
Implementation of a Deep Learning Inference
Accelerator on the FPGA

SHENBAGARAMAN RAMAKRISHNAN
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2020

SH
EN

B
A

G
A

R
A

M
A

N
 R

A
M

A
K

R
ISH

N
A

N
Im

plem
entation of a D

eep Learning Inference A
ccelerator on the FP

G
A

LU
N

D
 2020

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2020-751
http://www.eit.lth.se

Implementation of a Deep Learning Inference
Accelerator on the FPGA

Shenbagaraman Ramakrishnan
sh2053ra-s@student.lu.se

Department of Electrical and Information Technology
Lund University

Supervisor: Liang Liu and Sven Karlsson

Examiner: Erik Larsson

March 23, 2020

c© 2020
Printed in Sweden
Tryckeriet i E-huset, Lund

Abstract

Today, Artificial Intelligence is one of the most important technologies, ubiqui-
tous in our daily lives. Deep Neural Networks (DNN’s) have come up as state of
art for various machine intelligence applications such as object detection, image
classification, face recognition and performs myriad of activities with exceptional
prediction accuracy. AI in this contemporary world is moving towards embedded
platforms for inference on the edge. This is essential to avoid latency, enhance data
security and realize real-time performance. However, these DNN algorithms are
computational and memory intensive. Consequently, exploiting immense energy,
compute resources and memory-bandwidth making it difficult to be deployed in
embedded devices. To solve this problem and realize an on-device AI acceleration,
dedicated energy-efficient hardware accelerators are paramount.

This thesis involves the implementation of such a dedicated deep learning
accelerator on the FPGA. The NVIDIA’s Deep Learning Accelerator (NVDLA),
is encompassed in this research to explore SoC designs for integrated inference
acceleration. NVDLA, an open-source architecture, standardizes deep learning
inference acceleration on hardware. It optimizes inference acceleration all across
the full stack from application through hardware to achieve energy efficiency syn-
ergy with the demanding throughput requirements. Therefore, the following thesis
probes into the NVDLA framework to perceive the consistent workflow across the
whole hardware-software programming hierarchies. Besides, the hardware design
parameters, optimization features and system configurations of the NVDLA sys-
tems are analyzed for efficient implementations. Also, a comparative study of the
diverse NVDLA SoC implementations (nv_small and nv_medium) with respect
to performance metrics such as power, area, and throughput are discussed.

Our approach engages prototyping of Nvidia’s Deep Learning Accelerator
on a Zynq Ultrascale+ ZCU104 FPGA to examine its system functionality. The
Hardware design of the system is carried out using Xilinx’s Vivado Design Suite
2018.3 in Verilog. While the on-device software runs Linux kernel 4.14 on Zynq
MPSoC. Thus, the software ecosystem is built with PetaLinux tools from Xilinx.
The entire system architecture is validated using the pre-built regression tests that
verify individual CNN layers. Besides these NVDLA hardware design also runs
pre-compiled AlexNet as a benchmark for performance evaluation and comparison.

i

ii

Popular Science Summary

Today, Artificial Intelligence is at the edge. This edge or endpoint device is becom-
ing more sophisticated with the evolution of Internet of Things (IoT) and 5G. For
instance, these devices are employed in different applications such as autonomous
cars, drones, and other IoT gadgets. At present, a self-driving car is a data center
on wheels, a drone is a data center on wings as well as robots are data centers
with arms and legs. All these mechanisms collect vast real-world information that
demands to be processed in real-time. Here in these applications, there is no time
to send data to the cloud for processing and wait for action. As the decision mak-
ing needs to be instantaneous. There is a shift in transforming the processing to
the edge devices.

The edge acceleration brings computation and data storage closer to the
device. With the evolution of specialized hardware’s providing increased compu-
tational capabilities, the AI models are processed on the edge. As a result, the
overall system latency gets reduced, the bandwidth costs for data transfers are
lowered and the data processing is done locally enhances privacy concerns. For
example, autonomous cars require a spontaneous reaction (in seconds) to avoid
potential hazards on the road. Consider the situation where a self-driving car
is collecting real word information like images, videos, in this case, assume it’s
sensing for a stop sign. If the system sends the specific image information to the
cloud for processing and waits for a decision to stop. By that response time, the
autonomous vehicle could have already blown through the stop sign running over
several people. Therefore, it is paramount to process the data in real-time which
could be accomplished using dedicated hardware for processing locally.

This thesis primarily explores those hardware architectures for efficient pro-
cessing of AI algorithms and their corresponding software execution environment
setup. The particular thesis was carried out as a joint collaboration between
Ericsson and Lund University. Here Nvidia’s Deep Learning Accelerator architec-
ture is engaged as a target to comprehend the complete system incorporating a
hardware-software co-design. The particular architecture is an essential charac-
teristic of NVIDIA’s Xavier Drive chip which is utilized in their autonomous drive
platforms.

iii

This thesis is addressed to a variety of audiences who are passionate about
Deep Learning, Computer Architecture, and System-on-Chip Design. The thesis
illustrates a comprehensive implementation of an AI accelerator to envision AI
processing on the edge.

iv

Acknowledgement

Foremost, I would like to take this opportunity to thank my family for supporting
me to pursue my dreams. Their unconditional love and encouragement paved the
way for my graduate studies in Sweden. Next, I would thank all my professors,
supervisors, classmates and colleagues at Lund University as well as at Ericsson,
Lund for assisting me with everything during the course of two years.

Besides, I would like to express my sincere gratitude to the following people
who have helped me undertake the particular research. My university supervisor
Mr. Liang Liu for his enthusiasm on this project, for his support, encouragement,
and patience; Mr. Sven Karlsson, my supervisor at Ericsson for his valuable in-
puts throughout the master thesis; To all the lab supervisors and Ph.D. students
at Lund University for their assistance during the challenging times of the thesis.
And the Ericsson Research team, Lund for providing adept suggestions.

Shenbagaraman Ramakrishnan
Stockholm, March 2020

v

vi

Acronyms

AI Artificial Intelligence.

DL Deep Learning.

ML Machine Learning.

DNNs Deep Neural Networks.

CNNs Convolutional Neural Networks.

MLP Multi Layer Perceptron.

ReLU Rectified Linear Unit.

PReLU Parametric Rectified Linear Unit.

FC Fully Connected.

LRN Local Response Normalization.

BN Batch Normalization.

NVDLA NVIDIA Deep Learning Accelerator.

FPGA Field Programmable Gate Arrays.

PS Processing System.

PL Programmable Logic.

ASIC Application Specific Integrated Circuit.

SoC System On Chip.

vii

CPU Central Processing Unit.

GPU Graphical Processing Unit.

MAC Multiply and Accumulate.

RTL Register Transfer Level.

VMOD Verilog Model.

AMBA Advanced Micro-controller Bus Architecture.

AXI Advanced eXtensible Interface.

APB Advanced Peripheral Bus.

HP High Performance.

SDK Software Development Kit.

FFT Fast Fourier Transforms.

DRAM/SRAM Dynamic/Static Random Access Memory.

IoT Internet of Things.

BSP Board Support Package.

ioctl Input Output Control.

API Advanced Peripheral Interface.

ONNC Open Neural Network Compiler.

SD Secure Digital.

DFT Design For Test.

IRQ Interrupt Request.

viii

Table of Contents

1 Introduction 1
1.1 Context . 1
1.2 Project Goals and Challenges . 4
1.3 NVDLA Design Flow . 5
1.4 Implementation Methodology . 6

2 Theoretical Background 7
2.1 Convolutional Neural Networks . 7
2.2 Design Methodologies for Efficient Inference 15
2.3 NVDLA Architecture Design and Specification 18

3 NVDLA SoC Design Implementation 25
3.1 Environment Setup . 25
3.2 NVDLA SoC design in Vivado . 27

4 Configuring the Software Environment 35
4.1 Compilation Build . 35
4.2 Run-time Execution . 36
4.3 PetaLinux Flow . 37

5 Results Analysis 41
5.1 Hardware Performance Parameters 41
5.2 Accelerator Performance comparisons 46
5.3 System Verification . 48

6 Conclusion and Future Works 51

References 53

A NVDLA Specification Files 57

B PetaLinux Design Flow 61

C Miscellaneous 63

ix

C.1 The Multi Layer Perceptron model 63
C.2 AlexNet Architecture . 64

x

List of Figures

1.1 AI Hardware Target Domains . 3
1.2 NVDLA Design Flow . 5

2.1 Convolutional Neural Network . 7
2.2 2D Direct Convolution . 8
2.3 Relu and PRelu Activation . 9
2.4 Sigmoid Activation . 10
2.5 Hyperbolic-Tangent Activation . 11
2.6 Max Pooling . 11
2.7 Fully Connected Layer . 12
2.8 Local Response Normalization . 13
2.9 Pruning Neural Networks . 15
2.10 Quantization Technique . 16
2.11 Winograd Algorithm . 17
2.12 Batched Convolution . 17
2.13 NVDLA Hardware Primitives . 19
2.14 External Interfaces . 20
2.15 Parameters Configuration . 22

3.1 Tree Build Setup . 25
3.2 VMOD Partition . 27
3.3 NVDLA Core Packaged IP . 29
3.4 APB to CSB Bridge Packaged IP 30
3.5 Packaged NVDLA Wrapper IP . 30
3.6 NVDLA Hardware Architecture . 31
3.7 Block Diagram of Zynq Ultrascale+ MPSoC 32
3.8 Address Segmentation of peripherals attached to processor 32
3.9 NVDLA System Architecture . 34

4.1 NVDLA Software Stack . 35
4.2 Linux Execution Environment Framework 37
4.3 PetaLinux Flow . 38
4.4 Device Tree . 40

xi

5.1 NVDLA Power Consumption graph 43
5.2 NV Small Utilization graph . 45
5.3 NV medium utilization graph . 46
5.4 Performance Comparison of DNN Hardwares 47
5.5 Sanity Tests Execution on FPGA . 48
5.6 AlexNet Execution on FPGA . 49

A.1 NVDLA Small Specification file. 57
A.2 NVDLA medium Specification file. 58
A.3 NVDLA large Specification file. 59

B.1 General design flow in PetaLinux.source (From PetaLinux reference
guide). 61

C.1 A Multi Layer Perceptron model with two hidden layers. 63
C.2 AlexNet Architecture. 64
C.3 AlexNet Layer-wise Analysis. 64

xii

List of Tables

3.1 Verilog Macros . 28

5.1 Post Implementation timing summary. 42
5.2 Post Implementation power consumption. 43
5.3 Post Synthesis Utilization results for NV Small. 44
5.4 Post Implementation utilization results for NV Small. 44
5.5 Post Synthesis utilization results for NV Medium. 45
5.6 Post Implementation utilization results for NV Medium. 46

xiii

xiv

Chapter 1
Introduction

In this introductory section, the context of hardware acceleration of deep learning
will be conferred together with the previous state of the arts in this field. This
is followed by the general deep learning acceleration design flow along with the
research questions and challenges of this project. Furthermore, a methodology to
accomplish the objectives are outlined.

Artificial Intelligence is the science of contriving machines to make intelligent
decisions, processing several computational learning algorithms. They are broadly
classified into Machine Learning and Deep Learning. Machine Learning is the
ability to learn from data. While Deep learning is a specialized technique that
implements machine learning tasks through artificial neural networks, inspired by
the human brain. The advent of Deep Learning started from the influential paper
of Geoffrey Hinton in 2012 [1] , where these deep neural networks performed image
classification exceptionally than the traditional computer vision, machine learn-
ing, and feature engineering algorithms. At the moment, Artificial Intelligence
is empowering endless capabilities for the present as well as the future. Specifi-
cally, with the deep neural network architectures establishing the foundation for
its modern applications in image, face and speech recognition’s. Apparently, AI is
advancing as the driving force in our socio-economic progress at the prominence of
technological revolution and industrial transformation. This thesis primarily scru-
tinizes deep learning in the context of AI and its respective inference acceleration.

1.1 Context

At present, Deep learning is transforming our everyday experience by initiating
smart capabilities to industrial and consumer products. Deep Neural Networks
revolutionize in the field of computer vision [1] [2] [3], natural language processing
[4] [5], autonomous vehicles [6], etc. These DNN’s achieve near state of the art
accuracy on many AI applications as mentioned above. This exceptional perfor-
mance is due to its inherent ability of feature extraction on their own from raw
data. However, this super-human accuracy comes at the expense of demanding
computational complexities. Besides, these deep algorithms consume greater en-
ergy consumption taking into account their large memory footprints. As a result,

1

2 Introduction

the design of an efficient deep learning accelerator evolved as a demanding subject
of interest for research.

A general AI flow involves two phases training and inference. During training,
the deep learning algorithms acquire intelligence from the existing data and use
cases. The primary objective here is to minimize the error function of parameters
(weights) for a given neural network. This phase exploits enormous resources and
time. Also, the process demands high throughput, therefore they are processed
on cloud clusters or GPUs. Whilst during Inference, the developed intelligence
from training is applied to test on new sets of scenarios, to validate the general
system performance. This inference acceleration is carried out on dedicated com-
pute devices as they are latency and resource critical. Thus, the computational
approaches differ significantly for both the training and inference process.

There are lots of research in academia and industry focused on designing
hardware systems for training and inference operations. It is challenging to de-
sign a hardware system specific to certain AI applications. Since the field of AI is
constantly advancing with the development of novel algorithms, architectures, and
applications. Besides, the costs involved in designing custom AI hardware is also
immense. Therefore the AI hardware systems typically are domain-specific rather
than application-specific. Hence can possess more degree of freedom in their target
architectures to comply with different application requirements.

The AI hardware domain is classified based on their application such as train-
ing or inference. As well as, categorized based on deployments either on the cloud
or edge as shown in the figure 1.1. The inference is essentially targeted for the
edge/embedded platforms. While the training on the edge is still an active area
of research where the computational requirements are not yet characterized dis-
tinctively. The training is usually accomplished on the cloud. Sometimes high-
performance edge devices can also be exploited in training as cloud devices. This
thesis primarily delves into hardware accelerators focusing inference on the edge
devices.

Introduction 3

Figure 1.1: AI Hardware Target Domains

1.1.1 Deep Neural Networks Processing in Hardware.

A deep learning accelerator generally refers to a physical chip that speeds up
computations. These accelerators primarily target convolution and fully connected
layers for acceleration as they are computationally intensive. The particular layers
primarily involve multiplications and accumulation (MAC) operations which can
easily be executed in parallel. Thus, the initial hardware inference accelerators
exploited the inherent spatial parallelism in DNNs and performed parallel pro-
cessing over an array of processing elements (PEs) [7] [8] [9]. These accelerators
employed data-flow architectures that efficiently mapped convolution operations
in hardware as well as specialized on highly parallel computational paradigm. As
a result the custom accelerators accomplished more efficiency than the traditional
CPUs and GPUs.

But the most important bottleneck in the specific implementations included
memory access and data transfers [10, 13]. The previous accelerator designs in-
ferred that the data transfers utilized immense energy costs than the actual compu-
tations. Accordingly, the next evolution of inference accelerators focused on energy
efficient designs which maximized data reuse and reduced memory overheads. The
MIT Eyeriss [11] exploited a row stationary (RS) data-flow [12] architecture that
efficiently reused input feature maps and filter weights. Accelerators such as Dian-
Nao [14] and its variant designs [15, 16] reduced memory references by introducing
on-chip buffers to store all the weights and avoid DRAM access. Besides, novel
architectures started to employ deep compression techniques such as low precision
and quantization to curtail memory traffic at the cost of reduced accuracy [17, 18].
These compression techniques exploit the neural networks inherent error resilience
ability. In the current accelerator trends, the optimizations were accomplished not
only on the hardware level but also on the algorithm level of deep neural networks
[19]. As a result, the particular approaches achieved enhanced performance and
energy efficiency.

4 Introduction

NVIDIA’s Deep Learning Accelerator (NVDLA) is a standardized inference
accelerator implemented based on the current accelerator design trends espe-
cially sparse compression techniques [20]. The particular accelerator addresses the
computing demands of inference along with a flexible and energy efficient hard-
ware implementation. The specific acceleration solution equips a simplified, re-
configurable design which supports different performance requirements. Besides,
the NVDLA is an open source and free architecture that promotes a standard
method of designing inference accelerators on the edge.

1.2 Project Goals and Challenges

The primary objective of this thesis is to implement the NVDLA architecture as
an SoC design and prototype on an FPGA platform to run on-device inference.
This is accomplished to comprehend the consistent workflow of NVIDIA’s deep
learning accelerator standards. The NVDLA architecture supports a complete
deep learning inference framework succeeding in a hardware-software co-design.
Thus, providing an opportunity to examine the complete system integration from
neural networks compilation to its deployment in edge devices. This thesis il-
lustrates the entire NVDLA project development constituting environment setup,
RTL design, SoC implementation, and software execution environment.

In this research, the hardware acceleration is focused essentially on FPGA/ASIC
platforms for edge IoT applications. Recent trends in this domain incorporate
special-purpose hardware for inference acceleration on the edge. The particular
inference accelerator demands high versatility, prediction accuracy and compels
near real-time solution. This poses a great challenge when the implementations
accomplished on precise SoC architectures are resource-constrained in terms of
power, memory and computational capabilities.

To engage the computational challenges of the neural networks with the re-
source constraints in implementations different design methodologies are leveraged.
It comprises an array of micro-engines with highly coupled local memories that
minimizes data movements, improves data re-usage and enables parallel processing.
The techniques such as Weight compression and network pruning are employed to
enhance computation performance as well as reduce hardware cost utilizing small
network sizes and data-types [19]. Sometimes simplified architectures for fast
convolutions such as Winograd transformation [21], FFT’s [22] are modeled for
optimizing operational efficiency. These architecture designs for efficient hard-
ware implementation for the edge inference are examined comprehensively on the
NVDLA framework. The NVDLA architecture can be configured differently based
on the performance levels. Two such architectures (nv_small and nv_medium) are
analyzed in-depth concerning power, area, and throughput requirements. Besides
these NVDLA hardware architectures also runs a neural network for inference like
AlexNet on the FPGA [23]. This operates as a benchmark to evaluate performance
and prediction accuracy metrics across different implementations.

Introduction 5

This NVDLA core is very attractive among enthusiasts as it is an open-source
design. It can be utilized by the AI developers as an initial target model for
inference acceleration. However, the subsequent system has its challenges while
implementation. This open-source approach is noble and the complete hierarchi-
cal system design can be immense. The technological breadth, design tools and
set up environments of the NVDLA flow are boundless. The system comprises of
engaging in all the levels of programming hierarchies to realize its design imple-
mentation. As a result, poses a greater challenge in developing in a shorter time
frame. Besides NVDLA executes only specific pre-compiled deep neural network
models. As the inherent compiler environment was not available for the user’s
examination during this implementation.

1.3 NVDLA Design Flow

The inference process is where the AI’s substantial power after training meets the
real-world application. To envision an AI-driven smart ecosystem, inference accel-
eration is primarily decisive. The NVIDIA’s Deep Learning Accelerator (NVDLA),
provides a robust, versatile, configurable architecture to standardize deep learning
inference operation. This accelerator is an essential characteristic of NVIDIA’s
Xavier Drive System-on-a-chip which is employed in autonomous vehicles.

The following NVDLA design flow comprises a hardware accelerator as well
as a software ecosystem that co-ordinates to accelerate the inference process effec-
tively. The general flow is represented as shown in the figure 1.2.

Figure 1.2: NVDLA Design Flow

The neural networks are generally trained in TensorFlow or Caffe software.
The hardware acceleration for the training of neural networks on-device is still an
active area of research. Next, the trained model is fed to a compilation build,
that converts deep neural networks into a sequence of hardware layers based on
its underlying accelerator configuration. The compiler generates hardware layers
appropriate to NVDLA configuration given as an input. Later, these compiled
models are stored as NVDLA loadable image. The specific loadable images are
pre-compiled and only supports specific deep learning models.

6 Introduction

Thereafter, this loadable is passed to a run-time environment that co-ordinates
between software and hardware executions. It constitutes of device drivers to syn-
chronize the hierarchical design, schedule functional blocks and handles interrupt
from the NVDLA hardware. The hardware accelerator involves different functional
blocks that perform convolution, activations, pooling, normalization, data trans-
formations, and memory transfer operations. Each of these functional blocks can
be configured exclusively. Different configurations concerning these scalable pa-
rameters culminate distinctive implementations such as nv_small, nv_large mod-
els. The explicit configurations are utilized based on performance specifications.

NVDLA caters to simplified system integration. A host processor is the main
control unit that manages the process flow on the hardware core. The hardware
core employs standard AXI buses to interface with memory for data transfers.
Whereas the control channel utilizes a register file and interrupts interface to the
host processor. The primary memory, in general, a DRAM is mapped to both
processors and external peripherals. In the case of high memory bandwidth appli-
cations, a dedicated high-speed SRAM interface is exploited. The host processor
associates with the external drivers and peripherals through memory-mapped ad-
dresses.

1.4 Implementation Methodology

The design procedure for the NVDLA implementation involves a hardware-software
co-design. As a result, various application tools are realized to accomplish a com-
plete development environment. The embedded hardware design flow is carried
out in Xilinx’s Vivado Design Suite tools 2018.3. While the software development
and embedded drivers setup are accomplished in the PetaLinux platform from Xil-
inx. The Zynq Ultrascale+ ZCU102 is employed as the FPGA target to map the
NVDLA core. While the Zynq MPSoC functions as the primary processing system
in the SoC architecture. The project implementation is subdivided as follows:

1. An Environment setup to establish a tree build that generates RTL in Verilog
from a SystemC hardware specification file.

2. An Embedded SoC architecture that accomplishes relevant communication
between the host processor and NVDLA core.

3. A run-time execution environment to load and process compiled neural net-
works in the NVDLA system implemented in the Petalinux application.

4. An Inference setup on Zynq Ultrascale+ FPGA for executing Neural Net-
works especially AlexNet as bench-mark and run regression tests for evalu-
ating the implemented system.

Chapter 2
Theoretical Background

In this chapter, the background of Convolutional Neural Networks is presented.
Besides, the design methodologies leveraged for efficient hardware implementation
of CNN’s are discussed. Later, the hardware specifications of NVDLA architecture
are illustrated.

2.1 Convolutional Neural Networks

A Convolutional Neural Network is a deep learning algorithm consists of neurons
with learnable weights and biases. Each neuron performs a dot product of its
input and weights followed by a non-linear activation. The CNN architecture is
prominent because of its proficiency to learn feature extractions on their own from
raw image pixels, and inherent fault tolerance to inputs. These CNNs perform ex-
ceptionally well on image classification, natural language processing, recommender
systems and more. Also, the CNN possess a remarkable capability to express out-
put as a single differentiable score emerged just from the raw input image. A CNN
incorporates a series of layer operations to accomplish the above characteristics as
shown in the figure 2.1 subsequently.

Figure 2.1: Convolutional Neural Network

7

8 Theoretical Background

2.1.1 Convolution Layer

The Convolution layer extracts information from the input image. It is an element-
wise multiplication operation between the kernel weights and input feature maps.
This operation slides the kernel across the input at every location, shifting one
neuron each time (for stride of 1). The partial sums of these convolutions are
aggregated into respective output feature maps. For simplicity, the input image
is given by I (i,j) considering every pixel to be scalar. The filter is represented
as a kernel K (n,m) and the convolved output is given by h(i,j). A figure 2.2
successively represents a convolution operation.

h(i, j) = (I ∗K)(i, j)

=
∑
m

∑
n

I(i−m, i− n)K(m,n)

Figure 2.2: 2D Direct Convolution

This sliding window kernel operation also facilitates sparse connectivity and
parameter sharing. When considering a convolution layer the receptive field for a
given hidden node is small. As the node only maps to the kernel parameters, unlike
a Multi-Layer Perceptron (Appendix C.1) that links a hidden node to all of the
inputs. Therefore leading to fewer network inter-connections empowering sparse
connectivity. In the kernel process, all the parameters stay constant during the
sliding operations. As a result, the kernel weights can be shared while performing
the weighted sums for respective hidden nodes. Besides the convolution layer,
there are more computational blocks when constructing a complete CNN. Those
blocks are discussed subsequently.

Theoretical Background 9

2.1.2 Activation Layer

The activation layers are the most integral part that adds non-linearity to the
system. They enable the network to learn highly complex relationships between
the feature maps. An activation function determines the output of the model,
their prediction accuracy and computational efficiency during training. These
functionalities are realized through dedicated hardware logic and Look-Up-Table
in the hardware implementation. Different activation functions are chosen based
on the specific problem statement. They are as follows:

• ReLu. The most popular activation function for CNN’s are the Rectified
Linear Unit [24]. Since they result in sparse activation reducing the network
parameters. They are defined as.

f(y) = max(0, y)

This activation gives an output y if y is positive and 0 otherwise. It is
advantageous since there is no problem with vanishing gradients and they
are computationally less expensive. The only problem with this type of
activation is the decaying nodes. Sometimes the ReLu nodes are pushed into
regions of inactivity (i.e zero) for all inputs. This results in dead neurons
which can no longer be used.

• PReLu. To solve the above problem, a Parametric ReLu is used [25].
Instead of squashing the outputs to 0 when the inputs are less than or equal
to zero. PReLu keeps a small linear trainable parameter (a) that learns with
other neural network parameters to avoid dead neurons. An image of ReLu
and PReLu is presented in the figure 2.3.

f(y) =

{
y if y>0
ay otherwise

}

Figure 2.3: Relu and PRelu Activation

• Sigmoid. A Sigmoid function activates the input between 0 and 1. This
operation is bounded and the results are always positive. Sigmoid is mainly
used as output activation for binary classification problems. They have a

10 Theoretical Background

complication of diminishing gradients. Also, the curve is not zero centered
as shown in the figure 2.4.

1

1 + e−x

Figure 2.4: Sigmoid Activation

• Hyperbolic Tangent. This is a bounded activation function that ranges
between -1 and 1. The gradients for this operation are stronger than sig-
moid as the derivatives are steeper. Deciding between sigmoid and tanh
will depend on the requirement of gradient strength. This activation also
faces the problem of diminishing gradients. An image 2.5 of the following
activation is presented.

f(x) = tanh(x)

tanh(x) =
ex − e−x

ex + e−x

Theoretical Background 11

Figure 2.5: Hyperbolic-Tangent Activation

2.1.3 Pooling Layer

A pooling layer summarizes the neighborhood of a respective hidden node. This
is achieved by sliding the window over the inputs and extract a single value based
on the type of pooling operation. As a result, this layer down samples the filtered
image reducing the training and inference time. Besides, this operation makes
the features invariant to small changes in the raw input evading the problem of
over-fitting. The commonly employed pooling functions are enumerated.

• Max Pool : This operation is the most commonly used type of pooling. It
returns the maximum value within the receptive field. An example is shown
in the successive image 2.6.

• Min Pool : In this operation the minimum value within the pooling win-
dow is selected.

• Average Pool : This function returns the average value within the receptive
field.

Figure 2.6: Max Pooling

12 Theoretical Background

2.1.4 Fully Connected Layer

A Fully Connected (FC) layer resembles a multi-layer perceptron model where
each neuron has full connections to the previous layers as shown in the figure 2.7.
The input for this layer is a 1D vector of numbers flattened from the previous
convolution layers comprising of 3D volumes. While the output of an FC layer is
a list of probabilities of different class scores. The particular FC layer functions as
a classifier. This operation analyzes the previous layer’s high-level features repre-
sentations (after convolution and activation) and applies weights to predict which
features correlate to the specific class. The class score constituting the highest
probability is the classifier’s decision. For instance, if a model is predicting that
the image is a bird, then it holds large value in the activation maps represent-
ing high-level features such as wings or beaks. Thus the classifier correlates the
extracted high-level feature maps to definite class scores.

Figure 2.7: Fully Connected Layer

Theoretical Background 13

2.1.5 Normalization Layer

A normalization layer is necessary in Convolutional Neural Network architectures,
considering the unbounded nature of certain activation functions such as ReLu.
This process limits the outputs of the activation’s and is applied usually before the
activation layers. There are two types of normalization layers commonly employed.

• Local Response Normalization. The Alex-Net architectures using ReLu
activation introduced this concept [23]. It resembles the neuro-biology con-
cept of ’lateral inhibition’ to boost the neurons and subdue its neighbors
[26]. This inhibition forms a local maxima of values for excitation in subse-
quent layers. Here the neurons excitation are enhanced and the surrounding
local neighborhood is dampened. It is achieved by square normalizing the
image pixels of feature maps over a local neighbourhood that extends across
or within the respective channels as shown in the figure 2.8.

The AlexNet utilized a local response normalization across channels (in the
dimension of depth) and is given by the subsequent formula. In the formula,
i indicates the output of filter i. a(x,y), b(x,y) represents the pixel values
before and after normalization. Here (k, α, β) are hyper-parameters. n is the
size of normalization neighbourhood and N is the total number of kernels.
In the corresponding figure n=1 and N=3.

bx
i
y =

ax
i
y(

k + α
∑min(N−1,i+n/2)
j=max(0,i−n/2) (ax

j
y)2
)β (2.1)

Figure 2.8: Local Response Normalization

14 Theoretical Background

• Batch Normalization. This technique normalizes the output of previous
activation layer to reduce the internal co variance shift [27, 28]. This arises
due to changing distributions in hidden neurons/activations. As a result, the
batch normalization allows each layer to learn independently of preceding
layers. This is accomplished by subtracting the batch mean and dividing by
the batch standard deviation. The particular technique improves the stabil-
ity of a neural network and reduces over-fitting as it contains regularization
effects top. The mathematical representation is described. Here the batch
normalization transform (BN) is applied to activation x over a mini batch
B of size m.

Input = V alues of x over a mini− batch (B).

B = x1...m;

Learning Parameters = γ, β

µB =
1

m

m∑
1=1

xi mean

σ2
B =

1

m

m∑
1=1

(xi − µB)
2 variance

~xi =
xi − µB√
σ2
B + ε

normalize

~yi = γ ~xi + β ≡ BNγ,β(xi) shifting

.

Theoretical Background 15

2.2 Design Methodologies for Efficient Inference

In this section, the design methodologies leveraged for efficient hardware imple-
mentation are discussed in detail. The current trends of hardware accelerators in
deep learning employs "Deep compression" techniques for efficient inference. In
this method, the deep neural networks are compressed before their inference accel-
eration in hardware targets. Consequently, it reduces the number of parameters
as well as it’s computational efforts. Deep compression mainly includes network
pruning and quantization techniques. Besides, the computational complexity can
also be reduced by exploiting Winograd and batching transformations. These op-
timization methods applied to realize efficient inference are interpreted below.

1. Pruning.

The pruning mechanism was inspired to eliminate the redundant parameters
of the neural networks that do not contribute significantly to the outputs.
Especially, the zero weights and activations. This procedure can be exer-
cised to all the layers as a whole or specific layer of CNN. This facilitates
sparse executions, which enhances computational performance as well as re-
duce memory overheads.

Pruning can be implemented using ranking methods. The rankings are gen-
erally based on L1/L2 norm of weights, mean activation’s, etc., considering
individual layers. The alternative technique employed is iterative pruning,
which applies to the complete network. In this process, CNN is fine-tuned
until the pruning objective is attained. For example, the objective for prun-
ing could be in terms of definite model size or execution performance.

Figure 2.9: Pruning Neural Networks

16 Theoretical Background

2. Quantization.

The quantization method adopts reduced precision as well as smaller data
representations of weights and activations. This is achieved to primarily re-
duce the hardware cost, memory accesses and increase parallel executions.
The quantization to the desired number of bits solely depends on the require-
ments of the application and accuracy. Therefore, it is difficult to speculate
an optimal precision that suffices all-purpose.

Generally multiple precision such as INT4, INT8, FP16, FP32 are uti-
lized for different applications. Recently INT8 datatype is widely used for
inference while FP16, FP32 data-types are exploited for training. The quan-
tization techniques are applied to the granularity of channel level for weights
and layer level for activations. Normally the activation quantization has a
significant impact on the accuracy than that of the weight’s quantization. To
improve the accuracy, the quantified parameters are fine-tuned by retrain-
ing recurrently with the original data-set. Sometimes to avoid retraining,
smaller floating-point precision is exploited.

Figure 2.10: Quantization Technique

3. Winograd Transformation.

Winograd transformation is an optimized convolution algorithm that re-
duces the number of multiplier units and increases functional throughput
[21]. These methods work well on 3x3 convolutions. Here the inputs and

Theoretical Background 17

kernel parameters are transformed. These transformed values are subjected
to an element-wise multiplication then the results are converted back to ob-
tain the convolved output.

Consider an input image of 4x4xC, kernel window of 3x3xC. To compute the
output feature map (2x2x3) the required functional units (MACs) includes:
Direct Convolution demands (4x3x3xC) 36xC functional units. While, the
Winograd expects 16xC functional units. Therefore, it improves perfor-
mance by a factor of 2.25x.

Figure 2.11: Winograd Algorithm

4. Batching.

The Batching mechanism is applied to the fully connected layers. These
layers functions as a classifier that encompasses full interconnections with
their previous layer. Subsequently, do not perform any sliding window op-
erations, confining weight sharing and sparsity. As a result, this functional
block demands high memory bandwidth as well as compute resources. To
solve this problem batching is employed for reusing kernel weights. Here
multiple feature maps of the input image are processed in parallel to per-
form dot products with the kernel weights. This facilitates the re-usability
of weights across multiple images.

Figure 2.12: Batched Convolution

18 Theoretical Background

2.3 NVDLA Architecture Design and Specification

This section describes the design of NVDLA core, it’s respective interconnects,
hardware specifications and parameter configurations.

2.3.1 Hardware Primitives

The NVDLA core comprises of hardware primitives to realize inference accelera-
tion on deep neural networks. Each of the modules performs a specific operation
as discussed previously in the background section. Also, they can be configured
independently. It is a versatile, highly scalable architecture that standardizes
hardware acceleration of AI inference. For instance, if a system requires multiple
layers of convolution operations then the particular building block can be scaled
up. Suppose the design does not require any pooling function then the planar data
processing engine can be removed exclusively. Therefore, the complete system can
be sized appropriately based on application requisites. The hardware primitive
blocks are:

• Convolution Core - advanced high performance convolution engine.

• Single Data Processor - single point lookup engine for activation operations.

• Planar Data Processor - planar averaging engine for pooling function.

• Channel Data Processor - multi-channel averaging engine for optimized nor-
malizing functions.

• Dedicated Memory Engine - dedicated high performance memory interfaces.

• Data Reshape Engine - data format transformations for tensor reshaping.

The hardware architecture comprises of four computational blocks (CONV,
SDP, PDP, CDP) and two data transformation engines (RUBIK, BDMA) as shown
in the figure 2.13. The compiler maps the layers of the deep neural networks to
these computational blocks based on the dependency graphs. The inference flow
starts when an activate command is sent from the host processor along with the
configurations of one hardware layer. If there are no data dependencies among
multiple hardware layer configurations, then they are assigned and executed simul-
taneously. When the corresponding layer finishes its process, it issues an interrupt
to the co-processor reporting completion. Consequently, the processor engages in
processing the next layers. Thus the system follows command-execute-interrupt
flow for completion of the whole convolution network.

Theoretical Background 19

Figure 2.13: NVDLA Hardware Primitives

2.3.2 Interconnects

The NVDLA core connects to the rest of the system through the following inter-
face options as illustrated in fig 2.14.

• Configuration Space Bus Interface (CSB). The host processor uses
this 32-bit synchronous bus to access the NVDLA configuration register
sets. NVDLA acts as a slave on the CSB interface. It implements a simple
address/data interface to establish communication.

• External Interrupt (IRQ). This system follows a command-execute-
interrupt flow where every layer operation is asserted through interrupts
to the host processor. It is a 1-bit level driven interrupt that affirms com-
pletion and error conditions.

• Data Backbone (DBBIF). NVDLA has its own DMA subsystem that
connects to each block. This interface is an AMBA AXI-4 compliant that
associates the DRAM memory to the DMA engine. It is a high speed, syn-
chronous and extremely configurable data bus.

20 Theoretical Background

• SRAM Connection (SRAMIF). For high performance-oriented systems
which emphasize high throughput and low latency. An SRAM memory is
used as cache. This interface provides a connection to the cache memory.

Figure 2.14: External Interfaces

2.3.3 Hardware Specifications

NVDLA hardware provides a scalable architecture that can be configured for
different application requisites. These hardware specifications depend on the re-
quirements of the CNN employed for inference acceleration also the recommended
performance measures. Consequently, performance measures have a significant
impact on the following parameters.

1. Convolution Buffer

The Convolution buffer holds both weights and feature data for individual
layers. These buffers reduce the number of memory access and enhance en-
ergy efficiency. The size of these buffers is configured within the range of
4KB to 32KB. The model size of the CNN is paramount for the buffer sizing.

NVDLA uses a ping-pong buffer mechanism to improve system efficiency.
The reprogramming latency can be reduced by utilizing two register groups.
This methodology concurrently programs the second group of buffer when
the first group is processing the convolution computations. The hardware

Theoretical Background 21

switch between the register groups through an interrupt based control flow.

2. Number of MAC units

The number of MAC units determines the overall system throughput. The
MAC operations in a convolution operation can easily be calculated. They
depend on the size of input feature maps, kernel size and number of kernels.

MAC Units = 2 ∗ nK ∗ (Kx ∗ Ky ∗ Kz + 1)(Ix ∗ Iz) (2.2)

The hardware architectures leverage parallelism in convolution computa-
tions exploiting the input and output feature channels. They are represented
as Atomic-C and Atomic-K values. The MAC computations on the input
feature channels are assigned between 16 to 128. While the computations on
the output feature channels are assigned values between 4 to 16. These siz-
ing values impact the number of MAC arrays. For example, if the NVDLA
configurations of Atomic C is 32 and Atomic-K is 16 then,

number of MAC = Atomic− C ∗Atomic−K = 32 ∗ 16 = 512 instances
(2.3)

3. Memory Bandwidth

For high-performance systems that are time-critical, high memory band-
width can be capitalized using an on-chip SRAM. It functions as a second-
level cache memory block. An on-chip SRAM is less expensive in imple-
mentation than a large convolution buffer considering its wide ports and de-
manding timing requirements. But provides less in exchange if the layers are
limited by convolution buffer size. So from an implementation perspective,
the convolution buffer size is enhanced to reduce memory bandwidth de-
mands and the auxiliary SRAM advances the total available memory band-
width of the system.

22 Theoretical Background

Considering the above hardware specifications the NVDLA architecture can
be implemented for distinct operations. Also, the architecture can be configured
based on the required performance requirement. While the primary configuration
includes nv_ small and nv_large models. The figure 2.15 shown below interprets
the different configurable parameters.

NV_
Medium

Figure 2.15: Parameters Configuration

Theoretical Background 23

• NVDLA Small Model

The NVDLA small model is well compliant with AI, IoT systems where
performance levels are less of a preference and primarily targets cost and
resource efficiency. These implementations provide a basic architecture that
supports smaller tasks. Typically, the NVDLA small configurations incor-
porate reduced precision arithmetic, fewer design optimization features, and
limited throughput enhancements. The specified design parameters are en-
listed below

Feature Configured Option

Data Type Precision INT8.

Winograd Support Not supported.

Compression Support Not supported.

Second Memory Bus Not supported.

Image Input format Supports 8-bit RGB/YUV.

SDP function Single Scaling

Bridge DMA Not supported.

Rubik Not supported.

Atomic-C 8

Atomic-K 8

Layer throughput One output feature data gets generated
every clock cycle.

Convolution Buffer size 32KB

24 Theoretical Background

• NVDLA Large/Full Model

The NVDLA large is utilized for high performance and dynamic applica-
tions. These models are highly flexible and multiple tasks can be completed
concurrently. As a result, the design includes a high bandwidth SRAM in-
terface connected to the design implementation that shares workloads with
the NVDLA core. This SRAM is used as cache memory. These systems
incorporate an increased number of processing elements, maximum opera-
tional throughput and enable all design optimizations. The hardware design
sizing of NVDLA Large is described below.

Feature Configured Option

Data Type Precision FP16/INT16.

Winograd Support Yes, supported.

Compression Support Yes, supported.

Second Memory Bus Yes, supported.

Image Input format Supports 8/16-bit RGB/YUV.

SDP function Single Scaling/LUT

Bridge DMA Yes, supported.

Rubik Not supported.

Atomic-C 64

Atomic-K 16

Layer throughput Four output feature data gets generated
every clock cycle.

Convolution Buffer size 32KB

Chapter 3
NVDLA SoC Design Implementation

This chapter provides an in-depth understanding of integrating NVDLA into
an SoC for FPGA implementation. It provides information on setting up the
environment for model creation, project development in Vivado as well as system
architecture design of the SoC.

3.1 Environment Setup

To develop the RTL model of NVDLA core, a tree build setup is constructed.
The following environment generates multiple configurable hardware designs from
a single source. These hardware configurations are defined on a specification file.
Based on these specifications, a Verilog RTL code is generated appropriately. Dif-
ferent NVDLA configuration can be characterized in the following specification
file to develop diverse hardware cores in regards to application requirements. The
spec file definitions are provided in the appendix A.

The environment setup requires different tools to build the configured RTL.
The essential software’s are chartered below in the 3.1.

Tree	Build
Environment	Setup

Java	
jdk	1.8

SystemC	
systemc-2.3.0

GCC	
	gcc-4.9.2CPP

Perl
perl-5.16

Capture::Tiny

Perl
perl-5.16

XML::Simple

Python
	python-3.5

cpan
IO::Tee

Figure 3.1: Tree Build Setup

25

26 NVDLA SoC Design Implementation

The path to above tools and configurations set-up are constituted in a tree.make
file. Once when all these composed modules are compiled through build, an outdir
directory is established incorporating the Verilog model of the NVDLA hardware.
Thus, a successful RTL tree build for a relevant specification file is shown in the
subsequent image.

3.1.1 Overview of Generated VMOD

The Verilog model generated from the tree build engages NV_Small specification
for the following case. Here the organizational structure of the generated NVDLA
core is discussed. The top module includes the following partitions as also depicted
in the figure 3.2.

1. Partition_o : This section controls the communication between processing
elements with external controllers and memory units.

• CSB - This module reads and writes configuration registers of each
layer in NVDLA core. This transfers data from the external manage-
ment processor through the APB interface.

• CFGROM - This maintains configurable parameters of the core for its
respective specification definition.

• MCIF - This interface communicates with all subunits that access the
external DDR. This data bus uses an AXI protocol.

• PDP and CDP - These units perform pooling and local response nor-
malization respectively.

• GLB - They control the output interrupt signals of all the sub cores
of NVDLA.

2. Partition_c: This section manages various convolution kernel operations
such as CDMA, CBUF, and CSC.

• CDMA - Convolution DMA fetches data from SRAM/DRAM and
stores it in a convolution buffer. It comprises two read ports namely
weight read and data read ports that connect to the AXI interface to
obtain weight/feature data.

• CBUF - Convolution buffer is the next stage of the pipeline. It is a
512KB of SRAM cache that stores input data and weights.

• CSC - Convolution Sequence Controller loads the stored data from the
buffer to its respective MAC units appropriately. Thus, controlling the
computation sequence in the convolution pipeline.

3. Partition_m: This partition performs multiplication and addition compu-
tations. This Convolution MAC module comprises of 16 MAC cells. Each
of these cells includes 64 16-bit multipliers and 72 adders.

4. Partition_a: This module accumulates the partial sums from the MAC
arrays and estimates the results before sending it to the next stage of acti-
vations.

NVDLA SoC Design Implementation 27

5. Partition_p: This section performs various linear and non-linear operations
as discussed.

CSB Interrupt

DBB

Configuration and Control

Convolution
Buffer

Convolution
 Core

Post
 Processing

Memory

Partition_m

Partition_a

Activation
 Core

Partition_pPartition_c

Partition_o

Figure 3.2: VMOD Partition

3.2 NVDLA SoC design in Vivado

The integration of NVDLA core into SoC design is carried out using Vivado De-
sign Suite - 2018.3 provided by Xilinx. This software accelerates the design and
verification of NVDLA architecture. Several tools from Xilinx such as Vivado IP
integrator, RTL Synthesis, Vivado Simulator, Implementation, Xilinx SDK and
Petalinux applications are exercised during the project development .

The design methodology for the implementation of NVDLA SoC is divided
into two parts.

• Design of NVDLA Hardware Core and Wrapper

• SoC System Architecture

3.2.1 NVDLA Hardware Core

The NVDLA hardware core is built from the generated Verilog RTL model. Cer-
tain modifications are performed in the developed RTL model to integrate the
accelerator core into FPGA. As the NVDLA implementation on its own is well de-
fined for custom ASIC design. For instance, the implementation comprises clock

28 NVDLA SoC Design Implementation

gating and power gating features to limit dynamic power dissipation at the cost of
more hardware logic. Contrarily, these features when used in FPGA prototyping
results in timing violations. Therefore, definite macros are added in Verilog header
files and set as global include to disable the auxiliary hardware architectures. Be-
sides, the inferred RAM resources included in the source files also disable these
features for the prior purpose.

VLIB_BYPASS_POWER_CG
NV_FPGA_FIFOGEN
FPGA
FIFOGEN_MASTER_CLK_GATING_DISABLED
RAM_DISABLE_POWER_GATING_FPGA

Table 3.1: Verilog Macros

Here synthesis is accomplished to verify the substantiation of source code for
preceding user alterations. The tool generates top-level instances with all of its ref-
erences along with appropriate reports that are utilized to validate the developed
RTL design. In general, synthesis performs a high-level abstraction to logic gate
levels where it maps the generic gate-level netlists. It also incorporates advanced
design optimization’s for timing and area. The behavioral model sources along
with netlists from synthesis are packaged into an IP using Vivado IP integrator.
The packaged NVDLA Core IP is shown below in the fig 3.3 includes the following
external pins and interfaces:

• Clock Interface: NVDLA core consists of dla_core_clk and dla_csb_clk.
The dla_core_clk acts as the functional clock for the complete system while
dla_csb_clk for the configurable interface. These clock interfaces are con-
nected as a system clock.

• Reset Interface: The dla_reset_rstn operates as a primary functional reset
for the NVDLA core. While the direct_reset_ serves for DFT reset. They
are connected to the processor system reset.

• Clock Gating Interface: Here global_clk_ovr_on is tied low to disable non-
inferred clock gating. tmc2slcg_disable_clock_gating is also kept low to
disable the same during DFT.

• System Data Interface: The external data are accessed through master AXI
interfaces nvdla_core2dbb_axi. The DBBIF and SRAMIF buses fetch data
from off-chip DRAM and on-chip SRAM respectively.

• Configuration Interface: This slave interface addresses the configurations of
hardware layers through an APB bus,APB_S.

• Interrupt Port: A single bit level driven interrupt port is used dla_intr to
control the processing of different layers.

NVDLA SoC Design Implementation 29

Figure 3.3: NVDLA Core Packaged IP

• Power Gating Interface: Power gating features are established when these
power buses nvdla_pwrbus_ram are tied to 0.

• DFT Interface : The test_mode is preferred low to disable DFT mode.

3.2.2 NVDLA Wrapper

The NVDLA Wrapper combines NVDLA Core functionality with the configura-
tion and control operations to constitute an exclusive hierarchical system design.
The configuration definitions from the host processor are delegated to NVDLA
core for managing underlying hardware layers for the provided network descrip-
tion. This interconnection is achieved through configuration space bus, exposed
as an APB interface that establishes communication with the central management
processor. This APB to CSB bridge RTL model is associated with NVDLA core
to develop an NVDLA subsystem. The APB2CSB IP is shown below in the fig
3.4.

In the developed wrapper module the clock and reset interfaces of the custom
IPs are made as external pins. While the clock-gating and power-gating features
are disabled, connecting to zero constants. Data and configuration interfaces are
made as external ports. Also, the interrupt port is connected as an external
link. Once these relevant interconnections are completed, the NVDLA Wrapper is
packaged as a custom IP to be utilized in the hardware system architecture. The
corresponding image of the wrapper module IP is displayed in image 3.5.

30 NVDLA SoC Design Implementation

Figure 3.4: APB to CSB Bridge Packaged IP

Figure 3.5: Packaged NVDLA Wrapper IP

3.2.3 Hardware System Architecture

The hardware system architecture establishes different system functionalities.
Primarily, constitutes the communication between NVDLA hardware core and
management processor of the FPGA. Besides, the system architecture specifies
memory mapping of different associated soft IP’s (peripherals) as well as resource
utilization of hardware modules on the FPGA board.

The hardware architecture includes the following and depicted in the succeed-
ing figure3.6.

NVDLA SoC Design Implementation 31

• A host processor: Zynq Ultrascale+ MPSoC.

• Associated DMA engine, an AMBA AXI4-compliant acting as memory bus.

• Instructions regulated through Configuration bus and interrupts.

• Peripherals such as AXI-APB bridges, AXI interconnects and constants.

• Clock and reset generators adhered to the whole system.

Figure 3.6: NVDLA Hardware Architecture

To accomplish the communication flow of the implemented system, the custom
NVDLA wrapper IP communicates with a series of interconnections through PS-
PL interfaces of the host processor. The host processor acts as a logical interface
between PS and PL while integrating custom IPs in the fabric as a PS+PL config-
uration. The PS-PL interfaces are configured as follows, the data bus of NVDLA
wrapper is connected to High Performance (HP) slave port 0 AXI in full power
domain. This S-AXI HP port directly communicates with DDR Controller. While
the configuration bus is associated with High-Performance Master (HPM) 0 in full
power domain. This HPM-FPD port establishes transmission with the Processing
System through the APU engine. The block diagram of Zynq Ultrascale+ MPSoC
is shown in the subsequent figure 3.7.

The host processor communicates with its memory and other peripherals at
different addresses in the address space. The intercommunication is accomplished
through memory mapping at a specific address. The configuration space bus of
NVDLA hardware reaches out to the processor through a reserved memory of
64KB. Also, the data bus is interlinked with DDR controllers at a specified address
spacing. Thus the memory mapping to different peripherals and memories is done
systematically by the tool, utilizing a mapping strategy that minimizes address

32 NVDLA SoC Design Implementation

Figure 3.7: Block Diagram of Zynq Ultrascale+ MPSoC

decoding complexity. The address segmentation of different peripherals is given
below in the figure 3.8.

Figure 3.8: Address Segmentation of peripherals attached to pro-
cessor

These memory-mapped master and slave devices are connected through a
series of Xilinx’s Core IP’s to establish appropriate communication. The system
comprises two main transmission flows. One for the data and other for the NVDLA
configuration space bus (instruction bus). The complete system architecture is
discussed and also a corresponding figure 3.9 is presented.

1. Data Transmission flow: The data backbone interface of NVDLA wrapper is
connected as Direct Memory Access (DMA) which accelerates data transfer
from external DDR4 memory of Zynq FPGA. The data transmission takes
place directly to the NVDLA wrapper without passing through the host
processor. These interface connections can be instantiated given all the AXI
ports are properly matched between the peripherals. This high-performance
slave interface is part of programming logic in Zynq MPSoC and designated
a data width of 64 bits.

NVDLA SoC Design Implementation 33

2. Configuration flow: The configurations space bus is APB compliant. It is a
simplified design for low bandwidth control access like the register interfaces.
Unfortunately, these APB interfaces are not supported in Zynq Ultrascale+
FPGA. Therefore transformed into AXI-4 compatible.

• In this case, an AXI-APB peripheral is utilized to translate APB trans-
fers into AXI-4 transfers. This soft IP core functions as a slave on the
AXI-4 interface and master on the APB3/APB4 bus. They interlink
APB slaves to AXI masters, supporting 32-bit data widths.

• The connection to the memory-mapped master of Zynq MPSoC is
established through an AXI interconnect IP. It enables a connection
between an AXI master and slave device. The following system em-
ploys a data width of 32-bits. This subsequent interface is exploited
for AXI memory-mapped transactions.

3. Zynq UltraScale+ MPSoC is the main processing system of the hardware
architecture. IP cores are attached as a PS+PL configuration. The following
PS-PL configurations can be customized based on different requirements.
Here the default settings are employed. And the output clock configuration
is set to 100MHz.

4. The one-bit level driven interrupt interface of NVDLA IP is connected to
PL to PS interrupts handled by the host processor.

5. The clock and reset interfaces of the system architecture are connected ap-
propriately and sourced from PL clock and resetn pins of the processor core.

Once the system integration is done, the developed block design is validated
for errors and warnings. Subsequently, the output products of the design are
generated as out-of-context as well as a top-level HDL wrapper is constructed for
synthesizing the advanced design. Followed by an implementation process carried
out to place and route the design components pertinently. This process generates
a design specific to the FPGA prototype. Next, the low-level configuration for the
specific FPGA is generated as bitstream. Finally, the hardware is exported to SDK
including bitstream, this provides the HDF file which configures hardware platform
specification. The following emulates hardware-specific flow but the software to
run on it is established using Petalinux tools described in the next section.

34 NVDLA SoC Design Implementation

Figure 3.9: NVDLA System Architecture

Chapter 4
Configuring the Software Environment

This chapter encompasses the software flow for the NVDLA system which com-
prises compilation and run-time environments as shown in the subsequent image
4.1. The compiler incorporates different machine learning model transformations
and run-time environment executes these compiled architectures. Here an existing
model of Alex-Net (a deep convolutional neural network) architecture is used as
a standard compilation model. While the run-time environment engages the soft-
ware to run this standard on the NVDLA hardware. The PetaLinux tool is used
to realize these functions and deploy embedded Linux solutions on FPGA proto-
typing systems. A detailed description regarding the organization of the execution
environment is explained in the consequent chapter.

Loadable

NVDLA
Supported DL
Frameworks

Parser Compiler

NVDC

Compilation
 Tool
(Model Conversion) Application SW

User Mode
Driver

Kernel Mode
Driver

NVDLA HW

Runtime Software
Environment

Figure 4.1: NVDLA Software Stack

4.1 Compilation Build

The compilation build converts a deep neural network into a series of hardware
layers compatible with the specified NVDLA hardware configuration. The com-

35

36 Configuring the Software Environment

piled model is optimized for the underlying hardware enhances the performance
reducing the model size and its execution time. This build consists of two main
phases.

• Parser: The parser creates a representation of the neural network as a
set of different layers translated from the pre-trained Caffe model given as
input. It passes this representation to the compiler and acknowledges if
these networks are consistent with the given NVDLA flow.

• Compiler: The compiler translates the representations from parser into
a series of hardware layers following the insights of NVDLA specification
defined during implementation. It maps the network operations to the re-
spective functional blocks of NVDLA. The compiler designates these func-
tionalities primarily based on the NVDLA configurations. These operations
are done offline and the compiled neural networks are stored in a standard
format known as NVDLA Loadable.

Sadly, the NVDLA compiler was not open-sourced and transparent during
this project phase. As a result, the compiler wasn’t supporting various network
models and their hyper-parameter configurations. Therefore the available network
standard of Alex-Net, an used case with the NVDLA hardware, was utilized as a
benchmark to evaluate the complete system architecture.

4.2 Run-time Execution

This run-time execution layer includes device drivers to the application software
namely User Mode Driver and Kernel Mode Driver. These drivers provide ab-
straction serving as a translator between the NVDLA hardware and PetaLinux
application software. These drivers are incorporated in PetaLinux environments
as part of the kernel through loadable modules. Also, they are defined as Ap-
plication Programming Interfaces wrapped around system portability layers, to
facilitate flexible coherence with different hardware platforms. A general frame-
work of the Linux execution environment is described in the figure 4.2.

• User Mode Driver: The User Mode Driver is the primary interface to the
application software. It loads the NVDLA loadable standard and submits
the inference task to Kernel Mode Driver. This driver loads the network
tensors into memory engaging as an ioctl() function. Besides, this also
employs synchronizations with different hierarchies before carrying out with
inference task.

• Kernel Mode Driver: The Kernel Mode Driver acts as the core module
of the software flow. It handles interrupts, associates optimized scheduling
of layers and updates dependencies after operations. Further, these drivers
program the functional blocks of the underlying NVDLA hardware.

The run time environment of NVDLA architecture is established employ-
ing PetaLinux tools. The execution of those device drivers are elucidated in the
ensuing sections.

Configuring the Software Environment 37

User Application User Libraries

System Call Interface

File Subsystems

Memory
Management

BSP

Process
Management

Network Stack

Device Drivers

Zynq MPSoC

Kernel
Level

Hardware
Level

User
Level

Petalinux
System

Figure 4.2: Linux Execution Environment Framework

4.3 PetaLinux Flow

The PetaLinux tools are exploited in this project to accelerate the development
of NVDLA’s run-time environment adopting an embedded Linux based solution.
PetaLinux tools facilitate a hardware/software co-design offering integrated Linux
configurations and software development tools. Simplifying deployments of hard-
ware designs on FPGA platforms. The complete integration of software stack
inclusive of kernels, device drivers, system boot and UMD realizations are de-
scribed in this section.

The PetaLinux 2018.3 utilized for this purpose operates on a 4.14 Linux Ker-
nel created as an application software available from Xilinx Git. As they do not
deliver any commercial Linux distribution. This Linux execution environment is
configured on Zynq Ultrascale+ MPSoC, the host processor of NVDLA hardware.
The hardware design accomplished in Vivado earlier is exported as a hardware
description file to initialize PetaLinux software. The software stack developments
of this architecture follows the subsequent workflow as shown in fig 4.3.

38 Configuring the Software Environment

Generate Bitstream -
NVDLA Block Design
Export Hardware to
SDK

Vivado Design

Configure the
hardware description
file (HDF) - software
compliant to NVDLA

Xilinx SDK

Initialize the
PetaLinux

Environment
Build the Kernel

Configure Device
Drivers - Loadable

Kernel Modules

Describe the
Device Tree

Settings

Reserve Memory -
Communication

with peripherals
SD Boot

Configuration

Boot Linux on
Zynq Board

 Boot Image Binary
(Linux kernel,U-Boot,FSBL,Rootfs)

Hardware Design

PetaLinux Software

.HDF file

Figure 4.3: PetaLinux Flow

4.3.1 Initializing the PetaLinux environment

The primary step constitutes of initializing the PetaLinux environment. The hard-
ware description file imported from the corresponding Vivado tools provides infor-
mation to PetaLinux, generating appropriate software settings and Boot-loaders.
Essentially boot header files, device tree source files, and Kernel drivers. Here the
PetaLinux environment is initialized to configure kernel and u-boot to point to
the SD boot. The SD card acts as the only memory storage device in this case,
therefore the Root Filesystem is set to the same type.

4.3.2 Building the Kernel

PetaLinux provides the flexibility to build custom Linux distribution establishing
diverse system tool-kits and libraries in the root directory. An optimal package
group with essential tools are adopted in the Linux kernel to build API sub-routines
interface to hardware. With these elementary system organizations complete, the

Configuring the Software Environment 39

petalinux-build is executed to build the kernel system image.

4.3.3 Device Drivers as Loadable Kernel Modules

Most of the fundamental device drivers are enabled while building the above
kernel image. But explicit NVDLA device drivers are defined as loadable kernel
modules. As a result, an external module is created over the pre-built kernel.

Linux Operating Systems typically maintains high compliance providing ca-
pabilities to extend kernel features during run-time. The functionalities of these
Linux kernels are customized on the fly through programmable modules. These
modules are compiled with the Linux kernel and built into Kernel object files
(.ko) which are loaded using insmod during boot. These modules comprise pro-
grammable sections that establish communication between the kernel and NVDLA
hardware.

4.3.4 Device trees and Reserved Memory

Device trees are wielded as the default methodology to describe low-level hardware
information from the boot-loader to the kernel. They are constituted in the source
include files (.dtsi). It includes a simple tree structure of nodes and properties that
determines the peripheral devices available for the kernel in the current environ-
ment. The OS uniquely identifies the underlying NVDLA hardware through the
compatible property specifying the exact device information.

A reserved memory is delegated for custom device driver usage from system
RAM and these address spaces cannot be exploited by the kernel. Here 1GB
memory is reserved for memory-mapped devices specifically for DDR memory
interface through Processor Subsystems (PS DDR). This PS DDR is assigned a
base address and memory size. The address-cells and size-cells are selected 2 for
designating 64-bit addressing schemes in the device tree. The reg field defines the
address range used by the device. The PetaLinux project is recompiled to effect
the encompassed module and device tree settings. A snippet of the device tree is
encompassed below in fig 4.4.

40 Configuring the Software Environment

/include/ "system-conf.dtsi"

/ {

 reserved-memory {

 #address-cells = <2>;

 #size-cells = <2>;

 ranges;

 nvdla_reserved: buffer@0 {

 no-map;

 reg = <0x0 0x40000000 0x0 0x40000000>;

 };

 };

};

 &design_1_wrapper_0 {

 compatible = "nvidia,nvdla_2";

 memory-region = <&nvdla_reserved>;

 };

Figure 4.4: Device Tree

4.3.5 SD Boot Configuration

The SD card is partitioned into three divisions such as Boot, Root, and Test
respectively. The boot partition refers to embedded Linux image which contains
everything inclusive of u-boot binary files, FPGA bitstreams, first stage bootloader
as well as kernel image, device trees. The secondary part holds the root file sys-
tem. These segregations are formatted as FAT32 and EXT4 types respectively.
The third partition includes the source files for compiling UMD also NVDLA load-
able for inferencing AlexNet on the subsequent setup. Lastly, the FPGA board is
set up to SD boot mode using the dip switches appropriately. Thus, the run-time
execution environment of NVDLA is accomplished in PetaLinux.

Chapter 5
Results Analysis

This chapter summarizes the results of NVDLA SoC implementation on the
FPGA. The initial section explicitly explains the NVDLA hardware design re-
sults from Xilinx Vivado. While the later section highlights sanity tests applied
for functional verification of the implemented system on FPGA. Lastly, a neural
network such as AlexNet is employed as a benchmark to run on-device inference
on the FPGA hardware.

5.1 Hardware Performance Parameters

The NVDLA hardware design results are discussed in terms of device utiliza-
tion, power consumption, and system frequency parameters. These results are
accomplished using Xilinx’s Vivado Design Suite tools along with Zynq Ultra-
scale+ ZCU104 as an FPGA target. The NVDLA architectures nv_small and
nv_medium are studied to these performance parameters. While the nv_large ar-
chitecture was an immense design that did not fit in this respective FPGA model.
These performance parameters for the corresponding NVDLA architectures are
explored based on Synthesis and Implementation processes.

5.1.1 System Frequency and Timing Analysis

The NVDLA architecture is executed at a system frequency of 100MHz (10ns).
When the frequency is increased beyond this subsequent value, the timing con-
straints for the design were not met. It is important to meet the timing, to avoid
long execution times and low system performances. Initially, this system archi-
tecture resulted in a negative slack even for the corresponding frequency. Since
the primitive design included clock and power gating features in its native ASIC
implementation. Unfortunately, these optimizations resulted in timing violations.
Thus, the gating features were disabled by defining appropriate Verilog macros
as explained in the hardware implementation section. Once disabled, the timing
closure for the design is met at a frequency of 100MHz.

41

42 Results Analysis

Setup Hold Pulse Width

Primitive Design
Worst Negative : 0.443ns Worst Hold : -0.341ns Worst Pulse Width : 3.498ns
Slack (WNS) Slack(WHS) Slack(WPWS)

Total Negative : 0.000ns Total Hold : -26.785ns Total Pulse Width : 0.000ns
Slack (TNS) Slack(THS) Slack(TPWS)

Optimized Design
Worst Negative : 3.814ns Worst Hold : 0.030ns Worst Pulse Width : 3.498ns
Slack (WNS) Slack(WHS) Slack(WPWS)

Total Negative : 0.000ns Total Hold : 0.000ns Total Pulse Width : 0.000ns
Slack (TNS) Slack(THS) Slack(TPWS)

Table 5.1: Post Implementation timing summary.

The design meets timing ideally when the values of Total Negative Slack
(TNS), Total Hold Slack (THS) and Total Pulse Width Slack (TPWS) are 0ns.
The sum of all these slack values represents the final timing results. From the
timing results table 5.1, it can be seen that the Worst Negative Slack for setup
time has positive values in both the designs. This indicates that the data arrives
earlier, before its required time during the setup time analysis. As a result, the
design path meets the setup timing constraints.

But the primitive design retained a negative slack value in the hold timing
constraints where the data takes longer time to arrive than its required time.
Consequently, failed to satisfy the timing results. Hence the extra hardware logic
utilized for gating mechanisms is removed. Then it can be perceived from the
optimized design that hold timing constraints results to 0ns. Thus, verifying clean
timing sign off for the implemented design.

Results Analysis 43

5.1.2 Device and Power Utilization

The device utilization, as well as power results, are analyzed for nv_small and
nv_medium architectures. The power values are estimated from the implemented
netlists in Vivado. These performance metrics specially power and resource con-
sumption are directly dependent on each other. The NVDLA’s architecture pri-
marily comprises of MAC units and convolution buffers. Therefore, those param-
eters are paramount during performance/ efficiency (Area and Power) trade-off
analysis. The next critical parameter that affects remarkably the above results is
memory bandwidth. The succeeding results table 5.2 compares these parameters
for respective NVDLA architectures. The result presents nv_medium consuming
0,38W power greater than the nv_small design. While the nv_medium caters
higher operational throughput and performance at the cost of increased power
utilization.

Feature NV_Small NV_Medium

MAC 64 512

Buffer Size 128KB 256KB

Memory Bandwidth 1GBs 10GBs

Power Consumption 4.441W 4.820W

Table 5.2: Post Implementation power consumption.

Figure 5.1: NVDLA Power Consumption graph

44 Results Analysis

In terms of device utilization, from the below results table 5.4, 5.6 it can be
observed that the usage of Look Up Tables (LUT), Flip Flops (FF), Block memory
(BRAM) and Digital Signal Processor (DSP) for the nv_medium architecture is
doubled than that of nv_small design. The results are evident due to enlarged
feature values in nv_medium implementation. Specifically, the number of MAC
units, convolution buffer size, and memory bandwidth features.

Resource Utilization Utilization%

LUT 80521 29.38

FF 86309 15.75

BRAM 93 10.20

DSP 32 1.27

Table 5.3: Post Synthesis Utilization results for NV Small.

Resource Utilization Utilization%

LUT 78437 28.62

FF 85266 15.55

BRAM 93 10.20

DSP 32 1.27

Table 5.4: Post Implementation utilization results for NV Small.

Results Analysis 45

29%

16%

10%

1%

0% 10% 20% 30% 40% 50% 60% 70%

LUT

FF

BRAM

DSP

Resource Utilization

Utilization%

Figure 5.2: NV Small Utilization graph

Besides, it can be observed from the subsequent results, that device utiliza-
tion values after implementation possessed lower utilization percent than synthesis.
This condition exists because different IP’s in the NVDLA block design were ex-
ecuted in OOC (Out of Context) mode during synthesis. As a result, accurate
utilization values could not be obtained. Whereas, the results after implementa-
tion are definite. Since the process is accomplished over the synthesized net-lists.
It is also interesting to observe that the DSP usage was significantly low in compar-
ison to other resources considering the substantial usage of multiply-accumulate
operations of NVDLA. From the RTL description, it is examined that the multi-
pliers utilized an efficient hardware implementation of Wallace tree multiplication
[29]. Correspondingly, they are implemented in the PL fabric of the FPGA and
not mapped to DSP slices.

Resource Utilization Utilization%

LUT 161324 58.86

FF 152566 27.83

BRAM 185 20.28

DSP 65 2.59

Table 5.5: Post Synthesis utilization results for NV Medium.

46 Results Analysis

Resource Utilization Utilization%

LUT 159240 58.10

FF 151950 27.72

BRAM 185 20.28

DSP 65 2.59

Table 5.6: Post Implementation utilization results for NV Medium.

59%

28%

20%

3%

0% 10% 20% 30% 40% 50% 60% 70%

LUT

FF

BRAM

DSP

Resource Utilization

Utilization%

Figure 5.3: NV medium utilization graph

5.2 Accelerator Performance comparisons

To compare and evaluate different DNN hardware architectures, it is necessary
to consider various bench-marking metrics. The metrics primarily comprise of
throughput/latency, power/energy consumption and cost parameters. The la-
tency/throughput determines if the system can process in real-time. The power/energy
defines the hardware design specifications. The cost primarily in terms of area
states how much one pays in terms of silicon for the particular solution.

In the image 5.4 different Deep Learning Accelerators (DLA) implemented
on the FPGA are compared. The comparison includes recent accelerator designs
such as OpenCL based DLA [30], Automated systolic array architectures [31],
ALAMO [32], Angel-Eye [33] compared with the architectures realized in this

Results Analysis 47

Specifications Opencl	based	
DLA

Systolic	Array	
Architecture Alamo	 Angel-Eye NV_Small NV_Medium

Platform Arria	10	
GX	1150

Arria	10	
GX	1150

Stratix-V
GXA7

Zynq
XC7Z020

Zynq	Ultrascale+
ZCU104

Zynq	Ultrascale+
ZCU104	

Precision 16	bit:	Half	
(binary	16) FP32 INT8/INT16 INT8 INT8 INT8

Frequency	
(MHz) 303 240 100 214 100 100

Resources
LUT
FF

BRAM
DSP

247,776
683,520
2496
1473

350,304
N/A
2360
1290

122,054
N/A
1562
256

29,792
35,112
86
190

78437
85366
93
32

159240
151950
185
65

Power
(W)	 45 17.36 19.5 3.49 4.441 4.820

DL	Benchmark AlexNet AlexNet AlexNet VGG-16 ResNet-50 ResNet-50

Performance	
(GOPS) 1382 360.4 114.5 84.3 12.8 102.4

Power	Efficiency	
(GOPS/W) 30.71 20.75 5.87 24.1 2.88 21.24

Figure 5.4: Performance Comparison of DNN Hardwares

thesis (nv_small and nv_medium). It is difficult to compare straightaway the
performances of the above architectures. As there are lots of parameters needs to
be considered and they are not evaluated consistently. The main objective of this
comparison chart is to understand the co-relations of different specifications and
their relative impacts on design implementations.

Generally, the hardware accelerators performances are compared when execut-
ing popular DNN models such as AlexNet, ResNet and GoogLeNet on ImageNet or
MNIST data sets. From the illustration 5.4, it can be observed that the OpenCL
based accelerator achieves the highest throughput performance (GOPS). As the
specific architecture operates at a higher frequency and utilizes larger processing
elements, evident from the values of the resources. Consequently, it consumes
immense power. The OpenCL based accelerator and automated systolic array
architecture comparatively consume large Block RAMs due to their increased pre-
cision for inference. The chart also portrays that the OpenCL based DLA approach
achieves the highest power efficiency. But those values are evaluated for AlexNet
which possesses relatively smaller model size compared to ResNet and VGG mod-
els.

The NVDLA implementations are so robust and versatile that it can be re-
configurable based on performance requirements. The figure demonstrates that
NVDLA realizations provide optimal performance. In terms of throughput and
power efficiency even though the specific implementations include only the default
design optimizations. As complete optimizations on hardware and algorithms
levels are included only in NV_Large architecture. Besides, these corresponding
architectures can be used as an initial hardware target for accelerating DNNs and
evaluate the performance metrics.

48 Results Analysis

5.3 System Verification

5.3.1 Regression Tests

When the NVDLA ecosystem is fully systematized, the sanity checks are em-
ployed to verify the basic functionality of the underlying hardware accelerator.
The sanity checks are performed for every functional block (CONV, SDP, PDP,
CDP) in the nv_small architecture. This test reads a respective input file, ex-
ecutes its corresponding layer and produces an output. The subsequent output
calculates an md5 value that is compared with the appropriate md5 value of the
golden data for each CNN layer. If they are equivalent, then the test case gets
passed for the successive hardware block. Successively, the convolution, activa-
tion, pooling and normalization layers of NVDLA are verified individually using
the above pre-compiled sanity tests as shown in the following fig 5.5.

root@NVDLA_v2:/mnt/umd/out/runtime/nvdla_runtime#	./nvdla_runtime	–loadable	
/mnt/kmd/PDP/PDP_L0_0_small_fbuf
creating	new	runtime	context...
Emulator	starting
submitting	tasks...
Shutdown	signal	received,	exiting
Test	pass
root@NVDLA_v2:/mnt/umd/out/runtime/nvdla_runtime#	./nvdla_runtime	–loadable	
/mnt/kmd/CONV/CONV_L0_0_small_fbuf
creating	new	runtime	context...
Emulator	starting
submitting	tasks...
Shutdown	signal	received,	exiting
Test	pass
root@NVDLA_v2:/mnt/umd/out/runtime/nvdla_runtime#	./nvdla_runtime	–loadable	
/mnt/kmd/SDP/SDP_X1_L0_0_small_fbuf
creating	new	runtime	context...
Emulator	starting
submitting	tasks...
Shutdown	signal	received,	exiting
Test	pass
root@NVDLA_v2:/mnt/umd/out/runtime/nvdla_runtime#	./nvdla_runtime	–loadable	
/mnt/kmd/CDP/CDP_L0_0_small_fbuf
creating	new	runtime	context...
Emulator	starting
submitting	tasks...
Shutdown	signal	received,	exiting
Test	pass

Figure 5.5: Sanity Tests Execution on FPGA

Generally, these pre-compiled loadable and regression test files are only com-
patible and verifiable for specific NVDLA architectures. The loadable files com-
prise of fixed network description, tensor representation, memory partition, and
scheduling information. The programmability of these already compiled interme-
diate representations is limited. Since the NVDLA compiler was not open-sourced
during the time of the thesis. Even for the verification, only the built-in tests were
utilized. These verification tests were hardcoded specifically to certain architec-

Results Analysis 49

tures as well as no real image inputs were applied. The complete specifications
of the input image and layer information were encoded in those above-mentioned
regression tests. Therefore, the degree of freedom for user modifications in the test
environments is constrained.

5.3.2 AlexNet Execution

The NVDLA’s verification environment also included a pre-compiled loadable file,
that executes a complete CNN to demonstrate on-device inference acceleration.
The pre-compiled file explicitly comprises of AlexNet network for the nv_small
architecture (Appendix C.2). AlexNet is a powerful architecture that consists of
five convolution layers and three fully connected layers. The following CNN ar-
chitecture popularized ReLu activation and overlapping pooling techniques. As a
result, it reduced training time and improved classification accuracy to a greater
extent. Also, this network is typically used as a benchmark to examine perfor-
mance metrics for different hardware inference accelerators.

The regression test with AlexNet is performed for this implemented hardware
architecture. Unfortunately, the validation was unsuccessful. The test stalled dur-
ing the execution of the second convolution layer as depicted in the fig 5.6. The
NVDLA web-references estimated a possible run time for the following test to
be around 6000s. But the output prevailed at the same convolution layer even
after longer execution times on the FPGA. The main reason for the consequent
output state was because of a control issue in the ping-pong buffer mechanism
employed in convolution buffers. This mechanism as explained in (chapter 2) was
exploited to improve system efficiency by reducing reprogramming latency. This
buffer methodology concurrently programs the second group of buffers when the
first group is processing the convolution computations. The hardware switches
between the register groups through an interrupt based control flow. In this case,
the second group of buffers after executing the second convolution layer waits for
an interrupt to check if the previous group buffer has completed execution. Un-
fortunately, this interrupt was not issued. As a result, the second group of buffers
was always waiting for the consecutive interrupt from the first group.

root@NVDLA_v2:/mnt/umd/out/runtime/nvdla_runtime#	./nvdla_runtime	–loadable	
/mnt/kmd/NN/NN_L0_1_small_fbuf
creating	new	runtime	context...
Emulator	starting
submitting	tasks...

The	process	stalls!

Figure 5.6: AlexNet Execution on FPGA

50 Results Analysis

To troubleshoot the above problem different methods are examined. Initially,
it is important to verify if an appropriate interrupt handler is registered properly
in the implemented system. When the interrupt outputs are analyzed, it returned
a value specific to NVDLA substantiating that the system can receive and ser-
vice interrupts. The next step analysed, if the memory mapping of DDR region
shared between the host and FPGA was sufficient to handle a complete CNN like
AlexNet. Even after allocating 1GB of reserved memory for the validation process,
the output results did not show any progress with convolution layers.

NVDLA online community also discussed the same issues when executing
AlexNet on NVDLA architecture. Some users highlighted that the updated de-
vice driver firm wares of runtime execution environment (UMD/KMD) were not
adaptable with the old NVDLA’s master branch on GitHub. It was very difficult
to troubleshoot these run-time errors without a transparent NVDLA compiler and
device driver information, which was not released during the thesis period. Besides,
only a few pre-compiled neural networks were exploited on NVDLA to compre-
hend the inference acceleration of CNN in hardware platforms. Various CNN’s like
MobileNet, GoogLeNet, SqueezeNet could not be compiled in the Nvidia’s Com-
piler framework (NVDC). As a result, some research groups started scrutinizing
retargetable compiler frameworks designs for proprietary deep learning accelera-
tors such as ONNC (Open Neural Network Compiler). ONNC designed the first
open-source compiler platform that can be ported to NVDLA specific hardware
platforms. Thus furnishing a greater degree of freedom to explore the NVDLA
system flow. As an extension to the following thesis, the ONNC frontend can be
linked with the underlying NVDLA hardware to research diverse CNN inference
acceleration on specialized hardware.

Chapter 6
Conclusion and Future Works

In this thesis, the primary objective was to implement the NVDLA architecture
as an SoC design and prototype on the FPGA platform to perform on-device in-
ference acceleration of CNN’s. The particular implementation was accomplished
to comprehend the consistent design flow of NVIDIA’s deep learning standard
frameworks. As a result, this thesis examined the complete system integration
from the runtime execution environment of neural networks to efficient hardware
implementation on Zynq Ultrascale+ FPGA. This precise framework standardizes
deep learning inference acceleration and could be engaged as an initial target plat-
form for DNN inference on the edge/mobile devices.

NVDLA caters to a versatile, robust architecture that can be configured dif-
ferently based on the required performance levels and type of CNN employed for
inference. In this thesis, two such architectures (small, medium) were explored
following the comprehensive workflow along with the respective designs were pro-
totyped on the FPGA. The hardware implementation results of the appropriate
architectures illustrated that the key features especially the size of convolution
buffers, number of MAC units and memory bandwidth have a significant impact
on performance measures concerning execution time and power consumption. The
Deep Compression techniques applied to the algorithm levels enhanced the energy
efficiency by reducing the network sizes at the cost of optimal prediction accuracy.
The NV_full architecture intended for high-performance applications with all the
feature optimization was not implemented here. Since the FPGA employed did
not fit the respective model.

The complete system was verified using the pre-compiled regression tests and
AlexNet alike Intermediate Representation (IR) files. As the NVDLA’s compiler
was not open-sourced during the time of this thesis. The programmability on the
compiler levels was limited. The pre-compiled files employed in this thesis com-
prises fixed network descriptions and scheduling operations. Besides, only specific
CNN architectures such as AlexNet can be utilized for the on-device inference
process.

51

52 Conclusion and Future Works

Thus, future work concerning this thesis can include explorations of compi-
lation frameworks that can be ported to the NVDLA hardware for the execution
of diverse neural network models. Besides, the compiler architecture could be
retargetable to different proprietary deep learning accelerators to leverage hybrid
acceleration platforms. Also, some research can be undertaken to use CNN specific
NVDLA accelerator for more target domains such as Recurrent Neural Networks
as well as signal processing.

Key Takeaways:
• The NVDLA implementation is quite challenging considering the vast tech-

nological breadth of its ecosystem. Therefore it’s necessary to be definite
with the research objectives for examination as the NVDLA environment
provides opportunities to explore different system hierarchies (Low-Level
Hardware, System architecture, Compilation environment or System verifi-
cation) exclusively.

• To accomplish the complete system integration start with the hardware
accelerator part followed by run-time execution setup and test the developed
system with the given pre-compiled models. Then if all the tests are passed
carry on with the compilation environment.

• To develop and debug the NVDLA system rapidly, use the pre-built virtual
simulators that run on Amazon Web Services (AWS) FPGA platforms.

• The hardware accelerator RTL generated in Verilog presents only a low-
level netlist. Thus, the hardware logic becomes difficult to comprehend.
To understand the hardware modules of the accelerator it is recommended
to set up the NVDLA Verification suite, which is not accomplished in this
thesis.

• The PetaLinux tools utilized for establishing embedded Linux applications
in this thesis is not the best solution as the tool is not very flexible and
compatible with different development environments. It might be preferred
to build your custom kernel which isn’t tool-specific and fulfills your require-
ments appropriately.

• The compiler platform during the thesis period was not open-sourced. There-
fore, pre-compiled neural network models were utilized. To obtain more pro-
grammability to the implemented system, it is necessary to deep dive into
AI compilers. To start with, ONNC (Open Neural Network Compiler) could
be employed and ported to the underlying NVDLA hardware for executing
different deep learning models.

References

[1] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classi-
fication with deep convolutional neural networks." Advances in neural infor-
mation processing systems. 2012.

[2] He, Kaiming, et al. "Deep residual learning for image recognition." Proceed-
ings of the IEEE conference on computer vision and pattern recognition. 2016.

[3] Taigman, Yaniv, et al. "Deepface: Closing the gap to human-level perfor-
mance in face verification." Proceedings of the IEEE conference on computer
vision and pattern recognition. 2014.

[4] Hannun, Awni, et al. "Deep speech: Scaling up end-to-end speech recogni-
tion." arXiv preprint arXiv:1412.5567 (2014).

[5] Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural ma-
chine translation by jointly learning to align and translate." arXiv preprint
arXiv:1409.0473 (2014).

[6] Bahdanau Bojarski, Mariusz, et al. "End to end learning for self-driving cars."
arXiv preprint arXiv:1604.07316 (2016).

[7] Farabet, Clément, et al. "Neuflow: A runtime reconfigurable dataflow proces-
sor for vision." Cvpr 2011 Workshops. IEEE, 2011.

[8] Chakradhar, Srimat, et al. "A dynamically configurable coprocessor for con-
volutional neural networks." Proceedings of the 37th annual international
symposium on Computer architecture. 2010.

[9] Farabet, Clément, et al. "Cnp: An fpga-based processor for convolutional
networks." 2009 International Conference on Field Programmable Logic and
Applications. IEEE, 2009.

[10] Horowitz, Mark. "1.1 computing’s energy problem (and what we can do about
it)." 2014 IEEE International Solid-State Circuits Conference Digest of Tech-
nical Papers (ISSCC). IEEE, 2014.

[11] Chen, Yu-Hsin, et al. "Eyeriss: An energy-efficient reconfigurable accelerator
for deep convolutional

53

54 References

[12] Chen, Yu-Hsin, Joel Emer, and Vivienne Sze. "Eyeriss: A spatial architec-
ture for energy-efficient dataflow for convolutional neural networks." ACM
SIGARCH Computer Architecture News 44.3 (2016): 367-379.

[13] Gao, Mingyu, et al. "Tetris: Scalable and efficient neural network acceleration
with 3d memory." Proceedings of the Twenty-Second International Confer-
ence on Architectural Support for Programming Languages and Operating
Systems. 2017.

[14] Chen, Tianshi, et al. "Diannao: A small-footprint high-throughput acceler-
ator for ubiquitous machine-learning." ACM SIGARCH Computer Architec-
ture News 42.1 (2014): 269-284.

[15] Chen, Yunji, et al. "Dadiannao: A machine-learning supercomputer." 2014
47th Annual IEEE/ACM International Symposium on Microarchitecture.
IEEE, 2014.

[16] Du, Zidong, et al. "ShiDianNao: Shifting vision processing closer to the sen-
sor." Proceedings of the 42nd Annual International Symposium on Computer
Architecture. 2015.

[17] Jouppi, Norman P., et al. "In-datacenter performance analysis of a tensor
processing unit." Proceedings of the 44th Annual International Symposium
on Computer Architecture. 2017.

[18] Parashar, Angshuman, et al. "Scnn: An accelerator for compressed-sparse
convolutional neural networks." ACM SIGARCH Computer Architecture
News 45.2 (2017): 27-40.

[19] Han, Song, Huizi Mao, and William J. Dally. "Deep compression: Compress-
ing deep neural networks with pruning, trained quantization and huffman
coding." arXiv preprint arXiv:1510.00149 (2015).

[20] http://nvdla.org/

[21] Lavin, Andrew, and Scott Gray. "Fast algorithms for convolutional neural
networks." Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2016.

[22] Mathieu, Michael, Mikael Henaff, and Yann LeCun. "Fast training of convo-
lutional networks through ffts." arXiv preprint arXiv:1312.5851 (2013).

[23] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classi-
fication with deep convolutional neural networks." Advances in neural infor-
mation processing systems. 2012.

[24] Nair, Vinod, and Geoffrey E. Hinton. "Rectified linear units improve re-
stricted boltzmann machines." Proceedings of the 27th international confer-
ence on machine learning (ICML-10). 2010.

[25] He, Kaiming, et al. "Delving deep into rectifiers: Surpassing human-level per-
formance on imagenet classification." Proceedings of the IEEE international
conference on computer vision. 2015.

References 55

[26] Shamma, Shihab A. "Speech processing in the auditory system II: Lateral
inhibition and the central processing of speech evoked activity in the auditory
nerve." The Journal of the Acoustical Society of America 78.5 (1985): 1622-
1632.

[27] Ioffe, Sergey, and Christian Szegedy. "Batch normalization: Accelerating
deep network training by reducing internal covariate shift." arXiv preprint
arXiv:1502.03167 (2015).

[28] https://www.learnopencv.com/batch-normalization-in-deep-networks/

[29] Wallace, Christopher S. "A suggestion for a fast multiplier." IEEE Transac-
tions on electronic Computers 1 (1964): 14-17.

[30] Aydonat, Utku, et al. "An openclTM deep learning accelerator on arria 10."
Proceedings of the 2017 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays. 2017.

[31] Wei, Xuechao, et al. "Automated systolic array architecture synthesis for
high throughput CNN inference on FPGAs." Proceedings of the 54th Annual
Design Automation Conference 2017. 2017.

[32] Ma, Yufei, et al. "ALAMO: FPGA acceleration of deep learning algorithms
with a modularized RTL compiler." Integration 62 (2018): 14-23.

[33] Lu, Liqiang, et al. "Evaluating fast algorithms for convolutional neural net-
works on FPGAs." 2017 IEEE 25th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM). IEEE, 2017.

56 References

Appendix A
NVDLA Specification Files

The different configurations of NVDLA implementations especially (nv_small,
nv_medium, nv_large) source files are illustrated in the succeeding figures(A.1,A.2,A.3)
respectively. The hardware tree build generates a Verilog RTL code respectively
based on the given configuration source file.

//#define NV_SMALL 1
#define FEATURE_DATA_TYPE_INT8
#define WEIGHT_DATA_TYPE_INT8
#define WEIGHT_COMPRESSION_DISABLE
#define WINOGRAD_DISABLE
#define BATCH_DISABLE
#define SECONDARY_MEMIF_DISABLE
#define SDP_LUT_DISABLE
#define SDP_BS_ENABLE
#define SDP_BN_ENABLE
#define SDP_EW_DISABLE
#define BDMA_DISABLE
#define RUBIK_DISABLE
#define RUBIK_CONTRACT_DISABLE
#define RUBIK_RESHAPE_DISABLE
#define PDP_ENABLE
#define CDP_ENABLE
#define RETIMING_DISABLE
#define MAC_ATOMIC_C_SIZE_8
#define MAC_ATOMIC_K_SIZE_8
#define MEMORY_ATOMIC_SIZE_8
#define MAX_BATCH_SIZE_x
#define CBUF_BANK_NUMBER_32
#define CBUF_BANK_WIDTH_8
#define CBUF_BANK_DEPTH_512
#define SDP_BS_THROUGHPUT_1
#define SDP_BN_THROUGHPUT_1
#define SDP_EW_THROUGHPUT_x
#define PDP_THROUGHPUT_1
#define CDP_THROUGHPUT_1
#define PRIMARY_MEMIF_LATENCY_64
#define SECONDARY_MEMIF_LATENCY_x
#define PRIMARY_MEMIF_MAX_BURST_LENGTH_1
#define PRIMARY_MEMIF_WIDTH_64
#define SECONDARY_MEMIF_MAX_BURST_LENGTH_x
#define SECONDARY_MEMIF_WIDTH_x
#define MEM_ADDRESS_WIDTH_32
#define NUM_DMA_READ_CLIENTS_7
#define NUM_DMA_WRITE_CLIENTS_3

#include "projects.spec"

Figure A.1: NVDLA Small Specification file.

57

58 NVDLA Specification Files

#define FEATURE_DATA_TYPE_INT8
#define WEIGHT_DATA_TYPE_INT8
#define WEIGHT_COMPRESSION_DISABLE
#define WINOGRAD_DISABLE
#define BATCH_DISABLE
#define SECONDARY_MEMIF_DISABLE
#define SDP_LUT_DISABLE
#define SDP_BS_ENABLE
#define SDP_BN_ENABLE
#define SDP_EW_DISABLE
#define BDMA_DISABLE
#define RUBIK_DISABLE
#define RUBIK_CONTRACT_DISABLE
#define RUBIK_RESHAPE_DISABLE
#define PDP_ENABLE
#define CDP_ENABLE
#define RETIMING_DISABLE
#define MAC_ATOMIC_C_SIZE_32
#define MAC_ATOMIC_K_SIZE_16
#define MEMORY_ATOMIC_SIZE_16
#define MAX_BATCH_SIZE_x
#define CBUF_BANK_NUMBER_32
#define CBUF_BANK_WIDTH_32
#define CBUF_BANK_DEPTH_512
#define SDP_BS_THROUGHPUT_4
#define SDP_BN_THROUGHPUT_4
#define SDP_EW_THROUGHPUT_x
#define PDP_THROUGHPUT_2
#define CDP_THROUGHPUT_2
#define PRIMARY_MEMIF_LATENCY_256
#define SECONDARY_MEMIF_LATENCY_x
#define PRIMARY_MEMIF_MAX_BURST_LENGTH_4
#define PRIMARY_MEMIF_WIDTH_128
#define SECONDARY_MEMIF_MAX_BURST_LENGTH_x
#define SECONDARY_MEMIF_WIDTH_x
#define MEM_ADDRESS_WIDTH_64
#define NUM_DMA_READ_CLIENTS_7
#define NUM_DMA_WRITE_CLIENTS_3

#include "projects.spec"

Figure A.2: NVDLA medium Specification file.

NVDLA Specification Files 59

#define FEATURE_DATA_TYPE_INT8
#define WEIGHT_DATA_TYPE_INT8
#define WEIGHT_COMPRESSION_DISABLE
#define WINOGRAD_DISABLE
#define BATCH_DISABLE
#define SECONDARY_MEMIF_ENABLE
#define SDP_LUT_ENABLE
#define SDP_BS_ENABLE
#define SDP_BN_ENABLE
#define SDP_EW_ENABLE
#define BDMA_DISABLE
#define RUBIK_DISABLE
#define RUBIK_CONTRACT_DISABLE
#define RUBIK_RESHAPE_DISABLE
#define PDP_ENABLE
#define CDP_ENABLE
#define RETIMING_DISABLE
#define MAC_ATOMIC_C_SIZE_64
#define MAC_ATOMIC_K_SIZE_32
#define MEMORY_ATOMIC_SIZE_32
#define MAX_BATCH_SIZE_32
#define CBUF_BANK_NUMBER_16
#define CBUF_BANK_WIDTH_64
#define CBUF_BANK_DEPTH_512
#define SDP_BS_THROUGHPUT_16
#define SDP_BN_THROUGHPUT_16
#define SDP_EW_THROUGHPUT_4
#define PDP_THROUGHPUT_8
#define CDP_THROUGHPUT_8
#define PRIMARY_MEMIF_LATENCY_1024
#define SECONDARY_MEMIF_LATENCY_1024
#define PRIMARY_MEMIF_MAX_BURST_LENGTH_1
#define PRIMARY_MEMIF_WIDTH_256
#define SECONDARY_MEMIF_MAX_BURST_LENGTH_1
#define SECONDARY_MEMIF_WIDTH_256
#define MEM_ADDRESS_WIDTH_64
#define NUM_DMA_READ_CLIENTS_8
#define NUM_DMA_WRITE_CLIENTS_3

#include "projects.spec"

Figure A.3: NVDLA large Specification file.

60 NVDLA Specification Files

Appendix B
PetaLinux Design Flow

A detailed block diagram illustrating the complete integrated design flow in PetaL-
inux environment is shown below in the figureB.1.

Figure B.1: General design flow in PetaLinux.source (From PetaL-
inux reference guide).

61

62 PetaLinux Design Flow

Appendix C
Miscellaneous

C.1 The Multi Layer Perceptron model

A Multi Layer Perceptron (MLP) comprises of an arbitrary number of hidden
layers. The particular hidden layers commonly employ non-linear activations such
as sigmoid and tanh functions. While at the output layer the activations utilized
are linear for functional approximation, sigmoid for binary classification and soft-
max for multi-class problem respectively.

For a given MLP model, consider the Input nodes xk, Hidden layers hj ,
Weights Wjk (Input to hidden layer), Wij (between hidden layers and outputs),
and Output nodes yi. The output calculated through a forward pass is:

yi(xn) = ϕo(
∑
j

wijϕh(
∑
k

wjkxnk)) = ϕo(w
T
i hn) (C.1)

Here ϕo, ϕh are the output and hidden activations respectively.

Figure C.1: A Multi Layer Perceptron model with two hidden layers.

63

64 Miscellaneous

C.2 AlexNet Architecture

The following figure C.2 contains a split into two pathways indicating the pro-
cessing of the network in two GPUs. The input to the specific network is an RGB
image of size 256256. This network is much larger than previous CNNs such as
LeNet used for computer vision application. AlexNet includes 60 million parame-
ters and 650,000 neurons. The architecture took five to six days to train on two
GTX 580 3GB GPUs. A layer wise summary of the network is illustrated in the
fig C.3

Figure C.2: AlexNet Architecture.

Figure C.3: AlexNet Layer-wise Analysis.
(Sourced from cs.toronto.edu/csc321 2018)

Implementation of a Deep Learning Inference
Accelerator on the FPGA

SHENBAGARAMAN RAMAKRISHNAN
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2020

SH
EN

B
A

G
A

R
A

M
A

N
 R

A
M

A
K

R
ISH

N
A

N
Im

plem
entation of a D

eep Learning Inference A
ccelerator on the FP

G
A

LU
N

D
 2020

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2020-751
http://www.eit.lth.se

