
Situation-aware Adaptive Cryptography

VIKTOR HJELM
MARC TRUEDSSON
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2018

V
IK

TO
R

 H
JELM

 &
 M

A
R

C
 TR

U
ED

SSO
N

Situation-aw
are A

daptive C
ryptography

LU
N

D
 2018

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2018-619

http://www.eit.lth.se

Situation-aware Adaptive Cryptography

Viktor Hjelm
bas12vhj@student.lu.se

Marc Truedsson
elt13mtr@student.lu.se

Department of Electrical and Information Technology
Lund University

Supervisor: Sebastian Mauritsson (Advenica), Niklas Lindskog
(Advenica), Paul Stankovski (EIT)

Examiner: Thomas Johansson

February 28, 2018

c© 2018
Printed in Sweden
Tryckeriet i E-huset, Lund

Abstract

The matter of security is often a trade-off between protection and performance.
The fact that more and more small, battery powered and computationally weak
devices are connected to the Internet, makes this matter more relevant than ever.
Such devices could be smart-watches, smart smoke detectors, IP Cameras, etc.
While some of these devices completely lack data protection, other devices have
implemented classic security schemes which are not optimized for such devices.

This thesis investigates the concept of situation-aware adaptive cryptography in an
IP Camera, where different security schemes can be used depending on the current
situation of a device. A number of different security schemes are implemented,
tested and compared to each other. From this, different protection levels are
proposed not only containing classic cryptographic functions but also lightweight
cryptographic schemes specialized for this new type of small devices.

Different parameter measurements, relevant for assessing the situation of a device,
are also implemented and compared to each other in terms of power consumption,
time, and data sent. Finally, the results from these two studies are put together
into a complete concept solution, implementing the full situation-aware adaptive
cryptography scheme. This particular implementation can save up to 53% of the
power used for encryption and sending of data, in an average use case about 26%
is saved.

Keywords - Situation-aware Cryptography, Adaptive Cryptography, Lightweight
Cryptography, IoT, Intrusion detection, Energy efficiency

i

ii

Acknowledgements

We would like to thank Advenica and its people for being very friendly and ac-
commodating throughout our thesis. Special thanks go out to our supervisors
Sebastian Mauritsson and Niklas Lindskog for their valuable support, feedback
and positivity. Thanks to Henrik Normann, Tobias Claesson and Oskar Jönsson
for their input regarding this thesis.
We would also like to thank our supervisor from LTH, Paul Stankovski, for his
support and academical points of view during this thesis.

iii

iv

Table of Contents

1 Introduction 1
1.1 Background . 1
1.2 Project Aims . 2
1.3 Scope . 2
1.4 Contributions . 3
1.5 Outline . 3
1.6 Method . 4

2 Threats 7
2.1 Man-in-the-Middle attacks . 7
2.2 Network Sniffing . 8
2.3 Intrusion . 8

3 Cryptographic Algorithms 11
3.1 Encryption Algorithms . 11
3.2 Message Authentication . 14

4 Situation Parameters 17
4.1 Wi-Fi . 17
4.2 Bluetooth . 21
4.3 Shared Parameters . 21

5 Adaptation and Evaluation 25
5.1 Mapping the Situation Parameters to Protection Levels 25
5.2 Adapting Frequency . 27

6 Throughput Tests 29
6.1 Separation of Libraries . 29
6.2 Throughput Test Result . 30
6.3 Protection Levels Proposal . 32

7 Power Consumption Tests for Protection Levels 35
7.1 Python Implementation . 35
7.2 C Implementation . 36

v

7.3 Power Consumption Evaluation . 37

8 Situation Measurements 39
8.1 Wi-Fi Measurements . 39
8.2 Bluetooth Measurements . 42
8.3 Situation Measurements Evaluation 43

9 Protection and Situation-awareness Comparison 47
9.1 Situation-aware Adaptive Cryptography Criteria 47
9.2 Data Sensitivity . 48
9.3 Difference Between Protection Levels 48
9.4 Cost of measuring . 48
9.5 System Tests . 53

10 Conclusions 55
10.1 Future work . 55

References 59

A Cryptographic Components 65

B Overview of Complete Implementation 67

vi

List of Figures

1.1 Flow of the Situation-aware Device. 3
1.2 Architectural overview. 5

2.1 Connections during a Man-in-the-Middle attack 7
2.2 Network Sniffing. 8

8.1 Test Network Setup. 39

9.1 Maximum overhead depending on data sent. 50

A.1 S-Box . 65
A.2 SPN Network . 66

B.1 Overview of the architecture for the complete implementation. 68

vii

viii

List of Tables

3.1 Cryptographic function performance comparison 13

4.1 Well-known ports exposed to threats with corresponding Protocols. . 20

5.1 Situation Classes and Threat levels for Wi-Fi. 26
5.2 Situation Classes and Threat levels for Bluetooth. 26

6.1 Python vs C Implementation. 30
6.2 Encryption throughput tests. 31
6.3 Hash throughput tests. 31
6.4 Python MAC throughput tests. 32
6.5 Proposed Protection Levels. 32
6.6 Throughput for the proposed Protection levels. 33

7.1 Python Encryption and Send Tests. 36
7.2 C implementation Encryption Tests. 36
7.3 Sending data, Wi-Fi and Bluetooth. 37
7.4 Energy Consumption for Encrypting and Sending data. 37

8.1 Passive Situation Measurements. 40
8.2 Active Situation Measurements . 41
8.3 Situation Measurements Tests for Wi-Fi. 42
8.4 Active Situation Measurements. 43
8.5 Parameters divided into Passive and Active measurements. 43
8.6 Situation Measurements Tests for Bluetooth. 43
8.7 Classification of Situation Parameters. 46

9.1 Changes in energy when adapting before sending. 49
9.2 Changes in energy when adapting with fixed interval. 52
9.3 System Tests. 53

ix

x

Abbreviations

AES - Advanced Encryption Standard
ARP - Address Resolution Protocol
DHCP - Dynamic Host Configuration Protocol
DNS - Domain Name System
FTP - File Transfer Protocol
HMAC - Hash-based Message Authentication Code
HTTP - Hypertext Transfer Protocol
HTTPS - Hypertext Transfer Protocol Secure
IANA - Internet Assigned Numbers Authority
ICMP - Internet Control Message Protocol
IGMP - Internet Group Management Protocol
IoT - Internet of Things
IP - Internet Protocol
MAC - Message Authentication Code
MAC address - Media Access Control address
MitM - Man-in-the-Middle
NIC - Network Interface Card
NIST - U.S National Institute of Standards and Technology
NSA - National Security Agency
OS - Operating System
S-Box - Substitution Box
SDP - Service Discovery Protocol
SHA - Secure Hash Algorithm
SMTP - Simple Mail Transfer Protocol
SPN - Substitution-Permutation Network
SSH - Secure Shell
TCP - Transmission Control Protocol
TLS - Transport Layer Security

xi

xii

Chapter 1
Introduction

This thesis will investigate and research the concept of situation-aware cryptogra-
phy, for the sake of Advenica AB. All research has been conducted at Advenica
AB in association with the Electrical and Information Technology department at
the Faculty of Engineering, Lund University.

In this chapter, an introduction to the thesis will be presented, consisting of the
background to the research, project aims and questions to research, the scope of
this thesis, contributions from the different authors and the outline of the thesis.
Finally, the methods used to create, test, and measure a situation-aware adaptive
cryptography scheme will be presented.

1.1 Background

Today the number of devices connected to the Internet, and to each other, is
increasing faster than ever. What separates many of these devices from classic
computers or servers, is that they come in all different forms and are used in all
kinds of areas. A common denominator for many of these devices is that they
have a need for some type of security. Some of these products handle private or
user-sensitive data, e.g fitness bracelets or IP cameras. Since devices like these
often run on a battery, it is of great essence that they are very power efficient.
Given this requirement comes a trade-off between security and power efficiency
[52].

Classic security methods, such as TLS, may no longer be the most suitable option
for such devices because of these hard constraints. Instead, new ways of achiev-
ing confidentiality and integrity protection, using less energy and computational
power, have been proposed. This type of algorithms, often called lightweight-
cryptographic algorithms, can be less secure than classic cryptographic algorithms
due to shorter key-sizes or not as well-studied algorithms. One approach to han-
dle this problem is to use a mix of different cryptographic algorithms and adapt
the cryptographic algorithms to the situation. With this approach, a more secure
cryptographic algorithm can be used in a situation where an attacker is more likely
to be present and the data sent is particularly sensitive to the user. In another
scenario, where the data is less valuable to the user, and an attacker is less likely

1

2 Introduction

to be present, the data can be sent using a lightweight-cryptographic algorithm,
and therefore save both computational power and energy for the device.

1.2 Project Aims

The objective of this project is to research the possibilities to create a situation-
aware adaptive cryptographic scheme, that can be used for devices with limited
processing power and energy consumption. In the case of this project, the consid-
ered device is a battery powered IP camera. A possible way of the information flow
in a situation-aware IP Camera is shown in figure 1.1. The camera is for private
use and is assumed to be in an indoor environment. The attacker is assumed to
have access to the same local network, with the ability to read and alter the data
transmitted. The camera is to protect data in such a way that the attacker is
not able to read or alter sensitive information. The idea is to use existing cryp-
tographic schemes with various protection levels and processing power, depending
on the situation the device is in. The device has to determine and choose the
scheme most appropriate for the situation.

1.2.1 Questions to research

1. How should a device monitor its network communication to determine a
threat level? What should it react to?

2. How often should the device evaluate and adapt to the current threat level?

3. Under what circumstances would it be possible and useful to implement
adaptive handling of security protocols in a device with limited processing
power?

1.3 Scope

The aim of this paper is to investigate the usefulness of situation-aware cryptog-
raphy on a concept level, as well as proposing a way of creating such scheme. In
practice, it is possible to create adaptive cryptography in many different ways.
There are a lot of different cryptographic algorithms which would be suitable for
such a scheme. The purpose of this paper is not to find optimal cryptographic al-
gorithms for a particular use case. Instead, the focus is a proof of concept solution
for an efficient way of using different encryption and hash algorithms, to achieve
adaptive cryptography.

In a similar manner, the proposed solution does not aim for perfectly mapping
the measured situation to a protection level. In order to do so, more information
about what kind of data that would be sent is required, as well as more detailed
information about what different threats to consider for that particular use case.
Instead, the authors of this paper leave those decisions for the user of such a
situation-aware solution.

Introduction 3

Figure 1.1: Flow of the Situation-aware Device.

This paper won’t consider any authentication or key establishment issues. Instead,
a pre-shared key is assumed for all use cases. In reality, this may not always be the
case, but due to the limited time of this thesis, and the fact that there exist many
different approaches to such problems, they have been left out of this project.

1.4 Contributions

During the work of this thesis, the tasks have been distributed evenly among both
participants. Both participants have been equally involved in all parts of the thesis
project. Since both authors share a lot of knowledge from the same courses and
Master specialization there have not been any problems in working closely together
with all tasks. During the writing of this thesis, both authors have been involved
in every part.

1.5 Outline

The outline of the remainder of this thesis is as follows:
Chapter 2, Threats: Describes the attacks and threats handled in this thesis.
Chapter 3, Cryptographic Algorithms: This chapter introduces the crypto-
graphic algorithms which are used in order to provide confidentiality and integrity
depending on the protection level.
Chapter 4, Situation Parameters: The different parameters, which are taken
into consideration when determining the threat level, are described.
Chapter 5, Adaptation and Evaluation: Evaluation of the parameters from

4 Introduction

the previous chapter and mapping them to the Protection levels.
Chapter 6, Throughput Tests: Throughput result of the cryptographic algo-
rithms is presented.
Chapter 7, Power Consumption Tests for Protection Levels: Results of
tests performed to measure the power consumption of the different cryptographic
algorithms and in turn the protection levels.
Chapter 8, Situation Measurements: The power consumption of the situa-
tion parameters is tested. The time for each measurement is also recorded.
Chapter 9, Protection and Situation-awareness Comparison: The cost
of the situation measurements is compared to the cost of encryption in order to
determine the usefulness of the implemented solution.
Chapter 10, Conclusion: A conclusion of the work done and the result of this
thesis. The conclusion also contains suggestions for future work.

1.6 Method

This thesis will develop and implement a situation-aware adaptive cryptographic
scheme, which will be the basis of a number of simulations and tests meant to
answer the questions to be researched from Section 1.2.1. The proposed solution
consists of three main parts, Situation parameters, Adaptation, and Protection, to
achieve situation-aware adaptive cryptography. Figure 1.2 shows a block diagram
representing this solution.

The first part, Situation parameters, will measure relevant network parameters
related to Man-in-the-Middle attacks, a malicious user sniffing the network traf-
fic, intrusion detection, and the topology of the network. Apart from the threat
related parameters, situation parameters also include the sensitivity of the data.
This part provides necessary information for determining the current situation and
threat level of the device.

Adaptation handles the evaluation of the input provided by the measurements
and the user from the Situation parameters part. The job of the evaluation engine
is to process the values from each measurement and assess the current threat level
for the device and match this to a protection level. The protection levels could be
seen as different alert states, similar to what is used in many other systems today
such as DEFCON [20].

Protection handles the different protection levels, which perform the crypto-
graphic algorithms associated with each level. The levels come with a trade-off
between security and time- and computational complexity.

The work will be separated into three major parts. The first part is a theoretical
study necessary for the development of the proposed scheme. This study includes
the different cryptographic algorithms used, the potential threats and vulnerabil-
ities as well as appropriate situation parameters to measure for this project. The
second part is a model of the scheme implemented in Python. This model will be

Introduction 5

Figure 1.2: Architectural overview.

the basis for tests evaluating throughput between the different algorithms and the
time consumption of the different measurements gathered. The results of these
tests will be done to confirm if the cryptographic algorithms used, and the mea-
surement gathered, is suitable for the final implementation. Following the results
of the tests performed in the previous part, a final implementation will be made.
This implementation will then run on a device, where tests regarding the energy
efficiency of the model will be performed.

6 Introduction

Chapter 2
Threats

Any device connected to a network is exposed to a number of different threats. IP
Cameras are no exception from this. In recent attacks, some cameras have been
extra targeted due to various design flaws, such as hardcoded passwords [32]. In
order to measure the threat level of a device, it is vital to understand what attacks
the device is exposed to, and how these attacks work. The most common, and
relevant, threats to consider for this thesis project are Man-in-the-Middle, Sniffing,
and Intrusion attacks.

2.1 Man-in-the-Middle attacks

A Man-in-the-Middle, MitM, attack is an attack where a malicious party success-
fully reroutes all connections between two hosts through the attacker. This means
that the attacker is able to read and alter all data sent between the two parties,
without the knowledge of either of the two communicating parties. Encrypting
the data sent between the two parties can make it harder, or even impossible,
for a MitM to read the actual information sent. Similarly, a good integrity pro-
tection will alert the communicating parties when the data sent has been altered
during the transmission. Figure 2.1 shows a simple example of what the connec-
tion looks like during a MitM attack. In this case, Alice and Bob represent the
communicating parties and Mallory represents the MitM attacker.

Figure 2.1: Connections during a Man-in-the-Middle attack [58].

7

8 Threats

The easiest way to picture how a MitM attack is realized is to assume that the
attacker is physically connected to the communicating parties. This is not always
the case since it could be hard for an attacker to physically alter the connections.
Another way to perform the attack is through an ARP cache poisoning [37]. In
that case, the communicating parties are tricked into sending data to the attacker
on the same local network, instead of directly to each other. In both of these
cases, the attacker needs to enable IP packet routing, which allows the attacker to
forward IP packages acting as a router [56].

2.2 Network Sniffing

Network sniffing is an attack where the intruder listens to, or monitors, the network
communication passively. In this type of attack, there is no altering of data, and
there is no need for the intruder to be positioned between the two communicating
parties. For these reasons, detecting sniffing attacks is considered hard, although
possible in some cases. An overview of the attack is found in Figure 2.2 below.

Figure 2.2: Network Sniffing.

In Figure 2.2, Alice and Bob try to communicate and Mallory is the intruder. It
seems like Alice is directly sending all information to Mallory and therefore making
the attack possible. This is not the case, instead, there exist many possible reasons
why Mallory can read the data. For example, if a hub is used, which repeats all
received data to all output connections, or that a Wi-Fi is used so all connected
devices can listen. Another possible reason could be that the attacker has launched
a successful MAC address flooding attack, which forces the switch to enter ‘failopen
mode’ acting as a hub [48].

2.3 Intrusion

A malicious party trying to gain access to a device, it is not allowed to access,
is called an intrusion. What differs intrusion from sniffing and MitM attacks,
is that the malicious party does not have to break any type of encryption or
integrity protection in order to read or alter data after a successful intrusion.
Instead exploits in the device software, or configuration errors, could open up for

Threats 9

a successful attack. Since this type of attack is independent of the encryption, this
means that changing the protection level of the sent data, which is what is done
by the situation-aware adaptive cryptographic solution, is not a direct solution to
an intrusion. However, since signs of an intrusion indicate that there is a malicious
party on the network, it is still considered a relevant threat to this solution, and
if an intrusion is suspected the protection level is to be increased.

Intrusions are often initialized by a port scan to look for services running on the
targeted device. The reason for this is to find a running service with a known
exploit, and then use that exploit to gain access to or collect information from the
target. By listening for incoming connections on ports that are not in use, but
typically known for services with exploits, an intrusion attempt can be detected.

10 Threats

Chapter 3
Cryptographic Algorithms

In order to create a successful situation-aware adaptive cryptography scheme, it
is of great essence to choose suitable cryptographic functions as well as choosing
relevant parameters to react and adapt to. Since the use cases of this project are
meant to include data with different degrees of sensitivity, in a variety of different
environments, the protection of data should span from very secure, to no security
at all.

This chapter will describe the different cryptographic functions used for achieving,
not only different levels of security but also different costs in terms of throughput
and energy consumption. The cryptographic algorithms handled in this chapter
are divided into encryption, providing confidentiality, and message authentication,
providing integrity protection.

3.1 Encryption Algorithms

The cryptographic algorithms in this project are meant to reflect different protec-
tion levels. When choosing the set of algorithms to use for an adaptive crypto-
graphic scheme it is important to choose algorithms with different levels of security
and cost. In this context, the cost is considered to be processing power, through-
put, and energy consumption. For a fair comparison, encryption algorithms pro-
posed in this project are all block ciphers with variable key length and block size.
It is important to keep in mind that these algorithms are just one proposal, and
that similar solutions could use other algorithms or stream ciphers or a single block
cipher with a variable number of rounds.

The highest protection level for this project is to use a very secure and well stud-
ied algorithm. Traditionally, the power consumption for such algorithms is high,
but since it is used only when a threat is assumed to be present, this is to be
considered acceptable. The least secure method used in this project is simply to
send all information in cleartext. This method, although energy efficient, provides
no security and anyone with access to the data can read or alter the information.
In between these two levels, there is a need for cryptographic functions which
provide less security but with better performance. In the following sections, two
different cryptographic functions are presented and compared. The idea for the

11

12 Cryptographic Algorithms

cryptographic functions is to not only provide different levels of security, but also
different amounts of energy and computational power.

3.1.1 Advanced Encryption Standard

The Advanced Encryption Standard, or AES, is a symmetric block cipher based
on a subset of the Rijndael cipher developed by Vincent Rijmen and Joan Dae-
men. It was adopted by the U.S. government in 2001 as the new encryption
standard replacing the Data Encryption Standard, and has since been added to
other reputable organization lists of recommendations [19] [41]. AES was designed
as a public and flexible block cipher with three different key sizes of 128, 192 and
256 bits. Because of the flexibility in the cipher, as well as the public nature of
the source, the use of AES is widespread and therefore a suitable cipher for this
project.

The cipher design is a Substitution and Permutation network (SPN), explained
more in depth in Appendix A, where the data block to be encrypted goes through
this network a number of rounds depending on the key size. AES specifies that 10,
12 and 14 rounds should be used for the key sizes 128, 192, and 256, respectively.
This thesis will use AES with a key size of 256 bits since it is the most secure
version of AES.

AES is widely used in IP cameras and several other applications today [10] [54].
This is one of the most used encryption algorithms today since it is common for
many TLS connections to use AES [22]. AES also fulfills NSA’s latest requirements
for sharing of TOP SECRET information in national security systems [17]. The
negative aspect of this algorithm is that it is computationally heavy, and using it
in a device with high energy constraints and low computational power at all times,
may not be the best choice.

3.1.2 SIMON and SPECK Lightweight Ciphers

SPECK and SIMON are block ciphers first proposed by NSA in 2013 [6]. They are
both lightweight ciphers designed to perform well for constrained devices. What
differs the two ciphers is that SIMON is optimized for hardware implementations
while SPECK is more suitable for software implementations. This makes SPECK
more relevant for the purpose of this paper since the implementations will be done
in software only. When proposed in 2013 the two ciphers were said to “outperform
both the best comparable hardware algorithms and the best comparable software
algorithms“ [7].

It is worth noting that both SPECK and SIMON lack S-boxes, a common part of
many block ciphers such as AES, which are used for introducing non-linearity. S-
boxes are described further in Appendix A. Instead, SPECK uses modular addition
for non-linearity. This method is preferred in software over hardware [8]. One thing
that makes SPECK particularly well suited for software implementations, is the
fact that every operation can be done in-place. This means that there is no extra

Cryptographic Algorithms 13

memory space needed when performing the operations used in SPECK, which of
course is an advantage.

3.1.3 Comparison between AES and SPECK

Table 3.1 shows throughput for SPECK compared to AES. The key size and the
block size are 128 bits for both algorithms. The hardware clock speed is 100
kHz and the software clock speed is 16 MHz. Comparing SPECK and AES from
Table 3.1 it is clear to see that SPECK, in this case, has a higher throughput than
AES when implemented in software, which makes it a suitable algorithm for this
project.

Table 3.1: Cryptographic function performance comparison [6].

Algorithm Throughput
Hardware
[kbps]

Throughput
Software
[kbps]

SPECK 12.1 768
AES 56.6 445

At the writing of this thesis, to the best knowledge of the authors of this paper,
there exists no full round attacks on the SPECK cipher. Instead, only attacks
targeting a reduced number of rounds have been published. In 2013 Abed et al.
proposed a way of attacking a SPECK cipher, with a block size of 64 bits and a
key size of 128 bits, after 14 out of 27 rounds [1]. The time for recovering the key
was 289.4, compared to 2128, which is achieved by exhaustive key search, in other
words, more than 1011 times faster. The best published reduced round attack
on SPECK targets about 70% of the total number of rounds done in SPECK,
which is considered "A healthy security margin" [9]. This gives a hint about how
vulnerable the cipher is considered today.

Full round attacks have been presented on the AES cipher, which in theory means
that the cipher is broken. Bogdanov et al. showed in 2011 a way of breaking
the 256-bit AES in a computational complexity of 2254.4 [14]. Comparing this to
exhaustive key search which requires a computational complexity of 2256, it is clear
that the attack only finds the key about 3 times faster. Similar attacks also exist
on the 128-bit version of AES. This makes AES practically impossible to crack
using current technology. Putting it in the words of the author Bogdanov: "To
put this into perspective: on a trillion machines, that each could test a billion keys
per second, it would take more than two billion years to recover an AES-128 key.
Because of these huge complexities, the attack has no practical implications on
the security of user data." [15].

It is clear to see that both of the cryptographic algorithms have both positive,
and negative, aspects. While the 256-bit AES can be viewed as the more secure
option, it is still quite costly in terms of computational power and energy for a

14 Cryptographic Algorithms

variety of devices. SPECK, on the other hand, is very efficient when it comes to
energy and computational power. There is also a possibility to choose from a lot
of different key and block sizes to adjust the level of security. This makes them
both great candidates for an adaptive cryptographic scheme.

3.2 Message Authentication

The protection against tampering of data, along with the authenticating of the
sender, is an important feature in a security system. Since the protection levels of
a situation-aware scheme may include both message authentication, with or with-
out encryption, it is important to separate these two cases.
Authenticating a message, which is sent encrypted, can be done by hashing the
message, and including this hash with the message.
If message authentication is to be used without encryption, a key-less hash is not
sufficient to provide this. Instead, a HMAC can be used to provide message au-
thentication. HMAC, which is a hash-based method including a key, can be used
with any hash function suggested in this section.
Again, to achieve a useful adaptive cryptography it is important that the different
algorithms for message authentication provide different levels of protection and
cost, in terms of energy, throughput, and computational power.

This section deals with the different algorithms researched in this project to im-
plement message authentication. Like the case with encryption, the highest level
of security reflects well-known and widely used algorithms. These are known as
the Secure Hash Algorithm or SHA. In addition, a lightweight cryptographic hash
function, which is less costly than the more well-studied SHA functions, is intro-
duced. In similarity with the encryption case, different functions can be used as
long as they have different cost and protection level.

3.2.1 SHA2

When encryption is used, there is no need for using keyed hashes such as HMAC
for message integrity. Instead, a hash of the data sent can be encrypted by the
same algorithm as the message and thus provide the integrity. SHA2 is a hash
function designed by NSA and published in 2001. The algorithm is a U.S. standard
which is widely used and available in popular cryptographic protocols. The hash
family offers output digests of different sizes making it flexible to use. To the best
knowledge of the authors, there exists no full round attack on SHA2.

3.2.2 SHA3

SHA3 is the latest addition to the hash algorithms standardized and certified by
NIST. Released in 2015 as a subset of a cryptographic family called Keccak which
is internally different from the previous algorithms SHA2 and SHA1 [42]. The
intention of this new algorithm is not that of a direct substitute to SHA2, but an
alternative, widening the options of using a NIST approved hash algorithm.

Cryptographic Algorithms 15

3.2.3 BLAKE2

One very fast option for hashing is the BLAKE2 algorithms. Its predecessor,
BLAKE, was a proposal for SHA3 but got rejected. BLAKE2 is said to be as
faster than SHA1 but with security similar to SHA3 and is designed for soft-
ware implementations [5]. BLAKE2 comes in four different versions, BLAKE2b,
BLAKE2s, BLAKE2bp and BLAKE2sp, with each version optimized for usage on
different platforms depending on the CPU version.

Another advantage with BLAKE2, apart from the speed, is that it has a keyed
version. This means that there is no need for using HMAC, or any similar method,
when BLAKE2 is used without any encryption.

16 Cryptographic Algorithms

Chapter 4
Situation Parameters

Establishing a situation-aware framework, which is supposed to detect whether
or not there is a threat on the network, requires some input. This input can
be gathered in many ways, where the most readily available input, comes from
measuring different network parameters and predefined input from the user. The
framework must be able to monitor the network, detect anomalies, and categorize
the perceived threat level in order to correctly determine which protection level
to implement. Since this thesis is based on the use case of an IP camera, the
networks researched are Wi-Fi, which is the main focus, and Bluetooth. The
different parameters this project will handle are described in this chapter.

4.1 Wi-Fi

This section details the parameters specific to Wi-Fi in this thesis. Most IP Cam-
eras use Wi-Fi connections exclusively for communicating which makes the Wi-Fi
parameters most interesting for the situation evaluation [26].

4.1.1 IP Packet Routing

To investigate if a network is infiltrated by a Man-in-the-Middle, a simple test
can be performed to receive possible candidates of such an attack [56]. The test
is designed to evaluate whether a device is rerouting data sent in the network,
which is the case in a MitM attack. The host, which is the one performing the
tests, sends a trap ICMP ping packet to the suspect. The packet is that of an
ordinary ICMP ping, addressed to the suspected device. The difference is that
the destination IP is not the suspected device, rather the IP of the host doing the
testing. If the target host is rerouting packages in the network it will send the
ping request back to the test host. This is an indication that the suspect could be
deploying a MitM attack, since there is no need for an ordinary device to reroute
this packet.

4.1.2 ARP Spoofing

ARP Spoofing, or ARP cache poisoning, is often used as a method to realize a
MitM attack [37]. In an ARP Spoofing, the attacker tries to inject a malicious en-

17

18 Situation Parameters

try in the victim’s ARP cache. The attack can be done in many different ways by
faking ARP requests, ARP replies or both [57]. After a successful ARP Spoofing,
the victim’s ARP cache is corrupted and the MAC address of some other device is
replaced with the MAC address of the attacker. This tricks the client into sending
data to the attacker when the client is supposed to send data to some other device.

ARP Spoofing attacks could be hard to prevent, in particular when different op-
erating systems handle ARP requests and replies differently. It could also be hard
to know when an attack is made with certainty, since it is possible for IP addresses
on the local network to change, making the ARP cache change as well. One pos-
sible way to discover an ARP Spoofing attack would be to launch a counter ARP
Spoofing to detect if the suspected attacker is really rerouting the packages, such
an attack is proposed by Z. Trabelsi and K. Shuaib [37]. This requires that the
attacker itself is exposed to ARP Spoofing attacks. However, it is not considered
good practice to launch an attack against another device.

The method used in this project uses more of a passive approach. By assuming
that the ARP cache, in a normal use case, should be close to static, and only
monitoring for changes in the ARP cache, it is possible to detect when the MAC
address of a certain IP address is changed. Changes like this could indicate, at
least if they are frequent, that a Man-in-the-Middle attack has been performed.
This means that there is no need for sending any request to measure this entity,
and there would be no need for implementing any extra protocols, which often is
the case when handling ARP spoofing attacks [16] [36] [38]. The negative aspect
of this method is that it could raise some false positives, but in the scheme of the
entire situation-aware solution, this should be acceptable.

4.1.3 Promiscuous Mode

When a Network Interface Card (NIC) is set to Promiscuous Mode, it forwards
all received information to the CPU rather than filtering out all information not
meant for the device. For example in the Ethernet case, all packages with a MAC
address not being the one of the device or any broadcast MAC address could be
passed to the CPU. This means that a device with Promiscuous Mode activated
can read data not intended for the device, i.e. sniff network data.

There exist ways to check whether a device in the local network has Promiscuous
Mode activated, other than to locally access the device. Z. Trabelsi et al. and
M. A. Qadeer et al. both propose a technique where ARP requests are used [48]
[55]. In their proposal, a faked ARP request is sent to a target device to check if
Promiscuous Mode is activated. The ARP request contains a fake MAC address
as the recipient and the IP of the target. If Promiscuous Mode is not activated the
package is rejected directly by the NIC. If instead Promiscuous Mode is activated
the package is forwarded to the CPU. Depending on the OS of the target, the
CPU often performs some kind of software filtering of the package. Although in
most cases, destination addresses similar to the Ethernet broadcast address, such
as FF:FF:FF:FF:FF:FE, are accepted [48]. If the package is accepted, a reply is

Situation Parameters 19

created and sent back to the sender. This means that if a response is received from
this type of faked ARP request, it is highly likely that the device has Promiscuous
Mode activated and is possibly performing a Sniffing attack.

4.1.4 Network Topology

When considering situation awareness, one of the most fundamental aspects is
the network topology. The term does not only take the number of devices into
account but also which type of devices and the connection between these devices
[30]. Other things to include in network topology could be which services that are
running on the network, DHCP servers or DNS servers just to name a few, and
also how many neighboring networks the current network has.

Number of Devices

Scanning the number of devices on a local network can be done in many different
ways, using the ARP ping method is one of the most efficient and reliable ways.
This method broadcasts an ARP request for each possible IP in the network range
and listens for a reply. Compared to the usual ICMP ping, it is a lot harder for
a device to hide from an ARP ping since every host that wants to be reached by
another host needs to have ARP enabled, except for the rare cases when static
ARP tables are used. A problem with this method is that if the subnet range is
large, the number of requests will also be large. IANA has specified three different
ranges for private subnets, allowing for sizes of 65.356, 1.048.576 or 16.777.216 IP
addresses [28].

Even the smallest number in this range, 65.356, would mean an equal amount of
requests for scanning the entire network. This amount of requests would be very
energy consuming and require a lot of processing power. Luckily, most subnets do
not use these large ranges of possible IP addresses. A quick study of the three best-
selling router brands, TP-Link, Netgear and Cisco, shows that their best-selling
routers only have a subnet size of 256 IP addresses by default [27] [40] [50] [51].
Assuming that most routers designed for private use follow the same pattern, and
that the default subnet size is not changed, makes the ARP Ping Scan a feasible
method for scanning the network for devices.

Another method for calculating the number of devices on the network, is to simply
listen and keep track of the number of ARP requests since they are broadcasted.
From the ARP requests the sender’s IP and MAC address can be stored, as well
as the IP of the receiver. The advantage of this method is that there is no need for
sending any extra requests, this saves power compared to ARP Ping Scan. The
disadvantages are, however, that the device constantly has to listen for and keep
track of incoming ARP broadcasts, which is costly in terms of processing power,
and that the calculations may be inaccurate since not all hosts send ARP requests.

20 Situation Parameters

Network Services

When finding out which services a host is running, a port scan can be performed.
One of the most used ways is a TCP Port Scan. This method sends a TCP package
to the port, on the target device, that is to be examined with the SYN flag set. If
an SYN-ACK reply is received, a service is known to be running on that port. If
instead an RST-ACK is received, there is no service running. When it is known
which ports that are in use, each port has to be mapped to a service. This can be
done using a table with the most common services and their corresponding port
number.

Scanning for ports can be a costly operation since there exist numerous well-known
ports, with a corresponding service, to scan for each device [29]. With a typical
subnet size of 256 IP addresses, the number of requests required for a complete
scan of services can be very large. However, if only certain services are of interest,
there is no need to scan all the ports available. For example, if only the number of
SMTP and FTP services are of interest, only ports 25 and 21 have to be scanned,
saving a lot of work and requests.

Another method of discovering running network services is to listen for incoming
packages. This method is not valid for discovering all services since it requires some
of the messages, to or from the service, to be broadcast so they can be sniffed by
all devices. Example of protocols that can be sniffed is DHCP and IGMP. The
advantage of this method is that it is more passive and does not require any extra
requests to be sent.

4.1.5 Port Surveillance

Network ports are seen as a large attack surface for a device as it binds network
data being sent, to an application. The recent Mirai botnet targeted certain ports
when infecting a device with its malware [33]. Surveillance of ports can, therefore,
give information in regards to the threat level of a device. Port surveillance should
only be used as an indicator for threats, since there is a possibility that a device
will receive incoming, non-malicious, requests for a port not in use. The ports
chosen for this project include some which were targeted by the Mirai botnet and
the Reaper botnet [49]. They can be seen in Table 4.1. Surveillance of ports
assumes that no ordinary communication to the cameras is supposed to use these
four ports, i.e. the device should not host any services on these ports.

Table 4.1: Well-known ports exposed to threats with corresponding
Protocols.

Protocol Port
SSH 22
Telnet 23
HTTP 80 and 8080
HTTPS 443

Situation Parameters 21

4.2 Bluetooth

This section presents situation parameters that are unique for Bluetooth. Even
though Bluetooth is not directly related to IP, some IP Cameras still uses Blue-
tooth for setup and local access to the devices. It should, therefore, be taken into
consideration when evaluating the threat situation for such devices [26] [35] [39].

4.2.1 Authentication Requests

The authentication process for a Bluetooth device is that of a challenge-response
scheme. This scheme is meant to verify that a device is in the possession of a key
specific to an earlier established link, called a Link key. While Bluetooth protects
from brute-forcing the authentication, by waiting after a failed authentication
before a new attempt may be done, it does not protect from sending repeating
authentication requests. These requests will trigger a response from the other
device which will be encrypted by the Link key. This could leak information
regarding the key. Therefore, measuring the number of authentication requests
could give an indication of a potential threat [43].

4.2.2 Network Topology

Since Bluetooth is an Ad-Hoc network the network topology can not be measured
in the same way as a Wi-Fi network. Even so, the number of devices in the vicinity,
and the services that these devices run, are still useful parameters.

Number of Devices

A Bluetooth device can be in three different modes of discovery: silent, non-
discoverable, and discoverable. In silent mode the device only listens to traffic,
never responding, and can therefore not be connected to. The two modes, non-
discoverable and discoverable, both allows connections being made, where the
difference is how "visible" the device is to other devices. If a device is in the
discoverable mode, it will respond to device inquiries performed in its range, a
non-discoverable device will not do this. The different discoverable modes makes it
difficult to get an exact number of devices in the vicinity, when using the Bluetooth
device inquiry. However, this is the only feasible method for this thesis, since other
methods require great amounts of time or external hardware [18] [44].

Network Services

Bluetooth has a protocol specifically designed to get information of which services
devices run. The Service Discovery Protocol (SDP), specifies which services are
running on what device and how to connect to these services.

4.3 Shared Parameters

Even though there are differences between Wi-Fi and Bluetooth connections, some
situation parameters are common for both connections. Such parameters could be

22 Situation Parameters

related to the sensitivity of the data rather than the transferred data. This section
handles such parameters, and how they can be measured or interpreted, in order
to evaluate the situation.

4.3.1 Data Sensitivity

An important consideration when determining which level of security the device
should apply is the sensitivity of the data sent. For example, when using an IP
camera, sensitive information could be the camera stream from a kitchen, living
room or bedroom. Less sensitive data could come from a camera filming the
garden, or other outside areas, since such information probably could be viewed
by anyone.

The complication with data sensitivity lies in its measurement, where it is hard
for a device to measure it on its own. The data sensitivity should preferably be
defined by some pre-set rules and provided as input to this solution. Such rules
for a camera could be:

• Is there anything moving in the picture - if there is, the data should be
considered more sensitive.

• Is the camera filming an outdoor or indoor environment - the indoor envi-
ronment should be considered more sensitive.

• Not all data coming from a camera is a video stream, it might also send
metadata and device configuration which may have different sensitivity.

4.3.2 Packet Delays

Package delays can give useful information as to what a device is doing with the
data. Measuring the delay between an incoming package, which is only supposed
to be retransmitted, and an outgoing package can give an indication as to what
the device does with the data. If the delay is long enough the monitored device
could be altering the data maliciously. As this delay depends on many factors,
such as the function of the device and the data load of the network, it should be
used as an indicator only and no proof of malicious activity.

4.3.3 Integrity Protection

Integrity protection is used to protect sent data from changes during the trans-
mission to the intended receiver, either unintentional or intentional. The integrity
protection applied in this project provides protection against both intentional and
unintentional changes. For the integrity protection to be useful, the receiving party
must check the integrity protection of all received data.

It is not possible to determine whether the changes are intentional or unintentional.
However, if they occur very frequently it indicates that there could be a malicious
user altering the messages, or in some other way disturbs the communication. Ei-
ther way, there is a reason for increasing the security level. Integrity protection is

Situation Parameters 23

a very good indicator to take into account since it requires no extra calculations or
transmission and always has to be checked either way when receiving a message.

24 Situation Parameters

Chapter 5
Adaptation and Evaluation

The adaptive part of the solution connects the situation measurements to the
different protection levels. The ability to adapt is what makes the solution useful,
and it is of great value that it is correctly calibrated to match the measurements
to different threat levels. Since the threats differ a lot with the use cases of each
product, it should be up to the user or manufacturer of each product to decide how
the situation parameters should be weighed in the decision making. Instead, the
focus of this project lies in how often the situation measurements and adaptation
should occur and what should be measured, as stated in Section 1.2.1. This paper
will also propose two possible ways to weigh the situation parameters. However,
this is only to be considered as two out of many possible ways to do so.

5.1 Mapping the Situation Parameters to Protection Levels

The proposals for this projects adaptive part splits the situation parameters into
three different classes: Direct Threats, Indirect Threats, and Topology.

1. Direct Threats are the most serious threats and the countermeasures avail-
able are very efficient in preventing this threat. The idea is that the suspicion
of one direct threat alone is enough to raise the protection level. An example
of this type of threat is MitM attacks.

2. Indirect Threats are threats that are serious to the device but the threat
is not directly related to the level of security of the sent data. Such threat
could be a malicious user trying to access the situation-aware device instead
of the data directly. In this case, a combination of topology and indirect
threats or more than one indirect threat should be enough to raise the
protection level.

3. Topology, which is the least serious class, is not related to any particular
threat. Instead, it is used to give an idea of how the entire network is
structured, and if there are any other devices on the network that could be
exposed to risks. The topology alone is not enough to raise the security, but
could be used together with direct threats or indirect threats to raise the
protection level.

25

26 Adaptation and Evaluation

Table 5.1: Situation Classes and Threat levels for Wi-Fi.

Threat Classification Situation parameter and threshold
Direct Threats Promiscuous Mode more than 1 device (router)

Data Sensitivity High
ARP Cache Difference
IP Routing more than 1 device (router)
Package Delay over 15 ms
Integrity Protection Failed

Indirect Threats Attempted HTTP Connection
Attempted HTTPS Connection
Attempted Telnet Connection
Attempted SSH Connection

Network Topology IGMP Requests More than 1
DHCP Requests More than 1
ARP Request More than 1/sec
Number of devices More than 5
HTTP Service Present
FTP Service Present
SMTP Service Present

Two proposals are presented on how the situation parameters may be sorted, one
for Wi-Fi and one for Bluetooth. These proposals can be seen in Table 5.1 and in
Table 5.2

Table 5.2: Situation Classes and Threat levels for Bluetooth.

Threat Classification Situation parameter and threshold
Direct Threats Data Sensitivity High

Package Delay over 15 ms
Integrity Protection Failed

Indirect Threats Authentication Requests More than 2/s

Network Topology Number of devices More than 5
HTTP Service Present
FTP Service Present

Adaptation and Evaluation 27

5.2 Adapting Frequency

How often the situation is to be assessed and measured, is a key aspect when im-
plementing a situation-aware scheme. The usefulness of such a solution is directly
dependent on how often the situation is measured. The obvious trade-off here is
how recent the situation measurements have to be, compared to the cost of per-
forming the measurements. In order for the solution to be useful, the overall cost
of the situation-aware part has to be small, compared to the cost of the protec-
tion. Naturally, this means that the situation measurements cannot be performed
continuously, but instead has to be performed in intervals. The following different
ways of implementing the measurement and adaptation part will be analyzed.

1. Use of external device - Use an external device, for example a sync-
module, which does not run on batteries, to perform most of the heavy
situation measurements and communicate the results to the cameras.

2. Adapt before sending - Since many cameras communicate very inten-
sively during short time intervals where the video is sent, one possible adap-
tation scheme is to measure the situation prior to the device sending data.

3. Fixed interval time - One of the most simple approaches is to set a fixed
interval time and at the end of each interval make new measurements and
adapt to the situation.

28 Adaptation and Evaluation

Chapter 6
Throughput Tests

This chapter presents throughput tests for the algorithms introduced in Chapter 3.
These tests are performed in order to get an early indicator on the comparative
energy efficiency between the algorithms, where it is roughly assumed that a lower
throughput indicates a more costly algorithm. These tests will also be the basis for
a protection level proposal presented in Section 6.3. The tests performed in this
chapter are performed only for the cryptographic functions alone, and not for the
entire solution with a specific algorithm. This chapter introduces the importance
of separation of libraries, this is followed by the throughput tests for the pure
Python implementation as well as the C implementation, which used a Python
wrapper.

6.1 Separation of Libraries

One of the advantages with Python is the large number of libraries available, in-
cluding for example easy-to-use functions for encryption and decryption. Due to
the small time frame of this thesis, and the fact that real-world applications of-
ten use functions from such libraries, it was decided that this project is to use as
much of the already existing libraries as possible. This also decreases the risk of
inaccurate results due to errors in the algorithms or inefficient implementations.

The Python interpreter allows for developers to write new modules for Python in
C or C++. It is then possible to use these modules directly from Python [47].
This is in most cases a very useful feature which can be used for speeding up
essential parts of a program. One of the most widely used cryptographic libraries
for Python, pycrypto, uses this feature. However, this can cause a problem when
comparing algorithms to each other, since the throughput of an implementation
made in pure Python is usually slower than an implementation using C with a
Python wrapper. An example of this is found in the results in Table 6.1. From
here on, this thesis will refer to pure Python implementations as Python imple-
mentations. Likewise, a C implementation with a Python wrapper will be referred
to as a C implementation.

Table 6.1 shows a comparison of a Python implementation and a C implemen-
tation. The Python implementation is about 2870 times slower than the C im-

29

30 Throughput Tests

Table 6.1: Python vs C Implementation.

Programming Language Encryption Throughput [MB/s]
Python 0.002937
C 8.430

plementation. The C library used is well-known and heavily optimized for speed,
which contributes to the big difference in throughput between the two. The extra
time consumed by the Python wrapper for the C implementation is negligible in
comparison to the time consumed by the actual encryption. It is worth noting
that the Python implementations of the cryptographic algorithms in this chapter
come from different libraries with different contributors. This can, of course, lead
to some algorithms not being as optimized for speed as others. For this reason,
it is only fair to keep Python implementations and C implementations separate
when comparing speed and throughput. The results from the throughput tests in
Python are to be considered as a guideline for how well the algorithms can per-
form, and what algorithms that are worth using for the different levels of security
when implemented in C.

6.2 Throughput Test Result

To get an idea of how well different algorithms perform compared to each other,
and as a first step towards implementing different levels of protection, throughput
tests were performed. The different cryptographic algorithms are implemented in
both Python and C. As stated in Section 6.1 these results are to be considered as
a guideline for choosing suitable algorithms for the different levels of protection,
rather than exact and accurate results for each individual algorithm. All tests
ran on the same Raspberry Pi Zero W with an ARM11 1GHz processor and the
Raspbian Stretch Lite operating system.

6.2.1 Encryption

A comparison of the encryption algorithms studied in Section 3.1, AES and SPECK,
were performed to benchmark their throughput. The result of this test is shown
in Table 6.2, the first one being the classic AES which is widely used in for exam-
ple TLS, and the second being the lightweight-cryptographic algorithm SPECK,
which is a lightweight algorithm developed for optimal speed in software.

Table 6.2 shows that the faster lightweight-cryptographic algorithm is more than
four times as fast as the classic AES256 cryptographic algorithm when using the
Python implementation. The difference when using the C implementation is not
as large as with the Python implementation or in the literature study [21]. How-
ever, the throughput for SPECK128 is still more than double the throughput for
AES256. The results clearly show that there is a possible advantage by using the
faster SPECK in a situation were throughput is of great essence.

Throughput Tests 31

Table 6.2: Encryption throughput tests.

Algorithm Encryption
Throughput in
Python [kB/s]

Encryption
Throughput in C
[MB/s]

AES256 2.937 8.430
SPECK128 13.463 19.252

6.2.2 Hash Algorithms

Since hashes will be used for integrity protection, some of the most common hash
algorithms were also compared. The result is shown in Table 6.3. All hash func-
tions used the same output size of 256 bits.

As expected, the lightweight-hashes BLAKE2b and BLAKE2s performed better
than the widely used SHA3 algorithm in both Python and C. BLAKE2s were al-
most three times as fast as SHA3-256 in C, and twice as fast in Python. What
was more unexpected was that SHA2-256 was faster than BLAKE2b, and almost
as fast as BLAKE2s, in the C implementation. This is not the case in the Python
implementation, where BLAKE2b is the fastest algorithm, over three times as fast
as SHA2-256. This means that the relationship between two algorithms may vary
depending on which language they are implemented in.

Table 6.3: Hash throughput tests.

Algorithm Hash Throughput
in Python [kB/s]

Hash Throughput
in C [MB/s]

SHA3-256 2.491 5.1193
SHA2-256 4.650 14.237
BLAKE2b 15.957 12.825
BLAKE2s 8.504 15.477

6.2.3 Message Authentication Code

Also connected to integrity protection is a MAC. This is for cases when no en-
cryption is used, but integrity protection is still needed. The tests compared
three algorithms, the classic HMAC using the SHA2-256 hash function, as well as
the keyed versions of the two BLAKE variants, BLAKE2b and BLAKE2s. The
HMAC-SHA2-256 and the two BLAKE algorithms all produce a 256-bit output.

Just as with the hash functions, HMAC-SHA2-256 seems to perform significantly
better in C than in Python, compared to the other algorithms. Another similarity
with the hash functions is that BLAKE2s performs better in C than BLAKE2b
but worse in Python. Despite this, the differences between the three algorithms are

32 Throughput Tests

quite small, with only a 20% difference in throughput between the best algorithm,
BLAKE2s and the worst algorithm, BLAKE2b, in C.

Table 6.4: Python MAC throughput tests.

Algorithm MAC Throughput
in Python [kB/s]

MAC Throughput
in C [MB/s]

HMAC-SHA2-256 4.592 13.259
BLAKE2b keyed 15.385 11.833
BLAKE2s keyed 8.959 14.178

6.2.4 Comparing encryption, hash, and message authentication

The algorithms considered most secure for each area, encryption, hash, and mes-
sage authentication, were as expected also the ones with the lowest throughputs
in Python. The results were similar for C, with BLAKE2b being the only excep-
tion. Interestingly, the most costly encryption algorithm, AES256, had roughly
the same throughput as the most costly hash algorithm, SHA3-256. Besides the
fact that the C implementations are over 1000 times faster, there are a few impor-
tant differences between the C implementation and the Python implementations in
the previous chapter. The difference in throughput, between AES and SPECK, is
smaller with SPECK128 being only twice as fast as AES. Furthermore, BLAKE2s
is the fastest hash and message authentication algorithm instead of BLAKE2b, and
the C implementation of SHA2-256 performed much better compared to BLAKE2
than the Python implementation.

These results indicate that, although the algorithms perform more similarly in C
than in Python, it is possible to create different protection levels with a distinct
difference in throughput, and presumably power consumption as well, for both C
and Python implementations.

6.3 Protection Levels Proposal

Following the throughput results of the different cryptographic algorithms, and the
evaluation of these results, protection levels were created. The levels used for this
project along with cryptographic algorithms for each level are seen in Table 6.5.

Table 6.5: Proposed Protection Levels.

Protection level Cryptographic Algorithm Protection Achieved
HIGH AES256 with SHA3-256 Confidentiality and Integrity
MEDIUM SPECK128 with BLAKE2s Confidentiality and Integrity
LOW BLAKE2s keyed Integrity
NONE None Clear text

Throughput Tests 33

Table 6.6: Throughput for the proposed Protection levels.

Protection level Throughput in
Python [kB/s]

Throughput in C
[MB/s]

HIGH 1.348 3.185
MEDIUM 5.212 8.580
LOW 8.959 14.178

Table 6.6 shows the throughput for the cryptographic algorithms used by the
protection levels in Table 6.5. It is clear that the levels have a distinct separation
in throughput for both implementations. Also, note that this evaluation takes both
the hash calculation and encryption time into account. The time it would take
to encrypt the extra hash for the two highest protection levels is not considered.
However, this extra time will be insignificant, at least when sending long messages,
in comparison to the total encryption time since the extra data to encrypt is only
256 bits. The protection level NONE has been omitted from Table 6.6 since this
protection level does not use any cryptographic algorithms.

34 Throughput Tests

Chapter 7
Power Consumption Tests for Protection

Levels

To compare the different protection levels in a more realistic use case, power
consumption tests were carried out on a Raspberry Pi Zero W running Raspbian
Stretch Lite. To measure the power consumption, the Raspberry Pi was connected
to a USB multimeter, which is able to measure consumed energy.

7.1 Python Implementation

During the tests, the Raspberry Pi was encrypting, hashing, and sending data at
a fixed bit rate of 1.44 kB/s, this rate ensures that the processor usage is close
to 100% when using protection level HIGH. Because of the very low bitrate, the
cost of sending was insignificant. This means the results for Bluetooth and Wi-Fi
were almost identical and they are therefore presented together as one result. The
results of these tests are found in Table 7.1. As a reference running the Raspberry
Pi in idle mode without sending any data at all requires 622 mW.

The column named normalized power consumption is the power consumed for
protection and sending, minus the power consumed in idle mode. This is equal to
the power consumed by the Raspberry Pi for encrypting, hashing, and sending the
data alone. Since most IP Cameras have a much lower power consumption when
being idle it is most fair to compare the normalized power consumption, instead of
the average power consumption, in order to determine how much power that can
be saved. Blink states for example that their IP camera is able to last for up to
5 years with only two AA batteries [11]. With the best kind of AA batteries the
authors could find, about 3500 mAh per battery, this would mean an idle state
with a power consumption of less than 1 mW [23] [24].

There are a number of ways to reduce the power consumption of the Raspberry Pi
such as disabling the LED or the HDMI port etc. Some reports state that these
changes could reduce the power to about 80 mW [25]. However, since this is not
considered to be in the scope of this project, such things have not been done to
optimize the power consumption in idle mode.

35

36 Power Consumption Tests for Protection Levels

Table 7.1: Python Encryption and Send Tests.

Protection
level

Processor
Usage

Average Power
Consumption
[mW]

Normalized
Power
Consumption
[mW]

Normalized
Energy
Consumption per
kB [mJ/kB]

HIGH 96% 846 224 156
MEDIUM 30% 694 72 50
LOW 15% 658 36 25
NONE <1% 622 <1 <1

7.2 C Implementation

The same tests were then repeated with the same protection levels implemented in
C. The biggest difference from these tests compared to the Python tests is that the
sending now stands for a significant part of the processor usage and the consumed
power of the device. The results differed up to 10% when performing the same
test twice, making the results inaccurate. When repeating the tests without the
sending part, the different individual measurements were the same for the same
tests. The sending part could differ a lot from one measurement to another. In
order to achieve more accurate results, the cryptographic part was carried out
without sending any data. Later, a longer test was carried out to get an average
cost of sending the data. This makes the different tests more reliable since now
the average cost for sending data can be added to get an estimated cost of data
sending and protection.

The results from the encryption tests are shown in Table 7.2 below. To increase
the processor usage the data rate was increased to 2.88 MB/s, over 2000 times
more than the Python case. Note that the results in this table do not include the
sending of data.

Table 7.2: C implementation Encryption Tests.

Protection
level

Processor
Usage

Average Power
Consumption
[mW]

Normalized
Power
Consumption
[mW]

Normalized
Energy
Consumption per
MB [mJ/MB]

HIGH 90% 947 325 113
MEDIUM 60% 798 176 61
LOW 20% 694 72 25
NONE <1% 622 <1 <1

Power Consumption Tests for Protection Levels 37

7.2.1 Sending

As previously mentioned, longer tests were carried out in order to get an average
cost of sending data. This was done for both Wi-Fi and Bluetooth with a data rate
of 2.88MB/s and 20kB/s respectively. The energy consumption for the different
sending methods can be seen in Table 7.3. Table 7.4 shows the cost of encrypting

Table 7.3: Sending data, Wi-Fi and Bluetooth.

Network Energy Consumption
per MB [mJ/MB]

Wi-Fi 101
Bluetooth 875

and sending, for both Wi-Fi and Bluetooth, where the result from Table 7.3 was
added to the results in Table 7.2. Note that the values here are not actually
measured, but instead an addition of two measured values in order to achieve
more reliable results.

Table 7.4: Energy Consumption for Encrypting and Sending data.

Energy Consumption
per MB [mJ/MB]

Protection Levels Wi-Fi Bluetooth
HIGH 214 988
MEDIUM 162 936
LOW 126 900
NONE 101 875

7.3 Power Consumption Evaluation

The results of the Python tests in Table 7.1 shows that there is a 28% decrease
in energy consumed when using no protection at all compared to using the high-
est level of encryption. This value is equal to the highest possible gain using a
situation-aware solution with this kind of idle power. In absolute values, this cor-
responds to 238 mW. Comparing the normalized energy consumptions, the results
are even better. This is because of the costly Python implementation where the
cost of sending is negligible. The overall results for the protection levels also look
very promising with distinct differences in power consumption between the levels.
Despite this, the C implementation is preferred over the Python implementation.
With higher throughput and lower energy consumption, further implementations
will be focused on the C implementation.

The result for the C implementation looks similar to the Python results. The
maximum saved energy for a situation-aware adaptive solution is 18% with the

38 Power Consumption Tests for Protection Levels

idle power consumption of the Raspberry Pi. The reason this number is lower
than the Python implementation is that C is more efficient, which results in lower
costs for encrypting the same amount of data. The sending of data also counts
for a significant part of the energy, with 101 mJ/MB for Wi-Fi and 875 mJ/MB
for Bluetooth. Sending and encrypting data with Bluetooth on this device is
clearly worse than with Wi-Fi. Where the maximum saved power for Wi-Fi is
53% whereas the maximum saved power for Bluetooth is just 11.5%. The main
reason for the disappointing Bluetooth result is the low send rate. The Raspberry
Pi W used, maximized the data rate at 20kB/s, when using the library pybluez,
which is low.

Chapter 8
Situation Measurements

This chapter presents the results of two different tests on the framework which
measures the situation parameters. The first test measures the time it takes for
each measurement to run. The second test is a power consumption test, similar to
those in Chapter 7. These two tests was performed for both Wi-Fi and Bluetooth
connections.

8.1 Wi-Fi Measurements

This section handles all tests performed on Wi-Fi networks, meaning parameters
from Section 4.1 and Section 4.3. The results from these measurements are later
compared to the results from Section 8.2 in Section 8.3

8.1.1 Test setup

The network simulated when testing the situation parameters can be seen in Fig-
ure 8.1. This network is created to look like a typical home network. In the figure,
the IP camera represents the device running the situation-aware framework. It is
connected to a network where there is another device sending data and running
services such as SMTP, HTTP, and FTP to simulate a real network of ten devices,
which is considered to be a reasonable number for a home network. The IP Cam-
era is simulated by a Raspberry Pi Zero W with an ARM11 1GHz processor and
running the Raspbian Stretch Lite operating system.

Figure 8.1: Test Network Setup.

39

40 Situation Measurements

8.1.2 Passive Measurements

Assessing the threat level of a network requires measurements from said network.
The measurements can be divided into two parts, a passive one and an active one.
The passive part contains broadcasts from different servers or incoming requests
which the device continuously monitors. Table 8.1 describes which requests that
are monitored through the passive measurements. In this case, the first three
protocols are related to network topology and the communication is broadcasted
to all devices in the network. The last four protocols are related to more direct
communication with the devices. If the measurements show any activity of the
last four protocols it indicates that someone has tried to communicate or access
this particular device.

Table 8.1: Passive Situation Measurements.

Protocol Identified by Address of Receiver
ARP EtherType 0x0806 Multicast
IGMP Internet Protocol Number 2 Multicast
DHCP Port 68 Multicast
SSH Port 22 Unicast
Telnet Port 23 Unicast
HTTP Port 80 and 8080 Unicast
HTTPS Port 443 Unicast

8.1.3 Time Consumption for Active Measurements

The second part is the active part which means that the device has to send requests
or execute code locally on the machine in order to get measurements. The device
listens for replies from the sent requests and then evaluates the result. This part is
not feasible to run continuously since it requires data to be sent, which costs a lot
of energy. The different implemented active measurements are found in Table 8.2.

Table 8.2 shows the number of bytes sent during the test and the time for each
test. The table also shows how the number of bytes sent will scale if the number
of devices or the subnet size would change. It is reasonable to assume that the
time for the measurements would scale in a similar manner to the number of bytes
sent.

8.1.4 Power consumption for Situation Measurements

The power consumption tests for the situation measurements were done in a simi-
lar manner to the protection levels in Chapter 7 on the same low-powered device.
These measurements are shown in Table 8.3. The purpose of these measurements
is to get an idea of how costly each measurement is, except for the passive measure-
ment which runs continuously. All measurements, except for the passive and the
ARP Ping Scan, ran for one hour with ten measurements every second. The ARP

Situation Measurements 41

Table 8.2: Active Situation Measurements

Measurement Bytes sent Scaling factor for
number of bytes

Time [ms]

ARP Cache
Differences

0 None 1.7

IP Packet
Routing
Activated

640 Linear - ND 39

Promiscuous
Mode
Activated

640 Linear - ND 62

Package
Delay

128 None 5.0

ARP Ping
Scan

16320 Linear - SS 440

SMTP Service
Scan

640 Linear - ND 38

HTTP Service
Scan

1280 Linear - ND 76

FTP Service
Scan

640 Linear - ND 38

ND stands for Number of Devices.
SS stands for Subnet Size.

Ping Scan ran 5 times every other second, since it requires a timeout to decide
whether a device is present for every possible IP address in the subnet. Average
power consumption is the power consumption for the entire test and normalized
is the average power consumption minus the power consumption in the idle state.
Energy Consumption per measurement is the mean consumption for one measure-
ment.

The last measurement in this table is all the other measurements combined to-
gether. This can be seen as a complete situation-aware measurement of all param-
eters. These complete measurements ran only once every second instead of every
ten times per second due to the slow nature of the Raspberry Pi. The normalized
energy consumption per tests is, however, still the mean energy consumption for
running all the combined measurements once.

42 Situation Measurements

Table 8.3: Situation Measurements Tests for Wi-Fi.

Situation Measurement Test
Frequency

Average
Power
Consumption
[mW]

Normalized
Power
Consumption
[mW]

Normalized
Energy
Consumption
per
measurement
[mJ/meas.]

Passive continuously 625 <1 <1
ARP Cache Difference 10/s 622 <1 <1
IP Packet Routing 10/s 679 57 5.7
Promiscuous Mode 10/s 684 62 6.2
Package Delay 10/s 642 20 2.0
ARP Ping Scan 2.5/s 684 62 24.8
SMTP Service Scan 10/s 645 23 2.3
HTTP Service Scan 10/s 668 46 4.6
FTP Service Scan 10/s 645 23 2.3
All combined 1/s 658 36 36.0

8.2 Bluetooth Measurements

This section covers the measurements for the situation parameters for Bluetooth
from Section 4.2 and Section 4.3.

8.2.1 Test Setup

The test setup for the Bluetooth case is similar to the Wi-Fi, with an identical
Raspberry Pi Zero W running the Raspbian Stretch Lite OS. The exception, in
this case, is the lack of a Wi-Fi connection. Instead, the devices ran all the tests
over Bluetooth. Since Bluetooth does not follow the same structure as Wi-Fi, it is
hard to control the number of active Bluetooth devices in proximity of the device.
The number of nearby devices stretched from about 1 to 10 devices during the
tests, which seems to be a reasonable level for a typical home environment.

8.2.2 Bluetooth Measurements

The Bluetooth measurements are quite different from the ones performed on a
Wi-Fi network. Bluetooth is an Ad-Hoc network where the devices pairs as mas-
ter/slave without any central node. Performing measurements like Device Scan
requires an inquiry to be sent over an extended time which increases the power
consumption of such a measurement. Table 8.4 shows the time it takes to perform
each active measurement. It is worth noting that these measurements are inde-
pendent of the number of Bluetooth devices in proximity to the device performing
the test.

For the energy consumption test, the parameters have been divided into passive
and active measurements as can be seen in Table 8.5. The inefficiency of the

Situation Measurements 43

Table 8.4: Active Situation Measurements.

Measurement Time
Device Scan 11.5s
Service Scan 12s
Package Delay 0.3s

active measurements is due to the time it takes to perform a complete Device and
Service Scan, having to scan for up to 12 seconds to get reliable results, shown
in Table 8.4. While the idle power consumption is low when running Bluetooth
compared to Wi-Fi, at 510 mW compared to 622 mW, the active measurements
are still not very energy efficient. The passive measurements are far better with
a power consumption being almost indistinguishable from when the device is idle.
The results of the measurements can be seen in Table 8.6.

Table 8.5: Parameters divided into Passive and Active measure-
ments.

Parameter Type
Data Integrity Passive
Data Sensitivity Passive
Authentication Requests Passive
Device Scan Active
Service Scan Active
Package Delay Active

Table 8.6: Situation Measurements Tests for Bluetooth.

Measurement Test
Frequency
per hour

Average
Power
Consumption
[mW]

Normalized
Power
Consumption
[mW]

Normalized
Energy
Consumption
per
measurement
[mJ/meas.]

Passive continuously 525 15.5 N/A
Device Scan 352 536 25.8 260
Service Scan 187 536 25.8 496
Package Delay 7200 695 185 93

8.3 Situation Measurements Evaluation

In order to create a successful situation-aware solution, it is important to evaluate
the situation parameters. Since measuring the situation may require a lot of energy,

44 Situation Measurements

it is important to only use the most relevant parameters to receive a high possible
gain when using situation-aware scheme instead of a classic cryptographic system,
such as TLS.

8.3.1 Time Consumption for Wi-Fi Evaluation

When looking at the time and the number of bytes sent from Table 8.2 it is clear
that the ARP Ping Scan is a heavy operation, where the number of bytes sent
exceeds all the other measurements combined. It is therefore preferred to use the
ARP Ping Scan as little as possible, for example only at startup and later use the
ARP cache, the number of ARP requests, or the DHCP broadcasts, as a way to
estimate the number of devices on the network. This is also somewhat a “best case
scenario” for the ARP Ping Scan since the subnet size was only 256 IP addresses
large during the tests. In a worse scenario, the subnet size could be 65.536 ad-
dresses, which means that over 4 MB of data need to be sent to perform a single
ARP Ping Scan.

The most promising result from the Table 8.2 is the ARP Cache Differences. Using
this method requires 0 bytes to be sent and this is also by far the fastest option,
which may be because there is no need for waiting for any replies from other de-
vices. The table also shows that the Delay Time measurement is a good option.
This measurement does not scale in either time or data sent and is independent of
network size and number of devices in the network. For all other active measure-
ments, the number of bytes sent is linear to the number of devices in the network.
This means that for networks with few devices connected, it could be reasonable
to use all of the measurements more often. In networks with a lot of devices,
prioritizing when it comes to what measurements to use as well as when and how
often to use them, must be done.

8.3.2 Power Consumption for Wi-Fi Evaluation

The first two measurements from the Table 8.3, Passive and ARP Table Compari-
son, are the only two tests which do not require any data to be sent at all. This is,
of course, an advantage since extra energy is consumed when sending data. The
power consumption for a single ARP Table Comparison was so small that it was
not measurable. The negative aspect of the passive measurement, compared to all
other measurements, is that it has to run continuously or at least over a longer pe-
riod of time in order to be useful. This may be costly, in particular on devices with
very low idle power. Another important note regarding the passive measurements
is that the difference between running the passive measurements, and not running
anything at all, is so small that it was difficult to measure. For that reason, it
is hard to draw any exact conclusions regarding the passive measurements other
than that the extra energy consumption is small in this particular case.

It is surprising that the SMTP and FTP Service Scans are more efficient than the
IP Packet Routing and the Promiscuous Mode measurements. Since they require
the same amount of data to be sent, they should be similar in energy consumption.

Situation Measurements 45

The most likely reason for this is due to implementation differences in the tests.
While IP Packet Routing and Promiscuous Mode measurements used a raw socket
and manually crafted packages, the Service Scans used a prewritten stream socket
which presumably is more efficient [34].

Adjusting the frequency of the scans is a way of lowering their overall power con-
sumption and it should be done in consideration to the energy consumption per
measurement. The most expensive measurement is by far the ARP Ping Scan,
which consumed twice as much energy as the HTTP Service Scan, and is the first
measurement which frequency should be considered.

Running all the tests combined is less expensive than running all the individual
tests, about 75% of the cost. This is due to the Raspberry Pi consuming less
energy when sending all the requests closely together compared to sending the
requests one at a time.

In Chapter 5 the situation parameters researched in this thesis were divided into
three categories in order of their relevance to the different threats. The highest
order, named Direct Threat, is comprised of Promiscuous Mode, Data Sensitiv-
ity, ARP Cache Difference, IP Routing, Package Delay and Integrity Protection.
While Data Sensitivity and Integrity Protection do not consume additional power,
since it is a provided input, the other parameters do. The cost for the ARP Cache
Difference was so low that it was not possible to get any accurate results with the
instruments used, making it a great candidate. The measurement for Promiscuous
Mode, ARP Cache Difference, IP Routing, and Package Delay each consume under
7 mJ as seen in Table 8.3. While still quite costly these measurements should still
be highly prioritized since they are related to direct threats.

The second highest order, Indirect Threats, consists of the passive measurements
HTTP, HTTPS, Telnet, and SSH. Although the power consumption is low for
these measurements, they need to be done somewhat continuously, as mentioned
earlier, which could lower the effectiveness of the solution.

The last classification is that of Network Topology. As detailed in Section 5.1, the
measurements are made to get a sense of the overall risk of the network. These
parameters include IGMP, DCHP, and ARP of the passive measurement as well as
the ARP Ping Scan and the SMTP, HTTP, and FTP Service Scan. Although the
passive measurement does not consume much power, the ARP Ping Scan and the
Service Scans do. The ARP Ping Scan alone accounts for more energy than all of
the other measurements combined. Seeing as this network topology classification
does not necessarily give an indication of a threat, it is by far the least efficient
group of situation measurements.

If trimming of the situation measurements are needed in order to become more en-
ergy efficient, the classification Network Topology is a prime candidate. However,
many of the other active measurements need a list of the devices on the network,

46 Situation Measurements

Table 8.7: Classification of Situation Parameters.

Direct Threat Indirect Threat Topology

Passive
Integrity Failed HTTP Connection ARP Requests
Data Sensitivity HTTPS Connection DHCP Requests

Telnet Connection IGMP Requests
SSH Connection

Active
Promiscuous Mode Device Count
IP Routing HTTP Service
Package Delay FTP Service
ARP Cache Diff. SMTP Service

which ARP Ping Scan provides. One solution to this problem could be to remove
the ARP Ping Scan completely and only use the listener and the ARP table to
create a list of the devices on the network. The disadvantage with this solution
is of course that this list would not necessarily include all devices on the network.
Instead of removing the measurements completely an adjustment of the frequency
could also be considered.

One of the most important things when creating a situation-aware solution, as well
as one of the questions to research from Section 1.2.1, is to evaluate which situa-
tion parameters to measure. This is important since the cost of the measurements
greatly impacts the usefulness of the entire solution. A summary of all situation
parameters is found in Table 8.7. Naturally, it is desired to use the most relevant
and cheap situation parameters. This table can be seen as a general guideline for
which order to implement the different measurements starting from the class Di-
rect Threats - Passive Measurement. The last class to use should be the Network
Topology - Active Measurement class. In between this, there is a trade-off between
relevance and measurement cost when deciding which parameters to use.

8.3.3 Bluetooth

In Section 8.2 the energy consumption of the situation measurements for Bluetooth
are shown in Table 8.6. Comparing these results with the ones from the Wi-Fi
tests, presented in Table 8.3, it is clear to see that the Bluetooth measurements
are very costly. Running all of the Bluetooth situation measurements is 23 times
more expensive than running all the Wi-Fi situation measurements. As mentioned
before, this is due to the low Bluetooth send rate for the Raspberry Pias well as
the amount of time the measurements have to run. The results of the Bluetooth
tests, both sending and situation measurements, are disappointing and point to
the fact that Bluetooth is not suitable for the purpose of this thesis. Even though
the idle power of only running Bluetooth is significantly lower than running Wi-Fi,
the cost of sending and measuring the situation is too high. Note that this result is
device specific and a situation-aware Bluetooth solution may very well be suitable
for other applications.

Chapter 9
Protection and Situation-awareness

Comparison

This chapter connects the results from Chapter 7 and 8, and evaluates the entire
solution as a whole. Three criteria to be met in order to successfully implement
a situation-aware adaptive cryptography scheme are stated. Following this is an
evaluation and discussion of the gathered result against these criteria. Lastly, a
full system test of the most suitable implementation is presented.

9.1 Situation-aware Adaptive Cryptography Criteria

To get an idea of how feasible a situation-aware approach is, it is important to
compare the cost of the situation-aware part with the cost of encrypting and
sending data. This will determine whether it is useful to implement adaptive
handling of security protocols or not, which is one of the purposes of this thesis, as
stated in Section 1.2.1. If the solution is to add any real value to a product, it must
either save processing power or energy, preferably both, compared to a standard
encryption solution such as AES256 with a SHA3 hash. Other results would mean
a less secure system at a higher cost. In order to succeed with a situation-aware
adaptive cryptography solution, three basic requirements have to be met.

1. The sensitivity of the sent data must be of a level where it is acceptable to
not use the highest level of protection at all times. In other words, there has
to be a possible trade-off between security and cost in terms of throughput
and energy consumption.

2. The different protection levels, or security protocols, must differ in terms of
cost. This cost must be significant in terms of the total cost of the device
being idle and sending data combined.

3. The total cost for the measuring, adapting to the new situation, and chang-
ing protection level must be small in comparison with the cost that can be
saved by using another protection level. This cost is directly related to the
second question to research from Section 1.2.1.

47

48 Protection and Situation-awareness Comparison

9.2 Data Sensitivity

The first requirement depends on every individual use case and should be up to the
manufacturer or user of each device to consider, before implementing or using a
situation-aware adaptive scheme. In the case of IP Cameras, there is no doubt that
situations exist where data always should be protected with the highest level of
security available. On the other hand, for private use of such cameras, there exist
a lot of situations where the protection level can be lowered for an improvement
in battery time and throughput.

9.3 Difference Between Protection Levels

The results from Chapter 7 shows that it is possible to meet the second require-
ment when using Wi-Fi. From comparing Table 7.2 and Table 7.3, it is seen that
the cost for encrypting 1 MB data with the highest protection level is roughly as
costly as sending 1 MB of data. For the protection level LOW, the cost of sending
is about four times as high as the cost of protection. Even though these test results
are only valid for the specific platform they ran on, it is highly likely that the cost
of protection is significant for a variety of low powered IoT devices and not least
IP Cameras.

Bluetooth proved to be, on this device, too costly when measuring the situation
and sending data, compared to encryption. This can be seen in Table 7.4 where
the sending of data, at the protection level HIGH, accounted for 88.5% of the total
energy consumption for encrypting and sending. Failing this requirement makes
Bluetooth unsuitable for the situation-aware adaptive cryptography scheme stud-
ied in this thesis, and will not be considered further in this report. Furthermore,
no system tests for Bluetooth was carried out.

9.4 Cost of measuring

To determine whether the third criterion is met, it is important to first determine
which device that is to perform the situation measurements and how often the
measurements are performed. The most straightforward way is to let each IP
Camera perform all measurements individually. In that case, the total cost of
measuring, adapting, and changing protection level would be directly dependent
on how often the measurements and adaptation were carried out. Another case
is to use a master-slave relationship, where a number of cameras are connected
to each other via for example Wi-Fi. In this case, it would not be necessary for
all cameras to perform the same tests. Instead, only one device could perform
the tests, and then communicate the results of the tests to the rest of the group.
This would probably increase the power that could be saved, but it would also
increase the complexity of the solution. The cameras would, for example, have to
decide which camera that has to run the tests. Another approach for connecting
a number of cameras is with the use of an external device, such as a Sync Module,
similar to what Blink uses [12].

Protection and Situation-awareness Comparison 49

9.4.1 External Device

The advantage of using an external devices, such as a Sync Module, is that such
a module does not need to be battery powered. With a non-battery powered
sync module, most of the situation measurements could be performed by the sync
module instead, without having to take the cost of the measurements into consid-
eration. The only measurements that would have to be done by the cameras would
be the passive measurements, where the camera listens for incoming unicast re-
quests. This could be done by the sync module as well, but some threats may then
remain undetected. Since the power consumption for the passive measurements
is very low, the total power consumption of the situation measurements would be
almost negligible. The result of this would be that only the first and the second
requirement, for useful situation-aware systems, need to be taken into account.
However, the timing of the measurements must be considered. If the measure-
ments were to be performed before every communication with the cameras, the
time to perform the tests would cause a bottleneck. A better solution would be to
perform the measurements continuously, with a rather short time interval, since
the power consumed by the tests is of less importance.

9.4.2 Adapting before sending

Looking at the case where every camera performs the entire set of situation mea-
surements individually, it differs quite a lot from the Sync module case. The
optimal solution of measuring and adapting will differ with the different use cases.
Taking the Blink camera as an example, where Blink has defined standard usage
as “approximately 10, 5-second video event per day” where every 5-second clip
requires up to 750 kB of data [11] [13]. According to Table 7.4, protecting and
sending 750 kB of data over Wi-Fi would require about 161 mJ with the highest
protection level, and about 76 mJ without any protection, making the maximum
possible gain 85 mJ per 5-second clip. If a complete measurement, with all the
parameters, were to be done, the cost of that would be about 36 mJ. Exactly
how much energy would be saved, if any, depends on the calculated protection
level. Table 9.1 shows how much energy that would be saved depending on the
protection level.

Table 9.1: Changes in energy when adapting before sending.

Protection Level Energy per Sent
Clip with
Situation-Aware
solution [mJ]

Change in percent
from default
(161 mJ)

HIGH 197 +22.4%
MEDIUM 158 −1.9%

LOW 131 −18.6%
NONE 112 −30.4%

50 Protection and Situation-awareness Comparison

The results look quite promising for the implementation of a situation-aware so-
lution, since energy is saved in three out of four cases. If a camera would do a
complete situation measurement before every sent clip, which must be considered
as very good conditions for the camera to assess the situation, the worst case
scenario would require 22.4% extra energy. The best case scenario, on the other
hand, would save 30.4% energy. In between this, the proposed solution would save
either 1.9%, or 18.6%, depending on the determined protection level. To improve
the results, ARP Ping Scan could be removed from the situation measurements
as proposed in Section 8.3. This would reduce the total energy cost to about half
of the previous cost for the measurements, changing the worst case scenario to
11.2% more energy consumption, and the best case scenario to a reduced power
consumption of 41.6%.

The change in percent from Table 9.1 is directly dependent on the amount of data
sent after each situation measurement. With smaller amounts of data sent, the
possible savings will decrease, and the risk of a higher energy consumption will
increase. With larger amounts of data were to be sent, the possible overhead will
turn to zero, making a situation-aware solution a great option. Figure 9.1 shows
the different worst-case scenarios depending on the data size sent, where the ARP
Ping Scan is not included.

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Send sizes in MB

0

5

10

15

20

25

30

35

40

W
or

st
 c

as
e

ov
er

he
ad

 in
 %

Worst case overhead
Blink use-case

Figure 9.1: Maximum overhead depending on data sent.

Protection and Situation-awareness Comparison 51

The absolute limit of this situation-aware solution is a send size of 160 kB, count-
ing without the ARP Ping Scan. With send sizes below this number, the possible
gain is below zero. It is possible to change this limit by omitting even more mea-
surements, such as scanning for services before every sending, which is discussed in
Section 8.3. But even without the Service Scans, the absolute limit of a situation-
aware solution would be a send size of about 80 kB. For IP Cameras, which is the
device considered for this thesis, 80 kB is a small amount of data since a single
picture can be a few MB. In other cases, where lower data rates are used, it would
not be so obvious that a situation-aware solution is a feasible choice, even if the
ARP Ping Scan was not used. Example of such cases could be a smartwatch, a
smart smoke detector, or some other device where the typical data sizes are lower
than those for an IP Camera.

A disadvantage of using the approach where measurements are done right before
the camera sends data, is the response time of the camera. If, for example, a user
requests data from the camera, the user must wait for a situation evaluation to
take place before the camera can reply. A complete situation evaluation for the
device takes about 700 milliseconds, which should not be considered critical in
most use cases. If instead a situation measurement without ARP Ping Scan and
Service Scan would be performed, the connection time would be reduced from 700
milliseconds to about 108 milliseconds which should be low enough to not cause a
bottleneck in most applications. Another solution to this issue is to perform the
situation evaluation with some time interval in order to always have an idea of the
situation.

9.4.3 Adaptation with interval

The idea of interval adaptation is to evaluate the situation regularly, in order to
always be ready to communicate without the delay that occurs when the device is
measuring the situation before every sending of data. Another advantage is that
the device can send multiple small messages without having to adapt to the new
situation, which may not be particularly useful for an IP Camera, but perhaps for
a smoke detector, a sensor or some other device that only uses smaller amounts of
data to communicate. A disadvantage of this method is that the latest measure-
ments may not be up to date with the current situation when the device sends the
data, since the situation may vary quickly.

This method of adaptation can be realized in many different ways. The most intu-
itive way is to set a fixed time interval for the situation measurements, for example
once every hour. Looking at the Blink use case again, which states that standard
use is “approximately 10, 5-seconds video events per day” where each video clip
is up to 750 kB. The changes in energy with these assumptions are found in Ta-
ble 9.2. The results are worse than those in Table 9.1, and in all four use cases the
total energy is increased, making the situation-aware solution a bad choice for this
use case. These results are of course directly dependent on how often the situation
is measured, and how much data that is transferred. If instead the costly ARP
Ping Scan was omitted from the measurements, the worst case scenario would be

52 Protection and Situation-awareness Comparison

Table 9.2: Changes in energy when adapting with fixed interval.

Protection Level Average Energy per
Sent Clip with
Situation-Aware
solution [mJ]

Change in percent
from default
(161 mJ)

HIGH 247 +53.7%
MEDIUM 208 +29.1%
LOW 179 +11.2%
NONE 161 +0.4%

improved to a 26.8% overhead and the best case scenario to a 26.1% reduction in
energy, making the implementation somewhat useful.

Changing the interval time for which the situation is measured also changes the
possible gains with a situation-aware solution. A longer time period yields better
possible gains, but the risk that the measured situation would not be valid at the
time of the data transfer, would increase. The limit for how often the measure-
ments can be done, if ARP Ping Scan is omitted, is about 2 times per hour. If the
measurements were to be done more frequently, this would result in no possible
gain at all.

Another way of implementing interval adaptation, would be to let the time to the
next measurement depend on the results of the last measurement. If, for example,
the situation has changed a lot since the last time, or if the threat level is high, it
could be of greater value to evaluate the situation more often than if the situation
were unchanged at a very low level. A way to implement this is to double the
interval time between measurements, up to some limit, if the protection level is
unchanged between two measurements. If the protection level was changed, reset
the time between measurements to its default value, for example 1 hour. This
would result in a potentially lower total cost for measurements but a not so up-
to-date situation assessment if the situation would change suddenly.

The ways to realize interval adaptation are many. The methods presented here
are just some of the most straightforward ways to do so. More complex ways,
using artificial intelligence or machine learning, could possibly provide even better
results. In the end, it is still a trade-off between how up-to-date the situation
measurements are required to be and their cost. The same goes for the differ-
ent ways of implementing a situation-aware solution, using either a sync module,
adaptation before sending, or interval adaptation, where the optimal solution is
up to every use case. A sync module may be the best solution if the extra cost
for a new module is not a problem and the module can be supplied with power.
Adapting before every sending of data could be the best choice if the response time
of the unit is not critical. Interval adapting may be the best choice if the energy
consumed by the measurements is not a critical part of the total energy consumed

Protection and Situation-awareness Comparison 53

by the device.

9.5 System Tests

In order to get an idea of the efficiency of the solution in a typical use case, sys-
tem tests were carried out for Wi-Fi. A closer look at the implementation of the
complete solution is found in Appendix B. Two tests were done, one to simulate
a typical home environment without potential threats, and one to simulate an en-
vironment where a threat was present. From these tests, it is possible to see how
much energy that is saved, and how well the suggested adaptation proposal from
Section 5.1 performs. The first test used a capture file, with real network data
from the Network Solutions company AppNeta, to simulate a home environment
[4]. The threats were simulated using the Python library Scapy, which offers a
wide range of custom crafted packages [53]. The results from this system tests are
shown in Table 9.3.

Table 9.3: System Tests.

Environment Average Measured
Threat Level

Change in energy
consumption from
standard solution
(AES-256 SHA-3)

Threats present 3.03 −1.2%
No Threats present 1.37 −26.3%

The second column, "Average Measured Threat Level", ranges from 1 to 4 and is
meant to reflect the different protection levels. The number 1 corresponds to the
protection level NONE and 4 correspond to using the protection level HIGH when
sending data. The system tests use the Blink typical use case from Section 9.4.2
and adapts every time before sending data.

Both cases from Table 9.3 reduce the power consumption which is a good result. In
the case of no threats present, the average protection level is between NONE and
LOW and the power reduction is about 26%. This seems reasonable for a typical
home environment. In the case of a threat present, the protection level is at the
level MEDIUM most of the time. Even though this results in a power reduction,
the presence of a threat should raise the threat level higher. This is still not an
immediate security flaw since MEDIUM uses secure cryptographic functions to
encrypt and integrity protect the data which are all unbroken. However, when a
threat is present it is, of course, suggested to use the highest level of protection
available. This indicates that the protection proposal from Section 5.1 may need
calibration in order to better respond to threats.

54 Protection and Situation-awareness Comparison

Chapter 10
Conclusions

This thesis has investigated and implemented a complete situation-aware solution,
which has the ability to reduce the power consumption for energy constrained
devices, in a successful way. After measuring the proposed protection levels, it
was found that the implemented solution could save up to 52.8% of the power
used for sending and encrypting data. In a typical use case, stated by Blink
[11], the solution could save up to 30.4% even if the complete set of situation
parameters were used and the situation was measured every time before sending
of data. These results could be even better if the implementation of some situation
parameters would be more optimized. For example, the Promiscuous Mode and
the IP Routing measurements are about 3 times as expensive as the SMTP or
FTP Service Scans while they all require the same number of bits to be sent.
This indicates that there is room for improvement for the Promiscuous Mode and
IP Routing implementations. Such improvements would, of course, improve the
overall results of the solution.

Looking at the aim and questions to research for this thesis from Section 1.2 and
Section 1.2.1, the purpose of this thesis is fulfilled. A set of situation parameters
for determining a threat level and what to react to has been proposed in Chapter 4
and the evaluation of these parameters is presented in Chapter 8. How often the
situation can be measured and adapted to, as well as the circumstances under
which a situation-aware solution is possible, has been investigated throughout the
thesis and are discussed in Chapter 9.

10.1 Future work

This section contains the authors suggestions for future work. This could be used
to deepen the knowledge in the area of situation-aware adaptive cryptography and
further learn where, and when, it can be used.

10.1.1 Hardware Implementation

This thesis has investigated a number of different cryptographic algorithms and
compared their performance in throughput and power consumption. All of these

55

56 Conclusions

algorithms have been implemented in software only. A lot of devices today im-
plement cryptographic algorithms in hardware for improvements in speed, and
therefore also energy consumption. It would be very interesting to see if the re-
sults from this thesis would still hold for implementations in hardware. The results
would probably not be as promising, since the total cost for encrypting the data
would be reduced, making the relative cost of the situation measurement bigger.
Another aspect with hardware implementations is of course that one device would
have to implement multiple cryptographic schemes, which probably would increase
the production cost and maybe even the size of such a device. The solution to this
problem could be to use one single cryptographic function for all the protection
levels and simply adjust the number of rounds for the different levels of protection.

10.1.2 Real Network Data

Another interesting aspect would be to try the solution out and calibrate it using
real network data from typical home networks containing cameras. From these
results, it would be possible to calculate the average saved power consumption,
perhaps in a more accurate way than the one presented in Section 9.5. Since the
threat level for most home networks probably is low most of the time, the level of
protection could also be low most of the time. Access to real network data would
also make it possible to compare a situation-aware solution with doubling time
interval between the situation measurements, which is described in Section 9.4.3,
or machine learning approaches to other methods such as adapt-before-send or
adapt with a fixed interval time more accurately. Comparing the methods to each
other, without access to real network data, would not produce accurate results.

10.1.3 Key Establishment

One thing that has been left out of this thesis is the key exchanges and establish-
ments. While this thesis assumes pre-distributed keys, this is often not the case
in real world applications. The fact that situation-aware adaptive cryptography
requires quite a lot of changes between different cryptographic functions makes
the cost of the key exchange particularly relevant. If the key was to be changed
every time a new protection level is chosen, the effectiveness of the situation-aware
solution would be decreased. Another approach is to use the same master key for
all the different cryptographic functions and use for example different hashes of
that key to achieve the appropriate key lengths for the cryptographic functions.
A comparison of different key exchange methods, including lightweight versions,
was published by R. Alvares et al. [3] and the results seem promising for using in
a situation-aware solution, such as the one proposed in this thesis.

10.1.4 Bluetooth

The threats concerning Bluetooth communication are many and due to the Ad-
Hoc structure they can be a lot harder to detect. This thesis has just scratched the
surface of a wide range of Bluetooth vulnerabilities. It would have been interesting
to try out some of the dedicated hardware, such as the Bluefruit LE Sniffer, for
Bluetooth sniffing in order to improve the device discovery part [2]. Even though

Conclusions 57

the size of the Bluefruit sniffer is very small, adding external hardware always
increases the power consumption.

It is also of interest to investigate Bluetooth further on platforms other than the
Raspberry Pi Zero W which has been used for this project. The very low send
rates made the situation-aware solution infeasible for this particular platform. The
bitrates measured from the Raspberry Pi using the Pybluez library is far from the
the maximum for the particular Bluetooth version used [45]. Implementing the
solution on a platform with higher bitrates for Bluetooth could, possibly, make
the situation-aware scheme a feasible solution.

58 Conclusions

References

[1] F. Abed, E. List, S. Lucks, J. Wenzel, (2013), Cryptanalysis of the SPECK
Family of Block Ciphers, Cryptology ePrint Archive, Report 2013/568,
https://eprint.iacr.org/2013/568

[2] Adafruit, (2017), Bluefruit LE Sniffer - Bluetooth Low Energy (BLE 4.0)
- nRF51822 - v3.0 https://www.adafruit.com/product/2269 (Accessed
2018-02-02)

[3] R. Alvarez, C. Caballero-Gil, J. Santonjaand A. Zamora, (2017), Algorithms
for Lightweight Key exchange, Sensors (14248220),DOI: 10.3390/s17071517

[4] AppNeta, (2018), Sample Captures, http://tcpreplay.appneta.com/wiki/
captures.html (Accessed 2018-02-01)

[5] J. P. Aumasson, S. Neves, Z. Wilcox-O’Hearn, C. Winnerlein, (2013),
BLAKE2: simpler, smaller, fast as MD5, Cryptology ePrint Archive, Re-
port 2013/322, https://eprint.iacr.org/2013/322

[6] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, L. Wingers,
(2013), Simon and Speck Families of Lightweight Block Ciphers, Cryptology
ePrint Archive, Report 2013/404, https://eprint.iacr.org/2013/404

[7] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, L. Wingers,
(2013), Simon and Speck Families of Lightweight Block Ciphers, page 2, Cryp-
tology ePrint Archive, Report 2013/404, https://eprint.iacr.org/2013/
404

[8] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, L. Wingers,
(2015), SIMON and SPECK: Block Ciphers for the Internet of Things, Cryp-
tology ePrint Archive, Report 2015/585, https://eprint.iacr.org/2015/
585

[9] R. Beaulieu, S. Treatman-Clark, D. Shors, B. Weeks, J. Smith, L. Wingers,
(2015), The SIMON and SPECK lightweight block ciphers, Design Automa-
tion Conference 52nd ACM/EDAC/IEEE, ISBN: 9781479980529

[10] Blink, (2016), Is the system secure? What security measures do you have
in place?, https://blinkinfo.desk.com/customer/en/portal/articles/
2299237-is-the-system-secure-what-security-measures-do-you-
have-in-place- (Accessed 2018-01-15)

59

https://eprint.iacr.org/2013/568
https://www.adafruit.com/product/2269
http://tcpreplay.appneta.com/wiki/captures.html
http://tcpreplay.appneta.com/wiki/captures.html
https://eprint.iacr.org/2013/322
https://eprint.iacr.org/2013/404
https://eprint.iacr.org/2013/404
https://eprint.iacr.org/2013/404
https://eprint.iacr.org/2015/585
https://eprint.iacr.org/2015/585
https://blinkinfo.desk.com/customer/en/portal/articles/2299237-is-the-system-secure-what-security-measures-do-you-have-in-place-
https://blinkinfo.desk.com/customer/en/portal/articles/2299237-is-the-system-secure-what-security-measures-do-you-have-in-place-
https://blinkinfo.desk.com/customer/en/portal/articles/2299237-is-the-system-secure-what-security-measures-do-you-have-in-place-

60 References

[11] Blink, (2017), CBlink Technical Specifications, http://support.
blinkforhome.com/customer/en/portal/articles/2292825-blink-
technical-specifications (Accessed 2018-01-04)

[12] Blink, (2018), Blink Sync Module, https://blinkforhome.com/products/
blink-sync-module (Accessed 2018-01-11)

[13] Blink, (2018), Blink Frequently Asked Questions, https://blinkforhome.
com/pages/frequently-asked-questions (Accessed 2018-01-11)

[14] A. Bogdanov, D. Khovratovich, C. Rechberger, (2011), Biclique Cryptanalysis
of the Full AES, Advances in Cryptology – ASIACRYPT, DOI: 10.1007/978-
3-642-25385-0_19

[15] A. Bogdanov, (11 August 2011), AES Encryption Cracked, https://www.
theinquirer.net/inquirer/news/2102435/aes-encryption-cracked
(Accessed 2017-11-07)

[16] D. Bruschi, A. Ornaghi, E. Rosti, (2003), S-Arp A secure Address Resolu-
tion Protocol, Computers Society Applications Conference Proceedings 19th
Annual IEEE, DOI: 10.1109/CSAC.2003.1254311

[17] CNSS, (2015), Use of public standards for the secure sharing of information
among national security systems, CNSS Advisory Memo 02-15

[18] D. Cross, J. Hoeckle, M. Lavine, J. Rubin, K. Snow, (2007) Detecting Non-
Discoverable Bluetooth Devices, IFIPAICT volume 253, ISBN: 9780387754611

[19] CRYPTREC, (2013), Specifications of e-Government Recommended Ci-
phers, Japan Ministry of Internal Affairs and Communication, http://www.
cryptrec.go.jp/english/method.html (Accessed 2018-02-28)

[20] Department of Defence, (2001), Department of Defense Dictionary of Military
and Associated Terms https://web.archive.org/web/20091108082044/
http://www.dtic.mil/doctrine/jel/new_pubs/jp1_02.pdf (Accessed
2018-02-27)

[21] W. Diehl, F. Farahmand, P. Yalla, J. P. Kaps, K. Gaj, (2017), Compari-
son of Hardware and Software Implementations of Selected Lightweight Block
Ciphers, 27th International Conference on Field Programmable Logic and
Applications, DOI: 10.23919/FPL.2017.8056808

[22] T. Dierks, E. Rescorla, (2008), The Transport Layer Security (TLS) Protocol
- Version 1.2, https://tools.ietf.org/html/rfc5246 (Accessed 2018-01-
15)

[23] Energizer, (2018), ENERGIZER L91, http://data.energizer.com/pdfs/
l91.pdf (Accessed 2018-01-04)

[24] Energizer, (2018), ENERGIZER E91, http://data.energizer.com/pdfs/
e91.pdf (Accessed 2018-01-04)

[25] J. Geerling, (2015), Raspberry Pi Zero - Conserve power and reduce
draw to 80mA, https://www.jeffgeerling.com/blogs/jeff-geerling/
raspberry-pi-zero-conserve-energy (Accessed 2018-01-09)

http://support.blinkforhome.com/customer/en/portal/articles/2292825-blink-technical-specifications
http://support.blinkforhome.com/customer/en/portal/articles/2292825-blink-technical-specifications
http://support.blinkforhome.com/customer/en/portal/articles/2292825-blink-technical-specifications
https://blinkforhome.com/products/blink-sync-module
https://blinkforhome.com/products/blink-sync-module
https://blinkforhome.com/pages/frequently-asked-questions
https://blinkforhome.com/pages/frequently-asked-questions
https://www.theinquirer.net/inquirer/news/2102435/aes-encryption-cracked
https://www.theinquirer.net/inquirer/news/2102435/aes-encryption-cracked
http://www.cryptrec.go.jp/english/method.html
http://www.cryptrec.go.jp/english/method.html
https://web.archive.org/web/20091108082044/http://www.dtic.mil/doctrine/jel/new_pubs/jp1_02.pdf
https://web.archive.org/web/20091108082044/http://www.dtic.mil/doctrine/jel/new_pubs/jp1_02.pdf
https://tools.ietf.org/html/rfc5246
http://data.energizer.com/pdfs/l91.pdf
http://data.energizer.com/pdfs/l91.pdf
http://data.energizer.com/pdfs/e91.pdf
http://data.energizer.com/pdfs/e91.pdf
https://www.jeffgeerling.com/blogs/jeff-geerling/raspberry-pi-zero-conserve-energy
https://www.jeffgeerling.com/blogs/jeff-geerling/raspberry-pi-zero-conserve-energy

References 61

[26] W. Greenwald, (2018), The Best Home Security Cameras of 2018,
http://uk.pcmag.com/webcams-products/39333/guide/the-best-home-
security-cameras-of-2018 (Accessed 2018-01-26)

[27] M. Harans, (2016), The Top 9 Best-Selling Router Brands In Q4 2016,
http://www.crn.com/slide-shows/networking/300083524/the-top-9-
best-selling-router-brands-in-q4-2016.htm (Accessed 2017-11-22)

[28] IANA, (1996), Address Allocation for Private Internets, https://tools.
ietf.org/html/rfc1918 (Accessed 2018-01-15)

[29] IANA, (2011), Internet Assigned Numbers Authority (IANA) Procedures for
the Management of the Service Name and Transport Protocol Port Number
Registry, https://tools.ietf.org/html/rfc6335 (Accessed 2018-01-15)

[30] D. Ince, (2013), A Dictionary of The Internet, 3rd edition, Oxford University
Press, ISBN: 019280460X

[31] INMCM, (2018), Implementations of the Simon and Speck Block Ciphers
https://github.com/inmcm/Simon_Speck_Ciphers, (Accessed 2018-02-01)

[32] J. A. Jerkins, (2017), Motivating a market or regulatory solution to IoT in-
security with the Mirai botnet code, IEEE 7th Annual Computing and Com-
munication Workshop and Conference, DOI: 10.1109/CCWC.2017.7868464

[33] C. Kolias, G. Kambourakis, A. Stavrau, J. Voas, (2017), DDoS in the
IoT: Mirai and other Botnets, Computer 50(7):80-84 2017 IEEE, DOI:
10.1109/MC.2017.201

[34] Linux man-pages Project, (2017), Socket Documentation, http://man7.org/
linux/man-pages/man2/socket.2.html (Accessed 2018-01-25)

[35] Logitech, (2018), Logitech V-R0008 - Specifications, http://support.
logitech.com/en_us/product/circle-2-home-security-camera/specs
(Accessed 2018-01-26)

[36] W. Lootah, W. Enck, P. Mc Daniel, (2007), Tarp: Ticket based ad-
dress resolution protocol, Computer networks, vol. 51, no. 15, DOI:
10.1109/CSAC.2005.55

[37] J.S. Meghana, T. Subashri, K.R. Vimal, (2017), A survey on ARP cache
poisoning and techniques for detection and mitigation, Fourth International
Conference on Signal Processing, Communication and Networking, DOI:
10.1109/ICSCN.2017.8085417

[38] S.Y. Nam, D. Kim, J. Kim, (2010), Enhanced arp: Preventing arp poisoning-
based man-in-the-middle attacks, Communications Letters IEEE, vol. 14, no.
2, DOI: 10.1109/LCOMM.2010.02.092108

[39] NEST, (2018), Nest Cam Outdoor - Tech Specs, https://nest.com/
cameras/nest-cam-outdoor/tech-specs/ (Accessed 2018-01-26)

[40] Netgear, (2015), AC1750 Smart WiFi Router, http://www.downloads.
netgear.com/files/GDC/R6400/R6400_UM_07Aug2015.pdf (Accessed 2017-
11-22)

http://uk.pcmag.com/webcams-products/39333/guide/the-best-home-security-cameras-of-2018
http://uk.pcmag.com/webcams-products/39333/guide/the-best-home-security-cameras-of-2018
http://www.crn.com/slide-shows/networking/300083524/the-top-9-best-selling-router-brands-in-q4-2016.htm
http://www.crn.com/slide-shows/networking/300083524/the-top-9-best-selling-router-brands-in-q4-2016.htm
https://tools.ietf.org/html/rfc1918
https://tools.ietf.org/html/rfc1918
https://tools.ietf.org/html/rfc6335
https://github.com/inmcm/Simon_Speck_Ciphers
http://man7.org/linux/man-pages/man2/socket.2.html
http://man7.org/linux/man-pages/man2/socket.2.html
http://support.logitech.com/en_us/product/circle-2-home-security-camera/specs
http://support.logitech.com/en_us/product/circle-2-home-security-camera/specs
https://nest.com/cameras/nest-cam-outdoor/tech-specs/
https://nest.com/cameras/nest-cam-outdoor/tech-specs/
http://www.downloads.netgear.com/files/GDC/R6400/R6400_UM_07Aug2015.pdf
http://www.downloads.netgear.com/files/GDC/R6400/R6400_UM_07Aug2015.pdf

62 References

[41] NIST (2001), Announcing the ADVANCED ENCRYPTION STANDARD
(AES), Federal Information Processing Standard Publication 197

[42] NIST, (2015), NIST Releases SHA-3 Cryptographic Hash Standard,
https://www.nist.gov/news-events/news/2015/08/nist-releases-
sha-3-cryptographic-hash-standard (Accessed 2018-01-04)

[43] NIST, (2017), Guide to Bluetooth Security, http://nvlpubs.nist.gov/
nistpubs/SpecialPublications/NIST.SP.800-121r2.pdf (Accessed 2018-
01-22)

[44] M. Ossmann, D. Spill, M. Ryan, W. Code, J. Boone, (2018), Ubertooth,
https://github.com/greatscottgadgets/ubertooth/ (Accessed 2018-02-
02)

[45] I. Paul, (2010), Wi-Fi Direct vs. Bluetooth 4.0: A Battle for
Supremacy https://www.pcworld.com/article/208778/Wi_Fi_Direct_
vs_Bluetooth_4_0_A_Battle_for_Supremacy.html (Accessed 2018-02-02)

[46] Pycryptodome, (2018), Pycryptodome Documentation https://pypi.
python.org/pypi/pycryptodome (Accessed 2018-02-01)

[47] Python Software Foundation, (2017), Python 2.7 documentation - Extend-
ing and Embedding the Python Interpreter, https://docs.python.org/2.
7/extending/index.html#extending-index, (Accessed 2017-11-14)

[48] M.A. Qadeer, A. Iqbal, M. Zahid, (2010), Network Traffic Analysis and In-
trusion Detection Using Packet Sniffer, Second International Conference on
Communication Software and Networks, DOI: 10.1109/ICCSN.2010.104

[49] Radware, (2017), Reaper Botnet, https://security.radware.com/ddos-
threats-attacks/threat-advisories-attack-reports/reaper-botnet/
(Accessed 2017-11-28)

[50] Routers-Reset, (2017), TL-MR3020, https://routers-reset.info/2309/
reset/TP-Link/TL-MR3020 (Accessed 2017-11-22)

[51] Routers-Reset, (2017), Meraki - Z1, https://www.router-reset.com/
reset-manuals/Meraki/Z1 (Accessed 2017-11-22)

[52] R. Sandip, H. Tamzidul, B. Abhishek, B. Swarup, (2016), The power play:
Security-energy trade-offs in the IoT regime, IEEE 34th International Con-
ference on Computer Design (ICCD), DOI: 10.1109/ICCD.2016.7753360

[53] Scapy, (2018), Scapy Documentation https://scapy.readthedocs.io/en/
latest/ (Accessed 2018-02-01)

[54] SecurityGem, (2017), Best Home Security Camera, https://www.
securitygem.com/best-home-security-cameras/ (Accessed 2018-01-15)

[55] Z. Trabelsi, H. Rahmani, K. Kaouech, M. Frikha, (2004), malicious sniffing
systems detection platform, International Symposium on Applications and
Internet, DOI: 10.1109/SAINT.2004.1266117

https://www.nist.gov/news-events/news/2015/08/nist-releases-sha-3-cryptographic-hash-standard
https://www.nist.gov/news-events/news/2015/08/nist-releases-sha-3-cryptographic-hash-standard
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-121r2.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-121r2.pdf
https://github.com/greatscottgadgets/ubertooth/
https://www.pcworld.com/article/208778/Wi_Fi_Direct_vs_Bluetooth_4_0_A_Battle_for_Supremacy.html
https://www.pcworld.com/article/208778/Wi_Fi_Direct_vs_Bluetooth_4_0_A_Battle_for_Supremacy.html
https://pypi.python.org/pypi/pycryptodome
https://pypi.python.org/pypi/pycryptodome
https://docs.python.org/2.7/extending/index.html#extending-index
https://docs.python.org/2.7/extending/index.html#extending-index
https://security.radware.com/ddos-threats-attacks/threat-advisories-attack-reports/reaper-botnet/
https://security.radware.com/ddos-threats-attacks/threat-advisories-attack-reports/reaper-botnet/
https://routers-reset.info/2309/reset/TP-Link/TL-MR3020
https://routers-reset.info/2309/reset/TP-Link/TL-MR3020
https://www.router-reset.com/reset-manuals/Meraki/Z1
https://www.router-reset.com/reset-manuals/Meraki/Z1
https://scapy.readthedocs.io/en/latest/
https://scapy.readthedocs.io/en/latest/
https://www.securitygem.com/best-home-security-cameras/
https://www.securitygem.com/best-home-security-cameras/

References 63

[56] Z. Trabelsi, K. Shuaib, (2006), Man in the Middle Intrusion Detection, IEEE
Conference on Global Communications, DOI: 10.1109/GLOCOM.2006.282

[57] M. V. Tripunitara, P. Dutta, (1999), A Middleware Approach to Asyn-
chronous and Backward Compatible Detection and Prevention of ARP Cache
Poisoning, Computer Security Applications Conference (ACSA99) Proceed-
ings 15th Annual Phoenix UK, DOI: 10.1109/CSAC.1999.816040

[58] Wikipedia, (2018), Man in the middle attack, https://upload.wikimedia.
org/wikipedia/commons/thumb/e/e7/Man_in_the_middle_attack.svg/
260px-Man_in_the_middle_attack.svg.png, (Accessed 2018-02-08)

[59] Wikipedia, (2018), S-Box https://upload.wikimedia.org/wikipedia/
commons/c/c5/S-Box.png (Accessed 2018-02-08)

[60] Wikipedia, (2018), Substitution Permutation Network
https://upload.wikimedia.org/wikipedia/commons/thumb/
c/cd/SubstitutionPermutationNetwork2.png/360px-
SubstitutionPermutationNetwork2.png (Accessed 2018-02-08)

https://upload.wikimedia.org/wikipedia/commons/thumb/e/e7/Man_in_the_middle_attack.svg/260px-Man_in_the_middle_attack.svg.png
https://upload.wikimedia.org/wikipedia/commons/thumb/e/e7/Man_in_the_middle_attack.svg/260px-Man_in_the_middle_attack.svg.png
https://upload.wikimedia.org/wikipedia/commons/thumb/e/e7/Man_in_the_middle_attack.svg/260px-Man_in_the_middle_attack.svg.png
https://upload.wikimedia.org/wikipedia/commons/c/c5/S-Box.png
https://upload.wikimedia.org/wikipedia/commons/c/c5/S-Box.png
https://upload.wikimedia.org/wikipedia/commons/thumb/c/cd/SubstitutionPermutationNetwork2.png/360px-SubstitutionPermutationNetwork2.png
https://upload.wikimedia.org/wikipedia/commons/thumb/c/cd/SubstitutionPermutationNetwork2.png/360px-SubstitutionPermutationNetwork2.png
https://upload.wikimedia.org/wikipedia/commons/thumb/c/cd/SubstitutionPermutationNetwork2.png/360px-SubstitutionPermutationNetwork2.png

64 References

Appendix A
Cryptographic Components

To get a deeper knowledge of how block ciphers are constructed, and what parts of
a block cipher that are desirable to not use in lightweight ciphers, two components
used in most block ciphers are explained in this section.

S-box

An S-box (Substitution Box) is a common part of many block ciphers and is used
for introducing non-linearity. It produces an m-bit output from an n-bit input
using a lookup table. The table can either be fixed or dynamically generated
from, for example, a key. Figure A.1 shows an S-box where 4 inputs are matched
to 4 output values. The implementation of S-boxes can be quite complex and

Figure A.1: S-Box [59].

costly, but they are desired since they allow for relatively easy security arguments.
For more lightweight solutions it is preferred to instead increase the one-time work
of doing cryptoanalysis, instead of the work done by devices with high constraints
on encryption and decryption [8].

65

66 Cryptographic Components

Substitution-Permutation Network

Substitution-permutation network (SPN) is a scheme of mathematical functions,
typically used in block ciphers such as AES. SPNs are often used for encrypting
plaintext using a key together with alternating rounds of substitution and permu-
tations. Figure A.2 below shows an SPN with 3 rounds of 16 bits.

Figure A.2: SPN Network [60].

Appendix B
Overview of Complete Implementation

As stated in Section 6.1, this project has used as much of the already existing
libraries in Python as possible. Figure B.1 shows an overview of the complete
implemented solution, together with the used libraries and the programming lan-
guage they are implemented in. This solution was used for the system test in
Section 9.5. The use of wrappers in Python allows for writing the time-critical
parts of the code in C and keeping the noncritical parts in Python for easier use.
The socket interface has been used for the sending of data, and for the situation
measurements which require requests to be sent. The protection of the data uses
mainly the PycryptoDome library [46]. The exception is the level MEDIUM which
also uses a SPECK implementation done by INMCM, with some modifications,
since Pycryptodome lacks this [31]. The arrows, linking the different libraries to-
gether into a complete solution, are also written in Python.

67

68 Overview of Complete Implementation

Figure
B

.1:
O
verview

of
the

architecture
for

the
com

plete
im

plem
entation.

Situation-aware Adaptive Cryptography

VIKTOR HJELM
MARC TRUEDSSON
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2018

V
IK

TO
R

 H
JELM

 &
 M

A
R

C
 TR

U
ED

SSO
N

Situation-aw
are A

daptive C
ryptography

LU
N

D
 2018

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2018-619

http://www.eit.lth.se

	Hjelm_Truedsson_situation-aware-adaptive.pdf
	Introduction
	Background
	Project Aims
	Scope
	Contributions
	Outline
	Method

	Threats
	Man-in-the-Middle attacks
	Network Sniffing
	Intrusion

	Cryptographic Algorithms
	Encryption Algorithms
	Message Authentication

	Situation Parameters
	Wi-Fi
	Bluetooth
	Shared Parameters

	Adaptation and Evaluation
	Mapping the Situation Parameters to Protection Levels
	Adapting Frequency

	Throughput Tests
	Separation of Libraries
	Throughput Test Result
	Protection Levels Proposal

	Power Consumption Tests for Protection Levels
	Python Implementation
	C Implementation
	Power Consumption Evaluation

	Situation Measurements
	Wi-Fi Measurements
	Bluetooth Measurements
	Situation Measurements Evaluation

	Protection and Situation-awareness Comparison
	Situation-aware Adaptive Cryptography Criteria
	Data Sensitivity
	Difference Between Protection Levels
	Cost of measuring
	System Tests

	Conclusions
	Future work

	References
	Cryptographic Components
	Overview of Complete Implementation

