
On-chip Instrument Access Through System
Hierarchy

SHASHI KIRAN GANGARAJU
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2021

SH
A

SH
I K

IR
A

N
 G

A
N

G
A

R
A

JU
O

n-chip Instrum
ent A

ccess Th
rough System

 H
ierarchy

LU
N

D
 2021

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2021-801
http://www.eit.lth.se

On-chip Instrument Access Through System
Hierarchy

Shashi Kiran Gangaraju
sh6071ga-s@student.lu.se

Department of Electrical and Information Technology
Lund University

Supervisor: Dr. Erik Larsson
erik.larsson@eit.lth.se

Examiner: Dr. Pietro Andreani
pietro.andreani@eit.lth.se

October 29, 2020

c© 2020
Printed in Sweden
Tryckeriet i E-huset, Lund

Abstract

There are many advantages with the development towards Integrated Circuits
(ICs) with smaller, faster, and more transistors. However, tighter margins lead to
a need of on-chip instruments to test, tune, and configure. These on-chip instru-
ments, which can be in the range of thousands per IC, must be accessed through
the life-time. However, access is challenged by complex system hierarchies. When
ICs are mounted on Printed Circuit Boards (PCB) there might not be a direct
access path and a single access protocol. In this thesis we have developed a generic
module to handle communication between two ICs. We propose two alternatives
for the communication. A hardware-based where communication is handled in an
interrupt-driven manner and a software-based where the communication is handled
through polling. We have made experiments using a Xilinx Field-Programmable
Gate Array (FPGA) where we compare the solutions in terms of data overhead
and area cost. We implemented two ICs on the FPGA where we for one IC
used on-chip instruments connected using IEEE Std. 1687 and for the second IC
we implemented our module connected using IEEE Std. 1687. The communica-
tion between the ICs was performed with Serial Peripheral Interface (SPI) and
the communication with the outside world with Universal Asynchronous Receiver
Transmitter (UART). The experiments show that the hardware-based solution
provides little data and limited area overhead.

i

ii

Popular Science Summary

In the modern times, we use and depend more and more on systems with a part of
electronics. The electronic part of a system consists of Integrated Circuits (ICs)
mounted on Printed Circuit Boards (PCBs). The development towards Integrated
Circuit (IC) with smaller, faster, and more transistors, has many performance
advantages. However, smaller and faster transistors lead to tighter margins. These
tight margins make it a challenge to perform testing, tuning, and configuration.
On-chip instruments (also called as embedded instruments) refer to the integration
of test and measurement instrumentation into semiconductor chips (or integrated
circuit devices). As these instruments are placed inside the ICs close to the logic,
which is important due to tight margins, there is a need to access and analyse
these instruments throughout the lifetime of the IC. Recent electronic systems are
increasingly complex with more ICs and more advanced ICs, the access through
the system hierarchies can be difficult as there might not be a direct access path
and a single access protocol.

In this thesis we have developed a generic module to handle communication includ-
ing synchronization between two ICs. We propose two alternatives for the com-
munication. A hardware-based where communication is handled in an interrupt-
driven manner and a software-based where the communication is handled through
polling. We have made experiments using an Xilinx Field-Programmable Gate
Array (FPGA) where we compare the solutions in terms of data overhead and
area cost. We implemented two ICs on the FPGA where we for one IC used
on-chip instruments connected using Institute of Electrical and Electronics En-
gineers (IEEE) Std. 1687 and for the second IC we implemented our module
connected using IEEE Std. 1687. The communication between the ICs was per-
formed with Serial Peripheral Interface (SPI) and the communication with the
outside world with Universal Asynchronous Receiver Transmitter (UART). The
experiments show that the hardware-based solution provides minimum data over-
head and limited area overhead, whereas the software based solution provides more
data overhead and less area overhead.

iii

iv

Acknowledgment

• First and foremost I would like to thank Swedish University Admissions de-
partment for providing me the opportunity to study at one of the best Uni-
versities in Sweden and in the world and Migrationsverket for understanding
the student problems and providing me the proper support to continue my
studies.

• I would like to express my sincere gratitude to my supervisor Prof. Dr.Erik
Larsson, who supervised this project and the examiner Prof. Dr.Pietro An-
dreani. I would like to express the deepest appreciation to my International
Master’s Coordinator - Helene von Wachenfelt,for her patient understanding
of my personal problems, encouragement and administrative support.

• My special gratitude goes to Mr. R.Vasanth Kumar and Mr. R.V. Rohit
Kumar from Kumar Electrical for funding me through out my educational
journey. Without their support I would not be have been able to study this
far.

• I would also like to thank my peer Mr. Prathamesh Murali. for his unstinted
guidance and support during the thesis implementation.

• Last but not least, I would like to express my gratitude to my parents,
families and friends Ravi, Manu, Jayanth, Pramod, Vinay, Nagesh, Vinod,
Ajay, Praveen, Srinivasan, Ghanshyam, Gustav, Robel and Ennio. Their
motivation and support helped me to mentally prepare and face challenges
during my masters studies at Lund University.

v

vi

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 Thesis objectives . 3
1.3 Thesis organization . 4

2 Background 5
2.1 System overview . 5
2.2 Institute of Electrical and Electronics Engineers (IEEE) Std. 1149.1 . 6
2.3 IEEE Std. 1687 (Internal Joint Test Action Group (IJTAG)) 8

2.3.1 SIB . 8
2.3.2 Description language . 9

2.4 Related work . 11
2.4.1 Data overhead classification 12

2.5 Communication technique . 13

3 Proposed solutions 15
3.1 Synchronization module . 15

3.1.1 Sending data . 15
3.1.2 Receiving data . 16

3.2 Hardware-based solution . 16
3.2.1 Universal Asynchronous Receiver Transmitter (UART) master

controller . 17
3.2.2 Serial Peripheral Interface (SPI) system 18
3.2.3 SPI master controller . 18
3.2.4 Hardware description of the solution 18
3.2.5 Retargeting flow for the hardware-based solution 21

3.3 Software-based solution . 24
3.3.1 IC-2 . 24
3.3.2 Polling function . 25
3.3.3 Check-up function . 26
3.3.4 Hardware description of the solution 26
3.3.5 Retargeting flow for the software-based solution 27

4 Experiments and Results 31

vii

4.1 Results of experiment-1 . 33
4.2 Results of experiment 2 . 35

5 Conclusion and Future Work 39

Bibliography 41

A Appendix 1 43
A.1 UART standard . 43
A.2 SPI bus interface . 44
A.3 Retargeting tool algorithms . 46

viii

List of Figures

2.1 System overview . 6
2.2 A conceptual view of IEEE Std. 1149.1 circuitry 7
2.3 IEEE Std. 1149.1 TAP Controller state diagram. Courtesy: [3] . . . 7
2.4 Flat IEEE Std. 1687 network consists three instruments 8
2.5 Implementation of SIB Schematic 9
2.6 Conceptual schematic of Instrument Connectivity Language (ICL) for

IC-4 . 10
2.7 Procedural Description Language (PDL) example 10
2.8 Full-featured case . 11
2.9 Developed protocol . 12

3.1 Synchronization module overview 15
3.2 Architecture of hardware-based solution 16
3.3 ASMD of DTFSM . 19
3.4 ASMD of RSFSM . 20
3.5 Bits generation by retargeting tool of iWrite PDL 22
3.6 Bits generation by retargeting tool of iRead PDL 23
3.7 Architecture of software-based solution 25
3.8 Re-Targeting tool functions . 25
3.9 ASMD of the Software Solution . 27
3.10 Bits generation by retargeting tool of iRead PDL 28
3.11 Bits generation by retargeting tool of iRead- polling and check-up

process . 28

4.1 Digilent Nexys 4 FPGA. Courtesy[10] 33
4.2 Data Overhead comparison Single 1687 Network case and Two 1687

Network case . 35
4.3 Comparison of data overhead between the hardware-based versus and

the software-based solution . 37
4.4 Comparison of Area between the Hardware Solution versus the Soft-

ware Solution . 38

A.1 Break down of UART transmission. Courtesy: Soliton Technologies[12] 44
A.2 SPI Single Master - Multiple slaves architecture 44

ix

A.3 SPI bus timing. Courtesy:[14] . 45

x

List of Tables

4.1 Experiment 1: Data overhead test results 34
4.2 Experiment 2: Data overhead test results Hardware and software so-

lutions . 36
4.3 Field-Programmable Gate Array (FPGA) resource utilization of the

software-based solution . 37
4.4 FPGA resource utilization of the hardware-based solution 38

A.1 SPI protocol modes definition . 45

xi

xii

Listings

A.1 Algorithm for the iWrite PDL hardware-based 47
A.2 Algorithm for the iRead PDL hardware-based 48
A.3 Algorithm for the iRead PDL software-based 49
A.4 Algorithm for the iApply command 51

xiii

xiv

List of Acronyms

CLB Configurable Logic Block

CPHA Clock Phase

CPOL Clock Polarity

CSU Capture-Shift-Update

DTFSM Data Transfer FSM

FF flipflop

FPGA Field-Programmable Gate Array

FSM Finite State Machine

IC Integrated Circuit

ICL Instrument Connectivity Language

IEEE Institute of Electrical and Electronics Engineers

IJTAG Internal Joint Test Action Group

ILM Instrument Length Memory

LSB Least Significant Bit

LUT Look-Up Table

MISO Master In Slave Out

MOSI Master Out Slave In

ODU Output Discard Unit

PDL Procedural Description Language

RSFSM Read Status FSM

xv

List of Acronyms 1

SCLK Serial Clock

SCR SIB Control Register

SIB Segment Insertion Bit

SPI Serial Peripheral Interface

SS Slave Select

TDI Test Data In

TDO Test Data Out

UART Universal Asynchronous Receiver Transmitter

2 List of Acronyms

Chapter 1
Introduction

1.1 Motivation

The development towards Integrated Circuits (ICs) with smaller, faster, and more
transistors, has advantages as the possibility to implement more functionality at
high performance and at smaller footprint. However, smaller and faster transistors
lead to tighter margins. These tight margins make it a challenge to perform testing,
tuning, and configuration.

Traditionally, external instrumentation has been used for testing, tuning, and
configuration. There are two shortcomings with external instrumentation. First,
due to tight margins, it is difficult to ensure that the on-chip signal is correctly
transported to the external instrument. Second, new fault types, such as wear-
outs, require that instrumentation is available also while the IC is in operation. To
address these short-comings, on-chip instruments are increasingly used in modern
ICs.

There is a need to access the on-chip instruments throughout the lifetime of the IC.
As electronic systems are increasingly complex with more ICs and more advanced
ICs, the access through the system hierarchies can be difficult as there might not
be a direct access path and a single access protocol.

1.2 Thesis objectives

The overall objective of the thesis is to develop protocol, software support and
hardware support to enable communication from system-level to instruments em-
bedded in ICs through an access path consisting of several and different protocols
and several ICs. In particular, the objectives are:

• Develop protocol to specify commands to perform communication.

• Develop software to generate access patterns according to the protocol.

• Develop hardware to handle communication including synchronization be-
tween ICs.

3

4 Introduction

• Validate the developed solutions on an FPGA in terms of data overhead and
area utilization.

1.3 Thesis organization

The thesis is organised as follows. The background material is presented in chap-
ter 2. The proposed synchronization module, the communication protocol, and
the hardware-based solution with interrupts and the software-based solution with
polling are presented in chapter 3. In chapter 4, the experimental results where
the proposed solution is implemented on an FPGA and data overhead and area
utilization is evaluated on the BASTION benchmarks [1]. Conclusions and future
work are in chapter 5.

Chapter 2
Background

This chapter contains background material. First, we describe a typical system
with its components and connections. Then we discuss dedicated infrastructures.
First IEEE Std. 1149.1 and then IEEE Std. 1687. Finally, we describe on-going
and related work.

2.1 System overview

A typical system is shown in Figure 2.1. The system contains four ICs mounted on
a PCB. The ICs contain functional logic and additional logic for testing, tuning,
and configuration. This additional logic includes instruments, such as Memory
Built-In Self-Test (MBIST) and temperature sensors, as well as infrastructures,
like IEEE Std. 1687, to connect the instrument to enable access from the outside
of the IC. The ICs are connected with different functional ports and protocols.
For example, IC-3 is connected to IC-4 using Serial Peripheral Interface (SPI). A
system may also have dedicated test infrastructure like IEEE Std. 1149.1 con-
necting ICs to enable testing, tuning, and configuration. For example, IC-1 is
connected to the outside using IEEE Std. 1149.1. To operate on instruments,
there is a need to transport data over several ICs and several protocols. For ex-
ample, to write data to instrument 3 and read data from instrument 1 in IC-4,
there is a need to transport data from the outside of the system via UART to
access IC-3 and via SPI to IC-4 and then to the individual instruments in IC-4.
There are several steps in this communication. Firstly, the user’s commands to
operate the instruments are retargeted to fit UART in IC-3 and then the user
needs a dedicated path to transport the commands to operate the instruments
through SPI in IC-4. Secondly, synchronization is needed between UART and
SPI protocols in terms of frequency and baud rate to avoid data loss during infor-
mation transaction. Reconfigurable Scan Networks (RSNs), like IEEE Std. 1687
networks, offers infrastructure to dynamically configure the targeted instruments
in ICs. The flexibility to access arbitrary instruments is achieved by means of
Segment Insertion Bits (SIBs), so that only the desired instruments are included
active scan-path. IEEE Std. 1687 uses communication protocols vide descrip-
tion languages namely Instrument Connectivity Language(ICL) and Procedural

5

6 Background

Description Language(PDL). ICL describes the scan paths and the scan registers
that are associated with each scan path, whereas PDL uses the user’s commands
to perform read/write operations on the instruments. Finally, a software support
is essential for interpretation of PDL commands into input vectors format, where
interpretation is achieved using retargeting tool.

Figure 2.1: System overview

2.2 IEEE Std. 1149.1

IEEE Std. 1149.1, also known as Boundary Scan or Joint Test Access Group
(JTAG), is a commonly used standard mainly developed to test interconnects
between ICs. Figure 2.2 shows the conceptual view of IEEE Std. 1149.1 circuitry
[2]. The main parts are the test access port (TAP), the TAP controller, the
instruction register (IR), the IR decoder, and a number of test data registers
(TDRs). The TAP includes four mandatory signals, namely test data input (TDI),
test data output (TDO), test mode select (TMS), and test clock (TCK) which
are the means through which the system is able to communicate to the on-chip
circuitry. The signals TMS and TCK are used to control the TAP controller, which
consists of two main part: the IR scan part to control which TDR to operate on
and the DR scan part to control the operation on a selected TDR, see Figure 2.3.

Background 7

Figure 2.2: A conceptual view of IEEE Std. 1149.1 circuitry

Figure 2.3: IEEE Std. 1149.1 TAP Controller state diagram. Cour-
tesy: [3]

8 Background

2.3 IEEE Std. 1687 (IJTAG)

IEEE Std. 1687, also known as internal JTAG (IJTAG), was developed to enable
flexible and scalable access to on-chip instruments [4]. The key to enable flexible
and scalable access to on-chip instruments is to allow for dynamic reconfiguration,
for example, by the use of Segment Insertion Bits (SIBs). Figure 2.4 shows an
example with three instruments using IEEE Std. 1687. The SIBs allow to dynam-
ically include or exclude instruments; hence the length of the scan-chain changes
depending on which instruments are included in the active scan-path. The detailed
information about SIB is explained below.

Figure 2.4: Flat IEEE Std. 1687 network consists three instruments

2.3.1 SIB

A SIB is the key element of IJTAG standard. The combination consists of a two-
input ScanMux and control bit referred to as one segment [5]. Selecting a particular
SIB can activate the scan path and associated instruments in that portion of the
scan path. Contrarily, de-selecting a SIB will deactivate the scan path and thus
instruments on that segment are inaccessible. The SIB implementation is shown in
Figure 2.5 which has selection Muxes, and two flip-flops namely shift and update
denoted by ’S’ and ’U’ respectively.

The SIB is enabled/disabled by inserting the bit ’1’/’0’ into the ’S’ flip-flop and
latching the adjacent ’U’ flip-flop. The ’S’ and ’U’ flip-flop operates at the rising
edge of the CLK. When the SIBs are disabled the scan path is from Test Data In
(TDI) to Test Data Out (TDO) and instruments are excluded from that segment by
the scan H MUX. During the enable mode the scan path includes the instruments
and shift register of the segment. The control sequence is defined by the state
machine phases (shift phase, capture phase, update phase) and consequently, the

Background 9

state machine generates the control signals (capture_en, shift_en, update_en).

• During shift phase, when the control signal shift_en=’0’ it remains in the
current state through feedback from K1 MUX. When the control signal
shift_en=’1’, new value gets updated into ’S’ flip-flop via H MUX and K1
MUX.

• During the update phase of the state machine, when the control signal up-
date_en=’0’, it retains the current state through feedback from K2 MUX.
When the control signal update_en=’1’, the value stored in the ’S’ flip-flop
is loaded into ’U’ flip-flop via K2 MUX. In this case H MUX select pin being
’1’, input from FSO terminal will be multiplexed. The segment between TSI
and FSO is also included in the scan path by the ToSel terminal. According
to the SIB implementation[5], the control signals are active in some states
and disabled in other states due to different phases of the state machine.
The purpose of the capture_en and shift_en are used to enable parallel
loading data between instruments on-chip and shift register and vice-versa.

Figure 2.5: Implementation of SIB Schematic

2.3.2 Description language

There are two description languages introduced by the IEEE Std. 1687: Instru-
ment Connectivity Language(ICL) and Procedural Description Language(PDL).
ICL is used to describe the hardware architecture implemented on a chip, i.e., the
way the instruments are positioned with different data lengths within the network.
ICL is also used to describe the different scan paths by activating or deactivating
the SIBs. For example, a possible ICL structure for IC-4 in Figure 2.1 is shown
in Figure 2.6. The possible structure contains three SIBs to activate the scan

10 Background

path and at scan registers, data is retargeted between serial and parallell format
to access instruments. PDL defines the operations on the instruments within the
network. There are two levels of PDL commands: Level-0 and Level-1. Level-1
PDL is used for more advanced designs, and level-0 PDL commands are com-
monly used to execute read and write operations on the instruments implemented
on-chip. Figure 2.7 shows an example of PDL to operate on the instruments in
the IEEE Std. 1687 network in IC-4 in Figure 2.1

Figure 2.6: Conceptual schematic of ICL for IC-4

Figure 2.7: PDL example

Background 11

2.4 Related work

A hardware component and protocol to operate on IEEE Std. 1687 over a func-
tional protocol was developed by Larsson et al. [6]. The work is in-line with the
on-going standardization initiative IEEE Std. P1687.1, which aims to make use of
a functional port instead of the IEEE Std. 1149.1 port to access IEEE Std. 1687.

Figure 2.8: Full-featured case

The developed component, shown in Figure 2.8, consists of the following blocks:
SIB Control Register (SCR), Instrument Length Memory (ILM), Output Discard
Unit (ODU) and Finite State Machine (FSM). The FSM serves as the interpreter
of commands received from re-targeting tool and controls the shift, update and
capture functions of the 1687 network. The FSM performs the duties of the TAP
controller in IEEE Std. 1149.1. The SCR stores information about which instru-
ments are part of the active scan path and what command is to be executed on
them. The ILM holds information about the data lengths of the instruments in the
network and the position of each instrument. The ODU removes bits outputted
from the network which can be considered as garbage bits.

The protocol developed consists of two commands; setup and apply. The setup
command is used to store values in SCR. An example is shown in Figure 2.9 where
the PDL to write to instrument 3 and read from instrument 1 are translated into
the proposed protocol and the result is 7 bytes of data. Each command consists
of two bytes. The PDL in Figure 2.9 is translated into the following commands:

• The first command, byte 1 and 2, is a setup command to set that instrument
3 should be in the active scan-path.

• The second command, byte 3 and 4, is a setup command to set that instru-
ment 1 should be in the active scan-path.

• The third command, byte 5 and 6, is an apply command that tells how

12 Background

many bytes of data that follows. In this example, the command includes
the value 1, which means that one byte of data follows.

• Byte 7 is the data that should be applied to instrument 3

Figure 2.9: Developed protocol

Larsson et al. have implemented proposed solution on an FPGA and use Uni-
versal Asynchronous Receiver-Transmitter (UART) as the functional protocol to
communicate with the IEEE Std. 1687 network.

2.4.1 Data overhead classification

The UART controller components explained in the above section such as SCR,
ILM, and ODU assist the controller with interpreting the protocol and generate
input vectors to be shifted into the IEEE Std. 1687 network [7]. One of their
project objectives was to calculate the impact of data overhead of these compo-
nents. Based on that the overall data overheads are divided as:

• SIB overhead required to configure the SIBs. The setup commands with
instrument addresses fall under this category. In Figure 2.9 the SIB over-
head is 32 bits. The first two bytes (byte 1 & 2) are for write operation
with instrument address and the next two bytes (byte 3 & 4) are for read
operation.

• PDL overhead, which specifies the overhead of action commands that are
transmitted via UART channel to trigger the controller FSM. In Figure
2.9 the PDL overhead is 16 bits in which 1 byte is used to indicate data
command and another byte for specifying the total number of data bytes
into instruments.

Background 13

• Output overhead - which specifies overhead generated by the network dur-
ing various Capture-Shift-Update (CSU) cycles. For instance, output bits
produced while activating instruments. These overhead are discarded by
the controller components called ODU.

• Useful bits - Actual data bits that are shifted-in and shifted-out of the
instruments. In Figure 2.9 the useful data is indicated in byte 7.

2.5 Communication technique

In order to handle communication between ICs in the system shown in Figure 2.1,
synchronization is necessary because of possible loss of data due to the difference
in data transfer rate or frequency. In hardware-based communication, synchro-
nization is handled based on the interrupt-driven manner and the software-based
with polling [8].

• In hardware-based interrupt driven, an interrupt signal sent from an exter-
nal device or hardware to communicate with the processor indicating that
interrupt signal requires immediate attention.

• Software polling is the process where the computer or controlling device
waits for an external device to check for its readiness or state.

14 Background

Chapter 3
Proposed solutions

In this chapter we present the synchronization module enabling communication
between two IEEE Std. 1687 networks connected with a functional protocol and
a software-based and a hardware-based solution to perform the communication.

3.1 Synchronization module

Figure 3.1: Synchronization module overview

The synchronization module consists of two parts; one for sending data and one for
receiving data. These parts are formed as IEEE Std. 1687 compliant instruments.
Figure 3.1 shows the instruments and the internal IEEE Std. 1687 architecture.

3.1.1 Sending data

The part for sending consists of an instrument of length 9 bits where 8 bits are
for the data that is to be sent and one control bit to inform the SPI Master when

15

16 Proposed solutions

ending can be performed. To send data, the path is first set up using a setup
command of two bytes to include the instrument in the active scan-path.

3.1.2 Receiving data

The part for receiving data consists of three instruments as follows:

• Instrument 2 is 8-bit register holding arrived data.

• Instrument 3 is a single flag bit register activated during read operations.
The flag is set when data has arrived completely in instrument 2.

• Instrument 4 is a single flag bit to acknowledge the SPI controller when data
in instrument 2 has be read (consumed).

3.2 Hardware-based solution

In this section we present hardware-based solution which is build upon an hard-
ware interrupt-driven approach to handle communication between two ICs. The
communication between the ICs is performed with SPI and the communication
with the outside world with UART. As mentioned in chapter 2 Larsson et al. [6]
have implemented solution using UART as the functional protocol to communi-
cate with the IEEE Std. 1687 network. In this thesis we inherited the hardware
components shown in Figure 2.8 to design IC-1 and IC-2 shown in Figure 3.2. As
a result we developed hardware-based solution module which includes synchro-
nization module shown in Figure 3.1 to handle communication between two ICs.
Also to enable access path to transport information from the test manager to
IEEE Std. 1687 network-2 new hardware components is introduced namely Data
Transfer FSM (DTFSM) and Read Status FSM (RSFSM).

Figure 3.2: Architecture of hardware-based solution

Proposed solutions 17

3.2.1 UART master controller

In the IC-1 the main hardware block is the UART master controller which includes
sub-hardware components - 1687 FSM is extended with more control execution
flow using DTFSM and RSFSM. The brief discussion of this two components is
explained in below subsections, whereas the other hardware components like SCR,
ILM, and ODU plays important roles during synchronization process. The SCR
stores information about the instrument 1 during write operation, whereas infor-
mation about instrument 2, and instrument 3 are stored during read operation.
The ILM holds the information about data lengths and positions. The data length
of each instruments within the IEEE Std. 1687 network 1 is indicated in Figure
3.2. ODU discards activation bits (1’s and 0’s) used to activate SIBs of network
1 and also bytes in instrument 1 during new arrival of bytes during data transfer
process to next stages. The IEEE Std.1687 network 1 includes the hardware syn-
chronization module. Here instrument are implemented as simple shift register and
their access and control methods are described by the IEEE Std.1687 description
languages.

3.2.1.1 DTFSM

DTFSM is active during the data transfer phase; receives the commands from the
re-targeting tool and configures the SIB-1 then transfers data/commands to the
subsequent stages. This is achieved by activating the instrument 1 in the network-
1. As observed in the Figure 3.2, the instrument 1 is a 9-bit shift register which
transports 8 bits of data and an extra bit, i.e., the 9th bit acts as a flag signal for
the SPI master to receive the commands as data from re-targeting tool to convey
to the network-2.

3.2.1.2 RSFSM

RSFSM enables the synchronization during the read data operation between the
the two ICs and it is only active during the read operations. The RSFSM controls
read operation by monitoring the status of instrument 2, 3 and 4 of the network-1.
It transfers the read data from the network-2 by polling instrument 3 in network-1.
The monitoring process of instruments during RSFSM process are summarized as
follows:

• Instrument 2 is an 8-bit shift register. It is activated during read, stores the
incoming read data from instruments in network-2. The read data will be
shifted from this segment to the re-targeting tool.

• Instrument 3 is a single bit register, activated during the read operation.
This instrument is read at specific intervals during the read operation, i.e.,
when it gets updated from 0 to 1. This implies that the read data arrives at
the SPI Master. In the same clock cycle, the data is sent to the instrument
2 and the FSM sends signal back to the re-targeting tool so that it sends
the setup and action commands required in order to extract the data from
the instrument 2.

18 Proposed solutions

• Instrument 4 is a single bit register, activated during the read operation. It
is updated by the re-targeting tool by writing 1 to it, when the read data is
received at the re-targeting tool from instrument 2.

3.2.2 SPI system

To integrate IC-1 and IC-2 and also to transfer the data from test manager to
network-2 we implemented SPI communication protocol as hardware component.
We used mode ’0’ (see Table A.1 in Appendix 1 for the details) to sample data
between two ICs. In mode ’0’ data is sampled at the rising edge of the clock. In
order to match baud rate of UART protocol a clock divider logic is implemented in
this system. The SPI protocol with four terminals Master Out Slave In (MOSI),
Master In Slave Out (MISO), Serial Clock (SCLK), and Slave Select (SS) are
shown in Figure 3.2. Additional details of SPI interface can be found in Appendix
1.

3.2.3 SPI master controller

To design the SPI master controller we used a hardware structural model shown in
Figure 2.8. The hardware components are 1687 FSM, SCR, ILM, and ODU. The
basic behaviour of each components are same and explained in the background
chapter in related work [6] section. However input and output ports are changed
w.r.t SPI system. Here SPI slave receives the input vectors from the SPI master
and send them to the SPI controller using the input and output ports SPI_TX
and SPI_RX. An example of input vectors passing through input and output
ports is represented Figure 3.5. In particular the bytes/bits from 5th to 9th. The
IEEE Std. 1687 network-2 consists of instruments which are simple inverters with
variable data lengths. The data lengths of the inverters vary between 8 bits, 16
bits or 32 bits. The network architecture designed based on flat IEEE Std. 1687
network architecture (see Figure 2.4).

3.2.4 Hardware description of the solution

Previously, we introduced the newly implemented hardware components which
enable communication between two ICs in sub-sections 3.2.1.1 and 3.2.1.2. Let us
clarify their functionality in detail in this section.

The DTFSM is implemented to configure instrument 1 within network-1 and it
shifts in commands-as-data to the next stages. This process is essential according
to the new protocol which has been explained in the below section. The states in
this FSM as shown in the Figure 3.3, it starts with the configuration phase (left
portion) i.e., activating the SIB-1 and connecting the instrument 1 into the active
scan path. Then it is followed by the data transfer phase(right portion), where
the data is sent from the retargeting tool to the IC-2 instrument network-2.

During the configuration phase the FSM transitions through IDLE, SHIFT_CONTROL,
UPDATE_CONTROL and CAPTURE. The first state transition from IDLE
to SHIFT_CONTROL occurs when the control_ready signal value becomes ’1’,

Proposed solutions 19

along with the arrival of iApply-"0x80" action command (see Figure 3.5). To indi-
cate the FSM that the setup commands are available at the SCR. The bits stored
in the SCR will be shifted into the network-1 during the SHIFT_CONTROL
state. The shift-in sequence contains four bits configured as "0x40"(1000) which
activates the SIB-1 in network-1 while deactivating the SIB-2, SIB-3, and SIB-4.
During UPDATE_CONTROL state the SIB-1 is activated and pulls the corre-
sponding shift registers into the active scan path. Here the signal control_en is
used to check the number of data bytes required for the network-2. Finally, in the
CAPTURE state, the expected read data and number of write bytes are captured
and the state machine returns to the IDLE state, where it waits for the data to
be transmitted by the retargeting tool.

Figure 3.3: ASMD of DTFSM

During the data transfer phase the FSM transitions through the IDLE, SHIFT_DATA,
and UPDATE_DATA states. The IDLE to SHIFT_DATA transitions occur when
the data_ready control signal value becomes ’1’. In the SHIFT_DATA state, prior
to the shift-in operation, the logic ensures which of the SIBs are active and which
operations does the setup commands imply. In the case of iWrite, the useful data
gets shifted into the network, while for the iRead, dummy bits (zeros) are shifted-in
to extract the useful read data. The FSM then transitions to the UPDATE_DATA
state where the state machine loads the data from the shift register to the active

20 Proposed solutions

instruments which are available in the active scan path. The FSM finally reaches
the reset state where the data_bytes signal value becomes ’0’ indicating that data
is transferred successfully. After that, the counters and registers are reset and the
hardware is ready to begin a new operation.

Figure 3.4: ASMD of RSFSM

The purpose of RSFSM, shown in Figure 3.4 is to receive the read data from IC-2
and send it to the system manager during read operations. The read operation is
performed when the control signal is_read value becomes ’1’. It begins from the
ACT_INST_3 state where it configures the instrument 3 within the instrument
network-1 to begin the polling process. In CHECK_INST_3 state, it continuously
reads the status of the instrument 3 (polling), and if the read status becomes
’1’, the state transitions to SHIFT_READ_DATA_INST_2 state to extract the
read data from the instrument 2; whereas in case the read status is ’0’, the state
doesn’t transition. After a byte of read data is extracted, the FSM transitions
to ACK_SEND_INST_4 state where an acknowledge signal is generated and
sent to the SPI controller to send the next byte of read data. Finally, in the
CHECK_READ_BYTES state checks if there is more read data yet to arrive
compared to the expected (employs read_byte_counter), the FSM repeats the
process from the ACT_INST_3 state; otherwise, it will return to node ’B’ i.e.,
the IDLE state.

Proposed solutions 21

3.2.5 Retargeting flow for the hardware-based solution

In this thesis the retargeting tool algorithms are built upon the functions defined
in previous work [7]. Additionally, a new function ’activate_network’ is added to
establish the communication channel between the test manager and IC_2. This
function configures instrument 1 in network-1 using iWrite1 setup and iApply.
Depending on the total number of read/write operations being performed on the
instruments within network-2, the total bytes are sent to the instrument 1 as write
data, which is alternatively known as commands-as-data. In Figure 3.5 4th byte
is indicating the total number of bytes sent as commands-as-data.

For the write setup commands, the PDL translated into a stream of bits as shown
in the Figure 3.5. The bytes 1st to 4th constitutes the first set of PDL commands
which activate instrument 1 within network-1. Out of the above, its initial 2-
bytes specify the write operation where the first 2 bits ("01") indicate write setup
command and the remaining 14 bits specify the instrument address, for instance
0x"0001" indicates instrument 1 being addressed. The next 2-bytes hold the iAp-
ply command along with the total number of setup commands being sent to the
network-2. In this example it is indicated in the 4th byte as "0000 0101" meaning
5 bytes in total is required to transfer.

Based on the above example, the second set of PDL commands will constitute 5
bytes representing the write operation onto instrument 3 within network-2. It fol-
lows the same write command principle as described above but changes according
to the target instrument address and write data. Bytes 5th and 6th are corre-
spondingly used to set the write operation and the instrument address. Further,
the bytes 7th and 8th correspondingly represent the action command and the total
write data size. Finally, the 9th byte holds the actual instrument data ("0x55")
which gets shifted in to instrument 3. This is because, we have considered the
instrument length memory to be 1-byte.

22 Proposed solutions

Figure 3.5: Bits generation by retargeting tool of iWrite PDL

Proposed solutions 23

The Figure 3.6 shows an example of iRead PDL translated into bytes/bits input
vector stream. As per our new protocol initial configuration principle from bytes
1st to 4th explained in the iWrite algorithm example applies here also; with an
exception that, instead of shifting-in the instrument write data, the FSM shifts
out the read data from the instruments. Look closely, that the initial 3 bytes are
exactly the same as the previous example, but the 4th byte varies depending upon
total number of operations performed on instruments within network-2. Here,
only one read operation is performed to instrument 3, so the total number of
bytes sent to network-2 is set as 4 bytes. During the read operation, data is
expected from the instruments within the instrument network-2, bytes 5 and 6
correspondingly represent the iRead setup command; their starting 2 bits are set
to "00" which indicate the read operation of instrument 3. Additionally bytes 7th

and 8th represent the iApply commands. It is interesting to note that the Least
Significant Bits (LSBs) of the 8th byte are set to 0x"0" to tell the FSM that no
data is being shifted in to the instrument 3.

Figure 3.6: Bits generation by retargeting tool of iRead PDL

Finally, as a result, useful data (0x"AA") is obtained successfully in the read
operation.

24 Proposed solutions

3.3 Software-based solution

In this solution, our goal was to analyse the data consumption and area utilization
if the communication is enabled through the software approaches. The hardware
mechanism through interrupts are replaced by the software polling approaches.
To achieve this facility we removed the hardware components in UART master
controller, in particular DTFSM and RSFSM. We developed polling-based com-
munication technique using the software functions called polling and check-up
functions. These two functions are operated externally inside the test manager.
In Figure 3.7 this difference is clearly observed in IC-1 UART master controller
main block and test manager. The 1687 FSM in IC-1 enables the instrument 1
to transport data from the re-targeting tool to the subsequent stages. The hard-
ware synchronization module remains unchanged, however operations to control
the synchronization module is implemented in a polling-based manner where the
retargeting tool in test manager monitors if data is ready to be read in instrument
2 by polling instrument 3.

• The PDL to perform polling of instrument 3 is:

iRead instrument3:
iApply;

• The PDL to perform read data from instrument 2 is:

iRead instrument2:
iApply;

For example, in Figure 3.11 the bytes from 1st to 8th translates to one setup
command of 2 bytes and one action command of 2 bytes. When data in instrument
2 has been read, the UART controller sets the flag into instrument 4 to inform the
SPI controller that data has been read.

3.3.1 IC-2

IC-2 hardware structural model is the same shown in Figure 3.2. The hardware
components are 1687 FSM, SCR, ILM, and ODU. Basic behaviour of each of
the components are same as explained in the hardware-based solution. The SPI
slave receives the input vectors from the SPI master and sends them to the SPI
controller using the input and output ports SPI_TX and SPI_RX. An example of
input vectors passing through input and output ports is represented in Figures 3.10
and 3.11. Here also the IEEE Std. 1687 network-2 consists of instruments which
are simple inverters with variable data lengths. The data lengths of the inverters
vary between 8 bits, 16 bits or 32 bits. The network architecture is designed based
on flat IEEE Std. 1687 network architecture (see Figure 2.4).

Proposed solutions 25

Figure 3.7: Architecture of software-based solution

Figure 3.8: Re-Targeting tool functions

3.3.2 Polling function

This function is called inside the iRead function. This function starts polling
continuously, by sending the iRead commands to the instrument 3 (1 bit) of IEEE
Std 1687 network-1 at every 0.1ms delay to capture its status. If the instrument 3
captures a ‘0’, it indicates that no read data has arrived at the SPI master whereas
when it captures a ‘1’, it indicates that the read data is available at SPI master.

26 Proposed solutions

Simultaneously, the SPI master will shift the read data to the instrument 2 within
the network-1, after which, the UART master controller will perform the padding
along with the captured 1bit from instrument 3 with seven ‘0’s (zeros). It is then
sent back to the re-targeting tool as ‘0x80’ since the UART can only accept 8 bits
of data as default. The ‘0x80’ acts as a flag signal to the iRead function inside the
re-targeting tool, which later sends the read command to extract the actual data
from the instrument 2.

3.3.3 Check-up function

The check-up function holds the expected read bytes, based on the apply group,
which were sent by the re-targeting tool, to perform the read operation to the
instruments in IEEE Std 1687 network-2. The counter used in the re-targeting
tool helps to keep track of the read data while receiving, i.e, whenever a byte of
read data arrived counter will be decremented. If the counter value is greater than
‘0’, the polling function will be called again, which will generate the necessary
iRead setup and action procedure using the iRead function. If the counter value
is equal to ‘0’, it would signify that all the expected read data has fully arrived at
the re-targeting tool.

To complete the read process the 1687 FSM will be actively involved by writing
’1’ to the instrument 4 within the instrument network-1. This ’1’ is send as the
acknowledgment flag signal to the SPI controller in order to convey that, all the
read data has been received at the network-1 and transferred back to the re-
targeting tool; following the completion of which, it is ready to accept a new set
of read data. This scenario emerges during multiple reads.

3.3.4 Hardware description of the solution

The 1687 FSM performs operation of the DTFSM which has explained in the
hardware solution. The RSFSM operations are removed and developed as software
algorithms to check the feasibility of the polling process. However sending the
acknowledgement bit to the SPI controller through instrument 4 in network-1 is
done by this state machine the ASMD diagram is as shown in Figure 3.9.

Proposed solutions 27

Figure 3.9: ASMD of the Software Solution

3.3.5 Retargeting flow for the software-based solution

In comparison to the previous retargeting flow of the hardware-based solution, the
input vector of iWrite operation is exactly same (see Figure 3.5). Whereas, in the
software-based iRead operations adapts new sub-functions inside the iRead main
function viz., the polling and the check-up functions to facilitate software-polling
on the instrument 3 and to shift the read data from the instrument 2 within in the
instrument network-2 when read data is ready. As mentioned previously, the read
functions will anticipate the read data and expects it to be the same as received
from the instruments.

For the read operation, a stream of bits generated by the retargeting tool is shown
in the Figure 3.10. Again, the first set of four bytes from 1st to 4th set the
communication path between IC-1 and IC-2. Also, the total number of read bytes
required to access the instruments in network-2 is indicated in 4th byte. Here
Read operation, targeted on instrument 3 in network-2, PDL iRead i3; iApply;
translated into bits stream is indicated from bytes 5th to 8th.

28 Proposed solutions

Figure 3.10: Bits generation by retargeting tool of iRead PDL

The bits generated during the iRead function for the single read iteration is as
shown in the Figure 3.11. This process is fully automated inside the retargeting
tool and user is relieved to ignore the process. The first set of 4 bytes from 1st to
4th are sent to the instrument 3 to begin the polling process. Once the read data
arrives at the SPI master, the next 4 bytes from 5th to 8th are sent to instrument
2 to extract the read data.

Figure 3.11: Bits generation by retargeting tool of iRead- polling
and check-up process

Proposed solutions 29

The iApply command is translated into stream of bits during all types of read
and write operations. As an example look closely into the Figures 3.5, and 3.6
it is indicates as iApply commands every 3rd byte. Arrival of these commands
trigger the FSMs inside the controllers to begin their execution. Its function is
to shift-in the commands (either read or write) and the instrument data into the
corresponding instruments. In Appendix the retargeting tool algorithms which
generates the input vector for the PDL are presented.

30 Proposed solutions

Chapter 4
Experiments and Results

The objective of the experiments is to evaluate the data overhead and the area
utilization, first in respect to the length of the access path and second comparing
the hardware with interrupt and the software solution with polling. The data
overhead can be divided into following categories:

• SIB overhead is the data needed to configure the SIBs.
– In the case of the work by Larsson et al.[6] where a single protocol is

used, the SIB overhead is the bits needed for the setup. In the example
in Figure 3.5 where 2 SIBs are activated, there is a need of one setup
command for each SIB. As each setup command requires two bytes,
the SIB overhead in this example to activate two SIBs is 32 bits (2
commands of 2 byte each).

– In the case of two protocols, additional data is needed to setup the
path. The additional data needed is per PDL group. The setup of the
path corresponds to one setup command and one action command.
Each command corresponds to 2 bytes, which lead to an additional 32
bits per PDL group.

• PDL overhead is the data needed to operate on an active scan path. In
the example in Figure 3.5 two action commands are needed. First action
command for activating scan path in network-1 within IC-1 and second
action command is for activating scan path in network-2 within IC-2. The
PDL overhead in this example to activate two active scan path is 32 bits
(two commands of 2 byte each).

• Output overhead is the unwanted data output through the instrument 3,
padded with 7 zeros. This serves as the acknowledgement signal to the
retargeting tool to send the read setup commands to extract read data from
instrument 2. The padding is necessary as UART can only accommodate 8
bits for data transaction.

• Total overhead - Sum of all the above mentioned data overheads produced
during instruments access from system manager.

31

32 Experiments and Results

• Useful bits - Actual data bits that are shifted-in and shifted-out of the
instruments. The data shifted-in is during a write operation, and data
shifted-out is during a read operation.

The area utilization is given by the number of Configurable Logic Blocks (CLBs)
which is computed as a function of Look-Up Tables (LUTs) and flipflops (FFs):

Number of CLB utilized = (LUT ÷ 8) + (FF ÷ 16) (4.1)

We have on an Xilinx Nexys-4 FPGA implemented the proposed solution in a
system with two ICs connected where SPI is used as the connection between the
ICs and UART is used to connect with the test manager outside, see Figure 3.2.
For the experiments, we have made use of the TreeFlat BASTION benchmark [9],
which we implemented in IC-2. We use of three versions of the benchmark, 50,
100 and 150 instruments and we have used instrument length of 8, 16, and 32 bits.
That is, instrument 1 is of length 8 bits, instrument 2 is of length 16 bits, and
instrument 3 is of length 32, and instrument 4 is of length 8, and so on. We have
used five versions of PDL for these benchmarks:

• Write to instrument 1.

• Read from instrument 1.

• Write to all instruments.

• Read from all instruments.

• BASTION where we write to instrument 1, read from instrument 1, write
to instrument 2, read from instrument 2, and so on and finally we write
to all instrument and then we read from all instrument. In the case of 50
instruments, there are 102 iApply groups.

Experiments and Results 33

Figure 4.1: Digilent Nexys 4 FPGA. Courtesy[10]

4.1 Results of experiment-1

In the first experiment, we investigate the impact of the length of the access path.
We compare our solution where we have an access path of two protocols against
the access path of one protocol used by Larsson [6]. The results are presented
in Table 4.1 and in Figure 4.2. Column 1 shows the number of instruments in
the three designs, 50, 100, and 150. Column 2 shows the type of iApply group.
The following columns report the overhead, PDL, SIB, Output, and total. The
rightmost columns report the useful data and the relation of useful data compared
to the total number of bits. For example, the iWrite 1 – write data to instrument
1, which is of length 8 bits, requires an active scan path where SIB 1 is active.
To setup an active scan path with one SIB, one setup command of size 2 bytes is
needed. Hence, the SIB overhead is 16 bits. To operate – write data to instrument
1 – one action command of size 2 bytes is needed. Hence, the PDL overhead is
16 bits. The number of useful bits is the data written to instrument 1, which
is 8 bits. Figure 4.2 shows for the BASTION benchmarks the PDL overhead,
SIB overhead and total overhead for the Single protocol alternative and the Two
protocol alternative for the three designs.

34 Experiments and Results

N
o.

of
In

st
ru

m
en

ts
iA

p
py

G
ro

u
p

P
D

L
O

ve
rh

ea
d

P
D

L
ov

er
h
ea

d
(%

)

S
IB

O
ve

rh
ea

d
S
IB

ov
er

h
ea

d
(%

)

O
u
tp

u
t

O
ve

rh
ea

d
b
ot

h
n
et

w
or

k

T
ot

al
O

ve
rh

ea
d

T
ot

al
ov

er
h
ea

d
(%

)

N
o

u
se

fu
l

b
it

s

U
se

fu
l

d
at

a
(%

)
T
w

o
n
et

w
or

k
S
P

I

S
in

gl
e

n
et

w
or

k
U

A
R
T

T
w

o
n
et

w
or

k
S
P

I

S
in

gl
e

n
et

w
or

k
U

A
R
T

T
w

o
n
et

w
or

k
S
P

I

S
in

gl
e

n
et

w
or

k
U

A
R
T

T
w

o
n
et

w
or

k
S
P

I

S
in

gl
e

n
et

w
or

k
U

A
R
T

50

iW
ri

te
1

32
16

10
0

%
32

16
10

0
%

0
64

32
33

.3
3%

8
11

.1
0%

20
%

iR
ea

d
1

32
16

10
0

%
32

16
10

0
%

0
64

32
33

.3
3%

8
11

.1
0%

20
%

W
ri

te
al

l
32

16
10

0
%

81
6

80
0

2
%

0
84

8
81

6
3.

92
%

92
0

52
%

52
%

R
ea

d
al

l
32

16
10

0
%

81
6

80
0

2
%

0
84

8
81

6
3.

92
%

92
0

52
%

53
%

B
A

ST
IO

N
32

64
16

32
10

0
%

48
32

32
00

51
%

0
80

96
48

32
67

.5
4%

36
80

31
.2

%
43

%

10
0

iW
ri

te
1

32
16

10
0

%
32

16
10

0
%

0
64

32
10

0
%

8
11

.1
0%

20
%

iR
ea

d
1

32
16

10
0

%
32

16
10

0
%

0
64

32
10

0
%

8
11

.1
0%

20
%

W
ri

te
al

l
32

16
10

0
%

16
16

16
00

1%
0

16
48

16
16

1.
98

%
18

56
53

%
53

%
R

ea
d

al
l

32
16

10
0

%
16

16
16

00
1%

0
16

48
16

16
1.

98
%

18
56

53
%

53
%

B
A

ST
IO

N
64

64
32

32
10

0
%

96
32

64
00

50
.5

0%
0

16
09

6
96

32
67

.1
0%

74
24

31
.6

0%
44

%

15
0

iW
ri

te
1

32
16

10
0

%
32

16
10

0
%

0
64

32
10

0
%

8
11

.1
0%

20
%

iR
ea

d
1

32
16

10
0

%
32

16
10

0
%

0
64

32
10

0
%

8
11

.1
0%

20
%

W
ri

te
al

l
32

16
10

0
%

24
16

24
00

0.
66

%
0

24
48

24
16

1.
32

%
28

00
53

.4
0%

54
%

R
ea

d
al

l
32

16
10

0
%

24
16

24
00

0.
66

%
0

24
48

24
16

1.
32

%
28

00
53

.4
0%

54
%

B
A

ST
IO

N
96

64
48

32
10

0
%

14
43

2
96

00
50

.3
3%

0
24

09
6

14
43

2
66

.9
6%

11
20

0
31

.7
0%

44
%

T
ab

le
4.

1:
Ex

pe
rim

en
t
1:

D
at
a
ov
er
he
ad

te
st

re
su
lts

Experiments and Results 35

Figure 4.2: Data Overhead comparison Single 1687 Network case
and Two 1687 Network case

4.2 Results of experiment 2

In the second experiment, we compare our hardware solution (interrupt-driven)
against our software solution (polling-driven). For the software-based solution we
assume optimal polling, that is the result is available at first attempt (only one poll
is needed). The results on data overhead are presented in Table 4.2 and in Figure
4.3. Column 1 in Table 4.2 shows the number of instruments in the three designs,
50, 100, and 150. Column 2 shows used iApply group. The following columns
report the overhead, PDL, SIB, Output, and total. The rightmost columns report
the useful data and the relation of useful data compared to the total number of
bits. For iWrite 1 – write of 8 bits to instrument 1 – the hardware solution and
the software solution performs the same operations as there is no need to check
for any output. For iRead 1 – read of 8 bits of data from instrument 1 – the
software solution generates additional overhead due to polling. First, one setup
command is needed to setup instrument 3 and one setup command is needed to
setup instrument 4 (totally 32 bits). Second, action commands are needed. One
to read from instrument 3 and one to write to instrument 4 (total of 32 bits). The
read (poll) of instrument 3 generates 8 bits of output overhead. Figure 4.3 shows
the data overhead for the BASTION benchmarks.

36 Experiments and Results

N
o.

of
In

st
ru

m
en

ts
iA

p
p
ly

G
ro

u
p

P
D

L
O

ve
rh

ea
d

P
D

L
ov

er
h
ea

d
(%

)

S
IB

O
ve

rh
ea

d
S
IB

ov
er

h
ea

d
(%

)

O
u
tp

u
t

ov
er

h
ea

d
T
ot

al
O

ve
rh

ea
d

T
ot

al
ov

er
h
ea

d
(%

)

N
o

u
se

fu
l

b
it

s

U
se

fu
l

d
at

a
(%

)

H
ar

d
w

ar
e

S
ol

u
ti

on
S
of

tw
ar

e
S
ol

u
ti

on
H

ar
d
w

ar
e

S
ol

u
ti

on
S
of

tw
ar

e
S
ol

u
ti

on
H

ar
d
w

ar
e

S
ol

u
ti

on

S
of

tw
ar

e
S
ol

u
ti

on
ca

se

H
ar

d
w

ar
e

S
ol

u
ti

on
S
of

tw
ar

e
S
ol

u
ti

on
H

ar
d
w

ar
e

S
ol

u
ti

on
S
of

tw
ar

e
S
ol

u
ti

on

50

iW
ri

te
1

32
32

0.
00

%
32

32
0.

00
%

0
0

64
64

0.
00

%
8

11
.1

1%
11

.1
1%

iR
ea

d
1

32
64

10
0.

00
%

32
64

10
0.

00
%

0
8

64
13

6
11

2.
50

%
8

11
.1

1%
5.

56
%

iW
ri

te
2

32
32

0.
00

%
32

32
0.

00
%

0
0

64
64

0.
00

%
8

11
.1

1%
11

.1
1%

iR
ea

d
2

32
96

20
0.

00
%

32
96

20
0.

00
%

0
16

64
20

8
22

5.
00

%
8

11
.1

1%
3.

70
%

A
llw

ri
te

32
32

0.
00

%
81

6
81

6
0.

00
%

0
0

84
8

84
8

0.
00

%
92

0
52

.0
4%

52
.0

4%
A

llr
ea

d
32

37
12

11
50

0.
00

%
81

6
44

96
45

0.
98

%
0

92
0

84
8

91
28

97
6.

42
%

92
0

52
.0

4%
9.

16
%

B
A

ST
IO

N
32

64
10

62
4

22
5.

49
%

48
32

12
19

2
15

2.
32

%
0

18
40

80
96

24
65

6
20

4.
55

%
36

80
31

.2
5%

12
.9

9%

10
0

iW
ri

te
1

32
32

0.
00

%
32

32
0.

00
%

0
0

64
64

0.
00

%
8

11
.1

1%
11

.1
1%

iR
ea

d
1

32
64

10
0.

00
%

32
64

10
0.

00
%

0
8

64
13

6
11

2.
50

%
8

11
.1

1%
5.

56
%

iW
ri

te
2

32
32

0.
00

%
32

32
0.

00
%

0
0

64
64

0.
00

%
8

11
.1

1%
11

.1
1%

iR
ea

d
2

32
96

20
0.

00
%

32
96

20
0.

00
%

0
16

64
20

8
22

5.
00

%
8

11
.1

1%
3.

70
%

A
llw

ri
te

32
32

0.
00

%
16

16
16

16
0.

00
%

0
0

16
48

16
48

0.
00

%
18

56
52

.9
7%

52
.9

7%
A

llr
ea

d
32

74
56

23
20

0.
00

%
16

16
90

40
45

9.
41

%
0

18
56

16
48

18
35

2
10

13
.5

9%
18

56
52

.9
7%

9.
18

%
B

A
ST

IO
N

64
64

21
31

2
22

9.
70

%
96

32
24

48
0

15
4.

15
%

0
37

12
16

09
6

49
50

4
20

7.
55

%
74

24
31

.5
6%

13
.0

4%

15
0

iW
ri

te
1

32
32

0.
00

%
32

32
0.

00
%

0
0

64
64

0.
00

%
8

11
.1

1%
11

.1
1%

iR
ea

d
1

32
64

10
0.

00
%

32
64

10
0.

00
%

0
8

64
13

6
11

2.
50

%
8

11
.1

1%
5.

56
%

iW
ri

te
2

32
32

0.
00

%
32

32
0.

00
%

0
0

64
64

0.
00

%
8

11
.1

1%
11

.1
1%

iR
ea

d
2

32
96

20
0.

00
%

32
96

20
0.

00
%

0
16

64
20

8
22

5.
00

%
8

11
.1

1%
3.

70
%

A
llw

ri
te

32
32

0.
00

%
24

16
24

16
0.

00
%

0
0

24
48

24
48

0.
00

%
28

00
53

.3
5%

53
.3

5%
A

llr
ea

d
32

11
23

2
35

00
0.

00
%

24
16

13
61

6
46

3.
58

%
0

28
00

24
48

27
64

8
10

29
.4

1%
28

00
53

.3
5%

9.
20

%
B

A
ST

IO
N

96
64

32
06

4
23

1.
79

%
14

43
2

36
83

2
15

5.
21

%
0

56
00

24
09

6
74

49
6

20
9.

16
%

11
20

0
31

.7
3%

13
.0

7%

T
ab

le
4.

2:
Ex

pe
rim

en
t
2:

D
at
a
ov
er
he
ad

te
st

re
su
lts

H
ar
dw

ar
e
an
d

so
ft
w
ar
e
so
lu
tio

ns

Experiments and Results 37

Figure 4.3: Comparison of data overhead between the hardware-
based versus and the software-based solution

The results on area utilization are in Tables 4.3 and 4.4 and Figure 4.4. Tables
4.3 and 4.4 is organized is as follows. Column1 shows the number of instruments
in the three designs, 50, 100, and 150. Column 2 shows the type of IC-1 UART
controller. The following column report the IC-2 SPI controller utilization, and
IC-2 1687 network-2. We have two solutions. In the first, hardware-based solution
where all the hardware components are present. In the second software-based
solution where the hardware components like DTFSM and RSFSM are removed
in IC-1 UART controller. Hence, the CLBs are more in hardware-based and less
in software-based. Figure 4.4 shows the comparison of area utilized between two
solutions in terms of controllers and network-2.

Instruments IC_1 UART Controller IC_2 SPI Controller IC_2 1687 Network-2
FF LUT CLB FF LUT CLB FF LUT CLB

50 417 753 120 321 797 90 1970 1998 371
100 417 753 120 423 961 113 3983 4020 749
150 417 753 120 521 1102 134 5958 6058 1123

Table 4.3: FPGA resource utilization of the software-based solution

38 Experiments and Results

Instruments IC_1 UART Controller IC_2 SPI Controller IC_2 1687 Network-2
FF LUT CLB FF LUT CLB FF LUT CLB

50 482 1021 158 321 797 90 1970 1998 371
100 482 1020 158 423 961 113 3983 4020 749
150 482 1025 158 521 1102 134 5958 6058 1123

Table 4.4: FPGA resource utilization of the hardware-based solution

Figure 4.4: Comparison of Area between the Hardware Solution
versus the Software Solution

Chapter 5
Conclusion and Future Work

As on-chip instruments are increasingly needed to test, tune, and configure there
is a need accessed them through the life-time of the IC. However, access is chal-
lenged due to complex system hierarchies when ICs are mounted on Printed Circuit
Boards (PCB) as there might not be a direct access path and a single access proto-
col. In this thesis we develop a generic module to handle communication between
two ICs. We implement two ICs on an FPGA; the first implements the IEEE Std.
1687 as a communication module while the second hosts on-chip instruments con-
nected using the same standard. Communication between the ICs is performed
with Serial Peripheral Interface (SPI) and the communication with the outside
world with Universal Asynchronous Receiver Transmitter (UART). We propose
and compare two alternatives for the communication. They are - a hardware-
based solution where communication is handled in an interrupt-driven manner and
a software-based solution where the communication is handled through polling.
Comparison between the two solution based on data overhead and area utilization
shows that hardware-based solution consumes less data overhead and more area
utilization, whereas software-based solution consumes more data overhead and
less area utilization. The choice of the solution for accessing on-chip instruments
through system hierarchy depends upon the user requirements.

In the future, this thesis work could become the reference model to access of em-
bedded instruments from system hierarchy. The developed communication module
can be used to communicate with more than two ICs with any intermediate in-
terfaces other than SPI bus interface. Further, this work can be used to explore
the data and the other performance parameters with different approaches, such as
daisy-chained networks and hierarchical networks.

39

40 Conclusion and Future Work

Bibliography

[1] European collaborative research project BASTION, “About BASTION.”
http://fp7-bastion.eu/index.php?page=1.

[2] “IEEE Standard Test Access Port and Boundary Scan Architecture,” IEEE
Std 1149.1-2001, pp. 1–212, 2001.

[3] Corelis, Technical Guide to JTAG, “TAP State machine,”
https://www.corelis.com/education/tutorials/jtag-tutorial/jtag-technical-
primer/.

[4] E. Larsson and F. G. Zadegan, “Accessing embedded dft instruments with ieee
p1687,” in 2012 IEEE 21st Asian Test Symposium, pp. 71–76, IEEE, 2012.

[5] Ghani Zadegan, Farrokh, Reconfigurable On-Chip Instrument Access Net-
works: Analysis, Design, Operation, and Application. PhD thesis, Lund
University, 2017.

[6] E. Larsson, P. Murali, and G. Kumisbek, “Ieee std. p1687. 1: Translator
and protocol,” in 2019 IEEE International Test Conference (ITC), pp. 1–10,
IEEE, 2019.

[7] G. Kumisbek and P. Murali, “Reconfigurable instrument access network with
a functional port interface,” 2019.

[8] GeeksforGeeks, “Difference between Interrupt and Polling,”
https://www.geeksforgeeks.org/difference-between-hardware-interrupt-
and-software-interrupt/: :text=Hardware.

[9] European collaborative research project BASTION, “PDL for flat tree net-
work.” http://fp7-bastion.eu/files/TreeFlat.pdl .

[10] Digilent, A National Instruments Company, “Xilinx Nexys 4 Artix-7 FPGA
Trainer Board,” https://reference.digilentinc.com/reference/programmable-
logic/nexys-4/start.

[11] “IEEE Standard for Access and Control of Instrumentation Embedded within
a Semiconductor Device,” IEEE Standard, pp. 1687–2014, 2014.

41

http://fp7-bastion.eu/index.php?page=1
https://www.corelis.com/education/tutorials/jtag-tutorial/jtag-technical-primer/
https://www.corelis.com/education/tutorials/jtag-tutorial/jtag-technical-primer/
https://www.geeksforgeeks.org/difference-between-hardware-interrupt-and-software-interrupt/#:~:text=Hardware
https://www.geeksforgeeks.org/difference-between-hardware-interrupt-and-software-interrupt/#:~:text=Hardware
http://fp7-bastion.eu/files/TreeFlat.pdl
https://reference.digilentinc.com/reference/programmable-logic/nexys-4/start
https://reference.digilentinc.com/reference/programmable-logic/nexys-4/start

42 Bibliography

[12] UART PROTOCOL VALIDATION SERVICE, “Soliton Technologies,” 2020.
https://www.solitontech.com/uart-protocol-validation-service/.

[13] Nate Eastland, “Digilent Inc FPGA - Configuration Logic Block 2020.”
https://blog.digilentinc.com/fpga-configurable-logic-block/.

[14] Balamurugan Natarajan, “SCLK - CPOH and CPOL,”
http://blmrgnn.blogspot.com/2018/10/spi-un1.html/.

https://www.solitontech.com/uart-protocol-validation-service/
https://blog.digilentinc.com/fpga-configurable-logic-block/
ttp://blmrgnn.blogspot.com/2018/10/spi-un1.html/

Appendix A

Appendix 1

A.1 UART standard

UART stands for Universal Asynchronous Receiver-Transmitter. It is used to
transmit and receive serial data at various transmission speeds. UART consists of
two components transmitter and receiver. The transmitter includes shift-register
which shift-out the data concurrently at fixed rate. The receiver accepts the in-
coming data bit-by-bit and stores data in parallel. The start bit is also known as a
synchronization bit that is placed before actual data. When start bit ’1’ indicates
idle, start bit ’0’ indicates data transmission has begun. Followed by 5-8 data bits,
an optional parity bit and ends with a stop bit, which is ’1’. The optional parity
bit is used for error detection. For odd parity, it is set to ’0’ when the data bits
have an odd number of 1s. For even parity, it is set to ’0’ when data bits have an
even number of 1s.

In the UART data transmission there is no clock signal used for synchronizing the
output bits. Therefore when transmission starts transmitter and receiver must
agree on a data transfer rate in advance, i.e., baud rate which specifies the number
of bits transmitted per second (BPS), similarly number of data bits, stop bits and
the parity bit. The standard baud rates are 2400, 4800, 9600, 19200, and 115200
BPS. This work uses a UART standard with 8 data bits, no parity bits, 1 stop bit
and a baud rate of 115200 BPS.

43

44 Appendix 1

Figure A.1: Break down of UART transmission. Courtesy: Soliton
Technologies[12]

A.2 SPI bus interface

The Serial Peripheral interface (SPI) was developed by Motorola to provide full-
duplex synchronous serial communication between master and slave devices. The
Figure A.2, shows an SPI architecture with multiple slaves connected using single
master. The SPI protocol defines a bus with four pins namely SCLK, MOSI,
MISO, and SS. The slaves are active only when the signal SS is enabled. The data
transferred serially bit-by-bit via two signals MOSI and MISO. The signal SCLK
assures the time synchronization between master and slaves, and is always driven
by master.

Figure A.2: SPI Single Master - Multiple slaves architecture

Appendix 1 45

Figure A.3: SPI bus timing. Courtesy:[14]

The SPI standard multiple slave configuration uses four unique modes to provide
flexibility in communication between master and slaves as shown in Figure A.3.
The Clock Polarity (CPOL) and Clock Phase (CPHA) are the two additional signal
setting used during the data sampling. The data sampling descriptions followed
by the protocol is as follows:

• Mode 0 when CPOL and CPHA are both ‘0’ data is sampled at the leading
rising edge of the clock.

• Mode 1 when CPOL is ‘1’ and CPHA is ‘0’ data is sampled at the leading
falling edge of the clock.

• Mode 2 when CPOL is ‘0’ and CPHA is ’1’ data sampled at on the trailing
falling edge.

• Mode 3 when CPOL is ‘1’ and CPHA is ’1’ data sampled on the trailing
rising edge. The table A.1 below depicts the detailed modes.

MODE CPOL CPHA
1 0 0
2 0 1
3 1 0
4 1 1

Table A.1: SPI protocol modes definition

46 Appendix 1

A.3 Retargeting tool algorithms

The re-targeting tool developed as software support to interpret the PDL using
Python 3 scripting language. This tool benefits a designer by simply input the
necessary PDL command and let the tool automatically generate the input vector
and deliver it to the shift registers of the instruments. In our project, we used the
retargeting tool developed by [7] and extended the algorithms to based on new
designs. The ’activate_network’ can be seen in the Listing (A.1), (A.2), and (A.3)
which enables the communication path between IC-1 and IC-2. As mention in
the chapter 3 the algorithm to translate the iApply command is shown in Listing
(A.4). This algorithm is common for both hardware-based and software-based
solution.

Appendix 1 47

1 iWrite function -hardware solution
2

3 #Network -1#
4 def activateNetwork (): #Main function activates network -1

instrument -1
5 act_cmd = [] #holds the setup and action commands
6 Write_cmd = (1<<14).to_bytes(2, byteorder=’big’)#"0x40"

specifies the iWrite setup command
7 act_cmd.append(write_cmd)
8 Total_bytes= .join(send_cmd) + .join(test_vector) #

instrument_Addresses and databits
9 CommandsAsData = int(len(.join(Total_bytes)))

10 apply_cmd = ((1<<15)) | Total_bytes).to_bytes(2,
byteorder=’big’)#Action command -iApply

11 act_cmd.append(apply_cmd)
12

13 #Network -2#
14 def iWrite ():# instrument_address and databits
15 if instrument_address % 3 == 0: # instrument -1 is

selected (1byte)
16 write_cmd = ((1<<14) | instrument_address)#iWrite

command with instrument address
17 testvector.append ((0xaa).to_bytes(1, byteorder=’big’))
18 else if instrument_address % 3 == 1: # instrument -2 is

selected (2byte)
19 write_cmd = ((1<<14) | instrument_address)#iWrite

command with instrument address
20 testvector.append ((0xaa).to_bytes(1, byteorder=’big’)

)
21 testvector.append ((0xaa).to_bytes(1, byteorder=’big’)

)
22 else instrument_address % 3 == 2: # instrument -3 is

selected (4byte)
23 write_cmd = ((1<<14) | instrument_address)#iWrite

command with instrument address
24 testvector.append ((0xaa).to_bytes(1, byteorder=’big’))
25 testvector.append ((0xaa).to_bytes(1, byteorder=’big’))
26 testvector.append ((0xaa).to_bytes(1, byteorder=’big’))
27 testvector.append ((0xaa).to_bytes(1, byteorder=’big’))
28 end if
29 return write_cmd

Listing A.1: Algorithm for the iWrite PDL hardware-based

48 Appendix 1

1

2 iRead function -Hardware Solution
3

4 #Network -1#
5 def activateNetwork (): #Main function activates network -1

instrument -1
6 act_cmd = [] #list stores the setup and action commands
7 Write_cmd = (1<<14).to_bytes(2, byteorder=’big’)#"0x40"

specifies the iWrite setup command
8 act_cmd.append(write_cmd)
9 Total_bytes= .join(send_cmd) + .join(test_vector) #

instrument_Addresses and databits
10 CommandsAsData = int(len(.join(Total_bytes)))
11 apply_cmd = ((1<<15)) | Total_bytes).to_bytes(2,

byteorder=’big’)#Action command -iApply
12 act_cmd.append(apply_cmd)
13

14 #Network -2#
15 def iRead ():# instrument_address and dummybits
16 read_cmd = ((0 << 15) | instrument_address).to_bytes(2,

byteorder=’big’)
17 if instrument_address % 3 == 0: # then generate dummy

bits (1byte)
18 expected_data.append(bin(0x55)[2:])
19 else if instrument_address % 3 == 1: # then generate

dummy bits (2byte)
20 expected_data.append(bin(0x55)[2:])
21 expected_data.append(bin(0x55)[2:])
22 else if instrument_address % 3 == 2: # then generate

dummy bits (4 byte)
23 expected_data.append(bin(0x55)[2:])
24 expected_data.append(bin(0x55)[2:])
25 expected_data.append(bin(0x55)[2:])
26 expected_data.append(bin(0x55)[2:]
27 end if
28 return read_cmd

Listing A.2: Algorithm for the iRead PDL hardware-based

Appendix 1 49

1 iRead function -Software Solution
2

3 #Network -1#
4 def activateNetwork (): #Main function activates network -1

instrument -1
5 act_cmd = [] #list stores the setup and action commands
6 Write_cmd = (1<<14).to_bytes(2, byteorder=’big’)#"0x40"

specifies the iWrite setup command
7 act_cmd.append(write_cmd)
8 Total_bytes= .join(send_cmd) + .join(test_vector) #

instrument_Addresses and databits
9 CommandsAsData = int(len(.join(Total_bytes)))

10 apply_cmd = ((1<<15)) | Total_bytes).to_bytes(2,
byteorder=’big’)#Action command -iApply

11 act_cmd.append(apply_cmd)
12

13

14 def iRead ():# instrument_address and dummybits
15 read_cmd = ((0 << 15) | instrument_address).to_bytes(2,

byteorder=’big’)#0x00" specifies read
16 if instrument_address % 3 == 0: # then generate dummy

bits (1byte)
17 expected_data.append(bin(0x55)[2:])
18 check_up_bytes +=1 # counter tracks the expected read

bytes
19 else if instrument_address % 3 == 1: # then generate

dummy bits (2byte)
20 expected_data.append(bin(0x55)[2:])
21 expected_data.append(bin(0x55)[2:])
22 check_up_bytes +=2 # counter tracks the expected read

bytes
23 else if instrument_address % 3 == 2: # then generate

dummy bits (4 byte)
24 expected_data.append(bin(0x55)[2:])
25 expected_data.append(bin(0x55)[2:])
26 expected_data.append(bin(0x55)[2:])
27 expected_data.append(bin(0x55)[2:]
28 check_up_bytes +=4 # counter tracks the expected read

bytes
29 end if
30 return read_cmd
31

32

33 def polling(instrument_address =2):# checks for the read data
34 if iRead(instrument_address) == 3: #checks read data is

arrived at instrument -3
35 else if
36 iRead(instrument_address) == 1: # read data is arrived at

instrument -3
37 read_cmd = (0 << 15) | instrument_address)#activate read

command to extract read data from instrument -3

50 Appendix 1

38 end if
39 return read_cmd

Listing A.3: Algorithm for the iRead PDL software-based

Appendix 1 51

1 Action command -Hardware/Software Solution
2

3

4 def iApply(command): #Action command
5 if command = iWrite then
6 All_bytes = .join(input_testvector) #actual write data

and action command
7 Total_bytes = int(len(All_bytes))# total number of

bytes for the network -2
8 Apply_cmd = ((1 << 15)| Total_bytes)# sends commands

and data via instr -1 network -1
9 else if

10 command = iRead then
11 Apply_cmd = (1 << 15).to_bytes(2, byteorder=’big’)#"0

x80" iApply action command
12 end if
13 return iApply

Listing A.4: Algorithm for the iApply command

On-chip Instrument Access Through System
Hierarchy

SHASHI KIRAN GANGARAJU
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2021

SH
A

SH
I K

IR
A

N
 G

A
N

G
A

R
A

JU
O

n-chip Instrum
ent A

ccess Th
rough System

 H
ierarchy

LU
N

D
 2021

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2021-801
http://www.eit.lth.se

	Exj_Shashi Kiran Gangaraju_report_unmarked.pdf
	Introduction
	Motivation
	Thesis objectives
	Thesis organization

	Background
	System overview
	ieee Std. 1149.1
	ieee Std. 1687 (ijtag)
	SIB
	Description language

	Related work
	Data overhead classification

	Communication technique

	Proposed solutions
	Synchronization module
	Sending data
	Receiving data

	Hardware-based solution
	uart master controller
	spi system
	spi master controller
	Hardware description of the solution
	Retargeting flow for the hardware-based solution

	Software-based solution
	ic-2
	Polling function
	Check-up function
	Hardware description of the solution
	Retargeting flow for the software-based solution

	Experiments and Results
	Results of experiment-1
	Results of experiment 2

	Conclusion and Future Work
	Bibliography
	Appendix 1
	UART standard
	spi bus interface
	Retargeting tool algorithms

	Tom sida

