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Abstract

Static Random Access Memories (SRAM) are widely used for on-chip caches in
modern computing systems, and occupy a significant portion of the chip’s area
and power consumption. The traditional “von-Neumann” architecture which been
used in modern computing systems also leads to a limitation of data transfer
rate between memory and processing unit. These issues are more pronounced in
data-intensive applications.

This thesis presents an implementation and evaluation of a new approach
for designing SRAM which can be used similarly as “in/near-memory” architec-
ture. This approach reduces the peripheral circuit of the small storage memory
by preserving the memory cell array in SRAM as a custom cell and replacing the
remaining modules with digital circuits. The SRAM designed with this approach
needs a smaller area than conventional SRAM if the storage capacity of 2K or
less. At the same time, power consumption keeps at the same level or even less.
Therefore, it is more efficient to replace large memory with multiple new SRAMs
to avoid the limitation of bandwidth. Furthermore, the SRAM designed with this
approach can be distributed in a common logic design like a standard cell. This
reduces the data transmission path, which further increases speed and reduces
power consumption. Moreover, this approach is not algorithm specified and can
be used in any algorithm without extra modification.
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Popular Science Summary

The project presented in this report is an implementation and evaluation of a
new method to design the memory which can be used in chips. The implemented
memory achieves a higher density, lower power consumption compared to the
original memory. And these advantages are valid for the memory with a storage
capacity of 2kb or less.

This memory can be used in designs of Machine Learning (ML), Artificial
Intelligence (AI) or other designs that required heave access to memory. The
designs using this memory will have a smaller size and less power consumption
than original memory. This means these designs could be used in smaller devices
or have more powerful functionality with the same device size. And it can also
support these devices to be used longer than usual under the same amount of
power.

These advantages will result in lower manufacturing costs and better user
experience for equivalent devices. At the same time, the devices with ML and AI
can become more popular and more versatile. Moreover, this memory is easy to
use and can be modified/generated by digital designers.
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Chapter 1
Introduction

Static Random Access Memories (SRAM) are the most popular type of embed-
ded memories in modern SoCs and widely used for on-chip caches in modern
microprocessors. SRAMs occupy a significant portion of the chip’s area [1]
and power consumption [2] in modern SoCs, which becomes a bottleneck of
modern computing systems. The modern computing systems normally using the
traditional “von-Neumann” architecture which the memory and the processor
are physically separate. This architecture also leads to a limited bandwidth for
data transfer based on the memory IO. These issues are more pronounced in
data-intensive applications (like AI and ML) as they need bigger memories, which
lead to long-distance data movement that requires more time and energy [3][4].

One of the promising approaches for improvement is the concept of “in/near-
memory” computation that the computation can be done inside or close to
the memory array. The “in/near-memory” architectures have much fewer data
transferred over long distances than conventional architecture. And the memory
access is not limited by it I/O which improves the throughput. However, these
approaches typically need modification on the memory structure based on the
computation algorithms. As an example, the Conv-SRAM [5] was designed for
the computation for the convolutional layer of CNN, which embedded analog
computations in the SRAM bit-cells. These designs require the work of algorithms
modification and mixed with SRAM structure. Also, the modified SRAM can
only be used in these specified computations.

The “in/near-memory” architectures are very efficient in speed and power
consumption, but the limitation of the algorithm makes more development
cost. So, we want to make a general SRAM that can be used for “in/near-
memory” architectures without algorithms limitations. As other approaches
like Conv-SRAM normally make the modifications based on the SRAM with
six transistor-based (6T) bit-cell since it has a small cell area and compact
lithography-friendly layout [6] which leading to high-density memory arrays. Our
approach is based on the 6T SRAM bit-cell as well, but digital design around
the memory arrays instead of analog modification to make it general to use and
easy to compact with other logic designs to work as “in/near-memory” architecture.

In this thesis, We will first introduce more about how our approach can
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4 Introduction

work as “in/near memory” and the difference between our approach, others ap-
proach, and conventional SRAM. After that, We will introduce the basic structure
and functionality of conventional 6T SRAM to explain how we implement this
approach. Then follow the general design flow to test and find out what other
work needs to be implemented for our approach and how we implemented them.
In the end, We will show some evaluation of our approach.

"Von-Neumann" and “In/Near-memory” Architectures

"Von-Neumann" architecture is a computer architecture that includes ALU,
Control Unit, Memory, Input and Output mechanisms which is the basic
architecture of the modern computing system. The separated memory and CPU
in this architecture leads to a limitation of the data transfer rate between them.
Normally, the data transfer rate between memory and CPU is very low compared
to the workload of the CPU. But, in some situations that required to perform
small processing on large amounts of data (AI, ML), this limits the CPU process
speed. This bottleneck becomes more of a problem since the CPU speed and
memory size increased much faster than the data transfer rate. And this is more
pronounced in data-intensive applications as mentioned before since they require
big memories which leads to longer data transfer paths. Besides this increasing
gap between CPU speeds and memory access times (“memory wall” [7]), the
increasing power dissipation also becomes a problem. There is much research on
associative memory circuits and alternative computing architectures. [7][8]

The system energy and data transfer rate are limited by memory size and
I/O bandwidth. The concept of “in/near-memory” is one of the promising
approaches to circumvent this limitation. The “in/near-memory” architecture
brings the memory closed to or among the processing unit which decreases the
data transfer path. And this can even avoid the bandwidth limitation in some
approaches that embedded the computation with memory array directly. As
mentioned before, these “in/near-memory” approaches normally based on the
modification of the desired algorithm. They can access the memory array directly
during the computation to avoid the I/O bandwidth limitation. But, they can
only work for desired computation.

Register-heavy solutions is another one of the approaches to circumvent
the limitation of “Von-Neumann” architecture. As an example, the Graphical
Processing Units (GPU) includes a very large number of registers files that
allow high parallel computing. The multi-port memories can also help. But, the
parallelization and high throughput of the data leads to high power consumption
[3].
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Our approach

The current bottleneck of computing architecture (from memory side) is caused
by the increased memory size and the I/O limitation. The increased memory size
increases the data path inside the memory, locating time, and power consumption
per access. This further increases the “memory wall”. The I/O limited the par-
allelization of the access which limited the computation bandwidth. Multi-port
memories can make some help, but the computation bandwidth expectation
grows much more as the AL and ML.

What if using multiple small memories instead of these limited number of
large memories in the computing architecture? The parallelization won’t be any
problem in this situation. But, as we know, small memory requires much more
area than large memory for the same amount of stored bit. So, the optimization
of physical size for small memory is required for this idea. Furthermore, the
distance between the processing unit and memories in conventional architecture
still influences the datapath. So, we want to bring those small memories into the
processing unit, like register files, to reduce the datapath.

Based on the previous information, our approach combined the idea of the
“in/near-memory” and the register-heavy concept. This approach splits the
memory into small memories and then distributed them to the processing unit
or other logic. Different from computing in-memory, our approach can act as
memory in-logic. The splitting of memory will solve the bandwidth problem and
the distribution in the processing unit will reduce the “memory wall”. The critical
of this approach is the density of small memories and the method of distributing.

There is much research about optimizing memories power consumption and
area like [9] and [10]. These optimizations usually require trade-offs on the price
in terms of performance or area [11]. These optimizations are mainly targeting big
capacity memories (1-2kb or bigger). The small capacity memories used in ASIC
designs are usually standard cell registers which are not so efficient. As shown
from a trade-off discussion in 65 nm [9], the standard cell latch-based memories
have a density advantage in the size of 2KB and below. The discussion is focused
on SRAM which is the main product in Xenergic AB. So if we rebuild the SRAM
structure by standard cells and the custom cell that keeps the high-density part of
SRAM, the new SRAM should have the chance to get a better area efficiently than
traditional SRAM for small capacity, Since it won’t have that much peripheral
circuit. And to make the new approach easy for distributing, it is better to build
the SRAM structure with digital logic except for the high-density part (memory
array).
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Chapter 2
Basic Implementation

The basic structure of a SRAM usually contains Decoder, Memory Cell Array,
Sense Amplifier, and Driver as shown in Figure 2.1.

R
ow

D
ec

od
er

ADDR[N-1:0]

ADDR[M-1:N] Column Decoder

Driver/Sense Amp

Memory Array

Bit Line

Word Line

I/O Data

Figure 2.1: SRAM Structure

Generally, in SRAM, the memory cells array is the most difficult to optimize
in density without changing the structure of the memory array. And it usually
has the highest density in SRAM. So, this design will keep the memory array as
a custom cell as mentioned before. Other parts were implemented by Register
Transfer Level (RTL).
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8 Basic Implementation

Memory Array

In Figure 2.2, a typical 6T SRAM cell is shown. This cell is the basic cell used to
consist of the Memory array. A set of opposite states, which is 1-bit data, can
be stored in each cell (Q/Q). By pulling up word line, the cell state is operated
differently depending on the status of the BL/BL.

VDD

M6M5
M2 M4

M3M1

WL

BLBL

QQ

Figure 2.2: 6T SRAM Cell

Memory cells are connected to the same row by sharing the same word line.
Memory cells are connected to the same column by sharing the same bit line and
inverse bit line. The size of a memory array is the number of the memory cell in
one row multiply the amount of the memory cell in one column.

The behavior module of the memory array in SRAM therefore has word
lines, bit and inverse-bit lines as pins (Figure 2.3). The functionality of the
memory array is to act as storage cells. The memory array should have different
operations depends on various combinations of pins. These operations are what
the behavior module needs to achieve.

WL
BL BL
BLN BLN

Figure 2.3: Memory Cells Array Module

The word line is the primary control of memory cells in the memory array. If the
word line of a memory cell is low, nothing will happen to the memory cell, and
the bit lines will not have any changes. If the word line of a memory cell is high,
the memory cell could be operated on the different status of bit lines.

Read operation happened if the two bit-lines have the same level, which
will drive the two bit-lines based on the cell value as shown in Figure 2.4. Write
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operation happened if the two bit-lines have the opposite level, which will change
the cell value based on the bit line’s level as shown in Figure 2.5.

WL
BL
BL
Q
Q

Figure 2.4: Read Operation Signal Waveform

WL
BL
BL
Q
Q

Figure 2.5: Write Operation Signal Waveform

Decoder and Sense Amplifier

The decoder module decodes the address to WL that be used in memory cells
array. It needs an enable signal as input to control the timing for decoding.
This module is combinational in the design, the module decodes the current
address to WL when the enable signal is high. Different from the ordinary design
method, here we automatically generate the RTL with direct mapping through a
script that converts the address to WL. The generated decoder module will be
transferred into the gate level with the help of the synthesis tool to have a better
solution.

The sense amplifier module in our approach is also combinational. It gets
the BL and BLN from memory cells array and compares each pair of bits to
generate the output data. The output is equal to BL if and only if BL and BLN
are opposite to each other. As this module is combinational, the output data
only valid when WL is activating. So, a latch register is needed to latch the
output data with the same enable signal as the decoder. The enable signal needs
to go through several gates from different modules to generate the output data to
output latch register and this causes a delay which ensures the functionality of
the output latch register. The signal waveform of the output register looks like as
in the Figure 2.6.
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Enable

DATA DATA1 DATA2

DATAOUT DATA1 DATA2

Figure 2.6: Output Register Waveform

Driver

The RTL design in this project is used to drive the macro of the memory cells
array and acts as standard SRAM. Usually, A SRAM has five basic input ports
(clock[CLK], address[ADDR], input data[DATAIN], write enable[WEN], chip se-
lect[CSN]) and one output port (output data[DATAOUT]). So, our design here
should work as Figure 2.7

CLK
ADDR
DATAIN
WEN
CSN

DATAOUT
OutputReg

DATAOUT
Enable

SenseAmp
BL

BLN

BL

BLN

MemArray

WL
Decoder

ADDR
Enable

Driver

Figure 2.7: RTL Exclude Driver

The driver is the most critical part of this RTL design. It is used to get the right
input signal during each clock rising edge and process them, then based on the
reading or writing request generates signals to decoder and memory cells array.
The write operation is easy to control, but there was a tricky part for the read
operation which is the pre-charge. Pre-charge both bit lines to the same level
then cut-off before the word line is active during the read operation to reduce
the read delay. The cut-off during the operation will need a delayed clock signal
as a control and also needs the help of tri-state buffers to perform the cut-off.
So, a submodule was created for the tri-state control. This submodule is used to
control the pre-charging of the BL. All BL signals connected to tri-state buffers
with enable signal Tri-Ctrl. Tri-Ctrl is always high during the writing operation.
In the reading operation, it is a pulse, as shown in Figure 2.8.

CLK
CSN

WEN
RWCtrl
DCLK
TriCtrl

Write Read

a b

c d i

Figure 2.8: Tri-Ctrl Signal from Driver Waveform

The WL should be activated after the cut-off, which means enable signal for
decoder should become high after the cut-off during the reading operation. A
pulse is needed for the enable signal of the decoder. Another submodule for
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the pulse generation is needed. This submodule generates two signals with
different delays from the clock. One of them is the pulse signal (DCLK2) which
works as a control signal of Decoder and Output Register. The other is the de-
layed clock (DCLK1) which functions as pre-charge control inside the Driver block.

delay1

delay2 delay3

node1 node2

CLK DCLK1

DCLK2

Figure 2.9: PulseGen Logic Design

CLK

DCLK1

node1

node2

DCLK2

delay1

delay2

delay3

a

b

l c

d i

e

Figure 2.10: PulseGen Waveform

As shown in Figure 2.9 and Figure 2.10, delay1 is the period for pre-charge,
delay2 is for WL active, delay3 is to control the WL actives after the pre-charge
be cut off to avoid the half-select issue.

During the write operation, the WL (of bit-cell in macro) is active after
the BL (of bit-cell in macro) has the right voltage and de-active after the process
done (before the BL changes). The BL is controlled by the driver that triggers it
at the rising edge of the clock. DCLK2 (rising edge) needs to be delayed (delay3)
for the period of transition time from driver to the macro to make sure that the
BL of bit-cell in the macro will have the voltage before WL actives. The width
(delay2) of DCLK2 should be wider than the writing timing of bit-cell. During
the read operation, the BL is precharged and cut off before WL is active. The
delayed time (delay1) depends on the pre-charging time for the bit cell. The
rising edge of DCLK1 is for cutoff the pre-charge.
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RTL Main Design

The main design is shown as in Figure 2.11 after all modules be implemented. It
has five input ports (CLK, ADDR, DATAIN, WEN, CSN) and one output port
(DATAOUT). It includes seven blocks: pulseGen, decoder, driver, tridriver, sense
amplifier, output register, MemArray. The MemArray is the behavior module for
the macro from Xenergic’s SRAM, and that is the only custom cell.

PulseGen

Decoder

DriverCLK DCLK1
DCLK2 CLK

DCLK1

Enable
ADDR WL

DataIn
ADDR
WEN
CSN

CLK

DataIn
ADDR
WEN
CSN

TriDriver

BLN
BL

TriCtrl
ADDROUT

BLN
BL

TriCtrl
BLN
BL

BLN
BL

WL

BLN
BL

BLN
BL DATAOUT DATAOUT

Enable

MemArray SenseAmp OutputReg
DCLK2

En

Figure 2.11: Main Design



Chapter 3
Related Implementation

Functional verification and testing are usually required after the RTL design is
completed to ensure proper functionality during ASIC design flow as shown in
Figure 3.1. A test bench needs to be created to check on the functionality. RTL
code and test bench are simulated using HDL simulators for verification and
testing. If there is a deviation, it needs to be modified in time for the subsequent
steps to proceed normally.

Design Specification

Behavioral Description

RTL Description (HDL)

Functional Verification
and Testing

Logic Synthesis/
Timing Verification

Gate-Level Netlist

Logic Verification/
and Testing

Floor Planning
Place and Route

Physical Layout

Layout Verification

Implementation

Figure 3.1: Design Flow
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14 Related Implementation

After that, logic synthesis which is to transfer RTL hardware description and
standard cell (gate level, including macros) libraries (timing/power information)
to a gate-level netlist. The resulting gate-level netlist is a complete structural
description with standards cells only at the level of the design. It can also
generate design constraints (.sdc) based on libraries after optimized the design.
The timing information for the design also could be verified during the synthesis.
In this step, the Liberty Timing Files are required for all cells.

After the gate-level netlist is tested and verified, The layout generation is
the last process of turning a design into a manufacturable file. The first step for
layout generation is floor planning. The floor planning includes the size of the
core, the distance between the core and I/O pad, core rail, and some other related
settings. Then place the design into the floor and connect (routing) them as
described in the netlist with the help of placement tools. After the timing analysis
and optimization, the layout could be generated. This step needs the LEF file
which describes the physical information of cells/macros, LIB file which describes
timing/power information, a netlist, and design constraints after synthesis.

So, we need to implement the LIB and LEF file for the custom cell which
is the memory array to make our approach work in order to make further
evaluations.

Liberty Timing File (LIB)

The LIB file is an ASCII representation of the timing and power parameters
associated with ant cell in particular semiconductor technology. These parameters
are obtained by simulating cells under a variety of conditions. The data is
represented in the LIB format.

For each cell of the library, it describes the port, cell type, operating con-
ditions, power consumption, and timing modeling. The LIB file contains timing
models and data that need to be calculated, including I/O delay paths, timing
check values, interconnect delays. The I/O delays and timing check values are
calculated between each instance. The delay in the circuit path depends on the
electrical behavior of the interconnections between the cells.

library (name) {
... library based attribute ...
cell (name) {
... cell based attribute ...
pin (name | name_list) {
... pin description ...
}
}
cell (name) {
... cell based attribute ...
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bus (name) {
... bus based attribute ...
pin (name | name_list) {
... pin description ...
}
}
}
}

The basic format of the LIB file is listed above. Each level has its attribute
settings, including operating conditions, time information, power consumption
information. See the appendix for more syntax details.

Timing Generation

There have two timing variables that need to be set in the LIB file, transition time
and delay. The transition time here used was provided by the Xenergic directly.
The timing calculation is focused on the delay of output pins. Xenergic provided
delays with a special size of bit cells. Assume the delay is linearly increased (it
should be a little less than that) with the size of bit cells. The worst-case from
the provided values were used to generate the delay values.

Power Calculation

Leakage and internal power are the two needs in the LIB. Same as the delays,
Xenergic has the leakage current for a single bit cell. The leakage can be calculated
by using the formula IV for single bit cell, then multiply by the number of bit
cells. The capacitance for a special size of bit lines and word lines were provided.
They were used to generate the capacitance for pins of the word line and bit line.
Then use the formula CV 2 to calculate the internal power of input pins.

Library Exchange Format (LEF)

According to the previous mentioned, LEF is a necessary file to generate a layout.
LEF defines the elements of an IC process technology and associated library of
cell models [12]. It gives the view of cells in PNR.

There are usually "technical" LEF files and "cell library" LEF files. The
technical LEF file contains all LEF technical information for the design, such as
layout and routing design rules and layer process information. The cell library in-
cludes the info about boundary, blockage, pin position, and the metal layer of cells.

In this project, only the part of the MACRO (cell library) describing the
custom cell needs to be generated, so here is a brief introduction to the MACRO
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part. The rest of the LEF sections (technical library) that define layers and rules
are not described here.

MACRO macroName
[CLASS
{ COVER [BUMP]
| RING
| BLOCK [BLACKBOX | SOFT]
| PAD [INPUT | OUTPUT |INOUT | POWER | SPACER | AREAIO]
| CORE [FEEDTHRU | TIEHIGH | TIELOW | SPACER | ANTENNACELL | WELLTAP]
| ENDCAP {PRE | POST | TOPLEFT | TOPRIGHT | BOTTOMLEFT | BOTTOMRIGHT}
}
;]
[FOREIGN foreignCellName [pt [orient]] ;] ...
[ORIGIN pt ;]
[EEQ macroName ;]
[SIZE width BY height ;]
[SYMMETRY {X | Y | R90} ... ;]
[SITE siteName [sitePattern] ;] ...
[PIN statement] ...
[OBS statement] ...
[DENSITY statement] ...
[PROPERTY propName propVal ;] ...
END macroName

As shown in the syntax example above, the LEF of Macro contains the definition
of CLASS, FOREIGN, ORIGIN, SIZE, SYMMETRY, SITE, PIN, OBS.

- CLASS specifies the macro type. Type BLOCK is used in a hierarchical
design. Type CORE is used for standard cells and should always contain a
SITE definition.

- FOREIGN specifies the foreign (GDSII) structure name with a default offset
0 0.

- ORIGIN determines how the macro align with DEF placement point.

- SIZE specifies placement boundary, width BY height.

- SYMMETRY specifies which orientations can be used during the placement.
X for North and Flipped South; Y for North and Flipped North; X Y for
North, Flipped North, South, Flipped South.

- SITE specifies the associated location that will be used in the placement.

- PIN defines pins. It must be included in the LEF and should specify all
pins, including power pin.

- OBS specifies sets of blockages for the macro.

We need to do some extra works to make it work as a standard cell. The size of
the macro usually is greater than the standard cell, which means it can not be
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placed between standard core rails. The power rail is needed if the macro placed
over rows of core rail. So the LEF file needs to have an embedded power rail
which can be connected to the standard core rails during the place and route, as
shown in Figure 3.2.

The blockage was created as the location of the macro to avoid routing in-
side the macro. As shown in Figure 3.3, the smaller blockage for layers from
and below Metal3 is the macro. The overall blockage for layers from and below
Metal2 is used for power ring.

The LEF file generated here is only to have an overview of the expected
layout and also for the evaluation of the whole design. There was no layout
modification or generation in this project.

Figure 3.2: LEF Power Ring Figure 3.3: LEF Blockage
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Design for Multiple Macros

Another design is implemented for driving multiple Macros, as shown in Fig-
ure 3.4. This design is used for further evaluation. The design concept is still the
same. There is one change in driver for the address. The address is split into two
parts. The lower part (passing to the decoder) is used to generate WL for Macro,
which depends on the size of a macro. The upper part (passing to MultiMacro)
is used to select macro which to be active. MultiMacro block (Figure 3.5) works
similarly to the column decoder.

PulseGen

Decoder

DriverCLK DCLK1
DCLK2 CLK

DCLK1
DCLK2

ADDR WL

DataIn
ADDR
WEN
CSN

CLK

DataIn
ADDR
WEN
CSN

TriDriver

BLN
BL

TriCtrl

ADDROUT

BLN
BL

TriCtrl
BLN
BL

BLN
BL

WL

BLN
BL

BLN
BL DATAOUT DATAOUT

Enable

SenseAmp OutputReg

ADDR

[N-1:0]

[M-1:N]

M = ADDR length
N = Single macro address length

MultiMacro

EnableEn

Figure 3.4: Design for Multiple Macros
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Figure 3.5: MultiMacro Block



Chapter 4
Test & Evaluation

This chapter describes the tests that were conducted during the project. Some
results from the test also shown in this chapter. The last part of this chapter
explains the settings for the evaluation.

Functionality Test

The implementation of the design must be tested to ensure proper operation
before any evaluation is performed. The test went through all the steps of ASIC
design flow and with the help of simple testbench to check the logical result.

Synthesis

To ensure that the design works after synthesis, the PulseGen block needs to
be set as do not touch and written in the gate level with delay cells to keep the
delays after optimized. The tri-driver also needs to be set as don’t touch since the
control single is a small pulse that will be optimized away during synthesis. The
synthesis also requires to allow the latch to happen (hdl_latch_keep_feedback
true) to keep the output latch register works.

Place & Route

During the place and route, the LEF file is tested first after the placed design.
The memory array block, which is imported from the LEF file, should align with
core rail. Also, power rails connect to the right pins from memory array, as shown
in Figure 4.1.

The tools can move the memory array during optimization as a standard cell.
The clock tree optimization gave the wrong result since the output register is
latch register with enable signal which is generated from the clock. So the enable
signal needs to be ignored during the clock tree optimization to obtain the correct
result. The following command is for ignoring the pin during timing optimization.

19
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Figure 4.1: LEF IN PNR

set_ccopt_property sink_type -pin [PIN] ignore

As the memory array block is higher than one core rail height, and it is
not like a multi-row standard cell, which has power rail inside with the same
height at the same location. The power rail generated by the tools which overlap
with the memory array block should be removed after all optimization. The
following command that means trim off all nets inside the selected area and is
used for both VDD and GND with pattern 00.

trim_pg -net VDD -type stripe -layer M1 -area [dbGet selected.box] -pattern 00

Post Simulation

The post-simulation has been done after the netlist and SDF file had been
obtained from PNR. A simple test bench was created to do the test. The test
bench does all write then all read with input data as the same as the address.

As shown in Figure 4.2, all the input signals were given valid values before clock
rising edge and hold for some time after clock rising edge so the input can meet
the setup/hold timing.

As shown in Figure 4.3, the read delay for reading from address 1 is 447ps
in this set of tests, which matches the result from synthesis and PNR.
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Figure 4.2: Post Simulation Write Waveform

Figure 4.3: Post Simulation Read Waveform

Schematics Simulation

Since the memory array used for post-simulation is the behavior module, the
simulation can only prove that the design will send right signals to the memory
array and process signals from the memory array and gain the correct result.
Schematics simulation is required to make sure that the design can drive the
Bit-cell.

By import of physical netlist (from PNR) into Virtuoso, the whole design
will have a schematic with the layout. After creating a simple test bench with
schematics, the simulation can be done.

Figure 4.4 shows a simple test result. CSN in the test has been set to 0 to make
the simulation easy since it is only the functionality test. The first part is writing
different values into different memory cells. Another part is reading from different
memory cells.

Figure 4.5 shows details about the reading operation. At each rising edge of the
clock, BLs were precharged to high. After WL actives, one of BL should be pulled
down, and the storage cell which stores low should go a little bit higher then back
to low during the pulldown period.
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Figure 4.4: Schematics Simulation Waveform

Figure 4.5: Schematics Simulation Read Waveform
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BIST Test

After all previous tests, the BIST test became the last functionality test. The
new DIL-SRAM has been connected to March C BIST and re-runs previous flow
to Post Simulation. The design has been successfully merged with BIST logic
(distributed in BIST) in PNR. Moreover, the simulation has been done without
error.

Evaluation

Before the evaluation, all these designs (including LEF and LIB generation) can
be generated automatically through python script with a single configuration.
The address and data width of one macro and number of macros can be set in
the configuration. To avoid invalid data, every single configuration during the
evaluation reaches post-simulation. And the post-simulation result should be
checked.

The evaluation is focused on area and power (leakage, dynamic power).
To be able to evaluate performance as comprehensively as possible, the evaluation
was set up with different combinations of Address width (single macro), data
width and the number of the macro. The following ranges were used for the
combinations.

- Address width of a single macro starts from 3 to 9.

- Data width starts from 8 to 64 (step by the power of 2).

- The number of macros starts from 1 to 4 (step by the power of 2).

Because the decoder of the design can only synthesis-able up to 9-512 (memory
issues of the tool), that the address width of each macro can run only up to 9. 512
WLs is enough for single macro since the new memory focuses more on the small
size. The test has 7×4×3 = 84 combinations which are from 8×8 to 4096×32 bits.

After collecting the above evaluation results, the obtained results are com-
pared and analyzed with the original memory data. The comparison is discussed
in the next chapter. And according to the confidentiality agreement, all the data
shows here and the following chapter for the comparison are normalized.

Area and Timing for Single Macro

As shown in Figure 4.6, the density of memory cell (bit/area) increases with
memory size (word × I/O). The increase of words gives more effect on density
than I/O. It happens since the increase of word only (without considering the
memory macro’s size) changes the design of the decoder. However, the I/O needs
to change the sense amplifier, output register, and driver. The increase in I/O
needs more gates than the word. On another hand, the increase of word leads to
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Density Result for Single Macro
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Figure 4.6: Density Result for Single Macro

a much more extended clock period due to the read delay from a longer bit line
as shown in Figure 4.7.
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Figure 4.7: Timing Result for Single Macro

Area and Timing for Multiple Macros

Comparing the results from Figure 4.6, Figure 4.8 and Figure 4.9, the area is
larger for multiple macros than single for the same memory size (word × I/O).
The increase of area is related to the MUX logic does not exist in the single macro
design. By making a more detailed check, the area of multiple macros (compared
to the same size of single macro or less mux) started to be smaller in a specific
setting. That is because the amount (area) of delay cells for pulse generator starts
to be increased more than the mux logic due to the read delay (pulse width)
increasing with length of word line for single macro. Furthermore, the length of
I/O also affects the density increasing point since the area of the mux is highly
dependent on it.
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Figure 4.8: Density Result for Two Macros
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Figure 4.9: Density Result for Four Macros
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Figure 4.10: Timing Result for Two Macros
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Figure 4.11: Timing Result for Four Macros
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Comparing the results from Figure 4.7, Figure 4.10 and Figure 4.11, the read delay
is reduced for the same memory size if the number of macros increased since it
relies on the word length of each macro. As an example, 32×8 with a single macro
has a timing period for 1686 which is 1221 for two macros. The reason is that
the word length of the macro is 32 for the single design but 16 for the two macros
design. So 32×8 with two macros has a similar timing as 16×8 with single macro,
but a little larger due to the extra mux logic. The same situation happens to four
macros design, as shown in Figure 4.11.

Power Consumption

The results are shown in Table 4.1, Table 4.2 and Table 4.3. Leakage was increased
based on the length of the word, length of I/O, and the number of macro. Same
as the area, the length of I/O has the most significant impact on leakage and the
length of the word has the least impact. As the result for dynamic power after
synthesis was not reasonable, only the dynamic power for reading/writing, which
got after import specified VCD file, was considered here. Read operation has more
dynamic power than write due to the pre-charge operation. The length of I/O has
more impact on dynamic power than the length of the word. The increase of mux
(keep the same memory size) reduced the dynamic power since only one of the
macros works at a time.

Word I/O Dyn Power (normalized/Mhz) Leakage (normalized)
Read Write Synthesis Read Write Synthesis

8 8 13.63 8.35 28.18 216 241 228
8 16 25.89 13.29 18.82 387 440 436
8 32 53.07 23.38 33.74 726 834 827
8 64 94.79 42.72 64.53 1410 1622 1610
16 8 14.34 8.37 13.88 238 264 263
16 16 28.22 14.53 21.12 408 461 457
16 32 54.49 23.87 116.75 748 855 798
16 64 100.21 42.92 226.72 1432 1644 1530
32 8 18.69 12.43 40.52 266 290 276
32 16 32.22 16.53 23.39 436 487 482
32 32 61.51 25.48 139.14 776 881 824
32 64 109.94 44.27 69.14 1458 1670 1658
64 8 25.96 17.88 56.32 327 353 339
64 16 40.63 22.15 98.08 497 550 521
64 32 72.32 30.95 44.09 837 944 937
64 64 130.28 52.00 355.87 1521 1732 1618
128 8 37.65 27.56 30.54 391 417 416
128 16 56.14 31.79 147.11 562 614 587
128 32 95.46 40.46 52.80 902 1009 1003
128 64 169.17 61.53 525.66 1587 1799 1686
256 8 62.57 48.52 143.80 558 585 568
256 16 88.76 52.73 246.04 729 782 750
256 32 143.53 61.35 71.03 1070 1178 1168
256 64 248.39 80.05 866.64 1757 1968 1851
512 8 110.37 88.57 83.36 863 891 883
512 16 152.02 92.75 90.72 1036 1089 1079
512 32 237.71 101.34 811.08 1379 1487 1423
512 64 410.06 119.58 136.43 2054 2282 2264

Table 4.1: Memory Array with Single Macro Result —Power
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Word I/O Dyn Power (normalized/Mhz) Leakage (normalized)
Read Write Synthesis Read Write Synthesis

8x2 8 14.78 8.87 32.72 283 312 296
8x2 16 26.85 13.46 23.63 509 567 555
8x2 32 53.46 22.99 42.64 951 1071 1048
16x2 8 17.23 10.64 16.49 303 331 320
16x2 16 30.03 14.99 68.56 524 583 556
16x2 32 58.27 23.97 136.31 970 1090 1033
32x2 8 20.76 12.76 45.04 335 363 347
32x2 16 35.40 16.99 80.88 557 615 589
32x2 32 67.39 25.79 158.57 1004 1124 1067
64x2 8 29.35 18.39 61.20 376 404 389
64x2 16 47.94 22.61 34.23 599 657 646
64x2 32 87.50 31.23 53.24 1041 1163 1139
128x2 8 46.71 28.11 93.70 651 679 663
128x2 16 74.10 32.29 46.47 872 930 913
128x2 32 131.29 40.86 298.16 1316 1435 1377
256x2 8 79.90 49.16 156.76 1033 1064 1041
256x2 16 123.76 53.31 68.43 1268 1332 1300
256x2 32 213.78 61.85 87.22 1737 1872 1813
512x2 8 144.01 89.54 100.90 1787 1822 1793
512x2 16 219.65 93.74 111.57 2076 2148 2101
512x2 32 373.04 102.29 239.46 2649 2801 2737

Table 4.2: Memory Array with 2 Macros Result —Power

Word I/O Dyn Power (normalized/Mhz) Leakage (normalized)
Read Write Synthesis Read Write Synthesis

8x4 8 15.18 9.28 17.08 312 345 346
8x4 16 27.52 13.99 68.75 552 620 603
8x4 32 54.43 23.52 48.35 1037 1177 1136
8x4 64 120.43 44.70 93.91 2022 2295 2201
16x4 8 17.47 10.91 40.72 342 375 362
16x4 16 30.52 15.37 33.24 584 651 627
16x4 32 58.97 24.44 55.99 1068 1207 1162
16x4 64 116.32 36.08 289.54 2042 2322 2246
32x4 8 21.14 13.13 47.91 356 389 376
32x4 16 35.94 17.37 33.08 599 667 639
32x4 32 74.65 26.62 164.77 1091 1223 1186
32x4 64 142.94 46.16 331.36 2073 2336 2257
64x4 8 29.77 18.83 64.68 410 443 431
64x4 16 48.48 23.06 39.98 649 716 693
64x4 32 95.37 32.10 216.90 1139 1268 1236
64x4 64 180.83 51.55 114.14 2103 2372 2281
128x4 8 47.49 28.49 97.07 760 793 780
128x4 16 75.53 32.69 167.16 1006 1070 1052
128x4 32 136.76 41.62 76.41 1484 1621 1580
128x4 64 253.88 60.47 126.58 2452 2727 2635
256x4 8 80.72 49.58 159.47 1239 1273 1253
256x4 16 125.28 53.79 270.77 1508 1579 1551
256x4 32 216.48 62.47 489.40 2046 2192 2155
512x4 8 144.83 89.87 286.42 2194 2236 2218
512x4 16 221.24 94.04 117.17 2551 2637 2567

Table 4.3: Memory Array with 4 Macros Result —Power
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Chapter 5
Comparison and Analysis

The last part of this project is to compare with standard SRAM in the same
technology. The following comparison was made based on the original SRAM
that Xenergic supplied and the new implemented SRAM.

128b 256b 512b 1kb

2kb 4kb 8kb

4

8

12

Figure 5.1: AreaSingleMacro (normalized)

128b 256b 512b 1kb

2kb 4kb 8kb
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Figure 5.2: Area2xMacro (normalized)

As shown in Figure 5.1 to Figure 5.3, the blue line is for the original memory, and
the orange is for the new memory. It is not difficult to see that new memory has
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Figure 5.3: Area4xMacro (normalized)

a higher density in small capacity areas. At about 2kb, it gradually began to lose
its advantage. They all have a higher density for multi macros than single macro,
and keeps the same shape as the single macro, but get a little bit closer to each
other.

The area reduced around 60 percent for 128b and 256b with a single macro and
30 percent for 512b and 1kb. The Area reduced 50 (128b, 256b) and 30 (512b,
1kb) percent for 2 macros. Around 20 percent area reduce for four macros within
1kb.

The new SRAM has a smaller advantage in quad-macro. This is because
the logic for quad-macro becomes much complex than single and dual macros,
which takes more area. This is also a reason that the test only runs till 4 for the
number of the macro.

Figure 5.4: Power Comparison (normalized)

After being compared with the data from Xenergic, the total power from the New
SRAM is almost the same or smaller if the I/O is 32 or less, and the memory size
is 8192 or less (Figure 5.4). The power consumption is about 10 percent less for
16 I/O and 30-40 percent less for 8 I/O. The new memory consumes less power
with less I/O and consumes more power with more I/O.
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Figure 5.5: Speed Comparison (normalized)

The clock period for the original SRAM is generally around 0.4ns to 0.6ns. The
New memory’s clock cycle is generally the same level as traditional memory if the
word of a single macro is 8 or less. The more Word length, the longer the period,
as shown in Figure 5.5.

Figure 5.6: Trade-off Discussion for Specific Capacity of Memory

We can see that there are some trade-offs between speed, power consumption,
and memory size. As shown in Figure 5.6, assume we have a specified capacity
for memory. The increase of word length in a single macro gives a longer clock
period but more area reduction and less power consumption. The increase in data
length in a single macro gives higher power consumption and less area reduction
but higher speed. The increase in macros gives a little bit less area reduction but
higher speed.

Even though there are trade-offs, we do have some combinations which
have a similar speed but less power consumption than the original. These can be
used for high bandwidth memory. Such as 8 × 32 for a single macro (2 × 8 × 32
for two macros, 4 × 8 × 32 for four macros) which has a similar clock period and
power consumption.

As the result mentioned before, the new SRAM indeed has a higher den-



32 Comparison and Analysis

sity for size 2k or less. However, the speed of the new SRAM was limited by the
length of the word. It would need more time (smaller area) than the original if
the word length increased. It is still a trade-off between speed or area.

The power consumption of new SRAM is good for 8k (or less) if the I/O
is 32 (or less). This is another trade-off between speed and power consumption
(more I/O means less word length, which gives higher speed).

Based on the current result we got, our approach should be efficient to use
as the replacement of large SRAM than conventional small SRAM. With the help
of mixing logic and memories, the data transfer path reduced which reduced the
time and power spent during the transfer path.



Chapter 6
Conclusion

This project makes the implementation and evaluation of a new approach to
construct SRAM. The implementation includes reconstructing the entire SRAM
structure through RTL and behavior (memory cell) with Verilog, modified
LEF/LIB files, automatically generation by Python. The evaluation is done by
following the design flow (synthesis, PNR, post-simulation/schematic-simulation).

Based on all the works and results, the implemented SRAM is successfully
working as expected. Even though there are some trade-offs between power
consumption and access speed, the implemented SRAM is a high-density memory
for small size (2k or less). It can have more than 20 percent area reduction for
SRAM with 1k storage. Furthermore, the implemented memory can be mixed
into other digital designs (act as in-logic memory) and handled by the PNR tools
directly. By using multiple of the implemented SRAM in design will lead to a
high bandwidth distributive in-logic memory with higher density and no extra (or
less) power consumption than using multiple standard SRAM.
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Chapter 7
Future Work

Current work is only compared with conventional SRAM. It should be compared
with full standard cell memory (latch-register based) as well. And the work
should have more evaluation and analysis between traditional architecture and
the new approach.

The LEF file used in this project wasted more area than expected. It can
be reduced by re-adjusting the power connection. It should be modified through
layout by analog designer directly. The timing information used in the LIB file
also can be modified based on reality. The delay controls in the pulse generator
can be modified as well. These will further increase density and frequency.

The current implementation only tested in specified technology. It should
be tested and modified for other technologies to make it generic in the future.
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Appendix A
LIB Syntax Example

Example 1-1 General Syntax of the Library Description
Liberty User Guide, Volume 1 Version 2017.06

library (name) {
technology (name) ; /* library-level attributes */
delay_model : generic_cmos | table_lookup | cmos2 |
piecewise_cmos | dcm | polynomial ;
bus_naming_style : string;
routing_layers (string) ;
time_unit : unit ;
voltage_unit : unit ;
current_unit : unit ;
pulling_resistance_unit : unit ;
capacitive_load_unit (value, unit) ;
leakage_power_unit : unit ;
piece_type : type ;
piece_define ("list") ;
define_cell_area (area_name, resource_type) ;

/* default values for environment definitions */
operating_conditions (name) {

/* operating conditions */
}
timing_range (name) {

/* timing information */
}
wire_load (name) {

/* wire load information */
}
wire_load_selection () {

/* area/group selections */
}
power_lut_template (name) {

/* power lookup table template information */
}
cell (name1) {/* cell definitions */

/* cell information */
}
cell (name2) {

/* cell information */
}
scaled_cell (name1) {

/* alternate scaled cell information */
}
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type (name) {
/* bus type name

}
input_voltage (name) {

/* input voltage information */
}
output_voltage (name) {

/* output voltage information */
}

}

Example 3-2 Setting Library-Level Default Attributes for a CMOS Library
Liberty User Guide, Volume 1 Version 2017.06

library (example) {
...
/* default cell attributes */
default_cell_leakage_power : 0.2;
/* default pin attributes */
default_inout_pin_cap : 1.0;
default_input_pin_cap : 1.0;
default_output_pin_cap : 0.0;
default_fanout_load : 1.0;
default_max_fanout : 10.0;
wire_load (WL1) {

...
}
operating_conditions (OP1) {

...
}
default_wire_load : WL1;
default_operating_conditions : OP1;
default_wire_load_mode : enclosed;
...

}

Example 4-1 cell Group Example
Liberty User Guide, Volume 1 Version 2017.06

library (cell_example){
date : "August 14, 2015";
revision : 2015.03;
cell (inout){

pad_cell : true;
dont_use : true;
dont_fault : sa0;
dont_touch : true;
area : 0;/* pads do not normally consume internal
core area */
cell_footprint : 5MIL;
pin (A) {

direction : input;
capacitance : 0;

}
pin (Z) {

direction : output;
function : "A";
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timing () {
...

}
}

}
cell(inverter_med){

area : 3;
preferred : true;
pin (A) {

direction : input;
capacitance : 1.0;

}
pin (Z) {

direction : output;
function : "A’ ";
timing () {

...
}

}
}
cell(nand){

area : 4;
pin(A) {

direction : input;
capacitance : 1;
fanout_load : 1.0;

}
pin(B) {

direction : input;
capacitance : 1;
fanout_load : 1.0;

}
pin (Y) {

direction : output;
function : "(A * B)’ ";
timing() {

...
}

}
}
cell(buff1){

area : 3;
pin (A) {

direction : input;
capacitance : 1.0;

}
pin (Y) {

direction : output;
function : "A ";
timing () {

...
}

}
}

} /* End of Library */
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