Access-rate guaranteed memory
controller

BERTA MORRAL ESCOFET

MASTER’'S THESIS

DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Access-rate guaranteed memory
controller

Berta Morral Escofet
be2103mo-s@student.lu.se

Department of Electrical and Information Technology
Lund University
Supervisor: Babak Mohammadi

Examiner: Pietro Andreani

September 17, 2018

© 2018
Printed in Sweden
Tryckeriet i E-huset, Lund

"Hope is the dream of a waking man"
Aristotle

ii

Acknowledgements

I would like to thanks all the people that have helped me in any way to bring this
project to its end. Firstly, to my supervisor Babak, who has always found time to
discuss all the problems encountered along the project. Also, to Xiao, Kevin, and
Roshan who patiently have assisted me with all the Cadence technical problems.
And to Cati, for sharing with me all of those long days at work while making them
a fun experience.

I would also like to thanks all my friends that have made these two years and
incredible adventure.

Finally, thanks to my always supporting family which I am genuinely grateful
for having them, and in special to Carles who has been at my side helping and
supporting me all along the path.

iii

iv

Abstract

On-chip memory plays an important role in system-on-chip (SoCs) being in most
cases the dominant part in both area and power. Additionally, it determines the
overall system’s speed. As a result, new memory architectures and technologies
have been developed over the years in order to improve the overall system perfor-
mance.

This project introduces the design and implementation of a memory controller
algorithm that increases the throughput while guaranteeing a fix access-rate of the
memory. The work is focused on incrementing the number of read operations, i.e.,
being capable of performing two-read operation per clock cycle, with the use of
single-port memory banks.

Three different algorithms are implemented (XOR solution, Word Addition
solution (WA), and Bit Addition solution (BA)) and are compared in terms of
area, power and speed. Moreover, they are compared to the conventional two-port
memory solution.

In addition, a simple BIST (built-in self-test) engine has been implemented
in order to perform a basic functionality test in memory. The BIST module is
integrated into the Word Addition solution.

The project concludes that the area per bit of the three solutions decreases as
the size of the memory increases. However, it is by increasing the number of rows
that the lowest cell area per bit values are achieved.

The three solutions reduce the power and the area compared to the conven-
tional two-port memory solution, with the XOR solution being the most area and
power efficient. Even though the area and power increase between solutions is
significant, when considering the memory block system (memory controller and
memory banks), the overall area and power difference is negligible. Moreover, the
three solutions have shown to be able to work at higher speeds than conventional
28nm SRAM.

Also, the system with the integrated BIST into the memory controller has
an area and power significantly smaller compared to the conventional two-port
memory solution. Finally, the memory controller speed is not affected by the
BIST.

vi

Popular Science Summary

The ever-increasing connectivity between devices and amount of data transferred
and processed in processing units implies stricter demands on memories. Because
of this, during the past decades, an increasing tendency of the memory’s area to
the total area ratio of a processing unit has been observed. For this reason, novel
techniques and architectures have been developed to produce smaller and more
power efficient memories. Furthermore, memories can represent the main data-
processing bottleneck. This master thesis proposes a design and implementation of
a memory controller that allows multiple-access to its embedded memory without
significantly increasing its area. Hence, the benefits of the memory’s architecture
are kept, while its utilization and data rate capabilities are enhanced. The pro-
posed memory controller stores an additional set of values that allow recovering
any data from the memory without having full access to it. Therefore, two values
can be retrieved at the same time, one from the memory itself, and the other from
the memory-controller additional stored data.

vii

viii

Table of Contents

1 Introduction| 1
L1 Motivation| 2

12 Main Goall. 2

2 Relevant Concepts| 5
2.1 Memory architectures|.o 5
22 Partsofamemory| 7
|3__Background| 9
B.1 Random-Access-Memory (RAM) Definition]. 9

i in SRAMI 9

3.3 Available solutions| o 10
3.4 Alternative solutions| Lo oL 12

[Algorithm Design| 15
41 XOR|. 15
4.2 Word Additionlo 17
A3 Bit Additionl. 20

[5_ Implementation Phase| 23
[5.1 HDL Algorithms Implementation] 24
5.2 Behavioural HDL Testlo oo oL 33
B3 BISTl . . o e 33

6 Results| 37
6.1 Synthesis Results| oo 37

6.2 Place and Route Results (PnR)| 42
[7_Conclusion| a7
[f1 Future Workl 48
[References| 49

ix

List of Figures

I1.1 On-chip memory die area over theyears.| 1
1.2 On-chip memory solution. The project scope is shown inside the |
| dashed box| e 3
2.1 Single-Port SRAM.|o 5
22 DualPort SRAMI. . . . o o o oo 6
23 Two-Port SRAMJ 6
2.4 Parts of the memory,| Lo 7
3.1 Comparison of memory access-time between non-distributed and dis- |
[tributed methodl) oo 10
13.2 Interleaving memory banks method. | 11
4.1 Algorithm XOR - write operation| 16
4.2 Algorithm XOR - read operation| 17
4.3 Algorithm Addition Words - write operation.| 19
4.4 Algorithm Addition Words - read operation| 20
4.5 Algorithm Addition Bits - write operation| 21
4.6 Algorithm Addition Bits - read operation| 22
b.1 HDL Overview of the project. |. 23
5.2 Top memory controller overview.|. 24
5.3 Top design of memory controller solutions - Implementation.|. 25
5.4 Input memory controller block - Flow diagram.| 26
5.5 Output signals configuration example from input memory controller |
L Block] - - - o o o 27
5.6 Output memory controller block - block diagram.|. 28
b.7 Top XOR - block diagram.| 29
5.8 Tree structure XOR - block diagram.| 29
5.9 Word Addition - block diagram.| 30
[5.10 Adder Block - block diagram.| 31
5.11 Bit Addition Block - block diagram.| 32
|5.12 Adder Generator - block diagram.| 32
|5.13 Behavioural Testing Scenario.f oL 33

Xi

5.15 Top Memory Controller with the BIST| 35
6.1 'CellArea/Bit (a.u.)’ result for different configurations.. 38
6.2 Area comparison between memory controller solutions for 32x16 con- |
| figuration. XOR solution is the most area efficient| 40

[6.3 Time comparison between memory controller solutions (XOR, WA and
BA) for 32x16x16B configuration. XOR solution has the lowest com-

| binatiopal timeld 40
6.4 Area occupied by each part of the memory block for the XOR solution |
| and using 32x16 configuration.| 41

|6.5 Area comparison between entire memory block solutions (XOR, WA
and BA) to Two Port solution. All three solutions are smaller than

TP-SRAM solution. 42

6.6 Core of PnR after nano-route for Word Addition memory controller |

[solution, 32X 16x16B configuration.|. 42
6.7 Power results from PnR for 32x16x16B configuration.|. 43
6.8 Average of the three solutions power consumption for each part of the |

| memory block solution using 32x16x16B configuration.| 44
stem results compresse or ition wit solution using |

X 16- configuration - Place and Route.| 45

7.1 Comparison of the entire memory block solution with the different

| memory controller solutions to the conventional two-port SRAM so- |
[ution for 32x16-16B configuration 48

xii

List of Tables

2.1~ SRAM architecture operations.|. 7
4.1 Example size of extra memory bank - Word Addition.| 18
6.1 Maximum frequency results for each memory controller solution after |
| PnR for 32x16x16B configuration.| 43
6.2 Results from place and route using Word Addition solution includin
[the BIST module into it and using 32X 16x 16B configuration). . . . 45

xiii

Xiv

Glossary

1R operation one-read operation. 5, 16, 28
1W operation one-write operation. 5, 28

2R operation two-read operation. 16, 19, 21, 28

BA Bit Addition Solution. xii, 15, 33, 40, 42, 43, 47, 48
BIST Build-In-Self-Test. v, ix, xiii, 2, 23, 33, 34, 44, 45, 47
BL Bitline. 5

BLB Bitline-inverse. 5

DP-SRAM Dual-Port Static Random Memory. 2, 6, 7, 44
FSM Finit State Machine. 34

HDL Hardware Description Language. ix, xi, 5, 23, 24, 33
LUT Look-Up-Table. 12

NB number of banks. 24, 29, 33, 37, 39, 41
NR number of rows. 24, 29, 33, 37, 39, 41

PnR Place and Route. ix, xii, xiii, 33, 42, 43

RBL Read bitline. 6
RTL Register Transfer Level. 33
RWL Read wordline. 6

SoC System-on-Chip. 10
SP-SRAM Single-Port Static Random Memory. 2, 5-7, 15, 23, 41, 44
SRAM Static Random Memory. v, ix, 5-7, 9, 47, 48

XV

TP-SRAM Two-Port Static Random Memory. xii, 2, 6, 7, 41-44, 48

WA Word Addition Solution. xii, 15, 33, 40, 42, 43, 47, 48
WBL Word bitline. 6
WL Word Length. 7, 18, 20, 24, 29, 33, 37, 39, 41

xvi

Chapter].

Introduction

Over the years, the number of electronic devices and their performance demands
has increased dramatically. To meet these stricter demands, the functionalities
implemented in a system on chip (SoC) have increased, and with that the amount
of data that it needs to process. In order to process data with low latency, the
on-chip memory in the SoCs has been forced to increase, becoming in many cases
the dominant part of the die.

This can be seen in Figure [[.I} which shows the percentage of area assigned
to on-chip memory regarding the overall SoC area over the years. It is possible to
see the monotonic tendency of the on-chip memory, reaching nowadays in average,
68% of the total SoC area [1].

n

=

[

2 100

<

=

£ 801 2
5

bt

g 6ol .:o...o ------- 07
ks o

2 g

%: ar e ol i
P &

S22 6 a
o0

@

qu | | | |

>

< 9995 2000 2005 2010 2015
X

Year

Figure 1.1: On-chip memory die area over the years.

Similar to the area, memory is often the block that consumes the major part
of the total power in a SoC [12].

2 Introduction

1.1 Motivation

Throughout the years, memories have been an important topic of research be-
cause they are the main bottleneck in most of the digital designs regarding area,
power, and speed. To accommodate all the different memory requirements, the
main focus has been on the memory architecture and technology. Several memory
architectures (e.g., DP-SRAM and TP-SRAM) and technologies including new bit
cells have been developed, achieving better and better throughput every time.

SP-SRAM architecture is the most area efficient, and the least power-consuming
memory configuration. However, it only allows one read/write access per clock cy-
cle. To further increase memory throughput, single-port memory configurations
evolved into multi-port memory architectures, e.g., DP-SRAM [6]. For instance,
DP-SRAM allows either to read or write two values simultaneously. Yet, these
new configurations came at the cost of larger area and more power consumption.

Instead of finding a new memory architecture, this project focuses on how to
improve the throughput of the memory by enhancing the memory controller. The
advantages of this approach are:

e Reduction of the area. The penalty of using dual-port memory architecture
is 50% to 100% compared to single-port memory architecture [2].

¢ Increased throughput. Allowing to perform more operations simultaneously.

e Not changing the memory architecture. Dual-port memory architecture is
not always available in all technologies.

1.2 Main Goal

The main goal of this project is to utilize and study a memory controller algorithm
to increase and guarantee the throughput of on-chip memories. The idea is to
increase the throughput while still assuring a fixed access-rate without changing
the memory architecture itself. The study case is done using SP-SRAM.

To perform the project, several solutions have been designed and implemented
in 28nm CMOS technology, and compared in terms of area, power, and speed.
Moreover, the memory controller includes a simple memory BIST to test the mem-
ory behavior.

Introduction

Memory Block

SRAM

Single-Port| [Single-Port | (Single-Port
Memory Memory Memory
Bank Bank Bank

Memory
controller

BIST

A
\

CPU

Figure 1.2: On-chip memory solution. The project scope is shown
inside the dashed box.

Introduction

Chapter 2

Relevant Concepts

Hardware description language - (HDL) Computer language used to
describe the hardware of digital circuits, [21].

Cell Area Referred to the total area of a gate. Then the complete cell area is
pointed to the addition of all gates used in the design.

Memory Block In this project we will refer as memory block to the memory
banks and the memory controller, if not mentioned otherwise.

2.1 Memory architectures

Single-Port SRAM - (SP-SRAM) Figure [2.1] shows the conventional 6T
SP-SRAM schematic of a bitcell, which is basic block element to store a binary
value. The Bitline (BL) and Bitline-inverse (BLB) are used to either read or write
into the bitcell once the wordline is activated, [3].

l Sy

WL

N Y

BL BLB

Figure 2.1: Single-Port SRAM.

The primary disadvantage of this architecture is that only one operation at a
time is allowed. It means that either 1R operation or 1W operation is supported.

6 Relevant Concepts

Dual-Port SRAM - (DP-SRAM) Figure [2.3[shows the conventional 8T
DP-SRAM schematic of a bitcell. The DP-SRAM behavior is similar to the con-
ventional 6T SP-SRAM but allows two parallel operations per clock cycle instead
(using word bitlines 1 (WBL1s) and word bitlines 2 (WBL2s)).

WWL1
WBL1 WBLB1

ANY

WBL2 —‘7 TWBLBZ

WWL2

Figure 2.2: Dual-Port SRAM.

The major disadvantages of this architecture are the increase of area and power
consumption, |4]. Moreover, simultancous accesses at the same row affect to the
memory stability [7].

Two-Port SRAM - (TP-SRAM) Figure [2.3 shows the conventional 8T
TP-SRAM schematic of a bitcell. TP-SRAM behavior is similar to the conven-
tional 6T SP-SRAM but allows two parallel read operations per clock cycle instead.
The two parallel read operations are performed via WBLs and read bitline RBL.
Moreover, read wordline RWL must be activated in order to perform the read
through RBL, [5].

WBL WWL WBLB RBL

N

NY

Figure 2.3: Two-Port SRAM.

The main disadvantages of this architecture are the increase of area and power
consumption.

Table 2.1] sums up the SRAM architecture concepts previously explained:

Relevant Concepts

SRAM Num. Read | Num. Write Simultaneous
Architecure | operations operations | Read-Write operations
SP-SRAM 1 1 -
DP-SRAM 2 2 1-1
TP-SRAM 2 1 1-1

Table 2.1: SRAM architecture operations.

2.2 Parts of a memory

Memory Bank A Memory Bank refers to a memory unit. It is a portion of a
memory that has the same functionality as the memory itself. Usually, an SRAM
is made of several Memory Banks.

Row Row refers to a position where a concatenated number of bits conforming
a word(words) is stored. Yet, in this project a row contains only one word and it
is selected to read or write at the same time. Memory Banks are made of several
rOwWS.

Word Length (WL) Word Length (WL) is referred to the size of the word
stored in a memory row.

Memory
Memory Banks
Row
WL
«—>

Figure 2.4: Parts of the memory.

Relevant Concepts

Chapter 3

Background

3.1 Random-Access-Memory (RAM) Definition

A memory can be defined as an electronic design that can store information. There
are many kinds of memories for different needs.

In this project we are focusing on RAM (Random-Access-Memory). One char-
acteristic of this type of memories is that the time needed for reading or writing is
independent of the physical data location. Moreover, RAM memories are usually
volatile, which means that when the power is removed the data is lost.

There are two main types of RAM

o DRAM (Dynamic-Random-Access-Memory)
¢« SRAM (Static-Random-Access-Memory)

The main difference between them relies on its topology: DRAM needs the
data stored to be refreshed periodically in order to prevent losing it. Yet, SRAM
does not need a periodically refreshing control, so once data is stored it remains
until the power is removed, [22].

3.2 Main concerns in SRAM

Memory plays an important role in digital systems, not only because they are the
major area and power consumers on the die, but also it determines the overall
system speed. Therefore, it is crucial to have following constrains in mind when
designing, [10]:

e Area
e Power consumption
e Speed

« Reliability

10 Background

3.3 Available solutions

3.3.1 Distributed Cache Management - SoC

The access-time to a memory is dependent on the distance between the proces-
sor and the memory, therefore having a large memory may lead to a non-uniform
latency [8]. The Distributed Cache Management method tackles this drawback.
This method is based on splitting up and distributing the cache memory through-
out the SoC. The processor sees one cache memory, yet the access-time is reduced
as a result of the evenly distribution over the die [14].

Figure [3.1] shows the main idea of this method. In Figure it is seen that
the memory access-time is different depending on where data is read/written (t1
t2) as the path length differs. However, using the Distributed Cache Memory
method, this problem is solved as the distance between the memory and the
processor is the same.

SoC SoC
Cache
(2)

Cache

4 4 A 4 Cache Cache
a Y e

v

Cache
(4)

CPU

(a) Non-Distributed Cache Management (b) Distributed Cache Management

Figure 3.1: Comparison of memory access-time between non-
distributed and distributed method.

3.3.2 Interleaving memory banks

Interleaving memory banks is a method that is spreading the memory addresses
between the memory banks. In other words, it does not assign the addresses in
the memory banks sequentially.

For instance, if we have four memory banks of 16 bytes each, in block oriented
method the addresses in the memories are assigned consecutively: 0-15 first bank,
16-31 second bank, and so forth. On the contrary, if interleaving method is used,
address ’0’ is assigned to the first memory bank, address ’1’ is assigned to the
second memory bank, and so forth.

Background 11

This method increases the throughput significantly when the required data is
a set of consecutive words. The reason for this is the possibility to access each
memory bank independently [15].

Figure shows the interleaving memory banks concept. In we can see
the advantage of using this method when a set of consecutive words is required,
resulting in providing all the data in one clock cycle. However, this method does
not guarantee the throughput, as it is shown in Figure where the data is
provided in two clock cycles instead of one. This is due to the fact that two data
values from the same memory bank are requested.

Memory
0 1 2
4 5 6 7

I N

clock 1 R(0) R(1) R(2) R(3)

Memory
0 1 2 3
4 5 6 7

clock 2
clock 1

Figure 3.2: Interleaving memory banks method.

12 Background

None of the solutions previously explain (Distributed Cache Management and
Interleaving memory banks) can assure the access-rate of the memory, and there-
fore not suitable solutions for this project.

3.3.3 Memory algorithm

In [16], two main algorithms to increase the throughput of RAM memories are
described.

The main purpose of the first algorithm is to increase the number of write
operations. To achieve this behaviour, an extra memory and a LUT to have full
control of state of the memory are needed. In general terms, when a two-write
operation is generating a conflict, meaning that they must be written in the same
memory bank, one of the data-write is stored in the extra memory, reflecting this
change in the LUT.

The purpose of the second algorithm, explained in the section .1} is to increase
the number of read operations. This algorithm allows to recover any value from
an array of values, due to the addition of a memory space where the XOR of all
values in the array is stored. This method allows to perform two read operation
simultaneously.

The research in [16] has been a primary source of inspiration and the starting
point for this project.

3.4 Alternative solutions

Moreover, three alternative solutions were explored in order to analyze the feasi-
bility of using them for the project purpose.

3.4.1 Compression

The first solution taken into account was to compress the input data and store it
in an extra memory bank. Unfortunately, the compression ratio of a compression
algorithm is not deterministic since it depends on its input values. Therefore, this
solution is not suitable for the study case, because the additional memory would
be required to have the same size as the main memory to cover for the worst case
scenario (i.e., no compression possible). If the extra memory size was set according
to the compression ratio average, there would be a risk of not being able to store
all the data [17].

3.4.2 Error detection and correction

Next solution was error detection and correction. Some of the existing methods
such as VRC, LCR and CRC for detection and Hamming code for correction,
[20] were carefully studied. Once it was known how these methods work, the
combination of some of them were considered as a possible solution. This type of
methods were found to be unsuccessful since they required the same amount of
bits as the saved data.

Background 13

3.4.3 Hash Functions

Last solution to explore was hash functions. They were considered because they
give the possibility to get a fix output data size from an arbitrary input data
size, [18§].

Usually, hash functions are used to compare two files without knowing its
content. Hence, they are designed to prevent being reversed, which was the main
problem found for this project, [19].

14

Background

Chapter 4

Algorithm Design

This chapter explains the selected algorithms and analyses them.

The main purpose of this project was to find an alternative approach of the
algorithm described in [3.3:3] The focus was on finding an algorithm to increase
the throughput in terms of performing either one write operation or two read
operations at a time.

The major drawback in this performance relies on how to perform two read
operations at the same time from the same memory bank, having in mind that
the memory bank has a SP-SRAM architecture.

The idea behind this is to autocorrelate the data stored in the memory so that
any value from a memory bank can be indirectly known by reading values from
other memory banks.

Three different algorithms are chosen:

o XOR - Memory algorithm mentioned in [3.3.3]
o Word Addition (WA).
« Bit Addition (BA).

In the following subsections each considered algorithm is explained in detail.

41 XOR

This solution is the one presented in the basic idea is to use an extra memory
bank with the same size as the other memory banks. However, the extra memory
bank will store the XOR of the other memory banks.

Write Operation In Figure the write operation is shown. There is one
input data, data_in(W__A1), which indicates that a value needs to be written
(W) in the first row of the bank named ’A’, i.e., address ’A1’. To perform a write
operation four tasks must be done:

1. Write the value "data in" (d_in) at the specified address: "A1".

2. Read the values from all the other banks at the specified "data in" row
address: "B1" and "C1".

15

16 Algorithm Design

3. Perform the XOR of the values previously read and "data in": ([B1] & [C1]
& [D_in])[]

4. Write the result of the XOR into the extra memory bank in the specified
"data in" row address: "Extral".

Memory

A B C Extra
1 B1 C1
2

P

data_in Extral
Extral = data_in®B1aC1

Memory controller

Xdata_in(W_AU

Figure 4.1: Algorithm XOR - write operation

Read Operation The read operation leads to three different scenarios:
¢ 1R operation.
e 2R operation from two different banks.
e 2R operation from the same bank.

For the first two cases, nothing special needs to be done, as the values can be read
without conflict from different banks. The problem is faced when 2R operation
should be performed from the same memory bank. Figure is used to explain
the algorithm to solve the third case. In the figure, it is possible to see four signals
- two of them are the input addresses and the other two the output values. The
input data, "addrl = R_B1" and "addr2 = R_ B3" indicate that two values need to
be read (R) from the bank named 'B’ from the first and third position, respectively.
The output values "datal out" and "data2 out' will contain the data read from
"B1" and "B3". To perform the read operation, the following steps must be done:

1. Read the value from the first specified address: "datal out = [B1]".

Tn the following explanations, we will use "[X]" to designate the value content of
address "X".

Algorithm Design 17

2. Read the values from all the other banks at the third row : "A3" and "C3".
3. Read the value from the extra memory bank at the third row: "Extra3".

4. Perform the XOR of all values previously read, with the exception of the
value from the memory bank that generates conflict ('B’), and the value
from the extra memory bank: "data2_out = [A3] ¢ [C3] @ [Extra3]".

Memory
A B C Extra
1 B1
2
A3 ? c3 Extra3

-

datal_out =B1
Memory controller data2_out = Extra3®A3&C3

T addr1=R_B1 Iaddrz =R_B3 l datal_out l data2_out

Figure 4.2: Algorithm XOR - read operation

Using the XOR technique, the second value can be "recovered" without reading
the value from its memory bank, therefore the problem of reading two values from
the same memory bank is solved.

4.2 Word Addition

As in the previous solution, the basic idea is the use of an extra memory bank with
the same size as the other memory banks, however, for every row, the addition of
all its words will be stored.

It is important to highlight that the extra memory bank has the same size as
the other memory banks used in the system. Hence the carry-out is not considered
and not required for this algorithm.

To explain the reason of why the carry-out is not needed, the following example
is used. Following abbreviations are needed:

o Rp (Final Result) - Result from the addition of all memory banks.

e Rp (Extra memory bank Result) - Value stored into the extra memory bank.

18 Algorithm Design

¢ Rp (Partial Result) - Result from the addition 'N-1" memory banks. Being
"N’ the total number of memory banks.

e Ryaiue (Value Result) - Result from the operation. The "unknown" value
recovered.

For instance, having the scenario of four memory banks of WL=2, and each of
them having a value stored A=2, B=3, C=3 and D=1 (Bank;). The result from
the addition of all memory banks is Rp = 9 (b1001) but the value stored in the
extra memory bank is the WL LSB bits from the result Ry = 1 (b01). Table
analyses case by case, but before it is important to highlight the equation used to
get the results:

if Rg > Rp

| (4.1)
if Rge<Rp

R _ RE - RP7
value — (2WL + RE) . RP,

Since Rp must always be bigger than Rp, we can assume that when Rp is
smaller than Rp an overflow has been produced. Therefore the result, Ryaiue,
must be calculated adding the overflow to the subtraction of Rp.

Case Rp = (222:0 Bank;) — Bank, | Comparison Roalue
(Bankw) Rp and RE
[A] 7(b0111) — Rp = 3(bl1) 3> 1 4113=2
[B] 6(b0110) — Rp = 2(b10) 2>1 4+1-2=3
€] 6(b0110) — Rp = 2(b10) 2> 1 41+1-2=3
[D] 8(b1000) — Rp = 0(b00) 0<1 1-0=1

Table 4.1: Example size of extra memory bank - Word Addition.

The reason is that a bit pattern is repeated every 2%, therefore for an addition
or subtraction of values smaller than 2%, the bit pattern configurations are unique.
Hence, storing 2%V is enough to "recover' any value from the memory.

Write Operation In Figure the write operation is shown. There is one
input signal, data_in(W__A1l), which indicates that a value needs to be written
(W) in the first row of the bank named 'A’; i.e., address ’A1’. To perform a write
operation four tasks must be done:

1. Write the value at the "data in" (data_in) specified address: ’A1".

2. Read the values from all the other banks at the specified "data in" row
address:” B1” and ’C1’.

3. Perform the addition of the values previously read in step 2 to "data in":
"[B1] + [C1] + [D_in]".

4. Write the result of the addition into the extra memory bank in the specified
"data in" row address: "Extral".

Algorithm Design 19

Memory

A B C Extra
1 B1 C1
2

- —.

data_in Extral
Extral =data_in + B1 + C1

Memory controller

I data_in(W_A1)

Figure 4.3: Algorithm Addition Words - write operation.

Read Operation The read operation leads to the same scenarios as in the
case explained in subsection [£.1} Figure [£.4]is used to explain the algorithm when
2R operation are performed from the same memory bank. In the figure, it is
possible to see four signals - two of them are the input addresses and the other
two the output values.

The input data, "addrl = R_ Bl'and "addr2 = R_ B3" indicate that two values
must be read (R) from the bank named "B’ from the first and third row, respec-
tively. The output values "datal_out" and "data2_out" contain the data stored in
"B1" and "B3". The following steps must be done in order to perform a two-read
operation:

1. Read the value from the first specified address: "datal out = [B1]".

2. Read the values from all the other banks at the third row : "A3" and "C3".
3. Read the value from the extra memory bank at the third row: "Extra3"

4. Addition of the values: "Rp = [A3] + [C3]"

5. Subtract the addition done in step four to the extra memory bank value:
"data2_out = [Extra3] - [Rp]"

Using the Word Addition technique, the second value can be "recovered" with-
out reading the value from its memory bank, therefore the problem of reading two
values from the same memory bank is solved.

20 Algorithm Design

Memory
A B C Extra
1 B1
2
A3 ? c3 Extra3

.

datal_out =B1
Memory controller data2_out = Extra3 - (A3 + C3)

T addr1=R_B1 Iaddrz =R_B3 l datal_out l data2_out

Figure 4.4: Algorithm Addition Words - read operation

4.3 Bit Addition

The Bit Addition solution uses an extra memory bank, as the other solutions
previously explained but in this case, the size may be different from the memory
banks size. In this situation, the addition of each position of all the bits in a row
that share the same bit position in the word is stored (for each row).

It is important to notice that the size of the extra memory bank is logs (N B) /loga(2) X
W L. loga(NB)/(2), number of bits required per addition of each position of all
the bits in a row that share the same bit position in the word. As in the Word Ad-
dition Solution the carry-out is not stored in the extra memory bank. In this
case, the carry-out refers to all MSB bits bigger than loga(N B)/log2(2) generated
as a consequence of each addition.

For instance, if there are four memory banks (B1, B2, B3, B4) each having WL
=1, in the extra memory bank only 2 bits per row are stored (log2(4)/log2(2)x1 =
2). In consequence, when the result of the addition is '4’ (b100) the stored value
is '0’ (b00). Storing the value 0’ does not create a collision between results and
the reason is because only two possible combinations have ’0’ as a result:

¢ All memory banks values is ’0’.
e All memory banks values is ’1".

Hence, if a ’0’ value is stored in the extra memory bank and the result from the
addition of N-1 banks is ’0’, the value stored in the "unknown" memory bank must
be ’0. Whereas if the result from the same addition is '3’, the value stored in the
"unknown" memory bank must be 1"

Algorithm Design 21

Write Operation Write operation is shown in Figure There is one input
data, data_in(W__A1), which indicates that a value needs to be written (W) in the
first row of the bank named ’A’, i.e., address ’A1’. To perform a write operation
in 'Bit Addition solution’ five steps need to be done:

1. Write the value at the "data in" (d_in) specified address: "A1".

2. Read the values from all the other banks at the specified "data in" row
address: "B1" and "C1".

3. Perform the addition of each bit position of each row read: "Extra(l) =
[d_in(1)] + [B1(1)] + [C1(1)]", "Extra(0) = [d_in(0)] 4+ [B1(0)] + [C1(0)]".

4. Concatenate the result values from the addition: "Extral = [Extra(1)] &
[Extra(0)]".

5. Write the addition result into the extra memory bank in the specified "data
in" row address: "Extral’.

Memory
A B C Extra
1 00 10
2

B

ll1 1" II1001II
Extral = [data_in(1) + B1(1) + C1(1)] & [data_in(0) + B1(0) + C1(0)] =
="b10"&"“b01"="b1001"
Memory controller

]data_in (W_AT)="b11"

Figure 4.5: Algorithm Addition Bits - write operation

Read Operation The read operation will lead us to the same scenarios as in
the case explained in subsection [£.1] Figure [£.6]is used to explain the algorithm
when 2R operation are performed from the same memory bank. In the figure, it
is possible to see four signals - two of them are the input addresses and the other
two the output values.

The input signals, "addrl = R_Bl'and "addr2 = R_B3" indicate that two
values must be read (R) from the bank named ’B’ from the first and third rows,

22 Algorithm Design

respectively. The output values "datal_out" and "data2 out" contain the data
stored in "B1" and "B3". The following steps must be done in order to perform a
two-read operation:

1. Read the value from the first specified address: "datal out = [B1]".
2. Read the values from all the other banks at the third row : "A3" and "C3".
3. Read the value from the extra memory bank at the third row: "Extra3"

4. Perform the addition of each position of all the bits in a row that share
the same bit position in the word except the memory bank already used in
step 1: "B3(1)= [Extra3(1)] - ([A3(1)] + [C3(1)])", "B3(0)= [Extra3(0)] -
([A3(0)] + [C3(0)])"

5. Concatenate the result values from the addition: "data2_out = [B3(1)] &

[B3(0)]".
Memory
A B C Extra

1 1

2
datal_out=B1="11"
data2_out = [(Extra3(3)&Extra3(2)) - (A3(1) + C(1)) 1&

[(Extra3(1)&Extra3(0)) - (A3(0) + C(0)) 1=
Memory Controller ubo-ln_ ub(o + O)Il&llbo’lll_llb(o + 1)" :ub-lou

T addr1=R_B1 Taddrz =R B3 l datal_out l data2_out

Figure 4.6: Algorithm Addition Bits - read operation

Using the Bit Addition technique, the second value can be "recovered" without
reading the value from its memory bank, therefore the problem of reading two
values from the same memory bank is solved.

Chapter 5

Implementation Phase

This chapter explains how the project has been realized, explaining in detail each
of its parts. It is divided in three main blocks: HDL Implementation, Behavioural
HDL Test, and BIST.

e HDL Implementation: The VHDL implementation of each solution is de-
scribed.

¢ Behavioural HDL Test: How the behavioural test has been done for each
solution.

e HDL: The BIST is explained in detail.

Figure shows an overall picture of the proposed memory solution. The mem-
ory contains several SP-SRAM memory banks and the memory controller with an
integrated memory BIST. In this solution, both the CPU and the memory banks
communicate with the memory controller, which properly handles the communi-
cation between them.

Memory Controller

SRAM
BIST
Single-Port||Single-Port|[Single-Port
Memory || Memory || Memory
cPu Bank Bank Bank
MEMORY CONTROLLER
ALGORITHM

Addtion Addition

XOR Words Bits

Figure 5.1: HDL Overview of the project.

23

24 Implementation Phase

5.1 HDL Algorithms Implementation

Before going into details in this section, it is important to have in mind that all
designs have been developed to perform the operations within a clock cycle. The
reason is to avoid having two different clock domains between the memory con-
troller and the memory and to determine the maximum achievable clock frequency.
Knowing the maximum frequency not only gives us an idea of what kind of memo-
ries the memory controller can be integrated into but also the worst case scenario
for the area. The reason for the area penalty is due to the extra hardware needed
in order to perform all the operations within one clock cycle.

Figure [5.2] shows the top view of the memory controller implemented. In
general terms, it has several control signals, a bus with the memory addresses and
an in-out bus for the data.

The three solutions are implemented having the following generic parameters:

o Word Length (WL).
o Number of memory banks (NB).
o Number of words per memory bank (NR).

clk ce_mem_n[]
rst n we_mem_n(]
cen data_from_to_memory(]
we_n bank_row_addr[]
CPU SRAM
oe_nll MEMORY_CONTROLLER_TOP ce_extr nll MEMORY
SINGLE PORT
addr_data[] we_extr_n[]
data_in[] data_from_to_extr_memory(]
data_out[] bank_row_extr_addr[]

Figure 5.2: Top memory controller overview.

Figure shows the top view for all the solutions (XOR, Words Addition, and Bit
Addition). All solutions will be explained under the same section as they share
the same main blocks, the only difference between them is the behavior of the
‘output__memory__controller’ (XOR, Word Addition, or Bit Addition).

The top design is divided into two main blocks - ’input_ memory_ controller’
and ’output_ memory_ controller’.

This block not only has its instantiations but also handles the in/out signals
connected to the memory banks, and registers the input and output signals con-
nected to the CPU.

In order to handle the in/out signals, tristate buffers have been used. During
reading operations, they will be in high impedance, and thus the memory will be
allowed to write into them.

The signals connected to the CPU are registered in order to have a stable value
within a clock cycle.

Implementation Phase 25

i top_memory_controller

input_memory_ :
pcontroner Y data\l_control_Temory
: - >
register
data (in/out)
> write_enable
I output_memory_| 7 l :
controller —> 0
data_write_mem | 4 data_from/to_memory
I E—
XOR/WA/BA data_read_mem :

Figure 5.3: Top design of memory controller solutions - Implemen-
tation.

5.1.1 'input_memory_controller’ Block

The input block (’input_ memory__controller’) is a combinational block responsible
for configuring the output control signals going into the memory banks. Hence, it
has to activate or deactivate the memory bank and the specific rows that must be
read or write.

Figure [5.4] shows the behavior of the 'input memory controller’ block. The
block depends on three input signals: "we_n_ reg" - Enable Write operation (Ac-
tive low), "oe_n_ reg" - Enable read /2-read operation(Active low), and "in_ address
_reg" - Specifies the memory address [Bank ("in_bank_addrl" and "in_bank_ addr2")
and Row ("in_row_addrl" and "in_row_addr2")]. Depending on the configura-
tion of the input signals, it takes us to four different situations: 1-read operation,
2-read same bank operation, 2-read different bank operation and 1-write operation.

To be able to control output memory banks behavior for this four situations,
three different output signals have been set:

e "ce_mem_n" - Memory bank enable bus - Active low. Enables or Dis-
ables the memory banks of the system for either reading or writing, e.g.,
"ce_mem_n = b1010" means that memory banks 1 and 3 are enabled.

e "we_mem_n" - Write memory bank enable bus - Active low. Enables or
Disables the memory banks of the system for writing, e.g., "we_ mem_n =
b1010" means that memory banks 1 and 3 are enabled to be written.

e "bank_ row_addr" - Configure the row for each bank that must be read or
written. The bit position in the bus is referred to the memory bank and
the value of the bit(bits) refers to the row, e.g. "bank row_addr = b1001"
means that the row to read or write from memory bank 1 is '1’ from memory
bank 2 is ’0’ from memory bank 3 is '0’ and from memory bank 4 is '1".

The same signals with the same behavior but with different names have been used
to activate or deactivate the extra memory bank.

26

Implementation Phase

in_bank_addr2 + in_row_addr2

in_bank_addr1 + in_row_addr1
we_n_reg

we_n_reg="1"

we_n_reg="0"
oe_n_reg="10}

Y o _uqqn
we_n_reg="1 oe_n_reg="11

oe_n_reg="00"

1-read l 1-write
operation operation

in_bank_addr1 = in_bank_addr1 /=

in_bank_addr2 / \in*bankﬁaddr2

2-read same bank
operation

2-read different bank
operation

Figure 5.4: Input memory controller block - Flow diagram.

Implementation Phase 27

Figure shows an example of how the output signals are configured in each
situation. Each box represents a memory bank, therefore, four memory banks are
considered in this example. Moreover, coloured boxes mean that a specific signal
(ce_mem_n and we_mem_ n) for a particular memory bank is enabled and white
boxes mean that is disabled. Additionally, the numbers inside the boxes correspond
to the row that must be read or write. An empty box means that the memory
bank is not required for that operation.

1-read operation 2-read same bank 2-read different 1-write operation

(Bank: 3, row :1) operation bank operation (Bank 3, row 1)
(Bank: 3, row: 1,2) (Bank: 1,3, row:2,1)

ce_mem_n [T T] CITT] [CITTT]

we_mem_n [[TT1] CITT]

bank_row_addr CITT] CITT11 [01[01[0T01]
ce_extra_n [O O (]
we_extra_n [O O O
bank_row_addr_extra []]

Figure 5.5: Output signals configuration example from input mem-
ory controller block.

Figure |5.5]is used as an example to explain each situation:

e 1l-read operation - To be able to read the value bank 3 row 1 must be
enabled. Therefore the configuration of the output signals are: "ce_mem_n
= b1011", "we_ mem_n = bl111" and "bank row_addr = XlXX"E The
extra memory bank is not required in this operation.

e 2-read same bank operation - In this operation all memory banks must be
enabled using row 2 except the memory bank 3 which uses row 1 instead.
Therefore the configuration of the output signals are: "ce_ mem_ n = b0000",
"we_mem_n = bl111" and "bank_ row_addr = 2122". The extra memory
bank needs to be enabled reading the row 2. Hence, the configuration of the
extra memory bank output signals are: "ce_extra_n = 0", "we_extra_n =
1" and "bank row addr extra = 2"

e 2-read different bank operation - In this case the Banks 1 and 3 and rows 1
and 2 respectively must be enabled. Therefore the configuration of the
output signals are: "ce_mem_n = bl010", "we_mem_n = bll1l" and
"bank row_addr = X2X1". The extra memory bank is not required in
this operation.

e l-write operation - To write into the memory bank all of them must be
enabled using row 1. Moreover, memory bank 3 must be enabled to be
written. Therefore the configuration of the output signals are: "ce_mem_n
= b0000", "we_ mem_n = b1011" and "bank_row_addr = 1111". The extra
memory bank must be enabled to be written into the row 1. Hence, the
configuration of the extra memory bank output signals are: "ce_extra_n =
0", "we_extra_n = 0" and "bank row_addr_ extra = 1"

X is considered as not relevant value

28 Implementation Phase

5.1.2 ’output_memory_controller’ Block

The output block (output__memory__controller’) is a combinational block respon-
sible for providing the output data signals going to both the CPU and the memory
banks.

Figure shows its block diagram. The output block gives the right input
data to the 'XOR/Word Addition/Bit Addition’ Block (’calculation block’) and
configures the output data coming from these blocks depending on the scenario
(IW operation, 1R operation, 2R operation - same bank or 2R operation - different
bank). Therefore, not only configures the output data, but also configures the
input data for the ’calculation block’ ("data_ calc").

Input data from ’calculation block’ ("data_calc") is configured differently de-
pending on the operation. If it is a 2R operation from the same bank ("Bx’), then
the input data is configured as the data from N-1 memory banks and ’0’ instead
of the memory bank 'Bx’ data. If it is a write operation writing into the mem-
ory bank 'Bx’, input data is configured as the data from N-1 memory banks and
"[data_in]" instead of 'Bx’ data.

EAD

data_from_mem
(addr1) datal_out
>

SAME BANK
data_from_mem
data_from_extr_ N (addr2) ¢SAME BANK
memory 2 READSi
0_‘_> y data2 out
o__,o\
data_from_memory data extra >
&"0000" ——> |1 mem y|1
0 > XOR/ 4 /
—|0 WORD ADDITION/ READ/WRITE
BITADDITION |
T ! data_cald] BLOCK \
SAME BANK| 0 —_— >0 data_to_extra_mgmory
data_fi 8 ° 1
ata_from_memory TREAD/WRITE
data_in_reg ¢WRITE
datafq
! data_to_memory
0) 0/

Figure 5.6: Output memory controller block - block diagram.

XOR Block This block is responsible to perform the XOR of all words given
as an input and provide the output value that is either stored in the extra memory
bank or provided as the second data value read to the CPU.

Figure[5.7shows the top view of this block. According to the scenario (write/read)
the output of this block ("result") is given by the "XOR Calc Block’ - Write oper-
ation -, or from the result of the XOR operation between the result of the 'XOR

Implementation Phase 29

Calc Block’ and the "dataiextraimenﬂ" - Read operation.

data_extra_mem

XOR_Nbits

@7

data_calc It result
213_CaC , | XOR Block |[{€sUiLXor

0

[READ/WRITE

Figure 5.7: Top XOR - block diagram.

To perform all the XOR’s, a pure combinational tree structure has been used.
The idea of using this method is, to have the result as soon as possible and within
one clock cycle. This block is highly dependent on the generic parameters (WL,
NB and NR). Consequently, the hardware needed in the tree structure block is
increased or decreased significantly based on this.

Block XOR's 1 Block XOR's 2 Block XOR's N-1 Block XOR's N

data_bank1 _ [XOR_Nbits

data bank'za 2] ;
: | _[XOR_Nbits
data_banli3 . |XOR_Nbits I
datafbanl&4‘ @ 1 i i .
data_calc L ¥] .—> —.—» XOR Nbits E |
- N e HH result_xor
P e > — & =
data_bankN-3[xoR Nbits i o H
data_bankN=2| €D
:] »| XOR_Nbits
datafbanl&N»l XOR_Nbits]

data_bankN N (45)

Figure 5.8: Tree structure XOR - block diagram.

Word Addition Block This block is responsible to calculate the output value
that is, as in the XOR Block, either stored in the extra memory bank or provided
as the second data value read to the CPU.

2'data_extra_mem": data read from the extra memory bank

30 Implementation Phase

Inside this block there is another block, named Adder Block. This block is
responsible of performing the addition of the data given as "data_ calc".

In this case, there are two different scenarios to take into account - read and
write. The write path (blue line in the Figure , the result is the ’Adder Block’
result ("result_adder"). For the read path (pink line in the figure , the re-
sult will be the subtraction of "data extra mem - result adder'. To do this
operation, the same full adder as the addition part has been used. In order to
do it, two’s complement transformation must be applied to "result_ adder" signal
("not(result_adder) + 1").

data_extra_mem

Full_adder

|

data_calc result_adder result
—_—

Adder Block

[REA D/WRITE

Figure 5.9: Word Addition - block diagram.

Adder Block Figure[5.10] shows its block diagram. The goal of this block
is, given "data in" which contains the data from a row of "N’ number of memory
banks, it provides as a result the addition of all of them. As in the XOR Block
design, the addition will be performed using a combinational tree structure. This
block is also highly dependent on the generic parameters configuration used.

Full Adder To perform the addition as fast as possible, a carry look-ahead
method has been used. The idea of this method is to calculate the carry-out in
advance based on the input signals, more information can be found here [9].

As the method becomes more complex as the number of bits increase, a cascade
of 4 bits carry look-ahead adders has been used to generate all the adder sizes
needed.

Bit Addition Block This block, that is shown in is responsible for
calculating the output that will be either stored in the extra memory bank or
provided as a second data value read to the CPU. This block has two inputs:
"data_ calc" and "data_extra_mem" and one output "result_addition", which is
dependent on the operation performed. The behaviour of this block is as follows:
"data__calc" is a bus that contains the data from a row of several memory banks.
This signal goes into a block named 'Generate Vectors’ which reorganizes the data
in order to perform the addition correctly. Then, it gives as an output, WL number

Implementation Phase 31

Block Full adders 1 Block Full adders 2 Block Full adders N-1 Block Full adders N

data ban§k1 Full_adder
Cdld_Dane’

data_ban;kz +

Full_adder

+

data_bar{ks Full_adder
[cata_panxs
data_bank4 +

:

Full_adder

+

data_calc

resulf_addition
i iy

data_banﬁkN-3 Full_adder
T — -
data_bankN-2 +

==

Full_adder

+

data_bankN-1[Full_adder
data_bankN 1
datafbanjkN +

Figure 5.10: Adder Block - block diagram.

of vectors and each of them containing all the bits that share the same bit position
in the word.

Once the vectors with the right data have been generated, they are provided as
an input to the next block named ’Adder Generator’. This block is responsible for
doing the addition of all provided vectors and has an output bus which contains
the result of all the additions concatenated.

The result from the block depends on the operation to perform. If a writing
operation must be done, the output signal from this block "out_ addition_ bits"
is the result obtained from the ’Adder Generator’ ("result addition). However,
if it is a reading operation instead, the output is taken from the "data_read"
signal. The "data_read" value is generated by comparing "data_ extra_mem" to
"result_addition" for each bit position of the word. Therefore if they have the
same value the result is ’0’; otherwise, it is '1’.

Adder Generator The Adder Generator block is shown in Figure
This block is responsible of generating all the hardware needed to perform the
addition of all vectors.

It generates WL number of tree structure blocks, the same tree structure as
in the previous solutions.

It is important to highlight that the adders inside the tree structure block
differ from stage to stage, i.e., in the first stage, 1-bit adders are used but in the
second stage, 2-bit adders are used instead and so forth. This is because in these
operations the carry out needs to be taken into account (until logs(NB)/loga(2)
bits), therefore every time an addition is performed the result from that is : result
from the addition plus carry out. Hence, the input for the next addition will
increase one bit.

32

Implementation Phase

iL
"] data_read(WL - 1)
HUNA
11—” ' | data_read(1) =
i} 0
data_extra_mem "
—1'] data_read(0)
0500
Adder_generator _)
W(Ij_at;EaA(:\‘sz Adder Block t:El»
data_calc | Gaperate |(WL \)
vectors ”| | AdderBlock | |esut_ -
.. addition —
Adder Block 457
Figure 5.11: Bit Addition Block - block diagram.
Adder1b Adder2b .. . Adder2/
data_add(0) e
data_add result

YY

yYv

data_add(WL-1)

J read/write

out_addition_bits

| addition R

Figure 5.12: Adder Generator - block diagram.

Implementation Phase 33

5.2 Behavioural HDL Test

In this work, the behavioural test is one of the essential parts, because different
solutions (XOR, WA, BA) and each of them for different cases (Word Length -
Number of banks - Number of words), and for all the phases in the flow (Pre-
synthesis, Post-synthesis and Post-PnR) must be carefully tested. As a result, ev-
ery implementation done must be verified in each phase of the flow (Pre-synthesis,
Post-synthesis and Post-PnR).

Figure [5.13] shows the scenario created in this project for behavioral testing.
It has three different parts: (I) Generation of the stimulus (Python), which is
dependent on the generic parameters (NB, NR, and WL) and the number of tests
configured by the user, (II) Algorithm programmed in Python, and (I1I) TCL
Testbench to communicate with the RTL designs.

The stimulus file generated at the first stage is used as an input for the Python
algorithm and the TCL Testbench. The output from both solutions are compared
and the result is be given based on that.

It is important to highlight that one scenario per solution has been generated
with its own Python algorithm.

Algorithm
Sﬁiiifffzz/”* (Python)
x’l User . Input generation
* genfiguration, (Python) outputixt
stimuli.txt TestBench RTL Design

(Tcy) [<—

|

Figure 5.13: Behavioural Testing Scenario.

(VHDL)

53 BIST

In this project, a simple BIST has been designed and integrated in the Word
Addition solution. In general terms, the main purpose of this block is to write
four different pre-defined patterns in the memory banks and verify the result. The
patterns used in this BIST are:

34 Implementation Phase

o All Zeros ("0000").

o All Ones ("1111").

o Checkboard ("0101").

o Reverse Checkboard ("1010").

This BIST works as follows: firstly, an enable signal must be activated to start
using it ("enable_n = 0"). Once the enable signal has been triggered, the FSM
of the BIST starts and cannot be stopped. It begins writing into all rows of
the memory banks, but switching from one pattern to the other, e.g., if it starts
writing the first row of all memory banks with the pattern 'ZEROS’ then, the
pattern written in the second row is 'ONES’, and so forth, until all the rows are
written with one of the patterns.

After that, the read operation begins. In this operation, it reads row by row
and verifies if the values read are correct. It continues this process until an error
is found and stops the memory testing and reports "error found" or all the rows
have been verified but testing is not finished and reports "no errors found and
continuing", or the testing is finished without any errors and reports "no errors
found".

At this point, if the testing needs to continue, it switches to the write operation,
but in this case it starts writing the first row with the next pre-established pattern,
e.g., if the previous pattern written in the first row was "ZEROS’, the new pattern
written is 'ONES’, and the same happens for all the following rows. This procedure
continues until all patterns have been written in all the rows.

5.3.1 Integration BIST with the Memory Controller

The BIST module has been integrated as a block in the memory controller design.
At the top module two new signals have been added: "enable_n" - Enable/Disable
the memory test and "data_ out_ bist" - Gives information about the memory test
(Error - No error - No error and not finished). Moreover, more control logic to
select either the output data from the memory controller itself or from the BIST
has been added.

Implementation Phase 35

enable_n="1

START

Init_state = zeros

c<n_reg

RegAddr=0
enable_&:'o’/\

c=n_reg c=n_reg [€=N_reg
stateaz(jz‘eros st ir:)ies ¢ :ar:ijreg
csn-reg st = checkboard ¢ =ar;_dreg
Init_state = rev. checkboard \ state = rev. checkboard
Memo(i; error S~— READ

Init_state ++
RegAddr =,

Read Op.

No memory error
and
c<n_reg

Figure 5.14: FSM BIST.

top_memory_controller

- active Bist
input_memory_| l
controller data_control_mem_ctrl
: register — 0 data_control_memory
. . A -
data (in/out) 1 >
- <«
BIST data_control_bist
> data_read_mem_bist write_enable

active Bist l
data_write_mem_bist 7 '
|_> data_from/to_memory

loutput_memory|

_controller | data_write_mem

data_read_mem

XOR/WA/BA

Figure 5.15: Top Memory Controller with the BIST.

36

Implementation Phase

Chapter 6

Results

This chapter summarizes the results taken from all the designs developed for this
project.
The chapter has been divided in two main parts:

¢ Synthesis Results.

¢ Place and Route Results.

It is important to have in mind that all solutions have been implemented using a
clock period T=3ns, if not mentioned otherwise.

6.1 Synthesis Results

6.1.1 Memory controller solutions

In this section, it is described how the post-synthesis cell area per bit varies for
each solution implemented between each generic parameter (WL, NR, and NB)
of the design. The three solutions are compared at the same time since they
experience a similar area increment behavior.

The methods are compared by analyzing the average amount of cell area re-
quired to store one bit, which is referred to as ’Cell Area/Bit’.

The memory controller areas are obtained using the following configurations:

o 3 different sizes of memory banks: 32x16, 32x32 and 64x16 (NRxWL).
o 7 different values of NB: 2, 4, 8, 16, 32, and 64.

For each NRxWL configuration, the area has been obtained for all the NB
values.

Figure shows the three graphs, one for each solution, and in each of them,
three different curves that represent the different memory bank configuration. The
tendency of all three curves is logarithmic, having the 8-NB value as the border
where the cell area per bit saturates and becomes a steady value. Therefore, for
low NB values, the memory controller cell area per bit is not as good as for bigger
NB values, having the turning point at 8 NB.

37

38

Results

u.)

CellArea/Bit (a.

CellArea/Bit (a.u.)

CellArea/Bit (a.u.)

Figure 6.1: ’

1 o3§x16 |
% 64x16

08| + 32x32 1
0.6 - -
0.4 L — |
0.2 - *

0 | | |

0 20 40 60

Number of Banks
(a) XOR Solution

1 % 32‘X16 Ll
064x16
sl +32x32 ||
0.6 |- 3
—Q
0.4 -
0.2]) .
0 | | |
0 20 40 60
Number of Banks
(b) Word Addition Solution
1 O3éx16 L
* 64x16
0. \\\4\‘ +32x32 ||
0.6 |- 3
0.4 —*\~\$ —
0.2 -
0 | | |
0 20 40 60
Number of Banks
(c) Bit Addition Solution
CellArea/Bit (a.u.)" result for different configurations.

Results 39

The memory bank configuration ’32x16’°, which corresponds to the black curve
in all three graphs, is used as a reference to compare the different generic param-
eters.

To compare the parameter WL, the reference curve and the memory bank
configuration ’32x32’ (red-line in all three graphs) are used. The shape of the
curve for both configurations is the same, but the red-line is shifted towards the
bottom, meaning a reduction of Cell Area/Bit. Then, increasing the memory bank
size by incrementing the WL, the memory controller cell area per bit improves
slightly.

The parameter NR is compared using the reference curve and the blue curve
which corresponds to the last memory bank configuration '64x16’. The curve cor-
responding to the '64x 16’ memory bank configuration is also shifted towards the
bottom but more abruptly than in the previous case. This means that increasing
the memory size by incrementing NR, reduces the overall area share of the memory
controller, i.e., the area cost of the memory controller /bit is reduced.

To sum up, increasing the total memory size by incrementing the NB can be
approximated to a logarithmic function, having the NB = 8 as the turning point
where the "Cell Area/Bit’ becomes a stable value. Furthermore, the increase of the
memory bank size by changing the WL or the NR parameters makes the memory
controller cell area per bit to decrease as well. Although the total memory size is
the same for both configurations, ’32x32’ and '64x16’, increasing the NR instead
of the WL decreases the Cell Area/Bit more significantly.

6.1.2 Comparison between memory controller solutions

In this subsection, the three memory controller solutions are compared to each
other.

Figure shows ’Cell Area/Bit’ for different memory sizes in each memory
controller solution. In general terms, the XOR solution is the most area efficient
solution, followed by the Word Addition solution (28.5% bigger than XOR, solu-
tion). Finally, bit addition solution has the lowest area efficiency among three
approaches (39% bigger than XOR solution).

It is important to highlight that for low NB the Bit Addition solution cell
area per bit becomes smaller than the Word Addition solution and close to XOR
solution. This is due to the fact that lower NBs result in lower logic complexity, and
consequently, smaller area for the memory controller. Moreover, the Bit Addition
solution when NB = 2 has the same behavior as the XOR solution. This is because
the result of the addition of two bits without the carry-out is the same as the result
of the XOR.

Figure shows the propagation delay of each design for the longest combi-
national path. Looking at the figure, all three solutions have monotonic behavior,
increasing the propagation delay as the NB increments. XOR is the solution with
the lower combinational time, followed by the Bit Addition solution. The Word
Addition solution has the worst timing properties.

It is important to highlight that for low NB values, the maximum combina-
tional time for the Bit Addition solution is similar to the XOR solution. The same
reason as previously explained in the area comparison applies in this case.

40

Results

=
=
=
A i
~
<
g
S i
©
(@)
0.2 =
0 | | | | | |

0 10 20 30 40 50 60 70
Number of Banks

Figure 6.2: Area comparison between memory controller solutions
for 32x16 configuration. XOR solution is the most area effi-

cient.
1 |
=
Z 0.8 .
k)
< 0.6 .
= ©
.9
+~
< 0.4 f
2 OXOR
§ 0.9 * WA
Av + BA
0 | | | | | |

Number of Banks

Figure 6.3: Time comparison between memory controller solutions
(XOR, WA and BA) for 32x16x16B configuration. XOR solu-
tion has the lowest combinational time.

Results 41

The Word Addition solution has the longest combinational path since it has
to perform the addition of larger numbers than the Bit Addition solution.

6.1.3 Comparison Memory Block to the TP-SRAM solutions

This section compares the entire memory block solution to the TP-SRAM solution.
The entire memory block solution is comprised by the memory controller and the
SP-SRAM banks. The memory configuration used for this section is the following:
32x16x16B (NRxWLxNB).

Figure shows the portion occupied of the total area by each part of the
memory block solution: memory controller and the SP-SRAM banks for the XOR
solution. The percentage of the area assigned to the memory controller decreases
when larger memories are used.

SP-SRAM Banks
89.6 %

10.4 %

Memory Controller

Figure 6.4: Area occupied by each part of the memory block for the
XOR solution and using 32x16 configuration.

Figure shows the * Area/Bit’ for four different solutions:

¢ XOR Memory Controller solution + SP-SRAM banks.

e Word Addition Memory Controller solution + SP-SRAM banks.
¢ Bit Addition Memory Controller solution + SP-SRAM banks.

e« TP-SRAM bank solution.

In all cases, the solution with the memory controller and SP-SRAM banks are
more area efficient (for example the area in XOR solution is reduced by 45%,
using 32x16x16B configuration) than the conventional TP-SRAM solution and it
increases when larger memories are used.

Furthermore, it is important to notice the small area difference between solu-
tions, especially the XOR and Word Addition solutions. As the memory controller
area is a small part of the total memory area, the difference between them when
the entire memory block is taken into account is less than 2%.

42 Results

—TP-SRAM

1 O XOR
- * WA
=
\cé/ + BA
=
m 0.8 8
~
<
&
=
o
O 0.6} 8

—

| | | | | |

0 10 20 30 40 50 60 70
Number of Banks

Figure 6.5: Area comparison between entire memory block solutions
(XOR, WA and BA) to Two Port solution. All three solutions
are smaller than TP-SRAM solution.

6.2 Place and Route Results (PnR)

The results from the PnR are done for one configuration: 32x16x16B. The reason
for that is the amount of work that the PnR requires for each setting.

Figure [6.6] shows PnR after nano-route using 8 metal layers. The figure corre-
sponds to the Word Addition memory controller solution for 32x16x16B config-
uration. As the memory controller is part of the memory block, which consists of
the memory controller and the memory banks, the power rings, and pin placement
are not final. For the same reason, power strips, and the IO pads are not utilized
in the PnR.

Figure 6.6: Core of PnR after nano-route for Word Addition memory
controller solution, 32x16x16B configuration.

Results 43

6.2.1 Memory controller

The area after the PnR with an utilization of 68% increases significantly compared
to the post-synthesis results. However, the area increment of the memory block
solution is not more than 4%. Therefore, the designs after the PnR are still area
efficient compare to the conventional TP-SRAM solution.

Table shows the maximum frequency of the memory controller in each
solution after the PnR. This frequency is much higher than the typical SRAM
frequencies (800MHz-1.1GHz) for 28nm.

Solution Max. frequency
[GHZz]
XOR 2.5
Word Addition 1.25
Bit Addition 2

Table 6.1: Maximum frequency results for each memory controller
solution after PnR for 32x16x16B configuration.

Figure [6.7] shows the power results of the memory controller for each solu-
tion after the PnR. It is important to mention that the power from the memory
controller solutions are obtained from Encounter tool, and the power from the
memory banks are obtained directly from the datasheet.

1.2 \
OMem. Ctrl.
* Systen]]
- 1F |
=
<
g
g
o
A 0.8 |
0.6 ! ! !
XOR WA BA

Memory controller solutions

Figure 6.7: Power results from PnR for 32x16x16B configuration.

The power difference of the memory controller between solutions is significant,
yet when the memory block solution is considered it is almost negligible. Moreover,
all three solutions reduce the power consumption by at least 35.7% compared to

44 Results

the conventional two-port memory solutiorﬂ

SP-SRAM Banks
95 %
5%
Memory Controller

Figure 6.8: Average of the three solutions power consumption for
each part of the memory block solution using 32x16x16B con-

figuration.
6.2.2 BIST
Table shows the results of the Word Addition solutions with BIST block inte-

grated.

The addition of the BIST block makes the memory controller to increase 30%
which corresponds to an increment of the 4.7% in the memory block solution
(Memory controller, BIST, and SP-SRAM Banks). Furthermore, the solution
studied in this subsection is 35% smaller than conventional TP-SRAM solution.

The slack is not being affected because the critical path is in the addition
block.

The memory controller power is increased by 66%. This is mainly caused
by the sequential part that the BIST is adding. Although there is a significant
increment in the memory controller power due to the BIST, the resulting overhead
considering the memory block solution corresponds to 3.3%. As a conclusion, the
solution studied in this subsection reduces the power consumption by 34% compare
to the conventional Two-Port memory solution.

2TP-SRAM power consumption data has been deduced by extrapolating the power
data from SP-SRAM and DP-SRAM

Results 45

Number of gates | Number of gates | Slack Total Power
Mem. Ctrl. Mem. Ctrl. Mem. Ctrl.
with BIST [a.u.] | with BIST [a.u.]
2934 3814 0.8111 1.0266

Table 6.2: Results from place and route using Word Addition solu-
tion including the BIST module into it and using 32x16x16B
configuration.

Memory Controller

/

BIST
—

/
SP-SRAM Banks

(a) Area occupied by each part of the system

Memory Controller

/
‘ BIST

—

SP-SRAM Banks

(b) Power consumed by each part of the system

Figure 6.9: System results compressed by Word Addition with BIST
solution using 32x16-16B configuration - Place and Route.

46

Results

Chapter 7

Conclusion

In this project, three different memory controller algorithms are proposed in order
to increase the throughput of a SRAM in terms of performing a two-read operation
or one-write operation at a time. All of them have been analyzed in terms of area,
power, and speed.

XOR solution has demonstrated to be the most area and power efficient com-
pared to the other two solutions exposed. Even though, the area overhead of the
memory controller for the other two solutions with regard to the XOR solution is
28.5% and 39% respectively, when the entire memory block solution is taken into
account, is not more than 2% in the Word Addition Solution (WA) and 9% in the
Bit Addition Solution (BA).

From the power consumption perspective, the Word Addition solution (WA)
has an overhead of 30%, and the Bit Addition solution (BA) has an overhead of
47% with regard to the XOR solution. The power consumption penalty when
considering the whole memory block solution is negligible.

Additionally, the maximum frequency, using 32x16x16B configuration, for
each solution, is 2.5GHz for XOR solution, 1.25GHz for Word Addition solution
(WA), and 2GHz for Bit Addition solution (BA). This frequency is much higher
than the typical SRAM frequencies (800MHz-1.1GHz) for 28nm.

To sum up, the three solutions can reduce the area compared to the con-
ventional Two-Port SRAM solution by up to 39% (cell area after synthesis and
using 32x16x16B configuration). Additionally, and similar to the area, the three
solutions reduce the power consumption compared to the conventional two-port
SRAM solution by 36% (power consumption average of the three solutions using
32x16x16B configuration).

Furthermore, a BIST has been integrated into the Word Addition solution
and for 32x16x16B configuration. The penalty for adding this module is 30%
in the memory controller area, which corresponds to an overhead of 3% in the
entire memory block solution. The slack is not being affected by this module
as the longest combinational path is due to the addition block. Regarding the
penalty in power, the memory controller experiences an increment of 66% due to
the addition of the sequential logic. However, the overall overhead considering
the entire memory block solution (memory controller with BIST and single-port
SRAM banks) is 3.3%.

Overall, the entire memory block solution with the integration of the BIST into

47

43 Conclusion

the memory controller reduces the area by 35% compared to the two-port SRAM
solution. The slack is not being modified with its incorporation. Regarding the
power consumption, the penalty is 3.3% of the entire memory block solution but
the power consumption also reduces by 34% compared to the conventional two-port
SRAM solution.

Figure sums up the percentage of improvement for each memory controller
solution compared to the conventional two-port SRAM solution.

50 \
5 OCell Area
[aer * Power
G
&
" 40 | I
>
- ** "
5 e
=
o
5 301 |
—
o
g
3
X 20 | | |
XOR WA BA
Solutions

Figure 7.1: Comparison of the entire memory block solution with
the different memory controller solutions to the conventional
two-port SRAM solution for 32x16-16B configuration.

7.1 Future Work

¢ Reduction of the area by reducing the combinational logic.
o Exploring new algorithms that allows more than two-read operation.
o Exploring new algorithms to increase the number of writes per operation.

e In Section we concluded that compression, error detection, and hash
functions were not suitable for this thesis purposes. However, a method
that could ensure the codification of the data with a deterministic resulting
memory size could be a potential method. Obviously, the memory required
size should also be inferior than simply duplicating the data.

References

1]

2]

[Online]. Available: http://electroiq.com/blog/2014/02/
the-most-expensive-sram-in-the-world-2-0/

You Li and Xiangqing He, "A novel area-efficient and full current-mode
dual-port SRAM,"2008 International Conference on Communications,
Circuits and Systems, Fujian, 2008, pp. 1079-1082.[Online]. Available:
http://ieeexplore.ieee.org.ludwig.lub.lu.se/stamp/stamp. jsp?tp=
&arnumber=4657955&1isnumber=4657700

Kaur Ramandeep, Fell Alexander, Rawat Harsh, "A 6T SRAM cell based
pipelined 2R/1W memory design using 28nm UTBB-FDSOI" 2015, 2015
28Th IEEE International System-On-Chip Conference (SOCC), System-On-
Chip Conference (SOCC), 2015 28Th IEEE International, p. 310, IEEE
Xplore Digital Library.

Yokoyama Yoshisato, Ishii Yuichiro, Okuda Haruyuki, Nii Koji, "4 dynamic
power reduction in synchronous 2RW 8T dual-port SRAM by adjusting word-
line pulse timing with same/different row access mode’, 2017, 2017 IEEE
Asian Solid-State Circuits Conference (A-SSCC), Solid-State Circuits Con-
ference (A-SSCC), 2017 IEEE Asian, p. 13, IEEE Xplore Digital Library.

F. Baiet al., "A two-port SRAM using a single-port cell array with a self-timed
write-after-read control scheme to save 47% area & 63% standby power,” 2017
IEEE 12th International Conference on ASIC (ASICON), Guiyang, 2017, pp.
426-428.

"Understanding Asynchronous Dual-Port RAMs," Cypress Semiconductor
Corporation.[Online]. Available: http://65xx.unet.bz/ds/an1048.pdf

Mohammadi Babak, "Ultra-low Power Design Approaches in Memories and
Assist Techniques," Lund Unversity, 2017-06-16 pp 28.

Mohammad Hammoud, Sangyeun Cho, Rami Melhem, "C-AMTE: A lo-
cation mechanism for flexible cache management in chip multiprocessors’,
Journal of Parallel and Distributed Computing 2011, pp. 889-896. [On-
line], Available: http://www.sciencedirect.com/science/article/pii/
S0743731510002418

49

http://electroiq.com/blog/2014/02/the-most-expensive-sram-in-the-world-2-0/
http://electroiq.com/blog/2014/02/the-most-expensive-sram-in-the-world-2-0/
http://ieeexplore.ieee.org.ludwig.lub.lu.se/stamp/stamp.jsp?tp=&arnumber=4657955&isnumber=4657700
http://ieeexplore.ieee.org.ludwig.lub.lu.se/stamp/stamp.jsp?tp=&arnumber=4657955&isnumber=4657700
http://www.sciencedirect.com/science/article/pii/S0743731510002418
http://www.sciencedirect.com/science/article/pii/S0743731510002418

50

References

[9]

[10]

[11]

[13]

(18]

[19]

"Introductory Digital Systems Laboratory” MIT, 2006. [Online], Avail-
able: https://ocw.mit.edu/courses/electrical-engineering-and-computer-
science/6-111-introductory-digital-systems-laboratory-spring-2006 /lecture-
notes/I18 9 arithmetic.pd

Singhee, A, & Rutenbar, R 2010, Extreme Statistics In Nanoscale Memory
Design. [Elektronisk Resurs], n.p.: Boston, MA : Springer US, 2010., Library
catalogue (Lovisa).

G. Anandharaj and R. Anitha, "A Distributed Cache Management Archi-
tecture for Mobile Computing Environments,” 2009 IEEE International Ad-
vance Computing Conference, Patiala, 2009, pp. 642-648. doi: 10.1109/I-
ADCC.2009.480908

A. P. C. M. Michael Price, James Glass, “A 6 mW, 5K-Word Real-Time
Speech Recognizer Using WEST models,” in 2014 IEEE International Solid-
State Circuits Conference Digest of Technical Papers (ISSCC), 2014, pp.
454-456.

M. Gautschi, D. Rossi, and L. Benini, “Customizing an open source processor
to fit in an ultra-low power cluster with a shared L1 memory,” in Proceedings
of the 24th edition of the great lakes symposium on VLSI, 2014, pp. 87— 88.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2591569

P. P. Damodaran, S. Wallentowitz and A. Herkersdorf, "Distributed cooper-
ative shared last-level caching in tiled multiprocessor system on chip", 2014
Design, Automation & Test in Europe Conference & Exhibition (DATE),
Dresden, 2014, pp. 1-4. [Online]. Available: https://ieeexplore.ieee.org/
document/6800297/

Lenis, J, and Senar, M 2017, "A performance comparison of data and memory
allocation strategies for sequence aligners on NUMA architectures”, Cluster
Computing, 20, 3, pp. 1909-1924, Inspec, EBSCOhost, viewed 18 May 2018.

Sundar Iyer and Shang-Tse Chuang, "High speed memory systems and meth-
ods for designing hierarchical memory systems”, United States Patent Appli-
cation Publication, Pub. No.: US 2011/0022791 A1, Pub. Date: Jan. 27,2011.

M. B. Lin and Y. Y. Chang, "A New Architecture of a Two-Stage Lossless
Data Compression and Decompression Algorithm," in IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 17, no. 9, pp. 1297-1303,
Sept. 2009. [Online]. Available: http://ieeexplore.ieee.org.ludwig.lub.
lu.se/stamp/stamp. jsp?tp=&arnumber=4801589&isnumber=5208586

T. Nakamura, K. Iwai, T. Matsubara and T. Kurokawa, "Implementation of
Hash Function Generator on Schematic to Program Translator(SPT),” 2017
Fifth International Symposium on Computing and Networking (CANDAR),
Aomori, 2017, pp. 469-474.

M. Turcanik, "Hash function generation based on neural networks and chaotic
maps,” 2017 Communication and Information Technologies (KIT), Vysoke
Tatry, 2017, pp. 1-5.

http://dl.acm.org/citation.cfm?id=2591569
https://ieeexplore.ieee.org/document/6800297/
https://ieeexplore.ieee.org/document/6800297/
http://ieeexplore.ieee.org.ludwig.lub.lu.se/stamp/stamp.jsp?tp=&ar number=4801589&isnumber=5208586
http://ieeexplore.ieee.org.ludwig.lub.lu.se/stamp/stamp.jsp?tp=&ar number=4801589&isnumber=5208586

References 51

[20] 1. Amro, "Speech Compression Exploiting Hamming Correction Code Com-
pressor," 2013 Fifth International Conference on Computational Intelligence,
Communication Systems and Networks, Madrid, 2013, pp. 234-238.

[21] [Online]. Available: https://www.xilinx.com/support/documentation/
sw_manuals/xilinx11/ise_c_hdl overview.htm

[22] J. M. Rabaey, A. P. Chandrakasan, and B. Nikoli¢, "Digital integrated circuits:
a design perspective,” Chennai, Delhi: Pearson, 2003, pp.623-721.

https://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ise_c_hdl_overview.htm
https://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ise_c_hdl_overview.htm

UNIVERSITY

Series of Master’s theses
Department of Electrical and Information Technology
LU/LTH-EIT 2018-668
http://www.eit.Ith.se

8107 puni 18sny-3 1 12132411 Aq parulid

	Report-Berta_Morral.pdf
	Introduction
	Motivation
	Main Goal

	Relevant Concepts
	Memory architectures
	Parts of a memory

	Background
	 Random-Access-Memory (RAM) Definition
	Main concerns in SRAM
	Available solutions
	Alternative solutions

	Algorithm Design
	XOR
	Word Addition
	Bit Addition

	Implementation Phase
	HDL Algorithms Implementation
	Behavioural HDL Test
	BIST

	Results
	Synthesis Results
	Place and Route Results (PNR)

	Conclusion
	Future Work

	References

