
Puncturable Symmetric KEMs for
Forward-Secret 0-RTT Key Exchange
MATILDA BACKENDAL
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2019

M
A

TILD
A

 B
A

C
K

EN
D

A
L

Puncturable Sym
m

etric K
EM

s for Forw
ard-Secret 0-R

T
T

 K
ey Exchange

LU
N

D
 2019

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2019-699
http://www.eit.lth.se

Puncturable Symmetric KEMs for
Forward-Secret 0-RTT Key Exchange

Matilda Backendal

Department of Electrical and Information Technology
Lund University

Supervisors: Felix Günther, Thomas Johansson

Examiner: Fredrik Rusek

June 2019

c© 2019
Printed in Sweden
Tryckeriet i E-huset, Lund

Till Peter,
som lärde mig att det inte finns några dumma frågor.

Juni 2019

ii

Abstract

The latest version of the Transport Layer Security protocol (TLS 1.3) introduces a
pre-shared key zero round-trip time (0-RTT) mode. This enables session resump-
tion with no latency before the first application data can be sent, at the cost of
losing forward secrecy and replay protection. There is high demand from Inter-
net companies for this performance-enhancing feature, and some service providers
have chosen to already enable it by default despite the security compromise cur-
rently associated to it. In this work we explore the possibility to achieve forward
secrecy for resumed sessions in 0-RTT mode, mitigating the security risks presently
adherent to it.

To abstract the key exchange in TLS 0-RTT mode, we introduce a new prim-
itive which we call symmetric-key key encapsulation mechanisms (S-KEMs). For-
ward secrecy is attained through “puncturing” of the secret key, which we capture
formally by puncturable S-KEMs (PS-KEMs). Furthermore, to enable optimiza-
tions that leverage ordering and to achieve the greatest possible generality of our
model, we also introduce stateful versions of S-KEMs and PS-KEMs. We exam-
ine the relationship between these new primitives, give game-based functionality
and security notions and show how pseudorandom functions (specifically based on
the Goldreich-Goldwasser-Micali construction) can be used to build instantiations
which meet the security goals.

iii

iv

Sammanfattning

I den senaste versionen av kommunikationsprotokollet Transport Layer Security1

(TLS 1.3), introducerades en funktion som möjliggör att sessioner återupptas i
“zero round-trip time”2 (0-RTT) vilket innebär att snabbare uppkoppling är möjlig
eftersom krypterad applikationsdata kan skickas redan med det första dataflödet
från klient till server. För att uppnå detta används krypteringsnycklar som har
förhandlats fram i tidigare sessioner, så kallade “pre-shared keys”3. Tyvärr in-
nebär den nya funktionen att kommunikationen inte längre är säker mot framtida
korruption av dessa långlivade nycklar. Detta kallas för avsaknad av “forward
secrecy”4.

Trots de lägre säkerhetsgarantierna är efterfrågan på 0-RTT-funktionen stor
bland internetleverantörer eftersom den ger en markant hastighetsökning, fram-
förallt för mobila nätverk där latensen är hög. I det här arbetet undersöker vi
möjligheten att behålla den snabba återuppkoppling, men samtidigt uppnå samma
säkerhet som vid en vanlig anslutning. Detta görs genom en abstraktion av nycke-
lutbytet i en TLS-session, vilket vi modellerar med ett nytt kryptografiskt objekt
som vi har döpt till “symmetriska nyckelinkapslingsmekanismer” (S-KEMs). For-
ward secrecy uppnås genom införandet av “nyckelpunktering”, vilket vi modellerar
med s.k. punkterbara S-KEMs (PS-KEMs). Vi formaliserar funktionalitet- och
säkerhetsmålen med hjälp av spelbaserade definitioner för S-KEMs och PS-KEMs.
Vi ger även exempel på hur algoritmer kan konstrueras för att uppnå målen, samt
utvidgar modellen till att även innefatta ordningsföljden av återanslutna sessioner
för att möjliggöra optimeringar.

1Översatt: Transportlagersäkerhet
2Översatt: noll tur- och returtid
3Översatt: tidigare delade nycklar
4Översatt: framåtsäkerhet

v

vi

Acknowledgments

First and foremost, I owe the idea behind this work to my advisor Felix Günther.
Thank you for taking me on as your first master thesis student and for the gen-
erosity with which you have treated me, both to your time and advice. Your
continuous support is what made this thesis possible.

A sincere thank you also to my supervisor Professor Thomas Johansson for
enabling the arrangements of this project, for welcoming me in the crypto group
at LTH and for helping with formalities and logistics.

Lastly, I would like to express my gratitude to several people who—through
small but significant acts—supported me in this project and helped shape the
outcome. Thank you Joseph Jaeger, for never saying no to a question and for
helping me imagine symmetric-key KEMs before they existed. Thank you to my
mentor Malin Jonsson, for sharing your experiences and insights on thesis-writing.
Thank you Erik Sandström, for keeping me motivated and for showing me that
the only true failure is not trying. Thank you also to Marie Backendal Lundin, for
encouraging me to take a walk (you are the guardian of my physical and mental
well-being), to Malin Lundin, for understanding me better than anyone else, and
to Peter Lundin, for always reading my work, for your questions and feedback and
for being my greatest supporter. I owe you my curiosity.

vii

viii

Acronyms

0-RTT Zero Round-Trip Time

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IETF Internet Engineering Task Force

KDF Key Derivation Function

KEM Key Encapsulation Mechanism

OS-KEM Ordered Symmetric-key Key Encapsulation Mechanism

PS-KEM Puncturable Symmetric-key Key Encapsulation Mechanism

PRF Pseudorandom Function

PRG Pseudorandom Generator

PSK Pre-Shared Key

POS-KEM Puncturable Ordered Symmetric-key Key Encapsulation
Mechanism

RFC Request For Comments

S-KEM Symmetric-key Key Encapsulation Mechanism

TLS Transport Layer Security

URL Uniform Resource Locator

ix

x

Table of Contents

1 Introduction and Overview 1
1.1 Introduction . 1
1.2 Overview . 3

2 Background 5
2.1 Symmetric-Key Cryptography . 5
2.2 Public-Key Cryptography . 5
2.3 Cryptographic Schemes: Syntax, Correctness and Security 6
2.4 Key Encapsulation Mechanisms . 7
2.5 Network Protocols and TLS . 9
2.6 Sessions and Resumption . 9
2.7 Forward Secrecy . 10

3 Overview of Results 11

4 Basic Definitions 13
4.1 Notation and Conventions . 13
4.2 Games . 13
4.3 Pseudorandom Generators . 15
4.4 Pseudorandom Functions . 16
4.5 Birthday Bound . 16

5 Symmetric-key KEMs 19
5.1 Syntax . 19
5.2 Security . 19
5.3 Instantiation using Pseudorandom Functions 21
5.4 Integrity of Ciphertexts . 27

6 Ordered Symmetric-key KEMs 31
6.1 Syntax . 31
6.2 Correctness . 32
6.3 Robustness . 39
6.4 Security . 39
6.5 Instantiations . 41

xi

7 Puncturable Symmetric-key KEMs 49
7.1 Syntax . 49
7.2 Correctness . 50
7.3 Security . 51
7.4 Instantiation . 52

8 Puncturable Ordered Symmetric-key KEMs 61
8.1 Syntax . 61
8.2 Correctness . 61
8.3 Robustness . 66
8.4 Security . 66
8.5 Instantiations . 67

9 Conclusion 71
9.1 Future Work . 72
References . 72

References 73

A Illustration of the PS-KEMGGM Puncturing Algorithm 79

B Populärvetenskaplig sammanfattning 80

xii

Chapter 1
Introduction and Overview

1.1 Introduction

The original goal of cryptography is to provide two parties, let’s call them Alice
and Bob, with tools that allow them to communicate openly, but securely, in the
face of some adversary, Eve. By openly, we mean that the actual communication
is not hidden from Eve. Rather, it occurs across a public and insecure channel and
the adversary is both aware of the communication and assumed to have means to
intercept and interact with it. The definition of securely is less straight-forward,
but in classic cryptography the goal was mainly to achieve privacy, i.e. that the
information exchanged between Alice and Bob could not be learned by Eve. The
art of hiding vulnerable information from the curious eyes of enemies has been
used for thousands of years in everything from warfare to love letters. Today, in
the digital era, cryptography has become indispensable to the general public as
the Internet has risen to be our main platform for communication.

Cryptography has likewise risen to the challenge and provides a wealth of tools
for diverse tasks such as identification, authentication and private communication.
Most people today use cryptography without even noticing it, for example each
time they access a web page through https, sign a contract digitally or use a
messaging app. Users of online services unconsciously assume that their data is
protected, but still expect high performance from applications. Almost everyone
becomes frustrated when a web page loads slowly, but few are those who would
accept that their Internet bank publicly broadcast their account details to speed
up the connection. The combined goal of security and performance is the main
working area of modern cryptography, and while they may not seem incompatible
they often end up going head-to-head.

One example of where performance and privacy end up competing for impor-
tance is in secure browsing. Whenever a user accesses a URL starting with https,
a cryptographic protocol called TLS (Transport Layer Security [42]) is used to
ensure that the communication is private. In order to do so, cryptographic ma-
terial (such as secret keys) must first be negotiated between the communicating
parties. The parties in the applications we are concerned with will generally be a
user in a browser, called the client, and a service provider (e.g. the host of a web
page) called the server. In order to establish the shared cryptographic parameters
and keys, an initial phase of TLS called a handshake is run. This handshake does

1

2 Introduction and Overview

not contribute to the actual data exchange between client and server, rather it is
added before the real communication begins to ensure that subsequent messages
are secure. This means that a client accessing a web page via https will expe-
rience a slow-down compared to when browsing insecurely via for example http
(notice the ending s of https, which stands for secure). The slow-down comes
from transmission latency – the time it takes for a message to travel from sender
to receiver across the network. The time of one message being sent, received and
responded to is called one round-trip, and each round-trip in the handshake phase
adds latency to the communication. More latency means slower responding ap-
plications and more frustrated users, so shaving off round-trips is a major goal in
current development of Internet protocols.

Therefore, in the latest version of the Transport Layer Security protocol,
TLS 1.3 [42], a new feature called zero round-trip time (0-RTT) resumption has
been added. The novelty consists of allowing communication sessions to be re-
sumed (i.e., restarted for a client and server who have been communicating pre-
viously) with zero round-trips in the TLS handshake phase. This means that the
actual payload data is sent right away, and no time is spent on initially negotiating
cryptographic parameters and exchanging keys before the real communication can
begin. This leads to a significant speed up in resumed sessions, which make up
around 40 % of the total connections [49]. 0-RTT resumption is possible thanks
to the fact that the communicating parties have been connected previously, and
already share some secret from their previous session(s). This pre-shared secret
can be used again to derive keying material to encrypt the first message in the
resumed session. However, the performance increase comes at a price.

When users of the current version of TLS 1.3 re-use the pre-shared secret across
sessions, they lose a security property called forward secrecy [23, 31]. Briefly ex-
plained, forward secrecy means that if at some future point one of the communicat-
ing parties is compromised and the secret key they hold at that point is revealed,
then all past communication sessions are still secure. Usually this is achieved by
using keys derived from ephemeral key material, e.g. via a Diffie-Hellman key
exchange [22], so that if the secret of one session is compromised, messages in
all other sessions are still undecipherable to the attacker. In 0-RTT resumption,
the pre-shared key is long-lived and kept during several sessions (up to 7 days in
TLS 1.3 [42, p. 74]), and if it is compromised all session keys derived from it are
too. Hence messages encrypted under keys derived from the pre-shared key are
not forward-secret.

In this work, we explore the possibility to achieve forward secrecy whilst keep-
ing the pre-payload communication at zero round-trips. This is done by intro-
ducing a new cryptographic object which we call puncturable symmetric key en-
capsulation mechanisms. Key encapsulation mechanisms (KEMs) are well-studied
objects in public-key cryptography [15, 17, 18, 19, 46], and here we bring the idea
over to the symmetric-key setting to match the context of session resumption.
Puncturing is added to give the desired forward secrecy. Essentially it is an opera-
tion on the secret key which “punctures” the key, making it impossible to decrypt
certain messages encrypted under earlier versions of the key. That way, previous
sessions are safe against future compromises of the evolved key.

In this project we lay the theoretic foundation of puncturable symmetric-key

Introduction and Overview 3

Ch. 5: S-KEMs

Ch. 6: OS-KEMs Ch. 7: PS-KEMs

Ch. 8: POS-KEMs

Combine

Add state Add puncturing

Figure 1.1: Overview of project.

KEMs, as well as an extension to ordered symmetric-key KEMs which capture the
transmission reliability expected of the network across which the communication
occurs. We introduce new cryptographic objects, defining both their functional-
ity and the security goals they are expected to meet. The result of the project
is a theoretical framework which can be used to reason about these objects, see
how they fit with the intended application and help implementers construct secure
schemes. We do give some examples of constructions in this work, as well discuss
potential optimizations and ideas for instantiations to explore in the future, but
we stress that the main contribution is the theory developed and not the par-
ticular constructions. To implement and optimize instantiations of puncturable
symmetric-key KEMs will have to be the subject of future work.

1.2 Overview

First, in Chapter 2, we give some background and intuitive explanations of no-
tions necessary for understanding the results of this project. A reader familiar
with cryptography can skip it without any loss. Chapter 3 provides a more de-
tailed overview of the results to come. In Chapter 4 we introduce the notation
used in this text, explain briefly what a cryptographic game is as well as recap
the definitions of some fundamental cryptographic objects. In Chapter 5 we define
syntax, correctness and security of symmetric-key KEMs (S-KEMs), and give a
construction which we prove is secure. With the foundations laid, we add prop-
erties to the basic S-KEM notion to bring us closer to our end goal. First, in
Chapter 6, we add state (which can be used as a way to keep track of the order in
which sessions are initiated) and define ordered S-KEMs (OS-KEMs). Next, we
go back to the original stateless S-KEMs and add puncturing to get puncturable
S-KEMs (PS-KEMs) as defined in Chapter 7. Finally, in Chapter 8 we combine
the two branches to obtain puncturable ordered S-KEMs (POS-KEMs). Figure 1.1
shows an overview of the notions and illustrates their relations.

4 Introduction and Overview

Chapter 2
Background

2.1 Symmetric-Key Cryptography
In symmetric-key cryptography, or secret-key cryptography, the parties wishing to
communicate securely (e.g. Alice and Bob) share a secret key which they can use
both to encrypt and, among other things, authenticate messages they exchange.
The key can be a code word (as in the historic Vigenère cipher) or some piece of
information which gives those holding it a mutual way of transforming plaintext
into ciphertext (and reversing it). For further reading on historical ciphers, see for
example [48]. In modern cryptography, a symmetric-key cipher could for example
consist of a large set of permutations on a set of strings, which is both the message
and ciphertext space. The secret key is then the precise permutation used to
encrypt. Without it, the large number of possible permutations makes decryption
infeasible. With it, it is a simple matter of evaluating the permutation on the
ciphertext to get back the plaintext. Such a cipher is commonly referred to as a
block cipher, and famous examples include DES (Data Encryption Standard) [21]
and AES (Advanced Encryption Standard) [1].

The important thing to remember about secret-key cryptography is the sym-
metry; it requires that the involved parties have access to a common secret key. If
Alice and Bob want to communicate, they need one such key. If Alice also wants
to communicate privately with Charlie, Alice and Charlie need a different secret
key. Any parties involved in private communication need a shared secret key for
that specific session, meaning that the number of keys a user needs grows linearly
with the number of communication partners they have. A difficulty associated
with this is key distribution, i.e., ensuring that the parties are informed of the
secret key in a secure way. This is a non-trivial problem and the difficulties asso-
ciated to it spurred the invention of a different type of cryptography: public-key
cryptography.

2.2 Public-Key Cryptography
In public-key cryptography, or asymmetric cryptography, a user (Alice) has a secret
(or private) key sk and a public key pk. The public key is like an address; it is
openly available to anyone who wishes to communicate with Alice, and (in the case
of encryption) when applied to a message it encrypts it so that only Alice, who
holds the secret key, can decrypt. Because of the asymmetry of the keys, Alice
only needs one key-pair (sk, pk). Both Bob and Charlie can use Alice’s public

5

6 Background

key to encrypt their messages to her, and neither will be able to read the other’s
communication because only Alice has the secret key that allows decryption. This
effectively solves the key distribution problem, since each user simply broadcasts
their public key openly. However public-key cryptography has its own drawbacks,
such as being less efficient than symmetric primitives. For this reason, the public-
key infrastructure is often used as a means of distributing symmetric keys, which
are then used for the actual communication. One way to do this is by using a
key encapsulation mechanism, which is a kind of encryption scheme for keys. We
discuss it in more detail in Section 2.4.

2.3 Cryptographic Schemes: Syntax, Correctness and Security
This project revolves around the description of new cryptographic objects. The
description is given in terms of schemes. A “scheme” is a plan, program or strategy.
A cryptographic scheme is the description of a cryptographic object; a design for
achieving a cryptographic goal. The base layer of a cryptographic scheme is its
syntax, which specifies the structure and rules of the scheme. Typically we will
define a scheme in terms of some mathematical object; it might be a function,
in which case the syntax specifies the domain and range, or it might be a tuple
consisting of algorithms, then the syntax specifies the possible input and output
of each algorithm. An example could be a symmetric encryption scheme, which
consists of a key generation algorithm, an encryption algorithm and a decryption
algorithm. Syntax tells us what type the keys produced by key generation are
(e.g. integers, strings of some specified length, prime numbers), what arguments
the encryption algorithm takes (a secret key and a message for example) and
whether each algorithm is deterministic or randomized.

On top of syntax, one typically specifies the functionality or correctness ex-
pected from the scheme. If the scheme is a tuple of algorithms, the functionality
might say something about how the different algorithms interact with each other.
In the symmetric encryption scheme example, a common correctness requirement
would be that the decryption algorithm always recovers a plaintext message which
has been encrypted using the encryption algorithm. This is necessary to rule
out schemes which follow the specified syntax, but lack some important piece of
functionality which renders them useless. Note that at this point, we still do not
know anything about how the algorithms of a scheme work. We know what the
domains and ranges are, and something about how they interact under specific cir-
cumstances, but the inner workings of each function or algorithm is not specified.
This “black box” approach is used to obtain the greatest possible generality—to
cover as many constructions that could potentially meet the intended goals as
possible. A construction or instantiation, in contrast, is a specification of the pro-
cedures of a scheme and details exactly how the scheme works. An instantiation
which has the specified syntax of a certain cryptographic object is simply called
a scheme of that type. E.g., a construction that has the syntax of symmetric
encryption is called a symmetric encryption scheme. If it additionally meets the
correctness requirements it is called a “correct symmetric encryption scheme”.

Not all correct schemes are of practical interest. Some may be inefficient or,
more importantly, insecure. To know whether a scheme is insecure one needs to
define what security means, which ties back to the original aim when designing

Background 7

the scheme. Security goals come in many flavours, such as privacy, authenticity,
or unforgeability. In the symmetric encryption scheme example, the basic aim is
likely to achieve privacy, i.e. that no one except the intended recipient can read an
encrypted message. Security definitions are more fine-grained than so, however,
and typically specify a precise goal such as “ciphertext indistinguishability from
random bits” (which says that the goal is for encrypted messages to be difficult to
tell apart from strings of bits chosen uniformly at random). To formally capture
the security notion and be able to reason about whether a scheme meets the goals,
security is often given in the form of a game. In the game, the scheme is subjected
to an attack by an adversary who, while adhering to the rules of syntax and
correctness, tries to break the security of the scheme. For more details on games,
see Section 4.2. The abilities of the adversary are also specified in the game, and
contribute with the attack scenario part of the security notion. That is, if in the
symmetric encryption scheme example the adversary is assumed to have access
to the encryption algorithm (to which it can input any plaintext message) and
its target is to distinguish the resulting ciphertext from random for a message
of its choice, the security notion might be called “ciphertext indistinguishability
under chosen plaintext attack”. Often the security notion is given some handy
abbreviation “xxx” (such as ind-cpa, for indistinguishability under chosen plaintext
attack), and a scheme that withstands all attacks in the specified scenario is called
xxx secure (ind-cpa secure in our example).

2.4 Key Encapsulation Mechanisms
A key encapsulation mechanism (KEM) is a cryptographic primitive used to trans-
port a symmetric key to a designated party in a public-key infrastructure. It is
similar to a public-key encryption scheme with the difference that the encrypted
(encapsulated) plaintexts are not arbitrary messages, but keys generated by the
scheme. KEMs are typically used in combination with a symmetric encryption
scheme to give an efficient public-key encryption scheme via so called “hybrid en-
cryption”. The concept was introduced and formalized by Cramer and Shoup
[15, 18]. We give here an overview of a public-key KEM scheme following their
definition.

Definition 1. A key encapsulation mechanism, KEM = (KeyGen,Encap,Decap),
is a triple of algorithms with four associated sets: the secret-key space SK, the
public-key space PK, the key space K and the ciphertext space C. The algorithms
operate as follows.

• The probabilistic key generation algorithm, KeyGen, takes no input and
produces a public key/secret key pair (sk, pk) with sk ∈ SK, pk ∈ PK.

• The randomized encapsulation algorithm, Encap, takes as input a public
key pk ∈ PK and produces a pair (K ,C) consisting of a key K ∈ K and an
associated ciphertext C ∈ C.

• The deterministic decapsulation algorithm, Decap, on input the secret key
sk ∈ SK and a ciphertext C ∈ C, returns either a key K ∈ K or the special
symbol ⊥ to indicate failure.

8 Background

Figure 2.1: Illustration of the functioning of a public-key key encapsulation mechanism
(KEM). A KEM scheme consists of three algorithms; KeyGen, Encap and Decap, the first
two of which are randomized (indicated by $ in the figure.)

This specifies the syntax of a KEM scheme, illustrated in Figure 2.1. The func-
tionality is captured in the following correctness requirement: For scheme KEM
to be called correct, we require that decapsulation of a key K ∈ K under the
secret key corresponding to the public key with which it was encapsulated always
succeeds. Formally, for all (sk, pk) produced by KeyGen and all (K ,C) output by
Encap(pk) it holds that Pr [Decap(sk,C) = K] = 1, where the probability is over
the randomness (“coins”) of KeyGen and Encap.

In this project, we introduce a symmetric-key version of KEMs, which can be
used to exchange fresh keys in a setting where the parties already share a secret.
The problem we address bears similarities to that of key wrapping, posed by NIST
in the 1990’s and formally addressed by Rogaway and Shrimpton [43]. The goal of
a key wrap algorithm is, as phrased by the American Standards Committee Work-
ing Group X9F1 in their request for comments, “to provide privacy and integrity
protection for specialized data such as cryptographic keys ... without the use of
nonces” [24]. Essentially, it is a primitive similar to symmetric encryption, but in-
stead of encrypting arbitrary messages the plaintexts are cryptographic keys. The
motivation for such algorithms is, for example, secure storage of keys, where one
key is used to encrypt other keys so that they can be safely stored on an insecure
disk.

Despite the similar goals, there are some fundamental differences that set key
wrapping primitives apart from symmetric-key KEMs. For example, key wrap
algorithms are deterministic, which S-KEMs are not required to be (in fact, none
of our suggested constructions are). Secondly, the security goal of key wrap is
privacy and integrity combined, and Rogaway and Shrimpton [43] hence define
a security notion which covers both concurrently. For S-KEMs, we are mainly
interested in privacy, and although we do formalize an integrity notion, we keep it
separate from privacy. Lastly, the difference between key wrap algorithms and S-
KEMs lies in their intended usage and hence in the extensions we consider. A key
wrap algorithm could potentially be used to instantiate an S-KEM scheme, but
the key wrapping problem is not concerned with forward secrecy nor transport
of encapsulated keys across a network. Hence both ordering and puncturing is
outside the scope of key wrap schemes.

Background 9

Figure 2.2: TLS is a cryptographic protocol for secure Internet communication. It consists
of a handshake protocol (for key establishment) and a record protocol (for payload data
exchange).

2.5 Network Protocols and TLS

A network protocol defines a set of rules which govern the communication between
parties on a network. The protocol specifies how to format, transmit and receive
data and ensures that the parties involved adhere to the common procedures. This
enables communication between a multitude of devices regardless of their inherent
differences.

Transport Layer Security (TLS) is a cryptographic network protocol designed
to provide security for Internet communication. The Internet Engineering Task
Force (IETF), responsible for publishing TLS as a standard, describe the proto-
col in the latest request for comments (TLS 1.3, RFC 8446) [42] as “TLS allows
client/server applications to communicate over the Internet in a way that is de-
signed to prevent eavesdropping, tampering, and message forgery.” They also
state that “The primary goal of TLS is to provide a secure channel between two
communicating peers.” We will often refer to the peers as a client and a server.
On a high level, the TLS protocol consists of two parts: the handshake protocol
and the record protocol. In the handshake protocol, the parties negotiate security
parameters and agree on the protocol version to use. The server authenticates
itself (and the client optionally does too) and they agree on shared key material
to be used in the record protocol, which is where the actual information (payload
data) is exchanged. See Figure 2.2 for an illustration.

2.6 Sessions and Resumption

A session is a finite sequence of data transactions between communicating parties.
In particular, a TLS session is a connection between a client and a server. It is
initiated by the client connecting to the server, starts with the handshake phase
and then moves on to the subsequent data transfer phase. The session ends when
the connection is closed. Two entities can have several sessions running between
them, both sequentially (one after the other) and concurrently (in parallel).

10 Background

A resumed session is a new session between a client and server who have
previously communicated and already share a long-term secret (a so called “pre-
shared secret”). In session resumption, the time spent in the handshake phase
before payload data is sent may be shorter than in a completely fresh session
due to the use of previously established secrets. The same long-term pre-shared
secret can be used to exchange fresh session keys for multiple resumed sessions
within its lifetime. Session resumption and pre-shared secrets is what allows the
zero round-trip time mode recently introduced in TLS 1.3. With this novel mode
enabled, no round-trips are needed in the handshake of a resumed session before
the first payload data is sent. Instead, the pre-shared secret is used to ensure the
confidentiality of the very first data flow from client to server. Unfortunately, this
has the drawback that the data encrypted with the long-term secret is not secure
if this secret is later exposed. Addressing issues like this is the goal of a security
notion called forward secrecy, which we introduce next.

2.7 Forward Secrecy

A cryptographic scheme provides forward secrecy if exposure of the secret key
does not compromise the privacy of past communication. The term was first
introduced by Günther [31] in the setting of authenticated key exchange, and was
later mentioned as a desirable protocol characteristic by Diffie et al. [23]. Today
it is considered an essential security goal for key exchange and has been studied
extensively for such protocols following the work of Canetti and Krawczyk [14].
However, forward secrecy has also expanded beyond key exchange and been studied
in the context of private-key cryptography [9], asymmetric cryptography [36, 13],
digital signatures [2, 6] and secure channels [33].

In the setting of key encapsulation mechanisms (where to date there are sur-
prisingly few studies of it), forward secrecy requires that corruption of the secret
key does not compromise the confidentiality of previously encapsulated keys. In
TLS session resumption – our intended application – this means that exposure of
the long-term secret should not imply a loss of privacy for messages exchanged in
past sessions.

Chapter 3
Overview of Results

Having laid the foundation we are now ready to provide a more detailed overview
of the results of this work. To model the way TLS uses a resumption key to
allow session resumption in 0-RTT, we introduce and define symmetric-key key
encapsulation mechanisms (S-KEMs) in Chapter 5. Like KEMs, the idea behind
S-KEMs is to enable two parties to establish a key in a one-shot message without
further interaction, but from a shared symmetric key rather than in the public-key
setting. Beyond giving the syntax and functionality of S-KEM schemes, we also
define three security goals—two privacy notions and one integrity notion—and
show that they relate in the same way as in symmetric encryption. We also give
an example of a secure instantiation based on so-called ‘pseudorandom functions’
and describe how it captures a 0-RTT TLS handshake.

In TLS, and also in the S-KEM model we have devised, a pre-shared key allows
for more than one subsequent resumed session to be established. In fact, not only
multiple sequential sessions are possible, but also several ones running in parallel.
Since the connection requests are sent across a network, they may or may not arrive
to the recipient in the same order they were created. Depending on the degree
of transmission reliability, the communicating parties could potentially leverage
the ordering of their resumed sessions to obtain more efficient constructions. To
enable this, we add state and define ordered S-KEMs (OS-KEMs) in Chapter 6.

To capture settings with varying network reliability—and hence varying de-
grees of ordering expected—we give three levels of correctness for OS-KEMs: no
ordering, weak ordering and perfect ordering. The first essentially has the func-
tionality of stateless S-KEM schemes, and demands correct handling under any
(re-)ordering. Perfect ordering expects the network to be completely reliable, and
only handles received messages if they arrive in the exact order sent. Such a set-
ting would not need any communication between client and server, as they could
simply follow a predetermined sequence of sessions keys (e.g. using a hash chain).
In reality, however, we expect that some connection requests may cross in flight or
be lost in transmission, and to handle such “local re-ordering” we introduce a class
called weak ordering. In this correctness class, re-ordering within some sliding
window is permitted, but from a bird’s-eye view we still expect the communica-
tion to appear ordered. This allows some of the efficiency optimizations possible
under perfect ordering to carry over. In this chapter, we also explore how OS-KEM
schemes could be made robust, meaning that they are required to recover from
out of order, unsupported connection requests. Finally, we give a construction for

11

12 Overview of Results

each correctness class.
The main goal of this work is to define primitives for forward-secret 0-RTT

key exchange, but neither S-KEMs nor OS-KEMs enable this. To obtain the
desired forward secrecy, we add a puncturing operation to S-KEMs and define
puncturable S-KEMs (PS-KEMs) in Chapter 7. As forward secrecy is the core tar-
get of the project, some time is spent on developing a construction that achieves
this type of security. The idea is to use the Goldreich-Goldwasser-Micali pseu-
dorandom function construction [28], which is explained in detail in Section 7.4.
Since PS-KEMs are stateless, there is no concept of ordering. To enable more
efficient constructions, we finally tie together the theory developed for OS-KEMs
and PS-KEMs to define puncturable ordered S-KEMs (POS-KEMs) in Chapter 8.
Like for OS-KEMs, three correctness classes with associated privacy notions are
introduced. Due to time constraints, no formal analysis of a POS-KEM construc-
tion is given, but we envision instantiations based on the OS-KEM and PS-KEM
constructions given in earlier chapters.

Chapter 4
Basic Definitions

4.1 Notation and Conventions

If a is a string then |a| denotes its length. A prefix of string a = b1b2 . . . bn (where
bi are individual characters) is a string a′ = b1b2 . . . bm where m ≤ n. We use
a1‖a2‖ · · · ‖an as shorthand for the concatenation of strings a1, a2, . . . , an. By
{0, 1}n we denote the set of all binary strings of length n. By {0, 1}∗ we denote
the set of all binary strings of any length, including the empty string, which is
denoted ε.

If S is a finite set, we let x←$ S denote picking an element of S uniformly at
random and assigning it to x, and we let |S| denote the size of S. All sets/spaces
associated to cryptographic schemes are assumed non-empty unless otherwise spec-
ified. N is the set of positive integers {1, 2, . . . }. By ∧ we denote the logical AND
operator, and by ∨ inclusive OR. If x is an n-tuple, then by (a1, a2, . . . , an) ← x
we mean that x is parsed into its constituents, which are then individually acces-
sible through variables a1, a2, . . . , an. If we assign a tuple to a variable through
x ← (a1, a2, . . . , an), then we assume an implicit encoding which allows the indi-
vidual elements to be recovered from x by parsing it into its constituents.

We use ⊥ (bot) as a special symbol to denote rejection, and it is assumed to
not be in {0, 1}∗. Both inputs and outputs to algorithms can be ⊥. We adopt
the convention that if any input to an algorithm is ⊥, then its output is ⊥ as
well. When specifying syntax, we sometimes write y/⊥ ← A() to explicitly show
that the output of algorithm A is a string y or ⊥. We use � (pluto) to denote
puncturing and assume that it is not in {0, 1}∗. Algorithms may be randomized
unless otherwise indicated. Some procedures maintain a table (e.g. T[·]) all of
whose entries are initially assumed to be ⊥.

4.2 Games

We use the code-based game-playing framework of Bellare and Rogaway [8]. A
game G is a program written in pseudocode and is used to define a cryptographic
security notion. It is often parameterized by a cryptographic scheme S and is run
together with an adversary, A, which in the language of games is an algorithm
which plays the game with the goal of winning. The game should be seen as
a “test” of the scheme, and the security of S is judged by the probability that

13

14 Basic Definitions

any adversary can “break it” (win). A game consists of a main part (the “body”
of the game) and possibly a number of oracles, which are procedures specified
in the code of the game that provide certain functions to the adversary. (See
Figure 4.1 and Figure 5.1 for examples.) Both games and adversaries keep state,
i.e. internal memory that allows them to store variables. What it means to “win”
a game is defined in terms of the so called advantage function. The advantage of
an adversary is a numerical value (often between 0 and 1 or -1 and 1), and the
higher the advantage the more successful the adversary is considered at playing
the game. Hence a scheme is more secure the lower the highest advantage of any
adversary playing the security game is.

Games are used to define security goals for cryptographic schemes, but also
appear ubiquitously in security proofs for specific constructions. In the latter case,
when games are used in proofs, it is often to showcase a reduction of the security
of the scheme at hand to some other object, which is already known to be secure.
Such a proof usually goes along the lines of “Object S1 is secure, and object S2 is
built from S1. We can show that if S2 is insecure, then so must S1 be. But this is a
contradiction, hence S2 is secure.” When games are used in reductions, they often
appear as a sequence (G0,G1,G2 . . .) with slight modifications separating a game
in the sequence from the next. The differences are used to bound the advantage of
an adversary playing the original game by the advantage change from each game
in the sequence to the next, together with the advantage of the final game which is
often easy to determine (e.g. because it is impossible to win). For a more thorough
explanations of how games are used in security proofs, see e.g. [47].

In the game body, which is run exactly once, the first stage is initialization
in which game variables are initialized. This stage ends by a call to the adver-
sary, potentially on some input produced in the initialization of G. The adversary
is then allowed to run and make queries (procedure calls) to the oracles, each
from which it may obtain some result as output from the procedure call. The
adversary eventually halts and potentially returns some output. If A is an al-
gorithm, such as an adversary, we let y ← AO1,...(x1, . . . ; r) denote running A
on inputs x1, . . . and coins r, with oracle access to O1, . . ., and assigning the
output to y. Coins here refers to a uniformly random bit string r, from which
the algorithm can obtain randomness in the form of “coin tosses”. We use the
shorthand notation y←$AO1,...(x1, . . .) to denote picking r at random and letting
y ← AO1,...(x1, . . . ; r). We let [AO1,...(x1, . . . ; r)] denote the set of all possible
outputs of A when run on inputs x1, . . ., coins r and with oracle access to O1,
If r is omitted, the set includes the possible outputs for all coins r ∈ {0, 1}∗.

The output of the adversary is used in the second part of the game body,
finalization, after which the game halts and returns the game outcome x, where x is
typically a string or boolean variable. By Pr [G(A)⇒ x] we denote the probability
that the execution of game G with adversary A results in the game outcome taking
value x. By true and false we denote the boolean values of true and false. A ¬
preceding a boolean variable denotes negation, e.g. ¬true = false and ¬false = true.
Sometimes the shorthand notation Pr [G(A)] will be used as an abbreviation for
Pr [G(A)⇒ true]. In games, integer variables, strings, set variables and boolean
variables (such as the win flag) are assumed initialized, respectively, to 0, the
empty string ε, the empty set ∅, and false, unless otherwise specified.

Basic Definitions 15

Game Gprg
1,G(A)

1 b∗←$AFn()

2 Return b∗

Fn():

3 s←$ {0, 1}k
4 Return G(s)

Game Gprg
0,G(A)

1 b∗←$AFn()

2 Return b∗

Fn():

3 y←$ {0, 1}k+l

4 Return y

Figure 4.1: Games formalizing PRG security of pseudorandom generator G : {0, 1}k →
{0, 1}k+l. Game Gprg

1,G is the “real world”, where oracle Fn returns real evaluations of G
on a random seed. Game Gprg

0,G is the “random world”. There oracle Fn returns a string
sampled uniformly at random from {0, 1}k+l.

4.3 Pseudorandom Generators

True randomness (in the sense of bits sampled from a completely uniform distri-
bution) is difficult to obtain in practice, yet crucial for the security of many cryp-
tographic primitives. To resolve this, we settle for the next best thing, namely
pseudorandomness. A pseudorandom distribution appears random in all tests (at
least of polynomial-time complexity), but bits from it can be generated much
faster than “truly random” bits from just a small source of real randomness. This
expansion of randomness is performed by a so called pseudorandom generator.

Definition 2. A pseudorandom generator (PRG) is a function G : {0, 1}k →
{0, 1}k+l taking as input a seed s ∈ {0, 1}k and producing output G(s) ∈ {0, 1}k+l.
The number l of additional bits in the output is called the stretch of the PRG.

A PRG is secure if the output is indistinguishable from strings sampled randomly
from the uniform distribution. To formally define security, we give two games
and define the advantage of an adversary playing them. The games are shown in
Figure 4.1. They can be viewed as a test of the strength of the PRG, reminiscent
of the “Turing test” for artificial intelligence. The idea is that an adversary A is
placed either in the “real world” (if playing game Gprg

1,G) or the “random world” (if
playing game Gprg

0,G) and by making queries to oracle Fn—which behaves differently
in the real and random world—its goal is to determine which world it is in. It does
so by returning a bit b∗, which should match the bit parameterizing the game it
“thinks” it is playing; 1 for Gprg

1,G and 0 for Gprg
0,G. We define the advantage of any

adversary A against the PRG security of G as

Advprg
G (A) = Pr

[
Gprg

1,G(A)⇒ 1
]
− Pr

[
Gprg

0,G(A)⇒ 1
]
.

16 Basic Definitions

4.4 Pseudorandom Functions

Sometimes, access to pseudorandomness in the form of bit strings generated by a
PRG is not enough, and we want instead a function which is close to a “random
function”. For this purpose we use pseudorandom functions.

Definition 3. A pseudorandom function (PRF) is a function F : {0, 1}k×{0, 1}in →
{0, 1}out which takes two inputs, a key K ∈ {0, 1}k and a label x ∈ {0, 1}in and
gives some output in the range {0, 1}out.
We can equivalently view F as a family of keyed functions, which for each K ∈
{0, 1}k defines FK : {0, 1}in → {0, 1}out where we let FK(x) = F(K , x) for all
x ∈ {0, 1}in.

A “good” PRF produces output indistinguishable from random to an adversary
without knowledge of the key. Formally, we define the advantage Advprf

F (A) of
an adversary A attacking the PRF security of F to be the probability that it
distinguishes between the games Gprf

1,F (real) and Gprf
0,F (random):

Advprf
F (A) = Pr

[
Gprf

1,F(A)⇒ 1
]
− Pr

[
Gprf

0,F(A)⇒ 1
]
.

We omit the code and briefly explain the games instead. In both games, the
adversary has access to oracle Fn which returns either real evaluations of F or
lazily sampled random strings depending on which game it is. Game Gprf

1,F is
initialized by picking K←$ {0, 1}k and answers oracle query Fn(x) from A with
the real output of FK(x). Game Gprf

0,F responds to oracle query Fn(x) with a
random element y ∈ {0, 1}out. However, a repeated query is always given the same
response. Formally the game maintains table TF[·], and answers query Fn(x) by
checking if TF[x] = ⊥ (meaning x has not been queried before). If the entry is
uninitialized, the game picks y←$ {0, 1}out and assigns TF[x] ← y, then returns
the value stored in TF[x]. (This is referred to as “lazy sampling”, since the table
entry is only initialized at position x and given a randomly sampled string after x
is queried to Fn.) In both games, the adversary is run until it halts and outputs
a decision bit, which is also the output from the game. Intuitively, the adversary
attempts to “guess” which game it is in, and the value of the bit corresponds to
its decision; 1 if it “thinks” it is in the real game Gprf

1,F and 0 if it “thinks” it is in
the random game Gprf

0,F.

4.5 Birthday Bound

In some applications, cryptographic schemes built on PRFs are susceptible to so
called “birthday attacks”. These attacks are named after the birthday paradox,
which is a fancy name for the fact that among a relatively small group of people,
the probability that any two share the same birthday is surprisingly high. Imagine
that the group consists of q people, and let’s for a moment assume that the year
has exactly n = 365 days. The “paradox” arises because it seems intuitive that the
collision probability (the chance that any two birthday’s collide) should be roughly
q

365 , but in fact it is much closer to q2

365 , with the consequence that the probability

Basic Definitions 17

increases much more quickly with the size of the group than one would intuitively
expect. Why is this? Let’s investigate the math behind the birthday paradox a
bit closer.

Let C(n, q) denote the probability that out of q elements drawn uniformly
at random from a set of size n, any two elements coincide. We call this the
collision probability. It is usually easier to determine the complement of the
collision probability, i.e. the likelihood that all q elements are distinct. Imagine
drawing one element at a time from the set (with replacement). The probability
that the first is distinct is 1, as there is no other element it could collide with.
Drawing the second element, the probability that it does not collide with the first
is n−1

n . The chance that the third element drawn is distinct given that the two
previous elements are unique is n−2

n . By simple combinatorics, continuing the
reasoning along these lines gives

1− C(n, q) = 1 · n− 1

n
· n− 2

n
· · · · · n− (q − 1)

n
=

q−1∏
i=1

(
n− i

n

)
.

Hence C(n, q) = 1−∏q−1
i=1

(
n−i
n

)
. This formula gives the exact collision probability,

however often an approximation will suffice for our purposes, or we are interested
only in bounding the chance of collision. It can then be useful to know the following
bounds:

0.3 · q(q − 1)

n
≤ C(n, q) ≤ 0.5 · q(q − 1)

n
. (4.1)

The upper bound is unconditional. The lower holds if 1 ≤ q ≤ √2n. For a
derivation of the bounds, see for example the appendix of [4].

18 Basic Definitions

Chapter 5
Symmetric-key KEMs

In this chapter, we introduce a new cryptographic object which we call symmetric-
key key encapsulation mechanisms (S-KEMs). S-KEMs are an abstraction of the
key exchange in a 0-RTT handshake in TLS 1.3. The syntax draws heavily on key
encapsulation mechanisms in the public-key setting [15, 16], see Section 2.4.

5.1 Syntax

Definition 4. A symmetric-key key encapsulation mechanism, S-KEM = (KG,E,
D), is a triple of algorithms with three associated sets; the secret-key space SK,
the key space K and the ciphertext space C. The algorithms of S-KEM operate as
follows.

• Via sk←$ KG(), the probabilistic key generation algorithm KG, taking no
input, produces the secret key sk ∈ SK.

• Via (K ,C)←$ E(sk), the randomized encapsulation algorithm, E, produces
a key K ∈ K and an associated ciphertext C ∈ C on input the secret key.

• Via K ← D(sk,C), the deterministic decapsulation algorithm, D, on input
a secret key sk ∈ SK and a ciphertext C ∈ C returns either a key K ∈ K or,
to indicate failure, ⊥.

For correctness we require that decapsulation of a key K ∈ K under the same secret
key with which it was encapsulated always succeeds. Formally, for sk←$ KG() and
(K ,C)←$ E(sk) it holds that Pr [D(sk,C) = K] = 1, where the probability is over
the coins of KG and E.

5.2 Security

For the security of S-KEMs we consider first two standard privacy notions: in-
distinguishability under chosen-plaintext attack (ind-cpa) and indistinguishability
under chosen-ciphertext attack (ind-cca). In the chosen-plaintext scenario, the
adversary is assumed to be passively eavesdropping and is only given access to an
encapsulation oracle, which returns either a real encapsulation (a ciphertext and
the corresponding key) or a ciphertext together with a randomly chosen indepen-
dent key. The ind-cpa security notion requires that an attacker cannot distinguish

19

20 Symmetric-key KEMs

Game Gcpa
b,S-KEM(A)

1 sk←$ KG()

2 b∗←$AEncb()

3 Return b∗

Encb():

4 (K1,C)←$ E(sk)

5 K0←$K
6 Return (Kb,C)

Game Gcca
b,S-KEM(A)

1 sk←$ KG(); S ← ∅
2 b∗←$AEncb,Dec()

3 Return b∗

Encb():

4 (K1,C)←$ E(sk)

5 K0←$K
6 S ← S ∪ {C}
7 Return (Kb,C)

Dec(C):

8 If C ∈ S return ⊥
9 K ← D(sk,C)

10 Return K

Figure 5.1: Games formalizing ind-cpa and ind-cca security of symmetric-key KEM scheme
S-KEM.

between the real and the random world. In a chosen-ciphertext attack, the ad-
versary is additionally given access to a decapsulation oracle which returns honest
decapsulations on any ciphertext queries which the attacker has not previously
obtained from its encapsulation oracle. Once again security requires that no ad-
versary can tell apart a game played in the real world from one in the random
world.

We formalize the security notions via the games Gcpa
b,S-KEM and Gcca

b,S-KEM shown
in Figure 5.1. The bit b ∈ {0, 1} is a parameter of the game which determines
whether it is the “real” or the “random” version of the game that is being played.
The games take an adversary as input. For cxa ∈ {cpa, cca} we let Advcxa

S-KEM(A)
denote the advantage of an adversary A playing game Gcxa

b,S-KEM and define it to
be

Advcxa
S-KEM(A) = Pr

[
Gcxa

1,S-KEM(A)⇒ 1
]− Pr

[
Gcxa

0,S-KEM(A)⇒ 1
]
,

i.e. the probability that adversary A outputs 1 in the real world, minus the prob-
ability that it returns 1 in the random world. Note that ind-cca is a stronger
notion than ind-cpa, since any adversary against the ind-cpa security of a scheme
could use the same strategy in the ind-cca game (by simply not querying the de-
capsulation oracle), and this would preserve its advantage. Hence ind-cca security
implies ind-cpa security, so a scheme which achieves indistinguishability under
chosen-ciphertext attacks is naturally secure against chosen-plaintext attacks.

Indistinguishability is a common privacy goal for encryption primitives as it
implies many desirable properties, and it turns out to cover well what we want from
privacy in key encapsulation mechanisms too. The idea is that if a random key-
ciphertext pairing is indistinguishable from a real encapsulated one, then the real

Symmetric-key KEMs 21

key must be computationally independent from the ciphertext. This in turn means
that transporting the key across the public channel by sending the ciphertext that
encapsulates it, is equivalent to not sending anything at all and simply delivering
the key in a trusted way to the intended recipient. As another implication, an
adversary which cannot tell a random string from a real encapsulated key definitely
cannot decapsulate the key and break the confidentiality of messages encrypted
under it. Hence indistinguishability captures also this intuitive base for privacy.

The point of giving the adversary access to several “challenge” pairings through
the encapsulation oracle is that we want to make it possible for many resumed ses-
sions to be established securely from the same pre-shared secret. By giving the
adversary access to honest decapsulations, the model captures that the sessions
should be independent in the sense that learning a real key-ciphertext pairing for a
non-challenge session doesn’t reveal anything that helps determine if the challenge
pairings are real or random. It also shouldn’t help to intersect a ciphertext sent
from client to server, modify it and then relay it to the recipient, who decapsulates
and uses it. Hence, impersonating one party to the other should not provide an
adversary with any information that helps it learn anything about honest com-
munications between the real client and server. If one wants additional protection
against modifications of ciphertexts, it can be formalized as a separate security
goal. We look more closely at this in Section 5.4, but first we give an instantiation
of a S-KEM scheme which achieves privacy in both the ind-cpa and the stronger
ind-cca sense.

5.3 Instantiation using Pseudorandom Functions

In the 0-RTT mode of TLS 1.3 [42], the previously connected client and server
share a symmetric pre-shared key (PSK), which is modelled in the S-KEM ab-
straction by the secret key sk. As part of the handshake, the client, modelled by
the encapsulator, draws a random nonce. To derive a shared fresh session key, the
client sends the nonce to the server, and both parties apply the HKDF [39, 40]
key derivation function (KDF) to the PSK and client nonce, together with some
auxiliary data. See Figure 5.2 for an illustration. A description of how HKDF is
used in TLS 1.3 can be found in [41]. Here, HKDF essentially works as a pseudo-
random function [25], allowing us to capture the TLS handshake just described in
an S-KEM scheme built from a PRF. We give the construction next.

Let F : {0, 1}k × {0, 1}in → {0, 1}out be a pseudorandom function. We build
the symmetric-key KEM S-KEM[F] = (S-KEM[F].KG, S-KEM[F].E, S-KEM[F].D) as
shown in Figure 5.3. Here the secret key sk represents the PSK in the TLS
handshake. The random nonce drawn by the client is the ciphertext C picked at
random in encapsulation, and the key derivation function HKDF is modelled by
the PRF F.

The privacy of S-KEM[F] follows from the PRF security of F. Intuitively,
a good pseudorandom function produces output indistinguishable from random
strings. Hence the session keys of S-KEM[F] are infeasible to tell apart from random
strings if F is secure. This gives the construction ind-cca security (which means
that by implication it is also ind-cpa secure). We formalize the result as theorems,

22 Symmetric-key KEMs

Figure 5.2: Simplified illustration of 0-RTT key derivation in TLS 1.3 handshake. Client
and server initially share symmetric key PSK . The client picks a random nonce and sends
it to the server across the network. Both client and server compute the session key K via
K ← HKDF(PSK,Nonce).

S-KEM[F].KG():

1 sk←$ {0, 1}k
2 Return sk

S-KEM[F].E(sk):

3 C ←$ {0, 1}in
4 K ← F(sk,C)

5 Return (K ,C)

S-KEM[F].D(sk,C):

6 K ← F(sk,C)

7 Return K

Figure 5.3: Algorithms of S-KEM[F], an instantiation of a symmetric-key KEM using pseu-
dorandom function F.

first for ind-cpa security to establish intuition and then for the stronger ind-cca
security.

Theorem 1. S-KEM[F] is ind-cpa secure assuming F is a secure PRF. More ex-
plicitly, for any adversary A in the ind-cpa game making q encapsulation queries,
there exists an adversary B against the PRF security of F making at most q queries
to oracle Fn such that

Advind-cpa
S-KEM[F](A) ≤ Advprf

F (B) + 0.5 · q(q − 1)

2in
.

Proof. Let A be an adversary in the ind-cpa game. We construct an adversary B
against the PRF-security of F to show the advantage bound. Adversary B simulates
the ind-cpa game for A using its Fn-oracle and then forwards the output of A as
its own, as follows.

When A, being run by B, makes a query to oracle Enc, B picks C ←$ {0, 1}in.
If C is new (distinct from the strings drawn in all previous queries) B queries its
own Fn oracle on C and returns (Fn(C),C). Otherwise B aborts and returns ⊥.

As long as B draws a new C , this perfectly simulates the ind-cpa game for A.
If B is in Game Gprf

1 , then Fn(C) mimics an honest encapsulation in S-KEM[F],
simulating Enc1. If B is in Game Gprf

0 , the simulation likewise follows the expected
behavior of Enc0, returning a randomly chosen element K ∈ {0, 1}out. When A

Symmetric-key KEMs 23

halts and outputs a bit b∗, B uses this bit as its own guess in the PRF game. It
wins if A has correctly guessed whether it is in the real or random world, hence
Advind-cpa

S-KEM[F](A)− Pr [B aborts] = Advprf
F (B).

The likelihood that B aborts at any point during the simulation is precisely
the collision probability C(2in, q), where 2in = |{0, 1}in|. Using the birthday
bound (from Equation (4.1)), we have C(2in, q) ≤ 0.5 · q(q−1)

2in which shows the
theorem statement.

Next we look at security under chosen-ciphertext attacks. Recall that in the
ind-cca game Gcca

b,S-KEM, the decapsulation oracle only decapsulates ciphertexts
that have not previously been given to the adversary by the encapsulation oracle
(Figure 5.1, line 8). We will call queries on such “new” ciphertexts valid.

Theorem 2. S-KEM[F] is ind-cca secure assuming F is a secure PRF. More ex-
plicitly, for any adversary A in the ind-cca game making qe encapsulation queries
and qd distinct and valid decapsulation queries, there exists an adversary B against
the PRF security of F making at most qe + qd queries to oracle Fn such that

Advind-cca
S-KEM[F](A) ≤ 2 ·Advprf

F (B) + qe(qe − 1)

2in − qd
+ 2

(
1−

(
2in − qd

2in

)qe)
.

Proof. Let A be an adversary in the ind-cca game. We construct an adversary B
against the PRF-security of F and show the advantage bound through a sequence
of game hops via games G0, G1, G2, G3, G4 and G5 shown in Figure 5.4.

Game G0 runs Acca as per Gcca
b,S-KEM[F], with the difference that the bit b is no

longer a parameter of the game, but instead picked randomly at the start of the
game. Observe that

Advcca
S-KEM[F](A) = Pr

[
Gcca

1,S-KEM[F](A)⇒ 1
]
− Pr

[
Gcca

0,S-KEM[F](A)⇒ 1
]

= 2 · Pr [G0(A)⇒ true]− 1.

This is clear if we let b∗ denote the output of A, which allows us to write the
probability that A returns 1 in the real game as the probability that b∗ = 1 given
that b = 1, i.e. Pr

[
Gcca

1,S-KEM[F](A)⇒ 1
]
= Pr

[
b∗ = 1

∣∣ b = 1
]
. Analogously in

the random game we have Pr
[
Gcca

0,S-KEM[F](A)⇒ 1
]
= Pr

[
b∗ = 1

∣∣ b = 0
]
. We use

24 Symmetric-key KEMs

Game G0(A), G1(A)
1 sk←$ {0, 1}k
2 b←$ {0, 1}
3 Se ← ∅; Sd ← ∅
4 b∗←$AEnc,Dec()

5 Return (b∗ = b)

Enc():

6 C ←$ {0, 1}in
7 If C ∈ Sd then:
8 bad← true; Ret. ⊥
9 Se ← Se ∪ {C}

10 K1 ← F(sk,C)

11 K0←$ {0, 1}out
12 Return (Kb,C)

Dec(C):

13 If C ∈ Se then return
⊥

14 Sd ← Sd ∪ {C}
15 K ← F(sk,C)

16 Return K

Game G2(A), G3(A)

1 sk←$ {0, 1}k
2 b←$ {0, 1}
3 Se ← ∅; Sd ← ∅
4 b∗←$AEnc,Dec()

5 Return (b∗ = b)

Enc():

6 C ←$ {0, 1}in
7 If C ∈ Sd then return ⊥
8 If C ∈ Se then:
9 bad← true; Ret. ⊥

10 Se ← Se ∪ {C}
11 K1 ← F(sk,C)

12 K0←$ {0, 1}out
13 Return (Kb,C)

Dec(C):

14 If C ∈ Se then return
⊥

15 Sd ← Sd ∪ {C}
16 K ← F(sk,C)

17 Return K

Game G4(A), G5(A)

1 sk←$ {0, 1}k
2 b←$ {0, 1}
3 Se ← ∅; Sd ← ∅
4 b∗←$AEnc,Dec()

5 Return (b∗ = b)

Enc():

6 C ←$ {0, 1}in
7 If C ∈ Sd then return ⊥
8 If C ∈ Se then return ⊥
9 Se ← Se ∪ {C}

10 K1 ← F(sk,C)

11 K1←$ {0, 1}out

12 K0←$ {0, 1}out
13 Return (Kb,C)

Dec(C):

14 If C ∈ Se then return
⊥

15 Sd ← Sd ∪ {C}
16 K ← F(sk,C)

17 K ←$ {0, 1}out
18 Return K

Figure 5.4: Games G0, G1, G2, G3, G4 and G5 for the proof of Theorem 2. The code
in boxes is executed in G1, G3 and G5, but not G0, G2 or G4. Ret. stands for Return.

Symmetric-key KEMs 25

that for b chosen uniformly at random in G0, Pr [b = 1] = Pr [b = 0] = 1/2, giving

Advcca
S-KEM[F](A) = Pr

[
Gcca

1,S-KEM[F](A)⇒ 1
]
− Pr

[
Gcca

0,S-KEM[F](A)⇒ 1
]

= Pr
[
b∗ = 1

∣∣ b = 1
]− Pr

[
b∗ = 1

∣∣ b = 0
]

= Pr
[
b∗ = 1

∣∣ b = 1
]− (1− Pr

[
b∗ = 0

∣∣ b = 0
]
)

= 2
(
Pr

[
b∗ = b

∣∣ b = 1
] · 1

2
+ Pr

[
b∗ = b

∣∣ b = 0
] · 1

2

)
− 1

= 2
(
Pr

[
b∗ = b

∣∣ b = 1
] · Pr [b = 1]

+ Pr
[
b∗ = b

∣∣ b = 0
] · Pr [b = 0]

)
− 1

= 2
(
Pr [b∗ = b]

)
− 1

= 2 · Pr [G0(A)⇒ true]− 1.

Next, we apply the fundamental lemma of game playing [8] to bound the difference
between Pr [G0(A)]−Pr [G1(A)]. The lemma lets us give an upper limit on the
difference between the probability that A wins game G0 and game G1, because the
games are identical until bad. This means that the code of the games is identical
until the bad flag is set to true, hence the outcome will always be the same when
A is executed in game G0 and G1, unless the bad flag is triggered.

Pr [G0(A)] = Pr [G1(A)] +
(
Pr [G0(A)]− Pr [G1(A)])

≤ Pr [G1(A)] + Pr [G0(A) sets bad] . (5.1)

The probability that G0 sets the bad flag to true is the likelihood that out of the
qe Enc-queries that A makes, at least one ciphertext drawn by the Enc-oracle
is the same as a previous Dec-query that A has made. This can be bounded
by the probability that at least one of the ciphertexts drawn by the Enc-oracle
is the same as the ciphertext in any of the total qd Dec-queries that A makes
(previous or future). The complement event is that all qe ciphertexts produced by
the Enc-oracle are distinct from the qd Dec-queries that A makes. Hence

Pr[G0(A) sets bad] = 1−
(
2in − qd

2in

)qe

.

We continue to the next game hop, noting that G1 and G2 are equivalent. Ap-
plying the game playing lemma again, we obtain

Pr [G2(A)] ≤ Pr [G3(A)] + Pr [G2(A) sets bad] .

Here, the probability that G2 triggers the bad flag is the collision probability of the
ciphertexts drawn at random by the Enc-oracle. This is bounded by the birthday
bound,

Pr[G2(A) sets bad] ≤ 0.5 · qe(qe − 1)

2in − qd
,

where the size of the set the qe ciphertexts are drawn from is 2in − qd, since the
qd ciphertexts queried to Dec by A are excluded. Hence, what we have currently

26 Symmetric-key KEMs

Adversary BFn():
1 b←$ {0, 1}
2 Se ← ∅; Sd ← ∅
3 b∗←$AEnc∗,Dec∗()

4 If b∗ = b return 1
5 Else return 0

Enc∗():

6 C ←$ {0, 1}in
7 If C ∈ Sd then return ⊥
8 If C ∈ Se then return ⊥
9 Se ← Se ∪ {C}

10 K1 ← Fn(C)

11 K0←$ {0, 1}out
12 Return (Kb,C)

Dec∗(C):

13 If C ∈ Se then return ⊥
14 Sd ← Sd ∪ {C}
15 K ← Fn(C)

16 Return K

Figure 5.5: Adversary B for the proof of Theorem 2. A star superscript to a procedure
indicates that it is a subroutine in the code of adversary B, constructed by it to simulate
an oracle expected by A.

shown is that

Advcca
S-KEM[F](A) = 2 · Pr [G0(A)⇒ true]− 1

≤ 2
(
Pr [G1(A)] + Pr [G0(A) sets bad]

)− 1

≤ 2

(
Pr [G2(A)] + 1−

(
2in − qd

2in

)qe)
− 1

≤ 2

(
Pr [G3(A)] + Pr [G2(A) sets bad] + 1−

(
2in − qd

2in

)qe)
− 1

≤ 2 · Pr [G3(A)] + 2 · 0.5 · qe(qe − 1)

2in − qd
+ 2

(
1−

(
2in − qd

2in

)qe)
− 1

= 2 · Pr [G3(A)]− 1 + 2

(
0.5 · qe(qe − 1)

2in − qd
+ 1−

(
2in − qd

2in

)qe)
.

Now, game G4 is equivalent to G3, so Pr [G3(A)] = Pr [G4(A)]. Game G5 is
similar to G4, except that it always gives random strings from {0, 1}out as output
on both Enc- and Dec-queries, regardless of the value of bit b. Intuitively, if F
is a secure PRF, the difference is indistinguishable. Formally, this is captured by
a reduction to the PRF security of F via PRF adversary B, the code of which is
shown in Figure 5.5. Adversary B begins by drawing a random bit and assigning
it to b. If b is 1, then B uses its own PRF oracle Fn to answer Enc-queries from
adversary A. If b = 0 it instead picks keys uniformly at random. Decapsulation
queries from A are relayed by B to its own Fn oracle. When adversary A halts
and output a bit b∗, adversary B checks if b∗ = b, and if so returns 1 in the PRF
game. Else it returns 0.

This setup means that if adversary B is playing the real PRF game (so that
Fn(C) = F(sk,C)), then B simulates game G4 for A. If on the other hand B is in
the random PRF game, and Fn returns values from a table with lazily sampled
random entries, then B simulates game G5 for adversary A. To see this, we
note that computing key K as K ←$ Fn(C) when Fn is a lazily sampled random

Symmetric-key KEMs 27

table with values in {0, 1}out is equivalent to drawing K uniformly at random
from {0, 1}out, as long as the same ciphertext C is never repeated. I.e., the only
difference between Fn(C) and a random string is that Fn will return the same
string each time it is evaluated on the same input C . But with the previous game
hops—and the assumption (w.l.o.g.) of distinct decapsulation queries—we assured
precisely that no C needs to be handled in more than one query from A in either
game G4 or G5 (see lines 7, 8 and 14 in Figure 5.4). Since the simulations are
sound, we can directly relate the PRF advantage of B to the probability that
adversary A wins games G4 and G5.

Pr [G4(A)] = Pr [b∗ = b in game G4] = Pr
[
Gprf

1,F(B)⇒ 1
]

Pr [G5(A)] = Pr [b∗ = b in game G5] = Pr
[
Gprf

0,F(B)⇒ 1
]

Hence

Pr [G4(A)]−Pr [G5(A)] = Pr
[
Gprf

1,F(B)⇒ 1
]
−Pr

[
Gprf

0,F(B)⇒ 1
]
= Advprf

F (B),

so we end up with

Pr [G4(A)] = (Pr [G4(A)]− Pr [G5(A)]) + Pr [G5(A)]
≤ Advprf

F (B) + 1

2
,

where Pr [G5(A)] ≤ 1
2 . This is motivated by the fact that in game G5, adversary

A gets random strings instead of keys in both encapsulation and decapsulation
queries regardless of the value of bit b, so the best it can do is guess the value of
b, which succeeds with probability 1

2 . Using that Pr [G3(A)] = Pr [G4(A)] and
putting this together with the previously showed bound, we have

Advcca
S-KEM[F](A) ≤ 2 · Pr [G4(A)]− 1 + 2

(
0.5 · qe(qe − 1)

2in − qd
+ 1−

(
2in − qd

2in

)qe)

≤ 2 ·Advprf
F (B) + 2

(
0.5 · qe(qe − 1)

2in − qd
+ 1−

(
2in − qd

2in

)qe)
.

This is precisely the bound in the theorem statement.

5.4 Integrity of Ciphertexts

To exemplify how S-KEMs could be protected against ciphertext forgeries and
impersonation attacks, we formalize the standard notion of integrity of ciphertexts
(int-ctxt) by the game in Figure 5.6. Integrity of ciphertext security aims to
provide a measure of certainty in the authenticity of encapsulated keys. What this
means is that no-one without access to the secret key can construct (forge) a new,
valid ciphertext, even when seeing honest prior encapsulations. In the game, an
adversary is given access to both real encapsulations and decapsulations via oracles
Enc and Dec, and wins if it can produce new ciphertexts which decapsulate to

28 Symmetric-key KEMs

Game Gint-ctxt
S-KEM (A)

1 sk←$ KG()

2 S ← ∅; win← false

3 AEnc,Dec()

4 Return win

Enc():

5 (K ,C)←$ E(sk)

6 S ← S ∪ {C}
7 Return (K ,C)

Dec(C):

8 K ← D(sk,C)

9 If C /∈ S and K �= ⊥:
10 win← true

11 Return K

Figure 5.6: Game formalizing integrity of ciphertexts, int-ctxt, for symmetric-key KEM
scheme S-KEM.

something other than ⊥. We define the advantage of adversary A in the int-ctxt
game to Advint-ctxt

S-KEM (A) = Pr
[
Gint-ctxt

S-KEM (A)⇒ true
]
, the probability that the game

returns true.
Integrity of ciphertexts can also help “lift” the weaker ind-cpa privacy notion

to the stronger ind-cca security. That is, if a symmetric-key KEM scheme is
secure against chosen-plaintext attacks and has integrity of ciphertexts, then it
is ind-cca secure. The intuition behind this is that in a scheme which is secure
against forgeries, a decapsulation oracle will not help because the adversary cannot
construct valid ciphertexts to query to it. This is the result of our third theorem,
which is reminiscent of a generic composition for encryption given by Bellare and
Namprempre [7].

Theorem 3. Let S-KEM = (KG,E,D) be a symmetric-key KEM scheme. If S-KEM
is ind-cpa and int-ctxt secure, then it is ind-cca secure. Formally, let Acca be an
ind-cca adversary against S-KEM. Then there exists an ind-cpa adversary Bcpa
and an int-ctxt adversary Cctxt such that

Advcca
S-KEM(Acca) ≤ Advcpa

S-KEM(Bcpa) + 2 ·Advint-ctxt
S-KEM (Cctxt).

Proof. To show the statement we provide a sequence of games, Game G0, G1 and
G2, as well as two adversaries, Bcpa and Cctxt, the codes of which are shown in
Figure 5.7. Game G0 is equivalent to Gcca

b,S-KEM, except that the bit b is not a
parameter of the game, but rather picked at the start of the game. We use that
for b chosen uniformly at random Pr [b = 1] = Pr [b = 0] = 1/2, giving

Advcca
S-KEM(Acca) = 2 · Pr [G0(Acca)⇒ true]− 1. (5.2)

The equality follows from a probability argument similar to that given in the proof
of Theorem 2. For the games, we have that

Pr [G0(Acca)] = Pr [G1(Acca)] +
(
Pr [G0(Acca)]− Pr [G1(Acca)])

≤ Pr [G1(Acca)] + Pr [G0(Acca) sets win] . (5.3)

The last inequality is given by the fundamental lemma of game playing [8] applied
to games G0 and G1, which are identical until the win flag is set. In game G1, we
have that K1 = ⊥ at the time procedure Decb returns, so

Pr [G1(Acca)] = Pr [G2(Acca)] . (5.4)

Symmetric-key KEMs 29

Game G0(Acca), G1(Acca)

1 sk←$ KG()

2 b←$ {0, 1}; S ← ∅
3 b∗←$AEncb,Dec

cca ()

4 Return (b∗ = b)

Encb():

5 (K1,C)←$ E(sk)

6 K0←$K
7 S ← S ∪ {C}
8 Return (Kb,C)

Dec(C):

9 If C /∈ S then K1 ← D(sk,C)

10 Else K1 ← ⊥
11 If K1 �= ⊥ then win← true; K1 ← ⊥
12 Return K1

Game G2(Acca)

1 sk←$ KG()

2 b←$ {0, 1}
3 b∗←$AEncb,Dec

cca ()

4 Return (b∗ = b)

Encb():

5 (K1,C)←$ E(sk)

6 K0←$K
7 Return (Kb,C)

Dec(C):

8 Return ⊥

Adversary BEnccpa ():

1 b∗←$AEnc∗,Dec∗
cca ()

2 Return b∗

Enc∗():

3 (K ,C)←$ Enc()

4 Return (K ,C)

Dec∗(C):

5 Return ⊥

Adversary CEnc,Dec
int-ctxt ():

1 b←$ {0, 1}
2 S ← ∅
3 AEnc∗b ,Dec∗

cca ()

Enc∗b():

4 (K1,C)←$ Enc()

5 K0←$K
6 S ← S ∪ {C}
7 Return (Kb,C)

Dec∗(C):

8 K1 ← Dec(C)

9 If C ∈ S return ⊥
10 Return K1

Figure 5.7: Top: Games G0, G1 and G2 for the proof of Theorem 3. The code in the box
is executed in G1 but not G0. Bottom: Adversaries for the proof of Theorem 3. A star
superscript to a procedure indicates that it is a subroutine in the code of the corresponding
adversary, constructed by it to simulate an oracle expected by Acca.

30 Symmetric-key KEMs

We claim that for adversaries Bcpa and Cctxt in Figure 5.7 it holds that

2 · Pr [G2(Acca)]− 1 ≤ Advcpa
S-KEM(Bcpa) (5.5)

Pr [G0(Acca) sets win] ≤ Advint-ctxt
S-KEM (Cctxt). (5.6)

Combining Equations (5.2), (5.3), (5.4), (5.5) and (5.6) gives the theorem state-
ment. It remains to prove the claims. We begin with Equation (5.5).

Adversary Bcpa playing game Gcpa
b,S-KEM runs Acca as per game G2, relaying

encapsulation queries to its own Enc-oracle via the subroutine Enc∗ and re-
sponding to all decapsulation queries with ⊥. When adversary Acca halts and
returns bit b∗, adversary Bcpa uses b∗ as its own output. When Bcpa is in the
real world, the simulation perfectly captures game G2 with b = 1. Likewise
when Bcpa is in the random world, it perfectly simulates G2 with b = 0 for
Acca. Because Pr [b = 1] = Pr [b = 0] = 1/2 in game G2, this shows that
Advcpa

S-KEM(Bcpa) = 2 · Pr [G2(Acca)]− 1. We move on to Equation (5.6).
Adversary Cctxt simulates game G0 for adversaryAcca. Each timeAcca submits

a query Dec∗(C), adversary Cctxt forwards the ciphertext to its Dec-oracle. It wins
the int-ctxt game precisely if flag win is set to true in game G0, justifying claim
(5.6).

We do not give any S-KEM instantiation which fulfills int-ctxt, but will touch
more upon protection against forgeries in the constructions of ordered S-KEM
schemes in Chapter 6. However, the focus in the rest of this work is on privacy,
and integrity is only discussed when it appears naturally as a means of achieving
security against chosen-ciphertext attacks.

Chapter 6
Ordered Symmetric-key KEMs

The symmetric-key KEMs introduced in the previous chapter allow us to capture a
PSK 0-RTT TLS key exchange, which can be used in the handshake of a resumed
session. But they tell us little about the relation between separate sessions. Recall
that in TLS, client and server can have multiple sessions running concurrently,
and may also use the same PSK to establish several subsequent resumed sessions.
The connection requests for these sessions are sent across a network, and if the
network is somewhat reliable, they should arrive in approximately the same order
that they were sent in. If this is the case, the ordering can potentially be used
to give more efficient constructions, also with respect to forward secrecy. But in
order to leverage ordering, the syntax of S-KEMs must be extended to include
state. This is the purpose of ordered symmetric-key KEMs (OS-KEMs), which we
introduce next.

Stateful schemes have the benefit of being more flexible than stateless ones, in
the sense that they naturally allow more diverse functionality. To take advantage
of this, we define several versions of correctness for OS-KEMs. We refer to the
versions as “levels”, since they are connected to the level of transmission reliability
expected of the network. The correctness demands specified by the levels range
from a strict requirement equivalent to that of S-KEMs, to a less stringent con-
dition requiring successful decapsulation only when the ciphertexts sent between
encapsulator and decapsulator are relayed in perfect order.

6.1 Syntax
Definition 5. An ordered symmetric-key key encapsulation mechanism scheme
OS-KEM = (KG,E,D) is a triple of algorithms, the first two of which may be ran-
domized. Algorithms E and D are stateful and use variables ste (the encapsulation
state) and std (the decapsulation state), respectively, to keep state. Associated
to the scheme is secret key space SK, key space K and ciphertext space C as well
as two non-empty sets of states, Se and Sd, which we call the encapsulation state
space and decapsulation state space, respectively.

• Initially via (sk, ste , std)←$ KG() the scheme produces sk ∈ SK, ste ∈ Se
and std ∈ Sd.

• Via (K ,C , ŝte)←$ E(sk, ste), algorithm E, taking as input sk and ste , up-
dates the state and returns a key K ∈ K and a corresponding ciphertext
C ∈ C.

31

32 Ordered Symmetric-key KEMs

• Via (K , ŝtd) ← D(sk, std,C), algorithm D on input sk, a ciphertext C ∈ C
and decapsulation state std returns the updated state ŝtd and K ∈ K∪{⊥}.
If K �= ⊥ we say that D accepts C .

In the following, the term “stateful symmetric KEM” will be used interchangeably
with ordered symmetric-key KEM when referring to OS-KEMs.

6.2 Correctness

Correctness for stateful schemes can be a messy affair. If we imagine an application
in which some party, Alice, performs a sequence of n encapsulations and labels the
resulting key-ciphertext pairs with the position in the order she produced them,
i.e. 1, 2, . . . , n, and then sends the ciphertexts in this order to a receiver, Bob,
then it is possible that Bob receives them in some altogether different order. For
example, he might obtain ciphertexts 1, 3, 6, . . . if some are dropped, or he might
receive 2, 3, 1, . . . if there has been a reordering in transmission. Depending on
the requirements from the application one can imagine a full spectrum of correct-
ness notions, ranging from those demanding correct decapsulation of all possible
ciphertext sequences (including permutations, omissions and repetitions), to those
that only require it for sequences that have not been reordered at all. As noted for
example by Rogaway and Zhang in their innovative work on indistinguishability
up to correctness [44], the constraints posed by varying levels, types or classes of
correctness have led to complicated definitions that are difficult to understand and
even harder to verify. In their own treatment of stateful authenticated encryption
(originally introduced by [5]), which in its correctness demands bears similarities
to stateful S-KEMs, they introduce what they call “level sets” which specify the
permissible (re)ordering of ciphertexts on the recipient side. They associate to each
such set of orderings a correctness class, and use the classes to specify security in
the ind-cca sense.

Although security follows nicely from correctness when using indistinguisha-
bility up to correctness, and hence saves some work and potential mistakes in the
definitions, correctness itself is still a complicated object. In an admirable quest
to cover all cases and formulate unambiguous classes, Rogaway and Zhang [44] de-
velop very technical correctness requirements that nonetheless require a lot from
the reader to decipher. By doing so, they in some sense shift the burden that used
to fall on security over to correctness. In an attempt to reap the benefits of the
idea behind indistinguishability up to correctness, while still keeping definitions
somewhat intuitive, we choose to instead use a game-playing framework to define
correctness requirements for OS-KEMs. This approach has been taken previously
by, among others, Jaeger and Stepanovs [35] in the setting of forward-secure mes-
saging, although not as a means of clarifying exceptions in the security games.
We will see later that this method benefits us also in the definitions of punc-
turable S-KEMs (PS-KEMs) and, our final goal, puncturable ordered S-KEMs
(POS-KEMs).

Correctness of scheme X-KEM (X ∈ {OS,PS,POS}) will hence on be deter-
mined by the correctness advantage of X-KEM in game Gcorrect

X-KEM associated to the

Ordered Symmetric-key KEMs 33

scheme. For an adversary A playing game Gcorrect
X-KEM we define the advantage as

Advcorrect
X-KEM(A) = Pr

[
Gcorrect

X-KEM(A)⇒ true
]
.

We say that scheme X-KEM is correct if Advcorrect
X-KEM(A) = 0 for all, even unbounded,

adversaries A. Specifically for OS-KEMs, for xO ∈ {nO,wO, pO} we say that
scheme OS-KEM is “xO-correct” if AdvxO-correct

OS-KEM (A) = 0 for all adversaries A.1
For an example of a correctness game, see e.g. the left hand column of Fig-

ure 6.2. Returning to the rationale behind the introduction of ordered S-KEMs, we
see that our treatment of stateful schemes demands varying strictness in the cor-
rectness requirement depending on the expectations of the receiver/decapsulator.
Therefore there will not only be a specific correctness game for each type of scheme,
but also for each level of correctness support. For OS-KEMs we introduce three
such classes of correctness, each allowing a certain degree of reordering, omissions
and repetitions between encapsulation and decapsulation. The classes are: cor-
rectness under no ordering (GnO-correct

OS-KEM in Figure 6.2 to the left), correctness under
weak ordering (GwO-correct

OS-KEM in Figure 6.3 to the left) and correctness under perfect
ordering (GpO-correct

OS-KEM in Figure 6.4 to the left). Before taking a closer look at the
games, we explain briefly what functionality each class aims to capture.

No Ordering. This correctness class places no requirements on the reliability
of transmission. Ciphertexts may be reordered, dropped and repeated to decap-
sulation. For an OS-KEM scheme, correctness under no ordering is the strictest
requirement as it demands decapsulation to correctly recover any sequence of en-
capsulated keys. This gives correctness equivalent to that of standard S-KEMs,
meaning that a stateless scheme could fulfill correctness with only slight syntax
modifications.

Weak Ordering. This class disallows repetitions, but allows local reordering
and potentially dropped ciphertexts in the sequence. By local reordering we mean
that the ciphertexts may arrive out of order within some bounded interval (sliding
window). Correctness under weak ordering is parameterized by a forward window
wf ≥ 1 which gives an upper bound on the number of potentially dropped cipher-
texts (by bounding the “jumps” ahead), and a backward window wb ≥ 0, which
bounds how “old” ciphertexts should be correctly decapsulated. Old here refers to
ciphertexts encapsulated prior to the most recently encapsulated one received so
far. For an illustration of a sliding window, see Figure 6.1.

Note that if all ciphertexts produced by encapsulation are assumed to be dis-
tinct2, then with wb = 0 and wf = 1 this class is equivalent to perfect ordering
defined below. Compared to no ordering, weak ordering imposes a weaker require-
ment as schemes in this class only need to handle potential drops and reordering,
but never repeated ciphertexts. This means that even with wb = wf = ∞, weak
ordering is still not equal to no ordering because repetitions are not permitted.

1For weak ordering, there is an additional condition on the encapsulation procedure
not covered by the correctness game. See Weak Ordering in Section 6.2.1 below.

2This is actually not a pre-requisite for perfect ordering, making weak and perfect
ordering disjoint classes.

34 Ordered Symmetric-key KEMs

Figure 6.1: A sliding window for correctness under weak ordering with forward window
wf = 4 and backward window wb = 2.
(1) Ciphertexts number 1 and 3 have arrived and been accepted. The highest received
ciphertext index is m = 3.
(2) Ciphertext with encapsulation index 7 has arrived and been accepted (it is within the
window in (1)). The sliding window has moved right and updated to m = 7. At this
point, ciphertexts 2 and 4 are permanently dropped, but 5 and 6 could still arrive and be
accepted.

Perfect Ordering. This class requires successful decapsulations only when the
input to the decapsulator is a prefix of the sequence of outputs of the encapsulator.
That is, the decapsulator must only accept and correctly handle ciphertexts that
arrive in the exact sequence they were produced by encapsulation. Hence no
replays, reordering or omissions of ciphertexts are covered.

6.2.1 Correctness Games

The correctness games GnO-correct
OS-KEM , GwO-correct

OS-KEM,wf ,wb
and GpO-correct

OS-KEM (shown on the
left side in Figures 6.2, 6.3 and 6.4) provide access to the encapsulation and decap-
sulation algorithms of scheme OS-KEM via oracles Enc and Dec. At the start of
the game, the key generation algorithm is run and the adversary is given the secret
key as well as the initial encapsulation and decapsulation states. The adversary is
then allowed to query the oracles an unbounded number of times in any order it
sees fit. From each query it obtains the output of the underlying scheme algorithm,
including the updated state. Games GnO-correct

OS-KEM and GwO-correct
OS-KEM,wf ,wb

keep a table
T[·] where each key K corresponding to ciphertext C produced in an encapsulation
query is stored and can be obtained through T[C]. Game GpO-correct

OS-KEM also keeps a
table T[·], but stores both ciphertext and encapsulated key at the position of the
encapsulation index ne for reasons that will become apparent later. In addition to
the table, games GwO-correct

OS-KEM,wf ,wb
and GpO-correct

OS-KEM keep some internal variables used
to determine whether the sequence of ciphertexts input to the decapsulation oracle
is supported by the correctness level.

No Ordering. In correctness under no ordering all sequences are supported,

Ordered Symmetric-key KEMs 35

Game GnO-correct
OS-KEM (A)

1 (sk, ste , std)←$ KG()

2 AEnc,Dec(sk, ste , std)

3 Return win

Enc():

4 (K ,C , ste)←$ E(sk, ste)

5 T[C]← K

6 Return (K ,C , ste)

Dec(C):

7 If C /∈ C return ⊥
8 Else (K , std)← D(sk, std,C)

9 If T[C] �= ⊥:
10 If K �= T[C] then win← true

11 Return (K , std)

Game GnO-ind-cca
b,OS-KEM (A)

1 (sk, ste , std)←$ KG()

2 b∗←$AEncb,Dec()

3 Return b∗

Encb():

4 (K1,C , ste)←$ E(sk, ste);
K0←$K

5 T[C]← Kb

6 Return (Kb,C)

Dec(C):

7 (K , std)← D(sk, std,C)

8 If T[C] �= ⊥:
9 Return ⊥

10 Return K

Figure 6.2: Left: Correctness game for OS-KEMs under no ordering. Right: Game defining
nO-ind-cca security of OS-KEMs under nO-correctness.

so for all C in the ciphertext space C, the key K produced by the decapsulation
algorithm should match the one stored at T[C] – if there is a key stored there.
This is precisely the meaning of lines 7-10 on the left-hand side of Figure 6.2. On
line 7, we assert that C is a valid ciphertext. Line 9 checks whether it has been
previously obtained in an encapsulation query (remember that all table entries
T[·] are initially set to ⊥, and that a key K �= ⊥ is stored at T[C] only if (K ,C)
is output by the encapsulation algorithm in an Enc-query). If so, correctness is
violated and the adversary wins if the key output by the decapsulation algorithm
is different from the one stored at T[C] (line 10).

Weak Ordering. Correctness under weak ordering is slightly more complex.
First of all, game GwO-correct

OS-KEM,wf ,wb
has parameters wf and wb which bound the omis-

sions and reordering of permissible ciphertext sequences by setting the size of the
sliding window. To determine whether a ciphertext is supported, the game must
also keep track of the order in which ciphertexts are produced by encapsulation,
whether a ciphertext has been previously queried to decapsulation and the index
of the highest labelled ciphertext received and accepted so far. The encapsulation
order is maintained by encapsulation index ne and stored in table I[·] at location
I[C] for ciphertext C . To check that the ciphertext is new (not replayed), the game
keeps set S to which a ciphertext is added after is has been received and accepted
by decapsulation. The highest received ciphertext index (counted by when it was
encapsulated) is stored in variable m and updated when a new, more recently
encapsulated ciphertext, is received and accepted.

36 Ordered Symmetric-key KEMs

GwO-correct
OS-KEM,wf ,wb

(A), GwO-r-correct
OS-KEM,wf ,wb

(A)

1 ne ← 0; m← 0

2 S ← ∅; sync← true

3 (sk, ste , std)←$ KG()

4 AEnc,Dec(sk, ste , std)

5 Return win

Enc():

6 ne ← ne + 1

7 (K ,C , ste)←$ E(sk, ste)

8 I[C]← ne

9 T[C]← K

10 Return (K ,C , ste)

Dec(C):

11 If C /∈ C return ⊥
12 (K , std)← D(sk, std,C)

13 If Supportedwf ,wb
(C ,m,S)

and sync = true then:
14 S ← S ∪ {C}
15 m← max(I[C],m)

16 If T[C] �= K then win← true

17 Else sync← false

18 Return (K , std)

GwO-ind-cca
b,OS-KEM,wf ,wb

(A) , GwO-r-ind-cca
b,OS-KEM,wf ,wb

(A)

1 ne ← 0; m← 0; S ← ∅; sync← true

2 (sk, ste , std)←$ KG()

3 b∗←$AEncb,Dec()

4 Return b∗

Encb():

5 ne ← ne + 1

6 (K1,C , ste)←$ E(sk, ste)

7 I[C]← ne

8 K0←$K
9 Return (Kb,C)

Dec(C):

10 (K , std)← D(sk, std,C)

11 If Supportedwf ,wb
(C ,m,S)

and sync = true then:
12 S ← S ∪ {C}
13 m← max(I[C],m)

14 Return ⊥
15 Else sync← false

16 Return K

Figure 6.3: Left: Correctness and robust correctness game for OS-KEMs under weak
ordering. Right: Games for ind-cca security of OS-KEMs under weak ordering and robust
weak ordering.
All games are parameterized by wb ≥ 0 and wf ≥ 1. Predicate Supportedwf ,wb

(C ,m,S)
checks that C is not replayed and within the sliding window. We assume that if I[C] = ⊥
then Supportedwf ,wb

(C ,m,S) evaluates to false. The code in boxes is executed in the
games for ordinary correctness, but not for robust correctness.

Ordered Symmetric-key KEMs 37

To make the code of the game more readable we introduce a predicate, which
given the current ciphertext C , the highest accepted index m and the set of pre-
viously received ciphertexts S determines if the ciphertext is Supported.

Supportedwf ,wb
(C ,m,S) = (C /∈ S) ∧ (m− wb ≤ I[C] ≤ m+ wf) .

The predicate is parameterized by the forward and backward windows. It eval-
uates to true if C is not in the set of previously queried ciphertexts and if the
encapsulation index of C is within the bounds of the current sliding window,
which extends backwards from m by wb and forward by wf . We assume that
if I[C] = ⊥, then conditions such as (m− wb ≤ I[C] ≤ m+ wf) are false. Hence
Supportedwf ,wb

(C ,m,S) implicitly checks that C has been produced by a previous
encapsulation query, ensuring that correctness only covers such ciphertexts.

In addition to checking that the currently queried ciphertext is supported, the
game also needs to ensure that all previous queries have been supported. This is
done with the synchronization flag sync, which is initialized to true at the start
of the game, and remains so as long as all queries to the Dec-oracle are within
the current sliding window. For standard wO-correctness, a scheme only needs to
handle ciphertext sequences that do not trigger the sync-flag. In Section 6.3 we
introduce a stricter form of correctness called robust correctness in which schemes
are required to recover from unsupported procedure calls. Analogous to no or-
dering, an adversary wins the weak ordering correctness game if it can provoke
the scheme’s decapsulation algorithm into producing a different key than the one
stored in T[C] on a supported ciphertext C while sync is true.

Finally, in order for scheme OS-KEM to be considered correct under weak or-
dering, we enforce an additional condition outside of the correctness game, namely
that there is a one-to-one function mapping keys to ciphertexts. This means
that the encapsulation algorithm cannot “re-use” ciphertexts across multiple keys,
rather each ciphertext produced by encapsulation must correspond to a unique
key. For stateless schemes, this is implicit from correctness. (E.g., for ordinary
S-KEMs it is clear that there can only be one key associated to each ciphertext,
otherwise correct decapsulation would be impossible). However, in the stateful
setting it is possible to have identical ciphertexts for different keys because of the
extra information contained in the state; it is enough that there is a unique key
associated to each ciphertext for each decapsulation state. But in weak ordering
this becomes quite complicated, as it is unclear which ciphertext the decapsulator
should mark as accepted (which index should be used to update the sliding win-
dow) if the same ciphertext is expected at multiple positions within the current
window.

In fact, we require something stronger than an injective key-ciphertext rela-
tionship, because if the same ciphertext is received twice within the sliding window,
the decapsulator will not know which position to mark as received, regardless of
whether the ciphertext was encapsulated to encode the same key or two different
keys. Therefore, correctness for OS-KEMs under weak ordering demands both an
injective key-ciphertext relationship, and that all ciphertexts produced by encap-
sulation are unique within each sliding window. For simplicity, we require unique
ciphertexts produced by encapsulation overall, which directly gives the one-to-one
mapping. Formally, the condition is that for scheme OS-KEM = (KG,E,D) to be

38 Ordered Symmetric-key KEMs

Game GpO-correct
OS-KEM (A), GpO-r-correct

OS-KEM (A)
1 ne ← 0; nd ← 0; sync← true

2 (sk, ste , std)←$ KG()

3 AEnc,Dec(sk, ste , std)

4 Return win

Enc():

5 ne ← ne + 1

6 (K ,C , ste)←$ E(sk, ste)

7 T[ne]← (K ,C)

8 Return (K ,C , ste)

Dec(C):

9 If C /∈ C return ⊥
10 (K , std)← D(sk, std,C)

11 (K ′,C ′)← T[nd]

12 If C = C ′ and sync = true :
13 nd ← nd + 1

14 If K �= K ′ then win← true

15 Else sync← false

16 Return (K , std)

Game GpO-ind-cca
b,OS-KEM (A) , GpO-r-ind-cca

b,OS-KEM (A)
1 ne ← 0; nd ← 0; sync← true

2 (sk, ste , std)←$ KG()

3 b∗←$AEncb,Dec()

4 Return b∗

Encb():

5 ne ← ne + 1

6 (K1,C , ste)←$ E(sk, ste)

7 K0←$K
8 T[ne]← C

9 Return (Kb,C)

Dec(C):

10 (K , std)← D(sk, std,C)

11 If C = T[nd] and sync = true :
12 nd ← nd + 1

13 Return ⊥
14 Else sync← false

15 Return K

Figure 6.4: Left: Correctness game for OS-KEMs under perfect ordering and robust perfect
ordering. Right: Games for pO-ind-cca security of OS-KEMs under perfect ordering and
robust perfect ordering.
If T[nd] = ⊥ then K ′ and C ′ both parse as ⊥. The code in boxes is executed in the
games for ordinary correctness, but not for robust correctness.

called wO-correct, in addition to having zero advantage for all adversaries in the
correctness game it also holds that:

For all sk ∈ [KG()] and all ste , st′e ∈ Se , if ste �= st′e then Pr [C �= C ′] = 1,

where C and C ′ have been produced, respectively, by (K ,C , ŝte)←$ E(sk, ste) and
(K ′,C ′, ŝt

′
e)←$ E(sk, st′e). The probability is over the coins of E.

This extra requirement on the encapsulator is also made for example by Kohno,
Palacio and Black [38] in the setting of stateful encryption when they define what
they call a “Type 3 cryptographic transform”, which is a correctness class similar
to our weak ordering.

Perfect Ordering. In correctness under perfect ordering, the game needs only
to keep track of and compare the encapsulation index ne of a certain ciphertext,

Ordered Symmetric-key KEMs 39

C , to the decapsulation index nd when C is queried to oracle Dec. To do this,
a Table T[·] (which—because of its potentially unbounded size—we assume is
allocated memory based on need and as usual has all entries initialized to ⊥)
is used to store the key-ciphertext pairs produced by encapsulation. On query
Dec(C) the game checks that C is a valid ciphertext (line 9) and that C is equal
to the ciphertext stored in T[nd] (line 12). Note that this will be the case if nd is
equal to ne at the time of encapsulation. The game also checks that all previously
queried ciphertexts have matched up (using the sync-flag, which is initialized to
true). If so, a correct scheme must decapsulate C to the key stored in T[nd].

6.3 Robustness

In all three games (GnO-correct
OS-KEM ,GwO-correct

OS-KEM,wf ,wb
and GpO-correct

OS-KEM), the adversary may
attempt to break correctness multiple times and is successful if the scheme fails at
any point. However, it can not make queries outside of the supported sequence(s)
(e.g. outside of the sliding window for weak ordering, or a repeated query in weak
or perfect ordering). If it does so, the game goes out of sync (the sync flag is set
to false), and the adversary has lost its chance of breaking correctness. Depending
on perspective, this might be considered overly punitive. One could for example
imagine a scenario in which a network protocol responsible for transmission is
expected to re-transmit a rejected package at some later point. If the package is
then within the supported window, it should be accepted and correctly handled
by the scheme.

To meet the expectations in such scenario, we introduce a stricter kind of
correctness called robust correctness for weak ordering and perfect ordering. In
the robust correctness games GwO-r-correct

OS-KEM,wf ,wb
and GpO-r-correct

OS-KEM shown in Figure 6.3
and 6.4, an adversary that submits an unsupported query can still win if it later
manages to make the scheme fail to correctly decapsulate a supported ciphertext.
This means that the scheme will be considered incorrect if it does not recover
from unsupported procedure calls. Robust correctness will be even more valuable
for stateful schemes providing the ability to puncture specific ciphertexts so that
they are no longer covered by correctness (see Section 8 on puncturable ordered
S-KEMs).

6.4 Security

For the security of OS-KEMs we consider standard ind-cpa as well as an adaption
of ind-cca to the three correctness classes. (Note that correctness only plays a
role in the security games when a decryption oracle is present.) Like for S-KEMs,
indistinguishability under chosen plaintext attack (ind-cpa) aims to capture the
scenario of a passively eavesdropping attacker that sees either all real encapsula-
tions (key-ciphertext pairs), or all random (ciphertexts together with randomly
sampled keys). The aim of the adversary is to distinguish the real world from
the random one, and an OS-KEM scheme is said to be ind-cpa secure if this is
infeasible. The notion is captured formally by game Gcpa

b,OS-KEM in Figure 6.5. We

40 Ordered Symmetric-key KEMs

Game Gcpa
OS-KEM(A)

1 (sk, ste , std)←$ KG()

2 b∗←$AEncb()

3 Return b∗

Encb():

4 (K1,C , ste)←$ E(sk, ste)

5 K0←$K
6 Return (Kb,C)

Figure 6.5: Game formalizing the privacy notion indistinguishability under chosen-plaintext
attack (ind-cpa) for ordered S-KEMs.

define the advantage as

Advcpa
OS-KEM(A) = Pr

[
Gcpa

1,OS-KEM(A)⇒ 1
]
− Pr

[
Gcpa

0,OS-KEM(A)⇒ 1
]
.

For the chosen ciphertext (ind-cca) notion, the adversary is additionally provided
with honest decapsulations, except on queries where correctness demands that the
decapsulation algorithm returns a key previously given to the adversary in an
Enc-query. These queries are aborted and the adversary gets only ⊥ back. The
reason is that returning the actual key would give the adversary a “trivial win”,
which must be disallowed in a security game.

To explain what this means, consider the ind-cca game Gcca
b,S-KEM for standard S-

KEMs in Figure 5.1. What, really, is the purpose of the first line in the code of the
decryption oracle (line 8), where we check if the queried ciphertext C is a member
of the set S? The answer is that S contains the ciphertexts previously output by
the encapsulation oracle, and if an adversary was to obtain an honest decapsulation
of such a ciphertext, it could tell if the previously performed encapsulation was
honest (real) too. By simply comparing the output from such a decapsulation
query to the key it was given by the encapsulation oracle in the earlier query, it
would with high probability be able to tell if it is playing the real or the random
game. Hence the condition “If C ∈ S return ⊥” on line 8 in the decapsulation
oracle prevents a trivial win.

In general, trivial wins are directly related to the correctness of the underly-
ing scheme, since correctness imposes restrictions on the decapsulation algorithm
which fixes its output on certain queries. Returning to S-KEMs, imagine a modi-
fied version of game Gcca

b,S-KEM (Figure 5.1) without the membership check on C in
a Dec(C) query (line 8). An adversary playing this game could make an Enc()
query and get back (Ke,C) and then perform decapsulation query Kd ← Dec(C)
without penalty. Since the adversary knows that correctness holds, Kd must be
the honest decapsulation of C , so if Kd �= Kc it is playing the random game. The
important insight for the adversary is that there is only one valid response to its
decapsulation query given correctness; the response to its query is fixed. We con-
clude that the extra condition in the decapsulation oracle, which prevents trivial
wins such as the one described, is essential for a meaningful security notion.

As a generic method for specifying security notions which avoid trivial wins
introduced by correctness, Rogaway and Zhang recently proposed the concept of
indistinguishability up to correctness [44]. There, oracles are silenced whenever
their output is fixed by correctness. We use the intuition behind their method

Ordered Symmetric-key KEMs 41

when defining security for OS-KEMs under all three correctness classes on the
right in Figure 6.2, 6.3 and 6.4. Note the similarities between the correctness
game and the security game in each figure. The decapsulation oracle in the security
game is silenced (only returns ⊥) precisely when the correctness game could be
won, i.e. when there is a correctness demand on the decapsulation. We call this
approach intuitive indistinguishability up to correctness, since it builds on the
ideas of Rogaway and Zhang, but without the full formalism they develop.

The advantage of an adversary A playing the xO-ind-cca security games for
xO ∈ {nO,wO, pO}, is, as usual,

AdvxO-ind-cca
OS-KEM (A) = Pr

[
GxO-ind-cca

1,OS-KEM (A)⇒ 1
]− Pr

[
GxO-ind-cca

0,OS-KEM (A)⇒ 1
]
.

We also introduce an ind-cca notion for the robust versions of each correctness
class. As in the correctness games, the difference lies in removing the synchroniza-
tion condition for silencing. The games are shown on the right in Figure 6.2, 6.3
and 6.4, ignoring the code in boxes. For xO ∈ {nO,wO, pO}, we define the ad-
vantage of adversary A to be

AdvxO-r-ind-cca
OS-KEM (A) = Pr

[
GxO-r-ind-cca

1,OS-KEM (A)⇒ 1
]− Pr

[
GxO-r-ind-cca

0,OS-KEM (A)⇒ 1
]
.

6.5 Instantiations

Having defined correctness and security for stateful symmetric KEM schemes we
now give some examples of schemes which meet the requirements. We provide one
scheme for each correctness level in increasing order of complexity, beginning with
no ordering.

6.5.1 OS-KEM Instantiation under No Ordering

As pointed out previously, correctness under no ordering is essentially equiva-
lent to that of stateless S-KEMs, so only syntax modifications are necessary
to obtain a correct and secure stateful scheme in this correctness class. Let
S-KEM = (S-KEM.KG, S-KEM.E, S-KEM.D) be a standard (stateless) symmetric
KEM scheme. We construct stateful S-KEM scheme nOS-KEM = (nOS-KEM.KG,
nOS-KEM.E, nOS-KEM.D) based on S-KEM as shown in Figure 6.6. The secret key
space SK, key space K and ciphertext space C of nOS-KEM are the same as those
of S-KEM. The state spaces of nOS-KEM are Se = Sd = {ε}.
Correctness of nOS-KEM follows trivially from that of S-KEM (a correctness adver-
sary which breaks correctness under no ordering for nOS-KEM must have violated
the correctness of the underlying S-KEM scheme). Similarly for security, the pri-
vacy of S-KEM carries over to nOS-KEM. Albeit straightforward, we state the
result as a theorem.

Theorem 4. Ordered S-KEM scheme nOS-KEM = (nOS-KEM.KG, nOS-KEM.E,
nOS-KEM.D) given in Figure 6.6 is ind-cpa (ind-cca) secure given that underlying
stateless scheme S-KEM = (S-KEM.KG, S-KEM.E, S-KEM.D) is ind-cpa (ind-cca)
secure.

42 Ordered Symmetric-key KEMs

nOS-KEM.KG():

1 sk←$ S-KEM.KG()

2 ste ← ε; std ← ε

3 Return (sk, ste , std)

nOS-KEM.E(sk, ste):

1 (K ,C)←$ S-KEM.E(sk)

2 Return (K ,C , ste)

nOS-KEM.D(sk, std,C):

1 K ← S-KEM.D(sk,C)

2 Return (K , std)

Figure 6.6: Algorithms of nOS-KEM, an instantiation of an ordered symmetric-key KEM
under no ordering based on the stateless S-KEM scheme S-KEM.

Proof. The result follows from a simple reduction, which we outline for the ind-cca
case. The ind-cpa case is analogous and obtained by excluding decapsulation
oracles. (Privacy in the ind-cpa sense also follows directly from the stronger ind-cca
notion).

Given adversary A attacking the ind-cca security of nOS-KEM we construct
adversary B against the ind-cca security of S-KEM such that

Advind-cca
nOS-KEM(A) ≤ Advind-cca

S-KEM (B)

which proves the theorem. Adversary B runs A and relays any queries to its own
oracles. Since both adversaries are subject to the same restrictions (decapsulation
queries are silenced if the queried ciphertext has been previously output by en-
capsulation) this perfectly simulates the ind-cca game for A. When A halts and
outputs bit b∗, B uses b∗ as its own guess. It wins precisely when A has made
a correct guess, hence Advind-cca

nOS-KEM(A) = Advind-cca
S-KEM (B), showing the claimed

bound.

6.5.2 OS-KEM Instantiation under Perfect Ordering

Next, we move on to the more interesting case of perfect ordering. Here, the de-
capsulator should only accept ciphertexts sequences that have not been modified
at all after being produced by the encapsulator. To do this, the scheme needs to
ensure that the decapsulator only accepts ciphertexts that have been produced by
encapsulation, that it only accepts the next ciphertext expected in the sequence
and that all previous ciphertexts have arrived in order. To meet these demands,
ciphertexts must be hard to create for an adversary without access to the encapsu-
lator, and the scheme must keep track of encapsulation and decapsulation indices,
as well as a synchronization flag. The first requirement (the “unforgeability” of
ciphertexts) is handled by clever use of a pseudorandom function. The rest is
covered by the encapsulator and decapsulator states.

We construct the scheme pOS-KEM[F] = (KG,E,D)3 directly from a PRF
F : {0, 1}k × {0, 1}in → {0, 1}out. The algorithms of pOS-KEM[F] are shown

3When referring to algorithms of a construction, we use dot notation. For example
pOS-KEM[F].KG refers to the key generation algorithm KG of scheme pOS-KEM[F]. From
here on we will omit the scheme name preceding the procedure name in the tuple when
defining the scheme.

Ordered Symmetric-key KEMs 43

pOS-KEM[F].KG():

1 sk1←$ {0, 1}k
2 sk2←$ {0, 1}k
3 sk ← (sk1, sk2)

4 ste ← 0; nd ← 1

5 sync← true

6 std ← (nd, sync)

7 Return (sk, ste , std)

pOS-KEM[F].E(sk, ste):

8 ste ← ste + 1

9 (sk1, sk2)← sk

10 K ← F(sk1, ste)

11 C ← F(sk2, ste)

12 Return (K ,C , ste)

pOS-KEM[F].D(sk, std,C):

13 (nd, sync)← std

14 (sk1, sk2)← sk

15 If C �= F(sk2, nd) or
sync �= true then:

16 sync← false

17 std ← (nd, sync)

18 Return (⊥, std)
19 K ← F(sk1, nd)

20 std ← (nd + 1, sync)

21 Return (K , std)

Figure 6.7: Algorithms of pOS-KEM[F]; an instantiation of an ordered symmetric-key KEM
under perfect ordering based on pseudorandom function F. The code in the box is executed
under standard correctness, but left out for robust correctness.

in Figure 6.7. The PRF is used doubly, both to derive the keys and to ensure
the unforgeability of ciphertexts by making them unpredictable. Therefore the
scheme will need a pair of secret keys, so the secret-key space of pOS-KEM[F] is
SK = {0, 1}k × {0, 1}k. As in the S-KEM PRF construction in Figure 5.3, the
key space of pOS-KEM is the range of the PRF, i.e. K = {0, 1}out. In contrast to
the stateless setting, the ciphertexts of pOS-KEM will also be computed using the
PRF. This is to avoid attacks where the adversary guesses the next ciphertext,
which is necessary to obtain ind-cca security in the stateful case. Therefore the
ciphertext space is also C = {0, 1}out. The state spaces are Se = {0, 1}in and
Sd = {0, 1}in × {true, false}, the latter to accommodate both an index and the
boolean sync-flag. Note that the encapsulation and decapsulation state contain
indices, which in the code of the game are treated as numbers. We assume here
an implicit encoding of the integers in {0, . . . , 2in − 1} as strings in {0, 1}in. To
perform for example addition, the string ste is parsed as an integer, the operation
is completed and the resulting number is converted back to a string.

Privacy. Security of pOS-KEM[F] is derived from the pseudorandom function
on which it is based. Because privacy in the ind-cpa sense is independent of the
correctness class (see Figure 6.5) and weaker than pO-ind-cca, we here onward
focus on the stronger chosen ciphertext security.

Theorem 5. Let F : {0, 1}k × {0, 1}in → {0, 1}out be a pseudorandom function.
Let pOS-KEM[F] = (KG,E,D) be the ordered symmetric-key KEM scheme based
on F as defined in Figure 6.7. Then pOS-KEM[F] is pO-ind-cca-secure given that
F is a secure PRF.

Proof. The proof is by reduction. Given adversary A against the pO-ind-cca
security of pOS-KEM[F] we construct adversaries B1 and B2 attacking the PRF

44 Ordered Symmetric-key KEMs

security of F such that

AdvpO-ind-cca
pOS-KEM[F](A) ≤ Advprf

F (B1) + 1

2out
+Advprf

F (B2).

If F is a secure PRF with a large output space, then all terms on the right hand
side will be small, making the advantage of A small as well. To show the claimed
bound, we partition the probability that adversary A correctly guesses bit b in
game GpO-ind-cca

b,OS-KEM into two distinct cases.

Case 1: A correctly guesses b and has managed to forge a ciphertext.

Case 2: A correctly guesses b and has not forged a ciphertext.

By forge a ciphertext we mean that A has created a ciphertext C ∈ {0, 1}out which
it has not obtained from its encapsulation oracle, but which the decapsulation
algorithm of the scheme accepts. (Recall that pOS-KEM[F].D is said to accept
ciphertext C if the key it returns is not ⊥.) We claim that the following equations
hold.

AdvpO-ind-cca
pOS-KEM[F](A) = Pr [Case 1] + Pr [Case 2] (6.1)

Pr [A correctly guesses b and forges] ≤ Advprf
F (B1) + 1

2out
(6.2)

Pr [A correctly guesses b and does not forge] ≤ Advprf
F (B2) (6.3)

Equation (6.1) is basic probability theory since the events “A has forged” and “A
has not forged” are complementary. To show Equation (6.2), we first use that
Pr [A correctly guesses b and forges] ≤ Pr [A forges], so it’s enough to bound the
probability that A manages to forge. For this, we can intuitively justify the two
terms in Equation (6.2) by arguing that either F is a “bad” PRF (meaning not close
to an ideal random function with completely unpredictable output), in which case
the fact that A can forge means that B1 can detect a difference between F and
an ideal random function, contributing to Advprf

F (B1). Or F is actually a perfect
random function and A has simply managed to guess the next expected ciphertext,
which it can do with probability 1/2out. To formally justify Equation (6.2) we
would need to formalize what it means for a PRF to be unforgeable, which is
outside the scope of this work. (The interested reader is referred to e.g. [4].)

To show Equation (6.3) we construct PRF adversary B2 that runs A, simulat-
ing game GpO-ind-cca

b,pOS-KEM[F] using its own Fn-oracle and returns the guess of A as its
own. The code is given in Figure 6.8. Adversary B2 begins by drawing a random
element sk2 from the key space of the PRF. It then runs A. On encapsulation
queries from A it uses its own Fn-oracle to compute the key. It computes the
ciphertext by itself using sk2 and stores it in table T[·]. On decapsulation queries
from A, adversary B2 checks if the queried ciphertext is a forgery (i.e., if it is the
next ciphertext in the decapsulation order, but has not previously been given to
A by B2 in an encapsulation query). If so, B2 aborts and gives up its own game.
If the query is not a forgery, B2 simply returns ⊥. This perfectly simulates the
game for A as long as A does not query a forged ciphertext. The reason is that
pOS-KEM[F] is constructed to only return a key K �= ⊥ when the decapsulator
is given the next expected ciphertext in order, but as long as this ciphertext has

Ordered Symmetric-key KEMs 45

Adversary BFn2 ():

1 ne ← 0; nd ← 1

2 sk2←$ {0, 1}k
3 b∗←$AEnc∗,Dec∗

()

4 Return b∗

Enc∗():

5 ne ← ne + 1

6 K ← Fn(ne)

7 C ← F(sk2, ne)

8 T[ne]← C

9 Return (K ,C)

Dec∗(C):

10 If
(
T[nd] �= C

)
and(

C = F(sk2, nd)
)
:

11 Abort
12 Else:
13 nd ← nd + 1

14 Return ⊥

Figure 6.8: Code of PRF-adversary B2 for the proof of Theorem 5. A star superscript to a
procedure indicates that it is a subroutine in the code of B2, used to simulate an oracle
expected by adversary A. “Abort” means that adversary B2 stops simulating the game for
A, halts and returns 0.

been previously produced by encapsulation, game GpO-ind-cca
b,pOS-KEM[F] will silence such

queries. Only if C is the next expected ciphertext, but not previously given in an
encapsulation query, will the scheme give an honest decapsulation without being
silenced by the game. But this is precisely when C is a forgery. Since we are
trying to bound the probability that A correctly guesses b and does not forge,
B2 is therefore perfectly simulating decapsulation queries for all adversaries A of
interest. From the reasoning above it is clear that

Advprf
F (B2) = Pr

[
A correctly guesses b in GpO-ind-cca

b,pOS-KEM[F] and does not forge
]
,

which directly shows the bound in Equation (6.3).

The above result is for ind-cca-security of pOS-KEM[F] under standard correct-
ness. If one adds the requirements of robustness (i.e. removes the synchronization
flags from the games and construction), the bound changes slightly. The difference
lies in the fact that an adversary in the robust version is given multiple attempts
at forging a ciphertext, so the advantage relating to successful forgeries increases.

6.5.3 OS-KEM Instantiation under Weak Ordering

We continue using pseudorandom functions as building blocks to construct a
scheme for the most complex correctness class: weak ordering. The scheme has
parameters wf and wb, the forward window and backward window respectively,
which determine the size of the sliding window in which the decapsulator accepts
ciphertexts. Other than that, it functions much the same as pOS-KEM[F]; the PRF
F : {0, 1}k × {0, 1}in → {0, 1}out is used both to produce keys and ensure that ci-
phertexts are unforgeable. We call the scheme wOS-KEMwf ,wb

[F], and as usual it
consists of three procedures; wOS-KEMwf ,wb

[F] = (KG,E,D). The algorithms of
wOS-KEM are shown in Figure 6.9. In addition to the code there, the decapsu-
lator uses a predicate called Accept to check if a ciphertext should be accepted.

46 Ordered Symmetric-key KEMs

wOS-KEM[F].KG():

1 sk1←$ {0, 1}k
2 sk2←$ {0, 1}k
3 sk ← (sk1, sk2)

4 ste ← 0; m← 0

5 S ← ∅
6 sync← true

7 std ← (m, sync,S)
8 Return
(sk, ste , std)

wOS-KEM[F].E(sk, ste):

9 ste ← ste + 1

10 (sk1, sk2)← sk

11 K ← F(sk1, ste)

12 C ← F(sk2, ste)

13 C̃ ← (C , ste)

14 Return (K , C̃ , ste)

wOS-KEM[F].D(sk, std, C̃):

15 (m, sync,S)← std

16 (sk1, sk2)← sk

17 (C , ste)← C̃

18 If Accept(sk2,C , ste ,m,S)
and sync = true then:

19 S ← S ∪ {C}
20 m← max(m, ste)

21 std ← (m, sync,S)
22 K ← F(sk1, ste)

23 Else:
24 sync← false

25 std ← (m, sync,S)
26 K ← ⊥
27 Return (K , std)

Figure 6.9: Algorithms of wOS-KEMwf ,wb ; an instantiation of an ordered symmetric-key
KEM under weak ordering based on pseudorandom function F. Predicate Accept ensures
that C has not been replayed, that C̃ is authentic and that ste is within the current
sliding window. The code in the box is executed under standard correctness, but left out
for robust correctness.

The predicate is defined as

Accept(sk2,C , ste ,m,S) = (C /∈ S)∧(C = F(sk2, ste))∧(m− wb ≤ ste ≤ m+ wf) .

The forward and backward windows wb, wf are implicit parameters to the pred-
icate, and F is assumed publicly available and hence not needed as input. Note
the similarities to the Supported-predicate used in game GwO-ind-cca

b,wf ,wb
(Figure 6.3).

The predicate checks for replays through condition C /∈ S and ensures that the
ciphertext is within the sliding window via m−wb ≤ ste ≤ m+wf . A difference to
the Supported-predicate is that the scheme has no internal memory shared by the
encapsulator and the decapsulator, so in predicate Accept the encapsulation index
cannot be fetched from a table, like it is in the game. A solution to this could be
to let the decapsulator scan through the current window and for each position i
check if F(sk2, i) = C (recall that ciphertext C is produced by C ← F(sk2, ste)).
To make the construction slightly more efficient, we include the encapsulation in-
dex in the ciphertext as a “hint” to the decapsulator. To ensure that the index has
not been tampered with, predicate Accept checks that C = F(sk2, ste).

Because of the twofold functionality of PRF F, wOS-KEMwf ,wb
[F] uses two

distinct secret keys, so SK = {0, 1}k × {0, 1}k. The session keys are elements in
the range of the F, i.e. K = {0, 1}out. To incorporate the encapsulation state

Ordered Symmetric-key KEMs 47

in the ciphertexts, the ciphertext space is C = {0, 1}out × {0, 1}in, because the
encapsulation state space is Se = {0, 1}in. The decapsulation state needs to include
not only the highest accepted index m, but also a boolean synchronization flag
sync and the set of previously accepted ciphertexts S. Hence Sd = {0, 1}in ×
{true, false}×P(C), where P(C) is the power set of the ciphertext space. As in the
pO-correct instantiation, we assume that strings in {0, 1}in are parsed as integers
for the purpose of addition operations.

Privacy. We will not prove the security of wOS-KEMwf ,wb
[F]; the reasoning

in such a proof is similar to that of Theorem 5 because of the similarities to
pOS-KEM[F]. We do however outline why wOS-KEMwf ,wb

[F] is correct under weak
ordering, as defined by game GwO-correct

wOS-KEM[F],wf ,wb
in Figure 6.3 (now parameterized

by the constructed scheme). First of all, we note that ciphertexts are unique
(meaning each C̃ ∈ C is output at most once by encapsulation) because C̃ includes
the encapsulation index ste which is incremented in each call to wOS-KEM[F].E.
The inclusion of the encapsulation index also ensures correct decapsulation if C̃
is a supported ciphertext; since PRF F is a function, it will always give the same
output when evaluated on a fixed input. Hence K = F(sk1, ste) will be returned
when the decapsulator is given ciphertext C̃ = (F(sk2, ste), ste), if ste is within the
current sliding window.

Optimizations. As noted previously, including the encapsulation index in the
ciphertext enables a more efficient construction because the decapsulator does not
have to scan through the entire sliding window to see if the ciphertext should
be accepted. An even greater optimization can be achieved if the construction
is tweaked further. Recall that the construction checks for replays by storing the
set of previously decapsulated ciphertexts in the decapsulation state. The memory
needed for this check can easily be reduced by only storing decapsulated ciphertexts
within the current sliding window. This suffices, because ciphertexts outside of the
window will anyways be rejected. An even more efficient solution is to simply keep
a bit vector which represents the indices within the current window, and to mark
a received ciphertext by flipping a bit in the vector. With this method there is no
need to store whole ciphertexts and the decapsulation state is brought down to
only a few bits of memory.

48 Ordered Symmetric-key KEMs

Chapter 7
Puncturable Symmetric-key KEMs

In the last chapter we discussed ordered S-KEMs and the necessity of state to
realistically model network communication and handle the variable reliability of
message transmission. The ideas developed there will be of importance later on,
when we explore optimizations and efficient constructions. First, however, we
present a tool that enables an essential step toward forward-secret zero round-
trip time key exchange, namely the concept of puncturing. First introduced by
Green and Miers [30] as a means of revoking the decryption capability for specific
messages in a public-key encryption scheme, the suitability of puncturable schemes
for forward-secret 0-RTT key exchange was observed by Günther et al. [32]. It has
later been honed further to this purpose by Derler et al. [20] and Aviram, Gellert
and Jager [3]. The original idea was in turn based on forward-secret public-key
encryption, for which the first construction was proposed by Canetti, Halevi and
Katz [13].

Intuitively, puncturing is similar to a limited blackout. The decrypting party
(or in our case, decapsulating) forgets some part of the secret used to convert a
specific ciphertext into plaintext, thereby losing the capability to decrypt (decap-
sulate) that ciphertext. Compared to other methods of obtaining forward secrecy,
which often depend on an update of the secret key that renders all prior cipher-
texts indecipherable, puncturing provides fine-grained revocation of the decryption
capability; the ciphertext being punctured on can no longer be deciphered, but all
others are unaffected. This is especially suitable for applications such as TLS key
exchange, where encapsulated session keys may arrive out of order due to network
issues and there is a benefit to removing access to the messages of a session as
soon as it is closed, without having to wait for earlier or parallel sessions to finish.

7.1 Syntax

Formally, extending the notion of a stateless symmetric-key KEM to that of a
puncturable S-KEM consists of adding a puncturing algorithm, P, by which the
secret key can be altered to no longer allow decapsulation of specific ciphertexts.
The other algorithms operate the same way as for S-KEM schemes described in
Definition 4, except for a slight revision of the encapsulation algorithm to allow
that it outputs ⊥. This is necessary because excessive puncturing could cause a
scheme to run out of valid, non-punctured ciphertexts, which the scheme may then

49

50 Puncturable Symmetric-key KEMs

choose to indicate by returning ⊥.

Definition 6. A puncturable symmetric-key key encapsulation mechanism, PS-KEM =
(KG,E,D,P) is a 4-tuple of algorithms. Associated to PS-KEM are a secret key
space SK, a key space K and a ciphertext space C. The algorithms operate as
follows:

• The probabilistic key generation algorithm, KG, takes no input and produces
a secret key sk ∈ SK. We write sk←$ KG().

• Via (K ,C)←$ E(sk), the randomized encapsulation algorithm, E, produces
a pair (K ,C) consisting of a key K ∈ K and an associated ciphertext C ∈ C,
or (⊥,⊥) to indicate failure.

• Via K ← D(sk,C) the deterministic decapsulation algorithm, D, on input
the secret key sk ∈ SK and a ciphertext C ∈ C, returns either a key K ∈ K
or ⊥ to indicate failure.

• Via ŝk←$ P(sk,C) a punctured secret key, ŝk ∈ SK, is produced on input
the previous secret key sk ∈ SK and a ciphertext-key C ∈ C. The puncturing
algorithm may be randomized.

7.2 Correctness

Correctness of PS-KEMs states that, in addition to the correct decapsulation re-
quirements of standard S-KEMs, puncturing a secret key on a specific ciphertext
does not impair the ability to decapsulate any other ciphertext. This means that
regardless of the order in which procedures E, D and P are called, previously encap-
sulated ciphertexts must always be correctly decapsulated if the secret key has not
been punctured on that specific ciphertext. Although this consistency requirement
is intuitively easy to grasp, it turns out to be difficult to formalize. Prior work
on puncturable KEMs has treated this by sticking to informal notions, speaking
about “arbitrary interleaved” sequences [20, 32], or only handling certain sub-cases
and not specifying what happens outside of those. Although that is of course a
possible approach, we choose to instead exercise the machinery developed for or-
dered S-KEMs and give correctness in the form of a game. In doing so, we avoid
vague quantifying statements such as “for any arbitrary interleaved sequences” and
instead formalize correctness in a straightforward manner which leaves no risk of
uncovered cases.

The correctness game Gcorrect
PS-KEM is given to the left in Figure 7.1. Initially,

the game runs the key generation algorithm to produce the original secret key sk
which is given to the adversary. The adversary is then allowed to interact with
the encapsulation, decapsulation and puncture algorithms via the corresponding
oracles, making any number of queries in any order. The game keeps track of
the encapsulation history in table T[·] where it stores key K at location T[C]
when (K ,C) is the output from an encapsulation query. On query Punc(C), a
special flag � (“pluto”) is written to T[C], erasing a potential key stored there
earlier. Correctness is violated (the adversary wins) if it manages to make a query
Dec(C) such that ciphertext C has previously been given to the adversary in

Puncturable Symmetric-key KEMs 51

Game Gcorrect
PS-KEM(A)

1 sk←$ KG()

2 AEnc,Dec,Punc(sk)

3 Return win

Enc():

4 (K ,C)←$ E(sk)

5 If C = ⊥ return ⊥
6 If T[C] �= � then T[C]← K

7 Return (K ,C)

Dec(C):

8 If C /∈ C return ⊥
9 K ← D(sk,C)

10 If (T[C] �= ⊥) ∧ (T[C] �= �):
11 If K �= T[C] then win← true

12 Return K

Punc(C):

13 If C /∈ C return ⊥
14 sk←$ P(sk,C)

15 T[C]← �
16 Return sk

Game Gfs-cpa
b,PS-KEM(A), Gfs-cca

b,PS-KEM(A)
1 sk←$ KG()

2 b∗←$AEnc, Dec, Punc,Corrupt()

3 Return b∗

Encb():

4 If corrupt then return ⊥
5 (K1,C)←$ E(sk); K0←$K
6 If C = ⊥ return ⊥
7 If T[C] �= � then T[C]← Kb

8 Return (Kb,C)

Dec(C):

9 K ← D(sk,C)

10 If (T[C] �= ⊥) ∧ (T[C] �= �):
11 Return ⊥
12 Return K

Punc(C):

13 sk←$ P(sk,C)

14 T[C]← �
Corrupt():

15 If (∀C ∈ C) T[C] ∈ {⊥,�} then:
16 corrupt← true

17 Return sk

18 Else return ⊥

Figure 7.1: Left: Correctness game for PS-KEMs. Right: Games for fs-cpa and fs-cca se-
curity of puncturable symmetric-key KEMs. The code in the box is executed in Gfs-cca

b,PS-KEM,
but not in Gfs-cpa

b,PS-KEM.

an Enc-query (first condition on line 10), the adversary has not punctured on C
(second check on line 10) and the decapsulation algorithm fails to (re-)produce the
key which the encapsulation algorithm associated to C (line 11).

7.3 Security

Analogously to S-KEMs we consider two security metrics for PS-KEMs; fs-cpa
and fs-cca. The notions are extended from ind-cpa and ind-cca to capture the

52 Puncturable Symmetric-key KEMs

forward secrecy (fs) we wish to obtain via puncturing. Essentially, forward secrecy
demands that puncturing a secret key on a ciphertext removes the capability to
decapsulate that specific ciphertext. We formalize this in games Gfs-cpa

b,PS-KEM and
Gfs-cca

b,PS-KEM to the right in Figure 7.1.
In game Gfs-cpa

b,PS-KEM, the adversary is given access to an encapsulation oracle
which provides either all real encapsulations (if b = 1) or key-ciphertext pairs
where the key is drawn uniformly at random independently of the ciphertext (if
b = 0). The attacker is also given a puncturing oracle, Punc, to which it can
submit ciphertexts C ∈ C on which it wishes to puncture the secret key stored
by the game. When the secret key is punctured, the game’s copy of the key is
overwritten by the new version, which is then used for all subsequent computations.
Finally in the fs-cpa game, the adversary has access to a Corrupt-oracle. A
Corrupt()-query gives the adversary a copy of the current secret key, given that
it has previously queried Punc(C) on all ciphertexts C which it obtained from
prior Enc-queries. However, after querying Corrupt, no more encapsulations
are provided to the adversary. Security of a puncturable S-KEM scheme in the
fs-cpa sense requires that an attacker cannot distinguish the real from the random
world using Enc, Punc and Corrupt.

In game Gfs-cca
b,PS-KEM, an attacker is given access to all of the above described

oracles, together with an additional decapsulation oracle Dec. The Dec-oracle
lets the adversary decapsulate ciphertexts of its choice, except those that it has
previously obtained from the Enc-oracle and has not punctured on. (As for OS-
KEMs, the decapsulation oracle is silenced and returns only ⊥ when correctness
demands a fixed response. Hence the identical conditions on line 10 in Gfs-cca

b,PS-KEM

and Gcorrect
PS-KEM(A).) Security still demands that an adversary cannot tell the real

from the random world. For cxa ∈ {cpa, cca} we define the advantage of adversary
A playing game Gfs-cxa

b,PS-KEM as

Advcxa
PS-KEM(A) = Pr

[
Gfs-cxa

1,PS-KEM(A)⇒ 1
]− Pr

[
Gfs-cxa

0,PS-KEM(A)⇒ 1
]
.

As usual, the advantage is the difference in probability that the adversary returns 1
in the real and random worlds.

7.4 Instantiation

GGM PRFs. One way of obtaining a secure PS-KEM scheme is to build it
similarly to a Goldreich-Goldwasser-Micali pseudorandom function [28], which we
call a GGM PRF. A GGM PRF is a pseudorandom function constructed from
a length-doubling pseudorandom generator where the expansion of the PRG is
used repeatedly in a clever way to obtain a PRF. The use of the GGM PRF
construction toward puncturing is inspired by the similar concept of constrained
PRFs [11, 12, 37]. Puncturable PRFs are not only useful for key exchange, they also
appear for example in the context of indistinguishability obfuscation [10, 34, 45].
In the following we give a high-level description of the GGM construction, enough
to let us utilize the idea toward our construction of a secure PS-KEM scheme. For
a full definition of GGM PRFs see e.g. [27].

Puncturable Symmetric-key KEMs 53

εεval = s

00val = G0(s)

0000val = G0(G0(s))

000 001 001val = G1(G0(G0(s)))

01

1 1val = G1(s)

10 11

Figure 7.2: Illustration of a GGM tree TGGM[s] with root value s ∈ {0, 1}k. The values of the
nodes in the tree are computed using the pseudorandom generator G : {0, 1}k → {0, 1}2k.
G0 denotes the left half of the output of G and G1 the right half. I.e. G(x) = G0(x)‖G1(x)
for each x ∈ {0, 1}k.

The GGM PRF construction works as follows: Let G : {0, 1}k → {0, 1}2k be a
length-doubling PRG. For s ∈ {0, 1}k let G0(s) be the first k bits of G(s) and let
G1(s) be the remaining k bits (the second half of G(s)). That is, G(s) = G0(s)‖G1(s).
For each s ∈ {0, 1}k we define a binary tree TGGM[s] consisting of nodes which each
have a label in {0, 1}∗ and a value in {0, 1}k. The root is labeled ε and has value
s. Its left child has label 0 and value G0(s). The right child is labeled 1 and has
value G1(s). We continue recursively: For each node with label n and value nval,
its left child is labeled n‖0 and has value G0(n

val). Its right child has label n‖1
and value G1(n

val). When we write node in the following we implicitly refer to the
label of the node. For the node value we will explicitly state that it is the value
we are referring to. As an example, node 001 in TGGM[s] has value G1(G0(G0(s))).
Figure 7.2 illustrates the concept. We call a binary tree constructed in this way a
GGM tree.

In the GGM construction, PRF F : {0, 1}k × {0, 1}h → {0, 1}k is built by
assigning the values of the nodes at depth h in the tree as outputs of F. We
use b to denote a single bit, i.e. b ∈ {0, 1}. For each s ∈ {0, 1}k and each
node n = b1b2 . . . bh ∈ {0, 1}h, we set F(s, n) = Gbh

(. . . (Gb2
(Gb1

(s))) . . .). Using
Figure 7.2 to illustrate, a PRF F2 : {0, 1}k × {0, 1}2 → {0, 1}k with labels in
{0, 1}2 = {00, 01, 10, 11} would have the values of the nodes at depth 2 as outputs.
I.e. F2(s, 00) = 00val = G0(G0(s)), and so on.

This is the idea of a GGM PRF, and it is a well-known fact that F is secure
given that G is a secure PRG. (This is easily shown using a hybrid argument, for
a full-fledged proof see [27].) An important thing to note is that given the value
of any node in the tree (such as the root), one can compute the value of each
descendant node (its children and children’s children etc.). However, security tells
us that without the value of an ancestor of node n, the value of n is indistinguish-
able from random. Hence the values of the leaves (the nodes of TGGM[s] at depth

54 Puncturable Symmetric-key KEMs

h) “look random” to anyone not in possession of the value of the nodes higher up
in the tree. We will use this in our PS-KEM construction, by letting the session
keys be the values of the leaf nodes and the ciphertexts the corresponding node
labels. The secret key will contain some nodes in the tree that allow the values of
all non-punctured leaf node labels to be computed. Initially it consists only of the
root and hence allows computation of all node values in the tree. Puncturing on
a ciphertext will remove all ancestors of the corresponding node from the secret
key, hence ensuring that the value (session key) of the node (ciphertext) cannot
be computed and appears random. Instead the sibling nodes on the path from the
node to the root will be added to ensure that the values of rest of the leaves can
still be computed.

To construct our puncturable S-KEM scheme we will use the idea behind a
GGM PRF, but not directly the PRF F defined above. Instead we will build the
scheme from the pseudorandom generator G, since this allows us to perform in-
termediate computations necessary for puncturing. The ciphertexts of the scheme
will be labels of the leaf nodes in the associated GGM tree. In key generation, a
random seed will be drawn to determine the value of the root node, and from that
the session keys can be derived as the values of the leaf nodes.

PS-KEM construction. From the length doubling pseudorandom generator
G : {0, 1}k → {0, 1}2k and integer h ∈ N we construct scheme

PS-KEMGGM[G, h] = (KG,E,D,P).

The ciphertexts are the labels of nodes at depth h, which we will refer to as the
leaf nodes. Hence C = {0, 1}h and h determines the number of ciphertexts that
can be generated (namely 2h). The keys are leaf node values, which are the left
or right output of the PRG, so K = {0, 1}k. The secret key is a set of nodes in
the GGM tree, and each node has a label in {0, 1}∗ and a value in {0, 1}k, giving
SK = P({0, 1}∗ × {0, 1}k).

The algorithms of PS-KEMGGM[G, h] will be given in pseudocode, and we use an
object-oriented notation. The secret key sk, for example, is going to contain pairs
of node labels and values, and these will be accessed through method calls similar to
those of a hash map. E.g., if sk = {(n1, nval1), (n2, n

val
2)}, then sk.Labels = {n1, n2}

and sk.Values = {nval1 , nval2 }. The predicate Ancestor(n1, n2) is true if node n1 is
an ancestor of node n2, which we define as the label n1 being a prefix of n2. (Note
that this includes the case n1 = n2, i.e. a node is an ancestor of itself.) We stress
that a property which will always be true for this construction is that for any
leaf node in the tree, there exists at most one node in the secret key which is an
ancestor of that leaf. Furthermore, a leaf node will have an ancestor in the secret
key if and only if the leaf has not been punctured on. The reader is encouraged
to verify for themselves that the following algorithms uphold these properties.

Key Generation. The key generation algorithm determines the node values in
the GGM tree by assigning the root (which we recall has label ε) a value drawn
at random from {0, 1}k. The algorithm is defined in Figure 7.4.

Encapsulation. The encapsulation algorithm of PS-KEMGGM[G, h] works by
drawing a non-punctured leaf node uniformly at random. By the above assump-

Puncturable Symmetric-key KEMs 55

tion, the set of non-punctured leaf nodes is precisely the set of ciphertexts/leaf
nodes which have an ancestor in the secret key. I.e.

Cnp = {C ∈ C | (∃n ∈ sk.Labels) Ancestor(n,C)},
where Cnp ⊆ {0, 1}h denotes the set of non-punctured ciphertexts. The label of the
leaf (lets call it �1�2 . . . �h) is assigned to C . The value of the leaf node is computed
as previously described by repeatedly applying PRG G to the value of the ancestor
of C stored in the secret key. This is what subroutine CompVal does, on input sk
(containing the ancestor node) and the label C . For an ancestor na = �1�2 . . . �depth
at level depth, it first computes the path �depth+1�depth+2 . . . �h from the ancestor to
C and then computes the value of C as G�h(. . . (G�depth+2

(G�depth+1
(nvala))) . . .), where

nvala is retrieved from sk. The value is assigned to K and the algorithm returns the
pair (K ,C). If the secret key is empty because all leaf nodes have been punctured
on, the encapsulation algorithm returns ⊥. The algorithm is shown in Figure 7.4.

We remark that it is not strictly necessary to choose C from Cnp. The re-
striction to non-punctured ciphertexts is made to increase the functionality of the
scheme, but is not required by correctness nor security. In fact, it affects the secu-
rity of the construction negatively, as the set of possible ciphertexts decreases by
each puncturing. However, the effect should be negligible given that the ciphertext
space is large enough.

Decapsulation. Decapsulation repeats the second half of encapsulation. I.e., on
input secret key sk and ciphertext label C it checks if the secret key contains an
ancestor node of C , and if so computes the value of node C . The value is assigned
to variable K and returned. Otherwise (if the secret key has been punctured and
no longer contains any ancestor of C), decapsulation returns ⊥. The details are
in Figure 7.4.

Puncturing. To define the puncturing algorithm of PS-KEMGGM[G, h] we will
need some new notation. Let TGGM[s] be a GGM tree of height h with root value
s ∈ {0, 1}k. For any node n at depth depth with label n = b1b2 . . . bdepth we define
functions which give the label of the parent (direct ancestor) of n and the sibling
(other child of node n’s parent). For bit b we let b denote the complement of b
(i.e. 0 = 1, 1 = 0).

- Parent(n) = b1b2 . . . bdepth−1 if depth ≥ 1, else Parent(n) = ⊥ (if n = ε,
i.e. n is the root).

- Sibling(n) = b1b2 . . . bdepth.

The puncturing algorithm of PS-KEMGGM[G, h] updates the secret key by both
adding and deleting nodes in the GGM tree, making sure that in the end at
most one ancestor of each leaf node is in the secret key. (Recall that a node
counts as an ancestor of itself). On call PS-KEMGGM[G, h].P(sk,C), any ancestor
of C is removed from the secret key. This ensures that the value of C (i.e. the
corresponding key) can no longer be computed. Instead, the siblings of all nodes
on the path from C up to, but excluding, its ancestor in sk are added to the secret
key. This ensures that the values of the other leaf nodes in the subtree under the
ancestor node can still be computed. The idea is illustrated in Figure 7.3 for a
tree of height 3. For an extended example, see Figure A.1 in Appendix A.

56 Puncturable Symmetric-key KEMs

ε

0

00

000 001

01

010 011

1

10

100 101

11

110 111

Figure 7.3: GGM tree TGGM[s] illustrating the puncturing algorithm of PS-KEMGGM[G].
The figure shows puncturing on node 001 where the secret key initially consists of the
root only (double circle), which is also the ancestor of 001 in sk. Nodes on the path from
001 to its ancestor in the secret key are shaded. The siblings of the shaded nodes are
added to the secret key (illustrated by a dashed double circle) and the ancestor (root) is
removed.

For brevity we define an “add” operation and a “delete” method on the secret
key. The add operation takes as input the label of the new node and its value.
The delete operation takes only the label.

- sk.Add(n, nval)

sk ← sk ∪ {(n, nval)}
Return sk

- sk.Delete(n)
If n /∈ sk.Labels return sk
nval ← CompVal(sk, n)
sk ← sk \ {(n, nval)}
Return sk

Finally, to define PS-KEMGGM[G, h].P(sk,C), where C is the label of a leaf in TGGM,
we specify a recursive subroutine RecursivePunc(sk, n) which takes as input the
secret key sk and a node n. The code of the helper function is given at the bottom of
Figure 7.4. The recursive algorithm starts at the node to be punctured, traverses
up the tree until it reaches the ancestor which is in sk (if such exists – if not,
puncturing does not change the secret key), computes the values of both children
and adds them to the secret key. It then steps back, the same path it traversed up,
using the value of the current node which was added to sk to compute the values of
both children. It adds the children to the secret key and then removes the current
node as it steps down again. In the end, the secret key contains the sibling nodes
of all nodes on the path from the punctured node up to the ancestor in sk, and
the nodes on the path that were temporarily added have been removed. Finally,
the node punctured on is itself removed from sk. The code of PS-KEMGGM[G, h].P
is given at the top of Figure 7.4 together with the key generation, encapsulation
and decapsulation algorithms described earlier.

Puncturable Symmetric-key KEMs 57

PS-KEMGGM[G, h].KG():

1 s←$ {0, 1}k
2 sk ← {(ε, s)}
3 Return sk

PS-KEMGGM[G, h].E(sk):

4 If sk = ∅ return (⊥,⊥)
5 C ←$ Cnp
6 K ← CompVal(sk,C)

7 Return (K ,C)

PS-KEMGGM[G, h].D(sk,C):

8 If C ∈ Cnp then K ← CompVal(sk,C)

9 Else K ← ⊥
10 Return K

PS-KEMGGM[G, h].P(sk,C):

11 If C /∈ Cnp return sk

12 sk ← RecursivePunc(sk,C)

13 sk.Delete(C)

14 Return sk

Subroutine RecursivePunc(sk, n):

1 If n ∈ sk.Labels return sk // Base case
2 pn← Parent(n)

3 sk ← RecursivePunc(sk, pn) // Traverse up
4 If pn ∈ sk.Labels then:
5 sn← Sibling(n)

6 snval ← CompVal(sk, sn) // Compute value of sibling node
7 sk.Add(sn, snval) // Add sibling to sk

8 nval ← CompVal(sk, n) // Compute value of current node
9 sk.Add(n, nval) // Temp. add current node for use in next level

10 sk.Delete(pn) // Delete parent from sk

11 Return sk

Figure 7.4: Top: Algorithms of PS-KEMGGM[G, h], an instantiation of a puncturable
symmetric-key KEM based on pseudorandom generator G.
Bottom: Code of subroutine RecursivePunc, used internally as helper method by proce-
dure PS-KEMGGM[G, h].P.

58 Puncturable Symmetric-key KEMs

Privacy. A full-fledged security proof for PS-KEMGGM[G, h] could be given us-
ing a complexity leveraging argument [11, 12], and better bounds could perhaps be
attained through other techniques [26], but this is unfortunately outside the scope
of this thesis. However, we do provide some intuition as to why the construction
achieves fs-cca (and hence, by implication also fs-cpa) privacy. We begin with the
weaker notion and build up our reasoning to the stronger. Recall that the goal
of an adversary in the fs-cpa game is to distinguish real encapsulated keys from
random ones, with the help of a puncturing oracle and potentially by corrupt-
ing the punctured secret key. If the construction had been a standard S-KEM
scheme, without the ability to puncture, the keys (leaf node values) would have
been indistinguishable from random given that the underlying PRG G is secure.
The security of such an S-KEM scheme directly reduces to that of the GGM PRF
which it would essentially be built of, which in turn reduces to PRG G by a stan-
dard result proved originally in [29]. The reduction from S-KEM to any PRF
(including a GGM PRF) is shown in Theorem 1, Section 5.3.

Adding puncturing makes the analysis more complex, both because the acces-
sible ciphertext space decreases with each puncture (recall that the encapsulation
algorithm in our construction chooses ciphertexts among the non-punctured leaf
nodes of the GGM tree) and because we are interested in forward security. The
shrinking ciphertext space will not be an issue as long as the original ciphertext
space is large compared to the number of punctures. It will show up in the birth-
day bound part of the reduction in Theorem 1, as the collision probability of future
encapsulations increases slightly with each punctured ciphertext. For forward se-
crecy, the key point is that any leaf node in the GGM tree will have at most one
ancestor node in the secret key at any time, and it will have an ancestor if and
only if it has not been punctured on. In other words, the key value corresponding
to a ciphertext can be computed if and only if that ciphertext has not previously
been punctured on. This means that decapsulation will fail on all punctured ci-
phertexts. But the adversary in the fs-cpa game is only allowed to corrupt the
secret key if it has punctured all its challenge encapsulations, and after corruption
it is not allowed to query the encapsulation oracle again. Hence it will have no
use of the secret key it obtains when corrupting, because any attempts to use it
to decapsulate the challenge ciphertexts will fail.

Analogously, the fs-cca security of PS-KEMGGM[G, h] also reduces to the PRF
security of the GGM PRF following Theorem 2, Section 5.3. Because of the
random choice in the encapsulation algorithm of PS-KEMGGM[G, h], we expect the
probability that an adversary can use the decapsulation oracle to obtain an honest
decapsulation of a future challenge ciphertext to be small if the ciphertext space is
large. This is also covered by a term in the bound in Theorem 2. Note, however,
that a deterministic choice of ciphertext in the encapsulation algorithm would
have rendered the scheme insecure against chosen-ciphertext attacks. If the choice
was not random, an attacker could use the knowledge of which ciphertexts the
encapsulation oracle will give it as challenge in future queries and decapsulate
them ahead of time.

Optimizations. An issue associated with using the GGM PRF construction
for our PS-KEM scheme is the storage needed for the secret key. In contrast

Puncturable Symmetric-key KEMs 59

to the non-puncturable symmetric KEM schemes discussed in previous sections,
the secret key of a PS-KEM scheme is not a fixed length binary string. Instead
it is an evolving object that changes with each puncturing. In the GGM PRF
instantiation shown above, the secret key starts small, containing only the root
node of the GGM tree, but grows when a ciphertext is punctured and more nodes
are added. In the worst case, the secret key grows (roughly) linearly with the
number of punctured ciphertexts. Not all ciphertexts cause the same size increase
when punctured though. As shown in Figure 7.3, the first puncturing will add
h − 1 nodes to the secret key, where h is the height of the tree. Each such node
forms the root of a subtree of the whole GGM tree. If the second node punctured
is in the largest such subtree (e.g. node 111 in the example), another h− 2 nodes
are added to the secret key. However, if the next node punctured is the sibling
of the previous one (node 000 in the illustrated example), the secret key actually
decreases in size, as the punctured node is simply removed. What this illustrates is
that the issue of the growing secret key can be combated by puncturing ciphertexts
in a certain order. We will call this a clever puncturing pattern.

To enable a clever puncturing pattern, we will focus on controlling the order
in which ciphertexts are encapsulated. The reason for this approach is that in
the intended applications of PS-KEM schemes, ciphertexts would be punctured
only after they have been encapsulated. In TLS key exchange for example, we
imagine that the client performs an encapsulation before initializing a resumed
session with the server, who then decapsulates and punctures on the decapsulated
ciphertext. Hence by regulating the encapsulation order, we indirectly control
the puncturing pattern. Ideally, we would like the encapsulator in the GGM
PRF PS-KEM instantiation to output ciphertexts in perfect order, starting at the
leftmost leaf of the GGM tree and moving right one step at a time. Puncturing in
that order would “prune” the tree from the left and keep the number of nodes in
secret key at less than or equal to the height h of the tree. Unfortunately, that is
not the case in the construction described in Figure 7.4. There the encapsulator
picks a non-punctured ciphertext at random (to achieve fs-cca security), so there
is no controlling the order. In fact, initially it is more likely that a “bad” ciphertext
is chosen (in the sense that puncturing it would cause a large size increase of the
secret key), because the large subtrees contain more non-punctured ciphertexts
than the smaller subtrees. In order to enforce ordering of encapsulations, the
scheme would need to be stateful. Toward this, we introduce puncturable ordered
symmetric-key KEMs in the next chapter.

60 Puncturable Symmetric-key KEMs

Chapter 8
Puncturable Ordered Symmetric-key KEMs

We have previously defined ordered symmetric-key KEMs, where the encapsu-
lator and decapsulator are stateful, allowing us to specify more diverse correct-
ness requirements than for stateless schemes. The varying correctness classes of
OS-KEMs relate to the expected reliability of the network across which the key
exchange happens, and enable optimizations that leverage the ordering as well
as more lenient functionality demands. We also defined puncturable symmetric
KEMs in the previous chapter, which give us the desired forward-secrecy prop-
erty. It is now time to combine the two into what we call puncturable ordered
symmetric-key KEMs, or POS-KEMs for short.

8.1 Syntax

Definition 7. A puncturable ordered symmetric-key key encapsulation mechanism
scheme POS-KEM = (KG,E,D,P) is a 4-tuple of algorithms. Algorithms KG,E
and D operate as previously described for OS-KEMs (Definition 5), except that
procedure E is modified to allow returning ⊥ (used to indicate that there are no
non-punctured ciphertexts left in the ciphertext space). Procedure P operates as
defined for PS-KEMs (Definition 6). Associated to the scheme are secret key space
SK, key space K and ciphertext space C as well as a set of encapsulation states,
Se , and decapsulation states, Sd.

Algorithmically we write

• (sk, ste , std)←$ KG(), where sk ∈ SK, ste ∈ Se and std ∈ Sd,
• (K ,C , ŝte)←$ E(sk, ste), for sk ∈ SK, K ∈ K ∪ {⊥}, C ∈ C ∪ {⊥} and

ste , ŝte ∈ Se ,
• (K , ŝtd)← D(sk, std,C), where K ∈ K ∪ {⊥} and C ∈ C, std, ŝtd ∈ Sd,
• ŝk←$ P(sk,C) for sk, ŝk ∈ SK, C ∈ C.

8.2 Correctness

To specify correctness of a POS-KEM scheme we define three correctness classes,
no ordering (nO), weak ordering (wOwf ,wb

) and perfect ordering (pO). Similar

61

62 Puncturable Ordered Symmetric-key KEMs

to the correctness levels introduced for OS-KEMs they capture the consistency
we expect from a scheme under varying degrees of (un)reliable transmission. The
weak ordering class wOwf ,wb

has two parameters: wf ≥ 1 (the forward window) and
wb ≥ 0 (the backward window) and in fact specifies many levels, one for each pair
of parameter values. Like for OS-KEMs, we imagine that some party, Alice, has
performed a sequence of n encapsulations (K1,C1), . . . (Kn,Cn). A receiver, Bob,
obtains the encapsulated ciphertexts in some possibly different order Ci1 , . . .Cim

(for i1, . . . , im ∈ {1, . . . , n}), where some ciphertexts might also be repeated or have
been lost in transmission. In correctness under no ordering, we expect the scheme
to correctly decapsulate all previously encapsulated ciphertexts that have not been
punctured on, regardless of potential reordering, replays or omissions. Correctness
under weak ordering requires correct decapsulation on non-punctured ciphertexts
only under certain bounds on the reordering and number of dropped ciphertexts,
and disallows replays. In perfect ordering, only non-punctured ciphertexts that
arrive in the same order they were encapsulated in are required to be correctly
handled.

As discussed previously in the context of OS-KEMs, for stateful schemes there
is a possibility to allow that ciphertexts may be “re-used” across multiple keys,
i.e. each ciphertext may appear as output from encapsulation several times, cou-
pled with different keys. (This is not the case in the stateless setting, because
correctness demands that a unique key can be produced by decapsulation of each
ciphertext.) However, especially in the case of weak ordering, analysis is simplified
by a restriction to schemes with an injective function from keys to ciphertexts.
In the setting of weakly ordered OS-KEMs, we made the stricter requirement
that correct encapsulation outputs unique ciphertexts overall. Because punctur-
ing is an operation on a specific ciphertext, there are further advantages to having
unique ciphertexts in the setting of POS-KEMs, even outside of weak ordering.
Hence we require that for POS-KEM = (KG,E,D,P) to be correct, for any se-
cret key sk ∈ [KG()] and any two encapsulations states ste , st

′
e ∈ Se , it must

hold that if ste �= st′e , then Pr [C �= C ′] = 1 where (K ,C , ŝte)←$ E(sk, ste) and
(K ′,C ′, ŝt

′
e)←$ E(sk, st′e). The probability is over the coins of E. We can phrase

this mathematically as a class of schemes Corre which we call encapsulation-correct.
If we denote the second output of E (i.e. the ciphertexts) by E(·, ·)[2], and recall
that for any procedure Proc, the expression [Proc(x1, . . . , xn)] denotes the set of
all possible outputs of Proc when run on inputs x1, . . . , xn over all coins, then the
class is defined by

Corre = {POS-KEM = (KG,E,D,P) :

(∀sk ∈ [KG()]) (∀ste , st′e)
(∀C ∈ [

E(sk, ste)[2]
]) (∀C ′ ∈ [

E(sk, st′e)[2]
])

(ste �= st′e) =⇒ (C �= C ′)}.

In addition to unique encapsulations, scheme functionality places demands on
decapsulation. As for OS-KEMs an PS-KEMs, we formalize this part of correctness
via games. For each class xO ∈ {nO,wOwf ,wb

, pO} we define a predicate called
Supported which, on input a ciphertext and some game variables, determines if
the ciphertext is “supported” by the correctness class given the game history. A
ciphertext is supported if it has been previously output by encapsulation, has

Puncturable Ordered Symmetric-key KEMs 63

not been punctured on and is received by the decapsulator in the order required
by the correctness class. A scheme POS-KEM is called xO-correct if it correctly
decapsulates all supported ciphertexts in class xO, and is in the class Corre of
encapsulation-correct schemes.

The correctness games GxO-correct
POS-KEM for POS-KEMs are given on the left in

Figure 8.1 and take the correctness class as parameter. Initially, the games run
the key generation algorithm to produce the original secret key sk which is given
to the adversary. The adversary is then allowed to interact with the encapsulation,
decapsulation and puncture algorithms via the corresponding oracles, making any
number of queries in any order. The game keeps a synchronization flag sync, which
is used by the decapsulation oracle Dec to ensure that all previous queries have
been supported. It is initialized to true at the start of the game, and remains so as
long as all queries to the Dec-oracle are supported. For standard correctness, a
scheme only needs to handle ciphertext sequences that do not trigger the sync-flag.
The games keep tables T[·] and I[·] which we assume are accessible to predicates
and subroutines in the code of the game (such as Supported). As usual we define
the correctness advantage for adversary A to be

AdvxO-correct
POS-KEM (A) = Pr

[
GxO-correct

POS-KEM (A)⇒ true
]
.

and say that scheme POS-KEM is in correctness class xO (or “xO-correct”) if
POS-KEM ∈ Corre and AdvxO-correct

POS-KEM (A) = 0 for all—even of unbounded time
and resources—adversaries A.

The support predicates for each correctness class are given in Figure 8.2. We
examine each one, starting with the predicate for no ordering.

No ordering support predicate.

SupportednO(C ,S, nd) = (T[C] �= ⊥) ∧ (T[C] �= �).
The predicate SupportednO captures that ciphertext C is supported if it has been
previously produced by encapsulation (T[C] �= ⊥) and it has not been punctured
on (T[C] �= �). Recall that all table entries T[·] are initialized to ⊥ and that key K
is stored in T[C] when K and C are produced by the encapsulation algorithm in
an Enc-query. The flag � is written to T[C] when C is the input to a Punc-query.
The puncturing flag is never overwritten, so if puncturing on C has occurred prior
to encapsulation of C , then T[C] will still contain � after the encapsulation. This
captures that there are no correctness requirements on the decapsulator when it
receives a punctured ciphertext, independently of whether that ciphertext was
encapsulated before or after puncturing (or not at all). We continue with the
predicate for perfect ordering, which has one additional condition.

Perfect ordering support predicate.

SupportedpO(C ,S, nd) = (T[C] �= ⊥) ∧ (T[C] �= �) ∧ (nd = I[C]).

As before, the first two checks ensure that the ciphertext has been previously
output by the encapsulator and that it has not been punctured on. In addition

64 Puncturable Ordered Symmetric-key KEMs

Game GxO-correct
POS-KEM (A)

1 ne ← 0; nd ← 0; S ← ∅
2 sync← true

3 (sk, ste , std)←$ KG()

4 AEnc,Dec,Punc(sk, ste , std)

5 Return win

Enc():

6 (K ,C , ste)←$ E(sk, ste)

7 If C = ⊥ return ⊥
8 I[C]← ne

9 If T[C] �= � then T[C]← K

10 ne ← ne + 1

11 Return (K ,C , ste)

Dec(C):

12 If C /∈ C return ⊥
13 (K , std)← D(sk, std,C)

14 If SupportedxO(C ,S, nd)
and sync = true then:

15 nd ← Update(nd)

16 S ← S ∪ {C}
17 If K �= T[C] then win← true

18 Else sync← false

19 Return (K , std)

Punc(C):

20 If C /∈ C return ⊥
21 sk←$ P(sk,C)

22 T[C]← �
23 Return sk

Game Gfs-cpa
b,POS-KEM(A), GxO-fs-cca

b,POS-KEM(A)

1 ne ← 0; nd ← 0; S ← ∅
2 (sk, ste , std)←$ KG()

3 b∗←$AEncb,Dec,Punc,Corrupt()

4 Return b∗

Encb():

5 If corrupt then return ⊥
6 (K1,C , ste)←$ E(sk, ste); K0←$K
7 If C = ⊥ return ⊥
8 I[C]← ne

9 If T[C] �= � then T[C]← Kb

10 ne ← ne + 1

11 Return (Kb,C)

Dec(C):

12 (K , std)← D(sk, std,C)

13 If SupportedxO(C ,S, nd)
and sync = true then:

14 nd ← Update(nd)

15 S ← S ∪ {C}
16 Return ⊥
17 Else sync← false

18 Return K

Punc(C):

19 sk←$ P(sk,C)

20 T[C]← �
Corrupt():

21 If (∀C ∈ C) T[C] ∈ {⊥,�} then:
22 corrupt← true

23 Return sk

24 Else return ⊥

Figure 8.1: Left: Game defining xO-correctness of POS-KEMs for xO ∈ {nO,wO, pO}.
Right: Games formalizing fs-cpa and fs-cca security for POS-KEM schemes under xO-
correctness. The code in boxes is executed in GxO-fs-cca

b,POS-KEM(A), but not in Gfs-cpa
b,POS-KEM(A). If

xO = wO (weak ordering) the games are parameterized by wb ≥ 0 and wf ≥ 1. Predicate
SupportedxO is used by the decapsulation oracle to check if the queried ciphertext is
supported. Subroutine UpdatexO increments the decapsulation index as specified for
each correctness class.

Puncturable Ordered Symmetric-key KEMs 65

Correctness class Predicate SupportedxO(C ,S, nd) =
nO (T[C] �= ⊥) ∧ (T[C] �= �)
wOwf ,wb

(T[C] �= ⊥) ∧ (T[C] �= �) ∧ (C /∈ S)
∧ (nd − wb ≤ I[C] ≤ nd + wf)

pO (T[C] �= ⊥) ∧ (T[C] �= �) ∧ (nd = I[C])

Correctness class Subroutine UpdatexO(nd,C) =

nO nd

wOwf ,wb
max(nd, I[C])

pO nd + 1

Figure 8.2: Top: Support predicates for the correctness classes no ordering (nO), weak
ordering (wOwf ,wb) and perfect ordering (pO) of POS-KEMs. The predicates are used in
the correctness and security games in Figure 8.1. Arguments C ,S and nd are game vari-
ables. C is a ciphertext, nd is the current decapsulation index and S the set of previously
received and accepted ciphertexts. Bottom: Update function for the decapsulation index
nd for correctness classes nO,wOwf ,wb and pO.
T[·] and I[·] are tables kept by the game and accessible by subroutines.

to this, SupportedpO contains the condition nd = I[C], which checks that the
encapsulation index of C stored in I[C] matches the current decapsulation index.
This ensures that only perfectly ordered ciphertext sequences are supported, given
that the decapsulation index is incremented by 1 for each accepted ciphertext.
Although this is natural to expect, it will not be the case for correctness under
weak ordering, so in order to unify the games we also include a subroutine called
UpdatexO(nd,C) which updates the decapsulation index according to the needs
of the correctness class. UpdatexO is defined in Figure 8.2. Next we take a closer
look at weak ordering.

Weak ordering support predicate. In addition to only allowing previously
encapsulated and non-punctured ciphertexts, this class only supports ciphertexts
that arrive within a sliding window determined by parameters wb ≥ 0 (the back-
ward window) and wf ≥ 1 (the forward window). The window is updated each
time an accepted ciphertext with a higher encapsulation index than the previously
highest one is received. It then slides forward to this index, from which it extends
backwards wb positions and forward wf positions. The idea is the same as in the
weak ordering correctness class of OS-KEMs. See Section 6.2 for more details and
Figure 6.1 for an illustration.

66 Puncturable Ordered Symmetric-key KEMs

The support predicate for weak ordering is

SupportedwOwf ,wb (C ,S, nd) =
(T[C] �= ⊥) ∧ (T[C] �= �) ∧ (C /∈ S) ∧ (nd − wb ≤ I[C] ≤ nd + wf).

Here, set S includes all previously accepted ciphertexts, and is used to check
for replays. The last condition ensures that ciphertext C is within the current
window, which covers all encapsulation indices from nd − wb to nd + wf . The
decapsulation index is updated upon receipt of a supported ciphertext according
to UpdatewOwf ,wb (nd,C) = max(nd, I[C]), where I[C] contains the encapsulation
index of C .

8.3 Robustness

As for OS-KEMs, the correctness games GxO-correct
POS-KEM in Figure 8.1 keep a synchro-

nization flag sync which is set to false if an unsupported ciphertext is received by
the decapsulator. After that, there is no longer any correctness requirements on
POS-KEM. If one wants a robust version of the correctness game, this can be
achieved by simply removing the code on line 18 (line 17 in the corresponding
security games) where sync is set to false. Without the synchronization flag, the
scheme is required to recover from unsupported ciphertexts and correctly decap-
sulate subsequent supported ciphertexts.

Robustness is useful for example in applications that use time-outs, i.e. where
the secret key is punctured on all ciphertexts in an interval after a certain time
limit, regardless of whether those ciphertexts have arrived to the decapsulator.
Such constructions can be used to provide a coarse forward-secrecy guarantee,
and also to “purge” the secret key and reduce its size. However, if a ciphertext
from an earlier interval arrives after the time-out (when the secret key has already
been punctured on the ciphertext), then it is reasonable to expect that the scheme
should still keep functioning. But to correctly handle non-punctured ciphertexts
belonging to the current time interval that arrive after a punctured ciphertext is
outside the scope of standard correctness, hence the need for robustness.

8.4 Security

The security goal we are interested in for POS-KEMs is privacy with forward
secrecy. This has been introduced and discussed in previous chapters, and the
security notions we present here are simply adaptations of those treated earlier.
We give two games, Gfs-cpa

b,POS-KEM and GxO-fs-cca
b,POS-KEM, to the right in Figure 8.1. Both

games combine privacy goals with forward secrecy. In Gfs-cpa
b,POS-KEM the privacy

notion is indistinguishability under chosen-plaintext attack, which in the POS-
KEM setting means that the adversary has access to challenge encapsulations
(either real and honest, or random ones), and is given the task of distinguishing
the real case from the random one. To cover forward secrecy as well, the adversary
is additionally bestowed the ability to puncture the secret key on ciphertexts of its
choice, and can then ask to have the secret key revealed if it has punctured on all

Puncturable Ordered Symmetric-key KEMs 67

challenge ciphertexts that it has been given by the encapsulator. This is handled
by the Corrupt-oracle, and sets the corrupt-flag of the game to true. After the
secret key has been revealed (“corrupted”), no more encapsulations will be given
to the adversary. The scheme is forward-secret under chosen-plaintext attack if
real encapsulations are indistinguishable from random ones even after the secret
key has been corrupted. We define the fs-cpa-advantage of adversary A playing
the fs-cpa-game with POS-KEM scheme POS-KEM to be

Advfs-cpa
POS-KEM(A) = Pr

[
Gfs-cpa

1,POS-KEM(A)⇒ 1
]
− Pr

[
Gfs-cpa

0,POS-KEM(A)⇒ 1
]
.

Game GxO-fs-cca
b,POS-KEM captures the stronger notion of indistinguishability under

chosen-ciphertext attack by additionally giving the adversary access to honest de-
capsulations, except on ciphertexts which are supported by correctness and hence
would give the adversary a trivial win. (See the discussion in Section 6.4.) Here
too the adversary has the ability to puncture on ciphertexts of its choosing and to
corrupt the secret key if there are no non-punctured challenge ciphertexts. Once
again the goal for the adversary is to distinguish the real encapsulation world
from the random one with the help of its Dec-, Punc- and Corrupt-oracles. Be-
cause the three POS-KEM correctness classes have different ciphertext supports,
there is one fs-cca-security game for each class. We use the abbreviation nO to
denote no ordering, wOwf ,wb

for weak ordering with window parameters wf and
wb and lastly pO for perfect ordering. For xO ∈ {nO,wOwf ,wb

, pO} we define the
xO-fs-cca-advantage of an adversary A by

AdvxO-fs-cca
POS-KEM(A) = Pr

[
GxO-fs-cca

1,POS-KEM(A)⇒ 1
]− Pr

[
GxO-fs-cca

0,POS-KEM(A)⇒ 1
]
.

8.5 Instantiations

A simple way to obtain a construction of a POS-KEM scheme is to modify the
syntax of the PS-KEM GGM instantiation in Section 7.4 so that it includes state,
but does not use it. This gives a correct POS-KEM scheme under no ordering.
Since the construction is completely trivial, we omit the details here. Of higher
interest is a perfectly ordered POS-KEM scheme built from the PS-KEM GGM
construction, where state is used to ensure that ciphertexts are produced in perfect
order (traversing the leaves from left to right in the GGM tree), as discussed under
Optimizations in Section 7.4.

Given PS-KEM scheme PS-KEMGGM[G, h] built from pseudorandom generator
G : {0, 1}k → {0, 1}2k and integer h, we construct POS-KEM[PS-KEMGGM] =
(KG,E,D,P). The algorithms are given in Figure 8.3. Key generation produces a
secret key using the key generation procedure of PS-KEMGGM, but also initializes a
binary string which will work as a counter for the encapsulator and decapsulator.
The string is initially 0h (i.e. the label of the leftmost leaf in the underlying GGM
tree) and is stored in the encapsulation state ste and the decapsulation state std.
The latter additionally includes the boolean synchronization flag sync, which is
initially true. The encapsulation procedure begins by checking that ste has not
reached 10h, i.e. that there are still unused leaf labels left in the tree. If so, it
sets the current encapsulation state as ciphertext and computes the corresponding

68 Puncturable Ordered Symmetric-key KEMs

POS-KEM[PS-KEMGGM].KG():

1 sk←$ PS-KEMGGM.KG()

2 ste ← 0h

3 nd ← 0h; sync← true

4 std ← (nd, sync)

5 Return (sk, ne , nd)

POS-KEM[PS-KEMGGM].E(sk, ste):

6 If ste = 10h return (⊥,⊥, ste)
7 C ← ste

8 K ← CompVal(sk,C)

9 ste ← ste + 1

10 Return (K ,C , ste)

POS-KEM[PS-KEMGGM].D(sk, std,C):

11 (nd, sync)← std

12 If C = nd and sync = true then:
13 K ← PS-KEMGGM.D(sk,C)

14 nd ← nd + 1

15 Else K ← ⊥; sync← false

16 std ← (nd, sync)

17 Return (K , std)

POS-KEM[PS-KEMGGM].P(sk,C):

18 PS-KEMGGM.P(sk,C)

19 Return sk

Figure 8.3: Top: Algorithms of POS-KEM[PS-KEMGGM], an instantiation of a puncturable
ordered symmetric-key KEM based on PS-KEM scheme PS-KEMGGM. When strings ste ∈
{0, 1}h and nd ∈ {0, 1}h are incremented (e.g. on line 9), the binary value is interpreted
as an integer, incremented and then converted back to a string.

key (value of the node with label C in the GGM tree) using subroutine CompVal
described in Section 7.4. If all leaves have already been used (ste = 10h), procedure
E returns ⊥. The decapsulation algorithm, receiving ciphertext C , checks that C
is the expected leaf node (next in order) and that the sync flag is still true. If so,
it computes the key corresponding to C using PS-KEMGGM.D. If not, it sets sync
to false and returns ⊥ as the key. The puncturing procedure is identical to that of
the underlying scheme PS-KEMGGM, see Section 7.4.

The benefits of POS-KEM[PS-KEMGGM] in comparison to PS-KEMGGM[G, h] lie
in the possibility to leverage the perfect ordering of ciphertexts toward a leaner
construction (memory-wise) when implementing the scheme. If used in an ap-
plication with two parties, e.g. a client and a server, where the client acts as
encapsulator and the server as decapsulator, the advantages are attained if the
decapsulating party is implemented to puncture a ciphertext directly after receiv-
ing and decapsulating it. The secret key (which we recall consists of nodes in the
GGM tree) then contains at most h nodes, where h is the height of the tree (and
length of leaf node labels/ciphertexts). This allows less storage to be reserved for
the secret key compared to an application with an arbitrary puncturing pattern.

In network applications such as TLS, it might be unrealistic to expect that the
ciphertexts sent from client to server arrive in perfect order, which would cause
trouble for the construction described above. (Remember that once the decapsu-
lator receives an out-of-order ciphertext, the synchronization flag is triggered and
all future decapsulations only return ⊥.) A better solution is to use a POS-KEM
scheme for weak ordering, where ciphertexts are allowed to be locally re-ordered

Puncturable Ordered Symmetric-key KEMs 69

and potentially dropped if lost in transmission. We will not give the full details of
such a scheme, but it is essentially equivalent to POS-KEM[PS-KEMGGM], except
for slight modifications of procedure D and the decapsulation state. The most
significant difference is that the decapsulation state now keeps track of a window
in which ciphertexts are expected and allowed to arrive, instead of just the label
of the next leaf node in the tree. The window extends forward and backward from
the most recently encapsulated ciphertext that has been received and accepted,
and is updated when a new ciphertext with a higher1 label is received. See the
instantiation of a weakly ordered OS-KEM scheme in Section 6.5.3 for details on
this part of the construction.

Privacy. We expect both POS-KEM[PS-KEMGGM] given in Figure 8.3 and a
weak ordering (wO) version of it to be fs-cpa secure, on similar grounds as for
PS-KEMGGM[G, h]. A full security proof is outside the scope of this thesis, and
we refer the reader to the discussion in Section 7.4 for an outline of the intuitive
reasoning. Neither POS-KEM[PS-KEMGGM] nor the wO-version described will be
fs-cca secure, however, as the following attack on POS-KEM[PS-KEMGGM] shows:
An adversary A in game Gfs-cca

b,POS-KEM submits C = 0h to oracle Dec. Because C
is not a challenge ciphertext (it has not been previously given to the adversary by
oracle Enc), the query is not silenced by the game. C is the ciphertext expected
by the decapsulator, so the corresponding key K is computed and returned to
A. The adversary then proceeds to make an Enc-query. Since the encapsulation
index is not affected by the Dec-query, A is given (C ,Kb), where C = 0h and
Kb is either the real key K or a random string. Adversary A checks if Kb = K ;
if true, it halts and returns 1, if false it halts and returns 0. This strategy gives
A an fs-cca advantage of 1, hence POS-KEM[PS-KEMGGM] is not secure against
chosen-ciphertext attacks. The same attack works in the wO-version of the scheme.

The issue with the proposed instantiations is that ciphertexts are not au-
thenticated by the decapsulator. Since the functionality of the scheme is public
knowledge and the labels of the GGM tree are also known (the strings in {0, 1}h, in
order), it is easy for an attacker to forge the next expected ciphertext. To combat
this, the construction could be modified to also achieve integrity of ciphertexts
(Section 5.4), for example by using a so called message authentication code or in
a manner similar to that discussed for OS-KEM instantiations in Sections 6.5.2
and 6.5.3. Constructing an fs-cca secure POS-KEM scheme will be the subject of
future work.

1For such comparisons the string is interpreted as an integer via the natural binary
encoding.

70 Puncturable Ordered Symmetric-key KEMs

Chapter 9
Conclusion

The necessity of secure Internet connections today is beyond question. At the
same time, the demand for smooth and fast browsing is higher than ever, and
performance enhancements are under constant development. Recently, the newest
version of the cryptographic network protocol TLS (version 1.3) was released.
Among the novelties was a pre-shared key (PSK) zero round-trip time (0-RTT)
mode for resumed TLS sessions, in which the need for an interactive setup-phase is
removed and private payload data can be sent in 0-RTT after the connection has
been initiated. This leads to a significant speed-improvement, which is especially
noticeable in cellular networks that have a high inherent latency.

Symmetric-key KEMs. In this work we have introduced a new cryptographic
primitive which we call symmetric-key key encapsulation mechanisms (S-KEMs).
S-KEMs make it possible to conceptually capture the 0-RTT key derivation step
in for example PSK 0-RTT mode of TLS 1.3. In addition to formalizing sym-
metric-key KEMs, we have defined privacy by the notions of indistinguishability
under chosen-plaintext and chosen-ciphertext attack, and have given a construc-
tion (modeling a real handshake) that we show fulfills both. However, the deployed
PSK 0-RTT mode of TLS 1.3 fails to provide the communicating parties with ad-
ditional privacy in the form of forward secrecy. In response to this, we extend the
syntax of S-KEMs to puncturable S-KEMs (PS-KEMs), which make it possible
to model a 0-RTT key exchange that fulfills forward security. We also suggest a
construction based on a Goldreich-Goldwasser-Micali PRF which enjoys both the
privacy of S-KEMs and gives forward security. In summary, the abstraction to
S-KEMs and PS-KEMs allows us to treat the privacy of the key exchange in a
resumed TLS session in PSK 0-RTT mode, and propose ways to achieve stronger
forward secrecy properties through puncturing.

Ordering. S-KEMs were introduced to model session resumption in TLS, and
specifically the handshake part of the session. The connection requests which
initiate a TLS handshake are sent from client to server (or one communicating
party to the other) over a network. In general, networks do not have perfect
reliability, so it is reasonable to assume that some of the connection requests will
be lost or reordered in transmission. To capture this, we extend the stateless
S-KEMs to a stateful primitive which we call ordered S-KEMs. Introducing state
also allows us to leverage ordering toward optimizations in instantiations, because
more diverse (less strict) functionality demands are possible. We define three levels

71

72 Conclusion

of correctness, from the strictest correctness under no ordering, via weak ordering
to perfect ordering, and discuss how they model varying degrees of transmission
reliability. To reap the benefits of optimizations from ordering in the setting of
puncturable S-KEMs as well, we introduce the stateful puncturable ordered S-
KEMs (POS-KEMs). Finally, we envision potential constructions of POS-KEM
schemes.

Results. The result of the project is a framework for symmetric-key KEMs which
enable unilateral key exchange between two parties who already share a symmetric
key, but wish to derive fresh and independent keys for separate communication
sessions with forward secrecy. Additionally, the project explores ways of defining
correctness and security for stateful and forward secret schemes via games and the
concept of indistinguishability up to correctness [44]. The results can be viewed as
a pre-study for more in-depth investigations into forward secrecy for 0-RTT key
exchanges and key encapsulation in the symmetric setting. Hopefully, the abstrac-
tion of symmetric-key KEMs can find applications outside of TLS handshakes as
well.

9.1 Future Work

Several interesting problems have presented themselves during the course of this
project, and in the following we describe a few of the directions which future
research on this topic might take. First and foremost, an extension of the project
to give GGM PRF instantiations of weakly ordered POS-KEMs and prove them
secure is the natural next step. Once such constructions are defined, the question
of how efficient they are and what further optimizations can potentially be made
could be studied. It would also be interesting to see if one can construct POS-KEM
schemes that are not based on the GGM construction, for example by using Bloom
filter encryption which was introduced in a recent paper by Derler et al. [20].
Furthermore, to give secure generic transforms from S-KEMs to OS-KEMs and
from PS-KEMs to POS-KEMs—so that any instantiation of a secure (P)S-KEM
scheme directly gives a secure (P)OS-KEM scheme—would be grand.

In studying the optimizations from leveraging ordering in POS-KEM schemes,
it would be specifically interesting to look at what storage bounds on the secret
key can be proven. Especially, it might be possible to reduce such bounds to the
integrity of ciphertexts, thereby giving a connection between security and memory.
As a means of ensuring that a clever puncturing pattern is obtained in an optimized
construction, the syntax of PS-KEMs and POS-KEMs could also potentially be
modified so that puncturing happens automatically after decapsulation. How this
affects correctness and security notions would need to be explored first, however.

Forward secrecy of public-key KEMs has only recently been discussed, and
then only via puncturing in the setting of 0-RTT key exchange in [32]. Another
research direction is therefore to formally define and analyze forward secrecy of
KEMs in general, in a manner similar to what e.g. Bellare and Yee [9] have done
for symmetric-key encryption.

References

[1] Advanced Encryption Standard (AES). National Institute of Standards and
Technology (NIST), FIPS PUB 197, U.S. Department of Commerce, Novem-
ber 2001.

[2] Ross Anderson. Two remarks on public-key cryptology. Manuscript. Rele-
vant material presented by the author in an invited lecture at the 4th ACM
Conference on Computer and Communications Security, CCS 1997, Zurich,
Switzerland, April 1–4, 1997, September 2000.

[3] Nimrod Aviram, Kai Gellert, and Tibor Jager. Session resumption protocols
and efficient forward security for TLS 1.3 0-RTT. In Yuval Ishai and Vincent
Rijmen, editors, Advances in Cryptology – EUROCRYPT 2019, pages 117–
150, Cham, 2019. Springer International Publishing.

[4] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of the cipher
block chaining message authentication code. Journal of Computer and System
Sciences, 61(3):362 – 399, 2000.

[5] Mihir Bellare, Tadayoshi Kohno, and Chanathip Namprempre. Authenticated
encryption in SSH: Provably fixing the SSH binary packet protocol. In Vi-
jayalakshmi Atluri, editor, ACM CCS 02: 9th Conference on Computer and
Communications Security, pages 1–11. ACM Press, November 2002.

[6] Mihir Bellare and Sara K. Miner. A forward-secure digital signature scheme.
In Michael J. Wiener, editor, Advances in Cryptology – CRYPTO’99, vol-
ume 1666 of Lecture Notes in Computer Science, pages 431–448. Springer,
Heidelberg, August 1999.

[7] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Re-
lations among notions and analysis of the generic composition paradigm. In
Tatsuaki Okamoto, editor, Advances in Cryptology – ASIACRYPT 2000, vol-
ume 1976 of Lecture Notes in Computer Science, pages 531–545. Springer,
Heidelberg, December 2000.

[8] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a
framework for code-based game-playing proofs. In Serge Vaudenay, editor,
Advances in Cryptology – EUROCRYPT 2006, volume 4004 of Lecture Notes
in Computer Science, pages 409–426. Springer, Heidelberg, May / June 2006.

73

74 References

[9] Mihir Bellare and Bennet S. Yee. Forward-security in private-key cryptog-
raphy. In Marc Joye, editor, Topics in Cryptology – CT-RSA 2003, volume
2612 of Lecture Notes in Computer Science, pages 1–18. Springer, Heidelberg,
April 2003.

[10] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the exis-
tence of extractable one-way functions. In David B. Shmoys, editor, 46th An-
nual ACM Symposium on Theory of Computing, pages 505–514. ACM Press,
May / June 2014.

[11] Dan Boneh and Brent Waters. Constrained pseudorandom functions and
their applications. In Kazue Sako and Palash Sarkar, editors, Advances in
Cryptology – ASIACRYPT 2013, Part II, volume 8270 of Lecture Notes in
Computer Science, pages 280–300. Springer, Heidelberg, December 2013.

[12] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and
pseudorandom functions. In Hugo Krawczyk, editor, PKC 2014: 17th In-
ternational Conference on Theory and Practice of Public Key Cryptography,
volume 8383 of Lecture Notes in Computer Science, pages 501–519. Springer,
Heidelberg, March 2014.

[13] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key
encryption scheme. In Eli Biham, editor, Advances in Cryptology – EURO-
CRYPT 2003, volume 2656 of Lecture Notes in Computer Science, pages
255–271. Springer, Heidelberg, May 2003.

[14] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and
their use for building secure channels. In Birgit Pfitzmann, editor, Advances in
Cryptology – EUROCRYPT 2001, volume 2045 of Lecture Notes in Computer
Science, pages 453–474. Springer, Heidelberg, May 2001.

[15] Ronald Cramer and Victor Shoup. A practical public key cryptosystem prov-
ably secure against adaptive chosen ciphertext attack. In Hugo Krawczyk,
editor, Advances in Cryptology – CRYPTO’98, volume 1462 of Lecture Notes
in Computer Science, pages 13–25. Springer, Heidelberg, August 1998.

[16] Ronald Cramer and Victor Shoup. Design and analysis of practical public-key
encryption schemes secure against adaptive chosen ciphertext attack. Cryp-
tology ePrint Archive, Report 2001/108, 2001. http://eprint.iacr.org/
2001/108.

[17] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for
adaptive chosen ciphertext secure public-key encryption. In Lars R. Knudsen,
editor, Advances in Cryptology – EUROCRYPT 2002, volume 2332 of Lecture
Notes in Computer Science, pages 45–64. Springer, Heidelberg, April / May
2002.

[18] Ronald Cramer and Victor Shoup. Design and analysis of practical public-key
encryption schemes secure against adaptive chosen ciphertext attack. SIAM
Journal on Computing, 33(1):167–226, 2003.

References 75

[19] Alexander W. Dent. A designer’s guide to KEMs. In Kenneth G. Paterson,
editor, 9th IMA International Conference on Cryptography and Coding, vol-
ume 2898 of Lecture Notes in Computer Science, pages 133–151. Springer,
Heidelberg, December 2003.

[20] David Derler, Tibor Jager, Daniel Slamanig, and Christoph Striecks. Bloom
filter encryption and applications to efficient forward-secret 0-RTT key ex-
change. In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in
Cryptology – EUROCRYPT 2018, Part III, volume 10822 of Lecture Notes in
Computer Science, pages 425–455. Springer, Heidelberg, April / May 2018.

[21] Data encryption standard. National Bureau of Standards, NBS FIPS PUB
46, U.S. Department of Commerce, January 1977.

[22] Whitfield Diffie and Martin E. Hellman. New directions in cryptography.
IEEE Transactions on Information Theory, 22(6):644–654, 1976.

[23] Whitfield Diffie, Paul C. van Oorschot, and Michael J. Wiener. Authenti-
cation and authenticated key exchanges. Designs, Codes and Cryptography,
2(2):107–125, June 1992.

[24] Morris Dworkin. Request for review of key wrap algorithms. Cryptology
ePrint Archive, Report 2004/340, 2004. http://eprint.iacr.org/2004/
340.

[25] Marc Fischlin and Felix Günther. Replay attacks on zero round-trip time:
The case of the TLS 1.3 handshake candidates. In 2017 IEEE European
Symposium on Security and Privacy (EuroS&P 2017), pages 60–75, Paris,
France, April 2017. IEEE Computer Society Press.

[26] Georg Fuchsbauer, Momchil Konstantinov, Krzysztof Pietrzak, and Vanishree
Rao. Adaptive security of constrained PRFs. In Palash Sarkar and Tetsu
Iwata, editors, Advances in Cryptology – ASIACRYPT 2014, Part II, volume
8874 of Lecture Notes in Computer Science, pages 82–101. Springer, Heidel-
berg, December 2014.

[27] Oded Goldreich. Foundations of Cryptography: Volume 1. Cambridge Uni-
versity Press, New York, NY, USA, 2006.

[28] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct ran-
dom functions (extended abstract). In 25th Annual Symposium on Founda-
tions of Computer Science, pages 464–479. IEEE Computer Society Press,
October 1984.

[29] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct ran-
dom functions. Journal of the ACM, 33(4):792–807, October 1986.

[30] Matthew D. Green and Ian Miers. Forward secure asynchronous messaging
from puncturable encryption. In 2015 IEEE Symposium on Security and
Privacy, pages 305–320. IEEE Computer Society Press, May 2015.

[31] Christoph G. Günther. An identity-based key-exchange protocol. In Jean-
Jacques Quisquater and Joos Vandewalle, editors, Advances in Cryptology –
EUROCRYPT’89, volume 434 of Lecture Notes in Computer Science, pages
29–37. Springer, Heidelberg, April 1990.

76 References

[32] Felix Günther, Britta Hale, Tibor Jager, and Sebastian Lauer. 0-RTT key
exchange with full forward secrecy. In Jean-Sébastien Coron and Jesper Buus
Nielsen, editors, Advances in Cryptology – EUROCRYPT 2017, Part III,
volume 10212 of Lecture Notes in Computer Science, pages 519–548. Springer,
Heidelberg, April / May 2017.

[33] Felix Günther and Sogol Mazaheri. A formal treatment of multi-key channels.
In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology –
CRYPTO 2017, Part III, volume 10403 of Lecture Notes in Computer Science,
pages 587–618. Springer, Heidelberg, August 2017.

[34] Susan Hohenberger, Amit Sahai, and Brent Waters. Replacing a random or-
acle: Full domain hash from indistinguishability obfuscation. In Phong Q.
Nguyen and Elisabeth Oswald, editors, Advances in Cryptology – EURO-
CRYPT 2014, volume 8441 of Lecture Notes in Computer Science, pages
201–220. Springer, Heidelberg, May 2014.

[35] Joseph Jaeger and Igors Stepanovs. Optimal channel security against fine-
grained state compromise: The safety of messaging. In Hovav Shacham
and Alexandra Boldyreva, editors, Advances in Cryptology – CRYPTO 2018,
Part I, volume 10991 of Lecture Notes in Computer Science, pages 33–62.
Springer, Heidelberg, August 2018.

[36] Jonathan Katz. A forward-secure public-key encryption scheme. Cryptology
ePrint Archive, Report 2002/060, 2002. http://eprint.iacr.org/2002/
060.

[37] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas
Zacharias. Delegatable pseudorandom functions and applications. In Ahmad-
Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 13: 20th
Conference on Computer and Communications Security, pages 669–684. ACM
Press, November 2013.

[38] Tadayoshi Kohno, Adriana Palacio, and John Black. Building secure crypto-
graphic transforms, or how to encrypt and MAC. Cryptology ePrint Archive,
Report 2003/177, 2003. http://eprint.iacr.org/2003/177.

[39] Hugo Krawczyk. Cryptographic extraction and key derivation: The HKDF
scheme. In Tal Rabin, editor, Advances in Cryptology – CRYPTO 2010,
volume 6223 of Lecture Notes in Computer Science, pages 631–648. Springer,
Heidelberg, August 2010.

[40] Hugo Krawczyk and Pasi Eronen. HMAC-based Extract-and-Expand Key
Derivation Function (HKDF). RFC 5869, May 2010.

[41] Hugo Krawczyk and Hoeteck Wee. The OPTLS protocol and TLS 1.3. In
2016 IEEE European Symposium on Security and Privacy (EuroS&P 2016),
pages 81 – 96, Saarbrucken, Germany, May 2016. IEEE Computer Society
Press.

[42] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3.
RFC 8446 (Proposed Standard), August 2018.

References 77

[43] Phillip Rogaway and Thomas Shrimpton. A provable-security treatment of
the key-wrap problem. In Serge Vaudenay, editor, Advances in Cryptology
– EUROCRYPT 2006, volume 4004 of Lecture Notes in Computer Science,
pages 373–390. Springer, Heidelberg, May / June 2006.

[44] Phillip Rogaway and Yusi Zhang. Simplifying game-based definitions - in-
distinguishability up to correctness and its application to stateful AE. In
Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryptology –
CRYPTO 2018, Part II, volume 10992 of Lecture Notes in Computer Science,
pages 3–32. Springer, Heidelberg, August 2018.

[45] Amit Sahai and Brent Waters. How to use indistinguishability obfusca-
tion: deniable encryption, and more. In David B. Shmoys, editor, 46th An-
nual ACM Symposium on Theory of Computing, pages 475–484. ACM Press,
May / June 2014.

[46] Victor Shoup. Using hash functions as a hedge against chosen ciphertext at-
tack. In Bart Preneel, editor, Advances in Cryptology – EUROCRYPT 2000,
volume 1807 of Lecture Notes in Computer Science, pages 275–288. Springer,
Heidelberg, May 2000.

[47] Victor Shoup. Sequences of games: a tool for taming complexity in security
proofs. Cryptology ePrint Archive, Report 2004/332, 2004. http://eprint.
iacr.org/2004/332.

[48] Nigel P. Smart. Cryptography Made Simple. Information Security and Cryp-
tography. Springer, Heidelberg, 2016.

[49] Nick Sullivan. Introducing zero round trip time resumption (0-RTT). https:
//blog.cloudflare.com/introducing-0-rtt/, 2017.

78 References

Appendix A
Illustration of the PS-KEMGGM Puncturing

Algorithm

We give here a more detailed illustration of the puncturing algorithm in the PS-
KEM construction PS-KEMGGM[G, h] from Section 7.4. The example is given for a
tree of height h = 3.

ε

0

00

000 001

01

010 011

1

10

100 101

11

110 111

1 ε

0

00

000 001

01

010 011

1

10

100 101

11

110 111

2

ε

0

00

000 001

01

010 011

1

10

100 101

11

110 111

3
ε

0

00

000 001

01

010 011

1

10

100 101

11

110 111

4

Figure A.1: GGM tree illustrating the puncturing algorithm of PS-KEMGGM[G, h].
(1) The secret key initially consists of the root only.
(2) Puncturing on node 001 removes the root from the secret key and adds the nodes
with a dashed extra circle (siblings of the shaded nodes).
(3) The updated secret key consists of nodes 1, 01 and 000.
(4) Puncturing on node 101 removes node 1 from the secret key, and adds node 11 and
node 100.

79

Appendix B
Populärvetenskaplig sammanfattning

Framtidssäkrat internetsurfande - både snabbt och tryggt

Integritet på nätet eller snabb uppkoppling? Med dagens krypter-
ingsmetoder är det antingen eller, men i framtiden behöver vi kanske
inte kompromissa.

I takt med att samhället digitaliseras flyttas alltmer kommunikation till internet,
vilket i många fall gör livet smidigare. Samtidigt blir vi mer sårbara då data som
skickas över nätet eller lagras online riskerar att läcka ut och bli allmänt känd.
För att värna om vår integritet och säkerhet vidtas åtgärder för att dölja informa-
tion som skickas via nätet, men dessa insatser är tidskrävande och innebär extra
överföringar vilket gör uppkopplingen långsammare.

Mer specifikt skyddas internetanslutningar till webbadresser som inleds med
’https’ idag av kryptering som gör kommunikationen oläslig för alla utomstående.
Utan tillgång till nycklar som “låser upp” och dechiffrerar de krypterade medde-
landena är de inget mer än rappakalja. För att de kommunicerande parterna ska
kunna ta del av innehållet krävs därför att de utbyter krypteringsnycklar. Detta
sker i början av uppkopplingen för att se till att krypteringen i varje anslutning är
oberoende av tidigare sessioner. Man kan säga att nycklarna är som engångsar-
tiklar. De förhandlas fram, används i en session och slängs sedan. Själva utbytet,
när parterna kommer överens om nycklarna, bromsar uppkopplingen och gör att
anslutningen upplevs som långsam. Men det finns snabbare sätt.

Nyligen lanserades en snabbuppkopplingsfunktion som gör det möjligt att åter-
ansluta utan det inledande nyckelutbytet. Förenklat kan man säga att om de
kommunicerande parterna har varit i kontakt tidigare och redan delar nycklar
från en tidigare session, så kan dessa återanvändas för att kryptera även framtida
anslutningar. Effekten blir en markant prestandaökning.

Tyvärr ger den nya funktionen lägre säkerhetsgarantier än vid ett fullt nyck-
elutbyte. Detta eftersom återanvändningen av kryptografiskt material potentiellt
leder till att alla sessioner där samma nycklar har använts blir oskyddade om nyck-
larna läcker ut. Det finns naturligtvis alltid en risk att någon knäcker krypteringen
eller kommer över de nycklar som används, men då engångsnycklar används leder
det bara till att kommunikationen i den pågående sessionen blir synlig för förö-
varen. Om nycklarna däremot har använts till flera sessioner, riskerar alla dessa
att bli oskyddade.

80

Populärvetenskaplig sammanfattning 81

I det här arbetet undersöks möjligheten att behålla den snabba uppkopplin-
gen som den nya funktionen ger, men utan att behöva kompromissa om säker-
heten. Idén bygger på ett smart sätt att återanvända nycklar. Istället för att
använda exakt samma nyckel till flera sessioner uppdateras nyckeln mellan var-
ven, så att tidigare sessioners kommunikation inte går att dekryptera om den
nya, förändrade nyckeln läcker ut. Operationen kallas för punktering, och man
kan föreställa sig att förmågan att dekryptera vissa meddelanden försvinner när
nyckeln punkteras, ungefär som när en biljett klipps efter användning. Den går
fortfarande att använda till framtida sessioner, men avslutad kommunikation som
nyckeln har “punkterats på” är lika oläsbar med den punkterade nyckeln som utan
den.

Det här projektet har gått ut på att skapa en modell som visar hur punkterade
nycklar skulle kunna användas för att ge både snabb uppkoppling och den önskade
säkerheten. Modellen består av en ny matematisk abstraktion som fångar hur den
nya funktionen tillåter snabba uppkopplingar. Den innehåller också en påbyg-
gnad som beskriver hur punktering kan användas för högre säkerhetsgarantier.
Modellen visar att det i teorin är möjligt att genom punktering uppnå både hög
säkerhet och prestanda, men att det finns vissa nackdelar med tillvägagångssättet.
Framförallt är det problematiskt att de punkterade nycklarna kräver mer lagring-
sutrymme än vanliga nycklar, vilket i vissa fall kan vara ett hinder. I arbetet har
det därför också undersökts hur ordningsföljden av återanslutna sessioner skulle
kunna utnyttjas för att hålla ned storleken på de punkterade nycklarna. Detta
genom att designa algoritmer så att det vid normal användning skapas platsef-
fektiva “punkteringsmönster”. Studien visar att det finns potential hos förslaget.
För att avgöra om idén med punkterbara nycklar är värd att lansera i stor skala
krävs dock fortsatta undersökningar där konstruktioner implementeras och testas
på verkliga scenarion.

Puncturable Symmetric KEMs for
Forward-Secret 0-RTT Key Exchange
MATILDA BACKENDAL
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2019

M
A

TILD
A

 B
A

C
K

EN
D

A
L

Puncturable Sym
m

etric K
EM

s for Forw
ard-Secret 0-R

T
T

 K
ey Exchange

LU
N

D
 2019

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2019-699
http://www.eit.lth.se

