
Hardware Efficient Lossless Realtime
Compression of Raw Image Data
MÅNS ÅHLANDER & AXEL JONSSON
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2018

M
Å

N
S Å

H
LA

N
D

ER
 &

 A
X

EL JO
N

SSO
N

H
ardw

are Effi
cient Lossless R

ealtim
e C

om
pression of R

aw
 Im

age D
ata

LU
N

D
 2018

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2018-633

http://www.eit.lth.se

Hardware Efficient Lossless Realtime
Compression of Raw Image Data

Måns Åhlander & Axel Jonsson
mans.ahlander@gmail.com axelolof94@gmail.com

Department of Electrical and Information Technology
Lund University

Supervisor: Stefan Höst

Co-Supervisor: Imran Iqbal

Examiner: Maria Kihl

May 31, 2018

c© 2018
Printed in Sweden
Tryckeriet i E-huset, Lund

Abstract

When transmitting data it is often desired to lower the bitrate in the transmission.
In video capture devices, such as video cameras, with a high resolution and high
capturing rate the bitrate in the transmission is high and it is often desired to lower
this bitrate. Some of the constraints that were put on the compression techniques
was that no information could be lost in the compression, no significant amount of
delay may be introduced and that the compression techniques should have as small
hardware requirements as possible. Another limitation was that the compression
techniques were limited to store less than one frame of memory. One exception
of this was tested to see how the compression ratio would be improved when
compressing using more than a frame of memory. How transmission in a single
directional transmission link with compressed data could be done has also been
investigated during this thesis.

The compression techniques in this paper are two-step based compression tech-
niques called linear prediction coding. The first step is to predict the pixel values
in the image and the second step is to encode the prediction error. In order to
recover the image, these codes need to be decoded to recover the prediction error
which can then be used to reconstruct the image. This is an efficient compression
technique due to that there is much redundant information in an image and instead
of encoding each pixel value it is more efficient to encode the differences between
pixels. The differences contains the same information but may be encoded using
shorter codewords.

The average compression ratios for the techniques presented in this paper
achieves a compression ratio close to 40% when compressing raw image data. If
noise reduction techniques are applied to the image to compress, the compression
techniques may improve their compression ratio with over 10%. Another way to
improve the compression, without losing any significant amount of information, is
presented in this paper and it is done by measuring the noise in the image and
then allowing some quantization based on this measurement.

A solution to the problem on how to transmit data in a safe way from the
encoder to the decoder have been suggested. The data is sent in packets where
each packet contains a header field and a data field. The prediction errors are
encoded in the data field and the number of symbols encoded in the data field
are represented in the header field. These two got a fixed number of bytes and by
using error correcting code, the data can be safely be transmitted.

i

ii

Popular Science Summary

Efficient Lossless Video Stream Compression

Modern video with high resolution puts high demands on the trans-
mission of data, which is specifically true for image data coming from
a camera sensor. For efficient transmission of data, compression tech-
niques can be used.

Data compression is a technique that allows one to reduce the amount of space,
in bits, the data needs, and it must be possible to decompress the compressed
data to retrieve the original data. The goal in this project is to find and evaluate
different compression techniques that operates on very limited hardware. This
limitation excludes many common techniques such as the MPEG standards. When
evaluating several primitive lossless compression techniques a compression around
40% was achieved in our tests. This can be compared with the well known Lossless
JPEG standard that provided results with compression around 30 to 40%.

During lossless compression no information may be lost, unlike with lossy
compression which is a more common technique in video and image compression.
This was a limitation because the raw images from the camera sensor must reach
a processing unit untouched so the processing unit can provide the best quality in
the image. To ensure that no information were lost in transmission a transmission
packet protocol was designed which was used to transmit the data in a safe way.

The lossless compression techniques developed and evaluated in this thesis are
all based on the same two steps. The first step was a prediction method, that uses
the fact that neighboring pixels in an image are usually very similar. Instead of
sending every pixel value, trying to estimate a pixel value with already sent pixels
and then the difference between the actual pixel value and its estimation was sent.
Before transmission, the difference was encoded in a smart way, which was the
second step of the compression. The most common values were sent with short
codewords while uncommon values were sent with longer codewords. The first step
provides data for the encoder whose probability distribution is very skewed, which
helps the encoder to send less long codewords. This means that combination of
these two steps is what compresses the data.

Because the data is raw sensor data, an image that was compressed was not
preprocessed in any way, meaning that the image contained noise, which was extra
unwanted information in the image. The noise appears with a random value in

iii

every pixel, which lowers the quality of the image. This random noise in every
pixel affects the compression ratio, and without the noise the compression could be
improved by over 10%. Due to this noise which makes the pixel values inaccurate,
the pixel values may be near-lossless quantized. Meaning that every pixel value
may be quantized based on the noise level in the pixel. This introduces error
in the pixel value but since this introduced error is much lower than the present
noise level of the pixel, it does not significantly reduce the quality of the image.
Introducing this near lossless quantization improves the compression ratio.

The thesis is written by Måns Åhlander and Axel Jonsson and can be found at
https://www.overleaf.com/14590377fqvfdfngjrrx#/57088500/ under the title "Hard-
ware Efficient Lossless Realtime Compression of Raw Image Data".

iv

Table of Contents

1 Introduction 1
1.1 Background . 2
1.2 Data Transmission . 3
1.3 Problem Formulation . 4
1.4 Thesis Outline . 4

2 Theory 7
2.1 Correlation . 7
2.2 Entropy . 9
2.3 Prediction . 9
2.4 Encoding . 12
2.5 Horizontal and Vertical Blanking . 18
2.6 Near-Lossless Compression . 19
2.7 Camera Serial Interface 2 . 20
2.8 ISO Compression Standards . 21
2.9 The Burrows-Wheeler Transform . 24
2.10 Forward Error Correction . 26

3 Implementation of Algorithms 29
3.1 Correlation Analysis . 29
3.2 Predictor Implementation . 29
3.3 Encoders . 33
3.4 Benchmark . 34
3.5 The Run-length Encoder . 35
3.6 Hardware Requirement Estimation 35
3.7 Implementation of Near-Lossless Compression Technique 36
3.8 Horizontal and Vertical Blanking . 38
3.9 Lossy JPEG . 38
3.10 Comparison with PNG . 38
3.11 Error Handling . 38

4 Results 41
4.1 Correlation Analysis . 41
4.2 Benchmark . 45

v

4.3 Run-length Encoding . 49
4.4 Sensor Noise . 49
4.5 Analysis of Horizontal and Vertical Blanking 52
4.6 Lossy JPEG . 53
4.7 Comparison with PNG . 56
4.8 Computational Complexity . 56
4.9 Error Handling . 57

5 Discussion 61
5.1 Correlation Analysis . 61
5.2 Benchmark . 63
5.3 Hardware Demands . 66
5.4 The Run-length Encoder . 68
5.5 Noise Handling . 69
5.6 Worst-case Statistics versus Standard Deviation 70
5.7 Prediction Technique Evaluation . 71
5.8 Horizontal and Vertical Blanking . 74
5.9 Lossy JPEG . 74
5.10 Comparison with PNG . 75
5.11 Arithmetic Coding . 75
5.12 Transforms . 76
5.13 Effects of Error Handling . 76
5.14 Further work . 78

6 Conclusions 79

References 81

A Images Used for Testing Spatial Compression Techniques. 85

B Images Used for Testing Temporal Compression Techniques. 93

vi

List of Figures

1.1 Bayer color filter. 3

2.1 Example of prediction error from an image. 18
2.2 Percentage of ones for different bit levels. 18
2.3 Pixels used for predicting the current sample. 22
2.4 Flow scheme for the Burrows-Wheeler compression algorithm. U is the

input sequence which should be compressed and u is the compressed
sequence. 24

3.1 Pixels used for predicting the current sample. 31

4.1 Illustration of correlation in image test12.pgm. 42
4.2 Illustration of correlation in image test24.pgm. 42
4.3 probability distribution of pixel values. 43
4.4 Probability distribution of two sided prediction error. 44
4.5 Probability distribution of one sided prediction error. 45
4.6 Compression ratio for different amount of sections that each row are

divided into. 48
4.7 Methods used in the combined predictor when using 128 section for

each row. 48
4.8 Compression ratio for different SQNR parameter values. 51
4.9 Relative Compression ratio for different SQNR parameter values. . . 52
4.10 The image test1.pgm with horizontal and vertical blanking. 53
4.11 Compressed image using quality = 100. 54
4.12 Compressed image using quality = 10. 55
4.13 Original image. 56
4.14 Example of how a bit error in the transmitted bitstream affects the

decoded image. 58

A.1 First set of images used for the benchmark application. 85
A.2 Second set of images used for the benchmark application. 86
A.3 Third set of images used for the benchmark application. 87
A.4 Fourth set of images used for the benchmark application. 88
A.5 Fifth set of images used for the benchmark application. 89

vii

A.6 Sixth set of images used for the benchmark application. 90
A.7 Seventh set of images used for the benchmark application. 91

B.1 First set of temporal images used for the benchmark application. . . 94
B.2 Second set of temporal images used for the benchmark application. . 95
B.3 Third set of temporal images used for the benchmark application. . . 96

viii

List of Tables

2.1 Compression scheme for Camera Serial Interface 2 20
2.2 Prediction for lossless JPEG coding. 22
2.3 Prediction for lossless JPEG coding. 23
2.4 The Burrow-Wheeler Transform, the fifth row corresponds to the orig-

inal sequence of letters. 25

3.1 Prediction for lossless JPEG coding. 31

4.1 Average compression ratio (%) benchmark results. 46
4.2 Worst-case compression ratio (%) benchmark results. 46
4.3 Entropy benchmark results. 47
4.4 Standard deviation of compression ratio benchmark results. 47
4.5 Comparison of compression ratio (%) using Time predictor with other

predictors. 49
4.6 Comparison of compression ratio (%) using run-length encoding with

other encoders using Mean2L predictor. 49
4.7 Compression ratios (%) for averaged image. 50
4.8 Compression ratios (%) for non-averaged image. 50
4.9 Compression ratio (%) for image with and without horizontal and

vertical blanking. 53
4.10 Compression ratio (%) using Lossy JPEG for different quality settings. 54
4.11 Estimated computational cost for the different techniques. 57
4.12 How dividing a video frame into blocks effects the

compression ratio of the Mean2L-Adaptive Golomb-Rice
combination. 59

ix

x

Chapter 1
Introduction

In various applications large data rates are a problem that leads to risk in trans-
mission errors and might limit the bandwidth of the transmission channel. One
area where the amount of transmitted data is huge and the data rate is a problem,
is within cameras between the image sensor and the backend processor. If the
data transmitted from the image sensor should be compressed, some additional
hardware would be needed to be implemented at the sensor. It could be desirable
to use as little hardware as possible while achieving as high compression ratio as
possible. This is done in order to reduce product cost, risk of overheating and in
order to keep the sensor unit small. To be able to determine which hardware that
should be implemented compression techniques has been simulated and and their
hardware demands evaluated. It has been done in order to find a technique with
satisfying and stable compression ratio while at the same time has low computa-
tional complexity and memory requirements. Stable compression ratio means that
the bitrate is, in the worst case, not higher than the original bitrate and that the
average compression ratio to worst case compression ratio rate is not too large.
From the code used for implementing the compression techniques the hardware
requirements has been estimated.

Originally, the limitation on the hardware was not to use more memory than
for one frame and correspondingly the compression algorithm is not allowed to
take more time than one frame time interval unit. Other limitations were to only
have a few computations for each pixel, so that the compression techniques does
not require to much processing power, and the compression should be lossless
in order to not lose any data or change any data during the compression. The
requirement to not lose or change any data when compressing the data is an
important limitation because data that is changed can be seen as noise that is
introduced in the image, that will reduce the quality of the image in restoration
at the processing unit. A desirable property for the compression would be that it
produces good compression results for all types of images. The image compression
should always work and the products using it should always be considering the
worst-case scenario.

There is a lot of research in the field of compression for all sorts of data, both
on lossless and lossy compression. Only lossless and near-lossless research has
been relevant for this thesis and the lossless research can be divided into multiple
categories, such as, batch mode compression, video compression using correla-
tion between frames, image compression techniques, and more simple algorithms.

1

2 Introduction

Video compression techniques using correlation between more than two frames
have not been studied due to the memory and time delay limitations and batch
mode compression techniques are also not of any interest, no more than as for
comparison. Standard image compression technique such as the online JPEG-ls
compression technique has been studied, which is a composition of a prediction
algorithm and Golomb-Rice encoding. Prediction is described in Section 2.3 and
Golomb-Rice is described in Section 2.4.3. Based on the idea of JPEG-ls other
techniques has been developed using different prediction techniques and different
encoding algorithms. Simpler and more general lossless compression techniques
such as Huffman coding, arithmetic coding and run-length coding have also been
studied and evaluated.

1.1 Background

In digital cameras, there is a complex chain of image processing steps, starting
from capturing of the image, going through, for instance, white balancing and
noise filtering all the way to compression of the image/video and then streaming
it out or saving into the memory. The image is captured using image sensor
and then this raw image is transmitted to the backend processor for processing.
Transmission of the raw image from the sensor to the backend processor requires
a very high speed link. This is particularly true for video cameras that provide
frame rates of 30 frames per second or higher together with HD (720p) resolution or
higher. This high bandwidth requirement imposes several challenges and reducing
the bandwidth would result in reducing the risk of transmission errors.

The purpose of this thesis is to evaluate different lossless compression tech-
niques in association with Axis communications, which could be used for lowering
the bandwidth of data transmitted from the camera sensor. This purpose was
extended to also include near-lossless methods. The guidelines from Axis Commu-
nications were that the duration of the compression should not exceed more than
one frame time interval, the memory is restricted to the size of one frame and
the computational cost for the compression techniques should be kept as small as
possible.

Each pixel from the image sensor is represented by 12 bits, which means each
pixel will be able to have an intensity level between 0 and 4095. When the image
sensor captures a frame, each pixel row is sent after another. The pixel in the
upper left corner is sent first, then the pixel to the right of it is sent and so on
until the whole row is sent. After this the next row is sent in the the same way and
this is repeated until all pixels of the frame is sent. On each pixel of the sensor
there is a color filter that lets only light of a certain color pass. The filter is a
grid formed in a way that every other pixel on a row receives light of the same
color. The color grid being used is shown in figure 1.1, where the letter in each
square represent its color. Red is represented by R, green is by G and blue by
B. This filter is called the Bayer color filter[14], where each pixel is represented in
gray scale but using Bayes color scheme can the color for each be restored through
interpolation using surrounding pixels.

Introduction 3

Figure 1.1: Bayer color filter.

Compressing data is about encoding data using fewer bits than the number
of bits that originally each symbol is represented by, which can be done using en-
coding algorithms. Encoding is a part of information theory, where each symbol,
or sequence, is given a code based on how probable the symbol is. In general, a
common symbol will be given a short code consisting of few bits, while symbols
which are not as likely to occur are given a longer code using more bits. The en-
coder and decoder needs to share the same statistical data so that the compressed
data can be decompressed data back to its original form. This can be done either
with perfect reconstruction, meaning that it is lossless compression, or with some
loss of information in the compression, which is called lossy compression. Even if
lossy compression looses some information in the compression, the reconstructed
image, according to the human eye, will have the same quality. Lossy compression
techniques are often not suppose to reduce the Quality of Experience which means
that a human should not see any differences between the original image and an
image which have been compressed using a lossy compression technique.

There is often much correlation between pixels in an image, as a pixel is often
very similar to its neighboring pixels. This can be seen as that the neighboring
pixels shares the same information. In order to reduce the information required
to represent each pixel it is more efficient to represent the difference between the
values of the pixels instead of the actual pixel value since they have the same
information. This is a common lossless compression method if one assume that
it requires fewer bits to represent difference between the pixel values rather than
the actual pixel value. This assumption in image- and video compression are in
general an accurate assumption, which will be explained later in this paper.

1.2 Data Transmission

In order to transmit the data from an encoder to a receiver in a safe way, a
transmission protocol needs to be used. There are several reasons to why some
form of protocol is needed in any type of transmission, where in the case of sending
encoded data it is of high importance.

The bits sent from the encoder to the decoder should be sent using some sort of
protocol that could check if anything went wrong in transmission. This is needed
because if there would be a bit error in the encoded bitstream of a video frame, then
that error might propagate and interfere with the decoding of following symbols.

4 Introduction

The decoder would decode the symbol inaccurately in the bitstream where the bit
error occurred. This means that that symbol would get a different value from what
it should have been. Also, because the symbols might be encoded using different
amount of bits in its codeword it is likely that the decoder would read a different
amount of bits than the original codeword. This would lead to that the encoder
and decoder would become unsynchronized with each other. What will happen
then is that the next codeword will be starting to be read at the wrong position
and therefore the codeword will represent a different symbol than it was supposed
to do. The effects of this is that the decoded symbol error propagates until the
encoder and decoder performs some form of reset to become synchronized again.

1.3 Problem Formulation

The goal with this thesis is to develop and evaluate different lossless compression
techniques for high speed image data and determine how the hardware limitations
affects the compression ratio in order to find a good trade off. It will be done
by first doing a literature study to find compression techniques and then imple-
menting them using a high level language like Python. The hardware demands
for these compression techniques will be evaluated based on literature study, the
code used when implementing the techniques and their algebraic expression. The
compression ratio will be tested by compressing data that have been saved from a
camera that uses the Bayer color filter.

The main goal will be to provide a group of algorithm alternatives that could
be suitable for a camera which has the hardware limitations, as mentioned in the
background section. In addition to these algorithms, some alternative techniques,
such as near-lossless quantization, will be discussed to see if they are suitable for
this thesis.

Using real-time lossless compression it is not possible to achieve the same
compression ratio as with lossy compression techniques, such as the lossy JPEG
technique. It will still be investigated how close to the lossy JPEG the lossless
or near-lossless techniques developed during this thesis might come. The lossless
compression techniques evaluated and developed will also be compared with the
JPEG-ls and PNG compression techniques which will be a more fair comparison
since both of those techniques are lossless.

In order to make the results practical, a brief study on data transmission will
be made and a method on how to do this will be proposed.

1.4 Thesis Outline

Each following chapter in this report will begin with a few sentences that describes
what the chapter and its sections’ contents. In the theory Chapter the theory used
in this thesis will be presented together with a new compression technique and
together with an explanation on why it could work.

The chapter "Implementation" will present how the techniques used in this
thesis have been implemented and a description of the methods used in order to
verify and test these techniques.

Introduction 5

In the chapter "Result" there will be tables and graphs presenting the main
results that will later be discussed in the following chapter "Discussion". The
images used to obtain the results in the chapter "Result" are shown in Appendix A
and B. Finally, in the end of the report there will be a chapter with the conclusions
from this thesis.

Throughout this report it will be assumed that Bayer split is applied if nothing
else is mentioned, meaning that this pattern can be disregarded as if the image was
a grayscale image. This means that when a pixel’s closest neighbors are mentioned
in this report, it does not mean the closest neighboring pixels in the image but
rather the closest neighboring pixels in the same color according to the Bayer color
grid.

6 Introduction

Chapter 2
Theory

Compression is about lowering the number of words, symbols or bits used when
representing any type of data. Images can be interpreted as a sequence of pixels
where each pixel is represented using a fixed number of bits. Image compression
can be achieved if the pixels can be represented in such a way that the average
amount of bits needed to represent each pixel is lower than the original number of
bits used for representing each pixel. This can be done using various techniques,
but the most common technique for lossless compression, where no information
is lost during the compression, is based on using a pixel prediction method and
then an encoder which encodes the prediction errors. The achieved compression
is then measured with the compression ratio described in the equation below. In
this report it will be presented in either decimal form or as a percentage.

CR = 1− Compressed data size
Original data size

(2.1)

This chapter will describe the main concept about the prediction that is used
in image compression and also the background to why it works for compression of
data. Various prediction algorithms such as linear prediction, non-linear prediction
and adaptive prediction will be described. Later in this chapter different encoding
techniques will be described. Following is a section about how an image sensor
is connected with a digital interface in order to obtain a digital image. After
that comes two section about near-lossless compression. The first one contains
theory which will be used in a proposed near-lossless compression technique. In
the second section will Camera Serial Interface 2 (CSI-2) be described. CSI-2
is a lossy compression standard for compressing raw image data from a sensor.
Following will other compression standards be described. This will be followed by
a section where a transformation based technique will be described in order to give
an example of how transform based lossless compression techniques works. In the
last section will protocols for transmitting data be discussed.

2.1 Correlation

Correlation is a measurement of how much different variables depend on each other.
In this report, the variables are usually the compressed image’s pixels. It is often
referred to as how close two variables are to having a linear relationship with each

7

8 Theory

other[31]. It then becomes natural when it comes to any sort of prediction to find
how a variable that should be predicted correlates with other, known, variables.

In most lossless image compression techniques there is some form of pixel
prediction that is based on correlation between pixels. The main idea is to perform
some form of prediction on a pixel sample and transmit the prediction error instead
of the pixel value itself. As an example, a perfect prediction method would give
an output of only 0′s. However, this is not possible in practice as value of pixels
in an image are usually of stochastic nature. If the prediction method performs
well however, the error values will be very close to zero. This will result in a
probability distribution which can be assumed to be Laplace distributed [19]. The
question is however, why it is possible to achieve this prediction. Is there any
method of measuring how good a prediction can be made and if prediction can
be made optimal. In the following subsections the concept of correlation between
pixels will be presented, and how the correlation can be computed.

2.1.1 Correlation Between Pixels

When trying to predict the value of a specific pixel in an image there are several
factors that affects how well the prediction may perform. One factor is how much
known data that is available for prediction and another important factor is how
high the correlation between the known data and the pixel that should be predicted
is. Generally speaking, the correlations between pixels might differ for pixels at
different locations in an image, but in average over the whole image, or in a local
region, they will tend towards some values.

One way to calculate the correlation in an offline manner would be to go
through many, if not all, pixels and create lists of samples consisting of a pixel
value together with its neighbors values and then calculate the covariance between
the list of the pixels with the lists of its neighboring pixels. The covariance is
proportional to the correlation[30] and works therefore as a tool of measuring
the correlation. This would work as each pixel value can be seen as a stochastic
variable where there might be some form of dependency between the variables.

2.1.2 Static Statistics

The method described above can be used in several ways. One method would be
to gather the correlation statistics before the compression takes place. Enough of
samples could be taken until a satisfying precision of the correlation is reached.
This is efficient in a computational sense as the predictor will have these values
ready before the compression takes place and does not need to perform any com-
putations during the compression. The downside of this method is that it does
not give a precise correlation estimation for a specific regions, but instead only as
an average of the whole image. The statistics of the image might also change dras-
tically if the image scene is changed and the current known statistics will become
invalid. The adaptive version of correlation estimate which is described below,
avoids these problems, but at the cost of extra computational complexity.

Theory 9

2.1.3 Adaptive Statistics

The adaptive variant would be an algorithm that in a way learns and estimates
the current correlations between the neighboring pixels. Using a method that
learns to adapt to the statistics could result in that the pixels at every position
would be predicted more accurately and the prediction error would be closer to
zero, compared to the static case. However, there are several questions that needs
to be answered about whether an adaptive method would be feasible. The most
straightforward problem would be if it is even possible to find a way to learn about
the statistics efficiently and precise enough and if the algorithm would be stable.
More in-depth questions could for example be, what the starting correlation would
be set to before learning and how much computational power is required to do the
adaptation. The adaptive method proposed in this paper would be to use a row-
scanning LMS algorithm which updates its weights according to how previous
predictions has performed. It will be described in detail later on in this paper.

2.2 Entropy

The definition of entropy of a random process, X, is shown below [23].

H(X) = E[−logP (X)] = −
∑
x

p(x)logp(x) (2.2)

P (X) is the probability of the random process X while p(x) is the probability of
the actual value x of the random variable X. The assumption 0 · log 0 = 0 is used.
The Equation 2.2 can be rewritten in the sometimes more convenient form.

H(p1, p2, ..., pk) = −
k∑
i=1

pilogpi (2.3)

Where pi is the probability for the outcome i. Entropy can be used to determine
the uncertainty in the outcome of a random variable, and equivalent the level
of compression that can theoretical be achieved when compressing a sequence.
Therefore, the entropy of a sequence can be used as a lower limit of the mean
codeword length of each symbol in the sequence that can be achieved.

The entropy can easily be limited by the following expression [23].

0 ≤ H(X) ≤ log k (2.4)

Where k is the number of outcomes from the process X. The entropy is equal to
H(X) = log k only in the special case when each outcome of the process has the
same probability. This limits the compression ratio to the following expression.

CR ≤ 1− H(X)

dlog ke
(2.5)

2.3 Prediction

The method of predicting the current pixel based on old data and then, instead
of sending the pixel values, send the difference between the actual value and the

10 Theory

predicted value is a efficient compression technique. This is based on the idea that
there are mutual redundancy, or correlation, between a pixel and its neighbors.
They basically contain the same information, so it is unnecessary to send the same
information more than once and instead the difference between the pixels can be
sent. This works because, when prediction is applied on an image, the probability
distribution of the errors value is denser than the probability distribution of the
original pixel values. This means that the error signal can be encoded more effi-
ciently than the original signal using for example Huffman or Arithmetic coding
because these encoders are more efficient for coding data that has narrow banded
probably distribution of its values [20].

Prediction is a lossless compression technique because no information is lost
in the prediction. The original pixel value can be reconstructed by using the pre-
dictor’s corresponding reconstruction filter. It does the same prediction as the the
prediction filter, but the difference between the prediction- and the reconstruction
filter is that the reconstruction filter is provided with the error from the prediction
done by the prediction filter. The reconstruction filter can then use the prediction
and the prediction error in order to determine the original pixel values.

The prediction can be made in various ways, with different complexities and
qualities. The simplest prediction is based on only using a past pixel value, prefer-
ably of the previous pixel, as a prediction of the current pixel.

x̂(n) = x(n− δ) (2.6)

x̂ is the prediction of the current pixel, x(n) is the current pixel and δ is the
distance between the current pixel and the pixel used for estimating the current
pixel. The predictor can make use of more than one old pixel and these could be
weighted differently, which is called the autoregressive model.

x̂(n) =

M∑
k=1

wkx(n− k) = wT · u (2.7)

Where
u = (x(n− 1), x(n− 2), ..., x(n−M))T (2.8)

w = (w1, x2, ..., xM)T (2.9)

The optimal solution to the autoregressive prediction is called theWiener solution[7].
The error signal is modeled as followed.

e(n) = x(n)− x̂(n) (2.10)

The drawback with prediction is that it can create an error that may contain
outliers which can take any value in the range −α ≤ e ≤ (α−1) where α = 2β and
β is the number of bits used for representing the pixels in the image. In practice,
the prediction error e can only take α different values if the error is represented
with the same number of bits as the pixels. In order to compensate for this may
the prediction error be mapped computing modulo α.

e =

{
eold + α if eold < −α2
eold − α if eold > α

2

(2.11)

Theory 11

e is the remapped error while eold is the error before remapping. This does not
affect the Laplace probability distribution of the prediction error in a significant
way since the "tails" of the distribution will be remapped onto the the main-
lobe of the distribution which already got much larger amplitude. Besides, the
probability of a an error being outside the range −α2 ≤ e ≤

α
2 − 1 is so low that it

can be assumed that it never happens. This is due to that the error distribution
is assumed to decay exponentially away towards zero[29].

2.3.1 Least Mean Squared Filters

The weights in the autoregressive model, shown in Equation (2.7), can be estimated
using an adaptive filter, namely a Least Mean Squared (LMS) filter. LMS is an
adaptive algorithm which adapts in order to make the prediction error as small
as possible based on the local statistics. In order to reduce the prediction error, a
cost function which should be minimized, which is created from Equation 2.7 and
2.10, is described using the mean squared error as,

J(n) = E{e2} = E
{(
x(n)− ŵ(n)Tu(n)

)2}
, (2.12)

where x(n) is the current sample that should be predicted, ŵ(n) are the estimated
weights in the autoregressive model, and u(n) are the old pixel values which are
used as the input signal to the adaptive filter. The gradient of the cost function
can be calculated and it points towards the direction in which the cost function
grows the most. The gradient can be obtained by

∇wJ(n) = −E
{
u(n)

(
x(n)− u(n)T ŵ(n)

)}
. (2.13)

Because the cost function and thus the error should be minimized, the algorithm
takes a step in the negative gradient direction in order to find a local minimum
of the cost function. The new filter coefficients will be updated according to the
update rule shown below. It is done by using the actual values of the samples for
calculating the gradient, by estimating the mean and not actual the mean itself.
The LMS updating equation using actual sample values can be written as

w(n+ 1) = w(n)− µ · ∇wJ(n) = w(n) + µu(n)
(
d(n)− u(n)Hŵ(n)

)
, (2.14)

where µ is the step size, which is the parameter that affects how far in the opposite
gradient direction that the new filter coefficient will be. There is a risk that the
step size, µ, is too large and will result in that the filter will not converge. The
following condition needs to be fulfilled to reach convergence[7].

0 < µ <
2

λmax
, (2.15)

where λmax is the largest eigenvalues of the autocorrelation matrix (E{u(n)u(n)T })
of the system.

12 Theory

2.4 Encoding

In the following sections encoders will be presented, both static and adaptive
encoders. The static encoders is based on some sort of hard-coded probability
distribution, while the adaptive encoders adapts and uses the local statistics in
the image when encoding.

2.4.1 Huffman Coding

In short, the Huffman encoder takes a list of symbols and assigns a unique binary
code for each symbol depending on their respective occurrence probability. The
algorithm does this optimally in the sense that the most probable symbols are
given the shortest binary codes and the less likely symbols are given longer binary
codes. This results in that the mean binary code-length for the symbols becomes
as small as possible. The algorithm steps for Huffman is described as following:

1. Produce a set of nodes where each node contains a symbol and its probability
of occurring.

2. Take the two nodes from the set with the smallest probabilities and create
a new probability which is the sum of the two nodes probabilities.

3. Produce a parent node for these two nodes with the new probability and
mark the left branch with a 1 and the right branch with a 0.

4. Update the node set by replacing the two selected nodes with the new parent
node. Repeat the steps 2 - 4 until the node set only contains one node.

The result will be a binary tree where the code of each symbol will be the numbers
of the branches you take by traversing from the root of the tree to each respective
symbol [20].

2.4.2 Adaptive Huffman Coding

The Huffman coding algorithm uses a predefined list of probabilities for each
symbol and it does never change throughout the execution of the algorithm. This
requires that the probabilities are obtained in some procedure before the encoding
procedure[20]. The idea behind Adaptive Huffman coding is to change the binary
code of each symbol depending on an estimation of the probabilities, which is
updated during the execution. This would mean that the binary tree and its
paths will have to be changed during encoding.

Initialization

The Adaptive Huffman algorithm starts with all symbols having the same prob-
abilities [20]. The probabilities are then updated by estimating the probabilities
with a weight for each symbol, where the weight will represent the amount of times
each symbol has occurred. Symbols which never have occurred would be marked
as not yet transmitted (NYT) in a NYT node with a starting weight of 0. Each
symbol will have to have a initial code which both the encoder and decoder have

Theory 13

agreed upon. A simple code variant for an alphabet (a1, a2, a3, . . . , am) of size m
could be to set the starting codes as following:

1. Pick e and r such as m = 2e + r and 0 ≤ r < 2e

2. For each symbol ak where 1 ≤ k ≤ 2r, assign (e+1)-bit binary representation
as the code.

3. For the rest of the symbols assign the e-bit binary representation.

For an alphabet with the size m = 4096 the values e = 12 and r = 0 can be
used. When a symbol is encountered for the first time at the encoder, the code for
the NYT will be sent together with the assigned code for the symbol and then it
will be removed from the NYT list. A new node for the symbol is created and its
weight is increased by one. By using this procedure, both the encoder and decoder
are ensured to have the same tree structure.

Because the tree will become a binary tree, the maximum amount of nodes
in the tree will be m · 2 − 1. The set of nodes with equal weights is referred to
as a block. Parent nodes will have the combined weight of its children. For the
tree to still be a binary Huffman tree the sibling property needs to fulfilled[3]. The
property will restrict us in the following way:

1. Each node will be numbered from the top to bottom and from right to left
in a descending order starting from the maximum value of m · 2− 1.

2. A node must always have a higher number than an another node with a
lower weight.

Updating

After a new symbol has been encoded the tree needs to be updated. One of the
two following situations may happen[20]:

1. If a symbol is occurring for the first time and is in the NYT list, the NYT
node will create two child nodes. The left child node will now be the NYT
node and the right child node will have the new symbol assigned to it with
the weight 1. The old NYT node is now the parent and its weight is updated
to 1. The nodes are now numbered according to property 1, i.e the parent
node will maintain the old NYT node’s number k and the new NYT node
will be assigned the number k − 2 and the new symbol node the number
k − 1. The symbol is lastly removed from the NYT list.

2. If the encoded symbol already existed in the tree, the corresponding node
for that symbol will update its weight.

In any of these two situations, the parent nodes in the chain up to the root will
have to update their weights. The update of the weights is done from the leaves
of the tree to the root. Before the weight of a node is updated, the tree has to be
searched in order to check if the node belongs to a block of nodes where another
node has a higher node number. If this is the case they swap position and thus
changing node numbers. Afterwards, the node’s weight will be increased by 1 and

14 Theory

the parent node is then updated in the same way. Doing this will ensure property
2. The same steps will be applied until the root has been reached.

Encoding

As mentioned earlier, both the encoder and the decoder has agreed upon starting
codes for the symbols. This data needs to be synchronized and sent in some way
before the encoding procedure starts. Both the encoder and decoder will start
with the same tree structure consisting of only the NYT node as the root. As
previously mentioned, there are two situations that may happen and the encoder
will act accordingly:

1. If a symbol occurs for the first time and is in the NYT list, the encoder
will output the code for the NYT node, which is obtained by traversing
from the root to the NYT node like in the standard Huffman encoding
procedure. The encoder will also send the predetermined codeword for the
appeared symbol.

2. If the symbol does not exist in the NYT list, the encoder will output the
code which is obtained by traversing from the root to the symbol node like
in the standard Huffman encoding procedure.

2.4.3 Golomb-Rice Encoding

The Golomb encoding is based on the assumption that the larger the value of
the symbol is the smaller its probability of occurrence is. The Golomb encoder
then assumes the symbol distribution to be of a certain shape and therefore some
parameters has to be estimated. Assume that the probability of an event is geo-
metrically distributed, then the probability of an event, X can be modeled as

p(X = k) = (1− p)pk, (2.16)

where the expected value of X is given by

E(X) =
p

1− p
. (2.17)

By estimating the mean of X using old samples the estimation of the probability,
p can be calculated[22] as

p =
Ê(X)

1 + Ê(X)
. (2.18)

Optimal Golomb coding is achieved by selecting a coding parameter m which
relates to p according to the following expression.

m =

⌈
− log(1 + p)

log(p)

⌉
(2.19)

The parameter m is often chosen so that m = 2k. This is known as Golomb-Rice
encoding. Golomb-Rice encoding is a good choice of Golomb implementation due

Theory 15

to its simplicity. The parameter k can be chosen in an optimal way as [13].

k = max

0, 1 +

log2
 log(φ− 1)

log Ê(X)

Ê(X)+1

 , (2.20)

where

φ =

√
5 + 1

2
. (2.21)

If the mean outcome Ê(X) would be less than φ, then k is set to k = 0.

Encoding

Rice’s version of Golomb’s algorithm is the special case when m is equal to 2 to
the power of k, m = 2k, where k is a positive integer. The Golomb code for the
symbol with the integer value n where (n > 0), can easily be obtained[20][13] as

q =
⌊ n
m

⌋
, (2.22)

where bxc is the integer part of x. Then the remainder part r needs to be calcu-
lated, which can be done by

r = n− q ·m. (2.23)

From the resulting values of q and r the encoding can be made. q is always coded
as a unary code, while r is coded using binary coding if m is a power of two. The
codeword for n is the combination of q put together with r as followed [20].

codeword = q, r (2.24)

If m is a power of two, the implementation and decompression will be of lower
complexity[4]. This is true because the division with m will be easier to calculate.
When m is a power of two, the division can be replaced by a shift operation
instead, which is a much less computationally costly function.

2.4.4 Arithmetic Encoding

Arithmetic encoding is an encoder that put multiple symbols into a sequence which
then is encoded. A symbol sequence is given a unique binary code[20]. It performs
significant better than Huffman encoding when using data with a small alphabets
that has a skewed probability distribution. This is true because it codes sequences
of symbols rather than single symbols and it can be shown that the mean out-
put code-length is closer to the entropy when coding sequences instead of single
symbols[20]. The Arithmetic encoder can be implemented as a adaptive encoder.
Then it does not depend on context and it may gather information about the data
statistics as it is processing the data[33].

The downside with Arithmetic coding is that it is more computationally costly
than Huffman. Because of this and that the symbol alphabet used during this
thesis is rather large, the Arithmetic encoder will not be implemented and its per-
formance will not be evaluated further. A large symbol alphabet means that the

16 Theory

performance between Arithmetic and Huffman encoding should not differ signifi-
cantly and therefore is it unnecessary to implement the Arithmetic encoder which
is a more demanding algorithm than Huffman.

What arithmetic coding does is that it compress an arbitrary long sequence
of symbol codes to a tag, which is a unique number. Each symbol are assigned
a interval between [0, 1) where the upper bound of the symbols’ intervals will be
referred to as FX(s) where s is the symbol order in this interval. The intervals’
sizes relates to their probabilities of occurring. The generation of such a tag is
explained in detail in the following section. This generation of the tag is however
not feasible on computers with limited precision and another way of implementing
the generation must be performed, but it is still useful to show this tag generation
method as it is easier to understand.

Generating a Tag

To encode a sequence of symbols a tag has to be generated which is created by
going through each symbol until the end of the message is reached[20]. The tag will
start by having an upper bound, u and a lower bound l chosen as [l0, u0) = [0, 1).
The algorithm will then go through each symbol one at a time from start to end
and update the lower and upper bound according to the update rule shown below.

ls+1 = ls + (us − ls) ·X (s− 1) (2.25)

us+1 = ls + (us − ls) ·X (s) (2.26)

If nj is the amount of occurrences of the symbol j and the total count of
symbols are N , then the symbols’ intervals can be estimated as

FX(s) =
Σsk=1nk
N

. (2.27)

Using this the new updating equations can be rearranged as into the following
equations.

ls+1 = ls +
(us − ls) · Σs−1k=1nk

N
(2.28)

us+1 = ls +
(us − ls) · Σsk=1nk

N
(2.29)

As the number of symbols to encode, s, increases the upper and lower bounds
will be more narrow and eventually their most significant bits (MSB) will become
equal. This means that both bounds are confined within either the upper or lower
half of the unit interval [00...0, 11...1]. After the MSB become equal they will never
change and a value between the upper and the lower bound may be transmitted
as the tag, the lower and upper bounds can then be reseted. This is repeated until
the end of the symbol sequence has been reached.

2.4.5 Run-length Encoding

Run-length encoding is based on the idea that there might be a high correlation
between neighboring values in a stream or between the pixels of an image. Instead

Theory 17

of outputting a sequence of identical values, the algorithm instead only outputs
the value and the number of times it is sent in a row[15].

An example could be a compression of the following sequence of characters,

WWWWWWWWWWWWBWWWWWWWWWWWWBBB,

which will become after encoding:

12W1B12W3B.

In this case the number tells how many times the following symbol will be
repeated. So the decoder will simply expand the string back to its original form
using the given information.

Run-length with Bit-plane Coding

An idea based on run-length encoding is the idea of bit plane coding. Bit-plane
coding views the image as a three-dimensional array of bits[26]. Each pixel value
of the two-dimensional image can be seen as a vector containing bit-values, thus
creating the three-dimensional array. In this paper method based on some form
of prediction and run-length encoding will be proposed. First is the image prepro-
cessed by the prediction technique

e(n) = x(n)− x̂(n), (2.30)

where n is the current sample. If the prediction is good, this would lead to, as
mentioned earlier, a low value of e(n). This means that it is more likely that bits
that represent lower numbers in e(n) are ’1’ than bits representing higher numbers.
The idea is to remove some of the more significant bits from e(n) and encode them
separately using run-length encoding. This is assumed to be effective since it is
assumed to be almost only be zeros in the highest bit levels of the error.

Below is an example where this technique is applied on a image. From the
image in Figure 2.1a was the prediction error in Figure 2.1b calculated. It can be
seen that there is still much redundancy in the image and it can be seen because
most of the image is black. This redundancy is due to the fact that there are only
a few error estimations which are bad while the most estimations are good.

In Figure 2.2 are the probability of a bit being ’1’ for the different bit levels
in the error image shown in Figure 2.1b shown. On the horizontal axis are the
bit levels represented, from bit level 0 which represent the least significant bit to
bit level 10 which represents the most significant bit. The sign bit is not included
in this plot since it is assumed that it appears random with being just as likely
to be ’1’ as ’0’. It can be seen that the more significant bits barely becomes ’1’.
This gives the idea that if you go through the bits plane-wise, there will be long
sequences with only ’0’s.

18 Theory

(a) Original image. (b) Error prediction from original image.

Figure 2.1: Example of prediction error from an image.

Figure 2.2: Percentage of ones for different bit levels.

2.5 Horizontal and Vertical Blanking

A camera sensor needs to be connected with some digital interface[34]. Depending
on the type of interface used, the output might differ and the interface might
provide output with unnecessary data. This is true when the digital interface
needs to run at a constant clock speed and the sensor is read with faster scanning
manner. This will make the camera to perform some additional operations in some
cases before it can read a new line on the active video region.

Theory 19

Before the first line there might be a blank space consisting of a few lines
because of vertical synchronization and likewise, before each line there might be a
blank space for horizontal synchronization. Depending on the camera sensor used
and the settings for the camera, the amount of blank space added might vary.
During these blank sections, the camera will output only 0’s. This effect is called
horizontal and vertical blanking.

2.6 Near-Lossless Compression

During this section, noise in the image sensor will be discussed. It will also be
discussed how this motivate the use of near-lossless compression and why this may
be a good idea to implement, but also the drawbacks on how near-lossless affects
the pixel quality in an image.

2.6.1 Noise in the Image Sensor

In an image sensor there are mainly two types of noises, namely read noise and
shot noise. Read noise is a combination of noise, from electronics and from the
analog to digital converter, that is a sort of ground noise, that basically has a
fixed value for each pixel independently of the pixel value. Less read noise results
in higher accuracy in the pixels, that determines the contrast resolution that the
sensor is able to achieve. Shot noise on the other hand increases with increasing
pixel values. The noise is based on the number of photons that enter each pixel
in the sensor during an image capture. It has a standard deviation equal to the
squared root of the input light signal. For high photon intensity in a pixel, or high
pixel value, the shot noise becomes the dominant noise factor in the image sensor
[8].

A simple method, that will be used in this thesis, to reduce the noise in a
image is to take the average of multiple images of the exact same scene. Since
the scene in all of the images is the same and deterministic while the noise is
an Gaussian distributed stationary stochastic process may the noise be removed.
This while the scene stays the same by averaging a set of images. The averaging
affects the noise in the way that it reduces the variance by a factor k where k is
the number if images used for averaging[25], which means that when averaging
with large enough dataset the noise is removed, meaning that the noise takes a
mean value of zero and variance close to zero.

2.6.2 Quantization Noise Model

As mentioned in the previous section, different image sensors used in cameras may
introduce different levels of noise in the pixel values.This means that, depending
on the amplitude of the noise and the numerical precision the camera has, some
bits in the pixel values might be affected by noise. Noise is hard to compress due
to their random behavior, which makes the removal of these bits very useful. This
already present noise in the image makes it possible to truncate the less significant
bits of the pixels without affecting the image quality in a significant way. The
truncation will introduce another noise which can be considered having a uniform

20 Theory

distribution[12] that will take values between [−2s + 1, 2s − 1] where s is the
amount of bits that is truncated. The original goal with this thesis was to perform
completely lossless compression of the original sensor data, but when considering
the already present noise, doing truncation to some extent is very motivated.

How much to truncate depends on how much added quantization noise that is
tolerable and is a question that does not have a clear answer. The rough idea is
that the added noise should be much smaller than the already present noise to not
interfere with the image processing at the back-end processor. A measurement of
this is defined as the signal-to-quantization-noise ratio (SQNR), which is a ratio
between the maximal value of the signal and the noise’s. By allowing different
levels of SQNR between the sensor noise and the quantization noise, different
compression ratios could be achieved.

2.7 Camera Serial Interface 2

Camera Serial Interface 2 (CSI-2) is a standard compression technique of raw
image data[18]. The compression is done in a lossy environment and is achieved
by first predicting each pixel by a simple pixel scheme and then encode it. The
encoding is not done according to any encoding described earlier in this paper. The
codeword length of the encoded symbols are predefined and fixed. The first of these
bits are used as a header to tell the decoder in what range the prediction error
is between. Then there is a sign bit followed by a quantization of the prediction
error. The quantization will be rougher the larger the prediction error is.

This means that the resulted compression ratio from this technique will be
fixed while the level of how much this technique affects the quality of the image
will vary depending on how well the prediction method works. This compression
technique is defined in six different schemes shown in Table 2.1. Later in the report
it will be seen that the compression ratio from these different schemes is inferior
to the near-lossless compression technique suggested by the authors in this thesis.
Another thing which makes the near-lossless technique suggested by the authors
of this thesis superior is that the degree of allowed quantization noise is fixed and
that the quantization only affect the bits that are affected by the noise which the
image sensor introduces. In order to know how the two different methods affect
the image quality after the image processing steps, a further study needs to be
done but it is assumed that the quality would be less affected by the proposed
method. Therefor CSI-2 will not be investigated further in this thesis.

Original bits in pixel Encoded bits per pixel Bits in pixel after reconstruction
12 8 12
12 7 12
12 6 12

Table 2.1: Compression scheme for Camera Serial Interface 2

Theory 21

2.8 ISO Compression Standards

In the following subsections two of the most widely used lossless compression
algorithms will be presented, namely JPEG and PNG. They are both rather similar
and both are based on doing first a prediction step and then a encoding step.

2.8.1 JPEG

The ISO/CCITT committee known as JPEG (Joint Photographic Experts Group)
established a compression standard for images in 1992, for both gray-scaled and
colored images. They released a JPEG standard which includes two basic compres-
sion methods where one is a lossless method which is based on prediction[28] and
the other is a lossy method that is based on Discrete Cosine Transform (DCT). The
methods will briefly be described in the following subsections. The lossy method
will be described in order to increase the understanding of image compression in
general and it will be investigated later as a reference of how much lossless- and
lossy compression differs. However, the lossless version of JPEG is more relevant
to this paper. The lossless compression can be divided into two sub-techniques
but both of them are based on the same idea. They are based on the technique of
first predicting each pixel in the image using old pixels and then encode the error
using an entropy encoder. This can be done either in the "old" way by using linear
prediction in different modes or in the "new" way with a non-linear predictor.

2.8.2 Lossless JPEG

The standard JPEG-ls algorithm is an offline, prediction based compression algo-
rithm, that produces compression which is fairly close to the state of the art for
lossless compression [9]. In the two following subsections the linear and non-linear
JPEG techniques will be presented.

The Linear Algorithm

The predictor in the JPEG-ls combines values from three different neighbor sam-
ples, as shown in Figure 2.3. The neighboring pixels are used in eight different
modes. The first one makes no prediction, the following three modes makes pre-
diction from one dimension and the four remaining modes makes a prediction in
two dimensions. All of these modes are tried out in a non-real-time environment
and the mode which produces the lowest prediction error is then used for trans-
mission. The mode used to perform the prediction is coded in the 3-bit header of
the compressed file. The modes are described in the Table (2.2). For color images
the JPEG-ls is normally able to compress the data up to around 50% [28].

22 Theory

Figure 2.3: Pixels used for predicting the current sample.

Mode Prediction
0 no prediction
1 x̂ = b

2 x̂ = a

3 x̂ = c

4 x̂ = a+ b− c
5 x̂ = b+ a−c

2

6 x̂ = a+ b−c
2

7 x̂ = a+b
2

Table 2.2: Prediction for lossless JPEG coding.

The prediction error from the predictor can then be efficiently encoded using
either Huffman or arithmetic coding [15].

The Non-linear Algorithm, LOCO-I

Lossless JPEG can also be implemented using an online, non-linear predictor,
where in that case the compression technique is called LOCO-I, which stands
for LOw COmplexity LOssless COmpression for Images. The equation for the
prediction of the current pixel X̂ used in LOCO-I [32] is shown below.

X̂ =

min(a, b) if c ≥ max(a, b)

max(a, b) if c ≤ min(a, b)

a+ b− c else
(2.31)

This is a simple edge detector which can detect horizontal and vertical edges.
If a horizontal edge appears in the image, the horizontal neighbor b will be used
for prediction. If instead a vertical edge appears, the vertical neighbor a will be
used. This is done either directly if c is the largest or smallest value in the set,
or by the subtraction a + b − c. Here c can be assumed to have almost the same
value as either a or b depending on if the edge is horizontal or vertical. In the case
where there is no edge close to the pixel, then it can be assumed that the image

Theory 23

is smooth in the area of the pixel which means that a = b = c. It results in that
x̂ can be approximated by x̂ = a. The error is then encoded using a Golomb-Rice
encoder[20].

2.8.3 Lossy JPEG

Using lossy-JPEG the "lossyness" can be adjusted as a parameter to the algo-
rithm. It is a Discrete Cosine Transform-based (DCT) compression algorithm,
that divides the signal into lower and higher frequency components.

First, each pixel in the image are subtracted by 2β−1 to center the data values
around 0, where β is the number of bits used to represent each pixel. This makes
each pixel to take on a value in between −2β−1 ≤ x ≤ 2β−1 − 1 instead of 0 ≤
x ≤ 2β − 1 . The image is then divided into groups of 8x8 pixels which then
are transformed using the forward DCT-transform. The transform results in that
the low frequency components that are essential for the image quality are put in
the upper left corner and the high frequency are put in the bottom right corner of
each block. Low frequency components have in general higher values than the high
frequency components. After the transpose the values are quantized according to
a quantization table that have to be generated for the image. In general, the high
frequency components are quantized using a larger step size, so that quantization
will be rougher than for the low frequency components. This leads to that the
elements in the bottom right corner are truncated down to fewer quantization
levels for the possibility of a higher compression ratio at the cost of loss in quality.
The remaining parts are then encoded and the high- and low frequency parts are
coded separately[20].

2.8.4 PNG

The PNG compression technique was accepted by ISO in 2004 as a lossless,
portable compression technique for computer graphics image transmission over
the Internet standard[10]. PNG is a prediction based and lossless image com-
pression technique that utilizes, just as JPEG-ls, different prediction modes. The
differences with JPEG-ls are that PNG only uses five different prediction modes
and that the PNG predictor uses one mode for each row in the image to compress.
A header to each row is added to tell which mode that were used for that row[21].
Using the same notations as in Figure 2.3, the prediction methods can be described
as show in Table 2.3.

Mode Prediction
0 no prediction
1 X̂ = a

2 X̂ = b

3 X̂ = a+b
2

4 X̂ = Paeth(a, b, c)

Table 2.3: Prediction for lossless JPEG coding.

24 Theory

Paeth is a more complicated predictor than the other four. The predictor is
described below in its pseudo-code [6].

def Paeth(a, b, c):
p = a + b - c
pa = abs(p - a)
pb = abs(p - b)
pc = abs(p - c)
if (pa<=pb) and (pa<=pc): return a
elif (pb<=pc): return b
return c

The predictor tries to determine which of the pixel values of a, b, and c that is
closest related to the pixel tried to predict, x. After the prediction, the prediction
error is compressed using the DEFLATE compression method[5].

DEFLATE is a LZ77 -derived algorithm, that is fundamentally based on the
concept of sliding window. One can assume that information are repetitive to some
degree, no matter if it is a text, song or an image. The sliding window is sliding
over the image using a certain width of the windows and once a sequence is found
in the window that has occurred before, the distance to the previous occurrence
will be encoded instead of the encoding of that sequence. This encoding is done
using Huffman encoding [5] and the sequences that have not appeared before will
be encoded using Huffman as well.

2.9 The Burrows-Wheeler Transform

This theory section about the Burrows-Wheeler transform is optional to read, it
does not contribute to the understanding of the rest of the paper, but it will be
used for discussion of transform methods.

The Burrows-Wheeler Compression Algorithm (BWCA) can be divided into
four stages. The first stage is the Burrows-Wheeler transform which sorts the
data so that data with similar context are grouped closely together. The number
of symbols during the transform is kept constant. The second stage is called Global
Structured Transform (GST) or move-to front (MTF), which transforms the local
context of the variables to a global context. The third stage is a run-length encoder
that is used for reducing the number of symbols used for encoding the data. It can
be done efficiently because the symbols that are alike is grouped together during
the move-to front phase. The last stage is a entropy coding stage which compresses
the output data, that can be done using Huffman or arithmetic coding[24]. The
flow scheme for the algorithm can be seen in Figure 2.4.

Figure 2.4: Flow scheme for the Burrows-Wheeler compression al-
gorithm. U is the input sequence which should be compressed
and u is the compressed sequence.

Theory 25

2.9.1 The BWT Algorithm

Instead of using a linear prediction as i.e. JPEG-ls does, BWT is using the whole
image or parts of pixel context of the image in order to rearrange the pixels in an
order which is easier to code. Originally BWT was used for text compression. The
BWT performs a permutation of the symbols to compress this permuted sequence
then get sorted in a manner so that symbols which are similar to each other is
grouped together. The Forward BWT is done in three steps[2].

1. From an input sequence U of length N , create N − 1 sequences where all
of them is a shifted version of the original sequence U by cyclic rotations of
the characters in U . The permutations form a (N ·) matrix M ′, where each
row of M ′ represents one permutation of U .

2. Sort the rows of M ′ lexicographically to form an other matrix M . M in-
cludes the original sequence U as one of its rows.

3. Record L, the last column of the sorted permutation matrix M , and id, the
row number for the rows number for the row in M that corresponds to the
original sequence U .

As an example, suppose the input sequence which should be compressed is
U = mississippi. The permutation matrix M ′ is created and sorted in order to
create the matrix M . Let F and L each represent the fist and last element of
each row in M respectively. Then, F = iiiimppssss and L = pssmipissii. The
output of the transform will be the pair (L, id) = (pssmipissii, 5). The example
is illustrated in Table 2.4, where M ′ is the matrix of permuted sequences of U and
M is the lexicographically sorted version of M ′. Generally, the sequence L can be
compressed more efficiently than the original sequence U [2].

M ′ M F L

mississippi imississipp i p
ississippim ippimississ i s
ssissippimi issippimiss i s
sissippimis ississippim i m
issippimiss mississippi m i
ssippimissi pimississip p p
sippimissis ppimississi p i
ippimississ sippimissis s s
ppimississi ssippimissi s i
pimississip sissippimis s s
imississipp ssissippimi s i

Table 2.4: The Burrow-Wheeler Transform, the fifth row corre-
sponds to the original sequence of letters.

After the transform, the sequence L is rearranged by a so called move-to-front
method that sorts L even more so that it becomes more suitable for compression.

26 Theory

In the move-to-front algorithm each symbol in the sequence is assigned one num-
ber. The lowest valued symbol is assigned 0 and next the unique symbol with
higher value is assigned 1 and so on. These numbers are stored in a list where
each number correspond to its number. Then the sequence L is iterated through,
starting from the beginning of the sequence. When a symbol occurs in the se-
quence L, its value from the corresponding list is transmitted and the number in
the list is then moved to the top of the list. This results in that, if there is a run of
a certain symbol in L, then a sequence of 0s is transmitted [20]. If move-to-front is
applied to the example above where L = pssmipissii then the following codeword
is obtained.

The sequence L contains the following symbols.

A = {i,m, p, s} (2.32)

From which the following table can be created

0 1 2 3
i m p s

The first element in L is ’p’ which is encoded as 2 and ’p’ is then moved to
the top of the table.

0 1 2 3
p i m s

The next symbol is ’s’ which is encoded as 3 and ’s’ is then moved to the top
of the list.

0 1 2 3
s p i m

Next symbol is also a ’s’ which is encoded as 0, because ’s’ is already at the top
of the list is nothing changed. After iterating through L, the following sequence is
obtained and will be transmitted.

{2, 3, 0, 3, 3, 3, 1, 3, 0, 1, 0} (2.33)

It is possible to achieve better compression if the sequence to compress, U , is a
long sequence compared to its alphabet. After this step the sequence should be
compressed using run-length coding.

2.10 Forward Error Correction

When transmitting data there is, due to noise in the transmission medium, a
risk of a bit being read incorrectly. There are several methods available to both
detect and possibly correct these errors by adding redundant bits to the data

Theory 27

being transmitted. This technique is usually referred to as Error Correcting Code
(ECC) and a technique using ECC is Forward Error Correction[27](FEC). The idea
behind FEC is to add redundant information to the data sent by using some form
of ECC. One property of FEC is that the receiver can correct transmission errors
on a one-way link. Error correcting techniques are a bit outside the scope for this
thesis and therefore only a simple method will be proposed while other possibilities
will only be discussed. Common techniques which will not be explained in this
paper includes techniques such as LDPC-codes.

2.10.1 Repetition Codes

A very simple FEC technique is Repetition Code[27] that basically means that
each bit is sent a fixed number of times and then the receiver will decode the sent
bit by doing a "majority vote". The bit will be interpreted as a 0 if most bits
received were 0’s and interpret it as a 1 if most received bits were 1’s.

The downside to this method is rather evident, as it is clear that this would
add extra redundant data by a factor of k. The benefits of using this method is
however clear, as one would need more than half of the bits to be free from errors
to correctly decode the symbol. For example, if k = 3, the risk of a bit-error is
p = 10−9 and the bits’ bit-errors are independent of each other, then 2 or more of
the bits would need to have its symbols switched, which would only happen with
a probability of (

3

2

)
(p)2(1− p) +

(
3

3

)
(p)3 ≈ 3 · 10−18. (2.34)

The situation where the error-risks are independent of each other is in most cases
unlikely and it will depend on the type of noise that is present in the transmission
medium. When the errors are grouped together, it is referred to as Burst Error [1].
Burst errors are said to be more likely in serial transmission and the length of the
burst depends on the bitrate and the type of the noise.

28 Theory

Chapter 3
Implementation of Algorithms

In this chapter, the implementation of the scripts used for obtaining results are
presented but also how the computational cost of the implemented methods are
evaluated. A correlation estimation method is presented and it is described how
it is used to determine prediction methods. Then, the prediction methods’ used
in this report are described. Afterwards, the entropy encoders used for encoding,
which lowers the amount of bits needed to represent each symbol, are presented.
All implementations of the predictors and encoders were made in the scripting
language Python. The benchmark script used for obtaining results is described.
Thereafter, the evaluation process of the complexity of the different techniques
used is described. The Run-length encoder is kept separately in a different sec-
tion for how its potential is investigated. Near-lossless quantization is presented
next, where the reason why it could be acceptable to remove bits in pixels with-
out affecting the image quality significantly. Finally, the Lossy JPEG and the
PNG compression techniques will be tested and compared to the other suggested
compression methods.

3.1 Correlation Analysis

To gain better understanding of why prediction methods could produce a good
estimate of a pixel value, the correlation in an image was studied. It was done
by using scripts written in Python that work as described in Section 2.1.1. The
correlation was illustrated in a 2D-plot, where the value of the left neighbor pixel
to the current pixel was plotted on the y-axis and the value of the current pixel
on the x-axis. This was performed after a Bayer split, meaning only one color was
used to produce the result. The green pixels were chosen to be used for analysis
as they are the most common pixel in the Bayer pattern. The reasoning for this
was that the pixel would have a much stronger correlation with pixels of its own
color. A correlation surface plot of multiple neighbors was obtained in similar way
in order to find how pixels further away from each other correlate with each other.

3.2 Predictor Implementation

As mentioned in the theory chapter of this thesis, pixel value prediction is an ef-
ficient way to achieve compression. Therefore several prediction techniques were

29

30 Implementation of Algorithms

implemented based on the results obtained from studying the correlation in im-
ages. Initially a simple predictor, that used the value of the pixel to the left of the
pixel that was supposed to be predicted, was implemented. When it was done, it
could be seen that the prediction error that it produced behaved as expected. Af-
terwards, several other prediction methods were then implemented in an attempt
to get a prediction error with a as narrow-banded probability distribution as possi-
ble in order to achieve good compression ratio. The predictors have been designed
based on the idea that the pixels close to the pixel that should be predicted are
highest correlated with the pixel to predict. The pixels that are close to the pixel
to predict are combined and weighted to utilize more correlation in the prediction.

To show these effects visually, a script was written in Python to produce plots
that shows how the probability distribution is shaped for the original image and
the image of the errors after the predictions. This was done for the two images
test12.pgm and test24.pgm to show how the results may vary depending on
the image. These two images were selected for this test because test12.pgm has
much less visual structure than test24.pgm. The distribution after the prediction
was also plotted before and after the mapping of the negative and large values.
This mapping is described in detail later on in this section. To get a numerical
measurement of how well the prediction performed, the entropy was calculated
before and after each prediction.

3.2.1 Predictor Design

The predictors that were designed and tested are shown in Table 3.1 where the
prediction rule is presented or referred to. Here x̂ is the predicted pixel value.
The pixels used in these predictors are referred to by letters as shown in Figure
3.1, where x is the pixel to predict. The prediction methods that are written in
bold text are methods which have not been discovered during the literature study.
They are methods that we propose ourselves. With that in mind it is not certain
that no one else have discovered these methods before us.

Each predictor was implemented together with a reconstructor that can, given
the error that corresponding predictor produce, losslessly reconstruct the image
that was originally given to the predictor. The predictor was made sure to have
a working reconstructor before it was considered to be complete and working as
intended. This was done to prove that the prediction methods actually do perform
lossless compression, meaning that no information is lost.

Implementation of Algorithms 31

Predictor Prediction rule
Simple x̂ = b

Mean2 x̂ = a+b
2

Mean4 x̂ = a+b+c+e
4

Mean4-R x̂ = sum(a,b,c,d,e,f)−min(a,b,c,d,e,f)−max(a,b,c,d,e,f)
4

Mean2L x̂ =
b+a+e

2
2

Mean2L-2 Multiple predictions, description below.
Median x̂ =median(a, b, c)

LOCO-I Shown in Equation 3.2
Paeth Described below.
Combined Combines multiple predictors, description below.
LMS x̂ = a · w0 + b · w1 + c · w2 + d · w3 + e · w4

LMS2 Multiple predictions, description below.

Table 3.1: Prediction for lossless JPEG coding.

Figure 3.1: Pixels used for predicting the current sample.

Mean2L-2, initializes by performing the Mean2L prediction to obtain x̂est.
Afterwards ĝ is estimated also using the Mean2L predictor with the x̂est, e and
the pixel right to the e pixel. The final estimate of x̂ is performed after ĝ is
estimated by the following equation.

x̂ =
a+ b+ x̂est + ĝ

4
(3.1)

LOCO-I performs the prediction according to the following Equation.

x̂ =

min(a, b) if c ≥ max(a, b)

max(a, b) if c ≤ min(a, b)

a+ b− c else
(3.2)

Paeth is inspired by the prediction done in PNG described in Section 2.8.4.
The prediction x̂ is set to the value returned from the following function.

def Paeth(a, b, c):
p = a + b - c

32 Implementation of Algorithms

pa = abs(p - a)
pb = abs(p - b)
pc = abs(p - c)
if (pa<=pb) and (pa<=pc): return a
elif (pb<=pc): return b
return c

The LMS predictor uses adaptive weights wk that are updated after each pixel
as described in Section 2.3.1.

The LMS2 predictor first uses the same prediction as Mean2L-2 to predict
the value of x̂ and ĝ. The final prediction of x̂ is x̂ = a · w0 + b · w1 + c · w2 + d ·
w3 + e · w4 + x̂ · w5 + ĝ · w6, where wk are weights adapted by a LMS algorithm.

3.2.2 The Combined Predictor

Combined is a prediction method that combines the prediction method used in
Mean2, Mean2L, LOCO-I, Mean4, Paeth and the prediction x̂ = a+ b−c

2 which is
the prediction done in the sixth mode of the linear JPEG-ls method 2.8.2. Each of
these predictors performs its prediction on each pixel while only the error from one
of the predictors is used to represent the pixels. Each row of the image to compress
is divided into a number of sections, the error from each predictor are summarized
separately over each section. At the end of a section, the summarized errors are
compared, the predictor that produced the lowest summarized prediction error is
chosen to produce the errors used for representing the pixels in the corresponding
section of the following row. This prediction of which section to use can be done in a
more advanced way by comparing the summarized prediction error from multiple
sections that are close to the section to predict. In other words, the Combined
predictor tries to predict what prediction method to use.

Additional script was made to produce results showing how the compression
ratio varies for different amount of sections. These results are instead shown under
the Benchmark section in Results, as the benchmark will suit as a good reference
for how good the compression ratio usually is.

3.2.3 Prediction using Temporal Data

The prediction methods mentioned so far have only been using data from the cur-
rent frame. If there would be a possibility to allow using temporal data, which
would be pixel value data from previous frames, more advanced prediction meth-
ods could be developed. The high demands on limited hardware will put severe
limitations on the amount of temporal data accessible. For example, to access
the corresponding pixel of the pixel to predict from the previous frame it requires
hardware with enough memory capacity for more than one entire frame. Because
of the high definition resolution (1080p) that was being used, the hardware needs
to have over 3MB of memory, depending on how many bytes each pixel should
represented with. Therefore, only the case where one old frame is accessible was
considered in this thesis.

In order to try this method, a new combined predictor has been implemented
that uses the old pixel value in one of its predictors. The other predictors used in

Implementation of Algorithms 33

this combined predictor would be Mean4, LOCO-I and Mean2Long. The predic-
tion rule of the predictor using temporal data is described in the equation below.

x̂ =
a+ b+ xprev + gprev

4
(3.3)

Where xprev and gprev was taken from the previous frame as the corresponding
pixels as shown in Figure 3.1. The new predictor using temporal data will be
referred to as Time. The Time predictor predicts which predictor to use in the
same way as the Combined predictor does. The results from the Time predictor
being combined with Adaptive Golomb-Rice and Adaptive Huffman encoders was
compared with the LMS and the Mean2Long predictors using the same encoders.
The limitation of comparisons here was made just to make the results easier to
present. The main thing being of interest in this test was to show how temporal
data could be used in order to improve the compression performance compared to
using no temporal data at all. This was a method which have not been found in
any literature, it was designed by ourselves.

To show these results a benchmark script was made that compares this new
predictor to other high performing predictors. These results will be shown in the
Benchmark section in Results, as the benchmark suits as a good reference for how
good the compressions usually are.

3.2.4 Mapping of the Probability Distribution

Since the prediction error may take both positive and negative values as described
in Section 2.3, the prediction error will be distributed as a two-sided geometric
distribution. In order to get the resulting prediction error to be one-sided geometric
distributed, the actual prediction error was replaced with the absolute value of
itself. The original sign of the error was saved as the most significant bit used for
representing the error. Also, the values of the prediction errors that required the
same number of bits as the values of the pixel for representation was remapped as
mentioned in Section 2.3. This was done to be able to represent the value of the
error in one bit less than the number of bits used for representing the pixel values,
so that the value of the errors combine with its sign bit would require the same
number of bits as each pixel. During encoding, the sign bit was separated from the
symbol value of the prediction error and only the symbol value was encoded. This
was done because, due to the sign bits’ random nature they can not be encoded
in an efficient way. The sign bit were stored separately as it were.

3.2.5 Predictor Benchmarking

All the predictors were then used for the benchmarking script that was made in
Python. This script is explained in detail in the Benchmark section.

3.3 Encoders

The encoders used for encoding the prediction errors are Huffman, Adaptive Huff-
man, Golomb-Rice and Adaptive Golomb-Rice.

34 Implementation of Algorithms

In order to verify that each of these encoders works, a decoder was imple-
mented for each of these encoders to verify that the compressed image could be
decompressed properly.

3.3.1 The Huffman Encoders

Both the Huffman and the Adaptive Huffman encoder’s implementations were
based on their descriptions in the Sections 2.4.1-2.4.2.

When encoding using the regular Huffman encoder a predefined probability
distribution was used that was based on the average error probability distribution
of the images shown in Appendix A. This distribution was obtained using the
LOCO-I predictor. A predefined probability distribution was used because if this
method would be implemented on real hardware then it would require a static
probability distribution that is not based on the current image. Therefore, using
a predefined probability distribution that was hard-coded did seem to be good
solution.

The Adaptive Huffman encoder starts off with an empty Huffman tree that is
updated during runtime according to the adaptive Huffman updating algorithm.

3.3.2 The Golomb-Rice Encoders

Both the Golomb and the Adaptive Golomb-Rice encoders’ implementations were
based on the description in Section 2.4.3 in Theory of Golomb-Rice. The Golomb-
Rice encoder was used with static parameters k and m, meaning they are the same
for the whole image.

The Adaptive Golomb-Rice encoder on the other hand starts with predefined
values of k and m that were then updated multiple times for each row.

The Adaptive Golomb-Rice encoder that was implemented divides each row of
the image into a number of sections, which is similar to the section division in the
Combined predictor. Then, using statistics gathered from the last section and the
neighboring sections the parameter k was updated. This update algorithm was
based on the parameter estimate shown in Equation 2.20. m was then also updated
after k, as mentioned in Section 2.4.3. In order to reduce the number of operations
needed in the Adaptive Golomb-Rice encoder, the output from Equation 2.20 was
calculated and mapped for different µ. This resulted in a table where k can be
obtained from different values of µ.

3.3.3 Encoder Benchmarking

All the encoders were then used in the benchmarking script that was made in
Python. This script is explained in detail in the upcoming section.

3.4 Benchmark

In order to compare all the different combinations of predictors and encoders, a
benchmarking script was written in Python. The benchmark was made in a way
to produce various results for each combination together with a set of different

Implementation of Algorithms 35

images. Each predictor-encoder combination produced a compressed file for each
image. These files’ sizes were then used to determine the compression ratios for
each combination. The different compression ratios produced for that combination
on all of the images were averaged and saved. The worst compression ratio achieved
for each combination was saved separately.

After gathering all the compression ratio results, the standard deviations for
the samples were estimated. The idea behind this was to try to get a grasp of each
compression method’s stability. The stability in this sense would mean how much
the compression ratio might differ between different images or in other words, how
small the standard deviation was.

In order to get a better idea on the predictors performance independently of
the encoders, the entropy was calculated for each predictor for each and every
image. Similar to the compression ratio statistics, the average entropy value was
saved together with the worst achieved entropy. From the worst case entropy
statistics, the lowest theoretically possible compression ratio was calculated for
each predictor.

3.5 The Run-length Encoder

The Run-length encoder implemented was an encoder that used a form of bit-
layered run-length encoding combined with a Huffman encoder. It used a form
of run-length encoding for the upper bit layers to mark where the 1:s were, as
described in Section 2.4.5. The encoder worked on one bit-layer at the time. The
Run-length encoder left the 8 least significant bit-layers untouched. The idea was
that this processing was very quick and had little overhead data needed if the
upper bit layers consisted of almost only 0:s. The 8 least significant bit layers were
then used to create a new image consisting of pixels that only had symbol values
between 0 and 255. This allowed the encoder to quickly build a Huffman tree for
every image and then compress it using Huffman codes.

The method was not used in the same benchmark as the others encoding
methods, as it earlier was excluded as a potential encoder for this thesis. However,
it was still compared to other encoders’ compression ratios in different situations
to ensure the reader’s understanding that run-length encoding was not a stable
choice of encoder.

To show the reason why run-length encoding could have been a good choice
on a first glance, the execution time for building the tree for the normal Huffman
encoder together with the execution time for building the tree for the run-length
encoder were compared with each other.

3.6 Hardware Requirement Estimation

To get an estimate of how computationally complex a certain method was, as-
sumptions had to be made and during this thesis a rough estimation had been
performed. The computational cost estimate was based on how many operations
that were performed by each algorithm for each pixel in the image and what type

36 Implementation of Algorithms

of operations these were. One thing to consider regarding the results that was pro-
vided by these estimations was that they were very imprecise because they were
made after our own implementation of the methods, which might not betimal. The
complexity for a specific operation varies depending on the hardware implemented
on. Furthermore, the cost for different conditional statements in the code were
hard to evaluate. In order to get a rough estimate of the operation costs, the oper-
ation weighing was based on very general values from a programming website[11],
which explains operation costs in clock-cycles.

In practice, the execution times of our scripts could be measured, but the
results would not give a realistic result of the complexity because the code was
made in Python. Python is a scripting language and a lot of computational power
is directed towards type conversions and needs to be interpreted during runtime,
compared to a programming language like C, where code is compiled before it
is run. Using Pythons execution time to determine performance of a method
was considered to give very skewed results and therefore a more hypothetical
performance was approximated.

In addition to the computational complexity, an estimate of the required mem-
ory has also been made. This was done by looking at how the algorithms work
in theory. This estimate would consider how many rows that has been used for
the prediction algorithm and what temporary variables were required for the cal-
culations. The encoders were also examined by looking at how much information
they needed to store while the encoders were running. The results were roughly
rounded to a multiple of kilobytes in order to easily get a good idea of the magni-
tude of memory needed. This was done because many of the algorithms were close
to each other when it comes to memory requirements and looking at the small
differences was not of any interest.

3.7 Implementation of Near-Lossless Compression Technique

3.7.1 Impact of noise on Compression

The image quality is affected by temporal noise from the sensor as mentioned in
Section 2.6.1. It has been investigated in this work how this noise affects the
compression of the image.

To be able to determine if the noise profile in the image affects the compression
ratio, a simple noise removal filter was implemented and applied to a set of images.
50 images, taken one after another of the exact same scene. In order to reduce
temporal noise, these 50 images were averaged into a single image. The resulted
averaged image was then compressed using different compression techniques, the
resulting compression ratio were then compared to the compression ratio obtained
from compressing one of the images used for averaging, using the same compression
techniques.

3.7.2 Near-Lossless Quantization

If the sensor in the camera introduces noise NS , it would be good to understand
how allowing different levels of quantization actually affected the compression ra-

Implementation of Algorithms 37

tio. A proposed method using this technique was implemented to test this and
is described in this section. When this was simulated, a rough noise model was
used to describe the sensor noise. In the simulation, the present noise in each pixel
were expected to have a maximum value of NS,max, which was obtained using the
model as explained in Section 2.6.2.

After the prediction of a pixel, the prediction could be used to estimate the
pixel intensity and thus, the amplitude of the noise could be calculated. By allow-
ing a certain signal-to-quantization-noise ratio (SQNR) the value of the prediction
error could be truncated by shift operations before it is encoded. The quantization
error NQ became uniformly distributed in [−2s + 1, 2s − 1] where s is the total
amount of shift operation made for truncating the prediction error. If the sensor
noise was expected to have the maximum value of NS,max, the amount of shift
operations that could be used was calculated by using the equation

SNQR ≤ NS,max

2s − 1
, (3.4)

which can be rearranged to

2s ≤ NS,max

SNQR
+ 1. (3.5)

From this expression, s could be obtained. This is done by counting the amount
of shift-right operations on the right-hand side of the expression until the result
becomes equal to 0, the amount of shift operations was s+ 1. The added 1 to the
equation was done in order to not include the most significant bit in the noise, but
only the numbers leading up to it, to make Expression 3.4 hold. The result was the
truncated pixel error value by shifting s times. This introduced the quantization
noise NQ that was limited by

2s − 1 = NQ,max ≤
⌊
NS,max

SNQR
+ 1

⌋
, (3.6)

where bxc was the integer part of x. By doing this truncation, the prediction error
values could be truncated by doing a shift-right operation s times before encoding.
The decoder did, after decoding the error value, perform a shift-left operation s
times to obtain the original, but quantized, prediction error value.

As an example, the following case could be considered. If the maximum sensor
noise NS,max is 64 for a specific pixel and the allowed SQNR is 4, the restriction
will become 2s ≤ 64

4 + 1 = 17. In binary representation, 17 is equal to 100012 and
can be shifted to the right 5 times until the result becomes 0. This means that s
can be obtained as s = 5− 1 = 4.

The procedure of bit-shifting the pixel error values before the encoding step
was implemented in a new benchmarking script. To produce clear results, only two
images were used for calculating the compression ratios. However, these two images
were different when it comes to how much they are being able to be compressed.

One of the two images was the test1.pgm image, which was an image which
has produced high compression ratios for all methods in the benchmark program.
The other image called test24.pgm that has always produced low compression
ratios was added for comparison. The choice of the images was based on the fact

38 Implementation of Algorithms

that the technique of quantization might be much more worthwhile for images
where good compression ratio was not possible without it. A high average com-
pression ratios was a desired outcome, but the worst-case scenario was still a big
factor when it came to evaluating a methods performance. Therefore, a plot of the
relative increase in compression ratio was also made to highlight this significance.

3.8 Horizontal and Vertical Blanking

As mentioned in Section 2.5, the raw image from an image sensor does often include
some sort of areas which almost only contains zeros. This due to the horizontal
and vertical blanking. In order to see how this affects the compression ratio of
the algorithms developed and evaluated during this thesis were rows and columns
of zeros added to images and then compressed. The resulted compression ratio is
then compared with the compression ratio of the original image where no zeros
were added. From this the compression ratio for the areas with zeros is calculated.

3.9 Lossy JPEG

To get a reference of how well the compression techniques that were developed
developed and evaluated during the thesis performed, they were compared with
the lossy JPEG compression technique. It was done in Python by taking a raw
image file and then save and compress it as an other file using the module imageio
which got a lossy JPEG function. The size of the two images files was compared
and the compression ratio was calculated. This was done for all of the images in
Appendix A and then the average and worst-case were presented.

3.10 Comparison with PNG

To understand how well PNG performs in comparison to the benchmark tests in
this thesis, an image was compressed using a PNG image converter application.
The images were Bayer separated to remove the advantage the algorithms in the
benchmark has. This advantage exists because the algorithms were hardcoded
to do predictions while taking the Bayer pattern in consideration, and the PNG
converter application can not be expected to do the same. The same image was
then also compressed in the benchmark program with the Adaptive Golomb-
Rice and Mean2L combination.

3.11 Error Handling

To be able to see the effects of an introduced bit error, a simulation of this was
implemented. The simulation produced the decoded image as if no error handling
method was being used. To solve the problem of bit errors, a simple method was
developed and analyzed.

Implementation of Algorithms 39

3.11.1 Proposed Method

To reduce the effects of a bit error in the transmission between the encoder and
decoder it was suggested that each frame should be divided into sequences. Say
that the rows of a frame are divided into 16 sequences by dividing the rows into
16 equally large blocks. This means, each block would include 68 rows for 1080p
images. After entering a new block both the encoder and decoder assume that only
the information within this new block are valid information. This means that the
prediction rule, prediction statistics and encoding statistics which the compressor
uses are reset to a default value so that the encoder and decoder can get back to
become synchronized in the case that there was a transmission error in the precious
block. The predictor is also then restricted to only use values from within its own
block. If an error would occur in a block then the block would be destroyed and
the corresponding block from the last frame could be used when representing the
image instead. We assume that a block can be replaced by a block from a past
frame without a person watching the video stream noticing, not anymore than a
very small lag, as the frame rate is as high as 30 fps.

To be able to detect when a bit error occurs in the bitstream from the encoder
to the decoder the bitstream needs to be sent in packets. The packets will also
be used to keep count on how many symbols that has been transmitted in each
block. These packets is suggested to have a fixed length of 1032 bytes where 8 of
these bytes are used to represent how many symbols there are in this packet. Since
the data which represent how many symbols there are in the packet are sensitive
information is the value which represent how many symbols the packet contains
repeated 5 times. This is based on the idea described about repetition codes as
described in Section 2.10.1. Which means that there has to be a bit error in three
of these five symbol fields in order for the decoder to misinterpret the symbol field’s
original value. In order to avoid the burst error as mentioned in Section 2.10.1,
the 5 symbol fields will be spread out at predefined locations. Upon the end of
each block of rows, the last packet sent in that block will only contain as many
symbols as there are left in the block and the rest of the packet will be filled with
zeros. This means that the next block will start of with a new packet which only
contains symbols from the new block.

3.11.2 Testing the Proposed Method

In order to evaluate the proposed method some calculations were made to find out
what limitations the method used for the transmission puts on the compression.
Among these restrictions there is the amount of overhead data that will be intro-
duced because of the symbol fields and how much the symbol field’s size restricts
the maximum compression ratio.

To test how much the block division will worsen the compression ratio, a
predictor and an encoder combination using this division was implemented and
tested in the benchmark. The combination used was Adaptive Golomb-Rice with
Mean2L.

40 Implementation of Algorithms

Chapter 4
Results

In the following sections, the results from the implementation will be presented.
They will be presented in the order they have been presented in the previous
chapter. In the next chapter, the results will be discussed and later on a conclusion
based on the results will be made. The set of images used during this chapter for
obtaining results is shown in Appendix A.

In the tables where results are presented, method names marked in bold font
are methods which we have designed by ourselves without finding any informa-
tion about them in literature. This does not mean that nobody has not used or
published these methods before but rather that we discovered them on our own.

4.1 Correlation Analysis

From the Python scripts several plots were obtained. In Figure 4.1 the correlation
in image test12.pgm is illustrated. As a reminder for the reader, these scripts
were only testing the green pixels after a Bayer split.

In the plot in Figure 4.1a, each dot is represented by two values, x and y,
where x is a chosen pixel’s value and y is its neighbor’s pixel’s value. These two
values can be seen as two stochastic variables, which implies that the closer to a
straight line they appear to be the higher is the correlation between them.

In Figure 4.1b the Pearson correlation between a pixel, at position (13, 13) in
the plot and its neighbors are plotted. Here the neighbors are in different directions
and distances that is represented by their position in the graph in relation to the
center pixel. In the plot, the color intensity is normalized, meaning in this case,
that the highest correlation is completely white and the lowest value is completely
black.

41

42 Results

(a) Correlation between current pixel and
its neighbor to the left.

(b) Correlation between current pixel and
its neighbor pixels.

Figure 4.1: Illustration of correlation in image test12.pgm.

The corresponding figures are show in Figure 4.2, where the neighbor pixel cor-
relation in image test24.pgm is investigated. Here it can be seen than the correla-
tion between the pixels are not as strong in image test24.pgm as in test12.pgm.
It can be seen from the higher spread of the dots in Figure 4.2a compared to 4.1a.
What also can be seen is that the correlation is decreasing at a higher rate with
growing distance from the center pixel in Figure 4.2b compared with 4.1b.

(a) Correlation between current pixel and
its neighbor to the left.

(b) Correlation between current pixel and
its neighbor pixels.

Figure 4.2: Illustration of correlation in image test24.pgm.

The normalization of the values in Figure 4.1b and Figure 4.2b shows the
relative decrease in correlation. The absolute values for the minimum values are
around 0.7888 for image test12.pgm and around 0.3291 for image test24.pgm.

Results 43

4.1.1 Predictor Implementation

Before any prediction has been made, the probability distribution of the image’s
pixel values is examined. The probability distribution of the pixels in the images
test12.pgm and test24.pgm were obtained by running a Python script. The
results are shown in the Figure 4.3.

(a) Histogram of pixels in image
test12.pgm.

(b) Histogram of pixels in image
test24.pgm.

Figure 4.3: probability distribution of pixel values.

These probability distributions resulted in the entropy 10.97 bits respective
11.10 bits for the two images. When predicting the two images using the LOCO-I
predictor, without making the error only take positive values and without remap-
ping it, the probability distribution shown in Figure 4.4 was obtained.

44 Results

Figure 4.4: Probability distribution of two sided prediction error.

As it can be seen, the probability distribution of the predicted error in image
the images test12.pgm and test24.pgm are two-sided geometrically distributed
centered around zero. The entropy of the prediction error in image test12.pgm is
7.59 bits and the entropy of the prediction error in image test24.pgm is 10.33. If
the error is instead mapped to be one-sided, the following probability distribution
of the error is obtained.

Results 45

Figure 4.5: Probability distribution of one sided prediction error.

From the probability distribution in Figure 4.5 the entropy was calculated.
For test12.pgm the entropy was 6.60 bits, while it was 9.33 bits for the image
test24.pgm. Since the errors were one-sided and the sign of the number is lost,
one additional bit must be added to these entropy values.

4.2 Benchmark

In the benchmark the 50 images shown in Appendix A were used. The mean of
the compression ratios are shown in Table 4.1 and the worst achieved compression
ratio for each combination are shown in Table 4.2. The results are represented
in percentages and any negative values means an increase of the file size of that
amount instead of a compression of that amount.

As a reminder for the reader, as mentioned in the beginning of Theory, the
compression ratio is defined as: CR = 1− Compressed data size

Original data size .

46 Results

Golomb-
Rice

Adaptive
Golomb-
Rice

Huffman Adaptive
Huffman

Simple 0.575332 28.9613 24.6330 28.2528
Mean2 32.4150 38.7146 37.0990 37.7708
Mean4 31.2499 38.8285 36.8677 37.5603

Mean4-R 30.3280 38.6002 36.6311 37.3157
Mean2L 32.6824 39.0323 37.3337 38.0468

Mean2L-2 32.6461 39.0814 37.2994 37.9980
Median 28.6938 37.2351 36.0190 36.6333
LOCO-I 32.6665 38.1162 36.6196 37.3433

Paeth 31.3420 37.4897 36.0812 36.7943
Combined 34.8596 39.7543 38.2790 39.0870

LMS 33.7290 38.9185 37.3286 38.0081
LMS2 33.7882 38.9632 37.3326 38.0209

Table 4.1: Average compression ratio (%) benchmark results.

Golomb-
Rice

Adaptive
Golomb-
Rice

Huffman Adaptive
Huffman

Simple -246.302 0.286949 -27.6244 4.13832
Mean2 -62.2371 14.2381 0.366498 14.3990
Mean4 -68.6471 13.5352 -1.23117 13.7576

Mean4-R -72.5712 13.1383 -1.79703 13.3445
Mean2L -62.4526 14.2263 0.0805504 14.3902

Mean2L-2 -61.4786 14.3451 0.177408 14.4965
Median -78.9143 12.4331 -2.37588 12.7388
LOCO-I -70.4697 13.2378 -0.780611 13.5963

Paeth -76.4615 12.5966 -1.70422 12.9908
Combined -64.2633 13.9828 0.00191483 14.1760

LMS -60.4147 14.4592 0.464888 14.6168
LMS2 -60.1835 14.4890 0.435336 14.6416

Table 4.2: Worst-case compression ratio (%) benchmark results.

The entropy results are shown in the Table 4.3. The theoretically maximum
compression ratio achievable in the worst-case image compression are presented in
the Compression Potential column. As mentioned in 3.4, the maximum compres-
sion ratio is obtained from entropy.

Results 47

Average En-
tropy

Worst-case
Entropy

Compression
Potential (%)

Simple 8.57931 11.4638 0.446770
Mean2 7.44380 10.2398 14.6680
Mean4 7.46785 10.3120 14.0663

Mean4-R 7.49611 10.3602 13.6642
Mean2L 7.41089 10.2398 14.6681

Mean2L-2 7.41639 10.2270 14.7746
Median 7.57509 10.4325 13.0618
LOCO-I 7.49446 10.3367 13.8604

Paeth 7.55772 10.4052 13.2898
Combined 7.28607 10.2654 14.4548

LMS 7.41509 10.2142 14.8814
LMS2 7.41362 10.2104 14.9037

Table 4.3: Entropy benchmark results.

The standard deviation was calculated using the results. The standard devia-
tion results are shown in table 4.4

Golomb-
Rice

Adaptive
Golomb-
Rice

Huffman Adaptive
Huffman

Simple 0.446427 0.0796449 0.121084 0.0747887
Mean2 0.146384 0.0443408 0.0608004 0.0448311
Mean4 0.155837 0.0459244 0.0632387 0.0463743

Mean4-R 0.161257 0.0467571 0.0642144 0.0470724
Mean2L 0.147686 0.0449563 0.0617643 0.0457435

Mean2L-2 0.146023 0.0447823 0.0615062 0.0454549
Median 0.167423 0.0448861 0.0639109 0.0460396
LOCO-I 0.158601 0.0452430 0.0626440 0.0454501

Paeth 0.166083 0.0452543 0.0634507 0.0455170
Combined 0.150931 0.0456304 0.0627778 0.0467877

LMS 0.144754 0.0447317 0.0613412 0.0455852
LMS2 0.144517 0.0447952 0.0614665 0.0457211

Table 4.4: Standard deviation of compression ratio benchmark re-
sults.

4.2.1 The Combined Predictor

The combined predictor’s performance dependence was analyzed. In Figure 4.6
the compression ratios of the combined predictor using different amount of sections

48 Results

for the images test1.pgm and test24.pgm are shown. The scale of the x-axis is
2-logarithmic, while the y-axis is linear.

(a) Compression ratio for image
test1.pgm using combined.

(b) Compression ratio for image
test24.pgm using combined.

Figure 4.6: Compression ratio for different amount of sections that
each row are divided into.

When dividing each row into 128 sections, how much each prediction method
was used in the Combined predictor for the images test1.pgm and test24.pgm
is shown Figure 4.7. The results are in percentages.

(a) Prediction methods used in image
test1.pgm by combined.

(b) Prediction methods used in image
test24.pgm by combined.

Figure 4.7: Methods used in the combined predictor when using 128
section for each row.

4.2.2 Prediction using Temporal Data

The comparisons made using the Time predictor using temporal data was com-
pared against other compression methods. The results are shown in Table 4.5.
The images used are shown in Appendix B.

Results 49

Adaptive
Golomb-
Rice

Adaptive
Huffman

Adaptive
Golomb-
Rice
Worst-case

Adaptive
Huffman
Worst-case

Time 37.6033 36.5367 27.9825 26.6209
LMS 36.2077 35.0452 25.7009 23.7687

Mean2L 36.0564 34.9646 25.2689 23.5140

Table 4.5: Comparison of compression ratio (%) using Time predic-
tor with other predictors.

4.3 Run-length Encoding

In Table 4.6 some compression ratios are shown for two different images. The
image test1.pgm is an image which has provided good compression results for all
predictors and encoders in the benchmark, while test24.pgm has provided poor
compression results.

Adaptive
Golomb-
Rice

Huffman Run-
Length

test1.pgm 43.0157 41.7430 41.9911
test24.pgm 14.2195 0.01746 -0.133836

Table 4.6: Comparison of compression ratio (%) using run-length
encoding with other encoders using Mean2L predictor.

The execution for the time in Python to build the tree for Huffman and all 4096
symbols could take more than 4 seconds, while building the tree for the run-length
encoder did not take more than 0.1 second.

4.4 Sensor Noise

4.4.1 Impact of Noise on Compression

A new image was created by averaging the set of 50 images in Appendix A. It
was put in to the compression benchmark and compared against another image
from the original image set. For the averaged image, the benchmark produced
the results shown in Table 4.7. For the other, not averaged image, the produced
results are shown in Table 4.8.

50 Results

Adaptive
Golomb-
Rice

Adaptive Huff-
man

Mean2L 55.6455 55.3711
LOCO-I 53.7829 53.4618

Combine 54.6360 55.4679

Table 4.7: Compression ratios (%) for averaged image.

Adaptive
Golomb-
Rice

Adaptive Huff-
man

Mean2L 42.1613 42.0778
LOCO-I 39.7043 39.5638

Combine 41.7973 42.0243

Table 4.8: Compression ratios (%) for non-averaged image.

4.4.2 Near-Lossless Compression

As mentioned earlier, compressing the image test1.pgm has achieved good com-
pression ratio results in the benchmark, while the compression of image test24.pgm
performed worse.

A graph was made to show how compression ratio varies depending on the
allowed SQNR parameter for each image, this graph is shown in Figure 4.8. Notice
that the x-axis are in a logarithmic scale and that the y-axis is zoomed in to only
display the relevant part.

Results 51

Figure 4.8: Compression ratio for different SQNR parameter values.

Figure 4.9 highlights how the compression ratio using noise quantization relates
to the compression ratio without any quantization. It instead shows the increase
in compression ratio in comparison with without using quantization.

52 Results

Figure 4.9: Relative Compression ratio for different SQNR parameter
values.

4.5 Analysis of Horizontal and Vertical Blanking

When adding 100 rows below and 100 columns to the left of the image test1.pgm
shown in appendix with zeros it resulted in the image shown in Figure 4.10. Both of
the images were then compressed. The resulting compression ratio shown in Table
4.9 were then obtained. The compressing was done using the predictor-encoder
combination of Mean2L and Adaptive Golomb-Rice.

Results 53

Figure 4.10: The image test1.pgm with horizontal and vertical
blanking.

Mean2L -
Adaptive Golomb-Rice

test1.pgm 43.0119
Padded image 46.1391

Table 4.9: Compression ratio (%) for image with and without hori-
zontal and vertical blanking.

If compressing the horizontal and vertical blanked image and then comparing
the size of the compressed file and the size of the original image test1.pgm, then
a compression ratio of 38.1255% could be achieved.

When adding zeros in the test1.pgm image it increases the file size by 3729600
bits. The compressed version of the image in Figure 4.10 are 1224894 bits larger
than the compressed version of the original test1.pgm image. From this one can
approximate the compression ratio for the blank area to be

1− 1224894

3729600
≈ 0.6715 (4.1)

.

4.6 Lossy JPEG

When compressing using lossy JPEG, a parameter that controls the quality of the
image after compression may be set. The resulting compression ratio in average

54 Results

and in worst-case are shown in Table 4.10. In this table, the standard deviation
and mean squared error between the pixel values in the original and compressed
image are also shown. This was done using the images in Appendix A.

quality = 100% quality = 10%

Average compression rate 78.8774 97.5650
Worst-case compression rate 62.6362 92.9070

Standard deviation 4.56383 1.60324
Mean squared error 29.8582 29.7264

Table 4.10: Compression ratio (%) using Lossy JPEG for different
quality settings.

In Figure 4.11 and Figure 4.12 the compressed images are shown using different
quality settings. It can be seen how the compression affects the quality. In Figure
4.13 the original image can be seen.

Figure 4.11: Compressed image using quality = 100.

Results 55

Figure 4.12: Compressed image using quality = 10.

56 Results

Figure 4.13: Original image.

4.7 Comparison with PNG

To get some reference results the Bayer separated version of the image shown
in Figure 4.13 was compressed using the PNG standard. The PNG compression
provided a file size that was 23.74% smaller compared to the original file size. When
the same Bayer separated image was compressed in the benchmark program with
Adaptive Golomb-Rice and Mean2L, it provided a file with a size that was 50.00%
smaller than the original file size.

4.8 Computational Complexity

The computational complexity was estimated for every predictor and encoder.
Table 4.11 shows the estimated computational cost for each pixel. The estimated
memory requirements are also shown in a separate column.

Results 57

Computational Cost Memory Require-
ments (KB)

Simple 9 <1
Mean2 12 8
Mean4 16 8

Mean4-R 42 3
Mean2L 15 8

Mean2L-2 26 8
Median 25 8
LOCO-I 25 8

Paeth 26 8
Combined 87 15

LMS 66 8
LMS2 102 8

Golomb-Rice 21 0
Adaptive Golomb-Rice 24 8

Huffman 1 20
Adaptive Huffman 120 256

Table 4.11: Estimated computational cost for the different tech-
niques.

Once for each section in the Combined predictor, the next predictor needs to
be predicted. The computational cost for this operation was not included in the
estimation shown in Table 4.11 since the computational cost in the table are on
pixel basis. The cost for predicting which prediction method to use in Combined
is estimated to require 30 clock-cycles per section.

The memory requirements shown in Table 4.11 are all rounded to a multiple
of kilobytes. These estimates were made as if the variables would be represented
by 4 bytes. If the variable values would be represented by 2 bytes, the memory
requirements would be halved. In a few cases, some floating point variables are
needed. However, there will only be a few of these, which makes the additional
cost negligible in comparison to the 2176 integer values that are needed for just
two rows of pixels.

4.9 Error Handling

If a bit error would occur in a frame without any error handling the error would
propagate and spread as shown in Figure 4.14. The original image is test1.pgm,
that is shown in Appendix A.

58 Results

Figure 4.14: Example of how a bit error in the transmitted bitstream
affects the decoded image.

It can be seen that somewhere in the middle of the image the transmission
error occur and all the pixels that com after that become inaccurate.

4.9.1 Proposed Error Handling

Dividing Image into Blocks

The error handling suggested in Section 3.11 puts some constrains on the com-
pression ratio. When dividing an image into blocks the compressing ratio possible
to achieve is reduced. In Table 4.12 are the resulting compression ratios from
when compressing the images shown in Appendix A using the Mean2L predictor
combined with the Adaptive Golomb-Rice encoder dividing the video frame into
blocks compared with the compression ratio when not dividing the image into
blocks. The prediction-encoder combination dividing the video frame into blocks
are refereed to as "With error handling". Note that the average compression ratio
without error handling differs from the one presented in Table 4.1 as an older
version of the set of images were used to perform this experiment.

Results 59

Average
compression ratio

Worst case
compression ratio

Without error handling 0.399972 0.139738
With error handling 0.398461 0.138567

Table 4.12: How dividing a video frame into blocks effects the
compression ratio of the Mean2L-Adaptive Golomb-Rice
combination.

Packet Protocol

The design of the packets puts constraints on the maximum compression ratio
that possible to achieve. When using 12 bits in each of the 5 symbol fields, the
symbol fields are able to represent at most the value 4095 which limits the number
of symbols that can be included in the packet. If using 1024 bytes for representing
the codewords of the symbols, then the highest achievable compression ratio can
be calculated as

CRmax = 1− (Bytes used in protocol) · (bits per byte)
(Max symbols in protocol) · (bits per symbol)

= 1− 1024 · 8
4095 · 12

= 0.83. (4.2)

Besides the limitation mentioned above, the header data also needs to be sent.
By using 8 bytes for the header the transmitted data will increase by

8/1032 ≈ 0.007752, (4.3)

which is less than one percentage. Besides this header data the last packet of a
block needs to fill the rest of its codeword field with zeros after the last symbol
for that block. The amount of zeros in the last packet could be considered to
be uniformly distributed with an average of 512 Bytes. Since it varies how many
packets each block contains based on the compression ratio, it can not be deter-
mined how much this is in average for all packets. If it is assumed as an example
that the compression ratio is constantly 33% it means that each symbol will be
compressed to require 8 bits and thus each packet will contain 1024 symbols. If
there are 16 blocks per frame it means that each block contains 68 rows, where
each row contains 1920 pixels. This means that there are

68 · 1920

1024
= 127.5 (4.4)

packets per block. Rounded up it gives 128 packets per block and this means that
in there are in average

512B
128

= 4B/packet (4.5)

of wasted space per packets, which comes from not filling up the last packet in the
block. With this we can calculate the total overhead data for each packet as

(8 + 4)B
1032B

≈ 0.01163. (4.6)

60 Results

Chapter 5
Discussion

The results from the implementation in this thesis will be discussed and connected
to the theory. The discussion chapter has a structure based on the ordering in the
result chapter. First, the correlation will be discussed and how it has been used
in prediction and why the performance differs significantly for different images.
Then, the results from the benchmark will be discussed and how different pre-
dictors and encoders affect the compression results. The hardware demands are
mentioned and why the method used for estimating hardware demands is not ex-
act. Afterwards, near-lossless quantization and how higher compression ratio can
be achieved, without affecting the image quality significantly, will be discussed.
Later on, transforms are discussed and why it was decided not to implement any
transform algorithms. At the end of the chapter, what can be done next in order
to extend this research will be discussed, together with criticism on this report.

5.1 Correlation Analysis

How well a pixel is being able to be predicted from its neighbors is highly dependent
on how much they are correlated. In the Results chapter this is clearly shown and
in the following sections, the correlation test results will be discussed in order to
get a better understanding.

5.1.1 Correlation to Neighbors

When comparing the correlation between a pixel and its left neighbor in image
test12.pgm and test24.pgm some differences can be seen. The correlation in
image test12.pgm is stronger since most of the dots in Figure 4.1a are aligned,
this means that the pixels’ values are dependent on each other. Given a pixel
value, its neighbors can be estimated based on the given pixel value. The depen-
dency between the pixels is not as strong in the image test24.pgm, as it can be
seen in Figure 4.2a. The pixels spread is much larger than in the Figure 4.1a,
the spread is almost diamond shaped. This means that given a pixel value, the
pixel’s neighbors’ values can not be determined with equally high accuracy. The
pixels in test24.pgm are probably less correlated to each other than the pixels
in image test12.pgm because of the image test24.pgm contains more structures

61

62 Discussion

and appears more random than the image test12.pgm. The visible structure is
what makes the image less predictable.

5.1.2 Spatial Correlation

From the Figures 4.1b and 4.2b it can be understood why only the close neigh-
boring pixels are useful to use for prediction and why the predictors that uses this
information to their advantage obtains a much higher compression ratio. In the
figures it can be seen that the correlation between the pixels that are close to each
other are strong, while pixels with some distance between them have low corre-
lation. As one might expect, the correlation between pixels decrease the further
away the pixels are from each other. Therefore, since the correlation is very strong
with neighboring pixels, an image that uses a much higher resolution might expect
a greater correlation between its pixels and their neighbors. This might be true
in most cases because the spatial distance between the pixels decreases when the
resolution increases and they become more densely packed.

It is rather important to not misinterpret these graphs. Without an explana-
tion they might be rather misleading. The absolute values of the correlation is also
of interest. The darkest spot in Figure 4.1b is much higher, around 0.7888, than
the darkest spot in Figure 4.2b which is around 0.3291. So apart from the corre-
lation just fading off quickly, it also fades down to a much lower value. In other
words, the pixels that are pitch black in Figure 4.1b would still have a rather high
correlation of around 0.7888 that could be used for prediction. The minimum value
could be seen as a direct measurement of how good any prediction method could
be, while the relative values tells more about which pixels to use for prediction.

5.1.3 Error Probability Distribution

When using the LOCO-I predictor, the pixels in image test12.pgm are predicted
more accurately than the pixels in image test24.pgm. This can be seen in Fig-
ure 4.5 that the probability distribution of the errors predicted from the image
test12.pgm are more narrowly concentrated and centered around zero compared
to the errors predicted from the image test24.pgm. This means that the error
predictions of test12.pgm are better and therefore the image can theoretically
get a higher compression ratio.

In general, the predictors are used to get a more structured pixel probability
distribution. In Figure 4.3a and Figure 4.3b it can be seen that the probability
distribution of the pixels values of the images test12.pgm and test24.pgm are
random and very unstructured. After prediction, the probability distributions of
the errors of both images become structured in a similar way. They will both have
a geometric distribution of the prediction error, but they will fade towards zero at
different paces. This can be seen in Figure 4.4, where the figure shows the two-sided
geometric distribution of the prediction error. Since Golomb-Rice encoders are,
according to theory, optimal for one sided geometric distributions, the prediction
error have been remapped to only take positive values. This is done without losing
any information and each prediction error is remapped to its positive value. One
extra bit is saved that used for representing the prediction error’s sign and handled

Discussion 63

separately. The obtained one-sided probability distribution can be seen in Figure
4.5.

5.2 Benchmark

Apart from being a very time-saving tool, the benchmark program has helped by
producing results that shows the performance for each predictor-encoder combi-
nation. In general, the compression ratio tends to become better the higher the
computational complexity of the prediction-encoder combination. However, this
tendency is not strictly true and in the following sections this will be discussed
together with the benchmark results in detail.

5.2.1 Entropy Analysis

As mentioned in Theory, the entropy is a measurement of the theoretical minimum
amount of bits required to encode each symbol in a sequence of symbols. Therefore,
you could conclude that the lower the entropy, the better compression ratio. This
is however not always true. For example, the Mean2 predictor produces a worst-
case entropy of 10.239840 which is worse thanMean2L’s 10.239828, but actually
gives a better compression ratio of 14.2381535 versus Mean2L’s 14.2263135
when using the adaptive Golomb-Rice encoder. These results were given from the
same image, image test24.pgm shown in Appendix A.

These results are almost identical, but proves the fact that there are more
factors than the entropy that affects the compression ratio. One possible reason
for this result could be that the Golomb-Rice encoder works optimally when the
probability distribution is geometrically distributed and the predictors might pro-
duce an prediction errors where the distribution is not shaped to the encoders
advantage. In other words, resulting distribution’s shape makes the encoder to
assign codes to the symbols in a sub-optimal way, thus creating longer codewords
than necessary. The entropy is still a important measurement when it comes to
judging a predictors performance. However, when selecting a predictor to use, it
is very important to test it with a big set of sample images, together with different
encoders, in order to find the one that performs the best.

5.2.2 Average Compression

In general, the compression ratio from the encoders follows the average entropy.
There is only one combination that does not produce any compression in average.
This would be the Golomb-Rice-Simple combination. This might be because of
how the simple predictor does not perform well, and therefore the error distribution
is not geometrically distributed evenly throughout the whole image, thus giving a
very low or negative compression ratio for many images. A negative compression
ratio would result in an expansion in the file, meaning it takes more space than
the original file. The Adaptive Golomb-Rice handles this by tuning the parameter
k, which determines how the symbols should be encoded, for different sections of
the image.

64 Discussion

Adaptive Encoders

The encoder that produces the best average compression ratios is the Adaptive
Golomb-Rice encoder, as it has the best ratio for each and every predictor. The
Adaptive Huffman encoder is not far from it, but lacks the fast adaptation which
the Adaptive Golomb-Rice encoder has. The current implementation of the Adap-
tive Huffman is not using any forgetting factor when it comes to its statistics,
which means that when enough statistics have been gathered, any new pixel value
that is processed will barely affect the overall statistics. Adaptive Huffman can
also be implemented as a windowed version which means that it would only use
statistics within the current window. Neither a version of Adaptive Huffman us-
ing a forgetting factor or window was implemented. Thus, Adaptive Huffman will
have no adaptation to local variations within the image. This might be the reason
why the Adaptive Golomb-Rice encoder outperforms Adaptive Huffman on aver-
age. In addition to this, the Adaptive Huffman starts encoding each image with
an empty huff-tree which it has to build up. If it would have an already built tree
at the beginning of each image, it might perform better. This could be done by
saving the huff-tree between every frame or image. This was however not tested in
the benchmark and could probably improve the performance slightly. This imple-
mentation was however left out from this thesis, as it is expected to provide very
little improvement and there is much work to be implemented, like some form of
forgetting of older statistics.

Static Encoders

The normal Huffman encoder performed considerably well and produced results
that are just a few percentages lower than its adaptive counterpart. The normal
Huffman uses statistics that are hard-coded, and not the statistics from the image
which it is compressing. Since the statistics that the encoder uses is predefined,
the normal Huffman encoder is extremely fast and requires no computations but
only direct memory accesses to obtain the code for a given symbol. This makes
Huffman an interesting candidate for this thesis. The same could be said about the
normal Golomb-Rice encoder, which produces results slightly worse than Huffman.
The advantage Golomb-Rice has is that no statistics is needed to be estimated but
only a parameter.

5.2.3 Worst-case Compression

The wost compression ratios are all produced when trying to compress the test-
24.pgm image, which has a very "noise-like" appearance. Because of this, the
predictors struggle with predicting the pixel values and it results in that the en-
coders can not encode the error values efficiently. This leads to lower compression
ratios, or even negative compression ratios in some cases. Negative compression
ratio means that the size of the file has been increased.

Discussion 65

Static Encoders and Negative Results

Negative results are only produced by the Golomb-Rice and the Huffman encoder
and the reason for this is easy to understand. Since the Golomb-Rice encoder
expects the probability distribution to be a geometric distribution with a certain
shape. The Huffman encoder is implemented in a way which uses a predefined
probability distribution, thus expecting the images’ distributions to have a certain
shape. The encoders will therefore encode the symbols with codewords that are
mis-adjusted and too long if the image’s real symbol probability distribution differs
too much from expected model. This will lead to larger file sizes and for this reason,
these two encoders will be left out of the discussion for the rest of this section.

Adaptive Encoders and Sections

The first thing that one might notice is how Adaptive Huffman is better in the
worst-case scenario with all predictors in comparison with Adaptive Golomb-Rice.
This could seem a bit surprising, as the average values were better for Adaptive
Golomb-Rice. Because of how these two encoders have been implemented, there
is a difference in how they might perform in images with high pixel correlation
compared to in images with a lower pixel correlation. The Adaptive Golomb-Rice
encoder is implemented in such a way that it divides each row of the image in a
number of sections and tries to estimate what parameter value it should use for
the next section to encode. The more noise-like characteristics the image has, the
more difficult it becomes for the Adaptive Golomb-Rice to accurately predict the
parameter value. Adaptive Huffman on the other hand has a much smoother way
of tuning itself, as described in Section 3.3. This smoother way of tuning itself
makes the Adaptive Huffman encoder more suitable for images having varying
statistics. Therefore, the Adaptive Huffman will produce much better results with
the worst-case image.

The Combined predictor is based on the same principle of trying to tune itself
in sections as Adaptive Golomb-Rice. It can be seen from the results how the ad-
vantage Combined had in the average case, has instead turned into a disadvantage
in the worst-case. The reason for this might be that the statistics in the images
may change rapidly enough that the statistics in one section differs a lot from the
statistics in the next section. This would make the prediction method predictor
in Combined, more inaccurate for the next section. This would make the Com-
bined predictor not to use the optimal prediction setting. The prediction settings
might vary so much that they alter between a couple predictors but never uses the
correct one because the one that it uses was optimal for the past section which
had different statistics compared to the current section. Likewise, the Adaptive
Golomb-Rice encoder suffers from the same issue when estimating its encoding
parameter in a image with higher local variation of the statistics. This is why in
the average case, the Combined predictor performs best among the predictors and
Adaptive Golomb-Rice among the encoders, while they both perform the worse
when compressing images with varying statistics.

66 Discussion

5.2.4 Standard Deviation Results

The standard deviation of the compression ratio gave very consistent results for
all different combinations of predictors and encoders. Only the combination using
the Simple predictor with the Golomb-Rice encoder produced a high standard
deviation that stands out from the rest. It is probably because that predictor-
encoder combination is sensitive to images of varying environments. There are
not many conclusions that can be drawn from the standard deviation except that
most of the predictor-encoder combinations are stable and the compression ratio
that they produce do not vary a lot. The standard deviation results will be used
for further discussion later on in the report.

5.3 Hardware Demands

The computation costs in Table 4.11 are just estimations and are not exact. This
means that if two methods are estimated to require the same number of clock-
cycles per pixel it is not certain that the one that is more expensive actually is
more expensive. The table can still be useful to get a general idea of how the
techniques differs in computational cost. The more demanding techniques can be
separated from the medium demanding and even less demanding techniques.

5.3.1 Computational Cost

The computational cost is a rough estimate, because it is hard to get a accu-
rate estimate of how many clock-cycles different operations require. How many
clock-cycles different operations requires is hard to estimate because it is hardware
dependent. One other factor that makes the estimate inaccurate is that it is hard
to calculate the mean number of operations that will be used for each pixel in the
different algorithms. The mean number of operations per pixels can vary depend-
ing on how the operations are performed, especially when considering conditional
branches in the program. During the computational cost evaluation in this report
the main focus of the predictors were on the algebraic expressions of their predic-
tion rule. For each prediction rule the different required operations were counted
and then weighted based on how many clock-cycles the operation is estimated
to require. For example, an addition operation was assumed to only require one
clock-cycle while a multiplication required four clock-cycles. The computational
cost of the encoders are based on their implementation. The assumptions made on
how many clock-cycles each operation cost might be inaccurate, therefore making
the Table 4.11 a bit untrustworthy. As mentioned earlier, the table still gives the
general idea and a good overview of the computational cost.

5.3.2 Execution Time as Measurement

One might think that measuring execution time would be a good idea to get a
rough idea of the hardware requirements, but this would most likely be even more
inaccurate. The language used to implement the algorithms has been Python,

Discussion 67

which is a high-level scripting language. A script has to be interpreted and trans-
lated into instructions and because of the flexibility of for example, data types,
there is little optimization done. This makes the program take a long time to
execute, no matter the type of instruction made. Another factor to consider is
that Python is run on a operating system, such as Windows or Linux, that are
not made for real-time applications like high-speed real-time video compression.
To get a good idea of the exact performance for an algorithm, the best way would
be to program it directly on the hardware and do real-time measurements. This
is however, outside the scope of this thesis.

5.3.3 Memory Requirements

The memory requirement estimates presented in Table 4.11 are rounded to an
amount of kilobytes. This was done because the differences between many of the
predictors were so small that it is not worth mentioning. It is also appropriate
to do so because the estimates are very roughly made and presenting in kilobytes
provides a good overview. Most prediction algorithms do only require two rows
of memory at most. This is because if you want to be able to keep the previous
row of data you will need to have it stored separately. However, this requirement
might differ between different sensors, because of how they provide the data. The
sensor, that has been used in this thesis, provides the pixel data by sending one
row at a time. For this reason, some of the algorithms need to have two whole
rows of data stored simultaneously, but in theory it could be done better if the
pixels were sent in a different manner. If the pixels would be received one at a
time, a buffer could be used that stores the previous pixel values until the one that
is just above the current pixel is stored. This would require a buffer of the size
of only one row. By doing this, a circular buffer would have to be implemented
which is not required in the case where they are sent row by row. A circular buffer
would add some more computational requirements. So in other words, there is a
trade-off between memory needs, computational performance and complexity.

Memory Cost of Predictors

The results are in general straightforward for the predictors. The simple conclusion
would be that, the more rows that are required by the algorithm the more memory
is needed. There only exception to this would be the Combined predictor which
uses method prediction that requires memory depending on the amount of sections
used. The sections used in our benchmarks were 128 per row but the amount of
sections could be lowered while not losing much compression ratio. It is up to the
user of the algorithm to decide how much memory that could be set a side for
the method prediction. This means that, in this case there is a trade-off between
memory needs and compression performance.

Memory Cost of Encoders

The encoders requires different amount of memory for several reasons. TheGolomb-
Rice and Adaptive Golomb-Rice encoder does not need much memory for their
encoding. The implementation of the Adaptive Golomb-Rice encoder uses sections

68 Discussion

just like the Combined predictor, this leads to a slight increase in the memory re-
quirements. This is still relatively small compared to the Huffman encoder which
needs to store each symbol together with their codewords. Because the code length
varies for the codewords, the code length of the codewords also needs to be stored
as a value in the list of codewords.

The Adaptive Huffman encoder stores a tree, made out of nodes that con-
tains all of the used symbol values. Based on the values each node needs to store,
together with all the pointer variables that points to the leaves, the memory re-
quirements become large. The normal Huffman do not need the tree stored as the
codes are static and will never changes, and thus the codes can be predefined in a
table which is faster to access and also requires less memory.

Both encoders based on a Huffman tree suffers from the fact that the memory
requirement is exponentially dependent on the amount of bits used for each symbol.
A smaller symbol set of for example, 8 bits, would require a table of 256 entries,
which is much less compared to using 12 bits, that needs 4096 table entries. The
Adaptive Huffman is however an algorithm that has provided, in the worst-case,
the best results in the benchmark. If the memory is not a problem for the user,
as well as the computational complexity, the Adaptive Huffman encoder could be
considered for use.

5.4 The Run-length Encoder

From Table 4.6 it can clearly be seen that, for an image with a good prediction as
in the case with the image test1.pgm, the compression ratio for Run-Length is
good and even better than Huffman. In this test the Huffman encoder uses a static
tree that is based on the current image’s statistics. This is an interesting result
as it is significantly faster to build a tree for the Run-Length encoder compared
to Huffman. It takes more than ten times as long time to build the Huffman-
tree for the Huffman encoder if the Huffman encoder would build a tree based
on the statistics in the predicted image by fist iterate through it. This time
measurement is, however, based on a Python script and should not be generalized.
A real hardware implementation might provide different results, but the Python
implementation still gives a rough idea of which one is the fastest. This behavior
has also already been discussed in the Hardware Requirement section, where the
size of the Tree is mentioned and how it depends on the amount of bits the symbols
originally need. The Huffman encoder encodes the 12 bit symbols, while the Run-
Length encoder only encodes the last 8 bits using a Huffman tree.

However, if instead trying to encode an image which is hard to predict ac-
curately, Run-Length performs worse and even increases the file size instead of
compressing it. This is because of the overhead data which is created for the
run-length encoding part. If there is not enough long runs of 0:s, there is not
much to gain by using the run-length technique. Even when considering how well
it performs for some images, it is still not a viable encoder as in the worst-case
situation the encoder makes the file size much larger. A compression technique
needs to be more stable for different environments in order to be a trustworthy
technique that could be used in practice.

Discussion 69

5.5 Noise Handling

Comparing Table 4.7 to Table 4.8 it can be seen that the compression ration
becomes over 10% better when a simple noise removal technique has been applied
to an image. The compression ratio becomes higher because when there are less
noise in the image then the prediction methods does perform better. This is
because the prediction methods are unable to predict the noise in the pixels since
the noise in every pixel is independent and has a random appearance. This means
that the random noise value in the pixels are transfered to the prediction error
making the prediction error contain a part, which is from the actual noise-free
values of the pixels used in the prediction, and a part which is from the noise in
pixels used in the prediction. The noise-free part of the prediction error becomes
small upon good prediction while the noise part in the prediction error is only
dependent on the noise level in the image. This means that if there is much noise
in an image, the prediction error gets a wider error probability distribution than
if there is less noise in the image. This will then lead to a worse compression
ratio when there more noise in the image. When implementing the compression
techniques on hardware one should consider to also implement a simple noise
reduction technique or use image sensors which have less noise to obtain higher
compression ratio.

5.5.1 Near-Lossless Compression

When it comes to the topic of "near-lossless" compression there is no right answer
to what is the best way to remove information. Everything comes down to what
the user consider as a reasonable amount of noise, or loss of information, that is
added to the image for the gained compression ratio. Because of how the sensor-
processor setup works, there is no point in actually having a completely lossless
compression. The image sensor introduces noise in the pixels and the processor
does not know what is noise and what is not. By introducing some quantization
noise that is lower than the original noise, the process will be working as before
except that the noise in the pixels is slightly increased.

The desired quantization noise should be small compared to the already present
noise in order to make it seem like no extra noise was added. The graph in
Figure 4.8 shows how the compression ratio is increasing when the allowed level
of quantization noise increases. When allowing more quantization noise a rather
stable increase of compression ratio be can seen.

Because of how steady the compression ratio increases when allowing more
and more quantization noise, the gain is relatively seen, much greater for images
that are hard to compress. The image test24.pgm has always been a tough
image to compress because of its noise-like appearance and when taking a look
at Figure 4.9, the advantage of quantization for difficult images is clear. When
allowing SQNR = 2 ≈ 3dB, a compression of around 95% greater compared to
no quantization could be achieved. This is a significant increase for all worst-case
situations and provides a very good trade-off between quality and compression.

70 Discussion

5.6 Worst-case Statistics versus Standard Deviation

When setting up a camera solution, one would want a very stable capture of video
data. If there would be a spike in the amount of data being transmitted with time,
some data might be lost due to more transmission errors or buffers overflowing.
Therefore, it might be a good idea to choose a compression method that performs
the best on average, but also does not vary too much by being sensitive to changes.

By calculating the standard deviation for the compression ratio for all image
samples, you will be able to get a measurement of how much the compression ratio
might vary between different images. The results was however very similar and
they all had almost the same standard deviation with just minor differences that
could not be taken into any conclusion. The differences were so small that it might
just be the uncertainty of the estimation that makes one method get a higher value
than another. The standard deviation depends probably more on the image set
used for calculating the standard deviation than on the compression techniques.
If all of the images are similar then the compression techniques will have similar
compression ratio for all of the images and have a low standard deviation. If on
the other hand the images might be from a small dataset where each images has a
very unique visual structure, the compression techniques will probably vary more
and the standard deviation will be larger.

The images used in the benchmark in this thesis, the images in Appendix
A, are images taken from our workspace where a limited set of different types
of environments could get captured. A set of images of an office with a lot of
corridors and flat walls, may provide a very high compression ratio with a very
small standard deviation. While a set of images of a construction site containing
much visual structures may provide a low compression ratio, but still having a
small standard deviation. This might be true for any environment and therefore
the standard deviation measurement is too biased for our workspace environment.
One idea which will be discussed in the Section 5.14 Further Research is that one
could try to get many image sets of different types of environment in an attempt
to see how different compression methods’ stability gets influenced by different
types of settings.

One of the images captured, test24.pgm, was intentionally captured to be as
tough as possible to compress. The amount of visual structure within the image
makes it very hard to predict because of the low pixel-neighbor correlation, and
therefore difficult to compress. The worst-case compression results from Table 4.2
shows the compression ratio that, in practice, the camera can be subjected to over
a long time if the camera is set up in a harsh environment. Because of how closely
related prediction is to correlation, there is, theoretically no way to predict such
an image in an efficient way.

The conclusion one can draw from this would be that, no matter what com-
pression method used, one will have to be aware of how the environment will affect
the compression performance. In practice, there might not be anything else to do
than to be careful not to set up the camera in a situation where the camera moni-
tors an area with much visual structure, or else it might increase the bit-rate. The
images that were used for the benchmark consisted of many different types of still
images and almost every one of the images provided a 30% compression ratio or

Discussion 71

higher, thus providing average values as high as shown in Table 4.1. Most of the
images got large areas that are monocoloured of a wall or something similar, these
areas can be compressed efficiently and in practice a camera will never monitor an
area without any monocoloured part such as shown in test24.pgm.

As discussed earlier in this chapter, there are more methods that can be applied
in order to increase the compression ratio. For example, a near-lossless quantiza-
tion method could be used in order to improve a bad compression ratio. The same
thing could be done by using a predictor that uses temporal data. However, both
of these methods have a very high price to pay in order to be used. The price
of quantization is reduction in the image quality and the price of using temporal
data is that it requires much more memory.

If the compression ratio becomes lower, the risk of the bitrate becoming to
large increases, which might lead to frames being dropped. Therefore the price to
pay for quantization might not be a bad option. The problem turns into finding
which one of the two options, either using quantization or not using it, that is the
best. If quantization would be used, the question is how much quantization should
be allowed to maintain this advantage. The level of quantization could probably
be automatically tuned by a program, or tuned in some way when the camera is
set up, in order to obtain a desired compression ratio.

5.7 Prediction Technique Evaluation

Most of the predictors are pretty similar as they all utilize the correlation between
the pixels close to the pixel to predict. The predictions are made by combining
the pixel’s neighbors’ values to predict in various ways. The techniques vary a lot
in what types of mathematical operations that are performed in order to predict,
which would affect the computational cost among other things.

5.7.1 LMS Predictors and Hardware Demands

There is a vague relationship between computational cost for prediction and pre-
diction performance. The LMS2 and Combined predictors are the two most com-
putationally costly, but also the ones that produced the lowest ’average-Entropy’
or ’Worst-case-Entropy’ in the benchmark. The LMS predictor is also a interesting
method because it had almost as good performance as the LMS2 predictor while
at the same time has lower computational cost than the Combined predictor. The
gain in compression ratio that the LMS2 predictor has compared to LMS is of
a cost of increasing the computational cost of over 50%. This can be compared
to the compression ratio increase between the Simple and the Mean2 predictor
where 30% increase of hardware introduces over 10% increase of compression ratio
accordingly to the ’worst-case’ Table 4.2. It can also be seen in the tables that
the compression ratio differences between a simple method as the Mean2 and a
more computational costly prediction method as LMS are very low compared to
the increase of computational cost. This shows that simple prediction methods are
easy to improve and only require small computational cost increases till one point
where it requires large computational cost increases to get small compression ratio
gain.

72 Discussion

One thing worth mentioning is that there is a risk in using the predictors based
on LMS adaption. The risk is that if the step size in the LMS algorithms is not
small enough, the prediction weights might diverge and the compression technique
will crash. This could be avoided if the step size would be normalized based on
the input to the LMS prediction filter. Normalization on the other hand requires
lots of computations and is therefore not advisable.

5.7.2 Averaging Predictors

It might be a bit surprising that prediction methods based on averages performed
better predictions if they used a low number of neighbors for prediction such as
Mean2, Mean2L and Mean2L-2 than if more neighbors were used as in the predic-
tors Mean4 and Mean4-R. It is probably due to, as it can be seen in Figure 4.1b
and Figure 4.2b, how the correlation between a pixel and its neighbors decreases
rapidly with growing distance between the pixels. If the predictor then weighs all
the pixels equally independent of their distance to the pixel they predict, the error
will become higher than if the predictor would just use less neighboring pixels for
the prediction. A solution like LMS or similar is required to actually use some
form of weighing of the values to handle this problem. Even the simple predic-
tor preformed well in average, but the very important measurement, worst-case
compression ratio, gave very bad results.

5.7.3 Combined Predictor

The Combined predictor gave interesting results that are shown in Section 4.2.1.
The figures 4.6a and 4.6b show how the number of sections affects the compression
ratio. These results are only from two different images, but it shows how the
compression ratio might get an increase for some images, but a decrease for some
images when using the same number of sequences.

The benchmark results shown in Table 4.1 and Table 4.2 shows how the Com-
bined predictor performed in general and with the image test24.pgm. The later
being true because the worst-case was the case when compressing the test24.pgm
image. As a reminder for the reader, these benchmarks scripts used 128 sections
per row in the Combined predictor. It is clear that Combined performed on average
better than the other prediction methods, while the compression ratio decreased
for worst-case image. Despite this, one may conclude that the compression ratio
usually depends on the number of sections in a way that Figure 4.6a illustrates.

An exception to this would be where the images visual structure makes it
difficult for the combined predictor to estimate what method to use. This would be
true in the case when compressing test24.pgm, because the surrounding sections
would not provide reliable statistics for the method estimation. For this reason,
when the number of sections reaches a point where it is basically just 1 or 2 pixels
per section, the compression becomes better. This can be seen in Figure 4.6b
where the graph rises when the number of sections becomes high enough. By
taking a look back at Figure 4.2b it can be seen how this pattern matches with
the new observation. The correlation of nearby pixels fades off too quickly as you
move further away from the pixel in question.

Discussion 73

The Figures 4.7a and 4.7b shows how much the different methods were used
during the prediction. One clear observation is that the selection of method is
depending on the image and its statistics. For example,Mean4 is the most common
used in test1.pgm but is the second least used in image test24.pgm. The reason
for this could be that the Mean4 predictor uses pixel data that is too far away from
the pixel that is being predicted to produce a good prediction in the test24.pgm
image.

5.7.4 Prediction using Temporal Data

The compression ratio when using the prediction method called Time that uses
data from the previous frame is shown in Table 4.5. It provides a higher compres-
sion ratio than the two prediction methods LMS and Mean2L. Considering that
Time uses temporal data that could be highly correlated when predicting, one
might expect an even higher compression ratio. This is however not the case with
this predictor and the compression ratio only increases around 1 to 2 %. There
are several factors that might affect the results.

One factor might be due to that the resolution being used is very high. A small
movement between two consecutive frames, for example, when something moves
in the screen, or the camera moves, will cause the temporal data to become less
correlated. This is because a small movement in the image will make the pixels
to take on values from the new environment in the new frame, which have a low
correlation to the values in the old frame. Therefore, a predictor that uses the
surrounding pixels of the same frame might predict just as well or even better due
to that the correlation between neighboring pixels in a image are normally high.
This is the same reasoning as described in the Section 2.1.1. The high resolution
used in the image sensor makes the predictor that uses temporal data to perform
worse, while a predictor using spatial data performs better because with higher
resolution the pixels will be closer to each other and therefore the correlation will
be higher.

However, the Time predictor is implemented like the Combined predictor and
uses both temporal data and spatial data. The Time predictor chooses the ap-
propriate prediction method depending on the current section in the image and is
therefore able to achieve high compression ratio. This means that the sections that
have not changed between frames have a higher chance to be compressed better
using temporal data and the sections which has been changed between frames has
a higher chance to be predicted by a prediction method using spatial data.

The reasoning above might lead one to think that the Time predictor is a great
option because it almost strictly improves the compression ratio. However, because
of the very high resolution that is being used, the memory requirements for having
a whole frame stored would be high. For an image with a 1080p resolution, using
two bytes per pixel would require 1920× 1080× 2 ≈ 4MB of memory! This might
be a very high requirement for a camera sensor that is supposed to have very light
hardware and can not be recommended, considering how small the compression
ratio improvements are.

The prediction method that uses temporal data in this thesis was implemented
to use a simple technique to predict the next value. The hardware limitations

74 Discussion

restricted the predictor to use more advanced techniques. Therefore, one must
consider that there might be much more efficient methods to predict using previ-
ous frames. More advanced techniques could be, for example, to find movement
patterns between frames. Another way could be to just use more complex predic-
tion methods using both spatial and temporal data. This is something that could
be researched further.

5.8 Horizontal and Vertical Blanking

As seen from the results in Section 4.5 one can see that the added padding has
a huge impact on the compression ratio for the selected predictor-encoder com-
bination. Even though there is almost no extra information added to the image.
This is because how the encoder work, and that it treats every pixel the same,
regardless if it is a part of the actual image or not. The predictor might not work
as good in the edges of the image as before and it might be influenced by the
surrounding zeros, and the extra sign-bits still needs to be transmitted.

It is easy to say that another method would be preferred to tackle this problem.
However, because of how the amount of blanking might vary, it is hard to just crop
out the image and just send the actual image data. Some method of finding where
the image starts and ends would be the best case, but this might require extra
processing power and memory.

Another method could be that you would modify the encoder with some special
marker codewords that could represent "end of the line" and "end of frame". This
would of course be of the cost of taking those codewords position and any pixel
that would’ve needed that codeword would have to be remapped. In the case of
having 12-bit data, trading one codeword for one of these markers would only make
one 1 of 4095 codewords to be lost, which could be a great increase of compression
for a very small loss of image quality.

5.9 Lossy JPEG

Comparing the results from lossless or even near lossless compression with lossy
compression it can be seen that lossy JPEG provides much higher compression
ratio. Even if the quality setting in lossy JPEG was set to quality = 100% the
compression ratio was much larger and more stable than in any lossless technique.
This is because the lossy JPEG is allowed to change any pixel value so that the
algorithm is able to compress the images more efficient. The values of the pixels
can sometimes be changed a lot before any visual quality degradation that the
human eye is able to detect occurs. From Table 4.10 it can be seen that the mean
squared error of the change in pixels is about the same for both the lossy JPEG
using quality = 100% and the lossy JPEG using quality = 10%. In the Figures
4.11 and 4.12, it can be seen that the quality of the two images is quite different.
For this reason, the mean squared error of the change in each pixel value would
be a bad measurement for determining if the quality has been reduced.

The loss from lossy JPEG can not be compared in a good manner with the
results obtained in the Near-Lossless Quantization Section 4.4.2. This is due to

Discussion 75

the fact that there is no control of where or how the loss in lossy JPEG occurs.
The Near-Lossless Quantization loss only occurs in noisy pixels where the real
pixel value is uncertain. The loss is a percentage of the noise already present in
the pixels and if there is much noise or uncertainty in a pixel the algorithms may
introduce some loss, but if there is no noise in a pixel the algorithm then there
should be no loss. The lossy JPEG does not depend on the noise level in the pixels
but rather introduces loss in a way which suits the algorithm. This means that
the compression ratio and loss from lossy JPEG can not be compared equally with
the compression ratio and loss from the Near-Lossless Quantization.

5.10 Comparison with PNG

The results for the PNG compression technique provided was obtained by only
compressing one image. It was decided to not investigate the PNG technique
further because the compression ratio obtained from this test was so poor. The
PNG technique does not manage to obtain a compression ratio that is near the
ratio that is obtained using the benchmark program. There may be some details
that might have been disregarded in this test. A proper test by implementing
PNG and including it in the benchmark might be needed to exclude it entirely
as a possible candidate. However, because PNG is using a Lempel-Ziv encoding
algorithm, that requires extra computations and needs to keep track of dictionaries
in the memory, it was decided not to research PNG ’s potential further in this thesis.

The reason that the compression was compared using a Bayer separated image
was that it was assumed that the PNG algorithm was not implemented for com-
pressing images where the pixels are in a Bayer pattern. This assumption was done
because when trying to compress images without using Bayer separation, barely
any compression were achieved. If the PNG would have been implemented dur-
ing this thesis some small adjustments could been done in the algorithm. These
adjustments could probably make the compression technique perform better by
making the algorithm have special cases in mind and by adjusting the algorithms
to the structure in the raw image which were used during this thesis.

5.11 Arithmetic Coding

The arithmetic coder was not implemented since according to Theory, it may
reduce the gap between the entropy and the mean codeword length generated by
the Huffman encoder. The downside would be that it is more computationally
costly. This is mostly important when dealing with symbols in a small alphabet.
When compressing images where each pixel is represented by 12 bits, the alphabet
is rather large and the advantages of arithmetic encoding over Huffman encoding
decreases. The Huffman encoder, or rather Adaptive Huffman is so close to the
entropy that arithmetic coding is redundant. By taking a look at the maximum
compression possible in Table 4.3 it can be seen that the LMS2 has 14.90%, which
is based on the worst-case entropy. From Table 4.2 which shows the compression
ratio for the worst-case image, LMS2 has 14.64% already when combined with
Adaptive Huffman. If the encoder would be even more optimized with for example,

76 Discussion

a starting tree and using a forgetting method to find local variations, the encoder
would perform even better. Considering how close it already is to the entropy it
was decided not to investigat arithmetic encoding in detail. Improvements has to
be made in the predictor in order to obtain a significant increase in compression
ratio.

Another problem with Arithmetic coding is the same as with Huffman, it
needs predetermined statistics in order to achieve efficient encoding. There is an
adaptive solution to Arithmetic coding, but it is more computationally costly than
what could be considered for the application of this thesis. The arithmetic encoder
would have to recalculate its symbol probability intervals at regular time intervals.
These calculations would require divisions and multiplications to be performed.
As multiplications and especially divisions are heavily computationally costly, the
arithmetic encoder methods are not of any interest of this thesis.

5.12 Transforms

Initially in this thesis, the idea was that there might be some useful lossless trans-
form technique for image compression. During the literature study, the Burrows-
Wheeler transform (BWT) was the only lossless transform technique to be found.
Even though BWT is mainly used for text compression it is supposed to be useful
for image compression with a low amount of available symbol values as well. Later
on it was decided that the BWT should not be implemented since it was assumed
not to be an efficient compression method for such a large symbol alphabet repre-
sented with 12 bits. The BWT was also assumed to be too hardware demanding
for the scope of this thesis. For example, when BTW compress a sequence of N
pixels, it creates a N × N matrix that needs to be sorted. For BWT to be able
to achieve a good compression, N has to be very large, larger than the number
of symbols values available. Say N = 4096, which is a ratio of 1 : 1 between the
sequence length and the number of symbol values (this ratio is in practice too
low), then a matrix of size 4096 × 4096 would be needed to be created and that
requires more memory than what would be available. This means that there is no
interest in implementing this technique.

5.13 Effects of Error Handling

When dealing with transmission of encoded data it is important to transmit the
data in a safe way otherwise the transmission may cause an error, if it occurs, it
might propagate as shown in Figure 4.14. After an error has occurred the encoder
and decoder has to be reset in some way in order to become synchronized again.
This can be done in various ways with varying complexity.

5.13.1 Dividing Image into Blocks

Taking care of the potential hazards when using variable length compressed data
is necessary and a solution to this was proposed in Section 3.11. This method
was only made to show how the hazards could be taken care of. More effort could

Discussion 77

be put into finding an optimal solution for this purpose with increased efficiency.
However, the solution we proposed is still good enough to be a viable solution for
test purposes and to show that it is possible to do transmission of variable length
compressed data.

The results from the benchmark after splitting the image into sections, as
depicted in Table 4.12, show how little impact this has to the compression ratio.
If a bit error would occur in a frame, it would only affect the predictions in a
16:th part of the image. This means that the visual quality have been significant
increase at the cost of almost no compression ratio loss. This is a technique that
should be considered to secure that the image will not be destroyed due to bit
errors.

5.13.2 Transmission Protocol

The suggested solution for the error handling was a packet based transmission
protocol that does provide a solution to make sure the encoder and decoder always
stay synchronized. It does not provide any protection against actual pixel errors
in the transmission. The only purpose of the protocol was to detect when an error
occurs but also reliably provide the number of symbols was originally sent to keep
the encoder and decoder in sync.

When adding all the overhead data that was created for this method, it did
only add up to about 1.5% extra data. The packet size is what could be tweaked
in order to find a solution which provides the same functionality, but with less
overhead data. It is a trade-off between having a bigger packet, which means that
less part of it is header data, and having excess space for when an image or section
is completed. Simulations could be done in order to test this and there is most
likely a better solution.

5.13.3 Error Correction Potential

There are many encoding techniques, like the LDPC codes, that could be imple-
mented in order to minimize the risk of a bit error occurring. This could potentially
be just as stable, or even more stable than our proposed method as described in
Section 3.11.1. It will also correct the values that becomes wrong in the trans-
mission instead of just detecting them. However, there is a cost to these error
correcting codes, which is that they are much more computationally complex than
simple repetition codes and they will most likely cause more overhead data than
the proposed packet protocol. The later statement might not be true, as there
will be no need to divide the image in more sections to prevent error propagation,
because the errors will be corrected in this case. A simulation would have to be
created in order to test this and show how much the overhead data will differ.

It is mostly up to the one implementing to decide whether error correction
coding is worth to be implemented or not. If the risk of a packet being partly
destroyed is not an issue, the extra cost of implementing error correction might
not be worth it.

78 Discussion

5.14 Further work

The prediction rule of how to predict which predictor to use in the suggested
Combine prediction method could be further investigated to find a prediction rule
which optimally finds which prediction rule to use for predicting the pixel values.
Similarly, the parameter estimation in Adaptive Golomb-Rice could be investigated
to find an optimal way to do the parameter estimation.

Before applying near-lossless compression in a real product, the effects from
it should be evaluated. It is important to study how the quantization affects
the image processing in the back-end processor. How the quantization from the
lossy JPEG affect the image quality after the image processing in the back-end
processor should also be investigated. If these effects are small then lossy JPEG
could be an interesting choice when it comes to near-lossless compression if it can
be implemented in a way that makes it run efficiently on hardware.

The usage of error correcting codes was rather overlooked in this paper, but
there are many variants of error correcting codes that can be tested and evaluated
in a similar manner as how compression techniques were evaluated in this paper.
One might consider computational complexity and added overhead data as factors
when evaluating this. A good error correcting code might replace any need of a
protocol like the one proposed in this paper, and provide even better results.

If the transmission protocol that was proposed, or a similar one, was used, it
would be interesting to see how much the image quality worsens as transmission
errors occurs. In this paper this was not investigated and it would be valuable
with some form of measure on this error to be able to evaluate different methods.

Chapter 6
Conclusions

There has been many things that had to be considered in this thesis. As seen
from the results, there are many techniques that has an advantage, but also a
disadvantage. The work performed in this thesis has brought up these advantages
and disadvantages in order to provide the best trade-off for a specific situation.

The benchmark program has provided results that has pointed out a few tech-
niques that are good candidates for the scenario presented in the background
section of this report. Most of the techniques, except for LMS and Combined,
has been lightweight enough to make a direct comparison of which technique is
the best. The Mean2L predictor which was proposed in this paper, has given im-
pressive results that does compete with the more complex prediction techniques.
Because of how strong the correlation is between neighboring pixels in a high reso-
lution image, the simple methods that only use nearby pixels’ information is good
enough to make a very good compression. Because of the hardware restrictions
that had to be considered in this thesis, one can conclude that a method like
Mean2L is to be preferred for its simplicity and high performance.

The encoders that provided high compression ratio and at the same time was
stable were the adaptive techniques. The efficiency difference between Adaptive
Golomb-Rice and Adaptive Huffman were small, but because the computational
complexity of the Adaptive Golomb-Rice was significantly lower one can conclude
that Adaptive Golomb-Rice is to be preferred.

Near-lossless compression has given very high compression ratios with a stable
improvement of compression. Visual quality versus compression ratio, and what
one might define "near-lossless" as, are difficult topics and the results in this
paper only shows the efficiency improvement, but does not compare the visual
differences. The visual differences were so small that it was decided not to be
discussed further in this paper. The noise has a significant role when it comes
to compression and instead one might just focus on better hardware instead of
near-lossless compression.

How transmission errors affect the visual quality or the functionality of the
transmission, has been seen to have an important role with compressed data. To
make good use of any of the results in this paper, one must create a reliable
transmission protocol to ensure the synchronization between the encoder and the
decoder. The proposed method in this paper shows a way of how this could be
done, but it could be improved or even be replaced by a error correction coding
technique.

79

80 Conclusions

References

[1] "Data Link Control". From CSE IIT, Kharagpur http://nptel.ac.in/
courses/106105080/pdf/M3L2.pdf, Retrieved 2018-03-22

[2] Don Adjeroh and Kalyan V. Bhupathiraju, On Lossless Image Compression
using the Burrows-Wheeler Transform, IEEE International Conference on
Image Processing, 2011.

[3] Gallagher, R.G. (1978) Variations on a Theme by Huffman. IEEE Transac-
tions on Information Theory, 24(6), pp. 668-674.

[4] Golomb W. (1966) Run-Length Encodings, IEEE Transactions on Informa-
tion Theory, 12(3), pp. 399-401.

[5] Greg R. (1999) PNG The Definitive Guide, Sebastopol United States, O’Reily
Media

[6] Hakkennes E.A. Vassiliadis and S. "Hardwired Paeth codec for portable net-
work graphics (PNG)," Proceedings 25th EUROMICRO Conference. Infor-
matics: Theory and Practice for the New Millennium, Milan, 1999, pp. 318-
325 vol.2.

[7] Haykin S (2014) Adaptive Filter Theory, Fifth Edition. Pearson.

[8] Ho Derek, et al. (2013) CMOS Tunable-Color Image Sensor With Dual-ADC
Shot-Noise-Aware Dynamic Range Extension, IEEE Transactions on circuits
and systems-I: Regular papers.

[9] Hudson, G.P. (1983) The development of photographic videotex in the UK.
Proceedings of the IEEE Global Telecommunications Conference,IEEE Com-
munication Society, pp. 319-322

[10] International Organization for Standardization, "ISO/IEC 15948:2004 – In-
formation technology – Computer graphics and image processing – Portable
Network Graphics (PNG): Functional specification". https://www.iso.org/
standard/29581.html, Retrieved 2018-02-19.

[11] IT Hare, “No Bugs” Hare. (2016) Infographics: Oper-
ation Costs in CPU Clock Cycles. http://ithare.com/
infographics-operation-costs-in-cpu-clock-cycles/, Retrieved
2018-02-22

81

http://nptel.ac.in/courses/106105080/pdf/M3L2.pdf
http://nptel.ac.in/courses/106105080/pdf/M3L2.pdf
https://www.iso.org/standard/29581.html
https://www.iso.org/standard/29581.html
http://ithare.com/infographics-operation-costs-in-cpu-clock-cycles/
http://ithare.com/infographics-operation-costs-in-cpu-clock-cycles/

82 References

[12] Kavanagh R.C, Murphy J.M.D, (1998) The effects of quantization noise and
sensor nonideality on digital differentiator-based rate measurement, IEEE
Transactions on Information Theory. 47(6), pp. 1457-1463.

[13] Kiely, A. (2004) Selecting the Golomb Parameter in Rice Coding, IPN
Progress Report, pp. 42-159.

[14] Koh, C.C. and Mitra S.K. (2003) Compression of Bayer color filter array data,
Department of Electrical and Computer Engineering, University of California,

[15] Kou, W. (1995). Digital Image Compression: Algorithms and Standards. AH
Dordrecht. Kluwer Academic Publisher Group.

[16] Lacan J., Roca V.,Peltotalo J. and Peltotalo S. (2009) Reed-solomon for-
ward error correction (FEC) schemes, RFC 5510. Institute of Electrical and
Electronics Engineers.

[17] Leon, W.D., Balkir, S., Sayood, K. and Hoffman, M.W. (2005) An Analog-to-
Digital Converter with Golomb-Rice Output Codes, University of Nebraska-
Lincoln, 209N Walter-Scott Engineering Center.

[18] MIPI Alliance, (2012), MIPI R© Alliance Specification for Camera Serial In-
terface 2 (CSI-2).

[19] Netravali, A.N. (1980) Picture Coding: A Review, Proceedings of the IEEE,
68(3), pp. 366-406

[20] Sayood, K. (2000). Introduction to Data Compression: Second Edition. San
Francisco, CA. Morgan Kaufmann Publishers.

[21] Sayood, K. (2003). Lossless Compression Handbook. Academic Press. Lincoln,
Nebraska.

[22] Shen H., Pan W. D., Wu D. and Lubna M., "Fast Golomb coding parame-
ter estimation using partial data and its application in hyperspectral image
compression," SoutheastCon 2016, Norfolk, VA, 2016, pp. 1-7.

[23] Stefan Höst. (2017) Information Theory and Communication Engineering,
KFS AB, p. 41.

[24] Syahrul E., Dubois J., Vajnovszki V., Saidani T. and Atri M., "Lossless Image
Compression Using Burrows Wheeler Transform (Methods and Techniques),"
2008 IEEE International Conference on Signal Image Technology and Internet
Based Systems, Bali, 2008, pp. 338-343.

[25] Sörnmo L. and Laguna P. (2005), Bioelectrical signal processing in Cardiac
and and Neurological Applications, Elsevier Academic Press.

[26] Tinku A. and Ray K. A. (2005) Image Processing: Principles and Applica-
tions. Hoboken, New Jersey: John Wiley & Sons, Inc.

[27] Venkataramanan R. "1B Paper 6: Communications" From Univer-
sity of Cambridge Signal Processing and Communications Labora-
tory. https://www.sigproc.eng.cam.ac.uk/foswiki/pub/Main/IBComms/
P6_handout6.pdf, Retrieved 2018-03-22

https://www.sigproc.eng.cam.ac.uk/foswiki/pub/Main/IBComms/P6_handout6.pdf
https://www.sigproc.eng.cam.ac.uk/foswiki/pub/Main/IBComms/P6_handout6.pdf

References 83

[28] Wallace, G.K. (1992) The JPEG still picture compression standard. IEEE
Transactions on Consumer Electronics, 38(1), pp. xviii-xxxiv.

[29] Weinberger, M. J., Seroussi, G. and Sapiro, G. (1996) LOCO-I: A low
complexity, context-based, lossless image compression algorithm. In: Data
Compression Conference, 1996. DCC ’96. Proceedings, Snowbird, UT, pp.
140–149.

[30] Weisstein, Eric W. "Covariance." From MathWorld–A Wolfram Web
Resource. http://mathworld.wolfram.com/Covariance.html, Retrieved
2018-03-16

[31] Weisstein, Eric W. "Correlation." From MathWorld–A Wolfram Web
Resource. http://mathworld.wolfram.com/Correlation.html, Retrieved
2018-03-16

[32] Weinberger, M. J., Seroussi, G. and Sapiro, G. (2000) LOCO-I Lossless Image
Compression Algorithm: Principles and Standardization into JPEG-LS, IEEE
Transactions on Image Processing, 9(8), pp. 1309-1324.

[33] Witten I.H., Neal R.M. and Cleary J.G. (1987). Arithmetic Coding for data
compression, Communications of the ACM, 30(6) pp. 520-540

[34] "What is the Camera Parallel Interface?" From FTDI Chip.
http://www.ftdichip.com/Support/Documents/TechnicalNotes/TN_
158_What_Is_The_Camera_Parallel_Interface.pdf, Retrieved 2018-04-13

http://mathworld.wolfram.com/Covariance.html
http://mathworld.wolfram.com/Correlation.html
http://www.ftdichip.com/Support/Documents/TechnicalNotes/TN_158_What_Is_The_Camera_Parallel_Interface.pdf
http://www.ftdichip.com/Support/Documents/TechnicalNotes/TN_158_What_Is_The_Camera_Parallel_Interface.pdf

84 References

Appendix A
Images Used for Testing Spatial

Compression Techniques.

(a) test1.pgm (b) test2.pgm

(c) test3.pgm (d) test4.pgm

(e) test5.pgm (f) test6.pgm

Figure A.1: First set of images used for the benchmark application.

85

86 Images Used for Testing Spatial Compression Techniques.

(a) test7.pgm (b) test8.pgm

(c) test9.pgm (d) test10.pgm

(e) test11.pgm (f) test12.pgm

(g) test13.pgm (h) test14.pgm

Figure A.2: Second set of images used for the benchmark applica-
tion.

Images Used for Testing Spatial Compression Techniques. 87

(a) test15.pgm (b) test16.pgm

(c) test17.pgm (d) test18.pgm

(e) test19.pgm (f) test20.pgm

(g) test21.pgm (h) test22.pgm

Figure A.3: Third set of images used for the benchmark application.

88 Images Used for Testing Spatial Compression Techniques.

(a) test23.pgm (b) test24.pgm

(c) test25.pgm (d) test26.pgm

(e) test27.pgm (f) test28.pgm

(g) test29.pgm (h) test30.pgm

Figure A.4: Fourth set of images used for the benchmark applica-
tion.

Images Used for Testing Spatial Compression Techniques. 89

(a) test31.pgm (b) test32.pgm

(c) test33.pgm (d) test34.pgm

(e) test35.pgm (f) test36.pgm

(g) test37.pgm (h) test38.pgm

Figure A.5: Fifth set of images used for the benchmark application.

90 Images Used for Testing Spatial Compression Techniques.

(a) test39.pgm (b) test40.pgm

(c) test41.pgm (d) test42.pgm

(e) test43.pgm (f) test44.pgm

(g) test45.pgm (h) test46.pgm

Figure A.6: Sixth set of images used for the benchmark application.

Images Used for Testing Spatial Compression Techniques. 91

(a) test47.pgm (b) test48.pgm

(c) test49.pgm (d) test50.pgm

Figure A.7: Seventh set of images used for the benchmark applica-
tion.

92 Images Used for Testing Spatial Compression Techniques.

93

94 Images Used for Testing Temporal Compression Techniques.

Appendix B
Images Used for Testing Temporal

Compression Techniques.

(a) time0_0.pgm (b) time0_1.pgm

(c) time1_0.pgm (d) time1_1.pgm

(e) time2_0.pgm (f) time2_1.pgm

Figure B.1: First set of temporal images used for the benchmark
application.

Images Used for Testing Temporal Compression Techniques. 95

(a) time3_0.pgm (b) time3_1.pgm

(c) time4_0.pgm (d) time4_1.pgm

(e) time5_0.pgm (f) time5_1.pgm

(g) time6_0.pgm (h) time6_1.pgm

Figure B.2: Second set of temporal images used for the benchmark
application.

96 Images Used for Testing Temporal Compression Techniques.

(a) time7_0.pgm (b) time7_1.pgm

(c) time8_0.pgm (d) time8_1.pgm

(e) time9_0.pgm (f) time9_1.pgm

Figure B.3: Third set of temporal images used for the benchmark
application.

Hardware Efficient Lossless Realtime
Compression of Raw Image Data
MÅNS ÅHLANDER & AXEL JONSSON
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2018

M
Å

N
S Å

H
LA

N
D

ER
 &

 A
X

EL JO
N

SSO
N

H
ardw

are Effi
cient Lossless R

ealtim
e C

om
pression of R

aw
 Im

age D
ata

LU
N

D
 2018

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2018-633

http://www.eit.lth.se

	Måns Åhlander _ Axel Jonsson exjobb 633.pdf
	Introduction
	Background
	Data Transmission
	Problem Formulation
	Thesis Outline

	Theory
	Correlation
	Entropy
	Prediction
	Encoding
	Horizontal and Vertical Blanking
	Near-Lossless Compression
	Camera Serial Interface 2
	ISO Compression Standards
	The Burrows-Wheeler Transform
	Forward Error Correction

	Implementation of Algorithms
	Correlation Analysis
	Predictor Implementation
	Encoders
	Benchmark
	The Run-length Encoder
	Hardware Requirement Estimation
	Implementation of Near-Lossless Compression Technique
	Horizontal and Vertical Blanking
	Lossy JPEG
	Comparison with PNG
	Error Handling

	Results
	Correlation Analysis
	Benchmark
	Run-length Encoding
	Sensor Noise
	Analysis of Horizontal and Vertical Blanking
	Lossy JPEG
	Comparison with PNG
	Computational Complexity
	Error Handling

	Discussion
	Correlation Analysis
	Benchmark
	Hardware Demands
	The Run-length Encoder
	Noise Handling
	Worst-case Statistics versus Standard Deviation
	Prediction Technique Evaluation
	Horizontal and Vertical Blanking
	Lossy JPEG
	Comparison with PNG
	Arithmetic Coding
	Transforms
	Effects of Error Handling
	Further work

	Conclusions
	References
	Images Used for Testing Spatial Compression Techniques.
	Images Used for Testing Temporal Compression Techniques.

