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ABSTRACT 

5G supports enormous increase in data rate. Massive antenna beamforming 

is expected to play a key role in increasing capacity in case of multi-user 

MIMO and coverage in case of single-user MIMO. The large number of 

antennas in massive MIMO system will lead to enormous amount of channel 

state information being stored in the memory and this necessitates the use of 

compression techniques for efficient utilization of memory, which is limited. 

Sounding Reference Signals (SRS) are transmitted in the uplink to obtain 

channel estimate. In TDD based systems, by exploiting channel reciprocity 

channel estimates received in the uplink can be used in downlink as well. 

The product, we work on at Ericsson, is a TDD based system and uses SRS 

based channel estimates to compute beamforming weights to facilitate 

massive antenna beamforming. 

SRS based channel state information is represented by 32-bit complex 

number in this system, which is received per Evolved Node B (eNodeB) 

antenna, per User Equipment (UE) transmission antenna, and per Physical 

Resource Block Group (PRBG). This results in a significant amount of data 

that needs to be stored in the eNodeB. However, memory in the Digital Unit 

of eNodeB is limited. SRS based estimates occupy a major portion of this 

memory and therefore limit the capacity of the eNodeB for beamforming. 

This thesis focuses on the evaluation and implementation of lossless and 

lossy compression of SRS based channel estimates to attain space savings in 

the shared memory of eNodeB. This will help in achieving higher capacity 

for reciprocity-based beamforming and prolong the lifetime of existing 

hardware. 

Performance of various lossless data compression algorithms was analyzed 

based on compression ratio, speed and complexity and the optimal one was 

selected. 

Lossy compression of SRS based channel estimates was also implemented 

for LOS UEs using linear regression by least squares estimate. Impact on 

performance due to application of lossy compression algorithm was studied. 
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Popular science summary 

In order to reliably communicate over the air, the receiver needs to estimate 
the quality of the wireless link. This is done by the transmission of certain 

signals named ‘pilots’. 

In cellular communications, such as 5G, pilots are sent in both directions, 
which is from base station to the user and vice versa. To support 5G systems, 

numerous antennas will be used at transmitter, receiver or both. Such systems 

are called as massive multiple input multiple output (Massive MIMO) 
systems. Pilots need to be transmitted for each of these antennas and this will 

lead to significant amount of data. For efficient and reliable systems, it is 

important to ensure that the least amount of such information is stored in the 

base station, which necessitates the use of data compression techniques. 

The link quality values obtained can be compressed by lossy methods which 

involve loss of some information but higher compression and by lossless 

methods that have no loss of information but lower compression. 

Aim of this thesis is to study about a certain type of pilot, namely Sounding 

Reference Signal, and compressing the obtained link quality values. Hence, 
this thesis focuses on analyzing the performance of various compression 

techniques based on their ability to compress this data, speed of the program 

and complexity of implementation and selecting the optimal technique based 

on the analysis. 

Implementation of compression of these link quality values will help to 

prolong the lifetime of the equipment used now and can help in saving costs 

for Telecom companies. 
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CHAPTER 1 
 

Introduction 
Mobile communication has evolved from being an expensive technology 

with its availability limited to a few individuals, to an everyday commodity 

used by majority of the world’s population in the last decades. There have 

been four generations of mobile-communication systems and the fifth 

generation is on its way to a full-fledged launch [2]. Each generation was 

developed using a specific set of technologies and served a specific set of use 

cases. 

As described in [3], first generation systems were introduced in the 1980’s 

and supported analog voice-only mobile communication. Examples of 1G 

technologies include Nordic Mobile Telephony (NMT), Advanced Mobile 

Phone System (AMPS), and Total Access Communication System (TACS). 

Second generation systems were introduced in the 1990’s and were voice 

centric. However, 2G being digital, offered higher capacity than 1G systems. 

2G technologies include Global System for Mobile communications (GSM), 

Interim Standard 95 (IS-95) / Code Division Multiple Access (CDMA), 

Interim Standard 136 (IS-136) / Time Division Multiple Access (TDMA) and 

Personal Digital Cellular (PDC). Some enhancements to 2G technologies 

enabled packet data services and is referred to as 2.5G [2]. An example is 

GSM/Enhanced Data rates for GSM Evolution (EDGE) which is still in use. 

As per [14], ITU introduced IMT-2000 in the mid-1980s. IMT-2000 was 

developed with the aim of providing value-added services and applications 

based on a single standard. One key objective was to provide seamless global 

roaming that would enable the user to use same number and handset when 

moving across borders. It was also aimed at providing better data and 

multimedia services. Third-Generation Partnership Project (3GPP) was 

formed to make this possible with the development of Wideband Code 

Division Multiple Access (WCDMA) and Time Division-Synchronous Code 

Division Multiple Access (TD-SCDMA) technologies [2]. WCDMA 

supported circuit switched voice and video services, and data services over 

packet-switched domain [6]. In the mid-2000s, High Speed Packet Access 

(HSPA), a major enhancement to 3G technologies, enabled mobile-
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broadband experience with data rates reaching several Megabits per second 

(Mbps) which laid the foundation for rapid growth in the use of smart phones 

[2]. The increase in the use of packet-data-based services such as social 

networking and video gaming necessitated increased capacity and improved 

spectral efficiency. The more the users that needed packet data services, the 

more there was need for higher data rates and lower latency [2]. All these 

contributed to the development of 4G technology.  

LTE used packet switched networks to transport calls by using techniques 

like voice over IP (VoIP) [6]. In 2008, ITU introduced IMT-Advanced which 

published a set of requirements for the fourth-generation communication 

systems [6]. A new release of LTE (release 10), named LTE-Advanced was 

developed by 3GPP as a candidate technology for IMT-Advanced [2].  It had 

stringent requirements like high data rates, high capacity, low latency, 

spectrum flexibility, and commonality between Frequency-Division Duplex 

(FDD) and Time-Division Duplex (TDD) [2]. LTE gained worldwide 

acceptance as LTE-Advanced and further releases introduced improvements 

like multisite coordination, use of fragmented and unlicensed spectrum, 

densified deployments which led to increase in capacity of Evolved Node B 

(nomenclature for base transceiver station in LTE). LTE also offered support 

to additional applications such as massive machine-type communication and 

device-to-device (D2D) communication. Figure 1.1 illustrates the 

capabilities of IMT-2000 and IMT-Advanced. 
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Figure 1.1: Illustration of capabilities of IMT-2000 and IMT-Advanced 

With the introduction of internet of things (IoT), many devices are now able 

to send and receive data and communicate with each other through wireless 

networks such as the internet, leading to higher capacity requirements.  

In 2012, work on the next generation of IMT systems, named IMT-2020, 

began and lead to the development of the fifth generation of mobile 

telecommunications system, namely 5G. The usage scenarios identified for 

5G systems include Enhanced Mobile Broadband (eMBB), Massive 

Machine-Type Communications (mMTC), and Ultra-Reliable and Low 

Latency Communications (URLLC) [5]. Massive Machine-Type 

Communication (mMTC) applications include sensor networks, traffic 

monitoring, and numerous other Internet of Things (IoT) applications. 

URLLC applications require high reliability and low latency such as vehicle-

to-vehicle (V2V) communications, gaming, unmanned aerial vehicle (UAV) 

and robotics [2]. These use cases necessitate a massive increase in capacity. 
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This increase in capacity is aimed to be achieved in two ways: increase in 

spectrum bandwidth and increase in spectrum efficiency. Due to the lack of 

available spectrum in frequency bands less than 6 GHz, the increase in 

spectrum bandwidth involves exploiting higher frequency bands in the range 

of 6-30 GHz and above 30 GHz, for which LTE is not designed. 

Electromagnetic waves with frequency in the range of 30 GHz to 300 GHz 

are called as millimeter waves or mmWaves. Hence, 5G involves exploiting 

mmWaves. In lower frequencies, where there is a lack of available spectrum, 

spectrum efficiency can be improved by employing Massive MIMO systems. 

LTE supports multiple antennas at both eNodeB and UE to facilitate diversity 

processing and spatial multiplexing [6]. Diversity processing helps in 

maintaining a constant received signal power by employing multiple 

antennas at TX, RX or both and thereby helps to mitigate fading. Spatial 

multiplexing involves the multiplexing of multiple receivers over the same 

time-frequency resources. This enhances the spectral efficiency and therefore 

sum rate. 

Beamforming is the process of combining elements in an antenna array such 

that signals reach the desired UE in phase and interfere constructively, to 

produce high received signal power. At the other UEs, the signals reach out 

of phase and interfere destructively, so that received power is low [6]. When 

mmWaves are used in 5G, coverage will be a limiting factor, as path loss 

increases with frequency [2]. Beamforming can be used to increase capacity 

in case of multi user-MIMO (Mu-MIMO) and to enhance coverage in case 

of single user-MIMO (Su-MIMO) as shown in figure 1.2. 

 

Figure 1.2: Use of beamforming to enhance capacity in Mu-MIMO and 

increase coverage in Su-MIMO  
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SRS based channel estimates can be used to facilitate downlink beamforming 

[1]. The product we worked on at Ericsson uses SRS based channel estimates 

to facilitate reciprocity-based beamforming (explained in Chapter 2). 

1.1 Background and Motivation  
Each User Equipment (UE) antenna transmits SRS which is received by the 

eNodeB antennas. SRS is represented by a 32-bit complex number in this 
TDD-based system and is transmitted in the uplink to obtain channel 

estimate. 20 MHz bandwidth in LTE has 100 Physical Resource Blocks 

(PRBs). In case of channel estimates in this system, two adjacent PRBs are 
averaged into one Physical Resource Block Group (PRBG), resulting in 50 

PRBGs. In this thesis, we examine two UEs which are in LOS conditions and 

one UE which is in NLOS conditions. The eNodeB in this system has 64 

antennas. 

𝐶ℎ𝑎𝑛𝑛𝑒𝑙 𝑆𝑡𝑎𝑡𝑒 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒 𝑓𝑜𝑟 1 𝑈𝐸
= 64(𝑎𝑛𝑡𝑒𝑛𝑛𝑎𝑠 𝑎𝑡 𝑒𝑁𝐵) × 2 (𝑎𝑛𝑡𝑒𝑛𝑛𝑎𝑠 𝑎𝑡 𝑈𝐸)
× 50(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑅𝐵𝐺𝑠)
× 32 𝑏𝑖𝑡𝑠 (𝑆𝑖𝑧𝑒 𝑜𝑓 𝑎𝑛 𝑆𝑅𝑆 𝑏𝑎𝑠𝑒𝑑 𝑐ℎ𝑎𝑛𝑒𝑙 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒)

= 204800 𝑏𝑖𝑡𝑠 = 25600 𝑏𝑦𝑡𝑒𝑠 
 
The storage capacity of shared memory is 12 MB. CSI from 128 UEs is 

stored in the shared memory, which amounts to a size of 3.2 MB. Hence, 

nearly 27% of the available memory is occupied by CSI and becomes a major 

limiting factor for reciprocity-based beamforming. Hence, the main 
motivation behind this thesis is to compress SRS based channel estimates to 

attain space savings in the shared memory of eNodeB. The space savings 

achieved could be used to accommodate CSI from more UEs or for other 
processes at the eNodeB. This helps to prolong the lifetime of existing 

hardware. 

Figures 1.3 illustrates the arrangement of antennas in the array at eNodeB 
and the transmission of SRS from UE antennas to antennas at eNodeB. Each 

antenna in the eNodeB receives SRS based channel estimates corresponding 

to 50 PRBGs and has been illustrated in Figure 1.4. 
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Figure 1.3 Scenario Diagram representing relation between antennas at eNB 

and antennas at UE. 
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Figure 2.4 Scenario Diagram – Each antenna receives SRS values 

corresponding to 50 PRBGs. 

 

1.2 Objectives of this thesis  

The objectives of this Thesis include: 

1. To study SRS based channel estimates collected from eNodeB deployed 

in the field to analyze the following: 

a) to investigate redundancy in channel estimates values corresponding 

to various PRBGs (along Frequency Axis) in a given SRS occasion. 
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b)  to investigate redundancy in channel estimates values corresponding 

to different elements of the antenna array. 

2. To create MATLAB scripts to analyze various lossless compression 

algorithms based on compression ratio, speed, and complexity and select 
optimal compression algorithm. After selection of the algorithm, port its 

source code to Ericsson’s test environment for further analysis. This will be 

performed for both line of sight (LOS) and non-line of sight (NLOS) 

scenarios. 

3. Implement lossy compression of SRS based estimates and evaluate the 

impact on performance. 

1.3 Approach and Methodology 

This thesis was performed in four phases: 

Phase 1:  

Initial phase involved analysis of redundancy in SRS based channel 

estimates, that were collected from eNodeB deployed in the field, using 

MATLAB scripts. This phase also encompasses literature review to study 

various compression algorithms that can be used and then selecting the 

suitable ones. 

Phase 2: 

Second phase included creation of MATLAB and shell scripts to analyze the 

performance of selected lossless compression algorithms on the collected 

SRS based channel estimates and selection of optimal algorithm. 

Phase 3: 

Third phase involved the porting of optimal algorithm’s source code to 
Ericsson’s test environment and evaluate the performance of the algorithm 

in the test environment. 

Phase 4: 

Implemented lossy compression of SRS based channel estimates of UEs in 

LOS using linear regression by least squares estimation and evaluated the 

performance of the algorithm. 



10 
 

1.4 Previous Work 

1. One of the previous findings that can be used in this thesis is the 
information on number of adjacent PRBs that can be averaged for 

beamforming. 

2. Previous studies also show that the SRS based channel estimate values 
corresponding to a PRBG are similar to that of another group within the same 

20 MHz band in a given SRS occasion for a UE in LOS.  

3. IEEE paper that proposed compression method, based on Principal 
Component Analysis (PCA), for CSI feedback overhead in large scale 

MIMO systems with negligible performance degradation. 

“Channel Correlation Modeling and its Application to Massive MIMO 

Channel Feedback Reduction”  Jingon Joung, Ernest Kurniawan and Sumei 

Sun. 

4. An IEEE paper was published by the Department of Electrical and 

Information Technology, Lund University, which implemented an on-chip 

memory system equipped with CSI, which provides an area-efficient 

memory system for massive MIMO baseband processing with lossy CSI 

compression.  

The citation for the paper is as follows:  
Yangxurui Liu, Liang Liu, Ove Edfors, and Viktor Öwall, “An Area-

Efficient On-Chip Memory System for Massive MIMO Using Channel Data 

Compression,” IEEE Transactions on Circuits and Systems I: Regular Papers 

(Volume: 66, Issue: 1, Jan. 2019). 
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CHAPTER 2 
 
LTE, SRS and Multiple Antenna Systems 
 
The idea of Long Term Evolution (LTE) came into existence with sole 

objective to provide a new radio access technology focused on packet-
switched data. 3GPP works extensively on LTE standardization to decide on 

performance and capability for LTE, which comprises of spectral efficiency, 

peak data rates, latency, throughput, multi-channel bandwidths (1.25MHz-
20MHz), and compatibility with previous 3GPP radio-access technologies 

such as Wideband Code Division Multiple Access (WCDMA) and Global 

System for Mobile (GSM). 3GPP also studies on the practicability of various 
technical solutions chosen by developing comprehensive specifications. In 

LTE, OFDM and SC-FDMA are the transmission schemes in downlink and 

uplink transmissions respectively and have been discussed in subsequent 

sections. This chapter also discusses about Reference signals in LTE and 
SRS. Multiple antenna systems, which is a key feature in LTE and NR will 

also discussed in this chapter.  

2.1 Orthogonal Frequency Division Multiplexing 
(OFDM) 
OFDM, which uses multiple subcarriers in a channel is a form of Frequency 

Division Multiplexing (FDM). Serial bits of data are parallelized and mapped 

to complex symbols and multiplied with sinusoids that are orthogonal for 
transmission which is similar to Inverse Fast Fourier Transform (IFFT). At 

receiver, parallel bits of data received are converted back to serial stream of 

symbols, which are converted to bits by the symbol de-mapper for Fast 

Fourier Transform (FFT) operation. 
 

OFDM signal is group of closely packed FDM subcarriers and subcarriers in 

general are orthogonal. Every transmit subcarrier that uses modulation 
schemes such as QPSK, 16QAM, 64QAM to transmit data is a sinc function 

spectrum in frequency domain where side lobes result in spectra overlapping 

between subcarriers.  This in turn, leads to subcarrier interference except at 
orthogonally spaced frequency position. Peaks of subcarriers align together 
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with nulls of other subcarriers at orthogonal frequencies. Orthogonality 
prevents subcarrier interference in OFDM system. 

 

OFDM’s tolerance to delay spread caused due to multipath is the most vital 

advantage to use in LTE because in time domain, OFDM symbol duration is 
quite long and this can be achieved by parallel transmission of data. This 

leads to uncomplicated equalization at receiver. Extended symbol duration 

and guard interval helps mitigate Inter Symbol Interference (ISI) as well. 
Orthogonal subcarrier results in increased spectral efficiency as orthogonal 

subcarriers permit a greater number of subcarriers in a given bandwidth and 

dynamic usage of frequency spectrum 
 

Orthogonal Frequency Division Multiple Access (OFDMA) signal depends 

on group of orthogonal subcarriers which transmits data in parallel and each 

subset of subcarrier is reserved for each user. Sharing of resources among a 
set of users is facilitated by this multiple access technique where non-faded 

subcarrier is chosen for transmission to each user in a cell in order to achieve 

optimal data rate. 
 

Peak to Average Power Ratio (PAPR) is defined as  

𝑃𝐴𝑃𝑅 = (𝑃𝑝𝑒𝑎𝑘)/(𝑃𝑎𝑣𝑔)                                       (2.1) 

where Ppeak is the transmit symbol power at peak amplitude value, Pavg is 

the transmit symbol’s average power. 

 

Subcarriers in OFDM get assigned with complex signals that are independent 

identically distributed (i.i.d.)  and a linear Inverse Discrete Fourier Transform 
(IDFT) is performed on each of these subcarriers. This is the linear transform 

process of high number of i.i.d. QAM-modulated symbols which are 

complex. This makes the transmit symbol amplitude to rely on constellation 
point of the modulation scheme. OFDM signal, however, can be estimated to 

Gaussian waveform in time domain according to central limit theorem. 

Therefore, transmit symbols tend to have higher amplitude variation based 

on this property resulting in high PAPR in OFDM. 
 

Output power amplifiers of transmitter would not operate in respective linear 

region for highly varying transmit symbol. Hence, emission of power to 
prevent distortions and to operate in linear region would be high, as 

noteworthy transmit signal distortion occurs due to non-linear clipping. 

When it comes to uplink transmission, high power emission may drain the 
battery of the User Equipment (UE) device quickly. Hence Single Carrier 
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Frequency Division Multiple Access (SC-FDMA) scheme is used for uplink 
transmission. 

   

 
2.2 Single Carrier Frequency Division Multiple 
Access (SC-FDMA) 

 

SC-FDMA is used by LTE in the uplink transmission in order to tackle the 
power issue faced by UE discussed in the previous section. Identical to 

ODFM, transmission bandwidth is divided into numerous parallel 

subcarriers in SC-FDMA. Cyclic Prefix (CP) is added as a guard interval to 

establish orthogonality between subcarriers. However, in contrast to OFDM, 
Discrete Fourier Transform (DFT) is used in SC-FDMA in which uplink 

transmissions are multiplexed in a particular frequency allotment within the 

entire bandwidth which is allocated according to data rate needed for the 
user. 

There is no independent allocation of data symbols to each subcarrier in SC-

FDMA as in OFDM, whereas, linear combination of data symbol modulated 
are allocated to every subcarrier. Single carrier modulation also leads to 

higher Inter Symbol Interference (ISI) as compared to downlink OFDM [1]. 

To counter the distortion in the channel, less complex equalizer is used at the 
receiver (BS)[1].  

 

2.3 Time-Frequency Frames 

Time domain in LTE is divided into frames and each radio frame is of 10 ms 

duration. Each of these frames are divided further into subframes of duration 

1 ms. Hence there are 10 subframes in a radio frame. Every subframe is 

further divided into 2 slots of duration 0.5 ms each. OFDM symbols are 
present in these slots. There will be 7 symbols in a slot for normal Cyclic 

Prefix (CP) and 6 OFDM symbols for extended CP. Basic time unit for LTE 
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is defined as Ts = (1/15000 x 2048) s = (1/301720000) s; and useful symbol 

time is as follows Tu = (20148 x Ts) ~ 66.7µs [2]. 

  

 

                                      Figure 2.1. Time frame in OFDM 

Duration of CP for extended mode is Tcp = 512 x Ts ~ 16.7µs. Duration of 

CP of the first symbol in normal mode is Tcp = 160 x Ts ~ 5.2µs, while 

duration of cyclic prefix of all other symbols in that slot is Tcp = 144 x Ts ~ 

4.7µs. This difference in cyclic prefix between 1st symbol and remaining 

symbol is because the overall slot duration will be the one divisible by 15360 

for easy calculations [2]. 

2.4 Resource Blocks in LTE 

Each Resource Element (RE) comprises only one subcarrier during one 
OFDM symbol, that is, each RE has place for one modulation symbol and is 

the smallest resource in LTE.  These REs are grouped into Resource Block 

(RB) such that an RB has one 0.5 ms slot in time domain and 12 consecutive 

subcarriers in frequency domain. Thus, an RB that uses normal Cyclic Prefix 

(CP) has 84 RE and 72 RE when the RB uses extended CP [1]. 

Smallest allocation unit of resource in LTE is a Resource Block (RB). Each 
User Equipment (UE) when needed to transmit data gets RB allocated by the 

scheduler at eNodeB. It is represented in time and frequency domains as 

shown in figure 2.2. 
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                     Figure 2.2. Resource Block Diagram for Normal CP 
 

Duration of a single RB in time domain is 0.5 ms, where 7 OFDM symbols 
can fit in normal cyclic prefix conditions, whereas, 6 OFDM symbols fit in 

an extended cyclic prefix condition. In frequency domain, each RB has 12 

subcarriers, each of which takes 15 kHz. Hence, in total, each RB takes 180 
kHz (12 x15 kHz) in frequency domain [2]. 

 

2.5 Reference Signals 

Reference signals are predefined signals that occupy specific resource 

elements in the time-frequency grid. Reference signals are used to estimate 

the channel to facilitate coherent demodulation, channel-dependent 

scheduling or link adaptation [2]. Reference signals are sent in both downlink 

(downlink reference signals) and uplink (uplink reference signals) and the 

resulting overhead in LTE is 10% [6]. Reference signals can also be 

classified as Dedicated Reference Signal and Common Reference Signal 

based on the number of targets. Dedicated Reference Signal is intended for a 
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specific terminal whereas Common Reference Signal is shared among a 

group of terminals [2]. 

2.5.1 Downlink Reference Signals 

As mentioned in the section 2.5, downlink reference signals are transmitted 

using specific resource elements in downlink time-frequency grid. Different 

types of downlink reference signals are transmitted and are intended for 

various purposes [2]: 

 Cell-specific reference signals (CRS) are sent in every resource 

block in frequency domain and in every downlink subframe. Devices 

use CRS for channel estimation for coherent demodulation of all 

downlink physical channels except PMCH, PDSCH for devices 

configured in transmission modes 7-10 and EPDCCH control 

channel. CRS also serves as the basis for cell-selection and handover 

decisions. 

 Demodulation Reference Signal (DM-RS) is used by devices for 

channel estimation for coherent demodulation of PDSCH in 

transmission modes 7-10 EPDCCH physical channel. 

 Positioning reference signals are intended to estimate geographical 

position of the device. 

 MBSFN reference signals are used by devices, in case of MCH 

transmission using MBSFN, for channel estimation for coherent 

demodulation. 

 CSI reference signals (CSI-RS) are used specifically by devices 

configured in transmission modes 9 and 10 to obtain Channel State 

Information (CSI). CSI contributes to less overhead and offers more 

flexibility compared to CRS. 

 

2.5.2 Uplink Reference Signals 

Uplink reference signals, which are of two types, are transmitted using 

resource elements in uplink time-frequency grid [2].  

 Uplink DM-RS are used by eNodeB for channel estimation for 

coherent demodulation of uplink physical channels: PUSCH which 

carries both user data and control signal data and PUCCH which 

carries different types of uplink L1/L2 control signaling. A DM-RS 
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is always transmitted along with a physical channel and both have 

the same frequency range. 

 Sounding Reference Signal (SRS) is used to obtain the uplink 

channel estimate at different frequencies which can then be used for 

uplink frequency dependent scheduling, adaptive coding and 

modulation (ACM) and precoder selection. SRS is also used when 

there is no data to send, but an uplink transmission is required. One 

such application is uplink-timing-alignment procedure where SRS is 

used to estimate uplink receive timing. In Time Division Duplex 

(TDD) based systems, uplink and downlink use the same frequency 

resource [5]. Thus, uplink channel estimates can be utilized for 

downlink transmission purposes and this is referred to as channel 

reciprocity. By exploiting channel reciprocity, SRS based channel 

estimates can also be used for downlink transmission purposes. 

Unlike DM-RS, SRS may have a different frequency range 

compared to the physical channel transmitted along with it. 

In this TDD based system at Ericsson, eNodeB uses SRS based channel 

estimates for reciprocity-based beamforming. This thesis focuses on 

investigating the redundancy between SRS based channel estimates and 

implementing lossless and lossy compression schemes for the estimates to 

enhance the cell capacity for reciprocity-based beamforming. SRS will be 

discussed in detail in the subsequent section. 

2.6 Sounding Reference Signals (SRS) 

SRS can be classified as periodic SRS or aperiodic SRS based on if they are 

sent at regular time intervals or are triggered when there is a requirement [2]. 

Periodic SRS transmission 

Periodic SRS transmissions occur regularly in time domain as frequently as 

once every 2 ms or infrequently as once every 160 ms. SRS is sent in the last 

symbol of a subframe and in TDD, SRS can be transmitted in UpPTS as well 

[2]. The bandwidth of SRS is a multiple of four resource blocks. SRS 

transmissions need to extend over the frequency range of interest to the 

scheduler. This can be realized in two ways [1]: 

A wideband SRS that spans over the entire frequency range of interest in a 

single SRS transmission may be used. This is typically used in scenarios with 
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good coverage. A UE at cell boundary may not have enough transmit power 

to send a wideband SRS. 

The second approach is to use frequency hopping where narrowband SRS 

transmissions that hop in frequency are used to cover the frequency range of 

interest over multiple transmissions. This technique is preferred when 

channel conditions are poor. 

By exploiting orthogonality, SRS can be transmitted from different antennas 

at the same time using the same frequency without interfering with each 

other. One method to achieve orthogonality is to apply different cyclic shifts 

to SRS. In case of SRS, there are 8 different cyclic shifts possible. This means 

that SRS from 8 UEs can be transmitted using the same time-frequency 

resources [1]. 

Another way of multiplexing SRS transmission is by mapping SRS to every 

second subcarrier creating a comb-like pattern. Release 13 and above permit 

the use of up to four different combs instead of two [2]. In the case of four 

different combs, SRS is mapped to every fourth subcarrier. This increase will 

help in supporting the increase in antennas with the introduction of FD-

MIMO. With the help of above mentioned multiplexing strategies, 16 UEs 

can be multiplexed in case of two combs (8 cyclic shifts x 2 combs) and 32 

UEs can be multiplexed in case of four combs (8 cyclic shifts x 4 combs) 

over the same time-frequency resources. 

A device is configured with a set of parameters that defines the characteristic 

of an SRS transmission by means of higher-layer (RRC) signaling. 

Aperiodic SRS transmission 

Aperiodic SRS transmissions are one-shot transmissions that are carried out 

when the device is explicitly triggered to do so. When such a trigger is 

received, the device sends SRS in the next available aperiodic SRS instant 

and further SRS transmissions are made if additional triggers are received 

[2]. Aperiodic SRS is sent in the last symbol of a subframe and has the same 

frequency-domain structure as periodic SRS.  Higher-layer (RRC) signaling 

is used to configure frequency-domain parameters of aperiodic SRS. 
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2.7 Multiantenna Systems 

Multiple Input Multiple Output (MIMO) is a radio communication 

arrangement in which transmit and receive antennas are used for data 

transmission. It is widely used in many standards such as Long Term 

Evolution (LTE), WiFi 802.11n, Fifth Generation (5G) cellular uplink and 

downlink. 

In traditional Single Input Single Output (SISO) system, capacity can be 

increased only by increasing transmitting power or bandwidth based on 

Shannon channel capacity theorem: 

  𝐶 = 𝐵𝑊(𝑙𝑜𝑔2(1 + 𝑆𝑁𝑅))  bits/s/Hz                                     (2.2)  

where BW is bandwidth and SNR is Signal to Noise Ratio.  

However, increasing bandwidth is not an optimal solution to increase data 

rate as frequency spectrum is a limited resource. Capacity in SISO increases 

logarithmically with increasing power. However, increasing transmit power 

requires expensive radio frequency (RF) amplifier as it would interfere with 

neighboring cells and make battery less efficient as well [19]. 

Hence MIMO increases channel capacity, also known as spectral efficiency, 

without increasing bandwidth or power and this capacity increases linearly 

with increasing number of antennas. Antennas in this configuration uses the 

same bandwidth, hence, all the antennas on the receiver side receive data 

from all the transmitting antennas. A system with Nr RX antennas and Nt TX 

antennas forms a Nr × Nt MIMO system. A 2x2 MIMO system has been 

illustrated in figure 2.4:  
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                                      Figure 2.3: A 2x2 MIMO System. 

By using MIMO systems, two types of gains can be obtained: spatial 

multiplexing and diversity gain. Spatial multiplexing involves multiple 

parallel transmissions on the same time-frequency resource. Sending data in 

parallel channels gives rise to a higher transmission rate. Secondly, diversity 

gain can be obtained by transmitting same information through multiple 

transmitting antennas which results in better link reliability. Hence, even if 

some of the links are down, receiver can efficiently decode the transmitted 

data with the help of remaining working links. However, increasing spatial 

multiplexing will reduce diversity gain, as they are inversely proportional to 

each other. Therefore, this trade-off must be considered while designing a 

MIMO system. 
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CHAPTER 3 
 

Correlation, Data compression and Entropy 

In this chapter, correlation between SRS based channel estimates 

corresponding to different PRBGs and correlation of SRS values between 
columns and rows of antenna are determined and analyzed. Results obtained 

from the tests performed in this chapter form the basis for rest of the thesis 

as they help in understanding the statistical properties of the channel 
estimates, and therefore provide insights on compression capabilities. This 

chapter also discusses about lossless and lossy compression schemes. 

Entropy, which is an important parameter in data compression is also 

discussed in this chapter. 

  

3.1 Correlation 

Correlation is a statistical tool for discovering and measuring the relationship 

between variables [20]. The measure of correlation that summarizes direction 
and degree of correlation in one figure is called as correlation coefficient or 

correlation index. A positive correlation specifies the degree to which the 

variables increase or decrease in parallel and a negative correlation 

represents the degree to which one variable increases as the other decreases. 

Correlation is also a measurement of similarity. 

Pearson’s coefficient of correlation is widely used for correlation analysis 

between variables and is defined as [20]: 

 𝑟 =  
∑ 𝑥𝑦

𝑁𝜎𝑥𝜎𝑦
   (3.1) 

where x = (X - 𝑋̅) and y = (Y - 𝑌̅), 𝜎𝑥 and 𝜎𝑦 are standard deviations of 

series X and Y respectively, N is the number of pairs of observations 

and r is the correlation coefficient. 

When r = +1, it means perfect positive correlation; r = -1, means 

perfect negative correlation and r = 0 means there is no relationship 

between the variables [20]. 

The correlation between two discrete-time complex signals h(n) and g(n) is 

defined in equation 3.2 [19]: 
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                              𝑅(𝜏) =  ∑ ℎ(𝑛) ×  𝑔∗(𝑛 + 𝜏)𝑁
𝑛=1             (3.2) 

where complex conjugation is denoted by an asterisk and N is the number of 

samples. Function R(𝜏) represents the cross correlation between h(n) and 

g(n). It is also fine to introduce time lag in h(n) instead of g(n) to investigate 

similarity between the two signals. The function R(𝜏) peaks around some 

value of 𝜏 when h(n) and g(n) are same, whereas function R(𝜏) would be low 

over the values of 𝜏, if the two signals are different.  

 

3.2 Autocorrelation 

Autocorrelation is the correlation of a signal with itself and is defined as 

follows [19]: 

 𝑅(𝜏) =  ∑ ℎ(𝑛) ×  ℎ∗(𝑛 + 𝜏)𝑁
𝑛=1             (3.3) 

Cauchy-Schwarz Inequality 

Cauchy-Schwarz Inequality is used to normalize correlation values such that 

magnitude of correlation is not bigger than 1. Autocorrelation with Cauchy-

Schwarz normalization is given by [21]: 

 

 𝑅(𝜏) =  
∑ ℎ(𝑛) × ℎ∗(𝑛+𝜏)𝑁

𝑛=1

√∑ ℎ(𝑛)𝑁
𝑛=1 ×ℎ∗(𝑛) × √∑ ℎ(𝑛+𝜏)𝑁

𝑛=1 ×ℎ∗(𝑛+𝜏)

       (3.5) 

Where h(n) is the sample, 𝜏 refers to the separation between samples (number 

of antennas or PRBGs in between the samples under consideration), N is the 

number of samples. 

Equation 3.5 was implemented in MATLAB to study the correlation between 
SRS values corresponding to different PRBGs and correlation between SRS 

values corresponding to different columns and rows of antenna array. 

Correlation between SRS values will give us an idea of how much 
redundancy is present in them and this is important as higher the redundancy, 

more compressible the data is. The results of correlation analysis for LOS 

and NLOS scenarios are shown below: 
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 Figure 3.1: Magnitude and phase of correlation between 

 PRBGs for UE1 in LOS conditions 

 

 Figure 3.2: Magnitude and phase of correlation between 

 PRBGs for UE2 in LOS conditions 
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Figure 3.3: Magnitude and phase of correlation between columns of antenna 

array for UE1 in LOS conditions 

 

Figure 3.4: Magnitude and phase of correlation between columns of antenna 

array for UE2 in LOS conditions 
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Figure 3.5: Magnitude and phase of correlation between rows of antenna 

array for UE1 in LOS conditions 

 

Figure 3.6: Magnitude and phase of correlation between rows of antenna 

array for UE2 in LOS conditions 
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It can be seen from the plots that the magnitude of correlation is high (close 
to 1) between PRBGs and columns and rows of antenna array; and phase of 

correlation is linear. The high magnitude of correlation implies that the 

signals received at eNodeB are of similar levels across PRBGs and across 

the antenna array. Linear phase of correlation in case of PRBGs is due to the 
fixed delay and in case of columns and rows of antenna array is due to fixed 

angle of arrival. High correlation between SRS values observed in case of 

LOS UE implies that there is high similarity between SRS values across 
PRBGs and antenna array, which makes the data redundant and possible to 

compress. 

 

              Figure 3.7: Magnitude and phase of correlation between  

               PRBGs for UE in NLOS conditions 
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Figure 3.8: Magnitude and phase of correlation between columns of antenna 

array for UE in NLOS conditions 

  

Figure 3.9: Magnitude and phase of correlation between rows of antenna 

array for UE in NLOS conditions 

It can be observed from the plots that magnitude of correlation is low 
compared to LOS UEs. This implies that there is less similarity between the 

received signals corresponding to different PRBGs and across the antenna 

array which implies that the received signals are more random compared to 
that of LOS UE. However, phase of correlation is linear which implies nearly 

uniform change in phase. 
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3.3 DATA COMPRESSION 

The process of representing data with fewer number of bits is called data 
compression and the process of recreating the original data from the 

compressed data is called as decompression [9]. Compression can be lossless 

or lossy based on the output of reconstruction algorithm. In lossless 

compression, the original data can be retrieved from the compressed data 
without any loss of information. On the other hand, lossy compression 

algorithm involves some loss of information. The latter technique helps to 

achieve better compression compared to the former [10]. 

A compression algorithm is implemented in two phases [9]: 

Modeling: This phase involves extracting the information about parameters 

like redundancy or probability present in data and representing it as a model. 

Coding: In this phase, input data bits are mapped to a sequence of fewer 

number of bits based on the model generated in phase 1. 

The performance of a compression algorithm can be measured in different 

ways like amount of compression, speed at which data is compressed and 
decompressed, complexity of the algorithm, memory requirement of the 

algorithm and so on [9]. 

The level of compression can be specified by compression ratio or space 

savings. Compression ratio is defined as [10] 

 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 =
𝑠𝑖𝑧𝑒 𝑜𝑓 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎

𝑠𝑖𝑧𝑒 𝑜𝑓 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑑𝑎𝑡𝑎
 . 

Space savings term is defined in [10] as  

              𝑆𝑝𝑎𝑐𝑒 𝑠𝑎𝑣𝑖𝑛𝑔𝑠 = (1 −  
𝑠𝑖𝑧𝑒 𝑜𝑓 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑑𝑎𝑡𝑎

𝑠𝑖𝑧𝑒 𝑜𝑓 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎
) × 100 %      (3.6) 

Another important performance measure is the time required to compress and 

decompress the data, namely compression and decompression times [11]. 

 

3.4 Lossless Compression 

In lossless compression, the data recreated from the compressed data is 

identical to the original data, that is, there is no loss of information [9]. This 

technique is used in scenarios where the integrity of the data must be 

preserved.  
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A scenario where lossless compression is widely used is text compression as 
a small difference between original and reconstructed texts may result in 

statements with entirely different meanings. 

Chapter 4 of this thesis describes the implementation of lossless compression 

of SRS based channel estimates. 

 

3.5 Lossy Compression 

In lossy compression, the recovered data is not identical to the original data, 

that is, there is loss of information [10]. The advantage of this technique is 
that one can achieve higher compression compared to the lossless 

counterpart. The difference between reconstructed data and original data is 

called distortion [9]. 

Fidelity and quality are other terms that are used when describing the 
difference between reconstructed and original data streams. A high fidelity 

or quality means that the difference between the original and the 

reconstructed is small. 

This technique can be employed in cases where loss of some information can 

be tolerated. Examples of such cases include compression of speech, image 

and video. 

Chapter 5 of this thesis describes the implementation of lossy compression 

of SRS based channel estimates. 

 

3.6 Entropy 

Entropy is described as the average information required to determine the 

outcome of a random variable. The entropy of a random variable X can be 

defined as [16]: 

              𝐻(𝑋) = 𝐸𝑋[− log 𝑝(𝑋)] = − ∑ 𝑝(𝑥). 𝑙𝑜𝑔2𝑝(𝑥)𝑥     (3.7) 

where x denotes the possible values of random variable X and p(x) is 

their corresponding probability. 

The best a lossless compression algorithm could do is to encode the 

outcome of a source with an average number of bits equal to its entropy 
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[9]. Hence, entropy is of great importance to this thesis as it gives an 

idea about the maximum compression possible. 

SRS based channel estimates for the two UEs are available in Hexadecimal 

format. A hex digit (0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F) can be represented 

using 4 bits.  

Channel estimates corresponding to first SRS occasion of UE1 in LOS were 

selected and entropy was calculated using equation 3.7, which was found to 

be 3.4011. This means that each digit can be represented using 3.4011 bits 

rather than 4 bits. This translates to a space savings as shown below: 

𝑆𝑝𝑎𝑐𝑒 𝑠𝑎𝑣𝑖𝑛𝑔𝑠 = (1 −  
𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑠𝑖𝑧𝑒

𝑢𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑠𝑖𝑧𝑒
) × 100 % 

              = (1 − 
3.4011

4
) % = 14.97 % 

This tells us that maximum space savings possible in this case is 14.97 %. 

Similarly, for LOS UE2 SRS, entropy was found to be 3.4185. This translates 

to a maximum space savings of 14.54 %. 

For NLOS UE SRS, entropy was found to be 3.0563. This tells us that 

maximum space savings possible in the case of NLOS UE is 23.59 %. 

It can be seen that entropy corresponding to NLOS UE SRS is lower than 

that LOS UE SRS. The received signal strength is low in case of NLOS UE, 

and many of the hexadecimal digits were ‘0’ and ‘f’ corresponding to very 

low positive or negative value respectively.  We believe, these unused bits in 

case of NLOS UE cause its entropy to be lower than that of LOS UE and 

translates to higher space savings. 
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CHAPTER 4 
 

Lossless compression of SRS based channel 
estimates 

As mentioned in chapter 1, lossless compression of channel estimates is of 

high importance to Ericsson. Hence this chapter describes the 

implementation of lossless compression of SRS based channel estimates. 

Performance of multiple lossless compression formats such as BZIP2, GZIP, 

ZIP, LZMA and LZO was evaluated. The best method is the one with higher 

compression ratio along with shortest compression and decompression times 

and lowest implementation complexity. However, in reality there is a trade-

off among these, which is also analyzed. Before explaining the compression 

formats this chapter begins with the basic explanation of dictionary-based 

algorithms such as LZ77 and Deflate which form the basis for the above 

mentioned compression formats. This chapter also discusses about entropy-

based encoding such as Huffman coding and Arithmetic coding. 

4.1 Entropy Coding 

Entropy coding is a lossless data compression technique that compresses data 

by replacing fixed-length input symbols with variable-length prefix-free 

output codeword [22]. Arithmetic coding and Huffman coding are the most 

commonly used lossless entropy coding schemes. 

4.2 Huffman Coding 

The objective of this algorithm is to compress data by generating prefix 
codes, which refers to uniquely decodable codes. Let p(xi) be the probability 

for a finite source x=x1,x2,.....,xN. Codewords that are longer should be 

assigned to symbols with lower probability and codewords that are shorter 

should be assigned to symbols with greater probability by the binary code  

Let each node represent each symbol with respective probability which are 

all arranged in descending order. Node with smaller probability is chosen 

where there are multiple nodes and binary 1 or a 0 is assigned randomly after 

which two nodes must be combined to form a new node with a probability 
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equivalent to the sum of two previous nodes. Every symbol’s codeword must 

be traced from last node left which is also known as the root node. An 

example of Huffman encoding calculation is shown in figure 4.1: 

 

Figure 4.1: Huffman coding example according to probability of symbols be 

coded 

Huffman coding performed on LOS UE1 channel estimates resulted in a 

space savings of 14.67 %  and a space savings of 14.40 % for LOS UE2. 

Huffman coding performed on NLOS channel estimates resulted in a space 

savings of 22.66%. 

4.3 Arithmetic Coding 

One of the biggest downsides of Huffman coding is that a minimum of one 

bit is required to represent a symbol. This issue can be resolved by using 

blocks of symbols to enhance the efficiency of the code but becomes 

extremely complicated with increasing length of blocks. 

Therefore, in arithmetic coding, series of symbols are represented in a range 

between 0 and 1 which spans based on the symbol probability. First range is 

decided based on the probability of first symbol to get coded. Similar range 

allotment takes place for subsequent symbols as well, symbols with larger 
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probability would be allocated larger range by which less numbers of bits 

can be used to represent large probability symbols. 

Arithmetic coding is relatively better than Huffman coding because in 

reference to code from the preceding series of symbol, new symbols can be 

coded. This removes the need to retain long codebook as symbols can be 

coded constructively with existing information. Only synchronized update in 

probabilities of encoder and decoder is required. Also, the source data in this 

coding scheme can also dynamically reconstruct to statistical changes. An 

example of Arithmetic encoding calculation is shown in figure 4.2: 

 

Figure 4.2: Arithmetic Coding example for sequence of source ‘ABAC’ based 

on the probability of each symbol. 

Arithmetic coding was performed for LOS UE1 channel estimates and 

resulted in a space savings of 14.96% and a space savings of 14.53% for LOS 

UE2. 

Arithmetic coding performed for NLOS channel estimates resulted in a space 

saving of 23.58%. 
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 Space Savings 

for UE1 in LOS 

Space Savings 

for UE2 in LOS 

Space 

Savings for 

UE in NLOS 

Entropy 14.97 % 14.54 % 23.59 % 

Huffman Encoder 14.67 % 14.40 % 22.66 % 

Arithmetic 

Encoder 

14.96 % 14.53 % 23.58 % 

Table 4.1: Table comparing space savings specified by entropy and that 

achieved by Huffman and Arithmetic encoders. 

 

4.4 LZ77 

It is a sliding window technique which consists of two buffers namely search 
buffer which stores previous characters of length S and look ahead buffer 

which stores characters of length B. 

Algorithm: 

Firstly, search buffer must be loaded with S characters of the text and n needs 
to be set as S+1.Proceed till n in the text of search buffer to identify the offset 

Xn. 

If number of offsets is greater than 0  

1. then largest match of offset is to be found which gives length l and 

index j 

2. Codeword has to be initialized to (j,l,c) where c = Xn+l 

3. Initialize n to n+l+1. 

Else 

1. Initialize codeword to (0,0,c) where c=Xn. 

2. Initialize n to n+1. 

After all this, look ahead buffer and search buffer need to be updated. Search 

buffer and look ahead buffer are illustrated in figure 4.3: 
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Figure 4.3: Search buffer and look ahead buffer diagram for LZ77 

 

In the look ahead buffer the algorithm looks for maximum match of Xn and 

its successors to find if there is a match or not. When there is a match 

algorithm would set the length as l and make the start of the match as index 

j which is the offset between look ahead buffer and search buffer. When no 
match is found, j,l will be set to 0,0. Successive character needs to be 

appended from the string with the codeword in order for it to proceed further 

when no match is found [16]. Therefore, codeword after a match identified 

is (j,l,c).   

 

4.5 Deflate 

In Deflate, input data is separated into blocks and then compressed. Based 

on the encoder memory and prefix codes, these blocks will have variable 
lengths. Blocks of any size should be decoded by the decoder in deflate. 

Three different approach would be followed by deflate for compression. [10] 

Approach 1 Without compression: Data files that cannot be compressed, or 

uncompressed files that require compression software to segment file, use 
this approach. Specific header is used to indicate that this approach is used 

for compression. Maximum data length should be 65,535. Also, code tables 

are not used in this approach.   

Approach 2 Fixed code table compression: Data will be used to build 2 code 

tables in this approach. This results in higher compression and 

decompression speeds. However, the speeds may get affected to some extent 
as the data used to build code table is statistically different from that data 

getting compressed. In the first code table, match lengths of data are present. 

Second code table consists of distances. Just like the first approach specific 

header to indicate this approach is used for compression. 

Approach 3 Individual code table compression: Encoder for data produces 

individual code table. Highly advanced Deflate encoder traverses from one 
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block to another and builds code table based on the statistics of data obtained 
when compressing blocks. Block starts with a specific header followed by 

compressed Huffman code table and then each of two code blocks 

compressed by Huffman code. Finally, single prefix code after compressed 

data is used to indicate the end of block. 

 

4.6 Lossless compression file formats 

Lossless compression file formats use a combination of data transformation 

algorithms (like Burrows-Wheeler Transform, Move-to-front algorithm) and 
lossless compression algorithms or combinations of different compression 

algorithms (like Deflate) to implement compression. The use of data 

transformation algorithms or combination of compression algorithms help in 

transforming the data to have lower entropy. This helps in achieving higher 
compression compared to that achieved by a compression algorithm on its 

own. The compression file formats that we implemented in this thesis are 

listed in sections 4.6.1 – 4.6.5. The performance of these formats was 
analyzed based on their compression ratio and compression and 

decompression times. 

 

4.6.1 LZMA 

Lempel-Ziv-Markov chain (LZMA) algorithm is a dictionary based lossless 

compression algorithm. An encoder same as arithmetic encoding is used at 
the output known as range encoder. Encoding is done faster by this encoder 

with minuscule effect in the efficiency of compression. Highly advanced data 

structure is used to detect likelihood expectation of bits by the compressor to 
choose the most optimal one. In general, LZMA offers higher compression 

than other formats because the encoder uses bit based model for compression 

as opposed to byte based compression model and memory allocation for 

dictionary is also higher. Hence unconnected bits are not combined making 

it easier for compression. [10] 

 

4.6.2 ZIP 

It is a file compression format which uses Deflate as the algorithm for 

lossless compression. 32-bit CRC algorithm and dual archive directory 

structure help in data from getting lost. This file format which is archive may 
contain multiple files or folders inside the main zip directory. Advantage 

with using this format is because it gets easier to add or remove data files 
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separately from a zip archive as there is no requirement to apply compression 
or decompression to the entire directory as this facility is not possible with 

other data compression formats [15]. 

 

4.6.3 GZIP 

Gzip is another compression algorithm that uses Deflate. It contains a header 

of size 10 bytes, payload that is compressed as body using Deflate and footer 
size of 8 bytes which includes information on actual uncompressed data’s 

length and 32-bit CRC checksum. Generally, gzip compresses files one after 

the other even though the format is capable to compress multiple files 

simultaneously [16]. Data files get collected into a single archive with tar 
extension which later gets compressed with gzip. Although gzip uses Deflate 

just like zip, gzip requires external archive such as tar to hold data file 

whereas zip does not have such requirements as files gets compressed 

separately and does not exploit redundancy between one file and another file. 

 

4.6.4 BZIP2  

Bzip2 is a compression program that uses Huffman coding and Burrows 

Wheeler Transform (BWT), which is a sorting algorithm for text. 

Compression ratio achieved in general is better than that obtained from 
compressor based on LZ77/LZ78. Data gets encoded based on run length 

encoding initially, after which sorting algorithms namely Burrows Wheeler 

and Move-to-front (MTF) are applied. Finally, Huffman coding is applied. 
Bzip2 does compress in multiple stages and decompresses in reverse order. 

It consists of 4 Byte header and 32-bit CRC at the end [18]. It is difficult to 

extract data because of syntax errors; however, it is possible to compress and 

decompress damaged archives. 

 

4.6.5 LZO 

LZO is a lossless compression format and is described in detail in section 

4.9. 
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4.7 Compression and Decompression times 

The time required to compress data (or a file) is called compression time. 

Similarly, the time required for decompression is called as decompression 

time. These two parameters are of paramount importance in case of lossless 

compression in this thesis, as the requirement at Ericsson was to implement 

an algorithm that takes a maximum of 10 ms as the sum of compression and 

decompression times. The performance of the above mentioned compression 

programs was simulated on Linux-based servers. A Linux-based server 

provides multiple time metrics that help us to evaluate the execution time of 

a program and are listed below [23]:  

Real is wall clock time, that is the time from the beginning to the end of the 

call. This is all elapsed time including time slices used by other processes 

and time the spent by the process when it is blocked that is for instance if it 

is waiting for I/O to complete. 

User is the amount of CPU time spent in user-mode within the process. This 

is the actual CPU time used in executing the process outside the kernel. Other 

processes and time the process spends blocked do not count towards this 

figure. 

Sys is the amount of CPU time spent in the kernel-mode. This means 

executing CPU time spent in system calls within the kernel. Like 'user', this 

is only CPU time used by the process.  

User + Sys time is the actual CPU time a process takes and is used to evaluate 

the execution time of a code. 

Therefore, User time + Sys time was considered to evaluate time for 

compression and decompression. 

 

4.8 Evaluating the performance of compression file 

formats on SRS based channel estimates on a 

Linux-based server 

The SRS based estimates corresponding to one occasion of a UE were 

selected and copied to a text file. The compression programs were executed 

on a Linux-based server, and their compression ratio and speed were found 
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using Linux terminal commands implemented as a Shell script. The SRS 

based estimates in this system are in hexadecimal format and the CSI size 

corresponding to one SRS occasion of a user amounts to 25600 bytes (as 

described in section 1.1). However, when this CSI is stored in a file, 

hexadecimal digits are considered as characters and each character in a file 

is represented by 8 bits. This implies that each hexadecimal digit in the file 

is represented by 8 bits rather than 4 bits. This results in a file size double 

that of the CSI it stores, that is, 51200 bytes. Hence, when compression ratio 

or spacing savings is evaluated, a factor of 2 is removed from the result in 

order to remove the redundancy due to hexadecimal digits being treated as 

characters in file. 

This process was performed on LOS UE1, LOS UE2 and NLOS UE. Results 

of testing the performance of compression file formats on Linux-based server 

are provided below: 

LOS UE1 

Compression 
Format 

Compression 
Time (ms) 

Decompression 
Time (ms) 

Compression 
Ratio 

Space 
Savings (%) 

BZIP2 0m0.009s 0m0.005s 1.75 35.71 

GZIP 0m0.009s 0m0.004s 1.4 32.14 

ZIP 0m0.010s 0m0.007s 1.4 32.14 

LZMA 0m0.049s 0m0.006s 2.33 39.28 

LZO 0m0.005s 0m0.004s 1.29 22.48 

Table 4.2: Performance comparison of various lossless compression formats 

for LOS UE1. 

 

LOS UE2 

Compression 
Format 

Compression 
Time (ms) 

Decompression 
Time (ms) 

Compression 
Ratio 

Space 
Savings (%) 

BZIP2 0m0.009 0m0.006s 1.4 32.14 

GZIP 0m0.009s 0m0.004s 1.4 32.14 

ZIP 0m0.009s 0m0.007s 1.4 32.14 

LZMA 0m0.049s 0m0.007s 1.75 35.71 

LZO 0m0.005s 0m0.003s 1.27 21.72 

Table 4.3: Performance comparison of various lossless compression formats 

for LOS UE2. 
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NLOS UE  

Compression 
Format 

Compression 
Time (ms) 

Decompression 
Time (ms) 

Compression 
Ratio 

Space 
Savings (%) 

BZIP2 0m0.009s 0m0.005s 1.75 35.71 

GZIP 0m0.009s 0m0.003s 1.75 35.71 

ZIP 0m0.011s 0m0.007s 1.75 35.71 

LZMA 0m0.052s 0m0.006s 2.33 39.28 

LZO 0m0.005s 0m0.004s 1.36 26.87 

Table 4.4: Performance comparison of various lossless compression formats 

for NLOS UE. 

 

As can be seen in the results above, LZO has the lowest compression ratio. 

However, it outperforms all the other compression file formats in terms of 

compression and decompression speeds. As compression and decompression 

times are of high importance to Ericsson and LZO is the method that offers 

the least sum of compression and decompression times, we chose to proceed 

with LZO as the algorithm to implement on Ericsson’s test environment. The 

next task was to obtain the source code of LZO and implement it on the test 

environment. This process is discussed in following sections. 

 

4.9 Lempel-Ziv-Oberhumer (LZO) 

LZO is a lossless compression format that compresses and decompresses 

blocks of data, where the size of each block must be similar for both 
compression and decompression. However, for incompressible data, this 

compression format mitigates the problem by extending the input block to a 

maximum size of 64B every 1024B input data. In LZO, similar to LZ77 

discussed earlier, blocks of data get compressed based on matches and runs 
of non-matching literals. LZO is extremely cautious with lengthy matches 

and literals in order to exploit highly redundant data. 

An important property of this compression format is that it offers high speed 
compression and decompression without any memory requirement for 

decompression. It is also possible to achieve higher compression ratios with 

small compromise on compression speed, however, decompression speed 
can still be high. This algorithm and implementations are copyrighted and 

opensource distributed under GNU General Public License. There are 

multiple algorithms in LZO based on compression and decompression speeds 
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and compression ratio, and the default algorithm is LZO1X-1 which offers a 
good trade-off between compression ratio and compression and 

decompression speeds. 

The source code of LZO was then obtained. LZO is written in ANSI C. The 
source code was then analyzed and modified to compress and decompress 

SRS based estimates corresponding to one occasion of a UE. The input to 

compression process and output of decompression process were checked to 
make sure compression implemented was lossless. The process was 

performed on SRS based channel estimates corresponding to LOS UE1, LOS 

UE2 and NLOS UE. The default compression algorithm of LZO source code, 

LZO1X-1, was used in our tests. Results of the tests are presented in the table 

below: 

UE CSI Size 

(bytes) 

Compressed 
CSI Size 

(bytes) 

Space 
Savings 

(%) 

Sum of 
compression 

and 

decompression 

times (ms) 

LOS UE1 25600 19844 22.4844 7 

LOS UE2 25600 20040 21.7187 7 

NLOS UE 25600 18720 26.8750 7 

Table 4.5: Table displaying CSI size, compressed CSI size, space savings and 

sum of compression and decompression times for different UEs using LZO 

source  

As can be seen from the results, LZO takes only 7 ms to compress and 

decompress the data while enabling a good amount of space savings. 

However, the source code of LZO consists of numerous C source files and 

header files, making it difficult to implement on Ericsson’s DSPs. MiniLZO, 

a very lightweight subset of LZO library [17], was thus considered as a 

replacement for LZO and is discussed in section 4.10. 
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4.10 MiniLZO  

MiniLZO as mentioned in section 4.9 is a lightweight subset of LZO. It 

implements the LZO1X-1 compressor and both the standard and safe LZO1X 
decompressor. Apart from fast compression it also useful for situations where 

there is a need to use pre-compressed data files. MiniLZO consists of only 

one C source file: minilzo.c and three header files: minilzo.h, lzoconf.h, 
lzodefs.h making it easier to implement on Ericsson’s DSPs. MiniLZO works 

similar to LZO as the source file minilzo.c is automatically produced from 

the LZO sources [17]. 

The source code of miniLZO was analyzed and modified to compress and 

decompress SRS based estimates of all UE’s. MiniLZO uses LZO1X-1 

algorithm for compression, which is also the default algorithm of LZO. 

Hence, the performance of MiniLZO source code in terms of space savings 
and time for compression and decompression is the same as that of LZO (as 

shown in section 4.9). However, miniLZO is more efficient compared to 

LZO in terms of ease of implementation on Ericsson’s DSP. 
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CHAPTER 5 
 

Lossy compression of SRS based channel 
estimates 

This chapter describes the implementation of lossy compression of SRS 

based channel estimates. As was discussed in chapter 3, lossy compression 

involves some loss of information, so data integrity is not guaranteed. 

However, such an approach will help in achieving higher compression 

compared to lossless compression. 

In Chapter 3, correlation between different PRBGs and between columns and 

rows of the antenna array at eNodeB were studied. In case of LOS UEs, it 

can be observed that the magnitude of SRS based channel estimates 

corresponding to different PRBGs was fairly the same and change in phase 

of SRS values when moving from one PRBG to the next remained nearly 

same across the PRBGs. Similar relationships were observed in case of 

columns as well as rows of antenna array at the eNodeB.  

This led us to the thought that if we know the phase shift between SRS values 

corresponding to adjacent pair of PRBGs of a UE TX - eNodeB RX antenna 

pair, phases of SRS values corresponding to all PRBGs can be obtained from 

a reference SRS value (which is a complex number).  

Since magnitude remains fairly the same across PRBGs, magnitude of the 

reference SRS value can be used as magnitude of SRS values corresponding 

to all other PRBGs. With the phase and magnitude obtained, SRS values 

corresponding to all PRBGs of UE TX - eNodeB RX antenna pair can be 

generated. 

Since change in phase of SRS values when moving between columns or rows 

in the antenna array is nearly uniform, the same approach can be extended to 

antenna array as well. If the change in phase of SRS values corresponding to 

adjacent columns and adjacent rows of a PRBG is found, phases of all SRS 

values of the antenna array of the PRBG can be calculated using phase of a 

reference SRS value. Since magnitude of SRS values remains fairly the same 
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across the antenna array, magnitude of the reference SRS value can be used 

obtain the magnitude of SRS values corresponding all antennas in the 

antenna array.  

However, this type of relationship between PRBGs or elements of the 

antenna array exist only in case of LOS UEs and not in case of NLOS UE (as 

shown in section 3.2). Hence, this chapter of the thesis focuses on 

implementation of lossy compression of SRS based channel estimates of 

LOS UEs and is described in subsequent sections.  

This approach aims at storing only a reference SRS value (complex number) 

for each polarization and change in phase of SRS values corresponding to 

PRBGs and columns and rows of antenna array to generate all the SRS based 

channel estimates corresponding to 50 PRBGs and 128 beams. Since there 

are antennas of two polarizations at eNodeB, a reference value corresponding 

to each polarization will be stored in this thesis. 

Even though, change in phase of SRS values between adjacent PRBGs (when 

moving across PRBGs) or between adjacent columns or adjacent rows (when 

moving across the antenna array) is similar, it is not the same. This approach 

thus requires finding an optimal change (separately for PRBGs, columns and 

rows) in phase that lies closest to changes between all pairs of adjacent 

PRBGs, columns and rows. We propose to use linear regression to help find 

this optimal change in phase. 

 

5.1 Linear Regression 

A statistical model is defined as a simple description of a state or process in 

[12]. Regression analysis is a statistical technique for analyzing and 

modeling the relationship between variables. Regression has a wide range of 

applications and used in numerous fields like engineering, physical and 

chemical sciences, life and biological sciences, management, economics, 

social sciences and so on [13].  

There are three types of regression [12] and [13]: 

i. Simple linear regression: 
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Simple linear regression is used for modeling linear relationship 

between two variables, where one of them is the predictor or 

regressor variable and the other is the response variable [13]. More 

details are provided in section 5.3. 

 

ii. Multiple linear regression 

 

Multiple linear regression is a linear regression model with one 

response variable and more than one regressor variable [13]. The 

general form of multiple linear regression is shown below: 

 

𝑦 =  𝛽0 +  𝛽1𝑥1 +  𝛽2𝑥2 + ⋯ +  𝛽k𝑥𝑘 +  𝜀 (5.1) 

 

where y is the response variable, 𝑥1, 𝑥2,…, 𝑥𝑘 are the regressor 

variables, 𝛽0, 𝛽1,…, 𝛽k are the regression coefficients and 𝜀 is the 

regression error. The amount by which an observation differs from 

its expected value is defined as regression error [12]. It is assumed 

that 𝜀 is normally distributed with E(𝜀) = 0 and a constant variance 

Var(𝜀) = 𝜎2. 

 

iii. Nonlinear regression 

 

Nonlinear regression is a regression model in which relationship 

between response variable and regressor variable is not linear in 

regression parameters [12]. A nonlinear regression model is intricate 

with respect to estimation of model parameters, selecting the model, 

selection of variables, diagnosis of model and so on. 

 

5.2 Goals of regression analysis 

Goals of regression analysis include [12]: 

 Establish causal relationship between response variable and 

regressor variables 𝑥1, 𝑥2,…, 𝑥𝑘. 

 Predict the value of y based on values of 𝑥1, 𝑥2,…, 𝑥𝑘. 

 Analyze variables 𝑥1, 𝑥2,…, 𝑥𝑘 to identify which of them have more 

importance than the others with respect to response variable y. This 
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would help in determining causal relationship more accurately and 

efficiently. 

 

5.3 Simple linear regression 

As mentioned in the previous section, simple linear regression is used for 

modeling linear relationship between regressor and response variables. A 

simple regression model can be represented as [13]: 

 𝑦 = 𝛽0 + 𝛽1𝑥 +  𝜀  (5.2) 

where y is the response variable, 𝛽0 is y intercept,  𝛽1 is the slope or gradient 

of regression line, x is the regressor variable and 𝜀 is the error term. In simple 

linear regression, it is assumed that 𝜀 is normally distributed with E(𝜀) = 0 

and a constant variance Var(𝜀) = 𝜎2 [12]. It is also assumed that the errors 

are uncorrelated, that is value of an error does not depend on value of any 

other error [13]. 

A regression model can also be represented as [12]: 

 𝑦 = 𝐸(𝑦) +  ɛ   (5.3) 

where E(y) is the mathematical expectation of response variable. 

An example of simple linear regression is shown in figure 5.1 [13]: 
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Figure 5.1: Simple linear regression approximation 

of a complex relationship 

The slope 𝛽1 is the change in mean of y for a unit change in x. Parameters 𝛽0 

and 𝛽1 are called as regression coefficients [13]. 

In this thesis, we propose to use simple linear regression to model the phases 

of SRS values corresponding to different PRBGs, columns or rows of 

antenna array to a straight-line as per the approach shown in figure 5.1. 

The next step after modeling is to find good estimates of 𝛽0 and 𝛽1 for simple 

regression model that can best describe the data [12]. We propose to use the 

method of least squares to estimate 𝛽0 and 𝛽1. 

 

5.4 Least Squares Estimation 

The method of least squares can be used to obtain estimates of 𝛽0 and 𝛽1. 

Least squares principle involves finding estimates 𝛽0 and 𝛽1 such that sum 

of squared distances between actual observations and modeled straight-line 

is minimum [13]. 
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In an experiment modelled using simple linear regression, there are n pairs 

of data (x1,y1), (x2,y2),…,(xn,yn). A model can be represented in terms of n 

pairs of data as [12]: 

 𝑦𝑖 =  𝛽0 + 𝛽1𝑥𝑖 + 𝜀𝑖   for i= 1,2,…,n           (5.4) 

Least squares estimation aims to find the line that is closest to all data points 

(xi,yi). The least square estimates 𝛽0̂ and 𝛽1̂ are the estimates that satisfy the 

condition [12]: 

( 𝛽0̂, 𝛽1)̂  = arg min
(𝛽0,𝛽1)

∑ [𝑦𝑖 − (𝛽0 + 𝛽1𝑥𝑖)]2𝑛
𝑖=1  (5.5) 

The solution to the above equation 5.5 is obtained by solving the below 

system [12]: 

𝜕

𝜕𝛽0
∑ [𝑦𝑖 − (𝛽0 + 𝛽1𝑥𝑖)]2𝑛

𝑖=1 = 0  (5.6) 

𝜕

𝜕𝛽1
∑ [𝑦𝑖 − (𝛽0 + 𝛽1𝑥𝑖)]2𝑛

𝑖=1 = 0  (5.7) 

The line derived by obtained estimates of slope and gradient is called fitted 

regression line [12]. The difference between observed value and 

corresponding fitted value is called as residual [13]. 

Regression error is not observable; however, regression residual is 

observable [12]. Regression residual can be viewed as observable estimate 

of unobservable error. 

 

5.5 Implementation of simple linear regression 

model by least squares estimation in this thesis 

As mentioned earlier, we propose to use simple linear regression by least 

squares estimation to model the change in phase between PRBGs and 

columns and rows of antenna array. 

(𝛽̂0, 𝛽̂1) = arg min
(𝛽0,𝛽1)

‖𝒚 − 𝛽1𝒙 − 𝜷𝟎‖2   (5.8) 
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where y is vector containing the phases of SRS based channel estimates 

(corresponding to PRBGs, columns of antenna array or rows of antenna 

array), x is a vector of corresponding indices of PRBGs, columns or rows of 

antenna array, 𝛽1 is the slope of the model, 𝛽0 is the y-intercept of the model 

and 𝜷𝐨 is the product of 𝛽0 with a vector of ones with same size as x and y. 

𝛽̂0 and 𝛽̂1 are the y-intercept and slope of the model respectively with 

“closest” fit to observed values.   

Solution to the above equation is obtained by solving the system below: 

𝜕

𝜕𝛽1
‖𝒚 − 𝛽1𝒙 − 𝜷𝟎‖2 = 0   (5.9) 

𝜕

𝜕𝛽0
‖𝒚 − 𝛽1𝒙 − 𝜷𝟎‖2 = 0   (5.10) 

To find closest fit to phases of SRS values across PRBGs, phases of SRS 

values of all PRBGs of a UE TX – eNodeB RX pair was taken in y and indices 

of PRBGs in x. The system described by equations 5.9 and 5.10 was solved 

in MATLAB to find 𝛽̂0 and 𝛽̂1. The process was repeated for all UE TX – 

eNodeB RX pairs and all 𝛽̂0′𝑠 and 𝛽̂1′𝑠 were found and the mean value of 

𝛽̂0′𝑠 and 𝛽̂1
′𝑠 were found. 

𝛽̂0𝑃𝑅𝐵𝐺
= 𝑚𝑒𝑎𝑛 (𝛽̂0

′ 𝑠 𝑜𝑓 𝑃𝑅𝐵𝐺𝑠 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 𝑎𝑙𝑙 𝑈𝐸 𝑇𝑋 −

𝑒𝑁𝑜𝑑𝑒𝐵 𝑅𝑋 𝑎𝑛𝑡𝑒𝑛𝑛𝑎 𝑝𝑎𝑖𝑟𝑠) (5.11) 

𝛽̂1𝑃𝑅𝐵𝐺
= 𝑚𝑒𝑎𝑛 (𝛽̂1

′𝑠 𝑜𝑓 𝑃𝑅𝐵𝐺𝑠 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 𝑎𝑙𝑙 𝑈𝐸 𝑇𝑋 −

𝑒𝑁𝑜𝑑𝑒𝐵 𝑅𝑋 𝑎𝑛𝑡𝑒𝑛𝑛𝑎 𝑝𝑎𝑖𝑟𝑠) (5.12) 

The phases of the SRS based estimates were recreated using the straight line 

defined by y-intercept 𝛽̂0𝑃𝑅𝐵𝐺
 and slope 𝛽̂1𝑃𝑅𝐵𝐺

. Figure 5.2 shows a 

comparison between recreated phases and actual phases of SRS based 

channel estimates corresponding to all PRBGs of a UE TX – eNodeB RX 

pair. 
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Figure 5.2: Straight-line approximation of phases of SRS values 

corresponding to PRBGs 

 

Similarly phases of SRS values corresponding to all columns of one row of 

the antenna array at eNodeB corresponding to a PRBG was taken in y and 

corresponding column indices in x and solved for 𝛽̂0 and 𝛽̂1. The process was 

repeated to all rows and all PRBGs and mean of 𝛽̂0′𝑠 and 𝛽̂1′𝑠 were 

calculated. 

𝛽̂0𝐶𝑜𝑙𝑢𝑚𝑛
=

𝑚𝑒𝑎𝑛 (𝛽̂0
′ 𝑠 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 𝑎𝑙𝑙 𝑟𝑜𝑤𝑠 𝑎𝑛𝑑 𝑃𝑅𝐵𝐺𝑠)  

    (5.13) 

𝛽̂1𝐶𝑜𝑙𝑢𝑚𝑛
=

𝑚𝑒𝑎𝑛 (𝛽̂1
′𝑠 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 𝑎𝑙𝑙 𝑟𝑜𝑤𝑠 𝑎𝑛𝑑 𝑃𝑅𝐵𝐺𝑠)  

    (5.14) 
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Phases of SRS based estimates corresponding to columns of the antenna 

array were recreated as in the case of PRBGs. This was compared with actual 

phases and is shown in figure 5.3: 

 

Figure 5.3: Straight-line approximation of phases of SRS values 

corresponding to columns of antenna array 

 

Likewise phases of SRS values corresponding to all rows of one column of 

the antenna array at eNodeB corresponding to a PRBG was taken in y and 

corresponding row indices in x and solved for 𝛽̂0 and 𝛽̂1. The process was 

repeated to all columns and all PRBGs and mean of 𝛽̂0′𝑠 and 𝛽̂1′𝑠 were 

calculated. 

𝛽̂0𝑅𝑜𝑤
=

𝑚𝑒𝑎𝑛 (𝛽̂0
′ 𝑠 𝑜𝑓 𝑟𝑜𝑤𝑠 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 𝑎𝑙𝑙 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 𝑎𝑛𝑑 𝑃𝑅𝐵𝐺𝑠)  

    (5.15) 
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𝛽̂1𝑅𝑜𝑤
=

𝑚𝑒𝑎𝑛 (𝛽̂1
′𝑠 𝑜𝑓 𝑟𝑜𝑤𝑠 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 𝑎𝑙𝑙 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 𝑎𝑛𝑑 𝑃𝑅𝐵𝐺𝑠)  

    (5.16) 

Phases of SRS based estimates corresponding to rows of the antenna array 

were recreated as in the cases of PRBGs and columns. This was compared 

with actual phases and is shown in figure 5.4: 

 

Figure 5.4: Straight-line approximation of phases of SRS values 

corresponding to rows of antenna array 

 

There are two polarizations of antennas at the eNodeB as well as the UE’s. 

As a result, there are four possible combinations of polarizations of UE and 

eNodeB antennas. To generate SRS values, a reference value (an SRS value 

which is a complex number) is chosen from each of the four possible 

combinations. We decided to select the reference value as the SRS value 

corresponding to first PRBG, first column and first row of a combination. All 

the SRS values corresponding to remaining PRBGs, columns and rows of 

that combination can be generated using equation 5.17: 
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𝑆𝑅𝑆𝑉𝑎𝑙𝑢𝑒(𝑥, 𝑦, 𝑧)  = |𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑆𝑅𝑆𝑉𝑎𝑙𝑢𝑒)|  ×  𝑒𝑗𝑥𝛽̂1𝑃𝑅𝐵𝐺  ×

                                        𝑒𝑗𝑦𝛽̂1𝐶𝑜𝑙𝑢𝑚𝑛  ×  𝑒𝑗𝑧𝛽̂1𝑅𝑜𝑤  ×  𝑒𝑗𝛽̂0𝑃𝑅𝐵𝐺

 (5.17) 

where 𝑆𝑅𝑆𝑉𝑎𝑙𝑢𝑒(𝑥, 𝑦, 𝑧) is the SRS value that needs to be reconstructed in 

which x, y and z denote the index of PRBG, column and row respectively 

and |𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑆𝑅𝑆𝑉𝑎𝑙𝑢𝑒)| is the magnitude of reference SRS value. 

So by storing a reference value and 𝛽̂0𝑃𝑅𝐵𝐺
 corresponding to each possible 

combination of UE and eNodeB antenna polarizations, 𝛽̂1𝑃𝑅𝐵𝐺
, 𝛽̂1𝐶𝑜𝑙𝑢𝑚𝑛

 

and 𝛽̂1𝑅𝑜𝑤
, all 6400 SRS values of an occasion (corresponding to 2 UE 

antennas, 64 antennas at eNodeB and 50 PRBGs) can be reconstructed. This 

results in extremely high compression and space savings achieved is shown 

below: 

𝐶𝑆𝐼 𝑠𝑖𝑧𝑒 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 𝑜𝑛𝑒 𝑜𝑐𝑐𝑎𝑠𝑖𝑜𝑛 𝑜𝑓 𝑎 𝑈𝐸 

=  25600 𝑏𝑦𝑡𝑒𝑠 (𝑠𝑒𝑐𝑡𝑖𝑜𝑛 1.1)  

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝐶𝑆𝐼 𝑆𝑖𝑧𝑒 
=  4 ×  𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑆𝑅𝑆 𝑣𝑎𝑙𝑢𝑒𝑠 (4 ×  32 𝑏𝑖𝑡𝑠)

+  𝑠𝑙𝑜𝑝𝑒𝑠 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 𝑃𝑅𝐵𝐺𝑠, 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 𝑎𝑛𝑑 𝑟𝑜𝑤𝑠 (3 ×  16 𝑏𝑖𝑡𝑠)

+  𝑜𝑓𝑓𝑠𝑒𝑡 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 𝑃𝑅𝐵𝐺𝑠 ( 4 ×  16 𝑏𝑖𝑡) = 30 𝑏𝑦𝑡𝑒𝑠 

𝑆𝑝𝑎𝑐𝑒 𝑠𝑎𝑣𝑖𝑛𝑔𝑠 (𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑎𝑠 𝑝𝑒𝑟 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.6) = 99.8828 % 

However, these reconstructed SRS values have some errors compared to the 

original SRS values. The errors in reconstructed SRS values are due to two 

reasons: 

1. The magnitude of SRS values is assumed to be the same as that of 

reference SRS value. 

2. The straight-line approximation of phases using linear regression by 

least squares estimation produces regression residual as explained in 

Section 5.4. 

The next task is to evaluate degradation in performance as a result of loss in 

information due to the compression technique employed. We designed a 

system in MATLAB for this purpose and details are provided in section 5.6. 
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5.6 Bit Error Rate (BER) Simulator 

In this part of the thesis, there are two UEs with one antenna each and an  

eNodeB with 64 antennas. Hence, there are 64 antennas at RX side and 2 

antennas at TX side, resulting in a 64 x 2 MIMO scenario. A system was 

designed in MATLAB with the following specifications: 

106 random bits were generated, where each UE transmits 5x105 bits and the 

sequences are independent. The bits were mapped to Quadrature Phase Shift 

Keying (QPSK) symbols and transmitted through the TX antennas of two 

UEs. The transmit signal vector is represented by s. Channel matrix, H, is a 

Nr x Nt Matrix where Nr and Nt are number of receiver and transmitter 

antennas respectively [4]. Hence in this scenario, H is a 64 x 2 matrix. 

Received signal vector r is defined as [4]: 

𝒓 = 𝑯𝒔 + 𝒏    (5.18) 

where n is the noise vector. Noise vector n was generated using MATLAB 

function ‘randn’ to generate a vector of complex numbers and normalized by 

multiplying with a factor of 1/√𝑆𝑁𝑅 (𝑙𝑖𝑛𝑒𝑎𝑟). 

SNR (linear) refers to the signal to noise ratio in linear scale at RX antenna 

port, that is, before combining the signals from 64 antennas at eNodeB. This 

SNR was used in plotting BER versus SNR in figure 5.5. SNR at detector 

stage will be higher (by approximately 18 dB), owing to the array gain.   

There are 50 realizations of the channel corresponding to 50 PRBGs and this 

is denoted by N. Channel matrix H is normalized as shown below [7]: 

𝑯𝒏𝒐𝒓𝒎 = 𝑯 ×  [
1

𝑁×𝑁𝑟×𝑁𝑡
∑ ‖𝑯𝑛‖𝐹

2𝑁
𝑛=1 ]

−1
2⁄
 (5.19) 

where ‖𝑯𝑛‖𝐹
2  is the squared Frobenius norm of nth realization of channel 

matrix H. Squared Frobenius norm of H is defined as [7]: 

‖𝑯‖𝐹
2 = 𝑇𝑟(𝑯𝑯𝐻)   (5.20) 

where Tr() is the trace operator and 𝑯𝐻 is the Hermitian transpose of H 

matrix. ‖𝑯‖𝐹
2  can be interpreted as the total power gain of the channel [7]. 
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SRS based channel estimates from two UEs were stored in H and then 

normalized as per equation 5.19 to obtain 𝑯𝒏𝒐𝒓𝒎 , which was then used as the 

channel matrix described in equation 5.18. 

Next task was to design a receiver for this MIMO system. We designed a 

Zero Forcing (ZF) receiver. A ZF equalizer compensates for channel 

response by using an inverse filter and it can be defined as [8]: 

𝑮𝑍𝐹 =  √
𝑁𝑡

𝐸𝑠
× 𝑯†   (5.21) 

where 𝐸𝑠 is the symbol energy and 𝑯† is the Moore-Penrose pseudo inverse. 

𝑯† is defined as [8]:  

𝑯† = (𝑯𝐻𝑯)−1𝑯𝐻   (5.22) 

The output of the ZF filter is only a function of symbol vector to be detected 

and the noise, and the output is given by [8]: 

𝒛 = 𝑮𝑍𝐹𝒓 = 𝒔 + 𝑮𝑍𝐹𝒏    (5.23) 

QPSK demodulation was then implemented on the received symbol vector 

to obtain corresponding bits. Bit Error Rate (BER) was calculated as shown 

below: 

𝐵𝐸𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑡𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑡𝑠 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑
  (5.24) 

This process was performed for SNRs between -30 dB to -10 dB in steps of 

5 dB. BER was calculated in each case and plotted against SNR. 

To evaluate the performance of lossy compression algorithm we 

implemented in this thesis, another ZF equalizer was designed using the 

reconstructed channel matrix in place of the original one and the steps 

repeated. BER corresponding to different SNRs was plotted in this case as 

well and compared it with ZF equalizer using original channel. BER versus 

SNR plot for the two cases is shown in figure 5.5: 
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Figure 5.5: Comparison of BER versus SNR plots when using original channel 

and reconstructed channel 

 

As can be seen in figure 5.5, BER in case of reconstructed channel after lossy 

compression is higher than that of original channel. Even though, there is a 

slight degradation in performance as per this Simulator, an extremely high 

space savings of 99.8828 % can be achieved by using this approach. 
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CHAPTER 6 
 

Conclusion 

We investigated the redundancy in SRS based channel estimates 

corresponding to PRBGs and elements in the antenna array in an SRS 

occasion for LOS and NLOS scenarios.  

We analyzed various lossless compression algorithms and compression 

formats based on their compression ratio, time required for compression and 

decompression and complexity of implementation. MiniLZO was chosen as 

it provided lowest compression and decompression times and was relatively 

easier to implement.  

Source code of MiniLZO was obtained, analyzed and modified to suit 

Ericsson’s DSP architecture. Mini LZO also offered space savings of 

22.4844 % for UE1 in LOS, 21.7187 % for UE2 in LOS and 26.8750 % for 

UE in NLOS. 

Lossy compression of SRS based channel estimates was implemented using 

linear regression by least squares estimation. This approach helps in 

achieving extremely high space savings (99.8828 %) with a small 

degradation in performance. 

Core essence of this invention is to compress SRS based channel estimates, 

so that lesser space is occupied by the channel estimate data in the shared 

memory of the eNodeB. Benefit from this invention is that more space will 

be available in the shared memory after compression which can facilitate 

higher capacity for reciprocity-based beamforming. Hence this will prolong 

the lifetime of the existing hardware and improve efficiency. This may also 

lead to higher cost optimization. 
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CHAPTER 7 

Future work 

Mini LZO was chosen as the compression format for lossless compression 

as the time required to implement compression and decompression was least 

when simulated on Linux based server, compared to other formats – BZIP2, 

LZMA, GZIP and ZIP. However, the process of compressing or 

decompressing the data using these four compression formats could be faster 

or slower when implemented on the DSPs. Nevertheless, implementing all 

these compression formats in DSP is a time-consuming task as the source 

code of each compression format must be analyzed and modified according 

to the DSP’s architecture at Ericsson. The implementation of the other 

formats on Ericsson’s DSP and analysis of their performance could be 

considered as future work. 

Lossy compression of SRS based channel estimates using linear regression 

by least squares estimation has been described in Chapter 5. However, this 

technique will yield a set of reconstructed data that is close to original data 

only when there is high correlation in magnitude and phase both between 

elements of antenna array and between PRBGs. This typically happens in 

LOS scenario. Extension of a similar approach to NLOS scenario is 

considered as a future work. 
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