present in the circuit [15]. This
is the main reason it is interesting to this thesis. It is needed to accommodate the
sensor’s two pixel values per clock cycle.

Chapter 5
Implementation

The sensor that is used with the development platform, delivers an image with
1920x1088 pixels and 35.6 frames per second. It transfers data with the MIPI
interface over an LVDS link. How this works is outside of the scope for this thesis.
The MIPI interface was translated to an Axis internal standard in a deserialization
block that provides an output of two pixels per clock cycle. The internal standard
is a master-slave protocol with a one clock cycle transfer where the slave can put
the master on hold if it can not receive data. Similar results can be achieved with
the AMBA AXI standard but the Axis internal protocol has been chosen for its
simplicity.

The sensor dispatches the image with rows consisting of active pixels and horizontal
blanking. The active pixels is the image data and the horizontal blanking is the
time interval between the active data. It can be visualized as a break in the data
delivery. The horizontal blanks can be utilized to introduce small delays without
reducing the frame rate.

To accommodate for the move of the algorithm to before the IPP and to estimate
Equation 4.4, Figure 2.1 needs to be extended with a demoasic block before and a
remosaic block after. The Sobel module also needs to be elaborated with a block
that takes the RGB image and transforms it into a grayscale image. A FIFO based
on a dual-port RAM will be added to decouple the timing of the two parallel paths
from each other. This FIFO will allow the Sobel operator to sit and wait for data
from the box-filter while the split stream from the demosaic stage can keep feeding
data to both paths. The FIFO needs to be big enough to not cause a lockup. If it
gets full while the Sobel is waiting for the box filter to produce a pixel, it will block
the demosaic module from producing more and the Box filter can not continue.
The FIFO therefore needs to have a depth of at least:⌈

sizeBox filter − sizeSobel operator

2
Rowwidth

⌉
= ⌈13.5 ·Rowwidth⌉ (5.1)

Where sizeBox filter and sizeSobel operator are the kernel sizes 30 and 3 respectively
and Rowwidth is the width of the image. Both paths need to hold the same amount
of rows before they can start delivering values. However, it can be divided by two

23

24 Implementation

Demosaic

RGB to Gray FIFO Sobel operator

Box filter

Merge Remosaic

Figure 5.1: Block diagram of the first implementation of the algo-
rithm.

since the spatial filters only need half the amount of rows before the first values
are delivered. This is because, at the topmost row half of the kernel will cover
pixels outside of the image. It is, therefore, this size that is needed to hold the
excess data that does not fit in the Sobel operator before the box filter is ready to
send. When both blocks are ready to transmit, the pixel pair will be consumed at
the same time by the merger. A simplified block diagram can be seen in Figure
5.1.

5.1 Sub-matrix Generation
The Sobel operator, demosaic block and the box filter, all build on spatial filters
and need to operate on a small sub-matrix out of a full image. The sensor delivers
pixels row by row. Therefore, to build a sub-matrix a whole number of rows need
to be stored. With a sub-matrix of the size 3x3, the following Figure 5.2 shows
that one whole and two partial rows is needed to fully represent a sub-matrix.
The dashed line is the contents of the shift register, the bigger box represents the
actual image and the smaller box is the sub-matrix.

When the next pixel is delivered the sub-matrix moves one step to the right. In
general, if the index is q then it would be x(n − q) with respect to x(n). With
an image width of 1920, the same sub-matrix would have the shift-register pixel
indexes that can be seen in Figure 5.3.

The small box in the middle of the Figure 5.3 is the pixel that is operated on and
the location where the result should be stored after a kernel multiplication. As a
result, the input and output location in the sub-matrix are not aligned.

When performing unfolding on the image stream, the only thing that changes is
the names of the indexes. To adapt with data rate, two sub-matrices need to be
taken out at the same time. The number of indexes per row is halved but there are
two pixels with the same index. This causes the Rowwidth in Equation 5.1 to be
halved. To avoid the confusion while expressing, one is feed from x(n) with a given

Implementation 25

Actual Image

Sub-matrix

x(n-2*w-3)

x(n)

Pixel row

Figure 5.2: Sub-matrix of an image in a shift register. The latest
pixel is x(n) and the oldest one is x(n− 2 ∗w− 3) where w is
the image width.

0123

1920192119221923

3840384138423843

 X(n)

Figure 5.3: Representation of a 3x3 sub-matrix of an image with
shift register indexes.

sub-index of 0, the other one is from x(n + 1) with the sub-index 1. Figure 5.4
displays how the indexes are assigned for the two sub-matrices, where the index
is d and the sub-index is p in x(2(k − d) + p). The bigger left most box is the
matrix for y(2k) and the bigger right most box is for y(2k + 1). Both the smaller
boxes in the middle represent the pixels for which the two sub-matrices are utilized
respectively.

At the edges of an image where some indexes are outside of the image, the values
of those are not valid. They instead need to be replaced depending on what edge
extrapolation method used. With zero-padding, they are replaced with zero. The
contents of the shift register should not be changed but a MUX should replace the
values to the output function.

The indexes of the shift register outside of the sub-matrix are mapped to LUT-
RAM by Vivado. To reduce the utilization of these, the indexes can instead be
implemented with dual-port RAM blocks, which will be mapped to B-RAM by
Vivado. With all of the indexes in registers and LUT-RAM the design does not
fit in the FPGA. This utilizes 345% of the available LUT-RAM blocks, which is
not feasible. In contrast, by using the dual-port RAM for all spacial filters, no
LUT-RAM is utilized but 57% of the B-RAM is used for the spatial filters. A

26 Implementation

0_11_11_0

960_1961_1962_1

1920_11921_11922_1

 X(n)0_02_12_0

960_0962_0 961_0

1920_01921_01922_0

Figure 5.4: Representation of two 3x3 sub-matrices of an image
with shift register indexes and two input signals.

significant amount of the RAM is occupied for the Box filter. If the box filter
would use dual-port RAM, the design would utilizes 55% of B-RAM for the box
filter 15% of LUT-RAM for the other two spatial filters.

5.2 Sobel Operator
The Sobel operator is implemented with the vector gradient ∇f consisting of the
two gradients in Equation 2.6 and 2.7. By using the shift register sub-matrix
concept, the kernels needs to be scaled up to 3x3 around the center pixel in the
sub-matrix. The spatial filtering can then be modeled with the following two
functions. Where w = 1920 is the width of the image, gx and gy are the gradients
in the direction of the x-axis and y-axis respectively.

gy(n) = x(n)− x(n− 2 ∗ w) (5.2)

gx(n) = x(n− w − 1)− x(n− w + 1) (5.3)

To accommodate for two pixels per clock cycle, they can be unfolded to the fol-
lowing four Equations:

gy0(2k) = x(2k)− x(2(k − w)) (5.4)

gy1(2k + 1) = x(2k + 1)− x(2(k − w) + 1) (5.5)

gx0(2k) = x
(
2
(
k − w

2
− 1

)
+ 1

)
− x

(
2
(
k − w

2

)
+ 1

)
(5.6)

gx1(2k + 1) = x
(
2
(
k − w

2

))
− x

(
2
(
k − w

2
+ 1

))
(5.7)

Where ∇f0 = ||[gx0(n), gy0(n)]|| and ∇f1 = ||[gx1(n+1), gy1(n+1)]||. The square
root operation needed for the 2-norm is very hard to implement in hardware.
It could be done numerically using Newton’s method [6]. It iteratively tries to
estimate x where the value to take the square root of x0 equals x2 [6], or in other

Implementation 27

|| f1||

x(2k)

x(2k+1)

|| f0||

-
+

959D D 960D

+

+
-

+

-

-

960D D 959D

|gx1|

a

>

b

a

>

b

Mux

Mux

|gx1|

|gy0|
|gy0|

|gy1|
|gy1|

|gx1|
|gx1|

Figure 5.5: Datapath of the Sobel operator

words, the function f(x) = x2 − x0 = 0. It would use the following Equation 5.8
[6] to step towards to the correct answer, with a scaling factor β and n iterations:

xn = xn−1 − β
f(xn−1)

f ′(xn−1)
= xn−1 − β

x2
n−1 − x0

2xn−1
(5.8)

This would be very large in hardware and slow as it would require one division
for each iteration. Testing shows that at most 15 iterations are needed to find
the integer square root for a number between 0 and 0xFFFF FFFF if a scaling
factor of β = 1

4 is used. To simplify the operation the 1-norm could be used, but
it has a risk of overflowing since it is always larger or equal to the 2-norm. The
∞-norm, on the other hand, is always smaller in comparison and do not risk of
any overflow. It also has a very low complexity and only needs to decide which
number is the largest, that is much smaller operation than 15 divisions. It is the
method that will be used as the magnitude function instead of the 2-norm.

Implementing these into a datapath would result in the following Figure 5.5. The
zero padding and handling of the image’s edges is not covered in the datapath. To
implement it pixel values from rows or columns that are outside of the image are
set to 0 before the gradient calculations.

28 Implementation

5.3 RGB to Gray
To avoid using floating-point numbers, the RGB to gray conversion was imple-
mented in fixed-point. When converting the floating-point constants used in this
model to fixed point, 27 fractional bits were needed to represent the float values
fully. Note that the float values did not represent these variables fully either. For
instance 0.299 ∗ 212 = 40131100.672 but the float value can not represent 0.299
exactly but it is instead 0.29899999499320983886718750000000, which can be rep-
resented fully with 27 fractional bits. The Equation used is the same as in 2.1 but
after the multiplication, the result was shifted down 27 bits and bit 26 was added
to round the result. The constants that were used in the conversion can be seen
in Table 5.1.

Table 5.1: Fixed point conversions of the RGB to gray constants.

Color Constant float Constant fixed point
Red 0.299 40131100
Green 0.587 78785808
Blue 0.114 15300821

5.4 Demosaic
The Demosaic block uses the sub-matrix structure as in Figure 5.4. The compu-
tations take one cycle and are executed based on a shift signal from the control
block. The result is then passed to the output data bus. To carry out the averaging
of a proximity, four different spatial filters is utilized named fcross(n), fplus(n),
fvertical(n) and fhorizontal(n). The base pixel is in fmid(n) where no interpola-
tion is needed and the color is known. A visualization of the patterns and their
Equations are given below:

(a):Cross (b):Plus (c):Horizontal (d):Vertical

Figure 5.6: The different patterns for color calculation for perform-
ing demosaicking.

fcross(n) =
x(n) + x(n− 2) + x(n− 2w) + x(n− 2w − 2)

4
(5.9)

fplus(n) =
x(n− 1) + x(n− w) + x(n− w − 2) + x(n− 2w − 1)

4
(5.10)

Implementation 29

fvertical(n) =
x(n− 1) + x(n− 2w − 1)

2
(5.11)

fhorizontal(n) =
x(n− w) + x(n− w − 2)

2
(5.12)

fmid(n) = x(n− w − 1) (5.13)

These filters are made with one pixel per clock cycle as input. In reality, two pixels
are sampled at the same time and the Equations have been unfolded in the same
way as the Sobel operator. A counter keeps track of the row and the column in
the image that is operated on and that decides which spatial filters will be applied
to build the two missing RGB pixels. Which filters to use follows the Table 4.1.

5.5 Remosaic
The merge generates an output image in RGB form. Hence, the remosaic block
is incorporated to supply the IPP with images on the expected Bayer form. The
method of doing this conversion is described in chapter 4. To implement the
functionality, a MUX and a counter is used to generate the color pattern of the
Bayer color model. The functionality depends on the following Figure 5.7:

pixels

RGB Image

Input

pixels

Bayer Image

Remosaic

Row
Parity

Even

Odd

Figure 5.7: The basic color Mux of remosaic block based on row
parity signal

A row parity signal is introduced to check whether the row is even or odd. With the
two transfers per clock cycle formatting [R0G0B0, R1G1B1] which selects [B0, G1]
for even rows and [G0, R1] for odd rows.

5.6 Box Filter
By implementing the box filter as a spatial filter convolution and with the shift
register structure, the following Equation can be utilized where w is the image
width:

b(n) =
1

302

30∑
r=0

30∑
c=0

x(n− r · w − c) (5.14)

30 Implementation

Here the resulting value is for the pixel in (15, 15) seen from a 30x30 sub-matrix
perspective. When unfolding the Equation 5.14, two sub-matrices will be gener-
ated and named b0(2k) and b1(2k+1). These two will overlap mostly and will have
29 columns in common. The overlapping columns can be summed up once which
called bboth(2k) in Equation 5.15 and utilized for the both sub-matrix summations
in Equation 5.16 and 5.17.

bboth(2k) =
1

302

30∑
r=0

31∑
c=2

x
(
2
(
k − r

w

2

)
− c

)
(5.15)

b0(2k) = bboth(2k) +
1

302

30∑
r=0

x(n− r · w − 32) (5.16)

b1(2k) = bboth(2k) +
1

302

30∑
r=0

x(n− r · w − 1) (5.17)

In the non-unfolded Equation 5.14, the result was stored 15 columns behind the
current bottom right pixel from x(n). When unfolding this causes a problem
since the result would then be calculated for (15, 71) and (15, 80) as seen from
the perspective of Figure 5.4 scaled up to a 30x30 matrix. These two are in
different output clock cycles and would make the image misaligned. To solve this
the two sub-matrices need to be shifted one step to the left. This fix is included
in the previous Equations 5.16 and 5.17 and it is the reason that x(n) is no longer
included in any of the two sub-matrices.

When the sub-matrices is shifting to the right, only the two rightmost columns
are not present in the previous sub-matrices. This can also be exploited to reduce
the complexity of the adder tree needed for the convolution. If only the two new
columns need to be summed together during each sub-matrix calculation and then
stored in a shift register, then that shift registers values can be used to calculate
b0(2k) and b1(2k + 1). That way only a 30x2 matrix need to be outside of the
RAM based shift registers and not a full 30x30. The first summation of a 30x1
column vector would add ⌈log2(30)⌉ = 5 bits to the output and the summation of
the previous columns would add 5 bits more. The number of bits the adder tree
would need to handle would therefore be reduced from 32400 to 3741, where 2160
is needed for the two new columns and 1581 to sum together b1 and b2 fully. The
number of registers needed to form the sub-matrix, excluding the indexes outside
of the matrix, can be calculated using Equation 5.18 where Kh is the kernel height,
Kw is the kernel width, Uextras is the extra columns needed because of unfolding,
Cp is the color planes RGB and bw is the bit width.

Kh ∗ (Kw + Uextras) + Cp + bw (5.18)

A full 30x30 solution would require 30 ∗ (30 + 2) ∗ 3 ∗ 12 = 34560 register bits,
whereas saving the summations would require 30 ∗ 2 ∗ 3 ∗ 12 = 2160 registers to

Implementation 31

hold the 30x1 matrix and 32 ∗ 1 ∗ 3 ∗ (12 + 5) = 1632 to hold the column sums,
giving a total of 3792 bit needed to calculate. The size of the RAM banks will not
change since no matter if the depth changes 30 lines up or down it will still have
to fit in two 36-bit wide and 1024 lines deep B-RAM blocks [16].

The normalization of the kernel, which required a division with 30 ∗ 30 = 900 was
replaced with a multiplication of it’s reciprocal. The reciprocal used 32-fractional
bits and got the same result as the integer division in 99.8889% of the 212+10 − 1
possible numerators. No exact coverage can be attained since dividing 900 into
primes result in 22 ∗ 32 ∗ 52 and 1

3 have an infinite number of decimals that can
not be fully approximated with a finite number of bits. This reduced the LUT
consumption from 179 to 4, but it now uses 10 DSP slices instead.

A datapath that for the box filter can be seen in Figure 5.8. The top lines of
registers and adders are to get the two new column sums with the 30x2 kernel.
The lower line of registers and adders is holding the previously passed columns
and uses them to calculate Equation 5.15, 5.16 and 5.17. The multiplication and
rounding in the bottom is there to perform the normalization of the result. The
zero padding and handling of the image’s edges is not shown. To implement it
pixel values from rows that are outside of the image is set to 0 before the column
summation adders and columns that are outside of the image is set to 0 before the
immediate next addition.

32 Implementation

+

960D960D960D ...

30

+

960D960D960D ...

30

x(n+1) x(n)

 D D D ... D D D ...

+

14

+

14

+

+ +bboth

3817748738177487

>>35

+

bit 34 >>35

+

bit 34

y(n+1) y(n)

Rounding

Figure 5.8: Simplified shift sum structure in the box filter. The
shift reg contains an 30 rows worth of pixel data and out of it
is collected a 30x2 sub-matrix.

Implementation 33

5.7 Merge
To obtain the anonymized image, two filtered images out from the Sobel operator
and box filter are overlayed inside the merger block. The overlay method that is
used in this thesis is mentioned in section 2.3. The sensor generate 12 bit pixels
so the max bit value to calculate α is in this case 4095 or 0xFFF . The division
was implemented with a multiplication of the reciprocal. For better precision 32
bits of fixed-point fractional bits are used for the alpha value and the reciprocal
of 4095 is therefore 1048832. The number of fractional bits was chosen because it
was the same amount of bits as in the floating-point values used in the reference
algorithm. The resulting merged pixel value discards the fractional values by
rounding. Because of the different kernel sizes and amount of blocks in the Sobel
and box filter paths, the arrival time of inputs in the module is usually not in the
same clock cycle. To handle this the path that finishes first is blocked until the
other path is ready and its value will not be consumed until both are available.

Finally, a register holds the computed values until they can be consumed by the
bus. A datapath without the registers can be seen in Figure 5.9, where the RGB
pixels come from the box filter and the gray value from the Sobel operator.

1048832

>>32

>>32

>>32

alpha

+

1<<32

-

Red

Green

Blue

+

+

+

+

+

+

Gray
bit 31

bit31

bit31

Rounding

Red

Green

Blue

Figure 5.9: Data path for the merge block.

5.8 Hardware Utilization
Hardware utilization of the implementation on an XC7A75T Xilinx Artix 7 FPGA
can be seen in the following Table 5.2.

34 Implementation

Table 5.2: Hardware utilization of the first implementation

Block Sub Block LUT FF LUT-RAM B-RAM DSP
Available 47 200 47 200 19 000 105 180

First

Demosaic 581 141 1440 0 0
FIFO 89 26 0 26 0
RGB to Gray 74 0 0 0 8
Sobel operator 399 119 1440 0 0
Box filter 6 292 3 876 0 58 10
Merge 132 61 0 0 0
Remosaic 1 0 0 0 0
Top 7 568 4 300 2880 84 18

From Table 5.2 it can be observed that by far the biggest block is box filter. It uses
83% of the utilized LUTs, 90% of the registers and 69% of the RAM tiles. Only
5.6% of the LUTs is used by the controller and the datapath is therefore utilizing
the most of the allocated hardware. Hence, reducing the kernel size in the box
filter can go a long way in minimizing the design. However, since the kernel size
was chosen to get a good anonymization at 6 meters, it is a parameter that can
not be changed. A shorter row width on the other hand can reduce the memory
utilization without reducing the level of anonymization. It can be reduced by for
instance using a smaller resolution or by flipping the sensor 90◦ to get a row width
of 1088 instead of 1920. The FIFO is also using plenty of RAM tiles with its 31%
of the utilized and since its size is depending on the size of the box filter it would
also benefit from a shorter row width. Downsampling could also be an option to
reduce the width of the image. However, if it is implemented only around the box
filter it would not affect the size of the FIFO.

The reason the FIFO is not utilizing a third of the B-RAM that the Box filter
is using is because the number of memory locations required has to be a power
of two [16] to fit in the memory modules instead of the precise value given in
Equation 5.1. The mentioned Equation explains that the FIFO needed at least
25920 memory locations but the smallest power of two that would fit this amount
is 232 = 32768 = 32K. The FIFO needs to be 12 ∗ 2 + 2 = 26 bits wide consisting
of two gray pixels and two bits from the interconnection protocol. According to
the FPGA’s documentation [16] a 32K deep memory need as many modules as it
has bits per line, this explains the 26 modules used by the FIFO. The box filter
on the other hand needed 960 locations deep and 72-bits wide per shift register,
which fits in two 1K deep and 36-bits wide B-RAM modules [16], with the 29 shift
registers this makes the result of 58 B-RAM modules expected.

89% of the LUTs in the demosaic block and 70% in the Sobel operator was part of
the controller and not in the data path. Therefore, it is not beneficial to optimize
it. Changing the interconnection protocol to something simpler would not reduce
the controller since the used one was chosen because of its simplicity and the
controller revolves mainly on how to handle the edges in the image and would not

Implementation 35

be affected by a protocol switch.

5.9 Human Vision Comparison
Visual comparison by juxtaposing results is one of the most common ways to
compare. In this case, two outcomes from the reference algorithm and hardware
implementation are placed side by side and a human vision’s comparison was made.
The hardware results are in the Bayer image form and the reference algorithm
results in an RGB image color model. The Bayer color image is not pleasurable
to human vision. To make it more visible to human eyes the anonymized image
from the reference algorithm and FPGA implementation are shown in an RGB
image. Figure 5.10 displays the original and the two anonymized images, from the
reference model and the hardware implementation respectively. In general, both
images look similar except a slight change of color intensity. It seems the reference
algorithm retains more intensity.

36 Implementation

Figure 5.10: RGB images where the left image is without the trans-
formation, the middle one with the reference algorithm applied
to it and the right image have gone through the FPGA imple-
mentation and the IPP.

5.10 Detector Results
A detector test as described in Section 3.2 was executed and the algorithm of the
first implementation was compared against the reference algorithm. A second test
was also performed where the first implementation had instead been implemented
with the 2-norm, to better illustrate the effects that this change had on the detector
performance. These results in terms of precision, recall and F1-score can be seen
in Table 5.3. Only considering the value of precision or recall to measure the
detector’s performance can lead to a misleading conclusion. Therefore, F1-score is
an important measure metric that includes the combined impact of precision and
recall by calculating the harmonic mean of those.

Table 5.3: Detector performance of the reference algorithm and first
implementation.

Implementation Precision Recall F1
Reference 88.0882% 87.0640% 87.5731%
First 2-norm 87.7941% 86.7733% 87.2807%
First ∞-norm 80.6011% 85.7558% 83.0986%

Here, the Table shows that the reference algorithm’s precision is higher than its

Implementation 37

recall value. This indicates that the detector detects less false-positive cases com-
pare to the false-negative cases which implies it can better detect in predicted
cases even though it could not cover all the relevant cases in the reference algo-
rithm. The hardware implementation with 2-norm follows the same result manner
where the precision is higher then the recall. The F1-score of the hardware im-
plementation with 2-norm drops with less than a percentage point with respect to
the reference algorithm. This can be considered as similar performance and most
likely will perform exactly like the reference algorithm after a retraining. However,
the hardware implementation with ∞-norm curtails the detector’s performance.
By observing the precision and recall value of this, it shows that the detector had
hard time to predict successfully among all predicted cases with compare to actual
cases. Therefore, the F1-score dropped with 4 percentage point from the refer-
ence algorithm which from a product perspective is not desirable. The ∞-norm
calculation for highlighting edges makes the borders less prominent compared to
the 2-norm calculation. The detector that was used, had been trained with a
non-anonymized image-set and then retrained with anonymized images from the
reference algorithm which utilizes the 2-norm, this is most likely the reason for
the drop in performance when using the ∞-norm, since this produces images that
does not contain the same features that the detector expects. However, retraining
with the new set of images from the hardware implementation will improve the
detector’s performance [17]. Hence, from a hardware perspective and considering
retraining, the implementation of the 2-norm is not worth it as it adds complexity
compared to the ∞-norm and would increase the utilization cost significantly.

38 Implementation

Chapter 6
Algorithmic Adjustments

At this point, the implementation is functional and have reached the first goal
of the thesis that is to perform anonymization on the sensor feed. However, the
second goal was to try to improve the algorithm and try to reduce the hardware
utilization. The two blocks where simplifications will be tested are the merge
block and the box filter. The merge is one of the smaller blocks but since it is
using many bits in its calculation and requires 4 multipliers to implement two
strength reduction techniques will be tested. The box filter, by far is the largest
block in the design and as discussed in Section 5.8, the reduction of its hardware
utilization is paramount to minimizing the overall design. This chapter will first
suggest three approximations and test these against the detector to see how they
affect its performance. The detector will be tested by using both the 2-norm and
∞-norm in the Sobel operator. The reason behind is the ∞-norm will examine the
current state of the implementation, the 2-norm will closely resemble the reference
algorithm and isolate the effects of the changes. The approximations with the best
detector results will be implemented and their utilization will be compared to the
first implementation and any potential changes in utilization will be observed.

6.1 Merge
6.1.1 Fractional Bit Reduction
Curtailing the number of bits in a circuit is an effective way to reduce the number
of logic cells needed to realize it. The number of bits used by the fixed point
representation in the merge block was chosen to be able to replicate the precision
of the intermittent floating-point values in the reference algorithm. Floats have
very high precision and the detector might not need the full extent of it. The
first implementation used 32 whole number bits with additional 12 fractional bits
to the left of the decimal points, leading to a total of 44-bits. The results of a
detector test with a fractional bits reduction to 10, 16 and 24-bits can be seen in
Table 6.1.

39

40 Algorithmic Adjustments

Table 6.1: Detector performance of the FPGA algorithms and bit
reductions in the merge. The number of bits given are the
fractional bits.

Implementation Precision Recall F1
Reference 88.0882% 87.0640% 87.5731%
First 2-norm 87.7941% 86.7733% 87.2807%
First ∞-norm 80.6011% 85.7558% 83.0986%
10 bits, 2-norm 80.7018% 86.9186% 83.6949%
16 bits, 2-norm 88.1832% 86.7733% 87.4725%
24 bits, 2-norm 87.7941% 86.7733% 87.2807%
10 bits, ∞-norm 72.6161% 86.3372% 78.8845%
16 bits, ∞-norm 80.7428% 85.3198% 82.9682%
24 bits, ∞-norm 80.9066% 85.6105% 83.1921%

By observing Table 6.1, it can be concluded that when using the 2-norm, reducing
the number of fractional bits to 24 yields no effects at all to the performance. The
precision, recall, F1-score are exactly the same as for 32-bits. With 16 fractional
bits, the precision improves slightly by 0.389 percentage points. 10 fractional bits
yields a better recall but worse precision which decreased the F1-score with 3.59
percentage points. It implies that the detector finds more false positives but also
more of the true positives. The ∞-norm results in Table 6.1 implies that unlike
to the 2-norm 24 fractional bits infers a slight recall reduction of 0.145 percentage
points. 16 fractional bits did yet again increase the precision but with ∞-norm
the recall reduced by 0.436 percentage points which lower the F1-score by 0.130
points. 10 fractional bits reduced the precision much more than any of the other
with 7.99 points, the recall increased slightly with 0.581 points but the overall
F1-score was still lowered with 0.421 percentage points. From these results it can
be concluded that the decrease in the number of bits from 16 to 10 would not be
worth it because of the relatively large precision loss that was observed for both
the 2-norm and the ∞-norm test.

6.1.2 Division Approximation
The division with max bit value in the α calculation in Equation 2.15 in the first
implementation was performed by multiplying the Sobel pixel with the reciprocal
of the divisor. Using the reciprocal instead of a direct division operation is already
a hardware simplification. However, max bit value = 2bits − 1 which is approxi-
mately 2bits is advantageous since a division by a power of two can be implemented
with a simple right shift operation. Equation 6.1 can therefore be used to estimate
the division. The results of a detector run using this approximation and different
numbers of fractional bits can be seen in Table 6.2.

α =
Sobel pixel

2bits − 1
≈ Sobel pixel >> bits (6.1)

Algorithmic Adjustments 41

Table 6.2: Detector’s evaluation metric values of the First imple-
mentation and the division approximation in the merge block.
The number of bits given are the fractional bits.

Implementation Precision Recall F1
Reference 88.0882% 87.0640% 87.5731%
First 2-norm 87.7941% 86.7733% 87.2807%
First ∞-norm 80.6011% 85.7558% 83.0986%
No division, 32 bits, 2-norm 88.1129% 86.1919% 87.1418%
No division, 24 bits, 2-norm 87.9643% 86.0465% 86.9949%
No division, 16 bits, 2-norm 88.2789% 86.4826% 87.3715%
No division, 32 bits, ∞-norm 80.7428% 85.3198% 82.9682%
No division, 24 bits, ∞-norm 80.7428% 85.3198% 82.9682%
No division, 16 bits, ∞-norm 80.7428% 85.3198% 82.9682%

From Table 6.2, it can be observed that the approximation reduces the recall
slightly for all norms and bit widths which implies more false negative cases were
found. The precision, on the other hand, has increased for all norms and bit
widths. The F1 score was decreased for all of the tests except for the 2-norm with
16 fractional bits test where it increased with 0.0908 percentage points. Another
observation is that it does not matter for the detector how many bits are used
among the three tested widths for the ∞-norm. This is expected since the twelve
bit pixel from the Sobel operator are padded with zeros to add more fractional
bits. It would therefore have the same performance for everything down to 12-bits,
where all twelve incoming bits would just be the fractional bits.

6.2 Box Filter
6.2.1 Downsampling
As noted in section 5.8 the two things that made the box filter large are the
kernel size and the image width. The kernel size is set to get a blurry image
at a distance of 6 meters. It can, therefore, not directly be reduced or the blur
would not be strong enough. The utilization of LUT and FF is also relatively low
compared to memory-utilization. Hence, the memory usage is more important to
minimize to be able to use a smaller FPGA. The image width does affect memory
usage overall and its reduction would make the Sobel, demosaic and the FIFO
also smaller. A simple way to diminish the width of an image is to downsample
it. Downsampling is performed by discarding samples and only use a subset of
pixels in the image. This will decrease the entropy of the image. An example of
how to downsample the columns can be seen in the following Figure 6.1: To get
back to the original resolution, upsampling needs to be performed. An example
of how to reverse Figure 6.1 is to duplicate the columns in the image to the right.
Since downsampling reduces entropy, upsampling can not be the exact inverse
A−1

downsample and Adownsample Aupsample ̸= Ieye.

42 Algorithmic Adjustments

Original Image

...

.

.

.

0 1 2 3

Every other column

...

.

.

.

0 2 4 6

Figure 6.1: Comparison between a downsampled image and its orig-
inal.

However, if the kernel size of the box filter is the same size as previously used it
will filter over a larger spacial area than when using the full resolution. The 30x30
kernel would cover an area equal to 30x60 in the original image. Reducing the
kernel size to 30x15 by downsampling would cover the same pixel area and also
cut down the number of column sums stored by half.

The detector was re-trained with images from the reference algorithm and is ex-
pecting that the edges from the Sobel operator should have the original 1920x1088
resolution. Therefore, it is inferable that downsampling only around the box filter
would diminish the performance less compared with general downsampling of the
design. In Table 6.3 below the difference between the following two points are
compared:

• General downsampling of the design. It is applied after the demosaic and
upsampled again before the remosaic. Both the 2-norm and ∞-norm are
used.

• Only downsampling around the box filter with the scaled-down 30x15 kernel
and only utilize the ∞-norm.

Table 6.3: Detector performance of the First algorithm and the
downsampling adjustment.Here, DS stands for DownSampling.

Implementation Precision Recall F1
Reference 88.0882% 87.0640% 87.5731%
First 2-norm 87.7941% 86.7733% 87.2807%
First ∞-norm 80.6011% 85.7558% 83.0986%
DS all, 2-norm 92.0530% 60.6105% 73.0938%
DS all, ∞-norm 89.6629% 57.9942% 70.4325%,
DS box filter only, ∞-norm 85.5590% 80.0872% 82.7327%

Table 6.3 shows that the general downsampling decreased performance with an F1-

Algorithmic Adjustments 43

score reduction of 14.2 percentage points for 2-norm and 12.7 percentage points
for the ∞-norm. This is significant compare to the loss of 4.55 percentage points
caused by performing it only around the box filter. The drop of recall values
for the general downsampling tests indicate that the lower resolution Sobel edges
made it harder for the detector to find people in the image. As per expectation,
downsampling only around the box filter and using a kernel with a scaled size, did
not reduce performance as much as the general case. The recall only decreased
by 5.67 percentage points and the precision increased by 4.96 percentage points.
It, therefore, had a smaller decrease in the F1-score compared to the general
downsampling.

6.3 Implementation
The following two adaptations was chosen for implementation:

• Approximating the division in the merge block and using the Sobel pixels
directly as 12 fractional bits.

• Performing downsampling around the box filter with a kernel scaled down
to 30x15.

They were chosen because they had the lowest F1-score reduction out of the tested
cases in the Tables 6.2 and 6.3. To adapt the merge block, the datapath in Figure
5.9 only need to remove the multiplication with the reciprocal, directly assign the
incoming Sobel pixel to the alpha value and reduce the number of fractional bits
in the rounding to 12. The downsampling around the box filter will be realized
in hardware by discarding the second pixel (x(2k + 1)) every clock cycle. Since
unfolding is no longer required Equation 5.14 can be used directly, but with c = 15.
The column sum shift register will still be used and Figure 5.8 still applies, but
to be able to upsample back to the larger resolution, b1(n) is directly connected
to b0(n) . Table 6.4 hold the utilization of the new adjustments and the first
implementation for an easier comparison.

From Tabel 6.4 it can be observed that the merge approximation did not save
any LUT, it instead increased the amount needed by 24 and also required 5 more
DSP slices. Even thought the datapath was simplified, it did not lead to a smaller
design. This is mainly because Vivado decided to map (1 − α) ∗ RGB pixel to
DSP slices instead of regular LUT. The DSP slices required the extra LUTs to be
controlled by the circuit. The allocation and its routing also made it harder to
minimize the number of LUT in the box filter, that is why the total amount of
LUT increased by 251 and not just the 24 in the merge block.

Table 6.4 also shows that downsampling around the box filter did reduce the
hardware utilization. The number of LUTs within the filter is reduced by 41.0%,
FF by 42.0% and RAM blocks by 50%. For the total utilization the number of
LUT is reduced by 33.4%, FF by 46.2% and B-RAM by 34.5% This is expected
and the memory utilization is lower due to the halving of the memory line width

44 Algorithmic Adjustments

Table 6.4: Hardware utilization of the new adjustments. Here, DS
stands for DownSampling.

Block Sub Block LUT-Logic FF LUT-RAM B-RAM DSP
Available 47 200 47 200 19 000 105 180

First

Demosaic 581 141 1440 0 0
FIFO 89 26 0 26 0
RGB to Gray 74 0 0 0 8
Sobel 399 119 1440 0 0
Box filter 6 292 3 876 0 58 10
Merge 132 61 0 0 0
Remosaic 1 0 0 0 0
Top 7 568 4 300 2880 84 18

Merge

Demosaic 582 142 1440 0 0
FIFO 89 26 0 26 0
RGB to Gray 74 0 0 0 8
Sobel 400 118 1440 0 0
Box filter 6 518 3 867 0 58 10
Merge 156 61 0 0 5
Remosaic 1 0 0 0 0
Top 7 819 4 289 2880 84 23

DS

Demosaic 558 143 1440 0 0
FIFO 89 26 0 26 0
RGB to Gray 74 0 0 0 8
Sobel 399 116 1440 0 0
Box filter 3 711 2 314 0 29 6
Merge 132 61 0 0 0
Remosaic 1 0 0 0 0
Top 4 964 2 314 2880 55 14

Algorithmic Adjustments 45

Figure 6.2: Resulting anonymized images from the first hardware
implementation (left), the approximated merge block (middle)
and with box filter downsampling (right).

from 72 to 36, the LUT and FF reduction is caused by the kernel scaling to 30x15
instead of 30x30.

This significant reduction in utilization and relatively low performance-cost makes
this change strongly recommended. With it the design would fit in a smaller
FPGA. The current Xilinx Atrix 7 XC7A75T could be replaced by a Atrix 7
XC7A50T, but by replacing three B-RAM shift-registers in the box filter with
LUT RAM the even smaller Atrix 7 XC7A35T could be used instead. Visually it
can be observed in Figure 6.2 that the image quality has hardly been affected by
the two different approximations and it is very hard to see any differences.

46 Algorithmic Adjustments

Chapter 7
Conclusion

7.1 Implementations and Improvements
The chosen algorithm is already well suited for FPGA implementation. Yet, for
it to function on a sensor stream it needs to be adapted to take Bayer images as
input and output. This can be done as described in chapter 4 by performing a
bilinear interpolation on the incoming Bayer image and then remosaic the image
before sending it out of the FPGA again. Remosaicking can be performed by
taking out the colors in the Bayer pattern from the outgoing RGB image.

7.1.1 Spatial Filters and FIFO
As discussed in chapter 5, the demosaic block, Sobel operator and box filter can all
be implemented like spatial filters. These use sub-matrices and can be implemented
with a shift-register structure, where the amount of rows in the kernel dictate how
many rows in the image need to fit in the shift-register. The parts of the rows that
are not needed in the sub-matrices will be placed in distributed LUT-RAM but to
make the box filter fit, it needs to place those indexes in in dual-port RAM banks.
Unfolding does not change the number of bits that need to be stored to perform
the filtering. It will instead double the width of each register but halve the shift-
register depth, leading to a net-zero change in the number of bits. It was shown in
table 5.2 that the box filter was the largest hardware block and can preferably to
be minimized in regards of memory and logic utilization. To perform this, either
the kernel size or the number of columns in the image requires to be diminished. In
this thesis row width was cut down by performing downsampling around the box
filter, where every other column was discarded. It also forced a kernel reduction
from 30x30 to 30x15, since the kernel should cover the same area in the image
after downsampling as before it. Table 6.3 shows that this change diminished the
detector’s performance slightly, but it is inferable that retraining will make the
detector regain its performance. In contrast, the utilization reduction was very
high, as seen in table 6.4. The utilization in the FPGA fell between 33.4% and
46.2% for LUT, FF and B-RAM. Therefore downsampling can bring great benefit
to the design.

47

48 Conclusion

Table 5.3, its following discussion and the section 5.2 illustrates that the 2-norm
calculation in the Sobel operator can preferably be replaced with an ∞-norm.
The main reason is to avoid implementing the square root in the 2-norm. The
square root would as discussed in section 5.2 have to be implemented numerically
with Newton’s method and would need at least 15 very large division operations.
This change will reduce detector performance with multiple percentage points.
However, it is probable that these losses would be regained after retraining the
detector. Hence, with retraining and the hardware complexity reduction, the ∞-
norm is highly recommended.

In accordance with chapter 5, a FIFO can preferably be added between the RGB
to gray converter and the Sobel operator. It will be used to decouple the Sobel
and box filter paths and allow them to perform calculations at their own rate. The
FIFO needs to contain sufficient memory so that the Sobel path can store at least
as many pixels as the box filter needs to consume to produce its first pixel. The
depth therefore depends on the number of kernel rows in the Sobel operator and
the box filter.

7.1.2 RGB to Gray and Merge
Floating-point arithmetic is very complex and hard to implement. Section 4.2
therefore, advise that all floating-point calculations should be replaced with fixed-
point arithmetic. Section 5.3 states that the RGB to gray converter require 27
decimal point bits to fully replicate the floating-point operations. Table 5.2 shows
that it does not utilize much hardware and can be allowed to keep its decimal bits
without reducing them.

The merger, on the other hand, could be simplified by approximating the maxbitvlaue =
4095 = 212−1 ≈ 212 and use the Sobel pixels directly as a 12-fractional bits alpha
channel. The approximation did cause a performance loss displayed in Table 6.2.
Table 6.4 shows that the hardware utilization increased instead of reduced. The
approximation is therefore discouraged and using the reciprocal of 4095 is a better
optimization.

7.2 Future Work
The person detector is trained to detect people in images similar to the ones it
has been trained on. If an alteration of the algorithm changes how the resulting
image looks it will make it harder for the detector to find people. If the detector
was retrained with a dataset constructed with the new algorithm, more alterations
would be viable and possible to perform.

7.2.1 Sobel Operator
The Sobel operator is a block that can affect the look of the image a lot with
just small changes. For instance replacing the gradients with the larger kernel in
Equation 2.8 and 2.9 the edges are highlighted more strongly and smoothly.

Conclusion 49

Figure 7.1: Edge detection with a 3x3 kernel.

With the current detector, this modification got a precision of 0.944862, recall of
0.547965 and F1-score of 0.693652. Performing a retraining of the detector to see
if the more strongly highlighted edges would make it easier to get a good detector
would be interesting. It is, however, firmly out of scope for this thesis.

One problem that exists with the current implementation of the Sobel operator is
that an edge will disappear between two color fields that have the same or very
close grayscale values. For instance by using Equation 2.1 it can be proved that
an edge between the blue field with intensity 200 and the red field with intensity
200 0.114

0.209 ≈ 109 will have the same gray value and no edge will be found. This can
also be seen in the following Figure 7.2:

Figure 7.2: Visualization of how grayscale conversion can hide edges.
The left fields are of color and the right field is both colors
grayscale value.

That it is a problem for edge detection can be seen in the following Figure 7.3,
where the similar gray values do not highlight the edges between the body and
the pillow:

50 Conclusion

Figure 7.3: Anonymized image where same gray value caused an
edge to disappear between the body and the pillow.

A possible solution would be to run a Sobel operator for each color channel and
take the maximum value of all three. An example image can be seen in Figure 7.4:

The edges are even more pronounced than with the 3x3 kernel discussed above. It
is, therefore, likely that the detector with its current training would not function
well with this modification. The detector would have to be retrained for it to be
properly evaluated. With the very pronounced lines, there is also a reduction in
anonymization. It adds more lines in the face and makes it easier to recognize a
person compared to the relatively more blurry faces with grayscale Sobel.

7.2.2 Demosaic
The bilinear interpolation method has a smoothing effect on edges [11]. In the
paper Demosaicking methods for Bayer color arrays [11] it is suggested that Free-
man’s method introduces the least amount of errors when there is a speckle be-
havior in the image. It performs a bilinear interpolation first and then applies a
median filter to the difference between the color channels to remove fringes and
make edges clear again [11]. A median filter ranks the brightness in a neighbor-
hood around a pixel and takes the median as its new value [7]. This method will
no longer fulfill Equation 4.10. If it would matter or not needs to be evaluated
but it would be a larger departure from the replication of the IPP.

One interesting thing to test would be to not perform the up-sampling from the

Conclusion 51

Figure 7.4: Image that is using one Sobel operator per color channel
and uses the maximum to calculate the alpha channel.

interpolation methods at all. Rather use four Bayer pixels from the patern in
Equation 4.5 to build an RGB pixel and assume that the difference in location is
negligible. The calculation would follow the following Equation:[

B0,0 G0,1

G1,0 R1,1

]
→ R = R1,1, G =

G0,1 +G1,0

2
, B = B0,0 (7.1)

To remosaic, simply add back the pixels in its pattern and use the green value
twice. It will not perform the color distortion that is caused by the current method
of simply taking out the Bayer pattern from the RGB image. The edges that
are detected can therefore stay white and make it easier for the detector to find
them. There would no longer be a risk that they would disappear because of the
phenomenon discussed in section 4.1.2.

It will add more distortion than the interpolation methods but it will also not
perform any up-sampling. For minimal hardware implementation, this could be
more efficient. Especially if the detector can be retrained to expect the edges from
this smaller resolution.

52 Conclusion

Bibliography

[1] R. C. Gonzales and R. E. Woods, Digital image processing, second
edition. Prentice Hall, 2002.

[2] Color conversions, accessed on the webpage https://docs.opencv.
org, version 4.20, OpenCV team, Mar. 2020.

[3] J. Månsson and P. Nordbeck, Endimensionell analys. Lund Sweden:
Studnetlitteratur AB, 2011.

[4] P. R. Mercer, More Calculus of a Single Variable. New York, NY,
United States: Springer, 2014.

[5] Sobel derivatives, accessed on the webpage https://docs.opencv.
org, version 4.20, OpenCV team, Mar. 2020.

[6] T. Sauer, Numerical Analysis, second. Harlow, Great Britain: Pear-
son, 2014.

[7] J. C. Russ, Image processing handbook: fourth edition. CRC Press,
2002.

[8] L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, and M.
Pietikäinen, “Deep learning for generic object detection: A survey,”
International Journal of Computer Vision, vol. 128, pp. 261–318, Feb.
2020.

[9] T. Hamed, R. Dara, and S. C. Kremer, “Chapter 6 - intrusion de-
tection in contemporary environments,” in Computer and Informa-
tion Security Handbook (Third Edition), J. R. Vacca, Ed., Third Edi-
tion, Boston: Morgan Kaufmann, 2017, pp. 109–130, isbn: 978-0-12-
803843-7. doi: https://doi.org/10.1016/B978-0-12-803843-
7.00006-5. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/B9780128038437000065.

[10] L. Leonard, “Chapter one - web-based behavioral modeling for con-
tinuous user authentication (cua),” in Advances in Computers, A. M.
Memon, Ed., vol. 105, Elsevier, 2017, pp. 1–44. doi: https://doi.

53

https://docs.opencv.org
https://docs.opencv.org
https://docs.opencv.org
https://docs.opencv.org
https://doi.org/https://doi.org/10.1016/B978-0-12-803843-7.00006-5
https://doi.org/https://doi.org/10.1016/B978-0-12-803843-7.00006-5
http://www.sciencedirect.com/science/article/pii/B9780128038437000065
http://www.sciencedirect.com/science/article/pii/B9780128038437000065
https://doi.org/https://doi.org/10.1016/bs.adcom.2016.12.001
https://doi.org/https://doi.org/10.1016/bs.adcom.2016.12.001

54 BIBLIOGRAPHY

org/10.1016/bs.adcom.2016.12.001. [Online]. Available: http://
www.sciencedirect.com/science/article/pii/S0065245816300742.

[11] R. Ramanath, W. E. Snyder, G. L. Bilbro, and W. A. Sander, “De-
mosaicking methods for bayer color arrays,” Journal of Electronic
Imaging, vol. 11, no. 3, pp. 306–315, Jul. 2002.

[12] “Ieee standard for floating-point arithmetic,” IEEE Std 754-2008,
pp. 1–70, 2008.

[13] P. R. Babu, Digital signal processing, 7th ed. Tambaram West, Chen-
nai, India: Scitech Publications (India) PVT.LTD, 2017.

[14] “Ieee standard computer dictionary: A compilation of ieee standard
computer glossaries,” IEEE Std 610, pp. 1–217, 1991.

[15] K. K. Parhi, VLSI Digital Signal Processing Systems: Design and
Implementation. John Wiley & Sons, 1999.

[16] X. Inc., 7 series fpgas data sheet: Overview, Last Access: 2020-06-
24, https://www.xilinx.com/support/documentation/data_
sheets/ds180_7Series_Overview.pdf, Feb. 2018.

[17] B. Moons, D. Bankman, and M. Verhelst, “Embedded deep neu-
ral networks,” in Embedded Deep Learning: Algorithms, Architec-
tures and Circuits for Always-on Neural Network Processing. Cham:
Springer International Publishing, 2019, pp. 1–31, isbn: 978-3-319-
99223-5. doi: 10.1007/978-3-319-99223-5_1. [Online]. Available:
https://doi.org/10.1007/978-3-319-99223-5_1.

https://doi.org/https://doi.org/10.1016/bs.adcom.2016.12.001
https://doi.org/https://doi.org/10.1016/bs.adcom.2016.12.001
http://www.sciencedirect.com/science/article/pii/S0065245816300742
http://www.sciencedirect.com/science/article/pii/S0065245816300742
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://doi.org/10.1007/978-3-319-99223-5_1
https://doi.org/10.1007/978-3-319-99223-5_1

FPGA Implementation of an Anonymization
Algorithm

NIKLAS KJELLMAN
REHENUMA TARANNUM
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2020

N
IK

LA
S K

JELLM
A

N
 &

 R
EH

EN
U

M
A

 TA
R

A
N

N
U

M
FP

G
A

 Im
plem

entation of an A
nonym

ization A
lgorithm

LU
N

D
 2020

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2020-777
http://www.eit.lth.se

	Thesis_Niklas_Rehenuma.pdf
	List of Figures
	List of Tables
	Introduction
	Motivation
	Objective
	Thesis Structure

	Reference Algorithm
	Images and Color Representation
	Spatial Filters and Convolutions
	Box Filter
	Sobel Operator

	Merging the Two Images
	Configuration

	Detector Evaluation Process
	Evaluation Parameters
	Detection Evaluation Methodology

	Required Adaptations of the Algorithm
	Bayer Image Model
	Demosaic
	Remosaic

	Number Representation
	Unfolding
	Digital Signal Processing
	Unfolding

	Implementation
	Sub-matrix Generation
	Sobel Operator
	RGB to Gray
	Demosaic
	Remosaic
	Box Filter
	Merge
	Hardware Utilization
	Human Vision Comparison
	Detector Results

	Algorithmic Adjustments
	Merge
	Fractional Bit Reduction
	Division Approximation

	Box Filter
	Downsampling

	Implementation

	Conclusion
	Implementations and Improvements
	Spatial Filters and FIFO
	RGB to Gray and Merge

	Future Work
	Sobel Operator
	Demosaic

