
Evaluation of FIWARE’s Business API Ecosystem

MICHAEL JIVUNG
CARL TIDELIUS
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2019

M
IC

H
A

EL JIV
U

N
G

 &
 C

A
R

L TID
ELIU

S
Evaluation of FIW

A
R

E’s B
usiness A

PI Ecosystem
LU

N
D

 2019

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2019-687
http://www.eit.lth.se

Evaluation of FIWARE’s Business API Ecosystem

Michael Jivung
dat13mji@student.lu.se

Carl Tidelius
dat12cti@student.lu.se

Department of Electrical and Information Technology
Lund University

Supervisor: Emma Fitzgerald

Examiner: Christian Nyberg

March 13, 2019

c© 2019
Printed in Sweden
Tryckeriet i E-huset, Lund

Abstract

The modern society is getting more and more digitalized and the concept Internet
of Things is growing. The data being collected and digital services require a place
to be accessed and sold, thus setting the demand for a new kind of marketplace; an
online IoT focused marketplace. The large EU supported open source platform for
Smart Solutions, FIWARE, has created such a marketplace, namely the Business
API Ecosystem (BAE). This paper aims to evaluate and review the BAE, giving
a quality evaluation as well as comparing it to contemporary alternatives. This
will help interested parties to make an educated decision when choosing an IoT
marketplace.

The evaluation was done with a hands-on approach where the BAE was ex-
plored. The program was looked at from the perspective of both the administrator
and the users. It was installed, configured, tested and exploratory used. A custom
front-end was created to investigate its modifiability and the usability of its APIs.
Performance testing of the APIs was also done.

The results of the evaluation shows that the Business API Ecosystem is a
viable option for an IoT marketplace of high quality. However, it is a relatively
young and small project that which, without the use of plugins and other software,
lacks some much wanted IoT related functionality.

i

ii

Preface

This is the final report for a master thesis project at the Electrical and Information
Technology (IET) institution of the Faculty of Engineering in Lund. The project
was done by the students Michael Jivung and Carl Tidelius who studied their fi-
nal year at Information- och Kommunikationsteknik and Datateknik, respectively.
The project was carried out i the second half of 2018 from September to January.
The project was defined by the Lund based and IoT related company Sensative
as they wanted help exploring new territory in the IoT field. The majority of the
work was done at the office of Sensative with the help of the employee Ulrik Sjölin
as supervisor. Emma Fitzgerald, researcher at the EIT institution, assisted as
main supervisor and Christian Nyberg, university lecturer at the EIT institution
was the project examiner.

We would like to thank Ulrik, Emma and Christian for all the valuable help
they gave us as well as Sensative for the opportunity.

iii

iv

Table of Contents

1 Introduction 1
1.1 Questions . 2
1.2 Structure of the report . 2

2 Background 5
2.1 Related work . 5
2.2 Technical background . 10

3 Methodology 17
3.1 Installation of the BAE . 17
3.2 React front-end . 19
3.3 Performance testing . 21
3.4 Running the test scripts . 22

4 Results 23
4.1 BAE Performance . 23
4.2 BAE Tests . 28

5 Discussion & Conclusion 31
5.1 BAE quality evaluation . 31
5.2 Enhancements, limitations and general discussion 39
5.3 Conclusion . 41

References 43

A API-benchmark 45

v

vi

List of Figures

2.1 The architecture of the FIWARE framework. 7
2.2 Creation of a product specification. 8
2.3 Creation of offering. 9
2.4 Relationship of the used software 11
2.5 The architecture of the BAE. 12

3.1 Fiwares out-of-the-box marketplace. 19
3.2 Our design of Sensative’s marketplace. 20

4.1 Api-benchmark test results for the Billing Management API 24
4.2 Api-benchmark test results for the Catalog Management API 24
4.3 Api-benchmark test results for the Customer Management API . . . 25
4.4 Api-benchmark test results for the Order Management API 25
4.5 Api-benchmark test results for the Usage Management API 26
4.6 Load test results with 1 request/s 27
4.7 Load test results with 10 request/s 28
4.8 Load test results with 25 request/s 28

5.1 The ISO/IEC 25010 standard . 32

vii

viii

List of Tables

4.1 API test results . 26
4.2 API test results . 27
4.3 API load test results . 27
4.4 BAE test scripts results . 28
4.5 Logic Proxy test coverage . 29

ix

x

Chapter 1
Introduction

Marketplaces have been an integrated part of society for centuries, where peers
could offer and acquire different goods and services. Throughout the centuries,
these marketplaces have evolved in different ways and the economy has flourished
with them. As the internet emerged, marketplaces gained new ground to evolve
further and they have become part of one of the largest industries in the world.

You have probably already been exposed to many different digital market-
places, such as the App store or eBay, but these marketplaces focus on applications
or physical objects. In our society, where data can be gathered through a myr-
iad of things, a new marketplace is emerging. In integration with the Internet of
Things (IoT), a marketplace for both services and data can be achieved and used
by both organizations and private citizens. Private citizen can utilize the concept
Sensing as a Service [22], to sell data collected by their sensors and benefit from
data which otherwise would have been used only by them, and most likely only
one time.

The exchange of data is becoming more and more predominant, especially with
regards to IoT. The Internet of Things refers to both everyday devices and more
sophisticated machinery with a built in connection to the internet. Through this,
the devices can communicate over a network and send data to be processed by
external systems. A lot of this data is only processed once and often only by the
owner of the sensor or device. After the data has been used it is either discarded or
put into databases for storing, often never to be used again. This results in waste
of data, data that could be useful and valuable to other parties. This isolated
storage of data is often called data silos. IoT marketplaces seek to diminish this
waste.

An emerging new concept for society is the Smart City, where the city itself
makes use of these smart IoT devices. Some Smart Cities have already emerged and
are now pushing for a common standard for how to create a software platform for
Smart Cities. One of these standards is called FIWARE which is an open platform
offering generic enablers [16] containing open APIs to facilitate development of
future internet applications. Another proposal which interested parties are pushing
for is a marketplace for the data which the IoT devices are collecting.

Sensative, our Master Thesis employers, have decided to implement FIWARE
into their own platform Yggio. Yggio is a horizontal, thin IoT platform designed

1

2 Introduction

for Smart Properties, Smart Cities and other arbitrary IoT applications. Its pur-
pose is roughly to act as a data broker between sensors/actuators and users/service
providers. Sensative has therefore enlisted our services to investigate the possi-
bility to utilize the open source capabilities of the FIWARE standard to create
a Smart Marketplace. FIWARE has designed, together with TMForum, a digital
marketplace called Business API Ecosystem (BAE). The main goal of this Master
thesis was to evaluate and review this marketplace so that Sensative can decide
on whether or not they want to integrate it in their platform.

1.1 Questions

Before we started the project we put together a series of questions which we would
like to have answered by the end of the project. The questions are answered
throughout the report, mostly in Chapter 5.

• Why are we evaluating the BAE instead of other alternatives?
• How complete is the BAE as an IoT-marketplace? Does it lack any desired

functionality?
• How do other IoT-marketplace alternatives compare to the BAE?
• What kind of assets are possible to sell/buy on the marketplace?
• How does the delivery of the purchased products work?
• What are the supported payment methods? Is it possible to add arbitrary

payment methods?
• How modifiable and extendable is the BAE? Can you create plugins/add-

ons?
• How do legal aspects such as right of withdrawal of purchases work?
• How easy is the BAE to install and maintain?
• How easy is the BAE to use?
• What does the architecture of the BAE look like?
• How good is the performance of the BAE?
• What are the licenses for using the BAE?
• How popular is the BAE today? How active is the Github repository?

The architecture of the BAE presents a few more questions, such as modular-
ity, object orientation, dependencies, and so on. This will be investigated more
thoroughly throughout the report and as such the questions posed here do not go
into details of the architecture.

Since this work has been done on our own computers, some limitations in
software have posed a problem. As such we have proposed further investigations
and work in the discussion of our results.

1.2 Structure of the report

This report starts off with related work in Chapter 2, Section 2.1 where we give
the reader background information on FIWARE and the BAE and other software

Introduction 3

that were needed during the project. This is followed by an in depth technical
background of the BAE in Chapter 2, Section 2.2; what it consists of and how
it works. In Chapter 3 we explain how we installed the BAE, how we built the
React front-end and how performance testing and functional testing of the BAE
were carried out. In Chapter 4 the results of the testing is shown. In Chapter 5 we
evaluate the BAE and discuss it’s strengths and weaknesses. We end the report
with a conclusion in Chapter 6 in which we have concluded that the BAE is indeed
a viable option as an IoT marketplace although it is lacking in certain areas.

4 Introduction

Chapter 2
Background

In this section background information that will be useful to have in the later
chapters is given. IoT, digital marketplaces, FIWARE and the BAE are presented,
followed by a more in depth technical background of the BAE. Other software that
was used during the project is also presented, such as CKAN, Docker and the IdM.

2.1 Related work

2.1.1 Internet of Things and marketplaces

As of now, the primary market of data marketplaces is corporations and govern-
ments, since the quantities of data are usually large, but the market has been
shifting towards business to consumer [25][27][26]. This means that data is mostly
being exchanged between companies, but according to Gartner, Inc,[13] 80 percent
of companies will fail to monetize their IoT data. Since there already exist data
markets, it is surprising that so many companies will fail to monetize their data,
but there is a reason. In [28], it is theorized that since users have access to such a
large amount of free information, they have a low willingness to pay for data. It
is not unreasonable to think that people will not think of the idea of monetizing
their data, since they themselves would not be willing to buy data.

As mentioned, there already exist a few data marketplaces on the internet,
such as BDEX[1] and Saleforce’s data.com[4], and while they allow for the mon-
etization of data, IoT data have some unique characteristics, which demand a
more specific marketplace [17]. Firstly, the data that come from sensors owned

by private citizens is not a large amount. Usually the owners only have a couple
of sensors. Traditional data markets are designed for companies or governments,
which means that the data will come from a large number of independent device
owners. Secondly, the measurements that are taken from the sensors are not as

precise when handling large amounts of data, that is, they are usually stored in
archives and not updated in real time. The main reason to use sensors is to collect
data and present it as it is. For instance, an owner of a temperature sensor would
in most cases not benefit from seeing yesterdays data, and traffic map creators
would demand data from connected cars that can be directly transformed into a
real time traffic map to be able to notify driver about approaching traffic. The

5

6 Background

point is that there exist scenarios where data is needed with a delay of only minutes
or seconds. Thirdly, since data measurements are often purchased via subscrip-

tion or in advance, and the current data marketplaces list data already collected,
data consumers will have to sift through data offerings to find the ones that are
listed to be updated at a certain time, and then purchase the data at the specified
time. Lastly, IoT devices can collect sensitive information which would require

that sensor owners would have to understand exactly what data they are selling
and to whom. With this in mind, a marketplace specially defined for IoT-devices

is needed, especially in larger scales such as Smart Cities.

IoT sensors are being massively produced around the world and according
to Robert Bogue[24] it will reach a trillion devices in the coming decades. IoT
will also have an annual economic impact of 3.9 - 11.1 trillion dollars in several
different settings such as cities, retail environments and factories [19]. Although
the market in itself will have a tremendous impact, the IoT adoption is slow.
As such, to facilitate the adaptation to IoT, is is important that standards are
implemented in the different settings to avoid future problems.

2.1.2 FIWARE

FIWARE is a framework of open source platform components, that together with
third-party platform components, aims to accelerate the development of smart
solutions [10]. It is an EU-supported project started in 2011, which consists of an
open community of actors that contribute to the project. The FIWARE framework
can be used by third-parties such as companies, organizations and cities in smart
applications which can be in the domains of smart cities, smart industry, smart
logistics etc.

The FIWARE framework is component based which means that one can pick
and choose the parts that fit one’s needs. The central part of the framework is
the FIWARE Context Broker which is the only mandatory component. It handles
context information, i.e. data, which is central in any smart solution. Additional
FIWARE components or third-party components can then be built around the
Context Broker. If a third-party platform uses the Context Broker it can label
itself Powered by FIWARE. The Business API Ecosystem is however not part of
the FIWARE standard open platform, and as such, does not require the context
broker.

2.1.3 Business API Ecosystem

The Business API Ecosystem (BAE) [5] consists of the FIWARE Business Frame-
work and a set of standard APIs provided by TMForum. The component allows for
monetization of assets, both digital and physical, in the form of charging, account-
ing, revenue settlement and sharing. This component offers managing, publishing,
and revenue generating possibilities to sellers of products, apps, data and services.
The BAE was created and is maintained mainly by Francisco de la Vega, Senior
Research Engineer at the Universidad Politécnica de Madrid.

Background 7

Figure 2.1: The architecture of the FIWARE framework.

Since there are many different functionalities provided, there also exists an
established model for controlling users’ privileges and interactions of the BAE.
The component that is in charge of these roles and privileges is not the BAE.
Instead the Identity Manager (IDM) takes care of this, and provides the means of
controlling the users’ privileges via roles. Users must at least have one role, but
may have any number above that. The roles that provide privileges are as follows:

• Seller: Has the option of publishing offerings for others to acquire.
• Customer: Has the option of acquiring offerings. This is also the default

role.
• Administrator: Manages certain settings, and can create categories.

The official documentation states that the main functionalities that the BAE offers
are:

• Publication of new products and offerings.
• Acquisition of products and offerings.
• Offering payment.
• Billing management of acquired offerings.
• Access to all purchased services.
• Download of software if the offering is part of a downloadable service.
• Shipment tracking if the offering describes a physical product.
• Distribution of revenues between all the involved stakeholders.
• Management of service usage information in order to enable usage-based

models.

8 Background

Usage Scenarios

To follow the blueprint of the API’s structure of relationships, the creation of an
offering requires a catalog and a product specification. The catalog has to be
created to publish the offerings, while the specification has to be created for the
offerings to be able to offer an actual product or a service. So, the first step is to

create the catalog, which is straightforward. The user would have to be assigned
the role Seller, to be able to access the section My Stock. From there, the user
can create a catalog. This requires the user to fill in a Name for the catalog,
and an optional description of what the catalog contains. After this, the user
would have to edit the catalog’s status to Launched to be able to use the catalog.
After a catalog has been created, the user can create a product specification. This

specification details the information of the product to be sold. In figure 2.2 the
steps to create a product specification can be seen.

Figure 2.2: Creation of a product specification.

After creating a product specification with the preferred data, an offering can
be created. An offering can either be defined by a bundle of offerings, or by a
product specification, but not by both. It must then be put in a catalog and
optionally a category. Price plans can be created if the seller wishes the product
to have a cost, and lastly a Revenue Sharing plan must be selected, even if there
is not a configured price (e.g. free products). This process can be seen in Figure
2.3.

After a product has been created and launched, as done in the product speci-
fication and catalogue creation, the product can be acquired by users other than
the creator of the offering.

When a user with the Customer role is logged in on the platform, that user can
purchase the offered products. The user can filter the products either by searching
by the type of products associated with the offering or by selecting a catalog.
The user can then select the offering he/she wishes to acquire and put it in the

Background 9

Figure 2.3: Creation of offering.

shopping cart, then confirm and checkout. In order to do this the user must have
a shipping address configured in the BAE and a PayPal account associated with
the email-address used when signing up. The BAE will request the information
necessary to make the payment and then download the transaction invoice and
reroute to the service provider to access credentials from the provider. After the
process is completed, the user will own the offering and will be able to download
the invoice and get necessary access credentials depending on what type of offering
the user has acquired.

2.1.4 Comprehensive Knowledge Archive Network

Comprehensive Knowledge Archive Network (CKAN) is a tool for making open
data websites[3]. With it the user can manage and publish collections of data,
in CKAN called datasets. CKAN consists of a back-end that stores and handles
the data as well as a front-end website for users to access the data. The front-
end allows users to search published data and download it. The data can also be
previewed using maps, graphs and tables. CKAN is commonly used by entities
who collect a lot of data, such as governments and research institutions. It is open
source and is developed by a community of contributors. It is also modified and
extended upon by an even larger community of developers.

2.1.5 Docker

Docker is similar to a virtual machine, with so called containers that host clean
setups of databases and programs, like MySQL and the FIWARE components. It
is created by Docker, Inc., residing in San Francisco. All docker images/builds are
hosted on a repository not unlike Github and can be shared with peers. The key
benefit with Docker is that it allows users to package an application with all of its
dependencies into a standardized unit for software development. With this, one

10 Background

can skip all the time consuming manual installations and not have to worry about
conflicting pre-installed software. Instead, each package is run in a container which
can be linked to other containers and thus setting up an environment which is clean
from other conflicting software and with all dependencies installed and linked in
the containers. Via Docker, it is possible to install each and every component and
link them with APIs and each other with a docker-compose.yml file, which acts
like a blueprint for how each container is linked and from where it should fetch
images. However to be able to utilize all the features of the BAE, another GE
must be installed, the Identity Manager.

2.1.6 Identity Manager

The Identity Manager - KeyRock (IDM) is another FIWARE GE developed by a
number of people at the Universidad Politécnica de Madrid. The IDM working
in tangent with two other GEs, the Policy Enforcement Point (PEP) and the
Policy Decision Point (PDP) to provide authentication and authorization security
to services and applications, in our case the BAE [12].
To be able to install and run the IDM there are three software requirements,
namely:

• MySQL 5.7
• NodeJS
• npm

The IdM’s current main concepts are Users, Organizations, and Applications.
Users have a registered account in the IdM and can manage their organizations
and register applications. Organizations are a group of users that share resources
of an application, that is, roles and permissions. Users can be members or owners
of these organizations. Applications work as the client role in the OAuth 2.0 archi-
tecture and will request protected user data. Applications are able to authenticate
users with ClientID and ClientSecret which identifies the application.

2.2 Technical background

This section will go into further detail of the BAE which is this project’s main
focus.

2.2.1 Architecture

The FIWARE Business Framework consists of four different components. The
following are required for the BAE to be able to run properly:

• The Business Ecosystem Charging Backend which provides charging
functionality, such as connection to charging platform (PayPal, etc), the
required actions to charge the user for the products they are using/acquiring.
In addition, it also manages the lifecycle of the digital products, activating
them when they are being used/acquired and deactivating them when the

Background 11

Figure 2.4: Relationship of the used software

users subscription ends or is cancelled. The Charging Backend also handles
information about different pricing models, the accounting information, and
the revenue sharing reports.

• The Business Ecosystem RSS which provides the revenue settlement,
so that different stakeholders can distribute the revenues in a flexible way,
and share the different revenues derived from the usage of the platform.

• The Business Ecosystem Logic Proxy which provides authentication
via a back-end, the web portal/front-end and acts as the API orchestrator
validating user requests, including authentication, authorization, and the
content of the request from a business logic point of view.

• The TMForum standard APIs which consists of:

– the Catalog Management API
– the Product Ordering Management API
– the Product Inventory Management API
– the Party Management API
– the Customer Management API
– the Billing Management API
– the Usage Management API

The dependencies for installing and running the BAE include:

• APIs and RSS:

– Java
– Glassfish
– MySQL

12 Background

Figure 2.5: The architecture of the BAE.

• Charging Backend:

– Python
– MongoDB
– wkhtmltopdf

• Logic Proxy:

– Node.js (including npm)

The reader of this paper should be familiar with the majority of this soft-
ware except for possibly Glassfish, wkhtmltopdf and Node.js. As such, a short
description of them will follow. Glassfish is an application server for the JAVA
EE platform that helps to create web applications and provides a server environ-
ment to run them. Wkhtmltopdf is a command line tool that can render HTML
into PDF. Node.js is a JavaScript run-time environment that executes JavaScript
code outside of a browser, often used for back-end server applications.

In order to install the BAE one can take two different approaches: manual
installation or using Docker. For the manual installation there is a provided in-
stallation script that makes the process automated. The BAE installation guide
states that the program has only been tested on Ubuntu, Debian and CentOS,
and so these are considered to be the supported operating systems.

2.2.2 Models

Each API in the BAE includes a set of models. Besides being actual models in
the APIs and the database, they are a good way to get a better understanding of
the system. All the models are listed and described below.

• Party API

– Individual: a physical person.
– Organization: a group of people identified by shared interests or

purpose, e.g. a company.

• Customer API

Background 13

– Customer: an individual or organization that buys products and
services.

– Customer Account: an account for the customer to manage billing
aspects. Can contain customer tax exemption, related accounts, con-
tact information, customer relation, account balances and payment
plans.

• Billing API

– Billing Account: a detailed description of a customer’s bill structure.
– Applied Customer Billing Charge: an amount, usually of money,

for which a person or an organization is financially liable.
– Settlement Note Advice: the settlement is about transferring money

received by a CSP to a partner. The settlement is notified to the part-
ner with a settlement note advice containing details in settlement lines.

• Catalog API

– Product Specification: a description of a product.
– Product Offering: represents entities that are orderable from the

provider of the catalog. This resource includes one or many product
specifications and pricing information.

– Catalog: used to group product offerings.
– Category: used to group product specifications.

• Ordering API

– Product Order: used to place an order between a customer and a
service provider or between a service provider and a partner and vice
versa.

• Inventory API

– Product: a product a purchaser has acquired.

• Usage API

– Usage: an occurrence of accessing a product, which is of interest to
the business and can have charges applied to it.

2.2.3 Supported asset types

The BAE supports both digital and non-digital products. When creating a product
specification the seller must choose whether the product is digital or not. If digital
is chosen the seller is presented with a list of available digital asset types. These
asset types depend on which plugins have been installed on the BAE instance (see
Section 2.2.4 for more on plugins). A fresh install of the BAE includes no plugins
and so no digital asset types are supported out-of-the-box. What kind of digital
asset types that can possibly be supported is arbitrary as a developers can create

14 Background

custom plugins. If a non-digital product is chosen no further information on asset
type is required.

2.2.4 Plugins

When a seller is to create a new product specification for a digital product he/she
has to choose an asset type. A fresh install of the BAE includes no asset types
as they must be added through plugins. The BAE plugins are solely used for
defining digital asset types. The majority of the assets require validation and
activation mechanisms. These can be very different, and for that reason asset
types require their own plugins, since then the creator of the plugin can code their
own mechanisms. Validation is the way of making sure that the provided asset
is of the right type. Activation is the way of activating the product after the
purchase has been done, so that the customer can get access to it. There are six
FIWARE-created plugins available:

• Basic File
• Basic URL
• CKAN Dataset
• CKAN API Dataset
• Umbrella Service
• WireCloud Component

Basic File and Basic URL are different from other plugins in that they do
not require validation or activation processes. They allow for publication of any
type of file or URL respectively. CKAN Dataset and CKAN API Dataset define
an asset type that is a dataset offered by a CKAN instance (see Section 2.1.4
for more information). Umbrella service is for selling services secured with an
API Umbrella proxy which is an API management platform for exposing web
service APIs. WireCloud Component defines an asset type intended to manage
and monetize different WireCloud components. WireCloud is a FIWARE GE [9]
and is out of the scope of this report.

The installation of a plugin is simple with just one command in the Charging
Backend CLI. All you need is a zip file of the plugin in question. The existing
FIWARE-created plugins can be downloaded from their respective Github repos-
itories.

It is also possible to create your own plugin. The plugin must consist of a
JSON file with all the meta data as well as a Python script. The script should
contain implementations of all the event handlers that you want to implement.
There are 11 event handlers in total, which are called at different times during the
creation, acquisition and activation process of a product. An event handler can
contain any sort of code but must return an error or no error on success.

2.2.5 CKAN in the BAE

CKAN is supported in the BAE and is the main way to sell data on the market-
place. It can be installed in three different ways: from a package, from source and

Background 15

with Docker. Installation from a package is the easiest and quickest way but re-
quires Ubuntu as OS. Installation from source is the most complex way but is the
most configuration friendly and can be installed on any arbitrary OS. Docker in-
stallation is easier than a source installation but is more complex and gives better
flexibility than a package installation.

A survey from 2013 [26] showed that XML, CSV, XLS, JSON and RDF were
the most supported data file formats for data marketplaces. All these file formats
are supported in CKAN. It can also store data externally, meaning that the data
is stored somewhere else on the web, and simply linked to via a supplied URL.

The BAE supports the use of CKAN for providers to offer data [7]. There
are two different plugins in the BAE for supporting CKAN: CKAN Dataset and
CKAN API Dataset. These plugins enable sellers to select CKAN Dataset/CKAN
API Dataset as asset types when creating a product. To create a product with
a CKAN Dataset or a CKAN API Dataset the seller must provide an asset URL
that points to the CKAN Dataset that resides inside a CKAN instance, as well as
the media type of the data e.g. JSON, CSV etc. The plugins validate that the
asset URL points to a valid CKAN Dataset and that the seller has the rights to
create a product that sells the provided dataset. They also manage the access to
the dataset of the customers who acquire it.

In particular, these plugins are able to validate the dataset, validate the rights
of the seller creating a product specification to sell the provided dataset, and
manage the access to the dataset of those customers who acquire it. The difference
between the two plugins is that CKAN API Dataset expects the data to be served
by an external API that is secured with the FIWARE security framework. It uses
the IdM roles and permissions to validate the permissions of the seller as well as
grants customers access rights to the dataset.

However, CKAN does not provide a way to publish data that only certain
users can access, i.e. private datasets. It also does not manage the access rights
to published datasets. To be able to do this CKAN can be extended with two
extensions: ckanext-oauth2 and ckanext-privatedatasets. Ckanext-oauth2 allows
users to login through a OAuth2 instance, in our case the FIWARE IdM. Ckanext-
privatedatasets allows datasets to only be accessed by a set of selected users.

2.2.6 Sanity check and testing

The BAE documentation provides some sanity check procedures that can be used
by the system administrator to verify that the installation has been successful and
that the system is ready for testing. These procedures include:

• List running processes: A command that lists relevant processes to
check if the Glassfish server, Charging Backend, Logic Proxy, MongoDB
and MySQL are up and running.

• List network interfaces: A command that lists ports in use to check if
the expected ports are included.

• Databases check: Two commands that check whether MongoDB and
MySQL are running.

16 Background

After the sanity checks are done testing can be started. There are two types of
tests included in the BAE: unit tests and end-to-end tests. The Charging Backend,
the RSS and the Logic Proxy have their own included unit tests.

Now that we have the necessary information we are ready to move on to the
next chapter where we explain what we actually did during the project.

Chapter 3
Methodology

In this chapter we explain what we did during the project. Firstly, the installation
of the BAE is explained. Secondly, the creation of our own React front-end is
presented. Lastly, we explain how we carried out performance testing as well as
functional testing of the BAE.

3.1 Installation of the BAE

Firstly we installed the BAE using Docker which is the simplest method of in-
stalling. It is just a matter of downloading the BAE from github, set the working
directory to the docker directory and running the docker command. This will
download and install all the necessary software. By using docker however, one is
limited by a pre-built image of the software and it is not possible to modify the
code.

In order to be able run a the BAE where we could modify the code, which
was necessary for our project, a manual install was required. Since we both were
using Mac OS X, which is not considered a supported operating system, we set up
a virtual machine on which we installed Ubuntu. With the use of the installation
script and after some minor configurations the BAE was successfully installed.

We ultimately decided that a native installation on Mac OS X would be easier
for us than using a virtual machine. Since the dependency software is also available
on Mac OS X this should be possible. Following below is a complete guide how
to manually install the BAE on MAC OS X. The guide is based on the official
installation guide [12] with some tweaks for making it work for Mac OS X.

Before the installation can begin all the dependencies have to be downloaded
and installed. This is easily done by using the package management system Home-
brew with the following command:

brew install [dependency]

The dependencies include:

• Java 8
• MySql

17

18 Methodology

• Maven
• Python 2.7
• Python 3
• MongoDB
• Wkhtmltopdf
• Node and NPM

The provided installation script was used with some minor changes. The database
information has to be changed to the correct values for the local MySQL setup.

DBUSER = "MY_MYSQL_USER"

DBPWD = "MY_MYSQL_PASSWORD"

DBHOST = "MY_MYSQL_HOST"

DBPORT = MY_MYSQL_PORT

The branch of all the repositories was changed from v6.4.0 to develop.

{

...

"branch": "develop",

...

}

Also some printouts were added to make it more verbose. The script can be
accessed from [30]. The script requires Glassfish, MySQL and MongoDB to be
running before it is executed:

asadmin start-domain // Glassfish

sudo /usr/local/mysql/support-files/mysql.server start // MySQL

mongod // MongoDB

To start the installation download the script, move it to an empty directory and
run the script with the following command:

./install.py all

After the installation some configuration have to be done to the config.js file in
the Logic Proxy directory. The host and port of which the Logic Proxy can be
accessed has to be set:

config.port = MY_LOGIC_PROXY_PORT

config.host = ’MY_LOGIC_PROXY_HOST’ // e.g. ’localhost’

Some OAUTH2 information for the IDM has to be set:

{

’server’: ’MY_IdM_URL’, // e.g. ’http://localhost:3001’

’clientID’: ’MY_BAE_APP_CLIENT_ID’,

’clientSecret’: ’MY_BAE_APP_CLIENT_SECRET’,

Methodology 19

’callbackURL’: ’MY_CALLBACK_URL’,

...

}

3.2 React front-end

The Sensative IoT platform Yggio is built in React.js, and all their pages are
uniform in design, which meant that the design that FIWARE has implemented in
their front-end was unwanted. As such, one of our tasks was to present a mock-up
of how a front-end, built in React.js, could be used with the APIs that TMForum
had implemented. We took note of how the new version of Yggio would look,
so that our implementation would mimic the design of the platform it would be
integrated into.

We used the boilerplate "create-react-app" because of the low learning thresh-
old. The first task was to mimic the design, and we created a non-functional page
which had the same sections as FIWARE’s implementation, but presented, in our
opinion, in a more logical and intuitive way.

FIWARE’s marketplace can be seen below in figure 3.1. The structure of
offered products and sections (e.g. My Inventory, My Stock, etc.) have been used
in our design, as well as can be seen in Figure 3.2.

Figure 3.1: Fiwares out-of-the-box marketplace.

The source-code for FIWARE’s marketplace did not give us the required in-
sight to help us when implementing our own front-end because of its complexity
and language (PUG). We attempted to learn as much as we could from their imple-
mentation, but realized that the API-calls that were made when using FIWARE’s
BAE, and the Apiary [6] which hosted the knowledge base for TMForum’s APIs,
would give us the basic information on the functionality that we needed.

20 Methodology

Figure 3.2: Our design of Sensative’s marketplace.

3.2.1 Back-end

Because of the complexity of FIWARE’s source code, the FIWARE backend was
not integrated in the mock-up. An attempt to integrate the FIWARE IDM (iden-
tity manager) to be able to use an OAUTH2 token in the header in the API calls
was made because the Apiary documenting the TMForum APIs specified that each
and every call must include a token to authenticate the request. This is necessary
for a production version of the software, but as we noticed if the API was called
directly, and not through the BAE front-end which provided some security and
validation of api calls, one could circumvent the need of having to use OAUTH2
tokens. As such, it was decided to implement our back-end to host a database with
information about products in the shopping cart, similar to FIWAREs shopping
cart approach.

Our implementation of the BAE used a few different API calls to list, create
and update products. In the FIWARE BAE there are multiple steps one has to
go through in order to create a product, which our implementation simplified in
order to make it easier for the user to understand. As described earlier in Section
2.1.3 an offering must relate to a product specification. In order to simplify this,
when creating a product in our BAE two calls were made to the API; one to create
a product specification and one to create an offering relating to this specification.

During the implementation of upgrading a product, it was discovered that
the user would have to increase the version number in order to update other
information about the product. This was not the case in FIWARE’s BAE, where
we discovered that they had made a method to override the APIs restrictions. It
was also not presented as a required parameter in the Apiary [6].

Methodology 21

3.3 Performance testing

To test the performance of the BAE three external programs were used; Valgrind,
Api-benchmark and LoadUI.

3.3.1 Valgrind

Valgrind is a tool used for memory debugging, memory leak detection and profil-
ing. While Valgrind is primarily used to debug C/C++ programs, because it works
directly with program binaries, it works with programs written in any program-
ming language, be they compiled, just-in-time compiled, or interpreted. Valgrind
was used on the Logic Proxy, Charging Backend and the Glassfish server (i.e. the
APIs). When used with the Logic Proxy we noticed that the program could not
be run successfully, as it checked for memory leaks, ran into errors and then exited
with a segmentation fault. Without Valgrind it ran without errors.

3.3.2 Api-benchmark

Api-benchmark is a node.js tool that measures and compares performances of
APIs. Its Github page can be found in [8]. The scripts we used can be seen in
the Appendix A. Note that we tested our local instance of the BAE and so the
results should differ from a production instance running on a remote server where
network delays come into play. The result that we were mainly interested in was
the mean of the response time, but it also gave other results such as:

• Number of operations per second
• Sample arithmetic mean
• Sample standard deviation
• Margin of error
• Standard error of the mean
• Sample variance

While all APIs were tested, although only the most basic GET-requests were
made, two of the calls made required an OAUTH-token so those were not taken
into consideration.

3.3.3 LoadUI

LoadUI is another tool for testing API performance. We used it to see how the
APIs would handle different loads. We checked the average response time when 1,
10 and 25 requests were sent every second in five minutes straight. Only one API,
namely the Catalog Management API, was tested since the other APIs should
behave in the same way.

22 Methodology

3.4 Running the test scripts

The Logic Proxy tests were run by navigating to its directory and running the
command:

npm test

The RSS tests were run by navigating to its directory and running the com-
mand:

mvn test -fae

The Charging Backend tests were run by navigating to its directory, activating
the virtualenv and then running the command:

python src/manage.py test

In the next chapter the results of the performance testing and functional testing
is presented.

Chapter 4
Results

In this chapter the results of the performance testing and functional testing are
presented and briefly discussed. A more in depth discussion of the results and its
consequences is given in the next chapter.

4.1 BAE Performance

4.1.1 Valgrind

When running Valgrind with the Charging Backend and the Glassfish server (i.e.
the APIs) the results were inconclusive, although showing no indication of memory
loss. When running Valgrind with the Logic Proxy the following results were
returned:

LEAK SUMMARY:

definitely lost: 0 bytes in 0 blocks

indirectly lost: 0 bytes in 0 blocks

possibly lost: 7,528 bytes in 119 blocks

still reachable: 256,169 bytes in 201 blocks

of which reachable via heuristic:

newarray : 2,568 bytes in 1 blocks

suppressed: 54,325 bytes in 160 blocks

ERROR SUMMARY: 117 errors from 117 contexts

(suppressed: 16 from 16)

and the program did not start correctly. This would mean that the program has
memory leaks which could possibly result in problems for the program, but since
the program did not start, we could not see any definitive results in Valgrind of
whether the memory loss would effect the program during its lifetime. However,
when running the program during a few days a monitoring of the activity monitor
showed no indications of any unusual memory consumption.

4.1.2 Api-benchmark

The results from the Api-benchmark script can be seen below, in figures 4.1 to 4.5

23

24 Results

Figure 4.1: Api-benchmark test results for the Billing Management
API

Figure 4.2: Api-benchmark test results for the Catalog Management
API

Results 25

Figure 4.3: Api-benchmark test results for the Customer Manage-
ment API

Figure 4.4: Api-benchmark test results for the Order Management
API

26 Results

Figure 4.5: Api-benchmark test results for the Usage Management
API

API Mean Standard Deviation
Billing Management 0.038812 0.150908
Catalog Management 0.040074 0.073614

Customer Management 0.034464 0.108654
Order Management 0.083557 0.223235
Usage Management 0.034197 0.126161

Table 4.1: API test results

Results 27

These results indicates that the initial calls have high response times, which
puts the mean average on a higher value as well as the standard deviation which
can be seen in Table 4.1. However, when testing against other APIs, their values
were much higher than the BAE API, most likely due to the fact that the BAE
API was hosted on our own computers. The two tested APIs can be located in
[29] and [23] and the results are presented in Table 4.2

API Mean Ping Standard Deviation
BAE Catalog Management API 0.040074 N/A 0.073614

https://swapi.co/ 0.556637 0.041749 0.315425
https://www.pokeapi.co/ 0.409747 0.036550 0.593648

Table 4.2: API test results

4.1.3 LoadUI

Table 4.3 shows the avarage response time when load testing the API with 1, 10
and 20 requests/s in 5 minutes.

Requests/s Average response time Standard Deviation
1 22 ms 11.180339 ms
10 25 ms 46.238512 ms
25 82 ms 373.284074 ms

Table 4.3: API load test results

Figure 4.6 to 4.8 shows the average response time over time. It also shows
number of failed requests.

Figure 4.6: Load test results with 1 request/s

The first load test shows a rather good average response time with quite large
standard deviation. The API can be considered stable with no large delays. The

28 Results

Figure 4.7: Load test results with 10 request/s

Figure 4.8: Load test results with 25 request/s

second load test follows the same pattern except for one deviation where two points
reach a time of 560 ms. This result in a very large standard deviation. The third
load test has a period of many large deviations which also results in three faults.
This test results in a very large standard deviation and a relatively large average
response time so the system might be considered unstable at this much load.

4.2 BAE Tests

Table 4.4 shows the results of running the test scripts for each component in the
BAE.

Component # tests # errors run time (s)
Logic Proxy 681 0 21.151
RSS 149 0 21.023

Table 4.4: BAE test scripts results

The Charging Backend test script failed to execute properly and as such gave
no results.

Table 4.4 shows the test coverage of the Logic Proxy.

Results 29

Statements Branches Functions Lines
94.43% 91.59% 96.31% 94.55%

Table 4.5: Logic Proxy test coverage

30 Results

Chapter 5
Discussion & Conclusion

In this chapter we first apply the ISO/IEC 25010 standard to evaluate the BAE.
Secondly, we discuss enhancements, limitations and other relevant topics. We end
with a conclusion of our findings.

5.1 BAE quality evaluation

A common way to evaluate software quality is by using the ISO/IEC 25010 stan-
dard [15]. It specifies a quality model that determines which quality characteristics
will be taken into account when evaluating the properties of a software product.
We used this standard to evaluate the quality of the BAE. Definitions of each
characteristic can be found on the ISO25000 website referenced above.

5.1.1 Functional suitability

Functional completeness

The FIWARE BAE does have high functional completeness, if one takes plugins
into consideration. If the opposite is considered the BAE does not support the
selling of data inherently, and does not allow for URL access grants without the
use of plugins, and as such does not have the functional completeness one would
expect from a marketplace for data and services.

The BAE does support the largest payment option in the world (PayPal), and
this is in most cases enough for many marketplaces. But because of the implication
that this platform would be used for smart cities, one would expect an easier way
to implement new payment options. For instance, in Sweden, BankID would be
the preferred payment option for most customers.

There is no way of specifying who made a product. In our opinion it would be
preferred if you knew what user or which company is offering/made the product.
The only option now is to specify a category (only creatable by the administrator)
or catalog, which anyone can specify and add products to. This could be done to
make a more reliable platform, since if you know that Stockholms Stad is offering
the product, then you are more inclined to trust that the data being sold is genuine.

31

32 Discussion & Conclusion

Figure 5.1: The ISO/IEC 25010 standard

Discussion & Conclusion 33

One feature that is absent from the BAE is that of related/suggested products.
This is a common feature in web stores and is useful for sellers to increase sales as
well as for customers to find relevant products.

Functional correctness

We have observed a few error messages, mostly because of incorrect installments
of the BAE, but during the completion of a purchase, the transaction-API-call
was made twice and resulted in an error message being thrown. The transaction
still went through (or will go through, as the transactions will not be made until
the end of the month). This was tested on version 6.4.0 and the developers have
released a new version (7.4.0) of the software since, which might have fixed this
bug.

The shopping cart on the platform allows you to add any product that you
wish to purchase. This does not, however, mean that you are allowed to purchase
all products, since you cannot acquire your own products.

Functional appropriateness

There are a number of complications to consider when a new user is introduced
to the BAE. Firstly, the new user is not assigned the seller role, and cannot
add himself to become a seller without having access to the FIWARE IdM BAE
application. As such, only administrators can administrate the roles of the users.
This is of course intended to be able to vet the potential sellers, but it complicates
the process of selling your data, and could discourage the user altogether.

On the platform, you must specify what the product you are selling is. This
is certainly not strange, but when coupled with the fact that you are just creating
a specification of the product, and not an actual acquirable object, it becomes
confusing. To be able to sell a product, the user must create an offering, relating
to a product specification. This would make sense if we got some sort of indication
or tutorial on how and why this must happen, but it is up to the user to discover
and explore everything. The reason for this, is to be able to create bundles of
offerings in one offering. This is not, however, specified in any way, which makes the
relationship between the product specification and the offering slightly confusing.

5.1.2 Performance efficiency

Time behaviour

The results of the Api-benchmark testing shows that the average response time
ranges between 30 ms to 40 ms except for the Order Management API which had
a time of 83 ms. The standard deviation are rather high. This is probably due to
the long response time of the first request of every test. The load test results with
1 request/s shows an average response time of 22 ms. Why this is lower than the
Api-benchmark results is probably due to that they were run on a faster computer.

34 Discussion & Conclusion

Resource utilization

Since we were unable to fully run the program with Valgrind, the resource utiliza-
tion analysis remains incomplete. With the before mentioned results we can say
that the software should be analyzed to implement solutions to the lost bytes of
memory when starting the BAE, but a check on memory utilization in the Activity
Monitor (Resource Monitor in Windows) results in no drastic changes while using
the software during four days. Our analysis of the memory utilization is, however,
not a precise analysis, and the functionality used was not process demanding. This
could have effected the results to be skewed.

Capacity

The capacity was tested by the load tests. The results are discussed in Section
4.1.3. To conclude; the load test indicates that the API is stable under low loads
and becomes unstable at high loads.

5.1.3 Compatibility

Co-existence

The possibility of having two versions of the BAE running on the same system
is hypothetically possible, but you would have to create new databases, change
port settings and possibly other settings. The possibilities depend on what you
would want to do with the two systems. For instance, if you want to list the same
products and use the same instance of the Identity Manager, then you would have
to change the port numbers, but would not have to create new databases.

This characteristic is however out of scope of our investigation, and will as
such not be investigated further.

Interoperability

Since a few of the APIs do not require an OAUTH-check, it is possible to ex-
change and make use of some information. You can, for example, list the product
specifications on another platform by calling the API, but you cannot make any
transactions or update products. The most important, as in security related im-
portance, API calls are protected by OAUTH, which means that no calls that can
impact the software negatively can be made.

5.1.4 Usability

The usability evaluation are restricted to the front-end of the BAE since this is
what most users interact with.

Appropriateness recognizability

It is fairly easy to recognize the front-end as being a web shop as it uses a lot of
the same visual components as other webshops and app stores. The products are

Discussion & Conclusion 35

shown as "cards" which helps to indicate that they are separate entities, similar to
products in a physical world store. The buy buttons and the checkout button are
green and have shopping cart icons which are common components in webshops.

Learnability

We consider the learnability of the BAE to be rather low. This is mostly due to
confusing models and the relationship between them. In order to create a product
a seller has to create a product specification and then an offering in which the
product specification is included. The fact that you have to create two different
entities in order to sell one product is not very obvious. Also the difference between
catalogs and categories can be confusing. However there is a user guide in the
documentation that helps with the learning process.

Operability

While a large amount of the platform’s operability can be considered good, there
are sections that are unsatisfactory. For instance, the sub-menus for My inventory,
My stock, and Revenue sharing are placed beneath the grouping of menu items,
which leaves the user wondering if it is connected to the menu item he chose, or
not. Sub-menus should relate to their parent by either being exposed beneath the
parent, or by being accessible in the window corresponding to the item.

User error protection

When submitting a form on the BAE the user will be getting feedback on inputs
that are not correct. Most of the time this feedback is constructive but sometimes
it only shows arbitrary server error messages which makes it difficult for the user
to correct the error. Many of the form inputs could use a description on the
expected format. For example, when entering the version number of a new product
specification it would be beneficial to have a helping text; "e.g. 1.0". It should not
be possible to create two product specifications with the same name, at least not
also with the same version number, which in its current state it is. When searching
for an offering the BAE shows no suggestions, which will lead to customers not
finding what they seek if they do not know the exact name or if they misspell.
When a seller wants to disable a product specification or offering he/she can put
it into the state of retired or obsolete. However, it is not possible to revert the
action if the user made a mistake.

User interface aesthetics

The aesthetics of the front-end is only okay. The color scheme is of bright colors
and there is not much clutter which makes for a calm and focused experience. The
fact that products are shown as cards instead of in a list makes it less technical
and more fun. Many elements cast a drop shadow which creates a sense of depth.
Both card layout and drop shadow are part of the popular design language Material
Design by Google [14]. However, the general design of the BAE looks a bit outdated
and the project would benefit from introducing a more modern design.

36 Discussion & Conclusion

Accessibility

BAE only supports two languages, English and Spanish. This is obviously a prob-
lem for people not speaking those languages. The design doesn’t seem to be very
reliant on colors as there are no components that only use color to communicate
information, which makes the website accessible for colorblind users.

5.1.5 Reliability

Maturity

Maturity is a characteristic that has a debatable definition. In [2] Wu puts an
emphasis on maintenance in the software life cycle. In regards to the BAE, though
there is not a high activity on the repository, maintenance is ongoing and bugs are
being reported and handled. Others [20] state that maturity should be measured
in Mean Time To Failure (MTTF) which is based on how many errors the user
encounters in the software. In our experience, the maturity in this aspect is high,
since the errors we have encountered were mainly a result of faulty installations.

Availability

The BAE should at any time be available as long as the server it is hosted on is
fully functional. No apparent reasons have been discovered where the system is
not fully operational.

Fault tolerance

With the presence of hardware faults, we cannot ensure that the BAE will be fully
functional. If a software crashes, there will also be loss of funcitonality, although
as long as the Logic Proxy does not crash, its error handling will handle the faulty
operations.

Recoverability

There exists no automatic recovery. A maintainer must manually restart any
crashed program. At least one error will result in an inconvenient error report as
the error was shown despite the fact that the desired action was completed.

5.1.6 Security

Confidentiality

In the BAE confidentiality is assured by the use of the IdM. The IdM provides
authentication and access control. Roles such as seller and customer are given to
users by the administrator to manage access control.

Discussion & Conclusion 37

Integrity

To ensure that data sent from the system to the user remain correct and unchanged
encryption can be used. In the BAE the protocol HTTPS is supported. Enabling
HTTPS in the BAE is easy and is done by changing a few lines in the Logic Proxy
configuration file. However, there is no added security for integrity when the data
is stored on the system. For that you have to rely on the security of the hosting
server and the databases.

Non-repudiation

The products made in the BAE cannot be deleted, only be put into a "disabled"
state, and purchases will be documented both in Paypal and in the form of billing
receipts. Because of this the BAE does have some ability to prevent actions being
repudiated later.

Accountability

Since accountability is the traceability of actions performed on a system to a
specific system entity, and the IDM provides an ID to each entity, there is some
form of accountability. It is possible to see what actions the ID performs, such
as creating, acquiring, and selling products. Since there are no functions of the
system that are abusable to legal extent, the accountability of the BAE is not
vital. Although in the event of a user selling data that has been purchased on the
BAE, the accountability of the BAE does provide some traceability.

Authenticity

OAUTH2 is mainly an authorization protocol but also provides pseudo-authentication.
There is no way of ensuring the authenticity of offerings of data.

5.1.7 Maintainability

Modularity

The code is written to be modular, but as in any program, some changes will have
larger impacts. The different components in the FIWARE BAE all have their own
responsibility and the biggest connection between them is the Logic Proxy, since
it contains the API orchestrator.

Some modules have closer relationships than others, which would mean that
changes in these modules would have larger impacts on the modules they have
closer relationships with.

Reusability

Since the program is written to be modular, there is reusability in the system.
The APIs which have been created by TMForum are intended to be used in Data

38 Discussion & Conclusion

Sharing Management, and this particular instance has been developed to accom-
modate FIWAREs needs. As such, the APIs can be used in other instances as
well.

The other modules (RSS, Charging Backend and the Logic Proxy) would be
harder to reuse, since they are directly dependent on the APIs mentioned earlier.

Analysability

It is not easy for an inexperienced developer to analyse the code and understand
how and what to change without creating problems for other modules, especially
since it is a large project, which has been developed over several years. As such,
we have decided that it is out of our scope to examine the code enough to include
analysability in our report.

Modifiability

As this section interconnects with analysability, we have decided that this is also
out of scope for our report.

Testability

As described in the Chapter 3 (Methodology), when downloading the BAE, three
test scripts are included. These scripts are made by FIWARE and tests the Charg-
ing Backend, the RSS and the Logic Proxy. As such, we ourselves have not es-
tablished any test criteria, but FIWARE themselves have. The tests all passed
without errors, and on the GitHub page FIWARE has included thier own Quality
Assurance, which indicates that their only test criteria is whether their tests pass.
They do have tags that indicate that Scalability, Performance and Reliability also
are tested in many of the Generic Enablers in their Ecosystem, but they have not
tested any of those criteria on the FIWARE BAE. It is also unclear what those
criteria entail.

5.1.8 Portability

Adaptability

Since we have developed our own front-end for the BAE, we have effectively proven
that it is indeed possible to adapt the system for new technologies, at least for
React. However, to run the program on newer versions of dependencies proved
to be harder. First of all, we had to use Node 8.0.0, which also means that npm
5.0.0 had to be used (the current version of Node is 10.14.2 and for npm it is
6.4.1). Python3 also proved to be a hurdle, and we had to use 2.7. As such, the
adaptability of the system is questionable. It might be as easy as upgrading a few
dependencies, but without modifying code, and making a change assessment, we
can not speculate on how efficient and effective the adaptability is.

Discussion & Conclusion 39

Installability

With the documents provided by FIWARE on fiware-biz-ecosystem.readthedocs
the installability is increased, but although they do specify some version require-
ments, these requirements are not always correct. For example, they have specified
that Node 6.9.1 and above are required for the Logic Proxy to be installed, but
versions over 8.0.0 do in fact not work with the Logic Proxy. Uninstallment of the
software is left up to the user entirely, and the documents do not offer any kind of
description of this step. So we cannot know if we are deleting all of the software
when cleaning up our directories.

It is, however, easier if the user is using docker. Since docker puts up containers
which contain all the necessary dependencies and the like, both the installment
and uninstallment are facilitated significantly. This does require that you have a
fair bit of knowledge about how Docker works, since you will have to connect the
containers with other software, such as CKAN and the IDM.

Replaceability

This is the only instance of a store that sells both services and data that we have
come across. There does exist a service that sells data called DataBrokerDAO,
although this is not software that any company can acquire and use as their own.
As such, the replaceability of this software is arguably zero.

5.2 Enhancements, limitations and general discussion

5.2.1 API testing

When evaluating APIs in relation to other APIs, especially when testing a local
API, there are limitations of how accurate the evaluation can be. First of all,
the processing required to do different tasks is varied, so to compare two APIs
requires similar functions. The second problem is the network latency. Thirdly,
there are a number of different technical issues which we cannot take into account.
As such, the requests that we made were small ones, so as to not put too much
processing pressure on the system. We also negated the network latency by making
ping-calls to the APIs which were hosted by other parties which requires so little
processing that we can almost see this as the network latency. This method is
by no means exact, but by subtracting the ping values from the average response
times we considered the network latency to be negated. In this case, the BAE
APIs have values that can be considered very good, compared to APIs not made
by corporations.

The fact that the variance differed so much in the load testing, versus the
api-benchmark testing was because of the choice to present the values in seconds
and milliseconds between the two tools. As such, the variance being low in the
api-benchmark testing showed that the response time of each call was diverse,
while this indication was shown by the variance being high in the load testing.

40 Discussion & Conclusion

5.2.2 Real time IoT Data

The BAE itself does not support any way of uploading data from sensors in real
time, which in our opinion, is the purpose of an IoT Data Marketplace. Instead,
it facilitates the monetization process by having subscriptions and pay-per-use
management. As such, to integrate the sensor flow of data, one would have to
use either the GEs of FIWARE to route the sensors data via MQTT as described
in [18], or push data to the CKAN datastore in regular intervals and in this way
simulate the real time data flow of a sensor.

5.2.3 Popularity and activity of the BAE

A factor that can not be neglected when choosing whether to begin to use a
software is how popular it is. It gives an indication of how mature, bug-free and
maintained the software is. Also the chances of the software being discontinued
in the future is lower if it has many active users. While we researched who are
using the BAE today we only came across two large companies, which is not very
much, although one of the companies (Synchronicity) has a EU funded project,
where several cities will use the BAE. BAE’s Github repository shows a rather low
activity with only 43 commits last year (2018).

5.2.4 Legal aspects

The BAE is only an accommodator of products and as such the owner of it does
not take responsibility for the products. It is the seller of the product that has the
responsibility towards its customers. The customer must single handedly check
what laws apply in the country where the seller resides. The BAE does however
give the option for sellers to supply terms and conditions when creating an offering
which the customer must accept upon purchase.

In the store itself, there is nothing hindering the users from selling the same
data, which would mean that users can buy some data and sell it at a lower price,
effectively hindering the original seller from selling his/her data. What can be
done in situations like this is having a Terms and Conditions that the buyer has
to accept when acquiring the product (which is possible in the BAE). This would
protect the seller, but could also turn into a legal situation. There should exist
some form of protection from this type of problem. Although the BAE is, as
mentioned, only an accommodator and would not have any legal obligations to
interfere.

5.2.5 Alternatives to the BAE

As of this moment, there are no open source IoT data markets that are able to
sell both data and services except for the BAE. There are however many data
marketplaces which allow you to sell your sensor data, both in real time and in
bigger volumes. The main difference between these marketplaces and the BAE is
the fact that you can use the BAE as your own platform, while the competitors
are already established data markets.

Discussion & Conclusion 41

5.3 Conclusion

FIWARE’s Business API Ecosystem is a viable choice when looking for an online
IoT focused marketplace. It includes most of the features you could ask for in a
standard web store. The design of the out-of-the-box web front-end is relatively
good and its usability is sufficient for its intended target audience. However, being
a marketplace that is focused on IoT, it leaves a lot to ask for. A fresh install of
the BAE does not provide many features that go beyond what a regular web store
offers. It is only with plugins that the IoT-related functionality is added, such as
being able to sell digital products and data. As data is a big part of IoT you might
expect the monetization of data would be built-in feature in a IoT marketplace.
Instead the BAE uses the external program CKAN, which also requires a plugin.
However, this separation of functionality can also be seen as positive as it makes
for a more modular program where you pick and choose the features you need.

The BAE is officially only supported on Linux operating systems, but as we
found out, also works on Mac OS X. Installing the BAE is rather complex and
requires quite a lot of configuration. This should not, however, be a big problem for
the target audience that will install and maintain the program. The program seems
to be stable with no faults occurring, although more tests would be beneficial. The
performance is relatively good with the exception of the APIs showing some bad
performance at higher loads.

The BAE is a relatively small project in terms of number of people developing
it, the number of people using it and its activity on its Github repository. This
might be a reason to not start using the BAE as it is an indication of low maturity
and the risk of the project being discontinued in the future.

Despite its flaws, the BAE makes for a viable choice due to the low number of
alternatives. As of now it is the only open source IoT marketplace that supports
monetization of both services and data. It is also one of the only open source
projects in this area, with only one other open source IoT marketplace found in
our research.

42 Discussion & Conclusion

References

[1] BDEX, datamarket, https://www.bdex.com/ [8 February, 2019]

[2] B. H. WU, 2012. Modeling software maturity: A software life cycle manage-
ment approach, 2012 IEEE International Conference on Information Science
and Technology 2012, pp. 716-720.

[3] CKAN, About - ckan. Available: https://ckan.org/about [28 November,
2018].

[4] Data, datamarket http://www.data.com/ [8 Feruary, 2019]

[5] DE LA VEGA, F., Biz-Ecosystem documentation. Available: https:

//business-api-ecosystem.readthedocs.io/en/latest/index.html [18
September, 2018].

[6] DE LA VEGA, F., FIWARE TMF Business API Ecosystem - Apiary. Avail-
able: https://fiwaretmfbizecosystem.docs.apiary.io/# [10 December,
2018].

[7] DE LA VEGA, F., Plugins Guide. Available: https://

business-api-ecosystem.readthedocs.io/en/latest/plugins-guide.

html\#ckan-dataset-and-ckan-api-dataset [28 November, 2018].

[8] FIGUS, M., Api-benchmark Repository. Available: https://github.com/

matteofigus/api-benchmark [10 December, 2018].

[9] FIWARE, 17 September, Application Mashup - Wirecloud.
Available: https://catalogue-server.fiware.org/enablers/

application-mashup-wirecloud [30 November, 2018].

[10] FIWARE, Developers - FIWARE. Available: https://www.fiware.org/

developers [17 September, 2018].

[11] FIWARE, FIWARE Readthedocs. Available: https://

tourguidemigration.readthedocs.io/en/latest/05_open_data/How%

20to%20Publish%20Context%20Information%20as%20(Open)%20Data%

20in%20CKAN/ [15 December, 2018].

[12] FIWARE, Identity Manager - Keyrock - Fiware-IdM. Available: https:

//fiware-idm.readthedocs.io/en/latest/index.html [14 September,
2018].

43

44 References

[13] FRIEDMAN, T., LANEY, D., HARE, J., 2016. Prepare to monetize data
from the Internet of Things

[14] GOOGLE, Design - Material Design. Available: https://material.io/

design/ [17 December, 2018].

[15] ISO/IEC, ISO 25010. Available: https://iso25000.com/index.php/en/

iso-25000-standards/iso-25010 [4 December, 2018].

[16] J. P. BROGAN and C. THUEMMLER, 2014. Specification for Generic En-
ablers as Software, 2014 11th International Conference on Information Tech-
nology: New Generations 2014, pp. 129-136.

[17] K. MIŠURA and M. ŽAGAR, 2016. Data marketplace for Internet of Things,
2016 International Conference on Smart Systems and Technologies (SST)
2016, pp. 255-260.

[18] KRISHNAMACHARI, B., POWER, J., SHAHABI, C. and HO KIM, S., 2017.
IoT Marketplace: A data and API market for IoT devices.

[19] MCKINSEY, 2018. The Internet of Things: How to capture the value of IoT.

[20] LOSAVIO, F., CHIRINOS, L., LÉVY, N. and RAMDANE-CHERIF, A.,
2003. Quality characteristics for software architecture. Journal of object Tech-
nology, 2(2), pp. 133-150.

[21] NG, I.C.L. and WAKENSHAW, S.Y.L., 2017. The Internet-of-Things: Re-
view and research directions. International Journal of Research in Marketing,
34.

[22] PERERA, C., ZASLAVSKY, A., CHRISTEN, P. and GEORGAKOPOU-
LOS, D., 2013. Sensing as a Service Model for Smart Cities Supported by
Internet of Things.

[23] Pokémon API. Available: https://pokeapi.co/ [18 December, 2018].

[24] ROBERT, B., 2014. Towards the trillion sensors market. Sensor Review, (2),
pp. 137.

[25] SCHOMM, F., STAHL, F. and VOSSEN, G., 2013. Marketplaces for data:
an initial survey. SIGMOD Record, , pp. 15-26.

[26] STAHL, F., SCHOMM, F., VOMFELL, L. and VOSSEN, G., 2017. Market-
places for Digital Data: Quo Vadis? Computer and Information Science, 10,
pp. 22-37.

[27] STAHL, F., SCHOMM, F., VOMFELL, L. and VOSSEN, G., 2015. Market-
places for digital data: Quo vadis? University of Münster, European Research
Center for Information Systems (ERCIS), .

[28] STAHL, F., SCHOMM, F., VOSSEN, G. and VOMFELL, L., 2016. A clas-
sification framework for data marketplaces. Vietnam Journal of Computer
Science, 3(3), pp. 137.

[29] Star Wars API. Available: https://swapi.co/ [18 December, 2018].

[30] TIDELIUS, C., JIVUNG, M. https://gitlab.com/jivung/bae/blob/master/install.py.

Appendix A
API-benchmark

var apiBenchmark = require(’api-benchmark’);

var fs = require(’fs’);

var service = {

server1: "http://df843add.ngrok.io"

};

var routes = {

catalog: {

method: ’get’,

route:

’/DSProductCatalog/api/catalogManagement

/v2/productOffering’,

headers: {

’Accept’: ’application/json’

}

},

charging: {

method: ’get’,

route:

’/charging/api/assetManagement

/assetTypes’,

headers: {

’Accept’: ’application/json’

}

},

order: {

method: ’get’,

route:

’DSProductOrdering/api/productOrdering

/v2/productOrder’,

headers: {

’Accept’: ’application/json’

}

45

46 API-benchmark

},

custmanagement: {

method: ’get’,

route:

’/DSCustomerManagement/api/customerManagement

/v2/customerAccount’,

headers: {

’Accept’: ’application/json’

}

},

billmanagement: {

method: ’get’,

route:

’/DSBillingManagement/api/billingManagement

/v2/billingAccount’,

headers: {

’Accept’: ’application/json’

}

},

usagemanagement: {

method: ’get’,

route:

’/DSUsageManagement/api/usageManagement

/v2/usageSpecification’,

headers: {

’Accept’: ’application/json’

}

},

rss: {

method: ’get’,

route:

’/DSRevenueSharing/rss/algorithms’,

headers: {

’Accept’: ’application/json’

}

}

};

apiBenchmark.measure(service, routes, {

debug: false,

runMode: ’parallel’,

maxConcurrentRequests: 10,

delay: 0,

maxTime: 100000,

minSamples: 1000,

stopOnError: false

}, function(err, results){

API-benchmark 47

apiBenchmark.getHtml(results, function(error, html){

fs.writeFileSync(’benchmarks.html’, html);

});

});

Evaluation of FIWARE’s Business API Ecosystem

MICHAEL JIVUNG
CARL TIDELIUS
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2019

M
IC

H
A

EL JIV
U

N
G

 &
 C

A
R

L TID
ELIU

S
Evaluation of FIW

A
R

E’s B
usiness A

PI Ecosystem
LU

N
D

 2019

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2019-687
http://www.eit.lth.se

