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Abstract

The purpose of this thesis is to study if software defined networks (SDN) can
function as a second layer of defence in safety critical sensor networks. SDNs are
controlled and topologically defined by a logically centralised control unit. The
centralised control logic makes it possible to control the behaviour of the network,
and react to network events. In this thesis we examine if and how SDNs can be used
to isolate a compromised host from the network. As the intended use case requires
galvanic isolation of the devices we test and find that the solution is compatible
with the use of media converters and optic fibre. We evaluate the security of
SDNs compared to traditional networks and implement a proof of concept using
the OpenFlow protocol and Open vSwitch. We find that SDNs could be used to
isolate compromised hosts and provide security benefits, but the uncovered method
is too immature to be used in a safety critical network.
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Popular Science Summary

Software defined networks (SDN) have a lot in common with traditional networks.
The main difference is how the packet forwarding devices, for example switches,
work. In a traditional network the switch is responsible for both forwarding the
data and figuring out where to forward it. In a software defined network a distinc-
tion is made between the two jobs. The switch is only responsible for forwarding
the data and a new device, a controller, is introduced. The controller contains
the logic deciding if and where to forward the data, and the switch has to ask the
controller what it should do.

Separating the control logic from the switch makes the network easier to pro-
gram. This means that applications can be used to monitor the network and alert
the controller if something seems odd. The controller can in turn react by redis-
tributing traffic or isolating parts of the network. In a large network this means
that traffic in different parts of the network can be coordinated. Another benefit
of the separation is that the network traffic governing how the network works can
be kept more protected.

The purpose of this thesis is to look at if SDN can be used to improve security
in a safety critical network by acting as a second layer of defence if the network
would be breached. By setting up a small network we show that it is possible to
isolate units which do not follow the rules of the network. We use two different
methods to isolate the units, forbidding the traffic from the start and letting an
intrusion detection system alert the controller. However, we also find that it is
likely possible to bypass the isolation mechanism and that it is not sufficient for a
safety critical network.

Another requirement of the network is that the devices should be galvanically
isolated. Galvanic isolation means that no current flows between the devices. This
is a requirement from The Swedish Armed Forces since the current generates an
electromagnetic field which could be used to listen to the communication from a
large distance. By inserting media converters into the network and using optic
fibre to transfer the signal we show that the media converters do not prevent the
network from functioning as intended. Their impact on the performance of the
network could depend on the hardware used. In the implemented configuration
the potential impact is smaller than the variation which occurs between attempts.

We evaluate the security of the implemented network using a threat modelling
tool called STRIDE which facilitates finding vulnerabilities in systems by looking
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at different categories of threats. We find that the biggest issue with the implemen-
tation is that traffic could be forged tricking the controller into isolating healthy
parts of the network. If an attacker succeeded in this the SDN solution would in
practice make it easier for an attacker to shut down the entire network. If it would
be a good idea to implement an SDN solution depends on if these issues could be
solved, the complexity of the network, and the quality of the intrusion detection
system.
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Terminology

• Administrative station - A computer on a network from where the network
can be managed and configured.

• API - Application Programming Interface.

• Forwarding device - A network device with the purpose to forward traffic
from point A to point B.

• IDS/IPS - Intrusion Detection System/Intrusion Prevention System

• Interface - A connection enabling exchange of some type of information
between between two different software or hardware components. In the
context network interface it refers to the physical or virtual port on which
data is received or transmitted. In the context northbound/southbound
interface it refers to the common set of rules for how information is to be
exchanged.

• Middlebox - A network device that inspects, modifies or filter traffic, e.g. a
firewall.

• Network bridge - A network entity which connects two or more separate
networks into one mutual

• RHEL - Red Hat Enterprise Linux, an open source operative system

• Safety-critical system - A system where a failure could result in loss or sever
injury to people, property or equipment.
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Chapter1
Introduction

This chapter will introduce the motivation for the thesis. The first subsection
contains the purpose of the thesis. We then move on to present research questions
and limitations. Methodology is covered in the fourth section before related work
in the fifth. The disposition of the thesis is covered in the final section.

1.1 Purpose

To have an efficient military defence it is necessary to know where the enemy is
and to have information about the surrounding area. One method of obtaining
this knowledge is by using sensor networks. A sensor network can, for instance, be
a number of interconnected radar sensors which exchange information with each
other. If the enemy gains access to such a network the damage could be enormous.

To protect the sensor networks they typically communicate on purpose built
networks with a relatively low capacity. The cost of building high capacity net-
works makes it unpractical so if it was possible to use existing infrastructure in
a secure way the bandwidth could be greatly improved and the functionality of
the networks would increase. Furthermore, if the networks could be connected to
the Internet, external information could be gathered for additional improvements.
However, when connecting military networks directly to the internet, there is a
very high probability that actors with almost never ending resources will try to
gain access to those systems.

Software defined networking is a relative new way of setting up and maintain-
ing networks. In a traditional network, a topology usually consists of computers,
switches, and routers. The network will remain the same until the system ad-
ministrator manually changes the topology. It can be a new host or a new setup
for how the switches are connected. With software defined networks, or SDN for
short, it is possible to logically, and dynamically, control and change the network
topology. A network controller unit has a full view of the network topology and
can manage all network communication. This technology opens up for a new way
of interacting with and configuring networks.

According to [1], SDN brings a lot of positive new possibilities for network
management, but also a new set of threats. To introduce the SDN concept in
safety critical systems, a thorough examination of how well it is possible to protect
the network against these new threats must be done. The purpose of this thesis
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2 Introduction

is to evaluate if software define networking could be used to mitigate the damage
of an intrusion that has already occurred.

1.2 Research Questions

In order to evaluate if software defined networking can be used to mitigate the
damage from an intrusion in a safety critical sensor network, three research ques-
tions will be answered.

• How can SDN be used to shape the network dynamically in a way that
improves overall security without introducing new significant threats?

• Given that a node is compromised, can the intrusion be contained by re-
defining the network around that node?

• Is it possible to build an SDN where the nodes are galvanically separated?

Galvanic isolation is necessary to fulfil the requirements of the Swedish Defence
Material Administration. The concept will be further explained in the theoretical
background.

1.3 Limitations

As the first research question is broadly stated several limitations have been made
to the project.

First of all, no security measures to avoid an outside attacker from entering the
network will be taken. In other words, solutions such as cryptographic methods
to protect communication with an outside network and authentication of outside
hosts will not be covered. These solutions are considered to be independent of
whether the implemented network is an SDN or not.

Second, attack detection is not part of the scope. Only reacting to known
events will be considered. Although an intrusion detection system (IDS) is included
in the built network, it is solely for the purpose of showing how such a system can
be incorporated into the architecture. The configuration and dependability of the
IDS in particular is not of interest as a different IDS most probably would be
implemented in production.

Third, when implementing the test network, it will focus on the method for
isolating nodes. Other aspects, e.g. redundant controllers and switches, which
most probably would be necessary in a production grade network, will be left out.
This is because of time limitations and that the concepts are trivial and would
not add any real value to the thesis result. Instead, a discussion of outcomes if
redundant switches and routers are added is held in the discussion chapter.

Finally, only the configuration of the physical machines is of interest. In pro-
duction most processing units would likely run a number of virtual machines or
containers. To limit the scope of the project, and as there is no need to design the
virtual environment, these are not included. However, the solution must enable
connecting the virtual environments to the network.
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1.4 Methodology

Before any practical implementation of a network, a thorough literature review
will be conducted. The scope will be narrowed down and a small proof of concept
network will be implemented. As the first research question, How can SDN be
used to shape the network dynamically in a way that improves overall security
without introducing new significant threats?, has a very broad scope a large part
of the analysis will be done in the discussion. The other two research questions
will be practically tested, although the isolation of nodes requires a little more
theoretical discussion. Conclusions will be drawn based on the obtained results
and the theoretical analysis.

1.5 Related Work

Although different versions of SDN or related technologies has existed for decades,
the amount of research was limited before the invention of OpenFlow. After Open-
flow was created and released, the interest for SDN rose and the amount of research
increased.

In [2], it shows a feasible attack on how to perform a Denial of Service attack
on the control plane of an SDN and also a resource consumption attack on the
data plane. This demonstrates the increased attack surface of an SDN compared
to a traditional network, and the importance of protecting the network from these
new attacks.

In [3], more attacks that are possible to execute on some of the more common
controllers are shown. It is also discussed how attacks that can be performed and
stopped in traditional networks, may not be stopped the same way in an SDN.
This is because the protection mechanisms against some of the attacks rely on a
switch’s intelligence. This intelligence does not exist in a software defined network,
where a switch simply is a forwarding device and has no intelligence.

Attempts have been made to create dependable architectures for software de-
fined networks. Examples of such architecture include OrchSec and AutoSec. In
[4] [5], OrchSec is presented and is shown as an orchestration based solution involv-
ing a monitor where the monitor informs the orchestrator of irregularities, which
in turn updates the controller. In [6], the functioning of AutoSec is presented
and shows that it should provide encryption and be able to isolate and contain
intrusions. However, information about the two projects is sparse and there seems
to be no publicly available implementation of either.

When looking at other possibilities than local networks to use in organisations
with high security standard, [7] examines and analyses if cloud infrastructure could
be trusted enough to be utilised in a military environment

1.6 Disposition

In the first chapter, a short introduction and motivation for the thesis has been
provided. Chapter two will lay a theoretical foundation and cover topics such as
how SDN works, security aspects and how said aspects can be evaluated. It will
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also introduce the applications used for the proof of concept network. The third
chapter lays out the architecture for the implementation and the fourth chapter
describes the steps taken to set up the network. In the fifth chapter the method
of testing and the results are disclosed. The sixth chapter is the discussion and
includes the theoretical analysis of how secure an SDN can be made. In the
seventh, final chapter conclusions are drawn and the research questions answered.



Chapter2
Theoretical Background

This chapter will introduce some techniques and concepts that are either used in
or linked to the work of this thesis. A deeper introduction is given for the central
parts. Other techniques are briefly explained to get a grasp of the concept and a
theoretical background for the area.

The first section introduces software defined networks, and presents what they
are and how they works. As most aspects are highly intertwined, a brief introduc-
tion will be given first. More technical explanations will be given later on for the
specific applications used. The second section covers security aspects, both attack
vectors towards SDN and STRIDE, a threat modelling tool. Galvanic isolation
will also be covered in the second section as it is fundamental for the security of
the network in the given setting. The third section covers the components of the
network we built for testing purposes.

2.1 Definition of Software Defined Networks

There is no universally accepted definition of SDN as there are many different tech-
nologies which share some of the aspects. This section will describe the definition
and characteristics used in this thesis.

2.1.1 Characteristics of Software Defined Networks

According to [1], there are four characteristics defining SDN. The four character-
istics will be presented and explained in this section.

Separation of the Control and Data Planes

In a traditional network control messages are exchanged on the same network as
data traffic. According to [1], in an SDN, the control and data traffic is normally
placed in different networks. The separation can be achieved either by virtualisa-
tion, for instance VLAN, or by physical separation.

Figure 2.1 shows a comparison between a traditional network and a software
defined network architecture. Looking at the SDN architecture, control plane
communication can be isolated between the infrastructure layer and the control
layer. Data plane communication take place on the infrastructure layer.

5
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.

Figure 2.1: Illustration of the SDN architecture in relation to the
traditional scheme.

Flow Based Forwarding Decisions

Another defining function of an SDN is the rules defining how the switches should
react to incoming packets. In one SDN implementation, each switch in the network
will have their own flow table with entries given to them by the controller, as it
is explained in [8]. A flow table entry contains packet matching, actions and
counters. The packet matching defines for what packets the actions should be
applied to. The actions define how the packet should be handled, such as how it
should be forwarded, if it should be dropped or forwarded to another flow table
for further processing. The counters exists for the controller to gather statistics,
and make decisions based on the counter values. The main difference compared
to a traditional network is that forwarding is based on source, destination and
additional parameters such as load balancing, rather than on a jump to jump
basis.

Abstracted Control Logic

[8] also points out how SDN separates the control logic, deciding if and where to
forward packets, from the act of forwarding packets. Some implementations, such
as OpenFlow, allows the control logic to be placed in a different device. Other
implementations, such as ForCES, keeps the control logic in the same device as
packet forwarding while still abstracting the logic from the forwarding.

Abstracting the control logic allows for more modularity, and the same con-
troller can be used for several forwarding devices. Furthermore, abstracting the
control logic facilitates programming the network through network applications
as they are provided a common interface. Reconfiguration also becomes easier
as changes to the network does not have to be implemented separately in every
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affected forwarding device.

Programmable Through Software Applications

The last characteristic in an SDN that [8] mentions is how the network is pro-
grammable. The controller in a network has basic functionality for controlling a
network. In order to improve upon it, it is possible to integrate the controller
with software applications. This opens up for more network functions, e.g. more
complex live monitoring, network intrusion detection systems and load balancing
applications. By providing an API for the controller, it is possible to have the
controller react to network events captured by the applications.

2.1.2 Components of Software Defined Networks

[1] splits an SDN into different separate components, and defines their respective
responsibilities. Only the major components are mentioned here, as the other
minor components are tied to other use cases where SDN can be utilised, but is
not tied to this thesis work.

Southbound Interfaces

According to [9], a southbound interface provides a means of communication be-
tween the forwarding device and the controller. There are several available pro-
tocols for the southbound interface, such as ForCES and Openflow. However,
Openflow has been able to gather a lot of attention in recent years and could
be considered the standard protocol for southbound communication. The proto-
col used for the southbound interface has to be compatible with the forwarding
device, so that the forwarding device can decode the instructions sent from the
controller.

Hardware Infrastructure

The physical infrastructure of an SDN resembles the infrastructure of a traditional
network. It can include components such as switches, routers and middleboxes.
However, as explained in [10], the hardware has to be compatible with necessary
SDN protocols. For instance, a switch in a network which uses OpenFlow as
its southbound protocol has to be able to process OpenFlow packages and act
accordingly. Many switches that support the Openflow protocol does also support
normal routing, and is therefore called a hybrid switch.

Another crucial difference between an SDN switch and a traditional switch is
that the SDN switch is a dedicated packet forwarding device. While a traditional
switch sometimes has a lot of extra functionality, such as storm control or QoS
applications, an SDN switch normally does not. These functionalities can instead
be implemented through network applications and does not have to be located in
the same physical machine as the switch.
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Network Virtualisation

SDN can be used to provide cloud Infrastructure-as-a-Service, as explained in [8].
Instead of having a physical machine correspond to a single host it is possible to
run several virtual machines on one physical machine. As these virtual machines
may vary in number it is preferable for the network to be dynamically adaptable
so that virtual machines may be added or removed without the need to manually
reconfigure the network. Network virtualisation is the virtualisation of not only
the hosts but also the network infrastructure, as

Controllers

The controller is in [8] referred to as the network operating system. It enforces
the rules for the network topology by updating the forwarding devices over the
south bound interface. Furthermore, it is often possible to have applications, such
as an intrusion detection system, send updates to the controller which in turn
updates the network. While SDN normally provide centralised control logic it is
not necessary for the controllers to be physically centralised. It is possible to have
different controllers for different parts of the network.

Northbound Interfaces

[8] explains the northbound interface as the interface between the controller and
the network applications. As opposed to the case with the southbound interface
there is not a standard implementation of the northbound interfaces. Rather
each controller implementation defines its own northbound interface. Furthermore,
different types of applications may have different requirements on the northbound
interface. This makes standardisation more difficult and could result in a set of
different APIs emerging for different types of applications.

Network Applications

[1] shows how applications can be implemented as a part of the SDN. Most of these
focus (as off 2015) on traffic engineering, security and dependability, debugging,
verification or measurement and monitoring. Some are also specific for data centres
or wireless and mobile networks.

2.2 Security in SDN networks

Although SDN are exposed to new threats compared to a more traditional con-
figuration, it has made some aspects of network security easier to enforce, as it
is reasoned about in [1]. For instance, SDN can implement firewall functionality
and access control, making policy enforcement easier. Traditional networks often
lack the capability to automatically respond to network events. SDN, on the other
hand, can, through the integration of network applications, reconfigure the net-
work dynamically. Although SDN can be used to decrease the threat from some
types of attacks, new threats are introduced, which is discussed in [11]. While
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some see the great possibilities of enforcing network security through SDN, others
believe it is a much harder challenge to make a secure SDN than it is to make a
secure traditional network.

2.2.1 Attack Vectors against SDN

In [12], seven attack vectors for software defined networks are presented. These
attack vectors are not specific to an implementation of the southbound interface,
which means that they are relevant for both OpenFlow and other southbound
protocols. Some of them apply also to the traditional scheme, but could become
more severe due to the centralisation of the control logic.

Forged Traffic Flows

A forged traffic flow is a flow entry installed on a forwarding device that does not
belong there. Forged traffic flows can be caused either by a faulty device or by
a malicious user. Depending on the type of forged flow, it can either consume
resources of the network link, tap into the network communication or drop impor-
tant traffic. No matter if it is a forwarding or drop flow entry, it is sure to disrupt
the functionality of the network and is often used in Denial of Service attacks.

Attacks on Vulnerabilities in Switches

Attacks on vulnerabilities in switches have four main purposes: to drop, slow
down, clone or deviate packets, as discussed in [12]. In [13], three types of attacks
are discussed: flow rule flooding, switch firmware abuse, and control message ma-
nipulation. In the case of flow rule flooding the issue can be either contradictory
rules or that the flow table is filled up by a large number of flows. Switch firmware
abuse is concerned with exploiting limitations in certain switch models. Finally,
control plane manipulation re-configures the data plane, either by removing al-
ready existing flows or adding new ones to a switch’s flow table.

Attacks on Control Plane Communications

The control plane connects the SDN enabled switches to the controllers. In a
basic set-up, a single controller can be connected to a single switch using a normal
Ethernet cable. According to [14], the connection has been shown to be as reliable
as the internal process in a traditional switch. However, according to [12], the
link between the switch and the controller is not necessarily secure and connection
must be sufficiently encrypted. Bailey and Stuart suggest that the connection
between the controller and the switch can be secured using either certificates or
MACsec.

Attacks on Vulnerabilities in Controllers

While a single controller is sufficient to control a small network, [11] discusses
the negative aspects of having it as a single point of failure. According to [12],
attacks on vulnerabilities in controllers are likely to be the most severe threats to
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software defined networks. A malicious application in a controller could do a lot
of damage as it has access to the entire network, or at least a considerable part of
it. An attacker with control over the controller can both gain access to valuable
information by redirecting a flow and/or limit the functionality of the system.

Another issue proposed by [4], is that the control and monitoring function-
alities are not necessarily decoupled in software defined networks. This reduces
performance of the controllers as they have to simultaneously monitor traffic and
send control messages to the network switches, which could make it easier for an
attacker to overload the controller. Furthermore, to protect against some attacks,
e.g. DDOS, it is desirable to have more information than what is available from the
control traffic. OpenFlow controllers can provide flow metrics, but not per packet
metrics, which is why a separate monitoring service must be used to discover these
attacks.

Improper level of Trust

To ensure trust between the controller and the applications it is necessary to have
reliable mechanisms in place. Traditionally different mechanisms, like passwords
and digital certificates, has been used to ensure trust between applications and
between network devices. Too little trust between the controller and an application
would limit the functionality of the system, while too much trust would make it
easy for an attacker to install his own applications.

Attacks on Vulnerabilities in Administrative Stations

Vulnerabilities in administrative stations are not specific for software defined net-
works, they exist also in the traditional scheme. However, if the administrative
station is running the controller software, far more damage can be done to the
network compared to a normal network.

Lack of Trusted Resources for Forensics and Remediation

Resources for forensics and remediation, such as logs and traces, can be very useful
for analysing network problems. However, they are only useful if their correctness
can be assured.

2.2.2 Improving the Security of SDN Components

This section presents possible methods on how to secure an SDN against the
above mentioned attack threats. Some methods are more theoretical and practical
implementations does not yet exist, but might be implemented in the future. All
subsections below are discussed in [12], who argues that these methods are all valid
protection mechanisms from attacks on an SDN.

Replication

Replication of controller software is a good counter measure to forged traffic flows
and attacks on vulnerabilities in controllers. It also helps with improper trust
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between controllers and applications, and improves resources for forensic analysis.
By replicating the controllers and applications, so that there are several instances
of them, an error is less likely to be detrimental to the network. If one instance is
faulty or compromised it can be discovered by comparing it to the other instances
that are running. Furthermore, multiple instances removes single point of failure
errors. The biggest shortcoming of this method is the performance loss by having
to run multiple instances of the same software. Although there is an implemen-
tation for support for multiple controllers in Openflow, it only supports backup
functionality. Comparing flow entries from different controllers is not yet possible,
which makes the replication of controller software a future solution.

Diversity

While replication of the controllers limit some threats to the network, a vulnera-
bility in one controller is likely to be present in all identical copies of the device.
The same goes for network applications and other devices. By using both redun-
dant and diverse software and hardware, vulnerabilities, such as implementation
errors in the controller software, become less severe. Diversity can be applied to
decrease the threat from attacks on control plane communications, vulnerabili-
ties in controllers, vulnerabilities in switches, and vulnerabilities in administrative
stations.

Self-healing

In case the network is compromised it could be possible to restore the system
by replacing the affected components. Depending on the characteristics of the
component this could be made dynamically. When a component is replaced it
should not be replaced by an exact copy of the original one, but rather a different
or modified one. The reason behind diversity in the recovery is to prevent the
exact same attack being repeated.

Dynamic Device Association

In case a controller is compromised or faulty, the switches associated with it should
be able to stop listening to that controller. In case there are several available con-
trollers, the switches could associate with another controller instead. Furthermore,
the associations have to be secure which could be accomplished by threshold cryp-
tography and authentication. This is called dynamic device association and could
help prevent attacks on control plane communications, and attacks on vulnerabil-
ities in controllers.

Trust between Devices and Controllers

In [12], two different approaches to ensure proper trust between switches and
controllers are proposed. One option is to assume all devices to be trustworthy
until that trust is abused. The devices behaviour is monitored and a threshold
implemented for how much abnormal behaviour is tolerated. If a device does not
behave, it is quarantined by the other devices .
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The other option is white listing. While not suitable for a larger network, and
not very flexible, it could be sufficient for a smaller network.

Trust between Applications and Controllers Software

Autonomic trust management can be used to ensure a proper level of trust be-
tween the controller and the network applications. Using a model that supports
autonomic trust makes it possible to adapt the trust level based on run-time per-
formance. The level of trust in the model suggested in [15] is based on several
different quality attributes, such as confidentiality, integrity and availability.

Security Domains

Different domains in the network may have different requirements on the security
level. For instance, the requirements on the domain containing the controllers may
be higher than the host to host communications. Furthermore, in a larger network
containing several tenants the tenants may have different security requirements
and, most likely, expect other tenants to have no interference in their part of
the network. Sandboxing and virtualisation are techniques which may be used
for security domains in SDN controllers. The goal is to allow only the minimal
necessary communication between domains.

Secure Components

Secure components is a necessity for a secure system. In [12], the author argues
that a trusted computing base (TCB) should be used to store sensitive data, such
as cryptographic keys. A TCB is defined in [16] as a small amount of software and
hardware that security depends on and is separated from the other parts of the
system.

Software Updates and Patching

Software updates and patching should be used to remedy known issues in the
switches, controllers, administrative stations and other devices in the network. It
is therefore important to have efficient and secure means for installing updates,
without making these paths available to attackers.

2.2.3 Using SDN to improve Network Security

The main benefits of using SDN is the ability to dynamically reconfigure the
network, and the improved ability to gather and aggregate network information
from different parts of the network. While many of the methods mentioned in this
section are available also in traditional networks, the ability to efficiently gather
information could make them more effective in SDN.
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Access Control

SDN can be used to enforce access control, thus preventing an attacker from reach-
ing critical areas of a network. The access control can be implemented on ports
and/or VLANs, depending on the use case.

Several network programming languages, such as FML, Procera and Nettle,
can be used to implement access control. OpenFlow controllers handle access
control using access control lists (ACL). The ACLs define which IP and MAC
addresses that may be used to access a given part of the network. There are also
network applications, such as FlowNAC and MAPPER, which can be used.

Attack Detection

Attack detection is an important aspect of securing software defined networks.
Although monitoring and intrusion detection systems are not exclusive to SDN,
reacting to threats is aided by the holistic network view. Events in different parts
of the network can be connected and reported to the controller, which can take
appropriate action.

With the possibility of gathering statistics from flows in forwarding devices,
new methods of detecting intrusions and attacks can be implemented. As shown
in [17], it is possible to compare the rate between incoming and outgoing traffic
for a set of flows, and by doing so detect DDoS attacks.

Firewall and IPS

Using OpenFlow, it is possible to implement firewall functionality in the switches.
Stateful edge firewalls, that is firewalls which keep track of open connections and
only allows known traffic, can be implemented directly in the forwarding devices.
Furthermore, as the controller can be chosen to be as powerful as the network archi-
tect desires, it is possible to chose a more capable machine and implement firewall
applications in the controller. Another option is placing the firewall application
in a dedicated machine and connect it to the controller through the northbound
interface, which is one of the methods explained in [14].

Forensics Analysis

Forensic analysis is aided by the possibility to securely store traces of network
activity, for example by logging, consistent reporting and event correlation. The
analysis strives to find the root cause of any network disturbances. Logging and
forensic analysis is necessary also in traditional networks. However, SDN may
make it easier to gather and aggregate information from diverse parts of the net-
work, since the controller can maintain a full view of the network topology and the
switches are keeping statistics on the amount of data passing through each flow
entry.
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Intrusion Tolerance

Intrusion tolerance is measures taken to keep the system operational despite intru-
sions in the network. As SDN can be used to dynamically reconfigure the network
compromised hosts can be isolated.

Packet Dropping

Packet dropping is, as the name suggests, to let forwarding devices drop packets
based on predefined rules.The rules can be either security rules or based on load
conditions. An example use of packet dropping is to mitigate DoS attacks.

Separation of the Control Plane Communications

In a traditional network both data traffic, for instance traffic sent between ap-
plications on two different hosts, and control traffic, traffic containing network
information sent between forwarding devices, are often sent on the same network.
SDN can separate the control traffic making it more difficult for an intruder to
tamper with it.

Rate limiting can be used to decrease the communication speed between the
packet forwarding devices and the controller. It is implemented to prevent DoS
attacks on the control plane.

Shorter Timeouts

An SDN switch keeps entries in its forwarding tables for a limited time. Reducing
that time it follows that the switch has to ask the controller how to handle packets
more often. However, longer intervals between timeouts could make the network
more vulnerable to certain types of attacks. For instance, an attacker could at-
tempt to gain access to flows by making the controller install rules which divert
traffic. The attacker only has access to the flows as long as the rules diverting
traffic is in place. Therefore a shorter timeout would mean that the attacker has
to create more forged packets to maintain the path.

2.2.4 Galvanic Isolation

When a current is transported over a twisted pair cable an electromagnetic field
is created around the cable. The field can be noticeable from a large distance and
by recording the signal it can be possible to decode the signal transported over
the cable. Furthermore, the electromagnetic field can affect metallic objects, such
as water pipes, which in turn can carry the signal further. Galvanic isolation,
in this context, means that there should be no current travelling between the
communicating devices. If there is no current no electromagnetic field will be
generated.

To avoid exposing the signals optic fibre is often used. As the signals are
transferred in the form of light there is no current and no electromagnetic field. In
[18], it is explained that he Swedish Armed Forces require communication without
approved protection of the signals to be transferred over optical fibre.
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2.2.5 STRIDE

[19] explains that STRIDE is a security threat model originally developed by Kohn-
felder and Garg for Microsoft. It is intended to be used in the design process so that
potential threats to a system can be spotted early on. STRIDE is an abbreviation
for the six suggested threat categories:

• Spoofing of user identity

• Tampering with data

• Repudiability

• Information disclosure

• Denial of Service

• Elevation of privilege

Spoofing means pretending to be someone you are not. This category can
be expanded to include also other types of spoofing, such as pretending to be the
controller or modifying IP addresses.

Tampering is a violation of the integrity property. It is the modification of
data and is not necessarily dependent on read access.

Repudiability is about not being able to hold a user accountable for its
actions. Non-repudiation means that the action can not be denied and makes it
easier to take action against the undesirable act.

Information disclosure is a violation of the confidentiality property. Data
can be read from files, but meta data, such as type of traffic and load, can also be
of interest.

Denial of service is a violation of the availability property. Most often it
refers to attacks where a unit on the network is overloaded with traffic which makes
it unavailable to other users.

Elevation of privilege is when a user gains more access than intended. It
violates access control and authentication.

2.3 Components of the prototype Network

This section will cover the software components used to setup the network.

2.3.1 Controller - Ryu

Ryu is an open source SDN controller, written in Python. It is under active
development and is one of the more popular SDN controllers in use today. It
has support for the latest Openflow version 1.5, and also the previous releases of
Openflow.

Ryu is built with modularity in mind. Modularity in this context means that
Ryu takes code modules as input when started and executes the code from these
modules. This gives flexibility when running Ryu and it makes it easy to modify
the behaviour by loading another set of code modules.
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In addition to the code modules that Ryu uses, it also handles a lot of func-
tionality under the hood. Setting up new communication channels with forwarding
devices, updating the current network topology are all automatically done by Ryu
and does not need to be implemented by hand by the network administrator.

2.3.2 Southbound Protocol - OpenFlow

Openflow is the backbone for communication between the controller and forward-
ing devices in a software defined network. This section will explain the idea behind
it and its internal design.

About

Openflow was developed at Stanford University in 2008 as an answer to the ques-
tion; As researchers, how can we run experiments in our campus networks?. In
2008, there was no practical way to test new network protocols in a real production
network, without disturbing the real traffic. Not being able to properly test new
protocols was a sure way to decrease innovation, and [20] describes that scenario
as the basis for why Openflow was developed.

Protocol Functionality Overview

Openflow works by modifying a switch’s flow tables, which contains flow entries. A
flow entry is in this context a rule for how a switch should process packets, and can
be read more about in the upcoming section. With Openflow, researchers would
be able to create and control their own flows specified for their research, deciding
the route and how the network packets should be processed. The normal data
traffic would be handled as normal, isolated from the research experiment. This
method enabled researchers to test new functions and protocols without disturbing
the normal traffic, other than increasing the workload for the routers and switches.

The flow table of a Openflow switch contains all flows for a network. A flow in
this context means how some specific traffic is to be processed in the network, and
can be split into three parts; matching, actions and statistics. Figure 2.2 shows
how the flow tables are used for an incoming packet to a switch.

Matching The match of a flow decides what traffic the flow is valid for. It
is built from fields and values of network protocol headers. Different header fields
can be combined to match specific communication, or be broadly defined to match
more traffic. As an example, a flow match can be all traffic to an IP address, or all
traffic on the same VLAN with a specific MAC destination address. The ability
to build very specific matches makes it practical to create a flow that only will
match on the exact traffic that is defined.

Action The action part of a flow decides how the flow is to be processed when
the match for a flow is triggered. In Openflow 1.3 and forward, there are four
actions that must be implemented by every switch that supports Openflow, and
more optional actions that are normally implemented too. The four actions that
are required are output, send to controller, drop and group.

The output action specifies what port the incoming packet should be forwarded
out to, much like how a normal layer 2 switch functions. It is possible to send out
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Figure 2.2: An overview of the Openflow pipeline, which shows how
incoming packets are handled by the switch.

a specific port or flood the packet, meaning that it is sent out every port except
the port it came from.

The send to controller action encapsulates the incoming packet with a ID and
sends it to the controller entity, which decodes it and handles how to process the
packet. This action is mostly used for the first incoming packet with no matching
flow, so the controller can decide how to handle this new traffic, and add a new
flow to the switch’s flow table so it does not have to ask the controller what to do
with further packets of the same match.

The drop action simply drops the incoming packet and does not forward it to
anyone. This action is often used as a security measure or for limiting broadcast
messages in a big network.

The group action. This sends the packet to be processed by a specific group
entry. A group entry is defined by four parts:

• Group identifier

• Group type

• Counters

• Action buckets

The main use of groups in Openflow is to gather logic in groups and not
have it in separate flow entries. This simplifies both development for network
administrators and makes it easier to maintain the flow tables

One of the more common actions that are not mandatory to implement is the
normal action. This tells the switch to handle the packet as a legacy forwarding
device would. This action is how a hybrid switch functions. If it is a layer two
switch, normal switch behaviour is expected. If the forwarding device is a router,
then the packet is processed as it would be by a legacy router.
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Statistics The last part of a flow are the statistics. This field contains counters
for the number of packets and the amount of bytes that has gone through the flow.
It does also contain timers for when the flow was added to the flow table and when
a packet last was matched to it. The statistics help building network functionality,
e.g. load balancing and removing inactive flows.

2.3.3 Switch - Open vSwitch

About

Open vSwitch is a virtual multi layer switch. It behaves like a normal physical
switch, except that it is implemented in software. Open vSwitch is capable of
switching between both virtual network interfaces and physical ones, making it
suitable to route both between virtual machines and physical machines, as ex-
plained in [21]. Open vSwitch does support the Openflow protocol, which makes
it suitable for software defined networks.

How it works

Open vSwitch makes use of the integrated Linux network bridge when run on
a Linux system. A network bridge is a connection between two or more local
networks. From the participants perspective the connected networks appear to be
the same. Utilities, such as traceroute, does not show the bridge as it operates on
layer 2 and traffic is forwarded transparently. Open vSwitch also supports layer
3 routing. This is a truth with modification, since Open vSwitch relies on layer 3
routing built into the Linux kernel. To be able to perform layer 3 routing, it must
be enabled in the underlying kernel, as explained in [22].

Openflow support

As mentioned in the above subsection, Open vSwitch supports Openflow. To
make configurations and show information about Openflow, the tool ovs-ofctl can
be used. This tool makes it possible to add new flow entries, show flow tables,
change which Openflow versions that are allowed and more. This tool provides an
easy way to quickly test a new setting of the network.

2.3.4 Intrusion Detection System - Snort

About

Snort is an intrusion detection system (IDS) which can be used to monitor and
find attacks in a network, but it can also be used for other purposes, as described
in [23]. When running as an IDS, Snort detects traffic that is not allowed and
alerts the system administrator or, in this case, the controller. Snort works by
analysing incoming packets and compares it to predefined rules. It also provides
the possibility to detect known attacks by comparing incoming packets’ data with
previously known attack patterns. It is possible to run Snort as a monitor service,
which only logs traffic and does not analyse it, or as an intrusion prevention system
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(IPS). The difference between the IDS and an IPS modes is whether Snort discards
the sent traffic or alerts the controller. Running it in IPS mode is only useful if
traffic has to pass through Snort to get to its destination. The monitor mode is
useful for testing purposes and to verify network configurations.

Placement and different modes

When analysing packets, Snort consumes resources. Depending on the rules con-
figured, it can either be an irrelevant amount or slow down a system a lot. This
requires a system administrator to balance performance against security. By choos-
ing the rule configurations smart, it is often possible to get good performance and
security, i.e. by just having rules customised for the specific service. The place-
ment for where to install Snort is also important. Possible placements and the
advantages and drawbacks for each placement are discussed in [24]. To install it
directly on a computer only allows Snort to analyse the traffic to and from that
computer. On the other hand, if it is installed on a dedicated server meant to just
run Snort, then all traffic to analyse must be mirrored to this dedicated server,
increasing the overall traffic in the network environment.

Usage with other applications

Snort is often used together with other applications. Together with a firewall, it
is possible to use Snort as a second layer of defence if the firewall would go down
or be poorly configured. To integrate Snort into an SDN, different modes are
supported. It can be directly connected to Ryu, as explained in [25]. It can also
be used as a stand alone application, depending on the use case.

It is explained in [25] explains how Ryu supports Snort through integration
using a Unix socket, and the application Pigrelay can be used if Ryu and Snort
run on different physical machines.

2.3.5 Media Converter and Optic Fiber

As described in [26], a media converter is a device that can convert a signal from
one medium to another. This makes it possible to use different media formats when
connecting a network, since the signals can be translated to a medium that each
network section can understand. In practice, it is often used to convert between
fiber optic signals and an copper medium, which is what a normal local network
utilizes for wiring.

Optic fiber is a medium which can be utilized for communication. It works
by having a transmitter send pulses of light through a fiber cable, which are read
by a decoder in the receiving end. The advantages of fiber optic communication
compared to copper cables, are speed and distance, which is shown in [27]. The
rate of data that fiber optic cable can put through is magnitudes bigger compared
to a normal twisted pair cable, and the distance on which is can send information
without repeaters is much further.
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Chapter3
Implementing an SDN

This section will show how a network was set up and configured to test our solution
for isolating nodes. The network will be a simple proof of concept and more
complex aspects will be saved for the discussion, as noted in the limitation section.

3.1 Architecture

The architecture of the physical network is as simple as it can be while still acting
as a proof that it is possible to isolate malicious hosts. The network consists of
three Intel NUCS and one Raspberry Pi. Two of the Intel NUCS acts as general
processing units, which would in a real life scenario have a dedicated task and
communicate with each other. One Intel NUC is configured to act as the switch of
the network, connecting all hosts with each other. The Raspberry Pi is dedicated
to run Ryu, the controller software. Figure 3.1 shows a figure of the network’s
topology.

Figure 3.1: Network architecture
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3.2 Software and Hardware Choices

3.2.1 Controller

The controller is one of the central parts of an SDN architecture. Since it is
involved with every decision made in a network, it is important to choose the right
software. While there are many implementations of controller software to choose
from, many are no longer maintained or suffer from lack of documentation. Many
of the controllers we examined did also not support version 1.3 of OpenFlow,
which is one of the most widespread releases, and the one used in this thesis.
The controllers that still are maintained and supports version 1.3 did roughly
provide the same functionality. While the performance of the controller is of big
importance in a real world scenario, where maximum throughput of packets and
a low latency for flow modifications are desired, this proof of concept network has
no need for that. While there exists benchmarks for controller software, as seen
in [28], these results were not taken into account for this thesis, since performance
not a factor in this experimental network. Instead, the decision for what controller
to use was based on documentation available and on what language to write the
controller functionality in. The controller software with the best documentation
was Ryu, and it is written in Python. A built in integration with the IPS Snort
also comes with Ryu.

3.2.2 Switch

The switch for the physical network have to support Openflow and have at min-
imum three ethernet ports to connect all components with each other. While
there are some production grade switches with support for Openflow and have a
sufficient number of ethernet ports, they cost several thousands of dollars. The
company Northbound Networks [29] has two Openflow switches meant for hobby
projects, and would work for this project. However, as the production is done in
small scale in Australia, and due to the time constraints of the project, acquir-
ing these switches were unfeasible. Instead, an Intel NUC7i7DNH was configured
with Open vSwitch installed and Rj45 to USB converters were added to get enough
ethernet ports onto the NUC. The performance of the Intel NUC together with
Open vSwitch can not match a real hardware switch, but as mentioned before,
the performance is not important for a proof of concept network, so it does not
matter.

3.2.3 Processing Units

The performance of the processing units in the network are not prioritized, since
no demanding processes will run on them. Two Intel NUC NBR running CentOS
are used as these are readily available. CentOS were chosen due to its similarity
to RHEL which is common in production environments.
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3.3 Installation and configuration

This section will cover the steps taken to set up the network.

3.3.1 General processing units

The computers that were to act as general processing units did not have any par-
ticular requirement for operating system, but centOS 7 is used by many production
grade system, which is why that was chosen. A fresh installation of centOS 7 were
installed on the computers. After installation, a static IP address were configured
on each of these. The IP address chosen were 192.168.1.98/24 and 192.168.1.99/24.
The software program iperf3 was shipped with the operating system, but hping
had to be downloaded manually.

3.3.2 Switch

The computer to act as a switch was one of the Intel NUCS. At first, the Raspberry
Pi was chosen to act as a switch but it quickly showed that it was much faster
to work on the Intel NUCS, since it had more powerful hardware, so the switch
hardware changed. For compatibility, Ubuntu was chosen for this NUC as the
operating system. While open vSwitch is compatible with more than Ubuntu, we
found the most information and guides on open vSwitch for Ubuntu. This NUC
were configured with 2 USB to rj45 adapters to allow all computers in the network
to connect to each other.

The Open vSwitch software was downloaded and installed. A network bridge
was created with the utility tool ovs-ctl. The command to run was

ovs−c t l add−br br0

This creates a network bridge that Open vSwitch can utilize. The interfaces
from the USB to RJ-45 adapters were added to this bridge with the command

ovs−c t l add−port br0 x

were x is the name of the interface. To utilize Snort later on, an internal port
named "snort0" was also added to the bridge with the following command.

ovs−c t l add−port br0 snort0 type=i n t e r n a l

The IP address of the network bridge was configured to 192.168.1.100 and all
interfaces on the network bridge were configured to not have an IP address, since
they are connected to the bridge. The network bridge was brought up with the
command

ip l i n k s e t br0 up

To configure open vSwitch to find the controller software, the command

ovs−v s c t l set−c o n t r o l l e r br0 tcp : 1 7 2 . 1 6 . 1 .X:6653

This configures open vSwitch to try to connect to that IP address and on what
port the controller software is listening on. The command
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ovs−v s c t l s e t c o n t r o l l e r br0 connect ion−mode=out−of−band

was executed after, which tells open vSwitch that the controller resides on a dif-
ferent network than the subnet the Open vSwitch resides in.

Configuring TLS

To not have the controller and switch communicate in clear text, a TLS connection
was setup between the two nodes. The utility tool ovs-pki was utilized to create
keys and certificates, on the same computer that has open vSwitch installed. To
create a Public Key infrastructure, the command

ovs−pki i n i t

was executed. This creates certificate authority files for both the controller and
switch. cacert.pem is the root certificate for the controller certificate authority
and cakey.pem is the private key associated with the root certificate. Analogous
files are created for the switch. These files are created in the directory controllerca
and switchca, respectively. Next step was to create a private key and a certificate
for the controller, done with the command

ovs−pki req+s i gn c t l c o n t r o l l e r

which creates a public key and a certificate for the controller entity. The con-
troller’s private key and the certificate authority file were copied to the raspberry
Pi, running Ryu, with scp.

A private key and a certificate was also created for the switch, with the com-
mand

ovs−pki req+s i gn sc switch

To get Ryu and open vSwitch to utilize these certificates when estblising a con-
nection, the command

ovs−v s c t l set−s s l / e t c / openvswitch / sc−pr ivkey . pem
/ etc / openvswitch / sc−c e r t . pem / etc / openvswitch / ca c e r t . pem

was executed. This command specifies the certificate for the switch and its private
key, and also the certificate authority that verifies the switch.

To make the connection between open vSwitch and Ryu use TLS, the command

ovs−v s c t l set−c o n t r o l l e r br0 s s l : 1 7 2 . 1 6 . 1 . 9 9 : 6 6 5 3

was executed. To start the controller with TLS, the keys and certificate must be
specified as with this command

ryu−manager −−c t l−pr ivkey c t l−pr ivkey . pem \
−−c t l−c e r t c t l−c e r t . pem \
−−ca−c e r t s
/ usr /var / l i b / openvswitch / pki /
switchca / ca c e r t . pem \
−−verbose ModuleName . py
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After this command is executed, Ryu will connect to the switch and commu-
nicate over TLS instead of normal TCP/IP.

Verifying setup

The command

ovs−v s c t l show

was used to verify that open vSwitch had been configured right. A printout of the
command can be seen here:

c043847a-959e-4768-ad23-fffc87152080
Bridge "br0"

Controller "ssl:172.16.1.10:6653"
Port "enx58ef68b551ac"

Interface "enx58ef68b551ac"
Port "enx58ef68b55017"

Interface "enx58ef68b55017"
Port "br0"

Interface "br0"
type: internal

Port "snort0"
Interface "snort0"

type: internal
ovs_version: "2.11.1"

3.3.3 The controller entity

The controller was chosen to run on the Raspberry Pi. After a fresh install of
Raspberrian OS, the Raspberry Pi was configured with the IP-address 172.16.1.99.
The software Ryu was downloaded and installed. The code module with the
isolation method was also copied to the Pi over scp, since it was developed on
another computer.

3.3.4 Installing and configuring Snort

Snort was installed on the same computer as Open vSwitch, the Intel NUC. To
allow snort to listen to all traffic on the data plane was mirrored to the "snort0"
port. Snort was configured to listen to the port "snort0". A rule that does not
allow ICMP echo replies was added to the rule set that Snort utilizes to determine
what traffic is allowed. To send the Snort alerts to Ryu, the program Pigrelay was
used, which is recommended by the Ryu development team to send alerts to Ryu
when Snort is placed on a different computer.
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3.3.5 Connecting and starting

After all computers were setup and configured as described in the above section,
the network setup was connected. The open vSwitch software is started with the
command

ovs−c t l −−system−id=uuidgen s t a r t

After open vSwitch is started, the controller software is started on the Rasp-
berry pi with the command

/home/ pi / ryu/bin /ryu−manager −−verbose ModuleName . py

where ModuleName.py is the module we have developed to isolate nodes. The
verbose option will print out network events and is used for debugging the network.
After a short time, Ryu will confirm that a connection is established and prints
out information about the connection to the standard output.
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Testing - Methodology and Results

4.1 Methodology

The following sections will describe how each of the research questions have been
evaluated and the motivation behind it. The first question will be answered
through a theoretical analysis. The second and third question will be answered by
tests conducted on the physical set up of a network and be reasoned about in the
discussion chapter.

4.1.1 Network Security

The first research question, How can SDN be used to shape the network dynam-
ically in a way that improves overall security without introducing new significant
threats?, is answered in the discussion based on the theoretical background. A
direct comparison to a traditional network is not possible to perform, since an
SDN has a different attack vector than a traditional network. Some overlap of
the attack vectors does exist and in the discussion we will reason wether an SDN
are more protected against these overlaps. The attacks that only are possible to
perform on an SDN will be discussed wether they are a significant threat or not.
This will provide a complete theoretical analysis of the system and should answer
the question.

4.1.2 Isolation of Nodes

The second research question, Given that a node is compromised, can the intrusion
be contained by redefining the network around that node?, will mainly be tested
using the physical set up. The isolation is tested in two different ways.

The first method is attempting to send a packet, which is forbidden by the con-
troller, through the switch. This typ of illegal packet should be instantly blocked
and never reach the destination. The second method is blocking packets through
the intrusion detection system, Snort. A rule forbidding ICMP traffic will be added
to Snort. Ping will then be used between the two processing units. As the packets
are not considered illegal when first sent, a few packages should be allowed to pass
before the switch flow table is updated to block all traffic from the hosts sending
ICMP traffic.

27
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Hardware vulnerabilities will be dependent on the hardware the network is
implemented on. As the hardware used in possible future implementations will
differ from the hardware used in this thesis hardware vulnerabilities will not be
evaluated.

4.1.3 Galvanic Isolation

The third research question, Is it possible to build an SDN where the nodes are
galvanically separated?, will be evaluated in two steps. First the twisted pair cable
between one of the processing units and the switch will be replaced with two media
converters and an optical fiber. The fiber optic cable has been previously tested
and is known to galvanically isolate nodes its connected to, since it is based on
optics and not current. The reason behind the test is to show that the media
converters become transparent units in the network and do not interfere with data
plane communications.

The second step is to replace the connection between the node running Open
vSwitch and the traditional switch with media converters and an optical fiber.
This is done to show that the media converters do not interfer with control plane
communications. The same tests as for isolation of nodes will be conducted for
galvanic isolation. This is done to see if the media converters slow down the system
giving an attacker more time to send malicious traffic.

Figure 4.1: Galvanic isolation of the controller using optical fiber
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4.1.4 Method

To perform the testing in practice the tool hping3 was used. The following steps
were taken:

• Legal packets were sent from processing unit A to processing unit B. The
packets used were TCP packets sent to and from port 5001, which the
controller allows.

• Illegal packets were sent from processing unit A to processing unit B. The
packets used were TCP packets sent to port 6001 from port 5001, which the
controller does not allow.

• Legal packets were sent from processing unit A to processing unit B again,
this time to verify that A was blocked. Again TCP packets to and from
port 5001 were used.

• The system was restarted to clear all flows

• ICMP echo request with no payload data were sent from processing unit A
to processing unit B. These packages causes snort to alert the controller.

• The system was restarted to clear all flows

• ICMP echo request with 1400 byte payload data were sent from process-
ing unit A to processing unit B. These packages causes snort to alert the
controller.

4.2 Results

In this section the results from the testing are presented. They are separated into
the categories isolation with pre-defined rules and isolation with IDS, rather than
isolation and galvanic separation. This is done to facilitate comparision between
the cases.

4.2.1 Isolation with Pre-Defined Rules

To guarantee that the processing units not were blocked legal TCP packets were
sent from the processing unit with IP address 192.168.1.98 and source port 5001 to
the processing unit with IP address 192.168.1.99 and destination port 5001. This
was done using hping3. The flag –fast was set to achieve a packet transmission
rate of ten packets per second.

#hping3 −−f a s t −p 5001 −s 5001 −k 192 . 1 68 . 1 . 9 9

For all three cases, the packet loss was close to zero percent.
Once it had been established that the packets were transmitted correctly the

destination port was changed to 6001, which should cause the controller to block
the transmitting processing unit.

#hping3 −−f a s t −p 6001 −s 5001 −k 192 . 1 68 . 1 . 9 9



30 Testing - Methodology and Results

In all three cases all packages were blocked and the package loss 100 percent.
Finally the destination port was switched back to 5001. However, this time

the processing unit 192.168.1.98 was already blocked by the switch.

#hping3 −−f a s t −p 5001 −s 5001 −k 192 . 1 68 . 1 . 9 9

As expected, this resulted in a 100 percent package loss in all three cases.

4.2.2 Isolation with IDS

The tests involving ICMP packages were performed twice to get an indication
whether any conclusions about performance could be drawn from the results. As
can be seen from 4.1 and 4.2, no conclusions can be drawn as to how the media
converters affect response time. However, it is clear that some traffic will be passed
before snort has alerted the controller and the controller has updated the switch’s
flow table.

Attempt 1 Attempt 2
No Galvanic Isolation 10 12

Galvanic Isolation
between Switch and
Controller

8 16

Galvanic Isolation
between Switch and
Processing Unit

16 15

Table 4.1: Number of echo replies received before the processing
unit is isolated when 10 echo requests with no payload are sent
per second.
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Attempt 1 Attempt 2
No Galvanic Isolation 16 9

Galvanic Isolation
between Switch and
Controller

11 13

Galvanic Isolation
between Switch and
Processing Unit

9 14

Table 4.2: Number of echo replies received before the processing
unit is isolated when 10 echo requests with a payload of 1400
bytes are sent per second.
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Chapter5
Discussion

The network will be broken down into its vital components which will be evaluated
separately. While this results in some overlap it also makes it less likely that any
threat is forgotten. The vulnerabilities in each asset will be evaluated using the
STRIDE framework.

After the evaluation is completed the applicability of the attack vectors sug-
gested by [12] will be discussed.

5.1 Evaluation of Implementation using STRIDE

Four major assets for the function of the network have been identified.

5.1.1 Controller

The controller is placed, together with the switch, in its own subnet. The sub-
net is separated from the data plane and is not connected to the Internet. The
communication between the switch and controller is over TLS with mutual au-
thentication, which means that both the controller and switch are authenticated
before connecting to each other. This would make it next to impossible to spoof
the controller, since spoofing the controller without a valid certificate would be
detected when the connection is established.

Directly tampering with the data of the control plane should be unachievable.
There is a possibility of indirect tampering by sending packets through the switch
to manipulate alerts sent to the controller. As access rights are based on MAC
address rather than physical port, it could be possible to spoof another processing
unit’s MAC address to make the controller exclude that unit from the network.

As the implementation only contains one controller and switch there should
be no issue with repudiability. A message to the controller is bound to come from
the previously authenticated switch. This logic holds even with many switches
and controllers, since they all will be authenticated before they can start to com-
municate. There is also no direct information disclosure from the controller. All
information sent to the switch is encrypted and can only be decrypted by the
switch that it is destined for.

Although our test method has not revealed it, it is possible that the network is
susceptible to a denial of service attack. If a lot of traffic that does not match any
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flow in the flow table is sent to the switch, the switch will send a corresponding
number of PACKET_IN to the controller. This means that an attacker who
sends packets that change over time, e.g. a new MAC destination address for each
packet, would fill up a switch’s flow table rather quick. When a switch’s flow table
is full and a new flow is to be added, the switch does not allow it and sends an
error message: OFPFMFC_ALL_TABLES_FULL, to the controller. Not being
able to add new flows means that traffic that does not already match any existing
flow entry can not be forwarded by the switch. In most scenarios, this is not a
problem since the normal traffic most likely already has their corresponding flow
entries installed in the flow table before the attack is executed. If the attack is
performed before the expected traffic has their corresponding flow entries installed
in the switch, as in just when the system starts, then the attack might succeed
to stop the expected traffic depending on the size of the flow table and how fast
the expected traffic starts when the system boots up. While traffic analysis can
be used to try to determine if a flow installation is valid or not, i.e by looking at
the rate of incoming flow entries, there is no way to guarantee that the analysis
will catch every attack attempt. False positives of fake flow entries are also a
consideration that would slow down the network performance, depending on how
the analysis is implemented.

When looking at escalation of privileges, it is not a consideration in the con-
troller software. The different privilege levels are rather on the computer running
Ryu, and then if the attacker can get root access or not. With root access, the
attacker can of course do more harm on the system. While it is not sure if Snort
or Open vSwitch can help an attacker get root access to the computer running the
controller software, we have not found any known attacks for this purpose.

5.1.2 Switch

As there is only one switch in the physical set up, the switch is necessary for the
operation of the network. It has one network interface to the control plane and
two to the data plane.

Since the switch is authenticated before connecting to Ryu, spoofing of the
switch is not a realistic scenario. With regards to the processing units in the
network, they only have one physical connection to the switch computer, which
makes spoofing of the switch most unlikely without physically changing the net-
work topology.

Although no know vulnerability has been found in the Linux bridge, there is
a risk of an unknown vulnerability in Open vSwitch or one of its dependencies. If
an attacker gained administrator privilege in the machine running Open vSwitch
packets could be modified before they were sent to the receiver. It would also be
a simple task to listen to all traffic on the network and send it to an application
of the attackers choice.. Although it would be difficult to know who had gained
access, the issue would be easy to locate since there only is one switch.

The testing of the set up has not revealed any susceptibility to DoS attacks
in Open vSwitch. However, if the switch would have to make many requests to
the controller it could temporarily slow down the processing of incoming packets,
as explained in the controller subsection. Furthermore, if an attacker got access
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to the the computer running OvS, they could configure existing flow entries and
add new ones, without communicating with Ryu. This would of course make it
possible to perform a DoS attack.

5.1.3 Snort

While Snort is not necessary for the network to be operational, the intrusion
detection system is necessary to detect attacks that can not be identified by a
single packet, e.g. a SYN flood.

Applying the STRIDE framework we find that spoofing of Snort makes little
sense. However, with root privileges it could be possible to install another IDS
and connect that to the controller, before Snort has connected to Ryu. The other
IDS could be configured to send alerts on normal traffic and therefore disturb the
networking functionality, depending on how Ryu is configured to handle alerts.
For this attack to succeed, the other IDS would need knowledge of what port Ryu
is listening on for a connection to Snort, and to connect to Ryu before the original
Snort instance does. To fulfill both these requirements are improbable and the
spoofing scenario of Snort is not feasible.

Tampering with the data, in this case the rules Snort apply for when to alert
the controller, is a more probable scenario than spoofing the Snort instance. This
would first require access to the computer running Snort and also authority to
modify the configuration file that Snort utilizes. While possible in theory by of
the system, it should be unfeasible in practice.

As there are no mechanism to ensure trust between Snort and the controller,
repudiability is limited. At the same time, like the case with the switch, there is
only one intrusion detection system located in one physical machine so an error
should be easily traced.

Access to the machine running Snort could reveal configuration files and logs.
What information that is leaked also depends on the content of the configuration
file. Some rules might require to specify what ports that are allowed, which an
attacker can make use of in further attack scenarios. This problem is easily solved
by only allowing an administrator get read access to the configuration file.

When looking at a DoS aspect, it is possible to overload Snort. Depending on
the amount of traffic and how extensive the configuration file is, Snort can easily
be overloaded. Theoretically, an attacker could start to send a huge amount of
traffic and hope that Snort’s resources are overloaded. When overloaded, Snort
will try to catch up while new traffic is buffered to be analyzed. While Snort is
busy analyzing the huge amount of new traffic, a new attack could be launched.
This new attack would not be discovered until snort has finished analyzed the old
traffic.

When looking at escalation of privileges, the same reasoning as before can be
made. If an attacker got access to an administrator account, more damage and
leaks can be done. From what we can find, Snort does not in any way help an
attacker to get higher access levels in the operative system.
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5.1.4 Processing Units

Out of the four listed assets the processing units can be considered less critical
than the other three. If one of the processing units would be compromised, and
the intrusion detected, the functionality of the cluster would decrease but it would
not prevent the system from functioning.

As has been described as an issue in the previous sections, spoofing of a pro-
cessing units IP address is possible. Spoofing could, in our implementation, be
used to block other nodes by sending traffic not allowed after taking their MAC
address. It could also be used to get access to the system again from a node that
is already blocked, by taking another MAC address which is allowed. This would
of course require the attacker to have knowledge of what MAC addresses that are
allowed, but it is a theoretically possible scenario.

With regards to tampering of data, it is difficult to conclude what data could
be affected. Most types of communication is limited between the processing units.
How a user could exploit the network and tamper with data depends on the ap-
plications on the processing units.

The issues regarding information disclosure are similar to the ones regarding
tampering with the data. As mentioned in previous sections there could be other
possibilities of revealing information, such as the IP addresses of the processing
units.

When looking at repudiability, there is a problem since no proof of authorship
is used in the system. Still, it is not really a problem for the system as a whole.
If an attack is detected, it does not matter if node A denies sending messages
sent or not. The focus should be to stop the attack and make sure it can not
happen again. To put effort into providing non-repudiation is the wrong way to
stop attacks from happening.

The processing units should be vulnerable to a DoS attack only if the IDS
is not properly configured, or a new DoS attack is discovered that Snort is not
configured to detect. There is also the case of spoofing a processing unit’s MAC
address and sending illegal traffic, which would in our implementation block the
real node.

An escalation of privileges could be an issue depending on the software running
on the processing units, which is not known beforehand. If different privilege levels
exists in the running software, then it is assumed that there are sufficient methods
to stop a lower privileged user to get access to information which require a higher
authorization level.

5.2 Looking at the Attack Vectors

Out of the seven attack vectors most have already been covered by the STRIDE
analysis. In the previous section we saw that forged traffic flows can cause problems
in all parts of the network.

As for attacks on vulnerabilities in controllers and switches the STRIDE anal-
ysis showed potential vulnerabilities in single devices. Some possible solutions are
replication and diversity to make the network more resilient, which is also ex-
plained in [12]. These possibilities will be covered in the next section, improving
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the network.
Attacks on control plane communications should difficult to achieve in practice

if the switch is configured correctly. In order to target the OpenFlow communi-
cation, access to the control network, which is physically separated from the data
plane, is necessary. If an attacker is able to gain access to the control plane network
they must first get access to the switch, which also should not be possible. The
switch should only function as a forwarding device and it should not be possible
to connect to potential management connections from the data plane.

The implementation lacks a method to ensure proper trust between all compo-
nents. The switch and controller is authenticated before establishing a connection,
so trust between the two parties is established. The processing units and Snort are
not authenticated before connecting, but could be implemented with certificates.

Some logs are produced by Snort. However, better logging should be imple-
mented if a similar set up were to be used. Logging all traffic and storing it helps
with detecting how intrusion and intrusion attempts were made, which can help
build a more secure system for future use.

5.3 Improving the Network

In this section possible improvements of the network will be discussed. The dis-
cussion will mostly focus on adding additional units to create redundancy, as
suggested in [12]. However, the placement of the IDS will also be discussed.

5.3.1 Adding Switches

The physical setup suffers from a lack of redundant switches. If the switch is
compromised or fail, all traffic on the network is compromised or interrupted. To
bypass this issue, it could be possible to add additional switches, as illustrated in
5.1. The intrusion detection system can either be moved to a different machine or
duplicated in all of the switches, see 6.5 Moving the IDS.

Inserting an additional switch has several complicating factors. First of all,
each PU should be directly connected to both switches, putting some restraint on
required ports. Second, to be able to isolate a compromised switch it would not
be sufficient to use the OpenFlow protocol. A compromised switch should not be
trusted to block itself from communicating. There are two feasible solutions to this
issue. One possibility is to block communication with the switch in all connected
nodes. This would require a message to be sent to all connected nodes when an
intrusion is detected, so that the affected nodes shut down their network interface
to the compromised switch. At the same time, this message would go through
the compromised switch which can just drop that message, so it is not a reliable
method. The other method is to cut the power to the switch. Since the switch is
considered compromised, it can not be a message that shuts it down since it can
be ignored by the switch. Manually cutting the power is the only way to guarantee
that the switch turns of.



38 Discussion

Figure 5.1: Adding a redundant switch

5.3.2 Adding Controllers

The physical set up lacks redundant controllers. Adding additional controllers
would improve the stability of the network. Adding one extra controller should
make it possible to determine if one of the controllers is faulty. By using three con-
trollers it should be possible to determine which controller is faulty. The reasoning
is based on employing the controllers with equal priority and using an oligarchy
decision model. That is, if a majority of the controllers push the same rule it
is determined to be a correct rule. If three controllers is used and one pushes a
different rule that controller should be investigated. As well as providing an error
check mechanism, more controllers also means that the system is more reliable. If
a connection to one controller is down, the switch can still utilize the others and
query them for flow entries. In a system with only one controller, the single con-
nection to one controller becomes a single point of failure, which is much undesired
in a safety critical system.

While simple in theory, using several controllers poses some practical chal-
lenges.

First, there could be synchronization problems for new flow entries. The switch
would have to wait until it has received at least a majority of the flows from the
controller. If there are a lot of requests to the controllers the responses could arrive
out of order. Even though the issue should be easily handled with a buffer, chances
are response times would deteriorate. How much of a problem a time increase on
new flow is depends on the system, but it should anyhow be known.

Second, the controllers must support the same Openflow protocol version.
While not a big problem, it does decrease the possible choices for controller soft-
ware, since different controllers support different Openflow versions.
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Figure 5.2: Adding two redundant controllers

5.3.3 Adding Processing Units

Adding additional processing units should improve the networks resiliency. If there
are two processing units and one goes down 50 percent of the network’s capacity
is lost. If there on the other hand are 20 processing units only 5 percent of the
capacity is lost when one goes down. By using a sufficient number of processing
units and implementing self-healing it could be possible to obtain not only graceful
degradation, but even automatically restore the network after an attack. At the
same time, adding more processing nodes does not automatically increase the
capacity of the system if a node goes down. Depending on what type of system
and program running, everything can break as soon as one node goes down, if
the system is reliant on that node. A method to redistribute the work done by a
node that goes down and connect it to the rest of the system is needed to not lose
capacity, but to examine how that works is outside the scope of this thesis.

5.3.4 Moving the IDS

In the implementation of the network the intrusion detection system, Snort, has
been placed in the same machine as the switch. However, this is only one of several
reasonable locations for the IDS.

Placing the IDS in the switch has the advantage of letting it observe all traffic
on the network without having to send data to a dedicated computer, which would
increase the load on the network. However, if several switches were to be used Snort
would need to run in each switch. This would increase the configuration somewhat
and also distribute the logs of the system, which also is a minor inconvenience.

Placing the IDS in the controller is one of the options suggested by the Ryu
manual [25]. This solution was considered undesirable as it exposes the computer
running Ryu to all traffic on the data plane, which potentially could aid an attacker
get access to the controller if an exploit is found in Snort. It does also increase
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the general load of the network, while not really providing anything positive. It
is also possible to let the IDS listen to only the control plane communication, but
this would not detect any attacks since Snort is built for normal network traffic.
In the future, there might be an IDS aimed at SDNs which would analyze control
plane traffic and try to determine if a flow is valid or forged.

Using a dedicated machine to run the IDS is the second option suggested
in the Ryu manual and likely the best option if several switches are used. An
illustration can be seen in 5.3. Having a dedicated computer with the sole purpose
to analyze network traffic would increase the load on the network, but would bring
a lot of positive properties to the system. First, it would be possible to adapt the
processing power of the hardware to mitigate overloading and have Snort analyze
the traffic fast so it can alert the system in time. Second, it would make it easier
to configure, since all logic would be in one place instead of spread out in different
switches. Third, it creates an extra step to take control of the IDS without exposing
the controller to additional risk. The machine should have one interface with the
switch in the data plane and one with the controller in the control plane.

Figure 5.3: Locating the IDS in a dedicated machine

This has the advantage of letting Snort observe all traffic between the nodes
without exposing the controller to additional risk.
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6.1 Answers to the Research questions

6.1.1 Network Security

The security of the network does not depend on whether the network is software
defined or not. Rather it depends on the components in the network and security
policies enforced. A chain is only as strong as its weakest link, which in this case
appears to be the possibility for an attacker to redefine the network infrastructure
by clever crafting of flows.

SDN seem to be unsuitable for a small safety-critical system. In a small system
with limited complexity it should be possible to efficiently enforce network policies
using traditional networking methods. SDN could have a bigger role to play in
large, complex systems exposed to a lot of change.

Regarding the sensor networks, implementing SDN should not be highly pri-
oritized if the aim is to achieve high security to a comparatively low cost. Money
would likely be better spent preventing an attacker from breaching the network in
the first place, and creating an IDS which discovers if it is breached. SDN could
possibly be further studied in the future if the complexity of the networks increase
or the likelihood of a breach is high despite efforts taken to prevent it.

6.1.2 Isolation of Nodes

Although it is possible to isolate nodes in a software defined network, the method
demonstrated in this thesis is not sufficient. If an attacker were capable of en-
tering the network they would likely be able to circumvent blocks ordered by the
controller. In fact, rather than improving the security, compared to a traditional
network, the setup creates a shortcut for blocking all nodes in the network. By
using one node to spoof the IP addresses of the other nodes and sending illegal
packets, all nodes will be blocked and the network rendered unusable.

With that said, it should be possible to build an SDN capable of blocking nodes
based on network interface. Open vSwitch has IDs for its ports and ports could
be switched off. The main issue preventing implementation of blocking based on
ports is how the controller can know which port should be blocked. Information
about incoming port is not mirrored to the IDS.
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6.1.3 Galvanic Isolation

The question about galvanic isolation is not directly related to the other two. The
network implementation demonstrated that media converters and optic fiber can
be used without considerably interfering with the network communications. How-
ever, this could depend on the hardware used and should be evaluated, together
with the other components, if the requirements of the network are very high.

6.2 Future Work

This section presents ideas for how this work can be continued. Concepts im-
plemented that can be improved and new ideas which can utilize this work as
inspiration or a starting point are presented.

6.2.1 Improving the isolation

Looking at another method of isolating nodes is worth investigating. The solution
that block nodes on MAC address has a major shortcoming, which is discussed
in the discussion chapter. Examining if blocking nodes by shutting down ports in
the switch is a practical way, and if there are any direct downsides by doing so.
We believe that method provides a much safer and reliable isolation but it should
be looked at in more detail.

6.2.2 Investigating an error check for flows

As discussed in ways on how to improve security in a controller, one method is to
compare flows from many different controllers before they are added to a switch’s
flow table. We have not been able to find an implementation of this, and maybe
there is a reason for it. If it is investigated in detail and if it is determined a
practical solution, then it can be implemented to further improve the security of
software defined networks.

6.2.3 Testing attacks on an SDN

We have discussed potential attacks and ways to protect the system from them,
we did not have time to actually test them and verify that the system is protected
against them in practice. We did read papers which performed attacks on an SDN,
but only a few attacks. A review and test of all attack vectors and ways to secure
the system against them would be beneficial to verify the theory.

6.2.4 A work distribution algorithm

When isolating a node, the functionality of the whole system is most likely going
to be disturbed. As an example, if a program is split into many different nodes
with their own responsibilities, then all nodes are needed for the program to work.
If a node is isolated because it has been compromised, then the whole program will
not function. To solve this, it should be investigated if it is possible to distribute
the isolated node’s responsibility to another node in the network, to maintain the
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functionality of the program even if a node is isolated. If this could be solved in a
practical way, it would be be easier to build systems which are both more secure
and reliable.



44 Conclusion



References

[1] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T. Turletti,
“A survey of software-defined networking: Past, present, and future of pro-
grammable networks,” IEEE COMMUNICATIONS SURVEYS & TUTORI-
ALS, vol. 16, no. 3, pp. 1617–1634, 2014.

[2] S. W. Shin and G. Gu, “Attacking software defined networks: A first feasibil-
ity study,” in ACM SIGCOMM workshop on Hot topics in software defined
networking. SIGCOMM, 2013, pp. 165–166.

[3] M. Dhawan, R. Poddar, K. Mahajan, and V. Mann, “Sphinx: Detecting secu-
rity attacks in software-defined networks.” in NDSS, vol. 15, 2015, pp. 8–11.

[4] A. Zaalouk, R. Khondoker, R. Marx, and K. M. Bayarou, “Orchsec: An
orchestrator-based architecture for enhancing network-security using network
monitoring and sdn control functions.” in NOMS, 2014, pp. 1–9.

[5] ——, “Orchsec demo: Demonstrating the capability of an orchestrator-based
architecture for network security,” Academic Demo, Open Networking Sum-
mit, 2014.

[6] R. Khondoker, P. Larbig, D. Senf, K. Bayarou, and N. Gruschka, “Au-
tosecsdndemo: Demonstration of automated end-to-end security in software-
defined networks,” in 2016 IEEE NetSoft Conference and Workshops (Net-
Soft). IEEE, 2016, pp. 347–348.

[7] S. Choudrey and K. Hiltunen, “Moln för försvarsmakten,” 2015.

[8] D. Kreutz, F. M. V. Ramos, P. Verissimo, C. E. Rothenberg, S. Azodolmolky,
and S. Uhlig, “Software-defined networking: A comprehensive survey,” https:
//arxiv.org/pdf/1406.0440.pdf, 2014.

[9] SDxCentral, “What are sdn southbound apis?” https://www.sdxcentral.
com/networking/sdn/definitions/southbound-interface-api/, accessed: 2019-
04-10.

[10] A. Zhu, “Openflow switch: What is it and how does it work?” http:
//www.cables-solutions.com/whats-openflow-switch-how-it-works.html/, ac-
cessed: 2019-08-06.

45



46 References

[11] M. C. Dacier, S. Dietrich, F. Kargl, and H. König, “Network
Attack Detection and Defense (Dagstuhl Seminar 16361),” Dagstuhl
Reports, vol. 6, no. 9, pp. 1–28, 2017. [Online]. Available: http:
//drops.dagstuhl.de/opus/volltexte/2017/6912/

[12] D. Kreutz, F. M. V. Ramos, and P. Verissimo, “Towards secure and depend-
able software-defined networks,” IEEE COMMUNICATIONS SURVEYS &
TUTORIALS, vol. 16, no. 3, pp. 1617–1634, 2014.

[13] SDNSecurity.org, “An overview of misuse/attack cases,” http://www.
sdnsecurity.org/vulnerability/attacks/, accessed: 2019-08-04.

[14] J. Bailey and S. Stuart, “Deploying sdn in the enterprise,” ACM Queue,
vol. 60, no. 1, pp. 45–49, 2017.

[15] Z. Yan and C. Prehofer, “Autonomic trust management for a component-
based software system,” IEEE Transactions on Dependable and Secure Com-
puting, vol. 8, no. 6, pp. 810–823, 2010.

[16] B. Lampson, M. Abadi, M. Burrows, and E. Wobber, “Authentication in
distributed systems: Theory and practice,” ACM Transactions on Computer
Systems (TOCS), vol. 10, no. 4, pp. 265–310, 1992.

[17] Y. Xu and Y. Liu, “Ddos attack detection under sdn context,” in IEEE IN-
FOCOM 2016-The 35th Annual IEEE International Conference on Computer
Communications. IEEE, 2016, pp. 1–9.

[18] J. Bengtsson and H. H. Teodor Sommestad, “It-säkerhetskrav i försvarsmak-
ten,” FOI, Tech. Rep., December 2014.

[19] L. Kohnfelder and P. Garg, “The threats to our products,” Microsoft Corpo-
ration, Tech. Rep., 1999.

[20] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in cam-
pus networks,” ACM SIGCOMM Computer Communication Review, vol. 38,
no. 2, pp. 69–74, 2008.

[21] S. Finucane, “Why open vswitch,” https://github.com/openvswitch/ovs/
blob/master/Documentation/intro/why-ovs.rst/, accessed: 2019-06-09.

[22] S. Lowe, “Layer 3 routing with open vswitch,” https://blog.scottlowe.org/
2012/10/31/layer-3-routing-with-open-vswitch/, accessed: 2019-09-05.

[23] SNORT Users Manual 2.9.13, The Snort Project, 2019, accessed: 2019-07-05.

[24] J. Dries, “An introduction to snort: A lightweight intrusion de-
tection system,” http://www.informit.com/articles/article.aspx?p=21778&
seqNum=9/, accessed: 2019-07-25.

[25] Ryu, “Snort intergration,” https://ryu.readthedocs.io/en/latest/snort_
integrate.html/, accessed: 2019-07-08.

[26] G. Thomas, “Incorporating media converters,” Contemporary Controls: the
EXTENSION, vol. 7, no. 6, 2006.



References 47

[27] G. P. Agrawal, Fiber-optic communication systems. John Wiley & Sons,
2012, vol. 222.

[28] L. Zhu, M. M. Karim, K. Sharif, F. Li, X. Du, and M. Guizani,
“Sdn controllers: Benchmarking & performance evaluation,” arXiv preprint
arXiv:1902.04491, 2019.

[29] “Hardware - northbound networks,” https://northboundnetworks.com/
collections/hardware/, Northbound Networks, accessed: 2019-06-09.



Improving the security of exposed safety critical

systems using SDN

DANIEL BJARNESTIG & FILIPPA DE LAVAL
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2019

D
A

N
IEL B

JA
R

N
ESTIG

 &
 FILIPPA

 D
E LA

V
A

L
Im

proving the security of exposed safety critical system
s using SD

N
LU

N
D

 2019

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2019-728
http://www.eit.lth.se


