Reconfigurable Instrument Access Network

with a Functional Port Interface

PRATHAMESH MURALI

GANI KUMISBEK

MASTER’S THESIS

DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Reconfigurable Instrument Access Network with a
Functional Port Interface

Prathamesh Murali
pr3062mu-s@student.lu.se
Gani Kumisbek
soclbgku@student.lu.se

Department of Electrical and Information Technology
Lund University
Supervisor: Erik Larsson
Examiner: Pietro Andreani

May 3, 2019

© 2019
Printed in Sweden
Tryckeriet i E-huset, Lund

Abstract

The ever-increasing need for higher performance and more complex functionality
pushes the electronics industry to find a faster and more efficient way to test and
debug an Integrated Circuit (IC). Currently, the IEEE Std. 1149.1, known as
Joint Test Action Group (JTAG) is considered as state of the art by the industry.
JTAG is used to perform debugging and testing through Test Access Port (TAP).
However, the IEEE Std. 1149.1 standard has three major drawbacks, such as:

e Lack of flexibility of hardware and scalability in scheduling the access to the
instruments;

e Boundary Scan Definition Language (BSDL), which is part of the JTAG
standard, is insufficient to describe the myriad types of instruments present
in an IC;

e Absence of a language to ascertain the operation of an instrument indepen-
dently of its position, configuration or utilization within an IC.

Therefore, the IEEE Std. 1687, also known as Internal JTAG (IJTAG), was
developed to mitigate these drawbacks by offering additional features, namely:

e The Segment Insertion Bit (SIB) and ScanMux control bit are introduced
for dynamic reconfiguration of a boundary scan path;

e Procedural Description Language (PDL) and Instrument Connectivity Lan-
guage (ICL) are used to fulfil the need for interfacing and description of a
on-chip instrument of variable complexity.

In this thesis, we proposed Universal Asynchronous Receiver Transmitter,
known as UART, as a functional port to access embedded instruments and designed
IJTAG network on Xilinx Field-Programmable Gate Array (FPGA) followed by
implementation of the re-targeting tool in Python programming language. Our
main objective was to determine if the TAP and the associated controller can
be replaced by an UART port interface, while maintaining the same functional-
ity. Additionally, we used data transfer as a performance metric to determine the
feasibility of the UART.

We explored 4 different design alternatives by building a narrative from a pure
software solution to full-featured hardware solution, consequently adding new com-
ponents to efficiently interpret re-targeting commands, thereby optimizing data
transfer and FPGA resource utilization.

Finally, we made recommendations based on results obtained, as to inclusion
or exclusion of the different components.

ii

Popular Science Summary

Electronic devices are typically composed of various components known as Inte-
grated Circuits (IC) or chips that operate together to fulfill the functions of the
device. ICs are in turn composed of transistors, the basic element of an electronic
circuit. Rapid advances in manufacturing technology has allowed for a substantial
reduction in the size of these transistors. This means that designers can afford to
use more transistors to produce complex ICs. However, this level of complexity has
increased the effect of errors (or bugs) and faults during the design and manufac-
turing process. It has also made the ICs more sensitive to external environmental
factors and natural processes like aging from wear and tear.

Given these challenges, facilitating constant monitoring of the various compo-
nents of an electronic device for failures has become a crucial task for designers. In
order to achieve this in a non-intrusive manner, a solution was developed to embed
the monitoring, testing and debugging (finding and removing bugs) components
into the ICs during the manufacturing process. These embedded components are
referred to as on-chip instruments.

Since the instruments are embedded inside a chip, additional infrastructure
is required to make them accessible to the environment. This is known as the
instrument access network or network in short. Work has been done to design
networks that allow for non-intrusive, re-configurable instrument access in an ef-
ficient manner. However, these networks require their own dedicated interface to
the environment (known as a port) that cannot be used for any other purpose.
This could potentially prove problematic for designers who have access to a limited
amount of resources.

In this thesis, we attempt to mitigate this issue by eliminating the need for a
special port by connecting the network to already existing interfaces (or a func-
tional port) that are used to facilitate the functioning of the chip. Additionally,
we also develop a control scheme based on the functional port to maintain the
efficiency in terms of data exchanged between the chip and environment (known
as data overhead). This means that the same functionality is maintained without
the need for a dedicated port. Finally, we determine if any improvements have
been made by comparing the data overhead costs between implementations with
the dedicated and functional ports.

il

v

Acknowledgment

We would like to express our sincere gratitude to our supervisor Prof. Erik Larsson,
who sparked and supervised the project.

Also we would like to thank Ericsson supervisors Magnus Osterholm, Shkelgim
Lahi, Steffan Nilsson and Umer Hasnain for a rare opportunity to test our solution
on the field and providing us with lab equipment and consultation.

We would like to express our gratitude to Bolashak Scholarship programme
for funding graduate studies. Special thanks to Gulmira Baikhozhayeva, Ayaulym
Erbolkyzy and the committee members.

Special thanks to our International Master’s Coordinator - Helene von Wachen-
felt, for her patience and administrative support.

Last but not least, we would like to express our gratitude to our families.
Without their support and motivation, we wouldn’t be able to study at Lund
University.

vi

Table

of Contents

Introduction 1
1.1 Thesis motivation 1
1.2 Planned results 2
1.3 Thesis organization 2
Theory 3
21 UARTstandard 3
2.2 |IEEE Std 1149.1 (JTAG)o ot 4
2.3 IEEE Std 1687 (IUTAG) i i 6
2.4 Segment Insertion Bit (SIB) 6
2.5 Description languages L 8
2.6 Re-targeting. L 8
2.7 iApply groups 9
2.8 Discussion on data overhead 9
2.9 Summary ... 10
Methodology 11
3.1 Technical setup and workflow 11
3.2 Bit-bangingcase L 12
3.3 Naivecase 14
3.4 Case without Dummy Data Handling 21
35 Full-featured case 29
Results 35
4.1 Testing methodology 35
4.2 Bit-bangingcase Lo 37
43 Naivecase 40
4.4 Case without Dummy Data Handling 42
4.5 Case without Instrument Length Memory 42
46 Full-featured case 42
47 Inferences 46
Conclusion 51
5.1 Introduction and theory oL 51

vii

5.2 Methodology
5.3 Results . .
5.4 Future work

References

viii

List of Figures

2.1
2.2
2.3
2.4
25
2.6
2.7

3.1
3.2
3.3
3.4
35
3.6
3.7
3.8
3.9
3.10
3.11
3.12

3.13

3.14

3.15

3.16

3.17

3.18

3.19
3.20

Break down of UART transmission. Courtesy: Soliton Technologies [9]. 4
JTAG TAP controller circuitry L. 5
TAP controller state diagram. Courtesy: Embecosm Limited [10] . . . 5
Flat 1687 Network containing two instruments 6
Conceptual diagram of SIB implementation 7
Detailed SIB schematic. 7
Three instrument network. L. 8
Digilent Nexys 4 DDR FPGA. 11
Conceptual diagram of bit-banging case. 12
Retargeting flow for read operation of bit-banging case. 13
Retargeting flow for write operation of bit-banging case. 13
Conceptual diagram of the Naivecase. 15
ASMD diagram of the main FSM component for Naive case. 16
ASMD diagram of UART interpreter component for Naive case. . . . 17
Bit-wise description of iRead setup command for the Naive case. . . 19
Bit-wise description of iWrite setup command for the Naive case. . . 21
Outputs of apply groups. 21
Conceptual diagram of the case without dummy data handling. . . . 22
ASMD diagram of main FSM component of the case without dummy

data handling. 23
ASMD diagram of main FSM component of the case without dummy

data handling. 24
ASMD diagram of output FSM component of the case without dummy

data handling. 26
Bit-wise description of iRead setup command for the case without

Dummy Data Handling. 27
Bit-wise description of iWrite setup command for the case without

Dummy Data Handling. 29
Outputs of apply groups for the case without DDH. 31
Conceptual diagram of full-featured case. 31
UART transceiver FSM module. 32

Result of iRead instrument 1 apply command for the full-featured case. 34

X

4.1

4.2
4.3
4.4

Data overhead comparison between full-featured and without DDH

CASES.o 47
Data overhead comparison between full-featured and without ILM cases. 48
Data overhead comparison across all cases. 49
Resource utilization scaling with respect to data overhead. 50

List of Tables

4.1
4.2
4.3
4.4
4.5
4.6

Resource consumption for all cases in terms of logic blocks. 38
Test results for bit-banging case. 39
Test results for Naive case. 41
Test results for no dummy data handling case. 43
Test results for no instruction length memory case. 44
Test results for full-featured case. 45

pal

xii

Acronyms

AMBA
ASMD

BPS
BSDL

CLB
DDH
EDA

FPGA
FSM

1?C
I1C
ICL
IEEE
IJTAG
ILM
IR
JTAG
LB
MSB
ODU

PDL

The ARM Advanced Microcontroller Bus Archi-
tecture (AMBA)
Algorithmic State Machine with Data-path

Bits per second
Boundary Scan Definition Language

Configurable Logic Block
Dummy Data Handling
Electronic design automation

Field-Programmable Gate Array
Finite State Machine

Inter-Integrated Circuit

Integrated Circuit

Instrument Connectivity Language
Institute of Electrical and Electronics Engineers
Internal JTAG

Instrument Length Memory
Instruction Register

Joint Test Action Group

Logic Block

Most significant bit

Output Discard Unit

Procedural Description Language

xiii

SCR SIB Control Register
SIB Segment Insertion Bit
SPI Serial Peripheral Interface

TAP Test Access Port
TCK Test Clock

TDI Test Data In

TDO Test Data Out
TDR Test Data Registers
TMS Test Mode Select

UART Universal Asynchronous Receiver-Transmitter

Xiv

Listings

3.1 PDL of the apply group used in this chapter 14
4.1 PDL for the BASTION benchmark 36

XV

XVi

List of Algorithms

S T W N =

Setup commands for the Naivecase. 18
Action command for the Naivecase. 20
Setup commands for case without dummy data handling 28
Action command for case without dummy data handling 30
Setup commands for full-featured case 33
Action command for full-featured case 34

xvii

Xviil

Chapter]_

Introduction

By the 1980’s, traditional circuit board testing methodologies such as bed-of-nails
testing were becoming increasingly cumbersome and expensive. The IEEE 1149.1
standard, known by the acronym JTAG, was developed to circumvent this problem
[1, 2]. JTAG uses boundary-scan testing to perform debugging and testing on a
design through a Test Access Port (TAP). Boundary-scan testing is facilitated by
including shift register cells adjacent to each component pin so that the peripheral
signals can be controlled and observed during testing [2].

In recent times, however, Integrated Circuit (IC) are being manufactured with
smaller and faster transistors. While massively advantageous, this also makes
the ICs more prone to in-field malfunctioning due to phenomena such as soft
errors, intermittent faults and aging [3]. These problems have led to modern
ICs being equipped with increasingly complex features for testing, debugging,
configuration and control [1, 4]. These embedded on-chip features, known as
instruments [4], have to be accessed in a low-cost, non-intrusive manner for reliable
testing and debugging of the chip. In this context, the JTAG standard has proven
to be insufficient due to lack of flexibility and scaling. The IEEE Std 1687 was
introduced to address these problems. It introduces scalable and automatable on-
chip instrument access methods while using the framework provided by the JTAG
standard, namely the TAP controller and its constituent components.

1.1 Thesis motivation

While work has been done to optimize the IJTAG architecture [4] and potential
applications have been explored [4, 5, 6, 7, 8], these implementations and proposed
designs still use the TAP and its associated architecture. The objective of our
thesis is to evaluate the feasibility of UART port as replacement for the TAP
proposed in the JTAG standard while maintaining the same functionality. This is
done for the following reasons:

e The requirement of a dedicated testing port with at least 4 pins might prove
to be expensive decision to make for designers with hardware constraints.

e The ubiquity of functional ports such as UART, SPI, I12C etc. and the
fact that they can be used for other purposes while not performing testing

2 Introduction

operations makes it simpler and cheaper to access on-chip instruments while
maintaining flexibility.

Among the various functional ports available, UART was chosen because it
offers full duplex communication with requirements for only two pins. 12C requires
additional features such as interrupts that might add to the efficiency metrics such
as data overhead and SPI requires 4 pins to operate just like the TAP, thereby
defeating the purpose of the thesis.

1.2 Planned results

The goal of the thesis is to replace the existing TAP and its associated controller
with a UART port interface and determine if any tangible improvements can be
detected. To that end, hardware overhead in the form of data and area overhead
has been selected as the performance metric. In our thesis, the data overhead is
defined as the total sum of all bits used in establishing access to on-chip instruments
through UART port interface that cannot be categorized as useful data bits. The
overhead is presented for networks with an UART port and one with a TAP and
comparisons will be made. Additionally, the impact of the various components
that make up the UART controller is also measured in terms of data overhead and
compared with the full-featured implementation. Commentary on the feasibility
is made based on the analysis of the aforementioned comparisons.

1.3 Thesis organization

The rest of the thesis is organized in the following manner:

In Chapter 2, the basic concepts upon which the implementation is built are
explored and discussed. Namely, the architecture of TAP and TAP controller are
briefly presented. The state machine of the TAP controller is discussed in more
detail since the UART controller is based on it. The basic architecture of the 1687
network and associated concepts such as ICL, PDL, and Apply Groups etc. are
discussed. The hardware overhead is explored in this chapter. A brief overview of
the UART standard is also presented.

In Chapter 3, the UART protocol developed to facilitate communication is
introduced and explored. Furthermore, the state machines for the various versions
of the UART controller that were implemented are presented and explained.

In Chapter 4, the results of the measurements made are presented in the form
of tables and charts. Brief remarks are also made about the BASTION benchmark
that are used to make measurements of our overhead metric. Analysis is also done
of the measurements made.

In Chapter 5, inferences and recommendations are made based on analysis
of the data gathered. Concluding remarks are also presented here and potential
improvements and future work are briefly discussed.

Chapter 2

Theory

In this chapter, the concepts used for the implementation of our UART controller
and 1687 network are discussed. We begin with an overview of the UART standard
used to facilitate communication between the network and the user. We move on
to take a brief look at the 1149.1 TAP controller based on which the UART
controller was designed. Finally, the architecture of the 1687 network and related
concepts such as PDL, ICL and Apply Groups are elaborated upon. A brief look
at hardware overhead is also made.

2.1 UART standard

The Universal Asynchronous Receiver-Transmitter (UART) is an asynchronous
serial communication protocol that allows for variable data formats and transmis-
sion speeds. The standard includes a transmitter and a receiver. The transmitter
is essentially a special shift register that loads data in parallel and then shifts it
out bit by bit at a specific rate. The receiver, on the other hand, shifts in data
bit by bit and then reassembles the data. The serial line is "1’ when it is idle.
Transmission starts with a start bit, which is '0’, followed by 5-8 data bits, an
optional parity bit and ends with a stop bit, which is ’1’. The optional parity bit
is used for error detection. For odd parity, it is set to '0’ when the data bits have
an odd number of 1s. For even parity, it is set to '0’ when data bits have an even
number of 1s. The number of stop bits can be 1, 1.5 or 2.

Figure 2.1 shows a transmission with 8 data bits, 1 parity bit and 1 stop bit.
No clock information is conveyed through the serial line.

Before the transmission starts, the transmitter and receiver must agree on a
set of parameters in advance, which include the baud rate, specifying the number
of bits transmitted per second (BPS), number of data bits and stop bits and the
use of the parity bit. Commonly used baud rates are 2400, 4800, 9600, 19200 and
115200 BPS.

Since no clock information is conveyed by the transmitter, the receiver can
retrieve the data bits only by using predetermined parameters. An oversampling
scheme is used to overcome this problem. As per this scheme, the middle point
of the transmitted bits is estimated, and the receiver polls the channel at these
points. The oversampling rate is determined by the baud rate and the clock period
of the receiver. The most commonly used oversampling rate is around 16 times

4 Theory

start hrF data Slop b.l.l
(logic 0} | .. (logicl
! Parity bit
' T TTTTToooossoo—foo oo —mmmmmm oo T '
! ! | (optional) 1
v A v v
Do D1 D2 D3 D4 D5 D& D7 PB
i 4 4 i
| ! ! |
v e Tt v
Start by . ! i Sample
detecting Incoming data sampled at the bit-pulse center Stap bit
transition from
logic1to 0

Figure 2.1: Break down of UART transmission. Courtesy: Soliton
Technologies [9].

the baud rate, meaning each transmitted bit is sampled 16 times.
Our implementation uses a UART standard with 8 data bits, no parity bits, 1
stop bit and a baud rate of 115200 BPS.

2.2 IEEE Std 1149.1 (JTAG)

A discussion on the TAP controller architecture and state machine is made in this
section. Figure 2.2 shows a conceptual view of the JTAG circuitry in a chip. Two
Test Data Registers (TDR)s are mandatory, namely Boundary Scan Register and
Bypass Register. Design specific TDRs can also be accommodated based on the
design in the chip. JTAG uses a serial protocol and either Instruction Register
(IR) or one of the TDRs is accessible serially. The interface for this circuitry is the
Test Access Port (TAP). The port includes four mandatory ports, namely, Test
Data In (TDI), Test Data Out (TDO), Test Mode Select (TMS) and Test Clock
(TCK) [2].

The TMS signal is decoded by the state machine to generate control signal
capture, shift and update operations on the IR and TDRs. The state diagram is
depicted in Figure 2.3. The Capture operation is defined as parallel loading of a
value into the IR or TDR. Update operation is defined as transferring logic values
from the shift register stage of IR or TDR to their latched parallel outputs. The
Shift operation is defined as shifting the data serially in and out of the IR or TDR
one bit per clock cycle.

In the following, it is explained how the state machine generates the control
signals and used to transfer data to and from IR or the TDRs. The state machine
has two similar branches, the IR branch for operations on the IR and the DR
branch for operations on the currently selected TDR. The select signals for the
TDRs come from the IR decoder, which are sued to activate a TDR based on the
instruction in the IR. Input vectors are serially shifted into the currently selected
TDR when the controller is in Shift_DR state. The input vectors can be fully
shifted in by keeping the TMS signal at logic '0’. Moving to Update_DR loads

Theory

Test Data Registers

Design-
Specific

Boundary

Sean
Bypass

TAP Controller

IR Decoder

signals

Instruction Register

Figure 2.2: JTAG TAP controller circuitry

(KTesthogicheset «
1

0

(¥ Run-Test/ldle »!—» Select-DR-Scan »!
0

0

Capture-DR 1

0

o swoR)
0

1

L Exit1-DR 4

0

(PR
0

1

Exit2-DR o

1

Update-DR
1 0

Select-IR-Scan >

0

1 Capture-IR

0

s

1

N Exit1-IR 1

0

rawseiR p

1 0

(=)

o Exit2-IR

1

Update-IR
1 0

Figure 2.3: TAP controller state diagram.Courtesy: Embecosm Lim-

ited [10]

6 Theory

the input vector to parallel outputs of the selected TDR. The output vectors are
loaded onto the selected TDR during the Capture_DR state.

2.3 IEEE Std 1687 (IJTAG)

The IJTAG standard [11], describes a methodology for accessing on-chip instru-
mentation through a dynamically re-configurable network. This allows for greater
flexibility and scalability than that offered by the 1149.1 standard. To enable dy-
namic reconfiguration in 1687 networks, multiplexers are used on the scan path,
hereby referred to as Scan MUXes. These MUXes are configured via a control bit,
which is a shift-update register that can be placed anywhere on the scan path. An
example network consisting of two instruments is shown in Figure 2.4.

4

TDO
TDI u S

Figure 2.4: Flat 1687 Network containing two instruments

To configure the control bit, the desired value is placed in the shift cell, denoted
by S during the Shift phase of the state machine. This is followed by the Update
phase during which the value in S is loaded into its parallel latch, denoted by
U. Configuring control bits or applying input vectors to the network ID done by
cycling through Capture, Shift and Update phases of the state machine. This
cycle is referred to as a CSU operation.

It should be noted that different network design approaches are possible such as
Flat networks, Hierarchical networks, Multiple Networks, Daisy-chained Networks
etc. [4]. However, due to its relative simplicity, an UART interface for a flat
network is explored in this thesis.

2.4 Segment Insertion Bit (SIB)

In order to allow for dynamically re-configurable instrument access networks, a
combination of two input Scan MUXes and control bit was introduced in the last
section. This combination is referred to as the Segment Insertion Bit abbreviated
as SIB. Figure 2.5 shows the conceptual diagram of a typical SIB implementation.

The SIB has shift flip-flop, denoted by S, an update flip-flop, denoted by U
and a two input Scan MUX. A SIB is programmed by shifting a bit into their
S flip-flop and loading it into its parallel latch U flip-flop. If the latched bit is
‘0’, the SIB is closed, and the scan path is from Test Data In (TDI) to Test
Data Out (TDO) and it bypasses the segment between TSI (to scan-in) and FSO
(from scan-out) terminals. These terminals are called the host port. This segment

Theory 7

mo 1Dl —> SIB —>» TDO
i 60 tsi fso
(a) Simplified SIB schematic. (b) Symbol representing a SIB.

Figure 2.5: Conceptual diagram of SIB implementation

contains the instrument and an associated shift register. If the latched bit is ‘17,
the SIB is opened, and the scan path includes the instrument and shift register. A
detailed schematic of our SIB implementation is shown in Figure 2.6. The control

TSI
> >
FSO
ToSel
> >
5 =
g
]

) L) 4,—» D Q
s u
capture_en H K N >
SN b CLR CLR

)

T
]

clk

shift_en

update_en
——>

Figure 2.6: Detailed SIB schematic.

signals shift_en, update_en and capture_en are generated by the state machine
developed for the implementation. When the state machine is in its shift phase,
shift_en is set to ‘1’ and new values are shifted into the S flip-flop via H (host port
MUX) and K1 (Keeper MUX 1). While the state machine is not in shift phase,
shift_en is set to ‘0’ and the S flip-flop retains its value through feedback from
K1. During update phase of the state machine, update_en is set to ‘1’ and the U
flip-flop obtains the value stored in the S flip-flop via K2 (keeper MUX 2). While
not in update phase, update_en is set to ‘0’ and the U flip-flop retains its value
through feedback from K2. If the U flip-flop stores a value of ‘0’, H receives values
directly from TDI. The segment between TSI and FSO containing the instrument is
also deselected by the ToSel terminal. In this case data is shifted directly from TDI
to TDO. In cases where the U flip-flop stores a value of ‘1’, input 1 of H is selected
and it receives values from the FSO terminal. The segment between TSI and FSO is
also included in the scan path by the ToSel terminal. In this project, this process
is called activating the instrument. Therefore, in these cases, data is shifted in via
the TDI port, through the host port terminals and out of the TDO port.

8 Theory

It should be noted that only one of the control signals is active at any given
time. This is because different phases of the state machine activate different control
signals and deactivates the others. It should also be noted that capture_en and
update_en are used to facilitate parallel loading of data between instrument and
shift register and shift register and instrument respectively.

2.5 Description languages

The IEEE 1687 standard introduces two description languages, Instrument Con-
nectivity Language (ICL) and Procedural Description Language (PDL). PDL is
used to describe the operation of instruments at their terminal. Our project im-
plements an UART protocol that allows for read and write operations on the
instrument shift registers and configurable components. The purpose of ICL is
to describe the characteristics of the instruments such as data length and posi-
tion within the network and the requirements for interfacing to them [1]. In our
project, the network can accommodate a maximum of 1000 instruments due to
hardware constraints. Since we are attempting to establish a protocol to replace
the TAP, simple inverters with variable data lengths were chosen as instruments.
The data lengths of the inverters vary between 8 bits, 16 bits or 32 bits based on
their position in the network. The first instrument, i.e. the instrument closest to
the input port TDI, denoted by i0, has a data length of 8 bits. i1 has a data
length of 16 bits and i2 has a data length of 32 bits (see fig. 2.7). This sequence
of data lengths continues in a loop for all subsequent instruments.

TDI TDO
SIB #1 »| SIB#2 | SIB #3
| Scan Register #1 | | Scan Register #2 | | Scan Register #3 |
A A A A A A\ A A A A A A A A A
Y YY VYY ! Y Y VY Y Y YY VY
| Instrument #1 | | Instrument #2 | | Instrument #3 |

Figure 2.7: Three instrument network.

2.6 Re-targeting

The PDL and ICL describe the instruments in a network and commands to be
executed on them. However, they do not generate the input vectors that need to
be shifted into the network to configure the instruments. A re-targeting tool is
used for this purpose. The tool is designed to create the input vector and transport
them to the instrument shift registers. This means that the designer can simply
input the necessary command and let the tool automatically generate the input

Theory 9

vector and deliver it to the shift registers of the instruments. In our project,
the re-targeting tool to interpret the PDL is written is software using Python 3.
It transmits control commands through the UART channel to controller module
in the hardware implementation of the 1687 network which generates the input
vectors to be shifted in. The controller contains components called SIB Control
Register (SCR) and Instrument Length Memory (ILM) to facilitate this. The SCR
stores information about which instruments are part of the active scan path and
what command is to be executed on them. The ILM holds information about the
data lengths of the instruments in the network and the position of each instrument.
The values in the SCR and ILM are transmitted by the software re-targeting tool
through the UART channel. Additionally, since one of the objectives of the project
is to minimize data overhead, an Output Discard Unit (ODU) was introduced to
allow the controller to discard garbage bits that are outputted by the network
during the CSU cycles.

2.7 iApply groups

The PDL has a set of commands to specify how to operate on an instrument
such as reading from or writing to its terminals. These are called Level-0 PDL
commands. Level-0 commands consist of two types, namely, setup commands and
action commands. Setup commands such as iRead and iWrite are queued and
only take effect when the first subsequent action command is executes. iApply
is an example of an action command. For example, multiple iRead and iWrite
commands addressed to various instruments in a network can be queued up and
executed simultaneously when the first iApply command is run. This format with
multiple setup command followed by an iApply action command is called an iApply
group.

In our project, iApply groups are interpreted by logic in the re-targeting tool
in the software and converted into a set of addresses and control commands. The
addresses specify which instrument are to be activated and the control commands
determine which operation is to be executed on the activated instruments. This
data is then transmitted to the hardware controller through the UART protocol
developed for this purpose. The protocol is elaborated upon in Chapter 3. These
UART bytes are deciphered by the controller and stored in the SCR and ILM
mentioned in the previous sub-chapter. Finally, the input vectors to be shifted
into the network are generated by the controller based on the SCR and ILM.

2.8 Discussion on data overhead

As mentioned in previous subchapters, the controller contains components such as
SCR, ILM and ODU to assist it with interpreting the UART protocol and generate
input vectors to be shifted into the 1687 network. One of the aims of the project
is to determine the impact of these components on the data overhead. The overall
data overhead is divided into the following sub divisions in order to facilitate this:

e SIB overhead, which specifies the overhead needed to activate the instru-

10

Theory

ments by modifying the control bit in the SIBs. The addresses would fall
into this category.

PDL overhead, which specifies the overhead cost of transmitting action com-
mands through the UART channel that trigger the controller to generate
input vectors.

Output overhead, which specifies overhead generated by the network during
various CSU cycles. For example, outputs are generated by the network
when instruments are activated. These are not useful and would fall into
this category.

To further elaborate on the necessity of these subdivisions, we consider the
impact of the ODU as an example. Because the ODU discards all output bits that
are not useful, the output overhead is eliminated in implementations where the
ODU is present. Therefore, it becomes easy to categorize the impact of the ODU
in order to analyze it and make recommendations.

2.9

Summary

Based on the concepts discussed in this chapter, it is possible to specify exactly
how the implementation will be done and what results will be obtained. The
implementation will be divided into the following cases:

Full-Featured case, where all the components (SCR, ILM and ODU) are

active.

No Dummy Data Handling (DDH) case, in which only the ODU is inactive.
No ILM case, in which only the ILM is inactive.

Naive case, in which none of the components are active.

Bit banging case, which simulates the overhead for a TAP interface. Note
that this case does not actually implement a TAP and TAP controller. It
uses the UART channel to simulate the behavior of a 1687 network with a
TAP interface.

The various cases and the corresponding implementation are explained in more
detail in the following chapter and the measurements taken are discussed in the
subsequent chapters.

Chapter 3

Methodology

3.1 Technical setup and workflow
In this chapter we explain the overall methodology of our work. As a part of this
work, we explored four design alternatives, namely:

e the bit-banging case;

e the naive case;

e a case when no Dummy Data Handling (DDH) is present;

o full-featured case.

We do this by consequently adding new components to look how it affects the
data overhead and resource utilization of a FPGA board.

We chose Digilent Nexys 4 DDR, shown in Figure 3.1, as our main platform
to develop IEEE 1687 network and test out different design alternatives [12]. The
Xilinz Vivado 2018.1 EDA tool was used for synthesis and implementation.

L@ &

A ke B e v

Figure 3.1: Digilent Nexys 4 DDR FPGA.

For re-targeting tool, we chose Python programming language due to extensive
number of available libraries and rapid development cycle. The pyserial module

11

12 Methodology

was used to communicate with the FPGA board via serial port [13]. The first
extreme design alternative we explored was bit-banging case.

3.2 Bit-banging case

Bit-banging is a special case when interaction with the IEEE 1687 instrument
network is done solely on re-targeting tool. In Figure 3.2 the conceptual block
diagram is shown. The TAP controller is replaced by a UART transceiver and re-
targeting is performed by sending and receiving 2 byte per each clock cycle in order
to transmit or receive one bit. Note that there is no UART protocol present in this
case, that is because when a byte is sent to the network it gets directly applied
into 8 input signals, namely TDI, shift_enable, capture_enable, update enable,
1687_clk, 1687_reset, select and TDO.

TDI
—rx—) shift enable
capture_enable
UART update_enable IEEE 1687
Transceiver Instrument
1687 clk _ Network
28 1687 _reset
<
select
TDO
clk

reset

Figure 3.2: Conceptual diagram of bit-banging case.

In case of iWrite control command (shown in fig. 3.4), we shift number of
configuration bits equal to the number of instruments in the network which applies
to iRead control command. Simultaneously, output bits generated by the network,
should be transmitted back to re-targeting tool. During the update phase, we send
2 bytes in order to update the network. However no output bits are received, since
no shifting is happening. Next, during data shift phase configuration bits alongside
of data bits are transmitted in order to push the required bits into the registers.
Additionally, an second update is required to simultaneously load the data bits
into the instruments.

As for iRead control command (shown in fig. 3.3), configuration and update
phases follow the same procedure as in i Write command, followed by capture phase
in order to push the required bits out of instruments into the shift register. These
are then shifted out of the network in the following phase.

Methodology 13

Configuration Update Capture Data Shift
shift phase phase phase phase
Configuration| | | | _.___| | [.l_. Configuration
INPUT bits + dummy bits
Useless _| Useful output
OUTPUT output data data

Figure 3.3: Retargeting flow for read operation of bit-banging case.

Configuration Update Data Shift Update
shift phase phase phase phase
Configuration | |_| ___] Configuration | __|
INPUT bits + data bits
Useless Useless [__)
OUTPUT output data output data

Figure 3.4: Retargeting flow for write operation of bit-banging case.

[

o W

14 Methodology

Major flaw of this solution lies within a large data consumption, because each
time a data bit is sent, we have to send and receive 2 bytes in exchange. Fur-
thermore, bit-banging method is prone with data miss and miscommunication
errors due to difference in the device clock speed and re-targeting tool clock speed
and therefore in order to mitigate this problem additional hardware is required to
correctly interpret re-targeting commands as well as reduce data overhead.

3.3 Naive case

For sake of simplicity for design alternatives presented in this chapter, we make
following assumptions:

e three instruments are present inside the network of which only first instru-
ment lies in active scan path, i.e. activated;

e the first instrument has a data length of 8 bits (1 byte);
e apply group commands are sent separately.

Furthermore, we use two action commands, i.e. iWrite and iRead, for which
PDL is shown in listing 3.1.

/* Write to instrument 1 */

iWrite(l, ”10101010”); //"10101010" = O0xAA
iApply;

/% Read from instrument 1 x/

iRead (1, "01010101"); //"01010101" = 0x55
iApply;

Listing 3.1: PDL of the apply group used in this chapter

For the Naive case, we introduce our first component - 1687 Finite State Ma-
chine (1687 FSM for short), which serves a purpose of basic interpretation of
commands received from re-targeting tool, shown in Figure 3.5 The FSM con-
troller controls the shift, update and capture functions of the 1687 network. It is a
replacement for the TAP controller defined by the 1149.1 standard. The operation
of the FSM is divided into two phases, the configuration phase and the data phase.
In the configuration phase, a shift-in sequence is generated to either activate a SIB
or leave it inactive based on the PDL interpreted by the re-targeting tool. Note
that no data is shifted into the network during this phase. The shift-in sequence
merely grants access to the shift registers of active instruments.

3.3.1 Hardware description of the case

The states in this FSM (see fig. 3.6) perform the same functions as the ones
specified in the full-featured case. However, the control signals that trigger state
transitions are different in this case because the UART protocol is different here.
The control signals are called control_bytes and data_bytes. control_bytes
specifies how many configuration bytes, i.e. bytes needed to activate the necessary
SIBs and pull the associated shift registers into the active scan path. data_bytes

Methodology 15

TDI

x UART_data [7:0] —
> shift_enable
EEEEE—
—> IEEE 1687
UART_done FSM
UART ” capture_enable IEEE 1687
Transceiver > nEgunuens
output_data [7:0] Network
tx h update_enable
<« P send_data >
Master Controller

ek TDO

reset

Figure 3.5: Conceptual diagram of the Naive case.

specifies the size of the shift-in sequence, i.e., bytes that contain the data to be
stored in the instruments in the case of iWrite and dummy bits to push out the
useful data in case of iRead. This is dependent on the number of active instruments.

A new interpreter FSM was created (see fig. 3.7) for the Naive case since
the UART protocol changes by a large degree with respect to the one in the
full-featured case. In accordance with the protocol, the first 3 bytes signify
the transmission of configuration bytes and are processed in the REC_BYTES1
and REC_BYTES2 states. The first UART byte specifies the number of config-
uration bytes that will be transmitted. This value is stored in control signal,
control_bytes. The next two bytes specify the number of bytes required for the
shift-in sequence that are to be transmitted to the network. These are stored in
control signal, data_bytes.

The FSM transitions to REC_CONTROL state where the configuration bits are
received and shifted into the network. When the number of bytes received reaches
the number stored in control_bytes, the FSM transitions to REC_DATA state sig-
nifying that all configuration bytes have been received. The same logic is followed
here. The FSM remains in this state until the number of bytes received matches
the number stored in data_bytes. The FSM then transitions to IDLE state where
it will wait for the next iteration to begin.

The output FSM, behaves in the same fashion as the one in case without
dummy data handling (which will discuss in the next section) since the Output
Discard Unit is absent here as well. The only difference here is that 8 bits are
transmitted out through the UART channel every time a byte of data is received
instead of when data bytes are received.

3.3.2 Re-targeting flow for the case

We start the re-targeting flow with setup commands, shown in Algorithm 1. First,
we set the padding for 3 instrument network (5 bits of padding are required in our
case). Then, we set configuration bits according to which instrument is currently
active in scan path. Also, we set dummy bits for read setup command based on

16 Methodology

IDLE

control_bytes <= 00000000
data_bytes <= x"0000"
UART_data_reg <= x"00"

l

F
REC_CONTROL
UART_done = 1 control_ready <= 0 F—-
T
REC _BYTES1 \
control_bytes <= UART_in
data_bytes <= x"0000" control_bytes > 0 T<UART_done =1 T Ué?&g;?freg)
UART_data_reg <= x"00" — —n
l F \
F REC_DATA
A control_bytes - 1
UART_data_reg |
UART _done = 1 <= UART_in -
y
T
REC_BYTES2 v
data_bytes > 0 T UART_done = 1 >—¢
data_bytes[15:8] <= UART_in >1
UART_data_reg <= x"00"
T
Y
F
UART_done =1
T
[_
(control_ready <= 1)
Y
UART_data_reg
<= UART_in

Figure 3.6: ASMD diagram of the main FSM component for Naive
case.

Methodology 17

IDLE

control_bytes <= 00000000
data_bytes <= x"0000"
UART_data_reg <= x"00"

UART _done =1
T

REC_BYTES1 \

1 REC_CONTROL
control_ready <= 0

A

control_bytes <= UART_in
data_bytes <= x"0000"
UART_data_reg <= x"00"

UART_done =1
T

REC_BYTES2 \

- < UART_data_reg >
T UART_done = 1 T <= UART in
E \
REC_DATA
A4 control_bytes - 1
UART_data_reg

<= UART_in

data_bytes > 0 T UART_done = 1 >—¢
data_bytes[15:8] <= UART_in E
UART_data_reg <= x"00"

UART_done =1

T
(control_ready <= 1)
Y
UART_data_reg
<= UART_in

Figure 3.7: ASMD diagram of UART interpreter component for
Naive case.

18 Methodology

Algorithm 1 Setup commands for the Naive case

Require: Instrument address and instrument data
Ensure: Configuration and dummy/data bits

1: totallnstruments < 3 > Network with 3 instruments

2: padding < NND(totalInstruments) > Nearest number divisable by 8
for padding

3: paddingBits < padding + totalInstruments — 1

4: function IREAD(instrumentAddress)

5: configBits[paddingBits — instrument Address] <1 > Activate
the instrument

6: if instrumentAddress mod 3 = 0 then > generate dummy bits

7 dummyBits[instrument Address] <+ (0 < 7) > 1 byte

8: else if instrument Address mod 3 = 1 then

9: dummy Bits[instrument Address] <+ (0 < 15) > 2 bytes

10: else

11: dummy Bits[instrument Address] <+ (0 < 31) > 4 bytes

12: end if

13: return con figBits, dummyBits > Return configuration and

dummy bits to action command for further processing
14: end function

15: function IWRITE(instrumentAddress, instrumentData)
16: con figBits[paddingBits — instrument Address] < 1

17 if instrumentAddress mod 3 = 0 then > translate into data bits
18: dataBits|instrumentAddress| < instrumentData > 1 byte
19: else if instrumentAddress mod 3 = 1 then

20: dataBits|instrumentAddress| < instrumentData > 2 bytes
21: else

22: dataBits[instrument Address| < instrumentData 1> 4 bytes
23: end if

24: return configBits, dataBits > Return configuration and data bits

25: end function

Methodology 19

Instrument Length Memory (ILM) of current instrument, in our case ILM = 8
bits or 1 byte. Same procedure applies to write setup command, but with slight
difference. Since write command requires an input from the user, data bits are
received during setup phase of PDL description. In Figure 3.8 we can observe in
detail the operation of read command PDL.

5 Tells FSM to apply
A Byte\Bit | b7 | bg | bs | ba| bz | b2 | by | bg given command
6 . .
Padding bits Indicates that
5 0jojojo ,‘0 9 . instrument 1
< 4 ololo]lo q b olh is activated
= = Configuration bits
3 |o|o|o|o|o]o]1lfe]
Data size bits
2 ojo|ofo|o0fO|0O|O
1 [o olololofo|o]|1 Configuration size
L bits

n Data command that indicates number of data bytes
_ Dummy bits in this case also serve
purpose of an action command

Figure 3.8: Bit-wise description of iRead setup command for the
Naive case.

The first byte tells the size of configuration bits for an FSM required to set
the first SIBs inside the network. Second and third bytes tell an FSM the size of
incoming dummy bits, in our case the size of incoming data is equal to 2 bytes.
Next, actual configuration bits are shifted inside the network to tell which SIB to
activate followed by the actual dummy bits. The PDL sequence then ends with
last bit set to 1, to tell FSM to apply given commands and shift out the data
stored inside of requested instrument.

The iWrite setup command, shown in fig 3.9 follows the same principle with
an exception that instead of shifting dummy bits to shift out data from instru-
ment memory, we shift in data bits to setup first instrument. Notice that in this
particular case, apply and setup commands are merged into single bit-stream.

After configuration bits are generated and dummy or data bits are set, we
move towards action command sequence described in Algorithm 2. The purpose
of the apply function is to use UART interface to shift setup and data commands
into the network and capture an output back. It also verifies if received data
matching expected data, that is if we expect to receive 0x55 it should match with
received value.

Finally, we receive an output for both iRead and iWrite setup commands,
shown in figure 3.10. Note that when we read from an instrument, bits represented
in yellow (see fig. 3.10(a)), are considered as a useful data bits and bits marked in
red are considered as an overhead bits. When it comes to iWrite (see fig. 3.10(b))
everything that is received back is considered as an overhead, because during the

20

Methodology

Algorithm 2 Action command for the Naive case

Require: Configuration and dummy/data bits
Ensure: Shift respective lengths of configuration and data/dummy bits

into the network and send setup and data commands

expectedData = 701010101” > Expected instrument data, used to
verify read command

. instrumentLength = 8 > Instrument length of the activated

instrument (in bits)
buf ferSize = 1024 1 1KB sized buffer to store incoming UART data

4: function IAPPLY (command)

8:

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

20:

21:
22:

if command = iWrite then
configSize + (0 < 7)V (LENGTH(con figBits) + 8) >
Calculate length of configuration and data bits
dataSize < (0 < 15) V (LENGTH(dataBits) + 8)
SERIALSHIFT(configSize) 1> and shift them into the network
SERIALSHIFT(dataSize)
SERIALSHIFT(con figBits) > Shift setup
SERIALSHIFT(dataBits) > and data bits into the network
else if command = iRead then
configSize + (0 < 7) V (LENGTH(con figBits) + 8)
dummySize < (0 < 15) V (LENGTH(dummyBits) + 8)
SERIALSHIFT(con figSize)
SERIALSHIFT(dummySize)

SERIALSHIFT(con figBits) > Shift setup
SERIALSHIFT(dummyBits) > and dummy bits into the network
incomingData = SERIALCAPTURE(buf ferSize) > Receive

incoming data
COMPARE (incomingData, expected Data, instrument Length) >
and verify its correctness

end if

end function

Methodology 21

. Tells FSM to apply
2\ |BytelBit| by [bg| bs [ba|bs by [by|bo| - aiven command
6 0]1)0/110]1)0 E Padding Indicates that
[[bits - instrument 1
5 0/00]0/0]0 }/ 1) is activated
< 4 |o|ofolofag|pb|o [1
= ~ = Configuration bits
3 |o|ojofo|o|o|1No]
Data size bits
2 ojofojo|jojofo|0
1 [0 olololololo]1 }<._ Configuration
L | size bits

n Data command that indicates number of data bytes

’ 1 ‘ 0 ‘ 1 ‘ 0 ‘ 1 ‘ 0 ‘ 1 ‘ o0 | Data bits in this case also serve
purpose of an action command

Figure 3.9: Bit-wise description of iWrite setup command for the
Naive case.

write sequence we don’t expect any data back.

Byte\Bit | b7 | bg | bs | bs|bs|bz|bi|bo

2 ololofl1]lol1]|0]1 Byte\Bit| b7 | bg | bs | bs|bs bz by |bg

[N

1 |ol1]2]o]olo]o]o 2 MR REE }Output

1 |a|a|a|afafa[a]a]f overnead

’0‘1‘0‘1‘0‘1‘0‘1‘Usefuldatabits

(a) Captured result of iRead com- (b) Captured result of iWrite com-
mand. mand.

Figure 3.10: Outputs of apply groups.

Lastly, the biggest issue with this method is that we still transmit large data
overhead in particular when we use multiple apply groups, which we will discuss
in the next chapter.

3.4 Case without Dummy Data Handling
In order to further reduce the SIB and PDL overhead, we upgrade the system with

new components, like Instrument Length Memory and SIB Control Register. In
Figure 3.11 the conceptual diagram of the case is shown.

22 Methodology

TDI

[v

X UART _data [7:0] i 1
—> IEEE 1687 shift_enable
UART_done FSM

\ 4

IEEE 1687

UART capture_enable -
Transceiver output_data [7:0] SIB 7| Metwork
< - i Control ILM i ol
tx Regist update_enable
<« P send_data egister >
Master Controller

ek TDO

reset

Figure 3.11: Conceptual diagram of the case without dummy data
handling.

3.4.1 Hardware description of the case

Previously, we discussed the operation phase of the main FSM component. Let
us clarify the functionality in more detail. SHIFT_CONTROL, UPDATE_CONTROL and
CAPTURE fall under the configuration phase (see fig. 3.12). As the names imply,
the bit sequence is shifted into the network during the SHIFT_CONTROL state after
which he FSM transitions to UPDATE_CONTROL. An update happens in this state
which activates the required SIBs and pulls the associated shift registers into the
active scan path. A capture happens in the CAPTURE state which loads the shift
registers with the data stored in the instruments. This will be useful data in case
of iRead and discarded as garbage bits in case of i Writes.

The FSM then transitions to the IDLE state and waits for the first byte of
data to be transmitted by the re-targeting tool. Note that this is only the case
for i Write, where data must be shifted into the network. In case of iRead, dummy
bits are shifted in instead to push out the useful data. Once the data has arrived,
a shift-in sequence is generated to shift the data or dummy bits into the correct
activated instruments. This means that additional dummy bits are required for
those SIBs that are not active along with the actual data.

SHIFT_DATA and UPDATE_DATA are states that fall under the data phase. In the
SHIFT_DATA state, the shift-in sequence is generated and shifted into the network.
The FSM then transitions to the UPDATE_DATA state where an update occurs. This
prompts the parallel loading of data from the shift registers to the instruments.
The FSM finally transitions to the RESET_STATE, wherein all the counters and
states of other FSM are reset and ready for a new iteration of operation.

The purpose of FSM, shown in Figure 3.13, is to interpret the protocol de-
veloped for UART communication and assist the main FSM in generating the
shift-in sequence by the way of control signals. Note that this does not perform
the function of the re-targeting tool. That happens in software.

The default state of the FSM is IDLE, from which it transitions when it receives
a byte of data through the UART channel. This is signified by the UART_done

Methodology

23

IDLE

—F

shift_en <=0
capture_en <=0
update_en <=0

SHIFT_CONTROL

—]

shift_en <=1
capture_en <=0
update_en <=0

counter =
No_of_Pins -

T
VUPDATE_ CONTROL

shift_en <=0
capture_en <=0
update_en <=1

YyCAPTURE

shift_en <=0
capture_en<=1
update_en <=0

]

data_ready =

SHIFT_DATA
shift_en<=1
capture_en <=0
update_en <=0

[

counter =
No_of_Pins - 1,

1
Y F
data_bytes =0
T
Y F
All_done =1

I UPDATE_DATA

shift_en <=0
capture_en <=0
update_en <=1

*RESET?STATE
shift_en <=0
capture_en <=0
update_en <=0
fin_high <=1

I

Figure 3.12: ASMD diagram of main FSM component of the case
without dummy data handling.

Methodology

IDLE

»-| data_ready <=0
control_ready <=0
sib_ready <=0

UART_done =1

control_ready <=1

REC_BYTE

data_ready <=0
control_ready <=0
sib_ready <=0

UART_in ='0' F i

T UART_done = 1
y REC _ADDRESS
data_ready <=0
control_ready <=0

T

sib_ready <=0 vy READ_CHECK
data_ready <=0
F control_ready <= 0
sib_ready <=0
UART_done = 1 i
T data_bytes = 0 F.
- y S l REC_DATA
<=
T —| control_ready <=0
UPDATE_READY sib_ready <=0
data_ready <=0 data ready <=1
control_ready <= 0 F l
sib_ready <=0
REC_HOLD y
S data_ready <=1 UART_done = 1
control_ready <= 0| 4 -
sib_ready <=0
T
Y

data_bytes >0

T
A

data_ready <=1
REC_WAIT

data_ready <=0
control_ready <=0
sib_ready <=0

L |

Figure 3.13: ASMD diagram of main FSM component of the case
without dummy data handling.

Methodology 25

signal. As per the UART protocol, the received byte with MSB of ‘0’ specify the
address of the SIB and instrument to be activated and which command it must
execute. The addresses are deciphered and the SIB_control_reg is set in the
REC_ADDRESS and UPDATE_ADDRESS states.

Also, as per the protocol, an MSB of '1’ on a received UART bytes indicates
that the re-targeting tool has sent the addresses for all the SIBs that are to be
activated and the 1687 FSM can begin operation and generate the shift-in se-
quence. This is achieved by toggling the control signal control_ready. The FSM
transitions to REC_BYTE and READ_CHECK states to determine if the number data
bytes that are not addresses for instruments is zero. This is because, for iRead
commands, no data bytes must be transmitted. Therefore, if the number is zero
at this stage, it can be safely assumed that only read commands are to be exe-
cuted and the main FSM can start shifting in the bit sequence without waiting for
data from the re-targeting tool. The FSM toggles control signal, data_ready and
transitions to REC_HOLD state.

On the other hand, if one or more commands were iWrite, the number of
data bytes would have a non-zero value. In such cases, the FSM transitions to
REC_DATA, where it waits for data bytes to arrive before toggling control signal,
data_ready. If multiple data bytes are expected, the control signal is toggled
multiple times.

Because the Output Discard Unit (ODU) does not exist in this case, all outputs
from the 1687 network must be processed alongside the useful ones (see fig. 3.14).
Since the UART standard can transmit a maximum of 8 bits and is much slower
than hardware, additional logic is required to store incoming bits and stall the
network while the outputs are being transmitted. This FSM fulfills that purpose.

The default state of the FSM is IDLE, where it waits for the control commands
to be transmitted by the re-targeting tool. Once the instruments to be activated
and the associated control commands have been deciphered, the interpreter FSM
toggles the control_ready signal which triggers a state transition to RECIEVE_QP
in this FSM. In this state, the FSM is ready to capture output bits from the
network and store them in a register. Once 8 bits, the maximum capacity of
the UART standard, have been captured, the FSM transitions to UART_DATA.
In this state, the FSM stalls the main FSM in charge of shifting bits into the
network and the stored byte is transmitted to the re-targeting tool through the
UART channel. Once acknowledgment has been received that the byte has been
transmitted, the FSM transitions back to RECIEVE_OP and restarts the main FSM.
This continues till all the output bits have been transmitted and the main FSM
completes operation.

Note that there is no logic in this FSM to decipher the output bits it stores,
meaning it cannot differentiate between useful outputs and garbage bits. That
falls under the purview of the re-targeting tool.

The model presented above is enough for iRead control command where there
are no data bytes transmitted by the re-targeting tool. However, for i Write com-
mands, data bytes will be transmitted to the hardware after the configuration
bytes with the addresses. This could lead to scenarios in which the data is lost
because the output FSM stalled the main FSM while transmitting output bits. In
order to account for this eventuality, the WRITE_WAIT state was introduced.

26

Methodology

IDLE
UART_send <= x"00"

send <=0

F
@J

1
y RECEIVE_OP

UART_send <= x"00"

send <=0

counter =
o_of_Pins -

F
X F
op_counter < 10 <
T
UART_DATA
UART_send <= x"00"

send <=0

All_done =1

F uart_counter = 8

counter =

No_of_Pins - : WRITE_WAIT

send <=0

—F.

UART_send <= UART _out_reg |

data_ready = 1

A
A

data_bytes > 0

without dummy data handling.

Figure 3.14: ASMD diagram of output FSM component of the case

Methodology 27

In cases where the re-targeting tool is still transmitting a byte of data, the FSM
transitions from RECIEVE_OP to WRITE_WAIT directly. This means that nothing
is shifted out of the network making it impossible to lose data. After data is
successfully received, denoted by control signal, data_ready, the FSM transition
back to RECIEVE_OP to continue receiving output bits.

3.4.2 Re-targeting flow for the case

Compared to the previous case, due to the presence of additional components
such as SIB Control Register and SIB Control Register we can further optimize
our algorithm (see Algorithm 3) by removing configuration and padding bits, since
those are already being taken care of by improved FSM. Our main focus here is
to reduce PDL and SIB overheads.

Again, depending on which setup command is being entered we can decide
whether to generate dummy bits or translate instrumentData into string of com-
mand bits, which in our case is called setupBits. Let us take closer look to the
bit-stream, presented in Figure 3.15.

Byte\Bit | b; | bg | bs [bs| bz |bz|by|bg

- Setup command which
specifies an iRead command

n Apply command which
specifies an iApply command

Figure 3.15: Bit-wise description of iRead setup command for the
case without Dummy Data Handling.

In comparison to the previous re-targeting flow (the Naive case) we have a clear
distinction between setup command sequence and action command sequence. Here
for example, first 2 bytes are representing iRead command, starting with 2 bits set
to '00" which according to our protocol indicates the read operation of instrument
1. Since we do not shifting any data bits to the system, we set LSB to ‘0’ for
the action command sequence. This in turn tells an FSM, that no data is being
shifted in to the network. Notice how drastically was reduced the data overhead,
since re-targeting tool is no longer needs to manually perform shift and capture
operations for FSM.

For write sequence, PDL is translated into stream of bits, shown in Figure 3.16,
which starts with leading ‘01’ indicating that write setup command has been ap-
plied. However, when we enter an iApply command, we have to state how many
bits of data is being sent to the network. This is done by setting LSB to the size
of incoming data bits, which in our case is equal to 1 byte or 0600000001 in binary
notation, also denoted as data command. After the size of data bits are sent, we

28 Methodology

Algorithm 3 Setup commands for case without dummy data handling

Require: Instrument address and instrument data
Ensure: Setup and dummy/data bits

1: totallInstruments < 3 > Network with 3 instruments
2: function IREAD(instrumentAddress)

3 setupBits < (0 < 15) V instrumentAddress

4 if instrument Address mod 3 = 0 then > generate dummy bits
5 dummyBits[instrument Address] < (0 < 7) > 1 byte
6: else if instrumentAddress mod 3 = 1 then

7 dummyBits[instrument Address] <+ (0 < 15) > 2 bytes
8 else

9: dummy Bits[instrument Address] <+ (0 < 31) > 4 bytes
10: end if
11: return setupBits, dummyBits > return setup and dummy bits to

action command for further processing
12: end function

13: function IWRITE(instrumentAddress, instrumentData)
14: setupBits < (1 < 14) V instrumentAddress

15: if instrumentAddress mod 3 = 0 then > translate into data bits
16: dataBits[instrumentAddress| < instrumentData > 1 byte
17: else if instrument Address mod 3 = 1 then

18: dataBits|instrumentAddress| < instrumentData > 2 bytes
19: else

20: dataBits|instrumentAddress| < instrumentData > 4 bytes
21: end if

22: return setupBits, dataBits > return configuration and data bits

23: end function

Methodology 29

send actual data bits, which sets instrument 1 with value 0z AA.

Byte\Bit b7 [bg| bs [bs| bz |bz|by|bg

5 (1|0(1|0(2|0|21]|0

4 |(0(0|O0O|O|O0O|O]|O]|1

3 [(1|j0(0|0|0|0O|O|O

ol1 Setup command which
specifies an iWrite command

n Apply command which
specifies an iApply command
1 | Data command that indicates

L number of data bytes
[1[o]+ e[z]o]]o]
The 1 byte of data for

instrument 1

Figure 3.16: Bit-wise description of iWrite setup command for the
case without Dummy Data Handling.

Later, when all setup commands are sent, we finish the transmission with
1Apply action command, which is shown in Algorithm 4.

Since, output data is not refined by discard unit we do the same search and
extract sequence as we did for the Naive case. The output result is presented in
Figure 3.17.

The output for current case is the identical to the Naive case, therefore we still
face a lot of output data overhead, In the next section we describe how to circum-
vent this issue by introducing Output Discard Unit component to our design.

3.5 Full-featured case

Full-featured case (see fig. 3.18) has all the necessary components to efficiently
interact with the 1687 network. In full-featured case we introduced Discard Unit
component (or Output Discard Unit (ODU)), which filters out any irrelevant data
during the output phase.

3.5.1 Hardware description of the case

The main FSM and UART interpreter are absolutely identical to the case without
DDH with an exception of presence of Output Discard Unit component, which dis-
cards an output overhead and produces only useful bits requested by re-targeting
tool.

30

Methodology

Algorithm 4 Action command for case without dummy data handling

Require: Setup and dummy/data bits
Ensure: Shift respective lengths of setup and data/dummy bits into the

10:
11:
12:
13:
14:
15:

16:

17:
18:

network and send setup and data commands

expectedData = 701010101” > Expected instrument data, used to
verify read command

. instrumentLength = 8 > Instrument length of the activated

instrument (in bits)
buf ferSize = 1024 1> 1KB sized buffer to store incoming UART data

function 1APPLY (command)
if command = iWrite then
dataSize < (1 < 15) V (LENGTH(dataBits) + 8)

SERIALSHIFT(setupBits) > Shift setup,
SERIALSHIFT(dataSize) > data, action command
SERIALSHIFT(dataBits) > and data bits into the network

else if command = iRead then
dummySize + (1 < 15)
SERIALSHIFT(setupBits) > Shift setup,
SERIALSHIFT(dummySize) > data, action command
SERIALSHIFT(dummyBits) > and dummy bits into the network
incomingData = SERIALCAPTURE(buf ferSize) > Receive
incoming data
COMPARE (incomingData, expected Data, instrument Length) >
and verify its correctness
end if
end function

Methodology

Figure 3.17:

Byte\Bit b, bs b5 bs b3 b, [by bo
2 0j|0|O0|1|0|1|0]1
1 oj141j0|0|0|O]O

‘0‘1‘O‘1‘0‘1‘0‘1‘Usefuldatabits

(a) Captured result of iRead command.

Byte\Bit | b7 | bg | bs | bs| bz | bz by |bo
2 ofojo|1|0|1|0|1
1 1|1(1|1f1]|1|1]|1

Output
overhead

(b) Captured result of iWrite command.

TDI

Outputs of apply groups for the case without DDH.

UART _data [7:0] |

> IEEE 1687 Discard
UART_done FSM Unit
>
UART
Transceiver output_data [7:0] SIB
i Control ILM
send_data Register

A

Master Controller

clk

shift enable 3

capture_enable

update_enable

X

IEEE 1687
Instrument
Network

TDO

reset

Figure 3.18: Conceptual diagram of full-featured case.

32 Methodology

To conclude all cases, we will discuss UART transceiver FSM, shown in Fig-
ure 3.19, which is part of all discussed cases. The FSM stores incoming UART
bits by polling the rx line at intervals specified by the SAMPLING_RATE constant.
Note that this FSM only stores incoming data into byte sized registers and trans-
mits them to the controller for processing. It does not interpret the bytes in any
fashion.

IDLE

p-| done <=0

Y
TX_ out <=
UART_send
(send_count)

send_count = 10

F
Y

RECEIVE_DATA

UART _store(fsm_count)|
<=rX

T

Figure 3.19: UART transceiver FSM module.

The FSM remains in its default state of IDLE until rx is toggled to 0/, sig-
nifying imminent transmission of data. The FSM transitions to the START state
where it confirms that a transmission is occurring.

In RECIEVE_DATA state, the FSM stores the incoming bits to form a byte as
per the UART standard. Once a full byte has been stored, the FSM toggles
control signal, done to inform the controller that a byte of UART data has been

Methodology 33

successfully received and that the controller can begin processing it. The FSM
then transitions back to IDLE to wait for the next byte to arrive.

While transmitting data through TX_out, the FSM transitions to SEND_DATA
when the controller toggles control signal, send that signifies that a byte is ready
to be transmitted back to the re-targeting tool. Once the byte is transmitted the
FSM transitions back to IDLE.

3.5.2 Re-targeting flow for the case

By introducing ODU we managed to size down output overhead to zero. Final
result is shown in Algorithm 5 and Algorithm 6. The setup and action commands
are same as in the case without Dummy Data Handling.

Algorithm 5 Setup commands for full-featured case

Require: Instrument address and instrument data
Ensure: Setup and dummy/data bits

1: totalInstruments < 3 > Network with 3 instruments
2: function IREAD(instrumentAddress)

3 setupBits < (0 < 15) V instrumentAddress

4 if instrument Address mod 3 = 0 then > generate dummy bits
5 dummyBits[instrument Address] < (0 < 7) > 1 byte
6: else if instrument Address mod 3 = 1 then

7 dummyBits[instrument Address] < (0 < 15) > 2 bytes
8 else

9: dummy Bits[instrument Address] <+ (0 < 31) > 4 bytes
10: end if
11: return setupBits, dummyBits > return setup and dummy bits to

action command for further processing
12: end function

13: function IWRITE(instrumentAddress, instrumentData)
14: setupBits < (1 < 14) V instrumentAddress

15: if instrumentAddress mod 3 = 0 then > translate into data bits
16: dataBits[instrumentAddress| < instrumentData > 1 byte
17: else if instrumentAddress mod 3 = 1 then

18: dataBits[instrumentAddress| < instrumentData 1> 2 bytes
19: else

20: dataBits[instrumentAddress| < instrumentData > 4 bytes
21: end if

22: return setupBits, dataBits > return configuration and data bits

23: end function

34 Methodology

Algorithm 6 Action command for full-featured case

Require: Setup and dummy/data bits
Ensure: Shift respective lengths of setup and data/dummy bits into the
network and send setup and data commands

1: buf ferSize = 1024 1 1KB sized buffer to store incoming UART data

2: function IAPPLY (command)

3 if command = iWrite then

4 dataSize < (1 < 15) V (LENGTH(dataBits) + 8)

5 SERIALSHIFT(setupBits) > Shift setup,
6: SERIALSHIFT(dataSize) > data, action command
7 SERIALSHIFT(dataBits) > and data bits into the network
8 else if command = iRead then

9: dummySize + (1 < 15)

10: SERIALSHIFT(setupBits) > Shift setup,
11: SERIALSHIFT(dummySize) > data, action command
12: SERIALSHIFT(dummyBits) > and dummy bits into the network
13: incomingData = SERIALCAPTURE(buf ferSize) > Receive

incoming data
14: end if
15: end function

In the end, we receive output only during a read sequence, shown in Fig-
ure 3.20:

Byte\Bit b7 |bg| bs [bs| bz |ba|by|bg

1 |0|1|0(12(0|1|0]|1

Figure 3.20: Result of iRead instrument 1 apply command for the
full-featured case.

Chapter 4

Results

In this chapter, we present the experiments performed to compare proposed design
alternatives. The narrative will be build from bit-banging (purely software) case
to full-featured (dominantly hardware) case, as we did in the previous chapter.
We also discuss testing methodology and make inferences based on the results
obtained.

4.1 Testing methodology

For the experiments, we calculated three data overhead components, namely:
e SIB overhead - overhead bits required to configure SIBs.

e PDL overhead - overhead bits required to perform setup commands, gen-
erated by the re-targeting tool.

e Qutput overhead - unwanted garbage bits, shifted out of the network that
are not considered as data bits.

Summation of the listed overhead components produces total data overhead met-
ric:

N
Total overhead = Z SIB overhead +
i=1
N
+ Z PDL overhead + (4.1)
i=1
N
+ Z Output overhead

i=1

where N is total number of instruments present in the IEEE 1687 instrument
network.

Furthermore, in order to calculate useful data percentage, i.e. actual data
bits, we use total bits exchanged metric, which indicates the total amount of bits
transmitted through the function port:

35

1
2

o W

4

16
17
18
19

20

NONON N
N e

N

36 Results

N
Total bits exchanged = Total overhead + Z Useful bits (4.2)
i=1
Useful bits
Total bits exchanged
Next, we have 3 instrument network sizes: N = 50, 100 and 150 to check

scalability of the IEEE 1687 instrument network.
Additionally, we have tested five PDL apply groups, specifically:

Useful data percentage = x 100 (4.3)

e Read from the first instrument (denoted as iRead 1);

Write to the first instrument (denoted as iWrite 1);

e Read from all instruments inside the network (denoted as Read all);

Write to all instruments inside the network (denoted as Write all);

BASTION benchmark for flat network (denoted as BASTION), shown in List-
ing 4.1 [14].

/* Access all instruments in single iApply group x/

iProc all instruments in_ one iApply {}{
iWrite (totallnstruments , "10101010");

iWrite (0, "10101010");
iApply;

iRead (totallnstruments , "01010101");

iRead (0, "01010101");
iApply;

2 }

/+x Access instruments in individual manner x/
iProc one instrument per iApply {}{
iWrite (totallnstruments , "10101010");
iApply;
iRead (totallnstruments, "01010101");
iApply;

iWrite (0, "10101010");
iApply;

iRead (0, "01010101");
iApply;

Listing 4.1: PDL for the BASTION benchmark

BASTION benchmark was developed by European collaborative research project
BASTION in 2014 to investigate currently unknown issues and study aging of
embedded electronic instruments [15]. Since we have implemented a flat network,
we decided to test TreeFlat benchmark, which basically performs read and write
operations in a single apply group and same sequence in separate apply groups [14].

Results 37

As for area utilization of proposed designs, we use resource consumption met-
ric of an FPGA extracted from resource utilization report, generated by the Xilinx
EDA. Each FPGA manufacturer uses different techniques to report resource uti-
lization, but in our case we use Configurable Logic Block (or logic block, LB for
short) which consists of two logic slices (Slice M and Slice L) and represents funda-
mental building block of the Xilinx FPGA fabric [16]. The equation for calculating
LB is shown below:

LB=8xLUT+16 x F'F (4.4)

The results of resource report presented in Table 4.1.

4.2 Bit-banging case

The testing for bit-banging case is done as a thought experiment. Let us consider
read operation for one instrument. In Figure 3.3 read action command is per-
formed. During shift configuration phase, 2 bytes are required to toggle clock line,
1 byte is required to send 1 bit of data, 2 bytes of data are required to send config-
uration bits and 2 bytes of useless output bits are generated by the network. Next,
during update phase, we send 2 bytes to update the SIBs. After that, we send
capture signal, which also requires 2 bytes. During Shift-Update, no output data
is shifted out for read operation. The data overhead equation for read operation
is shown below:

Total overhead =2 x 8 x 2 x (2 x Configuration bits)+
+ 2 x 8 X (Dummy bits)+ (4.5)
+2x8x (UC)

where UC' denotes an update-capture phase.

For write operation, during the configuration shift phase, we 1 byte of con-
figuration bits and receive back useless output bits, then during update phase we
shift in 2 bytes to update contents of instruments, but no output is received back.
Next, during data shift phase we shift in both configuration bits followed by data
bits and shift out useless output data. Needless to say, that each time we send
configuration bit the network generates corresponding output bit. Lastly, we fin-
ish the flow by shifting 2 bytes for update. The data overhead equation for write
operation is shown below:

Total overhead =2 x 8 x 2 x (U)+
+2 x 8 x 2 x (2 x Configuration bits + Data bits)

(4.6)

where U denotes update bits.
Table 4.2 presents the results for the experiments in details.

Results

38

Table 4.1: Resource consumption for all cases in terms of logic blocks.

Resource consumption

Instruments 1687 network w/o DDH w/o ILM Naive Full-featured
FF LUT LB |FF LUT LB |FF LUT LB |FF LUT LB|FF LUT LB

50 1946 2006 369 | 400 852 103 | 400 739 96 | 193 330 45 | 400 801 100

100 3918 4036 742 | 500 1060 129 | 500 881 118 | 193 330 45 | 502 959 123

150 5906 6082 1118 | 600 1158 147 | 600 1046 140 | 193 330 45 | 600 1109 144

39

Results

%690 | 00gTT | S¥8829T | NOILLSVA |
%09¢ | o008z | svoer | 1 peey |
%09'¢ | oosz | svoer | meewam | OST
%otro | 8 | owr | 1ommr|
%10 | s | aup | 1 peaur|
%60 | werL | eeesol | NOLLSVA |
%09¢ | ossr | ¥eee | (e peey |
%09¢ | osst | wweze | mmoeyam | 001
wieo |8 | osee | 1 ewmr|
weo |8 | oee | I peayr |
%991 | 089¢ | sereez | NOLLSVA |
%096 | 0z6 | s9g9r | e peey |
%09¢ | oz6 | sogor | mmenw | 08
%0 |8 | ot | 1o
%0 |8 | 9w | T pea! |
o3e sy1q
-juaoaad nJ | poSueyod sjyuaw
ejep | -esn jo | -xa sjIq dnoar | -nijsur jo
[njosn [MoquunpN 1e101, Addy | Joquunp

"ased Suisueq-1iq 4oy s}nsal

19] 'y @|qel

40 Results

4.3 Naive case

In previous chapter, we discussed in detail functionality of the Naive case. In this
section, we will discuss calculation of data overhead components. The PDL overhead
is equal to 24 bits (or 3 bytes). According to UART protocol, configuration size is
limited to 8 bits and data size is limited to 16 bits for single apply group, therefore:

PDL overhead = Con figuration size + Data size = 24 bits (4.7

The value of SIB overhead directly depends on which instruments are cur-
rently active, their respective ILM sizes and number of useful bits (for iWrite) or
dummy bits (for iRead). The general equation for calculating STB overhead is
shown below:

M M
SIB overhead = Z Configuration bits + Z Data bits (4.8)
i=0 i=0

Note that when i Write setup command is applied, data bits must be subtracted
from the equation, because those bits are considered as useful. Hence, we get
following equation for ¢ Write apply group:

M M
PDL overhead = Z Configuration bits + Z Data bits — Data size (4.9)
i=0 i=0

In the end, after PDL commands are shifted in, we receive output bits. If write
operation is performed, all incoming bits are considered as an Qutput overhead.
On the other hand, if read operation is performed, re-targeting tool filters out
useful data bits and discards remaining bits as an overhead.

Finally, we get following results, shown in Table 4.3:

41

Results

%oe's | ooztt | orrroz | 8696 | F01L6 | 8¥eL | NOLLSVA |

%oo6e | oose | exer | ever | wore | ve | epesy |

%o6vy | oose | t1eve | eote | woe | v | meewmm | 04T

%ozt | 8 | w9 | 9se | woe | v | 1ommmr|

%ozt | ¢ | g9 | eve | wie | v | 1peour|

%0zL | wew. | 09096 | @eocr | ozeey | svsy | NOILLSVA |

woeey | 9est | szege | eev | wooz | we | e peey |

%oLvy | ossr | cezz | eooe | g0z | we | meoewyy | 00T

%81 | s | ww | @z | sz | we | 1o

%ot | s | e | gz | 9t | ¥ | I peayr |

%0z 1T | o0%9¢ | zogez | woLer | esier | sve | NOILLSVY |

%081y | o0z | zser | 9ze | eeor | ve | mepesy |

%otvy | oz | Lott | teor | err | vz | mmewam | 08

wore | s | wee | st | et | v | 1o

%ooe | s | e | 111 | ozt | v | T peay! |
a3e

-quadaad sq peoy pPeay peay peay syua I
elRp | [NjOsn jo -I9A0 -I9A0 -I9A0 -I9A0 dnoxr) | -najsur jo

[nJos | IqUMY | [ejoL, | mdmnQ daIs 1ad Addy | toqunN

‘9sed

dAle| Jo} S} NsaJ 1s9] €'y d|qel

42 Results

4.4 Case without Dummy Data Handling

In this section, we will report the test results for case without dummy data han-
dling. This is the case, when we introduced first crucial components to improve
re-targeting data efficiency, i.e SIB Control Register and Instrument Length Mem-
ory.

By introducing above mentioned components, SIB overhead and PDL overhead
bits get dramatically reduced. For instance, SIB overhead for both iRead and
i1Write setup commands is 16 bits and PDL overhead is equal to 16 bits for each
action command. The output overhead however is identical to the Naive’s case.
That is because ODU is absent, therefore re-targeting tool has to discard an output
independently. Results for this case is presented in Table 4.4.

4.5 Case without Instrument Length Memory

This case is quite identical in many respects to full-featured case, that is ODU
is present and output overhead is discarded by the master controller. The only
difference in this case is absence of ILM component. PDL overhead = 16 bits,
which is the same as both in full-featured case and case without DDH, however
since ILM serves a purpose of storing length of the instrument (because in our pro-
posed architecture instruments have variable ILMs), re-targeting tool must also
send additional byte describing the length of the instrument accessed. There-
fore, SIB overhead = 24 bits for each setup command. Notwithstanding, output
overhead is equal to zero. The results for this case is shown in Table 4.5.

4.6 Full-featured case

The full-featured case is most revised case with all components present. PDL overhead
and SIB overhead for each setup and action commands are equal to 16 bits, which

the same as in no DDH case. Also, since ODU is present no output overhead is
produced. Thus, we get following results, presented in Table 4.6.

43

Results

%orve | ooztt | o9gete | w069 | 0096 | zesy | NOLLSVA |
%0067 | oose | ez | 10¢ | oove | 9t | (epesy |
%oeve | oose | 99gc | ogez | oove | ot | meewmyn | 04T
%oee | s | see | 90e | ot | 91 | 1o
wore | ¢ | 1ee | e6c | ot | 9t | 1peag|
%oeve | wer. | stert | o9sey | oov9 | geze | NOILLSVA |
%088y | 9est | 1e61 | gee | ooor | 91 | e peey |
woeve | ossr | wese | seer | o009t | ot | qeowyy | 00T
woze | s | we | ewe | ot | 91 | 1o
woee | s | e | gz | ot | 91 | I peayr |
%o1ve | o0%9¢e | ez | oeee | ooze | zeor | NOILLSVY |
%oesy | oz | 986 | o1 | o008 | 91 | repesy |
woeee | oze | o6t | w6 | oos | ot | mmewam | 08
%oes | ¢ | oer | st | ot | ot | 1owamr|
woee | s | et | 1t | ot | 91 | 1 peour|
a3e
-quadaad sq peoy pPeay peay peay syua I
elRp | [NjOsn jo -I9A0 -I9A0 -I9A0 -I9A0 dnoxr) | -najsur jo
[nJos | IqUMY | [ejoL, | mdmnQ daIs 1ad Addy | toqunN

"9sed Juljpuey eiep Awwnp ou Joj synsal 1s9] :ff 9|qel

Results

44

Table 4.5: Test results for no instruction length memory case.
Number Apply PDL SIB Output | Total Number | Useful
of instru- | Group over- over- over- over- of useful | data
ments head head head head bits percent-
age
| iRead 1 |16 | 24 | 0 | 40 | 8 | 16.70%
| iWrite1 | 16 | 24 | 0 | 40 | 8 | 16.70%
50 | Writeall | 16 | 1200 | 0 | 1216 | 920 | 43.10%
|Readall | 16 | 1200 | 0 | 1216 | 920 | 43.10%
| BASTION | 1632 | 4800 | 0 | 6432 | 3680 | 36.40%
|iRead1 | 16 | 24 | 0 | 40 | 8 | 16.70%
| iWrite1 | 16 | 24 | 0 | 40 | 8 | 16.70%
100 | Writeall | 16 | 2400 | 0 | 2416 | 1856 | 43.40%
| Readall | 16 | 2400 | 0 | 2416 | 1856 | 43.40%
| BASTION | 3232 | 9600 | 0 | 12832 | 7424 | 36.70%
| iRead 1 |16 | 24 | 0o | 40 | 8 | 16.70%
| iWrite1 | 16 | 24 | 0 | 40 | 8 | 16.70%
150 | Writeall | 16 | 3600 | 0 | 3616 | 2800 | 43.60%
| Readall | 16 | 3600 | 0 | 3616 | 2800 | 43.60%
| BASTION | 4832 | 14400 | 0 | 19232 | 11200 | 36.80%

45

Results

%W | oozit | eewr | o | o096 | zesy | NOLLSVA |
wores | oose | o9tve | o | ooz | 91 | repesy |
woLes | oose | ote | o | ooke | ot | meewmm | 04T
%o | s | e | o | 9t | ot | 1o
%oz | s | eze | o | ot | ot | 1pen|
wivy | wew. | zeos | o | oov9 | ezgee | NOLLSV |
%oges | 9est | o9tor | o | o009t | 91 | [repesy |
woces | oegr | otor | o | ooor | ot | qeoewyy | 00T
%o | s | ze | o | 9ot | ot | 1o
% | s | e | o | ot | 9t | I peayr |
%er | osoe | zesy | o | ooce | eeor | NoOLLSVd |
%es | oze | o9t8 | o | o008 | 9t | mepesy|
wes | o | 9t | o | oos | ot | mmoewam | 0f
%woe | s | ee | o | ot | ot | 1omymr]
% | s | ze | o | 9t | ot | 1peoy|
a3e
-quadaad sq peoy pPeay peay peay syua I
NHN—Q ~:.w®m5 .wo -I9A0 -I9A0 -I9A0 -I9A0 Q—HOHU I—H.Hﬂw.:m .wO
[nJos | IqUMY | [ejoL, | mdmnQ daIs 1ad Addy | toqunN

"9SED PaJN]ed)-||ny J0j S}NSaJ 159 :Q°f d|qe)

46 Results

4.7 Inferences

47.1 Full-featured case versus case without DDH

Looking at Figure 4.1, we observe that output overhead parameter is absent in
full-featured case.

For a relatively low area consumption, we could infer that including ODU
proves to be a net benefit. Based on results obtained in Tables 4.4 and 4.6,
the impact of ODU on the write setup commands is greater compared to read
commands. That is because in case of write setup command, none of the output
bits are useful. By looking at BASTION apply group, we can conclude that useful
data percentage remains constant with increase of number of instruments.

4.7.2 Full-featured case versus case without ILM

Looking at Figure 4.2 we can conclude that for same area cost, we get higher
returns in data overhead as number of instruments increases.

This proves that the impact of ILM scales well and including the components
improves data transfer efficiency.

4.7.3 Full-featured case versus case without ILM

Looking at Figure 4.3 it is evident, that the total overhead falls sharply as we move
from bit-banging to full-featured case. Hence, we can prove that full-featured im-
plementation provides the best efficiency in terms of data overhead. It is especially
beneficial as the number of instrument increases.

As a final remark, we can say that embedded solution, which splits the re-
targeting functionality between hardware and software components, is the most
beneficial when UART port interface is used.

47

Results

0¢

0¥

09

08

001

0clL

0v1

091

"S9SED H(J(INOYIM pUB painiesy-||nj ussmiaq uosliedwod peaylano ele Ty anSi4
SINHNNYLSNI 4O JHdINNN
0ST 00T 09

painjeaj-[ng Hdgou pornjesj-[ng Hagou painjeaj-[ng Hdagou

Te8Y

42" Vaan

SYO0[q 10 =@ pLIYLAO INAMNO M PLoYIPAO SN PEOYIOA0 (] M

S3sed [OU pue paInjedj-[[ny usamjaq uosrredurod syjusuodurod peayraso ejeq

000G

00001

000°ST

0000C

0005T

(SL19) AVAHIEAO

Results

48

OVERHEAD (BITS)

20,000

15,000

10,000

5,000

Overhead components comparison between full-featured and no

ILM cases

mmm PDL overhead mmmm SIB overhead — e=C==Togic Blocks

140 144

123 1232

118

9% 100

o= 12,832

14,432

9,632

4,832

no ILM Full-featured no ILM Full-featured no ILM Full-featured

50 100 150
NUMBER OF INSTRUMENTS

Figure 4.2: Data overhead comparison between full-featured and without ILM cases.

160

140

120

100

80

60

40

20

RESOURCE UTILIZATION

49

Results

"S9SED || $S042€ uosuedwod pesyiano eleq gy 24nSi4

SINANNLISNI 40 YAINNN
0ST 001 0S
& R S RS
- R B S &> PN &>
S CFE LFTHIEFE ST&O&E
T T NI M S < ¢ S
0001
)))) . 089°¢ | 089°¢ | 089°¢ | 089°¢ | 089°¢
00C'TTR00C TTJ00C TTJ00C TTJ00T TT URD A URE L) DR A | DRI | T
(433 Qs m— 000°0T
7€9°6 ;
Zep'p) T ¢E8'TL gIT'PL
T 000001
0LT'T0T 8CL'TTT
TET'S9L 000°000°T
818'879°L

PeaYIaA0 [BJO], W S} [NJISN JO IdquINN M

sased [T ssome uosreduwrod sjiq ejep NJasn pue peayIaAo eye(

(SL19) AVAHAAO

Results

50

200,000

— 150,000

100,000

OVERHEAD (BITS

50,000

Resource utilization and data overhead comparison across cases

B Logic blocks ~ =#=Data overhead

147

103

50 100 150
NUMBER OF INSTRUMENTS

Figure 4.4: Resource utilization scaling with respect to data overhead.

144

160

140

120

100

RESOURCE UTILIZATION

Chapter 5

Conclusion

In this chapter, we present summary for each chapter and suggest future improve-
ment.

5.1 Introduction and theory

In these chapters, we did literature review for IEEE 1687 network and were ex-
ploring possible design alternatives. We established an objective and elaborated
on the results we expected to obtain.

We discussed the UART standard and defined its constituent components.
Next, we explained TAP and TAP controller architecture and state machine. Fur-
thermore, we reviewed IEEE Std. 1687 IJTAG and various associated concepts.

Finally, we quantified performance the metrics we would be measuring and
established various design alternatives.

5.2 Methodology

In this chapter, we explained our implementation starting from bit-banging case,
which simulated TAP interface. We then progressively added each of the com-
ponents, proposed in previous chapter, i.e. SCR, ILM and ODU and explored
re-targeting flow as well as UART protocol for each consecutive case.

Additionally, we presented ASMD diagrams, pseudo-codes, bit-wise diagrams
and block diagrams associated with each case.

5.3 Results

In this chapter, we provided brief overview of PDL specified by BASTION bench-
mark. Next, we presented results for various cases in form of tables, charts and
equations. Furthermore, we made inferences based on results we obtained and
made appropriate remarks.

o1

52 Conclusion

5.4 Future work

In this thesis, we made implementation based only on flat instrument access net-
work, however our work could be expanded to accommodate other design ap-
proaches, namely, hierarchical networks, multiple networks, daisy-chained network,
etc. Moreover, our work could be used as a frame of reference for implementations
that use other functional port interfaces such as 12C, SPI, AMBA and others.

Additionally, our work could also be further expanded for fault detection and
management applications.

References

[1] Erik Larsson and Farrokh Ghani Zadegan. “Accessing embedded DfT
instruments with IEEE P1687”. In: 2012 IEEE 21st Asian Test Sym-
postum. IEEE. 2012, pp. 71-76.

[2] Colin M Maunder and Rodham Tulloss. The test access port and
boundary-scan architecture. IEEE Computer Society Press, 1990.

[3] Farrokh Ghani Zadegan. “Reconfigurable On-Chip Instrument Access
Networks: Analysis, Design, Operation, and Application”. In: (2017).

[4] Farrokh Ghani Zadegan et al. “Design, verification, and application of
IEEE 1687”. In: 2014 IEEE 23rd Asian Test Symposium. IEEE. 2014,
pp- 93-100.

[5] Artur Jutman, Sergei Devadze, and Konstantin Shibin. “Effective scal-
able IEEE 1687 instrumentation network for fault management”. In:
IEEE Design € Test 30.5 (2013), pp. 26-35.

[6] MARTIN Keim et al. “Automated Test Creation For Mixed Signal IP
Using IJTAG”. In: white paper Mentor Graphics (2012).

[7] K Shibin et al. “IEEE P1687 IJTAG demonstrator on FPGA”. In: ().

[8] Hans Martin von Staudt and Alexios Spyronasios. “Using IJTAG dig-
ital islands in analogue circuits to perform trim and test functions”.
In: 2015 IEEE 20th International Mized-Signals Testing Workshop
(IMSTW). IEEE. 2015, pp. 1-5.

[9] Soliton Technologies. UART PROTOCOL VALIDATION SERVICE.
2018. URL: https://www.solitontech. com/uart-protocol-validation-
service/ (visited on 12/15/2018).

[10] Embecosm Limited. JTAG Chip Architecture. 2009. URL: https://
www . embecosm. com/appnotes/ean5/html/ch02s01s02.html (visited
on 12/20/2018).

93

54 REFERENCES

[11] “IEEE Standard Test Access Port and Boundary Scan Architecture”.
In: IEEE Std 1149.1-2001 (2001), pp. 1-212. DOL: 10.1109/IEEESTD.
2001.92950.

[12] Digilent Inc. Nexys 4 DDR Reference Manual. 2018. URL: https :
//reference.digilentinc.com/reference/programmable-logic/
nexys-4-ddr/reference-manual (visited on 11/15/2018).

[13] Chris Liechti. pySertal’s documentation. 2018. URL: https://pythonhosted.
org/pyserial/ (visited on 11/01/2018).
[14] European collaborative research project BASTION. PDL for flat tree

network. 2018. URL: http://fp7-bastion.eu/files/TreeFlat.pdl
(visited on 11/25/2018).

[15] European collaborative research project BASTION. About BASTION.
2018. URL: http://fp7-bastion.eu/index.php?page=1 (visited on
11/25/2018).

[16] Digilent Inc. Nate Eastland. FPGA — Configurable Logic Block. 2018.

URL: https://blog.digilentinc.com/fpga-configurable-logic-
block/ (visited on 11/20/2018).

UNIVERSITY

Series of Master’s theses
Department of Electrical and Information Technology
LU/LTH-EIT 2019-692
http://www.eit.Ith.se

6107 pun 18sny-3 1 12132411 Aq parulid

