
Case Study on Universal Verification
Methodology(UVM) SystemC Testbench for RTL

Verification

KEVIN SKARIA CHACKO
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2019

K
EV

IN
 SK

A
R

IA
 C

H
A

C
K

O
C

ase Study on U
niversal Verification M

ethodology(U
V

M
) System

C
 Testbench for R

T
L Verification

LU
N

D
 2019

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2019-696
http://www.eit.lth.se

Case Study on Universal Verification
Methodology(UVM) SystemC Testbench for RTL

Verification

Kevin Skaria Chacko
ke4067fn-s@student.lu.se

Department of Electrical and Information Technology
Lund University

Supervisor: Liang Liu

Examiner: Erik Larsson

June 11, 2019

c© 2019
Printed in Sweden
Tryckeriet i E-huset, Lund

Abstract

This Master’s thesis aims to conduct a case study on using Universal Verification
Methodology (UVM) in SystemC for Register-Transfer Level (RTL) verification.
Verification of ASICs is very important nowadays especially in terms of production
costs, time to market and the sustainability of products. As Moore’s Law is in
motion, verification gets large, complex, and time-consuming. Re-usability and
simulation performance of testbenches are key areas for improvement. Accellera
Systems Initiative, a standard organization that supports user and vendor stan-
dards in the field of EDA and ICs has released UVM in SystemC as a Beta version.
Since SystemVerilog UVM testbenches have been around in industries for several
years in different performance optimized versions, one of these versions is imple-
mented in UVM SystemC to study if the same optimizations are possible. This will
also enable to have a common language platform for SystemC Register-Transfer
Level (RTL) and RTL testbench development. In order to simulate two different
hardware modeling languages in an EDA simulator, 3 different methods of inter-
facing UVM SystemC with SystemVerilog RTL have been explored: UVM-Multi
Language (ML), Beta over Legacy (βoL), and Standard Co-Emulation Interface
(SCE-MI). Based on simplicity and simulation time the βoL interface has been
characterized for a better option. Moreover, knowing the relationship of SystemC
simulation time with timing accuracy, a performance comparison with SystemVer-
ilog UVM has helped to understand the bottleneck of SystemC testbench with
cycle-accurate interfaces as compared to SystemVerilog interfaces where the sim-
ulator tool perform optimizations in context switching. From the results of the
performance comparison, this study proposes a direction in using a hybrid test-
bench model where the stimulus and response data parts of the testbench are
still in SystemC TLM whereas the cycle accurate interfaces with the RTL are in
SystemVerilog.

i

ii

Acknowledgments

To begin with, I would like to thank my supervisor, Professor Liang Liu and
my examiner, Professor Erik Larsson for their guidance in this project. They have
helped me to bring up the scientific aspect of this thesis all along the way. Similarly,
I am thankful to my supervisor at Ericsson, Ole Kristoffersen for sharing his vast
experience in ASIC verification and always encouraging me to think outside the
box. I would like to show my gratitude to the Application engineers at Cadence,
David Spieker and Hans Martin for providing constant support throughout the
thesis. I am also thankful to my Manager at Ericsson, Torsten C Larsson, from
inspiring me from the beginning being a guest lecturer at LTH to giving me an
opportunity to do this thesis in his team.

To my colleagues in Ericsson: Grzegorz Swiecanski, Deepak Yadav, Arun Jee-
varaj and Dimitar Dikov, I am always grateful for assisting me from the basic
technical problems in the starting days to the end of this thesis work.

To my family, who have given me the motivation in pursuing my passion and
interest and been the foundation of my success. I can never thank you enough.

To my friends in Lund: Aishwarya, Michail, Ghanashyam for bearing my thesis
talks during lunch and after work, trying to understand and providing uncondi-
tional support in achieving my goals. Thank you for helping me in your best
effort.

To my friends from National Institute of Technology India, who have helped
me realize my potential to complete this thesis. This thesis has your imprints all
over it. To my high school teacher, Ms. Seena, without you I would not have
remembered my OOP concepts needed for this work.

To every person that I forgot to mention here, those who have played even the
smallest part in my life. I thank you from the bottom of my heart.

iii

iv

Popular Science Summary

You need to give up something to achieve something
As the digital electronics and semiconductor industries tries to follow the

Moores Law: "The number of transistors and resistors on a chip doubles every
24 months", the verification process of these chips gets large and more complex.
The need for verification engineers in an ASIC/IC development project has sur-
passed the design engineers since a few years for the same reason.

Nowadays electronic industries compete with each other to reach the market
first and give the most innovative and efficient products. It can be seen with the
new standards released every decade in mobile communications: GSM, 3G, 4G
and now 5G. To make sure these industries meet the consumers demands for high
speed communication, they need to find faster and efficient ways of designing and
verifying their products. This would be the context of this thesis work: to find
a direction on how to reduce the verification time of large and complex digital
hardware designs.

Digital Circuits are designed with Hardware Description Language (HDL)
which is like a programming language to implement a Register-Transfer Level
(RTL) abstraction model of data flow and timing of a circuit. These HDL’s can be
simulated to check their correctness with testbenches. The traditional testbenches
are usually written with HDL languages in different standards or methodologies to
interface better with the Design Under Test (DUT). Therefore if an HDL testbench
can be adapted to a more abstract language such as SystemC based on C++, it
will be able to compile and sequentially run them much faster and efficiently.

HDL Testbench languages typically vary based on their size and complexity
in verifying hardware designs, smaller designs use VHDL/Verilog with no specific
standard or methodology whereas bigger designs uses SystemVerilog in Universal
Verification Methodology (UVM) framework. These languages are tools of a trade
like carpentry and the methodologies explains how efficiently the trade can build
something big like a house.

This thesis work will verify a RTL hardware design of Ericsson with a testbench
on SystemC Universal Verification Methodology(UVM) framework and compare
its simulation time to already existing SystemVerilog UVM framework. The study
of comparing simulation performances will help to understand the bottleneck of
using UVM SystemC and provide a direction on how to improve the current best
performance.

v

vi

Acronyms

API Application Programming Interface
ASIC Application Specific Integrated Circuit

BFM Bus Functional Block

CMAFIR Cascadable Multiplexed Asymmetric FIR
CPU Central Processing Unit
CTSR Clock to Sample Ratio

DUT Design Under Test

EDA Electronic Design Automation

FE_AFIR Filter Engine Asymmetric FIR filter
FF Flip-flop
FIR Finite Impulse Response
FPGA Field-Programmable Gate Array

GDB GNU Debugger
GSM Global System for Mobile Communication

HDL Hardware Description Language
HiL Hardware in the Loop
HLS High Level Synthesis

IC Integrated Circuit
IEEE Institute of Electrical and Electronics Engineers
IFS Integrated Functional Verification Script Environ-

ment
IP Intellectual Propriety

ML Multi Language

OA Open Architecture

vii

OOP Object-oriented programming

RCP Rapid Control Prototyping
RTL Register-Transfer Level

SCE-MI Standard Co-Emulation Interface
SoC System on Chip

TLM Transaction Level Modelling

UVC Universal Verification Component
UVM Universal Verification Methodology

VHDL VHSIC Hardware Description Language

viii

Table of Contents

1 Background 1
1.1 Importance of Verification . 1
1.2 Design Under Test . 3

1.2.1 Hardware Architecture 3
1.2.2 Functional Specification 3
1.2.3 Design Parameters 4
1.2.4 Signal Interface 4
1.2.5 HW/SW Interface 5

1.3 SystemVerilog UVM . 5
1.3.1 Traditional Testbench 5
1.3.2 System Verilog Testbench 6
1.3.3 Universal Verification Methodology 7

1.4 Previous Work on SystemC . 8

2 Objectives, Challenges and Methodology 11
2.1 Main Objectives of this Work . 11

2.1.1 UVM SystemC Testbench 11
2.1.2 Testbench - RTL Interface 13
2.1.3 Evaluation of the Simulation Performance 14

3 Implementation and Results 19
3.1 Key Differences in UVM SystemC from UVM System Verilog 19

3.1.1 Forward Declaration 19
3.1.2 Dynamic Array Size Allocation 19
3.1.3 Segmentation Fault Debugger 20
3.1.4 SystemC Bit Reduction and Range Selection 20
3.1.5 Forked Process Implementation 21

3.2 Testbench to RTL Interface . 22
3.2.1 UVM Multi-Language(ML) 22
3.2.2 βeta over Legacy(βoL) 23
3.2.3 Standard Co- Emulation Modelling Interface (SCE-MI) 24

3.3 Simulation Time Comparison between SCE-MI and βoL Interfaces . . 26
3.4 Performance Evaluation between Multiple Testbench - RTL Configu-

rations . 27

ix

3.4.1 Configurations 27
3.4.2 Performance Analysis 28

3.5 Scope of results . 30
3.5.1 High Level Synthesis Verification 30
3.5.2 Hardware Prototyping Platforms (Validation) 30

4 Conclusion and Future Work 31
4.1 Conclusions . 31
4.2 Future Work . 32

References 33

x

List of Figures

1.1 A basic verification plan . 2
1.2 A representation of the FE_AFIR 4
1.3 Traditional testbench Architecture 6
1.4 System Verilog Testbench Architecture 6
1.5 UVM System Verilog Testbench Architecture 7

2.1 Different implementation of the forked process 12
2.2 SystemC UVM testbench architecture 13
2.3 Multi-Language Interface . 14
2.4 Relative hardware modelling simulation performance with timing Ac-

curacy . 15
2.5 Multi Language TLM ports . 15
2.6 Architecture of the Hybrid solution 16

3.1 Separator modules at Input, Output and signal channels 21
3.2 UVM ML interface using the Cadence Legacy UVM hierarchical com-

ponents . 23
3.3 βoL interface implemented with a switch 24
3.4 SCE-MI interface between simulator and emulator 25
3.5 Performance comparison between SCE-MI and βoL interface 26
3.6 Multiple Testbench RTL configuration 28
3.7 Analysis of multiple Testbench RTL configurations 29

xi

xii

List of Tables

1.1 List of DUT interfaces . 5

xiii

xiv

Chapter 1
Background

In this chapter, the focus is to introduce several terms and concepts related which
acts as pillars on which the thesis stands. The first section explains the role and
importance of verification in digital ASIC design. It also describes how a verifi-
cation plan is developed for the design flow. The second section describes about
the design or Intellectual Property (IP) that is used for verification. It will give
a representation of the hardware architecture showing the data and control path
which is very important for functional verification. Along with the architecture,
details about the design parameters, signal interface, HW/SW interface are given.
The third section explains the basics of UVM testbench using System Verilog and
their difference mainly from the traditional HDL testbenches. It shows how test-
benches have evolved from the traditional HDL approach to using System Verilog
testbench tools and then using a UVM standard to build an efficient environment
for the System Verilog testbenches. The last section of this chapter has a collection
of previous works on SystemC which are relevant to this thesis. It gives a good
amount of information on using SystemC for verification in UVM standard.

1.1 Importance of Verification

ASIC verification is a process in which an ASIC design is verified against a pro-
vided design specification before tape out. The main focus is to achieve functional
correctness of the design before the tape out. The verification process is consid-
ered very critical part of the design flow because any bugs in design not detected
before tape out can lead to increase in overall cost of the design process. The
increasing cost associated with the development of high end ASIC’s has forced an
important shift in the development process: ASIC’s are more generalized and are
no longer used for just one product but have a longer life span and will be used
across multiple generations of the same product. This has led to spending more
than 75% of the time on verifying the ASIC design than on designing the ASIC
itself.

A verification plan lists the procedures and methods to be used for verifica-
tion, development of testbenches and automation. They are usually constructed
incrementally at the end of each iteration of the development cycle. In fig 1.1, it
shows a basic verification plan along side of the ASIC development.

1

2 Background

Figure 1.1: A basic verification plan

The architectural design is defined as the first step of every digital ASIC de-
velopment flow. These are developed in algorithm level using Matlab/C++ tools.
Before jumping to the RTL modelling, a transaction level model (TLM) defined in
SystemC is developed to gain better hardware accuracy and save time in handover
to the verification team. The verification plan of the TLM model and RTL model
will be similar except in terms of abstraction level of the hardware model and tools
used.

The first step of verification plan is to view the design from a top level and
extract its SoC level functionality or features. At this stage, a thorough under-
standing of the specification is required because misunderstanding often lead to
bugs and wastage of time. The next step is developing the verification environment
with a verification methodology. The selection of methodology should be based on
re-usability and compatibility to the legacy verification environment. A part of the
verification environment development, standard verification components such as
drivers, monitors and reference models have to be developed. For processor based
ASICs, a processor is used to configure the stimulus. Whereas for standard proto-
cols, third party Verification Intellectual Property (VIP) can be used for speeding
up the verification process.

In the verification and debugging step, different test scenarios are developed
respective to the ASIC features, these testcases can be reused to speedup verifi-
cation of similar ASIC designs that share the same features. Debugging is a time
consuming process, proper understanding of the detailed architecture of the design
blocks will help reducing the debugging time. The functional and code coverage

Background 3

closure is one of the major step for the successful tape out of ASICs. Proper anal-
ysis and review will help in closing to 100% coverage. In the code coverage for the
uncovered code, a proper justification as to either it is redundant RTL code or that
code will be never be exercised or it is not covered during functional verification
should be given. Then those types of code have to be added to the exclusion list
after the designers confirmation.

In the final functional verification closure, all the criteria have to be fulfilled
that has been defined in the verification sign-off list such as 100% functional and
code coverage, consecutive defined number of clean regression and all bugs closed
or fixed. Functional and code coverage provides confidence on the maturity of the
design.

1.2 Design Under Test

The hardware design or IP used for the verification task is a configurable multi
rate Filter Engine Asymmetric FIR filter (FE_AFIR) with real valued coefficients
able to process complex data. With FE_AFIR, it is possible to cascade complex
asymmetric FIR filters to build larger setups. These filters inside the FE_AFIR
are called the Cascadable Multiplexed Asymmetric FIR (CMAFIR).

1.2.1 Hardware Architecture

The Hardware architecture of the FE_AFIR is given in Figure 1.2.
The Hardware architecture shows that there are multiple CMAFIR inside a

FE_AFIR which are cascaded to build larger filters. Depending on the the no
of CMAFIR blocks there will be corresponding standard interface block to these
filters in FE_AFIR. Considering the data path in FE_AFIR, the input data could
be given from input interface to the CMAFIR block and goes out through the
output interface, or it could be transferred from one CMAFIR block to another
in case of cascaded filters. Whereas, considering the control path, there will be
control signals to handle these two different flow of data. The control delay block
adds a configurable delay to the control signal from the input interface block to
the output interface taking in account of the data processing time in the CMAFIR
block.

1.2.2 Functional Specification

FE_AFIR acts as a filter engine facilitating the option of cascading multiple filters
to build large systems. So, functional specification of FE_AFIR will be mainly
related to CMAFIR block which actually performs the filter operation. CMAFIR
is a parametric block that shall perform certain properties:

• It should process on real or complex data with real coefficients

• It should have a asymmetric impulse response.

4 Background

Figure 1.2: A representation of the FE_AFIR

• One section of a CMFAIR should contain one Multiplier Accumulator and
a delay line. These should be parametric sections with parametric number
of coefficient for one multiplier.

– The number of active coefficients per section should be configurable.

– It should be able to support Clock to Sample Ratio (CTSR) of 1.

• FE_AFIR could use single or double coefficient bank.

1.2.3 Design Parameters

As discussed above, most of the Hardware Design parameters are configurable. So,
there are options to chose the number of filter branches in FE_AFIR, sections in
CMAFIR, the coefficients per section in CMAFIR. Even the word length of the
the input, interface and output signals are configurable.

1.2.4 Signal Interface

A DUT interacts with the testbench and the external world through the interface
signals. These signals are the basic information needed for the Bus Functional
Block (BFM) in verification. These signals could be individual or buses, they are
categorized accordingly in Table 1.1.

Background 5

S.No Signal Interface HW/SW interface

1 Clk Signals of read and write type
2 Reset Status signal of read type
3 Standard interface inputs, Configuration signals of

Standard interface outputs command type
4 Configuration and Status ports

for the filters Interrupt signals
5 Configuration and Status ports

for selecting/changing
coefficient banks Memory Interface Signals

6 Overflow Interrupts
7 Dynamic Power Save
8 Memory Interface for filter

Coefficient Configuration

Table 1.1: List of DUT interfaces

1.2.5 HW/SW Interface

These are the configuration and the status signal interfaces of the FE_AFIR. They
are grouped according to different register type they are associated with as seen
in Table 1.1.

1.3 SystemVerilog UVM

The need for more advanced ways of testing a digital hardware ASIC’s has come
in place because of their complex designs. It has moved out of the traditional HDL
testbench to SystemVerilog testbench which provides additional tools and then to
a more accepted standard called System Verilog UVM [1].

1.3.1 Traditional Testbench

In the traditional testbenches using VHDL/Verilog, the tests are implemented as
a group of procedures or a module containing these procedural blocks. There is
little or no active verification [2]. A block diagram is given in Figure 1.3.

The Stimulus generation is limited to the designers imagination. There is no
proof of which part of the DUT has been tested. Sometimes this has changed to
monitor some checking in the testbench but they are also very specific to the test
and are not reusable. There is no standard approach in designing these testbenches
[3].

6 Background

Figure 1.3: Traditional testbench Architecture

1.3.2 System Verilog Testbench

In moving to System Verilog testbenches as shown in Fig 1.4, verification jobs
are arranged into tasks. Tasks with the help of functions help in breaking large
procedures into simpler steps that are easy to read, understand, debug, maintain
and reuse. System Verilog introduces Bus Functional Module(BFM) interfaces
which are like modules that contains all the I/O signals. These interfaces can
be enhanced with tasks and functions to modify the interface variable and DUT
ports. The main advantage of the BFM interfaces are that it helps encapsulating
bus protocols inside the interfaces and not the test. The generate_stimulus task
will randomize the input data and will give to the DUT via the BFM whereas the
monitor will catch the output from the DUT also through the BFM and then it
is transferred to the result_checker to compare with a reference model. All the
three tasks are run simultaneously [4].

Figure 1.4: System Verilog Testbench Architecture

Background 7

SystemVerilog also replaces process statements by join_none statements, where
any number of process can be spawned simultaneously without any impact on the
flow of main process. To have communication between these process, SV uses the
Mailboxes which are FIFO queuing mechanism between threads [5].

1.3.3 Universal Verification Methodology

It is a verification methodology that can verify from system level to RTL. UVM
was created by Accellera based on the OVM (Open Verification Methodology) ver-
sion 2.1.1. The roots of these methodology lie in the application of the languages
IEEE 1800TM SystemVerilog, IEEE 1666TM SystemC, and IEEE 1647TM e [6].
It provides an environment that makes use of the advanced verification techniques
such as functional coverage, constrained random stimulus generation, assertions
etc. It also provides classes for observing information about the DUT activity,
reuse stimulus generation and mirroring registers in hardware. The main directive
of the UVM is to reduce the time to built a verification environment. It must be
able to reuse all the work as much as possible.

Figure 1.5: UVM System Verilog Testbench Architecture

A UVM standard testbench will encapsulate verification components called
Universal Verification Components (UVC’s) which are defined in a class based
approach (Object Oriented Programming). Classes helps to encapsulate both the
data and its behaviour in one component. The architecture of a UVM SystemVer-
ilog testbench is given in Figure 1.5. The UVM test is the top UVC and it performs
mainly three functions: instantiates the environment UVC, configures it via over-
rides and invokes the UVM sequences through the sequence handler. The env
UVC groups together other interrelated components targeting the DUT such as
Agents, Checker, Coverage etc. The UVM Agent UVC will target a specific DUT
interface and group together related components such as Sequencer to control the

8 Background

stimulus flow, Driver to apply stimulus to the DUT and Monitor to monitor the
DUT interface. The Checker component is responsible for comparing with a ref-
erence model and the Coverage is responsible for ensuring the functional coverage
is achieved based on the human generated metrics derived from the test plan.

1.4 Previous Work on SystemC

Currently, SystemC is used to describe digital systems at different levels of abstrac-
tion, starting from functional or algorithmic description to synthesizable RTL. Due
to the general capabilities of the C++ language, it can be used for system-level
modeling, architectural exploration, performance modeling, software development,
functional verification, and also high-level synthesis.

Several academic works have done case studies on using SystemC for System
on Chip (SoC) modelling and verification. For instance, Fernando A. Escobar et
al. present results of using a SytemC/TLM2.0 to closely represent or model a
hardware behaviour and also for faster evaluation of multiple test scenarios. It is
seen how the whole router functionality is explained as SystemC methods and how
it invokes other processes. The authors claim improvement in simulation perfor-
mance by using SystemC TLM model compared to HDL ones but concludes the
lack of detailed information [8]. Another interesting work from Ali Sayinta and et
al. shows how a SystemC testbench can be used for SystemC model validation,
implementation and prototype tests of an OFDM based Wireless LAN SoC. This
is referred to as "Vertical Testbech Reuse". It also shows that a valid SystemC
model can be used as a golden reference for later stages of the hardware design. A
foreign language RTL description cannot interface with SystemC model directly
for the co-simulation purpose without having interface wrappers. The wrappers
are responsible for two tasks: First, it refines the abstract data types of SystemC
to more basic ones. Second, it implements missing communications, protocols etc.
which are abstracted at the system level. The authors describe the shortcoming
of the tools to provide support for interfacing the different abstraction levels [9].

Additional work by Jeongwood Park and et al. shows that SystemC TLM can
be co-simulated with an RTL HDL to a surveillance camera system in order to
reduce the effort to develop and simulate the whole design in RTL HDL. SystemC
TLM provides a higher abstraction therefore components of the system can be im-
plemented by using it. For verifying the co-simulation, the SystemC components
are operated at PC and the RTL blocks are downloaded to FPGA to support
emulation. The authors conclude that no additional time was needed to change
the architecture for co-simulation to the FPGA platform [10]. Whereas in a pa-
per by Stuart Swan from Cadence Desing Systems, Inc. describes how SystemC
transaction level models are being reused for RTL verification. There are two keys
enabling SystemC TLM models to be leveraged for RTL HDL verification: First,
the simulator tool should support co-simulation and co-debug of mixed SystemC
and HDL models. Second, proper transactors should be developed to interface
with the SystemC TLM model which is dependent on the level of abstraction of

Background 9

the TLM testbench [14].

A close work related to this thesis topic was done by George Kalo for the ISS
Group, Stockholm. The work describes on how to write a testbench in SystemC
to verify an existing VHDL design. It is quite interesting to see that the interface
between SystemC and VHDL is tool vendor specific. The author used a stub mod-
ule, a foreign module declaration using the scgenmod command in Modelsim. The
testbench is not created under any verified methodology such as UVM which could
help verifying with large and complex systems. Furthermore, the author does not
compare the simulation performance of the SystemC testbench with the VHDL
testbench which is also mentioned in the future works [11]. Another close work
by Myoung-Keun You and et al. on using SystemC for functional Verification of
RTL can be seen where the infrastructure of the non UVM verification system uses
intermediate user-defined channels as communications interface between SystemC
and RTL HDL. It is implemented using the Verilog Procedural Interface which
cannot work with Verilog source code but only with simulation data structure.
But the author does not discuss the results on the simulation performance of the
the testbench in this work [12].

Frank Poppen and et al. have worked in connecting an industry’s verification
methodology to standard concepts of UVM. They had a Integrated Functional
Verification Script Environment (IFS) verification methodology implemented in
SystemC. They have instantiated UVM components in their SystemC test envi-
ronment to verify design specified in VHDL, Verilog or any other language. Since
Multi - Language UVM approach is vendor tool specific, they have tried with
Mentor Graphics Questasim and Cadence Incisive and claim that their work is
not dependent on proprietary technology but applicable to any SystemC based
environment [13].

10 Background

Chapter 2
Objectives, Challenges and Methodology

In this chapter the main objectives of this thesis work will be presented. And
once the objectives are described, the challenges they present and the proposed
methodology for dealing them are explained under the same section.

2.1 Main Objectives of this Work

The objectives are divided into 3 main tasks: Implementation of the UVM Sys-
temC testbench, finding possible interfaces between UVM SystemC testbench and
the Verilog RTL and finally evaluating the simulation performance between UVM
testbenches in System Verilog and SystemC.

2.1.1 UVM SystemC Testbench

This task is to develop an UVM SystemC testbench based on the Accellera stan-
dard in βeta version. The motivation is to study if a unified verification method-
ology completely based on SystemC/C++ is possible or not. By developing a
UVM SystemC testbench, we are enabling the possibility to create more advanced
system-level testbenches and developing reusable verification components for both
system-level and block-level verification.

Challenge: The existing System Verilog testbench is an optimized version
with best known simulation performance. The optimizations are implemented by
executing concurrent parallel processes (Forked process) in the transactors such as
drivers and monitors of the testbench. As these processes determine the simula-
tion time of the testbench, implementing them in SystemC and making sure their
functionality are not compromised is a huge challenge.

Methodology: Multithreading is an important feature that helps in opti-
mizing the simulation performance of the testbench during run time. Therefore
understanding their functionality and implementation of these features in UVM
SystemC are crucial in terms of simulation performance. Most of these are used
in the run phase of the instantiated UVM components.

11

12 Objectives, Challenges and Methodology

In the UVM SystemVerilog testbench, Multithreading is implemented through
3 different types of forked process as shown in Figure 2.1

Figure 2.1: Different implementation of the forked process

In the fork-Join-all feature, the parent process(mostly the run phase) executing
the fork statement is blocked until the processes spawned by the fork are termi-
nated. Whereas, in the Fork-Join-any feature, the parent process does not start its
execution until one of the processes it spawned has terminated. In Fork-Join-none,
the parent process continues to execute concurrently with the spawned processes
but they do not start executing until the parent process comes across a blocking
statement. Apart from Fork Join all, there are no pre-defined macros to use the
other two features. Therefore, it will be challenging to implement Fork-join-none
and Fork-join-any in SystemC to give the same functionality as in Verilog.

The architecture of the UVM SystemC testbench that needs to be developed
is given in Figure 2.2. The top level i.e sc_main has the test(s) and the DUT.
There are no virtual interface in SystemC as compared to SystemVerilog, hence
the interconnection among the UVCs in the top module should be stored in the
configuration database from where it can be used by the UVC. The UVM configu-
ration database is a convenience interface used for configuring UVM_component
instances. In this testbench there are 5 UVCs and hence there should be corre-
sponding number of agents and subscribers in the scoreboard to record all the
signals for verifying with the golden C++ reference model. Subscribers helps to
design analysis modules in determining the coverage of the tests.

Objectives, Challenges and Methodology 13

Figure 2.2: SystemC UVM testbench architecture

Implementation of constrained randomization, assertions and functional cov-
erage as in UVM SystemVerilog are not needed as they are available only in later
release of the official version of the UVM SystemC library.

Also it is important to know that all the components of the UVM testbench are
kept at the Transaction Level Modelling (TLM) abstraction layer as seen in Figure
2.3, whereas the driver and monitor also known as transactors are dragged down
to signal-oriented register transfer level of abstraction in order to connect to the
DUT in cycle accurate level. TLM is a high level description of a hardware model
where the emphasis is on the functionality of the data transfer among modules
(type of data) and less on the their actual implementation. TLM can be described
in System Verilog as well as SystemC. Whereas cycle accurate models like RTL
have more finer details of the implementation of the modules.

2.1.2 Testbench - RTL Interface

Since the testbench is in UVM SystemC and the DUT is in System Verilog, there
is a need for Multi Language (ML) interface between them as seen in Figure 2.2.
The ML interface should have two main features:

14 Objectives, Challenges and Methodology

• The interface should be able to use relative names to identify the ports in
both the language frameworks.

• They also must be able to synchronize the UVM phases for both the frame-
works.

UVM phases are synchronizing mechanism for the UVM environment. The
major functional steps when a simulation is run through are:

• Build phases: Steps where the testbench is constructed, connected and con-
figured.

• Run phases: Stimulus generation, time consuming processes and optimiza-
tions on them occur here.

• Clean up phases: Here the test results are collected and reported.

Challenge: Explore all the interfaces that satisfies the ML features and se-
lect the optimal one based on the implementation simplicity and better simulation
performance.

Figure 2.3: Multi-Language Interface

2.1.3 Evaluation of the Simulation Performance

The objective in evaluating simulation performance is based on using UVM Sys-
temC instead of UVM SystemVerilog. SystemVerilog describes hardware models in
a cycle-accurate abstraction level and therefore all the modules are active and sen-
sitive to an event trigger whereas in SystemC, hardware models can be described
in various timed accurate models as seen in figure 2.4 [15]

Objectives, Challenges and Methodology 15

Figure 2.4: Relative hardware modelling simulation performance
with timing Accuracy

Challenge: SystemC allows describing hardware from Algorithm to RTL
models. As we move towards the RTL description, the timing accuracy increases
compromising on the simulation performance. This flexibility in SystemC to be
more time independent in TLM abstraction layer favors to conduct a simulation
performance comparison between the UVM SystemC and UVM SystemVerilog
testbenches. Also finding a hybrid solution that balances accuracy and perfor-
mance is a challenge here.

Methodology: Hybrid Solution

Figure 2.5: Multi Language TLM ports

The transactors communicate with other UVCs through TLM ports both in
UVM SystemVerilog and UVM SystemC. Through the multi-language TLM ports
available in the UVM-ML Open Architecture (OA) library of Cadence simulator,

16 Objectives, Challenges and Methodology

TLM transactions can communicate across languages as shown in Fig 2.5.

Figure 2.6: Architecture of the Hybrid solution

The requirements for enabling TLM communication in a multi-language envi-
ronment are as follows:

• It has to be ensured that the data types, type mapping - translates data type
between languages and serialization - transfer of classes between language
should be matched for both the languages.

• Register TLM ports or sockets for communication. The ports are registers to
its respective language framework adapter. As a result of this registration,
the adapters create an internal channel for passing the transactions among
multiple language frameworks.

• Binding the TLM ports to the framework, which can be done in any one
language framework or even another framework whose ports are not regis-
tered.

Objectives, Challenges and Methodology 17

There are a few limitations to use the UVM ML TLM communications such
as : Disabling or killing of blocking the multi-language threads are not supported.
The interface class type arguments are passed by copy and therefore the changes
made to argument valued are not immediately visible across language boundaries.
They are only updated at the end of the interface call.

The proposed architecture ensures the simulator optimization for SystemVer-
ilog transactors are obtained whereas the UVM SystemC top module enables the
reuse of the test bench for RTL as well as block level verification.

18 Objectives, Challenges and Methodology

Chapter 3
Implementation and Results

In this chapter the details of implementing the UVM SystemC testbench are ex-
plained. The main differences while implementing UVM in SystemC from System
Verilog are highlighted in the first section. In the second section, the details of ex-
ploring three different Multi-Language interfaces between the testbench and RTL
are described. Also, the analysis of the simulation performance between the viable
interfaces is discussed in the same section. In the final section of the chapter, the
simulation performance of multiple Testbench - RTL configurations are discussed.

3.1 Key Differences in UVM SystemC from UVM System Ver-
ilog

The top differences in UVM SystemC are mainly with forward declaration of UVM
objects, dynamic array size allocation, segmentation fault debugger, SystemC wire
separators and forked process implementation.

3.1.1 Forward Declaration

In the UVM System Verilog testbench, forward declaration of UVM objects are
used in order to implement the concept of re-usability of UVM components. For-
ward declaration means to declare an object before its complete definition has
been given. In Verilog, the construct typedef is used to forward reference a class
declaration. This will indicate the compiler not to be concerned with the position
of the class definition.

In SystemC, there is also the option to forward declare a object by using same
constructs as that of C++. But when these objects before they are defined are
used as members of intermediate classes, they have to be declared as pointers and
should never be initialized as they are forward declared. This is not an issue in
System Verilog as they are taken care during elaboration of the hierarchy.

3.1.2 Dynamic Array Size Allocation

In System Verilog, when an array of UVM objects are declared dynamically as
a member of UVM class, they can be defined with construct class_name ar-

19

20 Implementation and Results

ray_name[]. This is different in SystemC as arrays should be declared dynamically
as pointers class_name *array_name. The pointers to the arrays are initialized
by using new where the memory in heap is allocated or malloc where the memory
in free-store is allocated. Inappropriate initialization will lead to segmentation
fault. All the memory should be released with free or delete[] before the next
allocation to avoid wastage of dynamic memory.

3.1.3 Segmentation Fault Debugger

In UVM SystemC, it is more likely to fall into issues like segmentation fault than
System Verilog. It is mainly because ’one tries to access memory that does not
belong to the them’. In complex testbenches that follows UVM methodology, de-
bugging these issues and locating them manually will be tiresome and inefficient.
Hence, we need to use a tool or debugger for such issues.

Since the testbench is developed on top of the C++ kernel, using one of the
most popular debugger like GDB (GNU Debugger). The benefits of GDB are:

• The testbench can be started irrespective of the type of run time error
affecting its behaviour.

• The testbench can be stopped at specific conditions or breakpoints.

• Helps examine the stack trace, with appropriate memory address.

• Also helps isolating multiple errors and re-execute the testbench solving one
error at a time.

If the testbench development is done with built-in SystemC in Cadence EDA.
The GDB tool can be used to debug the errors by just enabling a switch in
Xcelium/Incisive.

3.1.4 SystemC Bit Reduction and Range Selection

In SystemC modules, bit reductions and range selection cannot be performed on
input/output ports or signals. Whereas, in System Verilog both the features are
possible.

Implementation and Results 21

Figure 3.1: Separator modules at Input, Output and signal channels

In order to perform range selection on SystemC ports or signals for the UVM
SystemC testbench, a generic separator module has been designed with the width
(W) of the channel as the generic parameter. This separator will separate the ports
and signal from bus format to individual lines. This separator is implemented as
input, output or signal separator as shown in the figure 3.1.

3.1.5 Forked Process Implementation

In order to understand the implementation of forked process in SystemC, it is
relevant to explain concepts such as SystemC spawn, SystemC bind, SystemC
event list and SystemC terminated event function.

SystemC Spawn

One important element of SystemC is concurrency and this is achieved through
processes similar to Verilog/VHDL. SystemC has two types of processes:

• SC_THREAD - a process that will start automatically at the start of
simulation run and suspend itself for the remaining of the simulation. They
are only run once.

• SC_METHOD - a process similar to SC_THREAD but this process can
be run multiple times and cannot have any wait() statements to be halted.

SC_THREAD and SC_METHOD are static processes, that means they are
created before the execution of the simulation. But for multi-threading, we need
to create processes dynamically and this is possible through a function called as
SC_SPAWN. Statement 3.1 gives an example, how sc_spawn with the help of an
additional function sc_bind helps to create a dynamic process. Function sc_bind()
helps to bind the input parameters to its respective function.

sc_spawn(sc_bind(&class :: function, this, (function_parameters))); (3.1)

22 Implementation and Results

SystemC Event List

An event list is used to catch multiple events during mulithreading of processes.
There are two different kind of SystemC event list : sc_event_or_list, this event
list is triggered only if one of the events the list catches is triggered and
sc_event_and_list, this event list is triggered only if all the events the list catches
are triggered. If other processes needs to be triggered based on these lists, they
can be used inside a wait() function.

SystemC Terminated_event() Function

The sc_spawn() function returns the process handle or the memory address of the
dynamic process it has created. In order to determine if the dynamic process has
finished executed, the sc_terminated_event function is used. The function is a
member of sc_process_handle class and returns an event if the respective process
is terminated. Similarly, if other processes are triggered based on this function
return, they can be used inside a wait() function.

Implementation

For the fork join all implementation, the processes are spawned with sc_spawn
function inside the SystemC SC_FORK/SC_JOIN macro. This macro blocks the
execution of parent process until the spawned processes are terminated. Whereas
for the fork join none implementation, the processes are simply spawned using
sc_spawn function without the macro. This will ensure the execution of parent
process is not blocked irrespective of the completion of the spawned child processes.
And for the fork join any implementation, the processes are spawned and their
process handles are stored in a vector list. The termination of these processes are
checked through the terminated_event() function. This will ensure that as soon
as one of the spawned process in the vectors list is terminated, the parent process
can continue execution.

3.2 Testbench to RTL Interface

In order to have a ML interface between the testbench in UVM SystemC and DUT
in RTL, 3 different interfaces have been explored. In this section, explanation on
the implementation of these interfaces and the performance comparison among the
most viable interfaces are given.

3.2.1 UVM Multi-Language(ML)

UVM ML is a open architecture binded with Cadence simulators, where it uniquely
integrates e, SystemVerilog, SystemC, C/C++ and other languages into a cohesive
verification hierarchy. Given its extensive features, the foreign module instantia-
tion API helps to have a ML interface in the simulator. In this API, a SystemC
module shell is created around the SystemVerilog RTL where the DUT is instan-
tiated as a foreign language(SystemC) child component.

Implementation and Results 23

Figure 3.2: UVM ML interface using the Cadence Legacy UVM
hierarchical components

In Figure 3.2, it can be seen how this method has been approached. The DUT
is wrapped with SystemC module shell and interfaced with the UVM ML API.
Cadence simulator has a built-in UVM SystemC which we will also be referred as
the Legacy version henceforth. The Legacy version has only basic UVM compo-
nent and factory classes compared to Accellera UVM SystemC. But, to adapt the
fully functional UVM SystemVerilog testbench, we need additional classes in the
hierarchical tree such as UVM object, UVM agent, UVM driver, UVM monitor
etc. which are available in βeta version from Accellera.

Inheritance is a feature of Object Oriented Programming (OOP) and since
UVM SystemC is build on C++, constructing a hierarchical structure where the
additional β UVM SystemC classes inherits from the UVM component in Legacy
UVM brings simplicity in the interface. This approach proved to be successful
until the integration of the βeta UVM SystemC configuration database to Legacy
UVM SystemC factory could not be done. This integration is an added feature to
the βeta UVM SystemC and hence causes to be a showstopper for this approach.

3.2.2 βeta over Legacy(βoL)

With the incapacitation of UVM ML method, the next simplest approach would
be to build the whole βeta UVM SystemC library from Accellera based on the
Cadence SystemC architecture.

24 Implementation and Results

The Legacy UVM SystemC is binded with the Cadence SystemC in the simu-
lator and unbinding them is not an option for the users. Therefore in this method,
a switch has been implemented between the βeta and Legacy UVM systemC so
that once switched to βeta UVM SystemC, there will be no more dependencies to
the UVM components of the Legacy UVM SystemC as seen in Fig 3.3.

Figure 3.3: βoL interface implemented with a switch

The βeta UVM SystemC comes with a build script targeted for the Accellera
SystemC. Cadence SystemC is different to OSCI SystemC as it is pre-implemented
to have a Master-Slave configuration. This is to enable the reuse of the SystemC
components in a UVM SystemVerilog testbench and hence SystemC in Cadence
acts as a slave to SystemVerilog. Failing to understand this architecture in the
initial stages has resulted in a bug where any SystemC wait statement (sc_wait)
in a run phase of a UVM component will terminate the whole simulation. Resolving
the run phase issue later has made this method a viable option for interfacing.

3.2.3 Standard Co- Emulation Modelling Interface (SCE-MI)

In order to explore all the known possible methods in interfacing the UVM Sys-
temC testbench to RTL, the SCE-MI is implemented with the Accellera UVM
SystemC. In this method, the testbench runs in a Cadence Xcelium simulator
whereas the RTL (DUT) runs in the Cadence Palladium XP Emulator.

Implementation and Results 25

Figure 3.4: SCE-MI interface between simulator and emulator

As seen in Fig 3.4, the SCE-MI pipes helps in streaming of transaction between
the testbench partition(UVM SystemC side) and hardware partion(HDL-verilog).
SCE-MI pipes are unidirectional, which means that the transactions flow only
in one direction. This ensures that the transactions are received by the receiver
through function calls in the same order as they are sent. There are two types of
SCE-MI pipes: Input pipes and output pipes, where the input pipes pass the
transactions from testbench to RTL and the output pipes transfer in the reverse
direction. These pipes can also be clocked where they are used for complex models
that requires multiple elements simultaneously.

Also in SystemC, C++ datatype assignments are sequential and blocking
therefore SystemC provides sc_signal datatype to imitate non-blocking signal as-
signment in VHDL/Verilog. sc_signal uses the evaluate update cycle to model
non-blocking assignments. To avoid race conditions in the SCE-MI interface be-
tween the testbench and DUT, non blocking assignments should be used to gen-
erate clocks in DUT and blocking assignments should be used to generate clocks
in testbench.

It is important to know that SCE-MI pipes have two different operation modes:
Deferred Visibility and Immediate visibility modes. In the deferred visibility
mode, there is a certain lag between elements written to the pipe by the producer
side and when they are visible or available for consumption by the consumer side.
Whereas, in immediate visibility mode, any element produced by the producer is
immediately consumed by the consumer. For cycle accurate HDL interface as it

26 Implementation and Results

is here, it is necessary to use the immediate visibility mode.

3.3 Simulation Time Comparison between SCE-MI and βoL
Interfaces

The viable solutions to interface the UVM SystemC testbench and the Verilog RTL
is through βoL and SCEMI. In Fig 3.5, the results of comparing the simulation
performance of the same testbench but different interfaces to the DUT are given.

Figure 3.5: Performance comparison between SCE-MI and βoL in-
terface

For the comparison, both the testbenches with different methods of interfacing
to the RTL are run with 10 to 104 UVM sequences. For the analysis, the built-
in profiler of Cadence simulators are used to measure the simulation time. The
profiler gives the following important details:

• Real time : This is the clock time from the start to the finish. This includes
the time slices taken by all the processes in the system and also the time
spent in blocking state waiting for the I/O to complete.

• User time : The amount of CPU time spent outside the kernel in the user
mode for executing the process. All other system processes and time spent
in blocking state is not calculated towards this.

• System time : Amount of CPU time spent inside the kernel for system
calls as opposed to library code which is calculated in user time.

Implementation and Results 27

In total run time includes the sum of User and System time from simulation
profiler.

It is seen that the βoL interface takes much lesser time to simulate than the
SCE-MI interface. This is because in the βoL interface, both the UVM SystemC
testbench and the RTL are run in the simulator whereas in SCE-MI, the RTL
is run in the emulator. The SCE-MI pipes appears to bring a lot of overhead
to the simulation run time. The difference in performance also increases with
increasing number of UVM sequences, therefore in regression mode of verification
βoL promises to be more faster than SCE-MI.

3.4 Performance Evaluation between Multiple Testbench -
RTL Configurations

In this section, the performance evaluation of multiple Testbench - RTL config-
urations based on SystemVerilog and SystemC are analyzed. The different cases
are shown in Fig 3.6

3.4.1 Configurations

Case A: UVM SystemC Testbench + SystemVerilog RTL

In this case, the testbench is developed based on Accellera UVM SystemC and
the RTL will be in SystemVerilog. The βOL interface between the testbench and
RTL is through the driver and monitor UVCs of the testbench also known as
transactors. The transactors are responsible to convert the stimulus and response
data from TLM to cycle accurate hardware abstraction level.

Case B: UVM System Verilog Testbench + SystemVerilog RTL

In this case, the existing testbench is developed in UVM SystemVerilog. Apart
from the golden reference model in C++, all the other UVCs are in SystemVerilog.
The UVCs communicate with each other through TLM ports and the TLM trans-
actions are translated by the transactors to cycle accurate data. There is no need
of a multi language interface in this case since the RTL is also in SystemVerilog.

Case C: UVM SystemC Testbench + SystemC RTL model

In this case, the same UVM SystemC testbench is used whereas SystemVerilog
RTL is replaced with its equivalent SystemC cycle accurate model. Also in this
case, there would be no requirement of a multi language interface because both
the testbench and RTL are in SystemC.

28 Implementation and Results

Figure 3.6: Multiple Testbench RTL configuration

All these configurations are chosen based on exploring the capability of two
different hardware modelling languages : SystemVerliog and SystemC to perform
roles in design as well as verification. Also, the different layers of design abstraction
(TLM to RTL) are seen in these configurations.

3.4.2 Performance Analysis

All the above configurations are simulated with the same environment and increas-
ing number of UVM sequences. In Fig 3.7, the analysis of the simulation time of all
configurations are given. The performance is profiled with UVM sequence ranging
from 10 to 104 and the total run time is the sum of user time and system time.

The results show that the Case B: UVM SystemVerilog testbench +
SystemVerilog RTL appears to run faster in simulation time compared to Case
A and Case C. Whereas, Case A and Case C have comparable simulation per-
formance. The reason in improved performance for Case B lies in the concept
of context switching. Context switching is a procedure that the CPU follows to
change from one process to another while ensuring that the processes does not
conflict.

Implementation and Results 29

Figure 3.7: Analysis of multiple Testbench RTL configurations

RTL or cycle accurate model has a lot of processes sensitive to a clock edge to
model flip-flops(registers). A non-optimized simulator will perform many context
switches among these processes to maintain cycle accuracy whereas optimized sim-
ulators will combine all of these processes into a single process to save simulation
time. It has been investigated that Cadence EDAs performs such optimizations
in SystemVerilog simulators due to its popularity in verification and design in-
dustries. But, unfortunately these tools do not perform such optimzations for
SystemC. This is verified in the simulation profiling report that the bottleneck
in any configuration that involves SystemC are the transactors, as they are the
verification components that bring the hardware modelling abstraction from TLM
to RTL.

Since the bottleneck in Case A and Case C Testbench RTL configuration is
determined to be the transactor components : driver and monitor, implementing
these UVCs in SystemVerilog whereas all the other components and top module
in UVM SystemC will be an optimum direction for simulation performance im-
provement. This concept is described as hybrid solution in Chapter 2 and Fig
2.6.

30 Implementation and Results

3.5 Scope of results

3.5.1 High Level Synthesis Verification

The High Level Synthesis (HLS) model allows to describe the functional intent
of the hardware at a more productive abstraction level. The Cadence platform
Stratus HLS allows to synthesize optimized hardware from these models. Since
these models use SystemC to be described, re-using the UVM SystemC testbench
can save verification time and effort. The UVM SystemC testbench will guarantee
same standard of verification for the HLS model compared to the RTL model.
Moreover, improvement in simulation performance can be predicted since majority
of the functional verification is focused on algorithmic or TLM level. There would
also be minimum RTL simulation and formal equivalence checking to verify the
RTL.

3.5.2 Hardware Prototyping Platforms (Validation)

The same UVM SystemC testbench can be used across verification/simulation
as well as validation/hardware prototype platforms. They require languages like
C++/C for running the tests on the prototypes and measurement equipment.
Since SystemC is build on top of C++ framework, compatibility is not an issue.
This testbench can also enable Hardware in the Loop (HiL) simulation and Rapid
Control Prototyping(RCP) strategies.

Chapter 4
Conclusion and Future Work

In this chapter, a summary of this thesis project will be provided, giving an
overview of the objectives and challenges defined in the beginning, major steps
taken for implementing theses goals and comments on the discussion of the results
obtained from implementation. In the final section, the future works that can be
derived from this thesis will also be presented.

4.1 Conclusions

This Master thesis project, titled Case study on Universal Verification Method-
ology (UVM) SystemC for RTL verification had three main objectives : One,
implement an UVM SystemC testbench inspired from the optimizations in exist-
ing UVM SystemVerilog testbench. Two, find possible interfaces between UVM
SystemC testbench and Verilog RTL. Third, evaluate the simulation performances
between UVM testbenches in SystemC and SystemVerilog.

The implementation of the UVM SystemC testbench has led to the devel-
opment of multithreading processes such as fork join none and fork join any in
SystemC. These processes are critical in determining the simulation performance
of the testbenches. Also, three different ways of interfacing the UVM SystemC
testbench and the Verilog RTL have been explored based on viability. The three
different interfaces are: UVM-ML, βOL and SCE-MI. The simulation performance
comparison between the most viable interfaces such as βOL and SCE-MI has led
to discovery of benefits in using βoL for better simulation time and less overhead.

In general, to understand performance gain between UVM SystemC and UVM
SystemVerilog, multiple Testbench - RTL configurations have been evaluated and
hence results obtained. The different configurations are : UVM SystemC test-
bench + Verilog RTL, UVM SystemVerilog testbench + RTL and UVM SystemC
testbench + SystemC RTL. The improved performance in UVM SystemVerilog
Testbench - RTL configuration is due to the optimizations by the simulator tool
in process context switching for cycle accurate processes. Though these optimiza-
tions are not present for UVM SystemC, implementing a Mutlti-Language TLM
port for the transactors in the UVM SystemC testbench will open the scope for
improvement.

31

32 Conclusion and Future Work

For the author, this project has been a huge aid in understanding the UVM
methodology used for verifying digital ASICs. Application of this methodology in
SystemC for RTL verification has demanded a deep understanding of the Cadence
Xcelium/Incisive simulators in terms of testbench -RTL interfaces and simulation
performance. Finally, the opportunity to develop this thesis with the ASIC veri-
fication team in Ericsson has given the author hands on experience to the latest
verification tools and libraries.

4.2 Future Work

The future work this Master thesis spawns are as given below:

• The most immediate analysis that can be done from this thesis is to study
the simulation performance from the UVM SystemC testbench implemented
with UVM-ML TLM ports in the transactors. This can be done once the
library dependency issues are solved by the Cadence EDA vendor.

• Another study that time did not permit in this work is to evaluate a testbench-
RTL configuration where the testbench would be in UVM SystemC whereas
the DUT will be a SystemC TLM model. This would help in determining
SystemC RTL to SystemC TLM simulation gain.

• Constrained randomization in UVM helps to explore the design state space
and combinations in the DUT to the maximum. This feature is not part of
the β version of Accellera UVM SystemC but will be included in the future
release version. Randomization will help in bringing UVM SystemC closer
to the existing UVM SystemVerilog verison.

• Also, coverage and assertions are other features that are not part of the
βeta version but once included in the official release will also enhance the
features of UVM SystemC for RTL verification.

References

[1] N. Khan and Y. Kasha, From Spec to Verification closure: A case study of
applying UVM-MS for first pass success to complex MS-SoC design, Design
and Verification Conference (DVCon), 2012.

[2] J. Bergeron, Writing testbenches: functional verification of HDL models, in ,
Springer Science & Business Media, 2012.

[3] C. Pixley, A. Chittor, F. Meyer, S. McMaster, D. Benua Functional verifica-
tion 2003: Technology tools and methodology.

[4] Willamette HDL, A. Chittor, MentorGraphics Introduction to SystemVerilog
and to the Universal Verification Methodology for designers, Version 1.1, 2014.

[5] IEEE, 1800-2009,IEEE Standard for SystemVerilog-Unified Hardware Design,
Specification, and Verification, 2009.

[6] UVM 1.2 User Guide standardized by Accelera.

[7] Fernando Escobar, Mauricio Guerrero Hurtado, Lorena Garcıa Posada, Anto-
nio Garcıa Rozo, et al. Performance evaluation of a network on a chip router
using systemc and tlm 2.0. In Circuits and Systems (LASCAS), 2011 IEEE
Second Latin American Symposium on, pages 1–4. IEEE, 2011.

[8] Fernando Escobar, Mauricio Guerrero Hurtado, Lorena Garcıa Posada, Anto-
nio Garcıa Rozo, et al. Performance evaluation of a network on a chip router
using systemc and tlm 2.0. In Circuits and Systems (LASCAS), 2011 IEEE
Second Latin American Symposium on, pages 1–4. IEEE, 2011.

[9] A.Sayinta, G.Canverdi, M.Pauwels, A.Alshawa, W.Dehaene, A mixed abstrac-
ton level co-simulation case study using SystemC for system on chip verifi-
cation Design, Automation and Test in Europe Conference and Exhibition,
2003, pp 95-100.

[10] J. Park, B. Lee, K. Lim, J. Kim, S. Kim, K.H. Baek Co-simulation of SystemC
TLM with RTL HDL for surveillance camera system verification, IEEE Int’l
Conf. Electronics, Circuits and Systems, pp.474-477, August 2008

[11] George Kalo, 2006 Functional Verification with SystemC (Master Thesis) ,
KTH Syd, Campus Telge, Stockholm .

33

34 References

[12] M.K. You, Y. Oh, G. Song, Implementation of a Hardware Functional Veri-
fication System Using SystemC Infrastructure, Proc. of TENCON 2009.

[13] F. Poppen, M.Trunzer, J.H.Oetjens Connecting a Company’s Verification
Methodology to Standard Concepts of UVM.

[14] S. Swan, SystemC transaction level models and RTL verification, in Proceed-
ings of Design Automation Conference, 2006, pp. 90–92.

[15] Charles Wilson, System Modelling and SystemC, Xtreme EDA.

Case Study on Universal Verification
Methodology(UVM) SystemC Testbench for RTL

Verification

KEVIN SKARIA CHACKO
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2019

K
EV

IN
 SK

A
R

IA
 C

H
A

C
K

O
C

ase Study on U
niversal Verification M

ethodology(U
V

M
) System

C
 Testbench for R

T
L Verification

LU
N

D
 2019

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2019-696
http://www.eit.lth.se

