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Abstract 
 
The past decade, advancements in semiconductor technology as well as the 
construction of large data centers around the world have given rise to the 
possibility to connect anything to the internet. In today’s electronics industry, 
“Internet-of-things”-applications are in a huge demand where companies are 
being subject to massive competition. Given this reality, resources within a 
small development company need to be managed carefully and optimally. In 
this project, LabVIEW is used to develop a rig for automation of the previously 
time-consuming task of testing. The project has resulted in the benefits of faster 
test throughput and a more systematic testing procedure, enabling both 
development and sales staff to make faster and more confident decisions about 
if the product is ready to go when the customer needs it. The basis for a more 
comprehensive and statistical test is also laid due to the modular approach 
employed in the system design and software suite. 
 
Keywords: Internet of things, functional testing, embedded electronics 



  

Sammanfattning 
 
Det senaste decenniet har framsteg inom halvledarteknik samt konstruktionen 
av stora datacentraler runt om i världen lett till möjligheten att ansluta mer eller 
mindre vad som helst till internet. I dagens elektronikindustri är "Internet-of-
Things"-applikationer i stor efterfrågan där företagen utsätts för massiv 
konkurrens. Med tanke på denna verklighet behöver resurser inom ett litet 
utvecklingsföretag hanteras noggrant och optimalt. I detta projekt använder 
författaren LabVIEW för att utveckla en rigg med målet att automatisera den 
tidigare tidskrävande uppgiften att testa producerade enheter. Projektet har 
resulterat i en snabbare test genomströmning och ett mer systematiskt 
förfarande, vilket gör det möjligt för både utvecklings- och säljpersonal att fatta 
snabbare och säkrare beslut om att produkten är redo att släppas när kunden 
behöver det. Grunden för ett mer omfattande och statistiskt test har också lagts 
i och med det modulära tillvägagångssättet som används i systemdesignen och 
programvaran. 
 
Nyckelord: Sakernas internet, funktionstestning, inbyggda system 
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1 Introduction 
 
This chapter contains an introduction of the client, a description of the 
project background, the objective and goals, the problem specification and 
project limitations. A technical background is presented in the following 
chapter, followed by a test requirements specification, and further with an 
implementation description and verification description of the test system. 
Finally, results and possible improvements are discussed. 

1.1 The client 
The work is performed on behalf of JEMAC Sweden AB, which is a 
company working with the design and development of electronics in the 
Internet of Things field.  They also provide consultant services. Over the 
past year, the company has developed a new generation of "IoT Gateways" 
for connecting machines to the Internet. The gateway collects, processes and 
makes data available for further use in different cloud services. JEMAC 
caters to the global market for enterprise solutions. End customers are 
companies interested in using the cloud and in need of the hardware 
interface to do so. [1] 

1.2 Background 
Currently, the gateway is in its third incarnation. Designed as a simple 
prototype with basic functions, the first version meant to serve as a proof-
of-concept. After probing the market, JEMAC quickly realized the need for 
a modular approach due to the different requirements of the customers. 
Engineers improved the flexibility by developing a single platform that can 
be tailored both economically and technically and thus made the second and 
later third gateway designs more suitable to the market demands.  In general, 
large bulky components such as the RJ45-connector is relatively expensive. 
Together with the PHY-chip, isolation transformers and other minor 
components associated with for example Ethernet, the cost for the feature 
becomes significant when producing in large scales. At the same time, the 
cost per unit of PCB is significantly lowered when ordering in bulk, and by 
doing so, it can be shared between many customers. Simply not mounting 
components while using the same PCB’s therefore reduce cost and make the 
gateway more attractive to customers with tighter budgets, that do not wish 
to take advantage of various features. 
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Gateway model 3 is in the final stages of prototyping and is becoming 
mature enough to be released. Tests are conducted at various stages of 
development projects and in production to ensure fulfillment of the product 
specification. One of the tests that the units go through is a so-called 
functional test; this tests all the product features at a basic level. The 
company would like to improve the efficiency of this process. Currently, the 
whole testing process takes a significant amount of time, as it is performed 
manually. Automating the testing procedure means time-savings and a 
freeing up of resources to be deployed in other areas to make better use. 

1.3 Objectives and goals 
To develop and build a test system used for product development and testing 
of complete products is the purpose of this project. It aims to standardize 
and streamline testing. The goal is to develop a system with the following 
objectives: 
 

1. Develop a test requirements specification based on the existing 
product specification and test instructions for the current manual test 
and through review and dialogue with the hardware designer. 
 

2. The design of a hardware system based on PC / Windows, with 
analog and digital interfaces, communication interfaces, and a 
fixture for the units. 
 

3. Develop the test software's user interface, test sequence, 
communications and storage of settings and data. 
 

4. As the project finishes, verify that the test system works as planned 
and document the project. 
 

The task at hand involves both hardware and software understanding, 
theoretical and practical training, and fulfills a real need for the client. It puts 
to use knowledge acquired from a large part of the education. 
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1.4 Problem specification 
These initial questions were asked before beginning work on the project. In 
the planning and design phase, they are considered, and the actions 
following is made with the goal to resolve them. 
 

1. How should the testing be performed? 
2. What are the requirements for each parameter to be considered OK? 
3. What parts should constitute the test system? 
4. What are the requirements of the test system hardware? 
5. How should information be shown in the user interface? 
6. How should settings and data be stored? 

1.5 Source criticism 

The informational sources used in the research for the project has been 
mainly datasheets and application notes for the components used in the 
gateway. White papers have been used to provide information about some 
of the topics, being aware of the marketing angle of these. They still 
provided much information. In some cases, other informational sources 
from the internet have been used. These have been compared against each 
other for consistency among them. As the electronics industry heavily relies 
on standards, websites that provide information for educational purposes is 
considered not to have incitement to falsify the content. 

References 3, 5, 8, 10 and 16 are white papers. They are in some cases 
angled to market the author’s product or persuade the reader to use a specific 
technology. Still they provide much information that is considered valid. 
Many times, white papers are not written for marketing, but instead written 
by standardization organizations such as IEEE. The white papers used in this 
report are from well-known manufacturers with a good reputation in the 
industry that should not be able to afford to sell products that is not 
performing as intended. 

Datasheets has been consulted in the case of 4, 7, 11, 15, 17 and 26. For the 
same reasons as white papers, they are also considered trustworthy. The 
creation of datasheets is assumed to be preceded by detailed measurements 
of the specifications, and experience with using datasheets give confidence 
of the validity content of these. 
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1, 12, 13, 21 and 23 are official company webpages and mainly used for the 
reason of giving the reader ability to read more about the products used in 
the project. 

18, 19, 20, 24 and 25 are references to vendors, given so that the reader can 
look for current prices and availability of the products used in the project. 

References number 6, 14 and 22 come from webpages advertising 
themselves as independent informational sources with articles written and 
peer reviewed by experts. 

Reference 9 is a handout from a lecturer at Berkley, a prestigious university 
which is assumed to have qualified lecturers providing valid information. 
 
Another major informational source has been the LabVIEW forum; 
reference number 2. Since the author had no previous experience with this 
software and had to learn it quickly due to the limited time available, this 
forum was frequently visited. Both enthusiasts and professionals write 
extensively on the forum. Hence the amount of content was very large, but 
the quality of the provided information was varying. Aware of this, it was 
required to discard some of the ideas presented there, trying different 
methods. Overall, the forum proved to be a good source, however. 
 
All the above is considered valid sources and has since been used for the 
project research. 

1.6 Limitations 
To eventually develop a general system that can adapt to different variants 
of gateways is JEMAC's intention. The project will take this into account if 
possible but is limited to developing a system for the third generation of 
gateways as the first prototype. 
 
After production of new boards, a verification test is carried out by the 
hardware designer. Verification testing is detailed, as it is supposed to verify 
that the circuit design is performing as intended. Any problems are 
documented to be, if possible, corrected in the following production runs. 
As a part of this process, the functionality is indirectly tested, but only on 
one or a few units. 
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The automated tests that the project intends to implement differ from the 
verification test. They are to be performed on every shipped unit in the basic 
form of “pass/fail”, as a final check that everything is working; not rooting 
the cause of eventual failures. 
 
Only the electronic parts of the gateway will be included in the technical 
background and not the mechanical aspects of the system. 
 
The project is carried out single-handedly over a limited amount of time and 
due to these constraints, planned features might be omitted. 

1.7 Resources 
Resources in the form of hardware and software engineers will support the 
work. JEMAC will provide all equipment in the form of gateways, 
computers, measurement systems, and software. 
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2 Technical background 
 
This chapter aims to describe the technical background of the project, 
starting with a description of the gateway itself, and continuing with 
information about the features that should be tested. Lastly, an introduction 
of the software used in the test system is given. 

2.1 The gateway 
The gateway’s main components are described; an overview and 
description of the two boards. 

2.1.1 Overview 
 

  

 

Figure 1: Overview of the gateway assembly. 

 
Figure 1 illustrates the assembled gateway. Top view shows a general-
purpose button and three programmable LED indicators. External GNSS 
and RF SMA antenna connectors are visible in the top right picture. There 
is also the option to use internal u.FL antennas; in that case, the hole is 
covered with a plate. Bottom left is the terminal block interface to various 
devices and sensors. Bottom side right shows the RJ45 Ethernet and micro-
USB connectors. The case is made in polyamide using a professional 3D-
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printer, but when the gateway reaches mass production, press-formed plastic 
will be used. 
 
Internally, in its basic configuration, the gateway consists of two PCB’s. 
One board holds the microcontroller and modem and the other board 
provides the power circuitry and interface to the terminal connections. These 
boards are referred to as the MCU- and INT-board (interface board) in the 
following text. On the INT-board, there is also two headers to connect so-
called “add-on boards”, with the purpose to extend and further customize 
the design. The add-on boards are not a part of the core gateway design and 
will not be discussed, but the following text will describe the MCU- and 
INT-boards in more detail. 
 

2.1.2 MCU board 
 

 
Figure 2: Top view of the MCU board. 
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The MCU-board is a smaller PCB connected to the larger INT-board via a 
mini-PCI connector. The connector can be seen in the bottom of figure 2. 
Modularity and flexibility are considered important aspects of the gateway 
design and this split configuration makes it possible to use the core MCU 
with future products and product variants.  
 
The gateway features 120MHz ARM Cortex-M4 based Kinetis K64 
microcontroller from NXP, chosen because it provides a sound basis with 
many desired functionalities already embedded in the processor itself, 
reducing the need for external circuitry. The MCU utilizes an external 4MB 
SPI flash memory for storing firmware.  
 
Mounted on the PCB is also NXP’s MMA8652 accelerometer, as well as a 
PCF85263 real-time clock. More on these in chapter 2.2. 
 
A SARA-U2-201 modem, from U.Blox, used in conjunction with a MAX-
M8 GNSS module, provides for cellular connection and positioning needs. 
Mounted with a full-spec modem, the gateway can have worldwide mobile 
network coverage and use all different positioning systems. The choice to 
use different spec modems enhance price dynamics. The modem utilizes a 
passive antenna, but the GNSS chip requires the use of an active to receive 
the faint satellite signals.   
 
Two of the K64’s six UART’s have been dedicated to external interfaces 
while the other four is being used internally to communicate with the modem 
and the extension boards. Besides this, I2C-multiplexers is used to expand 
the MCU I/O pins to allow for more signal pathways. 
 
For analog interfacing, there is the K64's two 16-bit ADC's and two 12-bit 
DAC's. They provide conversion between analog signals and the digital 
domain. High precision is possible, especially with the 16-bit ADC. There 
is custom circuitry between the signals and the MCU's pins. More on this in 
chapter 2.1.3 about the INT-board. 
 
The K64 embeds a USB-OtG controller, which enables the gateway to act 
both as a host and slave when connected to other “smart” devices. It supports 
USB 3.0 that specifies transfer speeds up to 10Mbit/s, so it makes up a yet 
another, very fast, communication channel to other devices. 
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Ethernet capability is supported internally of the K64 with the maximum 
bandwidth of 100Mbit/s. A physical layer chip interfacing with the network 
is placed on the INT-board. 
 

2.1.3 INT board 
 

 
Figure 3: Top view of the INT board. 

 

Figure 3 shows the top view of the interface board. The power supply circuit 
is placed here. Figure 4 shows a block diagram of the setup. The chain begins 
with a filtered 24 V nominal input into a DC/DC converter that steps the 
voltage down to 5 V. The input voltage also provides power to the custom 
ADC/DAC circuits. USB power input also connects to the 5 V rail via back-
to-back diodes. Then this rail connects to a battery charger which besides 
charging the battery with 400 mA of current, regulates the output to 4.05 V. 
On battery power, however, the rail follows battery voltage. A lithium-ion 
battery is used to store the energy, capable of providing 5400 mAh to the 
gateway. The final conversion step is a precision LDO that outputs the 3.3 
V rail. Control signals both directly from the advanced battery charger and 
from rail-dedicated ADC's allow the MCU to monitor power consumption 
and charging status. 
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Figure 4: Power supply block diagram. 

 
All the chips to drive the interfaces is placed on the INT-board; the RS-232 
and RS-485 line drivers, Ethernet PHY and CAN bus. It also hosts the DAC 
interface which consists of a circuit with many components, thus placed on 
the bigger board, as well as the circuit for the ADC and digital I/O.  
 
Several analog switches and I/O-expanders used for the many lines to and 
from the MCU-board are also present on the board. They are beside internal 
duties used for switching between input and output of the digital interfaces 
and switch the ADC's input between general analog signals and specially 
constructed thermistor inputs. The ADC’s can also be switched by the 
expanders to read either voltage or current signals. 
 
There are several pin headers on the board as well. They are intended to be 
used with add-on modules built to the customer's needs. For example, one 
customer might want to use Wi-Fi as local wireless network, while another 
one wants to use Bluetooth for the same purpose. Using add-ons, less 
development and time is needed to provide a solution that just requires a 
particular module, than it is to redesign the whole INT-board. 
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2.2 Features 
Even though the reader is assumed to be familiar with many of the features 
that are listed below, for completeness, the text provides some general 
information about these. Some features are described in more detail with 
specifications for each component. 
 

2.2.1 RS-232 

The gateway is compliant with the RS-232 standard and uses a Maxim 
MAX232 line driver chip to perform the logic level conversion between the 
UART pins on the MCU and the terminal block on the INT-board. A three-
wire version is used, with only RX, TX and GND signals. The board features 
two ports where one of them is used for debugging in the development 
phase. [3][4] 
 

2.2.2 RS-485 

RS-485 is a standard that defines use of differential voltages, and thus 
possesses common mode rejection and a better noise immunity than RS-232. 
It is widely used in industrial applications. The standard’s specification 
allows for up to 32 devices to be connected to the bus; this is an advantage 
over RS-232 that broadens the usage possibilities considerably. Maximum 
cable length is also extended to about 1200 meters, at data rates up to 
10Mbit/s.  RS-485 is implemented in the gateway using a Maxim MAX487 
chip. [5][6][7] 
 

2.2.3 CAN-bus 

The bus is commonly associated with the automotive industry but is being 
very much used in other areas as well. The protocol has a light software 
stack which makes it favorable for programmers in terms of memory 
restrictions. CAN use frames that are being distributed across all nodes of 
the network, using CSMA for collision detection. Error correction is 
achievable as well, and the bus has high noise immunity. The gateway 
supports a CAN high-speed ISO standard that specifies transfer rates up to 
500kBit/s. [8][9] 
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2.2.4 USB on-the-go 

Originally included in the second USB specification, USB "on-the-go" 
provides a way for devices to act both as host and slave. Communication 
rates in the standard is specified as 480Mbit/s. The K64 MCU supports an 
even later version (USB 3.0) which further improves data rates and power 
delivery. [10] 
 

2.2.5 Accelerometer 

An MMA8653 accelerometer provides the functionality for detecting 
orientation and changes in motion of the gateway. Manufactured by NXP, 
the tiny DFN footprint chip uses capacitive sensing technology to do this. 
Resolution of the device is 10 bits; data is accessible via I2C together with 
lots of embedded functions. It also supports several power-saving modes 
with reduced resolution and update frequency. Digital registers are used to 
make settings, and the accelerometer works pretty much standalone; no data 
processing needs to be done by the MCU. Two individual interrupts can be 
programmed to inform the MCU of changes in acceleration and position. 
[11] 
 

2.2.6 Modem 

Two devices from U.Blox are used; one of these is the SARA-U2-201. It is 
currently being advertised as "the world's smallest" modem. Multiple 
versions of the same modem share the same footprint, making regional 
adaptions of the gateway easy. The modem supports IPv4, IPv6, embedded 
TCP and UDP, SSL and the use of eSIM. It operates at an extended 
temperature range of -40 to +85ºC. It also supports direct utilization of 
U.Blox GNSS modules that can be used as a hybrid positioning scheme 
together with the modems own CellLocate technology. [12] 
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2.2.7 GNSS 

The other U.Blox module used is the MAX-M8 GNSS. The module can 
simultaneously use three of the four available GNSS systems; GPS, Galileo, 
GLONASS, and BeiDou. When started cold, the module is specified to lock 
on to satellites within 28 seconds. Reacquisition time is claimed to be 1 
second on lost signal. It can output NMEA or RTCM strings for further 
processing. [13] 
 

2.2.8 ADC 

The gateway utilizes the K64's built in ADC's, which is of a successive 
approximation type; they use a binary search method, comparing the input 
voltage against a decreasing reference for each bit of the converter. 
Therefore, an N-bit converter requires N comparisons, making increased 
precision achieved at the price of speed. As can be seen in figure 5, SAR 
technology covers a mid-range of this sample rate/resolution relationship. 
The K64's ADC has 16 bits which give a resolution of approximately 38 uV 
per bit on a 2,5 V reference. [14] 
 

 
Figure 5: Types of ADC’s [13] 

2.2.9 DAC 

There are many types of DAC techniques, and unfortunately, it has proven 
hard to provide information about which type the K64 uses. The datasheet 
and NXP application notes give no information about this. It is possible that 
the DAC can use different types or modes, but the underlying hardware 
cannot be determined. It is known, however, that there is both 6-bit and 10-
bit DAC's available to the user. [15] 
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2.2.10 Digital I/O 

The digital I/O portion of the gateway is a custom circuit that can be 
switched between input and output by a signal from the MCU to an analog 
switch IC, that manipulates the signal paths on the PCB. A maximum of 24 
V signals is supported; 3.4 V being the threshold for a low signal and 4 V 
for a high. Voltages between 3.4 and 4 are undefined. The circuit uses an 
op-amp to compare the voltage-divided input against a 0,7 V reference for 
signal detection and use an open-collector output for outgoing signals. 
 

2.2.11 Ethernet  

The K64’s embedded controller supports 10/100Mbit Ethernet with the 
IEEE 1588 standard which allows for external clock synchronization (PTP). 
It makes it possible to achieve microsecond time precision that is needed at 
high transfer speeds; doing this with minimum computational performance. 
The PTP master clock can be a based on a GNSS receiver that passively 
utilizes the atomic clocks used for timing within the positioning system. 
[15][16] 
 

2.2.12 Wake-up and sleep modes 

Implemented using a fairly complex custom circuit is the different sleep 
modes of the gateways, built to provide the ability to lower the current 
consumption of the gateway to increase battery life. The circuit does not rely 
on the MCU’s built-in sleep modes. Instead, it is built so that the MCU can 
disconnect the power to itself. When a wake-up event occurs, power to the 
MCU is restored. Also, the modem, analog circuitry, and flash memory can 
be disabled in software before sleep. That also saves power. When in sleep 
mode, the unit consumes below 250uA, which is equivalent to more than a 
year’s on-time using the provided 5600mAh battery. Button press, RTC, 
digital input and DC supply connection can trigger a wake-up event. 
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2.3 Software 
 
The software that was used in the project is described here. 
 

2.3.1 LabVIEW 
 
LabVIEW version 16.0 almost entirely makes up the software part of the 
project. It is a graphical programming tool developed by National 
Instruments, and instead of writing code, one uses building blocks to 
program. LabVIEW shows many similarities to the MATLAB plugin 
Simulink. NI claims that drag and drop features improves the workflow and 
makes it easier to go from thought to result. The software is very advanced, 
but this project utilizes only the most basic functionalities. NI also provide 
hardware interfaces to support the software and has an extensive catalog 
with prices spanning across a range of a few thousand to hundreds of 
thousand SEK. Precision ADC’s, frequency analyzers, PID controllers and 
lots of other modules is available. A lot of third-party manufacturers include 
support for LabVIEW. There is a large community forum online where 
much information was acquired when learning about the software. [2]  
 
Like most project based software, when starting LabVIEW one is introduced 
to a project manager where all access and organization of project files 
happens. Fundamental to LabVIEW is something that NI calls “virtual 
instruments” or “VI’s”. These are software equivalents of traditional 
hardware instruments, designed to take advantage of a modern computers 
processing power and connectivity for measurements and analysis. When 
they are created, LabView generates a linked file pair consisting of a “front 
panel”-file and a “block diagram”-file. Working with the VI’s one creates 
functions, with inputs and outputs, in the block diagram; that then generates 
input options and indicators in the front panel. The block diagram is where 
most of the work is done, however. Figure 6 shows the two files; the reader 
is encouraged to study the relationship between them.  
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Figure 6: The front panel, block diagram pair 

 
The following text will present functions that were used in the project, and 
many screen-dumps is shown to illustrate them. These dumps are somewhat 
edited to save space, and to improve the readability of the report. 
 

 
Figure 7: The structures palette 

 
“Palettes” give access to functional blocks. One example of such can be seen 
in figure 7. The “structures” palette is fundamental as it provides basic 
programming structures. It contains the for-loop and while-loop, which is 
essential functions in any programming language. Figure 8 and figure 9 
shows them in the graphical LabVIEW form when used in a block diagram. 
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Figure 8: The basic WHILE-loop  

Figure 9: The basic FOR-loop 

The figures also illustrate the “wires” that is used to connect blocks together. 
The stop block in the while example is a Boolean input. It will show up in 
the front panel as a switch that the user can interact with. Both an integer 
input and output is displayed in the for example. They will appear as an input 
“ticker” and an indicator field on the front panel. LabVIEW uses colors to 
mark the block type, although not seen in this print. 
 
Inside of the structures, other blocks can be placed. Booleans, integers, 
doubles, strings, other functional blocks, and even other block diagrams. It 
is at the core of LabVIEW, the possibility to create functions within 
functions.  
 
For example, saving the for loops block diagram (and its corresponding front 
panel) will create a “Virtual Instrument”, VI. This loop-VI can then be 
placed in another VI’s block diagram, connecting the two and making the 
loop-VI’s “Number of loops” input and “Loop counter” output available to 
the second VI. That is, the inputs and outputs of a “sub-VI” can be controlled 
and read from a higher-level VI. The stacking can be done indefinitely and 
create very complex constructions. 
 
The connection between the two is made by routing controls and indicators 
(inputs and outputs) to “wire connection points”. The act of routing is 
performed in the front panel by clicking on the colored fields and then 
choose to associate them with the desired object. Figure 10 tries to illustrate 
this. Objects that has been routed will then shows up as "wire connections" 
when the VI is used inside of another VI. Figure 11 shows the block that 
becomes of the newly routed sub-VI. The same objects that were routed 
becomes available to connect whatever that is desired; in the example 
buttons and indicators. 
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Figure 10: Routing in the front panel 

 
Figure 11: The routing in the block diagram 

Returning to structures, other essentials are the "case" and the "event" 
blocks. The case block is equivalent to an if-statement. It can use both 
Boolean and numeric input as shown in figure 12. Multiple blocks of any 
kind can be placed in the frames to create more complicated structures. The 
event block, on the other hand, is somewhat equivalent to interrupts. The 
LabVIEW framework looks for events in the background. Running code will 
be interrupted if such an event happens, and the code inside of the event 
block will be executed instead. Figure 13 illustrates the event frame.  

 
Figure 12: The “case” frames 

 

Figure 13: The “event” frame 

 
Code typically runs from beginning to end in a sequential fashion. In 
LabVIEW, on the other hand, code can be executed in parallel. Therefore, 
the blocks (i.e. code) must sometimes be sequenced. A “flat sequence” is 
used to ensure that code executes the right order. Figure 14 illustrates the 
principle. 
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Figure 14: A flat sequence 

 
A comprehensive suite of mathematical tools is provided too. The project 
uses the most basic of them, but one can easily apply FFT, Z-transform and 
other advanced math to the system. The “comparison” and “numerical” 
palettes, where functions like the described can be found, are shown in 
Appendix A. 
 
Of course, the use of Boolean logic is fundamental to programming and 
computing. The "Boolean" palette in figure 17 gives access to such 
functions. 
 

 
Figure 17: The Boolean palette 

The functions for serial communication is also built-in to LabVIEW. It 
allows for the basic usage of COM-ports. The “serial” palette is used to do 
this and shown in figure 18 below. 
 

 
Figure 18: The serial palette 
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The end of this chapter concludes the description of the core functionalities 
in LabVIEW. In chapter 4.3 these will be combined, and some other features 
will show. 
 

2.3.2 Teststand 

Another product by NI is their test suite Teststand. Using this software in 
conjunction with LabVIEW makes it easy to create a sequenced testing 
scheme based on VI’s. Teststand can automatically generate reports in 
HTML format, pictures and messages can be presented to the test technician 
as a request for manual interaction, and it provides a graphical interface for 
the whole functional test environment. More will be discussed about 
Teststand in chapter 4.6, “Automating the process”. 
 

2.3.3 BIST 

In the current manual test, something called “Board in System Test”, BIST, 
is used. It is a simple program that when uploaded to the MCU executes a 
check of internal components, such as memory. It also gives access to all the 
external functionality of the gateway. The interface for BIST is a serial 
terminal. A program called CoolTerm was used in the manual testing, but 
since it is not used in the project, it will not be discussed. Figure 19 on the 
next page shows the BIST initialization dump. The test rig will later utilize 
BIST and the gateways debug port to send and receive commands 
automatically. 
 

2.3.4 J-COM 
 
J-COM is a program developed by Jens Lorentzson, an employee at 
JEMAC, as a terminal for interaction with the gateway BIST. Programs like 
the above-mentioned CoolTerm, TeraTerm or the terminal included in 
Windows is usable, but these lack the ability to save frequently used 
commands. It was considered an annoying problem when debugging the 
gateway and was resolved by writing a simple C++ program. J-COM was 
handy to use in the project for testing out sequences manually and to explore 
BIST parameters on the gateway. Figure 20 on the next page shows J-
COM’s self-explaining interface. 
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Figure 19: BIST initialization dump 

 

 

 
Figure 20: J-COM user interface 
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3 Method 

The project plan uses a traditional waterfall approach. It was chosen over 
other models like Kanban and Scrum mainly due to that the project was to 
be completed by one person only. Designed to be used in teams, more 
complex models seem not to add more clarification of the project structure 
for a single individual, but make the workload heavier because of the time 
that must be spent on tracking progress and constant follow-ups. The defined 
goals lend themselves to a pretty straightforward approach; therefore, an 
iterative process was not considered feasible, and the idea of this was 
discarded.  
 
Together with JEMAC, a Gantt-table was created to provide an initial 
timeframe for the completion of the project. Figure 21 shows the planned 
workflow. 
 

 
Figure 21: A preliminary timetable for the project. 

 
Tasks were completed one by one as the project evolved. Some deviations 
from the original plan occurred due to unforeseen adjustments and other 
external factors such as waiting for parts. When delayed by events like that, 
the time was used to prepare for other tasks or to conduct research for, or 
write on, the report. The original timeframe was continuously revisited, to 
make sure that there was sufficient progress made despite the deviations. 
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3.1 Clients requirements 
When the project began requirements of the system were amongst the first 
things to be discussed.  
 
JEMAC wants to make a system which can be scaled and easily adapted to 
later models of the gateway. Initial ideas were to use an off-the-shelf 
microprocessor board, like the ATmega2560, as the central hardware unit. 
This board has plenty of I/O, DAC and ADC, and with the option to expand. 
It was thought to be supported by other non-costly devices as the hardware 
platform for the project.  
 
Discussions concluded that the upside of this kind of boards is that they are 
very cost-effective when produced in the large quantities that they are, but 
they are not considered reliable enough in an application of professional 
character like the project is supposed to be. Components might be of inferior 
quality, and there is no traceability or manufacturer warranty provided. 
JEMAC distinctively opted for calibrated hardware that can be easily 
sourced and replaced in case of failure and because of these demands, the 
idea was discarded. 
 
Along with the proposition of using the ATmega, there was also an idea of 
writing the test system in a language like Java or C++. The author had 
previous experiences from school and when working on private projects 
using these programming languages and thought that it might have been 
advantageous for the programming efficiency, not having to learn new 
coding methods. Considering this, JEMAC instead opted to use National 
Instruments LabVIEW as the software choice. Arguments for this were that 
is widely used in industry, has an excellent help forum online, and goes in 
line with JEMAC's desires of a scalable system.  
 
The procedure of the current manual test uses serial communication with the 
gateway to send test commands and receive responses in a terminal on the 
computer. The automatic test system will use this model as a starting point. 
Naturally, discussions about the idea to use multiple serial interfaces 
followed, for trying to control all the hardware components to be used in the 
test rig. Almost full automation would be possible. The ability to control 
everything via a PC minimizes the need for human interaction with the test 
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rig; this is something that can prevent errors and speed up test times. 
LabVIEW has support for multiple serial terminals, so a solution like this is 
not prevented by software limitations. At last, the decision was made to use 
this configuration.   
 
It would have been convenient to choose NI's customizable racks to unify 
the hardware and software requirements, but the price for these was not in 
the range of the project budget and they were a bit too advanced for the 
intended purposes. After searching for alternatives, the final choice of 
hardware was made; the chosen devices are discussed in chapter 3.4. 
 
To summarize, when having had discussions with the client, these 
requirements have been made clear: 
 

 A scalable and flexible system approach. 
 LabVIEW as the system software.  
 Preferably calibrated and manufacturer supported hardware. 
 The use of devices that supports serial communication. 
 Start off from current test software and BIST 
 Budget is to be held reasonably small. 

3.2 Test system requirements 
The functionalities that are being advertised in the product specification 
were decided to be the basis for what is to be tested in the system. 
Discussions led to the soon followed specification of what is the criteria for 
each feature to pass the functional test. The features included are listed 
below, also technically described in chapter 2.2. Note that USB- and CAN-
buses have not been included; this is due to that the current version of the 
BIST tests CAN while booting, and for that it does not handle the USB 
hardware yet. BIST is developed by another company, and efforts were 
made to get hold of a new version that included the desired new functions, 
but it proved unsuccessful. The addition of the 3.3 V and battery rail is made 
because of that that testing functionality was already included in the BIST, 
and might as well be included in the tests. Because of the failure to produce 
a new BIST, the test specification is limited to the gateway features listed 
below. 
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1. The following analog values must be within limits set by analysis of 
the production batch. 
 
 Battery rail 
 3.3 V rail 
 Analog voltage inputs 
 Analog current inputs 
 Analog output 
 PTC inputs 

 
2. Serial communication interfaces must be able to send and receive 

data at the fixed baud rate determined by BIST. 

 
 RS-232 
 RS-485 

 
3. The modem needs to be able to recognize the SIM-card, connect to a 

predetermined carrier and report back signal strength. 

 
4. The GNSS chip needs to be able to report NMEA strings on request. 

 
5. For the Ethernet functionality to pass, the gateway needs to be 

recognized by the computer used when testing. 

 
6. The gateway needs to be able to communicate with the 

accelerometer chip. 

 
7. On request, the digital inputs should report back the corresponding 

logical state when the incoming signal is above or below the 
threshold. 
 

8. The gateway must be able to produce a digital signal recognizable to 
external equipment. 

 
9. The gateway must be able to go into sleep mode and be woken up 

using the following triggers: 
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 Reception of a digital high on port A. 
 A button press from the user. 
 The connection of external DC supply. 
 On a signal from the RTC. 

 

3.3 Deciding on hardware 
 
With the decision about the choice of software made, a search for suitable 
hardware equipment followed. Sources were the catalogs of suppliers like 
Digi-Key, Farnell, Mouser and ELFA, as well as local distributors like 
Kjell&Co and Clas Ohlsson for generic devices. 
 

3.3.1 Velleman PS3005D 

To supply the rig with power, Velleman PS3005D was considered and later 
chosen. This power supply is shown in figure 22. JEMAC already has two 
of these units and is using them in development. They have been proven 
robust and trustworthy. PS3005D come with the desired feature of remote 
connection via a USB. The output voltage and current limit are controllable, 
and the actual current drawn from the supply can be read with three digits 
precision from the computer. Current limiting serves as protection for 
eventually short-circuited boards and other failures. Maximum power is 
specified at 30VDC and 5A. Voltage ripple is 2 mV, and current ripple is 3 
mA. It meets the requirements of the test system. The unit was bought at 
Kjell&Co which offers this product for 1300 SEK at the time of this report. 
[17][18] 
 
Some alternative options were also considered. LED power supplies is a 
cheap way of obtaining power. They come in various sized and, can be used 
to drive practically anything. For example, the price of a 720 W 24 V supply 
is 350 SEK on eBay. The price of a 24 W 24 V is 47 SEK [19].  
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These supplies have the disadvantage of being no-name, no warranty 
products, but are widely available and easy to replace though. They do not 
support serial communication. If this alternative was to be used, the supply 
should be controlled with a digital output pin via a relay and measurements 
of voltage and current would have to be made at a greater effort. The 
supplies meet none of the requirements but provide an example of the 
research made to provide product comparison. 
 
 

   
Figure 22: Velleman PS3005D. 

 
Figure 23: LabJack U12. 

3.3.2 LabJack U12 

An I/O system is needed to provide the gateway and relay switches with 
digital signals and analog voltages. The selected unit must also be able to 
measure the DAC voltage and current. To meet the requirements, it must 
feature a serial interface. ELFA turned out to have a good assortment of 
these kinds of measurement laboratory units. Manufacturers of this type of 
devices were shown to be Meilhaus, Velleman, and Advantech. Surely other 
manufacturers exist as well. A comparison of the available products proved 
that the different models of LabJack units were best suited. LabJack 
provides customers with a LabVIEW plugin for instant use in the software 
environment; this is a significant advantage over the others. Their prices are 
up to about 8000 SEK for the most competent versions. Simpler versions as 
the U12, appropriately sized for the project, is also available. [20] 
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Model U12 is the original product from LabJack, released in 2001. The 
company still supports the model and enjoys an excellent record of 
reliability. There are two analog outputs provided with a range of 0-5 V with 
10-bit resolution. 20 digital I/O's is available to control switches and read 
signals. The analog inputs can be configured as eight ground-referenced or 
four differential, with ±10 V range and the resolution of 12-bit. [21] 
 
To meet the requirement for the test system to be expandable, an excess of 
all types of I/O’s than what is needed for the project is desirable. The model 
U12 met this demand and the price criteria and was chosen for usage. 
Bought directly from the manufacturer the price is €130. However, the unit 
was purchased from ELFA. 
 

3.3.3 FTDI USB-to-RS232 and USB-to-RS485 adapters 

In the requirements, it was specified to use serial communication for all the 
devices. Nowadays, only old computers have a serial port. USB has become 
the new standard, but there is a lot of USB-to-serial adapters available. One 
prominent manufacturer of these is FTDI. Not much research had to be done 
in this case as it stood clear that most of the generic converters available on 
the market use FTDI chips. Two adapters were purchased directly from the 
company because the research made discovered cases where counterfeit 
FTDI chips were found. One converter was bought for RS-232 and one for 
RS-485. Information about the differences of these standards can be found 
in chapter 2.2. [22][23] 
 

3.3.4 Plexgear USB-hub 

The computer intended to run the test software does not have enough USB 
ports for the number of devices to be used. A generic hub to expand the ports 
was found on Kjell&Co for about 250 SEK. With this device, a deviation 
from the requirement of a calibrated device was accepted. USB hubs were 
considered reliable, and they are also easy to replace. [24] 
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3.3.5 Luxorparts 8-channel relay module 

Sometimes it is necessary to be able to automatically perform a switch 
between two different inputs from the same gateway output. For example, 
this happens when having the same terminal for voltage and current output. 
The voltage is measured by one of the LabJack ADC’s, and the current is 
measured by a shunt across another ADC. The choice of the module to 
perform this fell on a Luxorparts 8-channel optoisolated relay module. It has 
plenty of room for expansion and can break relatively large currents if such 
test were to be implemented in future expansions. Unfortunately, it lacks a 
serial interface, but considering the LabJack’s many digital I/O’s, it was 
thought better to utilize these than to spend money on a more competent 
module. [25] 

3.4 Planning the test sequences 
 
In this chapter, block diagrams (in figures 24 to 33) will be presented to 
show how the different test sequences were planned. They are general in 
nature and designed with the purpose to get a feel for the structure of the 
various tests and what tasks need to be done to perform them. 
 

 
Figure 24: PTC, rails and ADC voltage/current sequence 

 
Figure 26: RS-232/RS-485 receive sequence 
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Figure 25: DAC voltage/current sequence 

 
Figure 27: RS-232/RS-485 transmit sequence 

 

 
Figure 28: Accelerometer sequence 

 
Figure 29: Modem sequence 
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Figure 30: GNSS sequence 

 

 
Figure 31: Ethernet sequence 

 

 
Figure 32: Digital input/output sequence 

 
Figure 33: Wake-up sequence 
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4 Implementation 

When the preparation phase was completed, the implementation could 
begin. This chapter will describe the process. Note that the sub-VI section 
of this chapter will not describe all the individual tests that were created, as 
these share many similarities, but will instead describe the key components 
of the program. 

4.1 Setting up hardware 
The gateway uses a terminal block for power and most of the external 
features. Appendix B shows the terminal block pin configuration and figure 
1 in chapter 2.1 shows a picture of the female end where all the wires from 
the other test devices are being connected. 
 
For the power and debug port, it was possible to re-use a cable from the 
manual tests. It already had the cables wired to one of the USB-to-serial 
adapters and banana jacks for the PSU. These are placed on the same plug. 
The connection between the USB-to-485 adapter and the corresponding 
terminal plug could also be made using a single cable to a single plug. 
 
As can be seen in appendix B, the other functions share plugs. It was 
undesirable to connect cables from multiple devices across multiple plugs, 
so an adapter was manufactured using male terminal plugs and a D-SUB 
connector. A picture of the adapter is shown in figure 35. The cross-overs is 
made inside of the connector. It allowed for proper connections to the test 
devices from the D-SUB instead of from the gateway. 
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Figure 35: The terminal block-DSUB adapter 

 

 
Figure 36: The pin header-DSUB adapter 

Most of the LabJack’s digital outputs are available through another D-SUB 
at the short end of the unit, and they were to be connected to the pin headers 
on the relay module. It was necessary to create an adapter also between these 
devices. A picture of the inside of that adapter can be seen in figure 36. 
 
When testing the relays intended to switch between DAC output 
current/voltage and for connection of the battery when testing sleep-mode, 
it proved impossible for the LabJack to drive their coils. It was due to that 
when supplied by USB, as it was, the LabJack did not have enough 
headroom to provide the 90mA coil current and operate its own components 
at the same time. USB only allows for 100mA before the overcurrent 
protection circuitry sets in. A generic 5 V cell-phone charger able to provide 
1A was used as a remedy, using this to supply the relay module with power. 
Far from an ideal solution, but it was being made to make progress. Besides 
that, the project was still in a prototype stage, and final optimizations were 
planned for later. [26] 
 
All system components were connected to the USB-hub. Initially, the 
connections were being made as a “rat's nest”, but at a certain point in the 
development, it was necessary to tidy up the wires a bit. That was done by 
the manufacture of a table for the devices to sit on. Holes were drilled to be 
able to hide the cables from view. When the adapters and table had been 
constructed, connections were successively made as test modules were 
programmed for each function. Figure 37 shows the complete table with the 
LabJack, relay module and battery on the top row, and the USB hub and 
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gateway on the bottom. Adapters and wires are hidden on the underside of 
the board. 
 

 
Figure 37: The hardware setup 

 

4.2 Setting up communication 
USB-to-serial is being used for the LabJack, the power supply, two RS-232 
adapters and one RS-485 adapter. They count as five virtual COM-ports to 
the host computer. A subsection of LabVIEW called “Measurement and 
automation explorer” is where the setup of correct parameters for all the 
ports is handled. The ports are listed in a column and for each, settings of 
bitrate, data, stop bits and parity is made. It is possible to name the ports, for 
later convenience. All the devices that were being setup had the common 8-
bit data, one stop bit, no parity settings, but the bitrate varied across them. 
The PSU and LabJack are set to 9600 baud while the gateway is set to 
115200 baud. These transfer rates are the speed limits of the system. 
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Figure 38: Measurement and automation explorer 

 

4.3 Building Sub-VI’s 
LabVIEW and sub sequentially the whole project revolves around sub-VI’s. 
While the main VI was built for the user interface, all the different tests were 
constructed as one sub-VI for each test. Not every one of the individual tests 
will be presented here. Instead, two different test types will be shown. At 
the core of all tests is the serial communication needed for both the gateway 
and the other system devices. This chapter begins with a presentation of how 
a VI for that was created. Figure 39 shows the block diagram, and it is also 
shown in Appendix C for a better view of the details. 
 

4.3.1 Serial communication VI 
 

 
Figure 39: The serial communication sub-VI. 
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Beginning in the left area of the figure, there is a block called “VISA serial”. 
It is LabVIEW’s built-in functionality for serial data handling. The “VISA 
resource name” and “baud rate” blocks that proceeds, is configured as 
variable inputs that are made available (by routing) when calling the serial-
VI from elsewhere.  
 
The hexadecimal “1B” sets the port termination character, and the “F” is a 
false Boolean value set not to use parity control. Both are static because all 
devices are using these settings and that does not change. The wires that lead 
out from the VISA block are the “serial resource” (i.e. the port) that have 
been set in the block, and an error tracking function that is being passed 
along all blocks to spot where eventual errors in the execution occur. These 
two wires lead to a block without text, but with a downwards pointing arrow. 
It is a function to flush the serial input buffer before proceeding. The buffer 
might or might not be empty; use of the flush guarantees that no leftover 
data can corrupt future commands. 
 
Wires are passed along to the “VISA write”-block and the execution 
continues. The variable string input that is to be written to the line follows. 
Between the input and the write-block, the incoming string is concatenated 
with a “line feed” and a “carriage return” symbol that is needed to terminate 
commands properly. 
 
After the write-block is a “flat sequence” box with a “pre-delay” double 
input connected to a “wait”-function. It can slow down the process a bit for 
increased stability. The next step is the while-loop, and outside of its frame 
is a clock symbol. It will note the time just before entering the loop. The 
other clock inside runs for as long the while-loop is active, and when 
compared by subtraction to the first; if the loop runs for more than 1000 
milliseconds, a Boolean “true” emerges which breaks the loop and continues 
with the execution of the VI. This is a time-out function, designed to prevent 
locking of the program if there were to be errors in the communication. 
 
Another way to break the loop is via the function “Bytes at port”. If the loop 
is running, the function reads any incoming bytes into a buffer. These bytes 
are then passed to a “not equal to zero” function, used for detecting a state 
where there are no more bits to read. If there isn’t, the Boolean “or”-function 
that follows will be true, and the loop will break. The time it took to read 
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will be noted and presented in the “Timer” indicator, using the same time 
comparison as was used to detect a time-out.  
 
At the same time as the buffer is being compared to zero, the data inside it 
is passed along to outside the while-loop, as can be seen in figure 39. After 
the break, data is then read from the buffer using the “VISA read” function. 
Digital data in the byte stream is converted to a string, and if that string is a 
number, the string is also converted to a double. Lastly, the “VISA close”-
function closes the serial port and terminates the VI. 
 
The constructed VI consists of a number of inputs and outputs. The inputs 
are the serial port, baud rate, and string input. Outputs are execution time, 
response string and response double. Figure 11 in chapter 2.3.1 shows an 
illustration of a created sub-VI’s block when used in another VI; the same 
principle applies with all VI’s. The block has all the inputs and outputs that 
were created in the programming sequence, and that was routed in the front 
panel. 
 
Almost every test requires some parameter to be set on the gateway before 
requesting data. As an example of this, figure 40 shows a sequence where 
the power to the analog circuitry is turned off at the INT-board, and on at 
the MCU-board. The same serial VI as created before is used, but in this 
case, the gateway will simply not respond anything, and the read part of the 
serial VI will not see any data; the buffer will be zero. Although not seen in 
the figure, the sub-VI block has outputs on the opposite side of the shown 
inputs. They are not connected to anything and simply ignored. 
 

 
Figure 40: A typical command sequence 

 
In some test cases, only the serial VI is required to determine a pass/fail. The 
gateway is given a command and responds, the answer is compared to what 
is to be expected, and if it matches, the test has passed. An example of such 
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a sequence is shown in figure 41. The accelerometer, modem, and GNSS are 
tested in this way, solely. 
 
The simplest test is the one for the accelerometer. A command is sent 
requesting current X, Y, and Z-coordinates. Upon response, these are not 
evaluated but only checked for the proper syntax. That is because the 
uncertainty about the flatness of the surface holding the test rig. Figure 40 
shows the simplicity of the sequence. 
 

 
Figure 41: The simple accelerometer sequence 

 
The modem has a whole lot of commands available to it. They are called 
AT-commands and is a standard set for modems. Before they can be 
executed, power to the modem must be turned on using a serial command. 
By yet another serial command, setting the gateway in “AT-mode”, AT-
commands can be sent to the modem. The command creates a “bridge” 
between the debug port and the modem. AT-commands are then used to 
request data and set parameters. The modem test sends three requests; 
connection to carrier, signal strength, and IMEI readout. There are no pass 
limits for the signal; tested is only that the modem reports one. The strength 
varies due to lots of different uncontrollable circumstances, so to include 
limits would not work properly. IMEI is compared to what the user inputs 
at the beginning of the test and the carrier should match the SIM provider of 
the inserted card. 
 
The GNSS chip is not directly connected to the MCU, but instead to the 
modem, and therefore GNSS is tested in the same way using AT-commands 
to request NMEA strings from the module. The “bridge” is used here also, 
this time extending to the GNSS. Only the syntax is being evaluated when 
the module responds because the test rig might be placed at another location 
then what it is expected to be, and the signal might not be totally accurate. 
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Ethernet is tested by sending a command to the gateway to initialize an IP 
at a certain address. This is to be chosen to match the computers network 
environment. To see if the IP exists on the network it is then tested with a 
LabVIEW script that uses the Windows command prompt and the “ping”-
function that can be found there. The response of the script, with the result 
of the ping, is then evaluated in the sequence, and the IP is found, the test 
has passed. 
 
The RS-232 and RS-485 ports are tested for the ability to send and receive 
data between the FTDI adapters and the gateway. The MCU’s UART is 
shared between the two protocols so a command to an analog switch must 
first be sent to switch between the two before sending any data on the ports. 
Both protocols are tested in the same way, only using different serial ports 
and adapters. First, the chosen port on the computer is opened by 
LabVIEW’s “VISA serial”-function; the same that was used in the 
construction of the serial-VI. The gateway is then commanded to send some 
test data to the computer, which if everything goes well, receives it, closes 
the port and allows the sequence to move on to test communication in the 
other way around. Doing so, the gateway is put in a “listen”-state waiting 
for incoming characters. Test data is then sent by the computer, and upon 
reception, the gateway leaves the “listen”-mode and reports the data back to 
the debug port. It can then be verified that the sent and received bytes of data 
matches. 
 
Other tests require not only serial communication, but also the LabJack to 
read or write from its ports. A LabJack LabVIEW plugin is used for this. 
The control and display panel of the plugin can be seen in figure 42. It shows 
the state of the ports and allows the user to manipulate them. The LabJack 
inputs and outputs can also be automated by using blocks, wires, and inputs 
in the same way as any other LabVIEW object. Figure 43 shows the palette 
for LabJack where blocks are chosen from. 
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4.3.2 Analog measurement VI 
 
 

 
Figure 42: LabJack plugin control panel 

 

 
Figure 43: The LabJack plugin palette 

 
Besides comparing the gateway output to expected values as done with all 
the above tests, another sub-VI was needed to evaluate the ADC/DAC 
accuracy. The front panel of a VI that accomplishes that is shown in figure 
43. The “tick boxes” in the upper left corner is the same kind of inputs that 
were used in the serial-VI earlier. “CHX” and “_Y” is variable to be able to 
command any of the gateways four ADC’s. Actually, the sub-VI needs to 
be able to read six different inputs, but some of them share the same ADC 
and are switched by another command. There are four combinations to 
access the different channels: X0Y0, X0Y1, X1Y0, and X1Y1. The chosen 
values are concatenated with static values in the VI to form proper 
commands for the gateway. An example of such a command followes later, 
where “digin ADC-CH ” and “_ ” is the parts that are added to the integer 
user input. 
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Figure 43: The front panel of the analog measurement VI 

 

There can be fluctuations in the measurements, and for more stable results 
there is also an input to set the number of times that the ADC should be read. 
Unfortunately, due to the time it takes to execute each trial, the sampling 
rate is limited to only about 25Hz. Still, a hundred measurements do not take 
more than a few seconds. 
 
Analog outputs from the LabJack’s provide the ADC’s with a known voltage 
that can be adjusted in the last input box on the upper left. The range is 0-
5V, but there is a current limiting resistor in the LabJack’s circuit that drops 
the voltage somewhat. This is discussed in chapter 5. 
 
The converters are read by sending a command using the serial-VI created 
previously; for example, “digin ADC-CH1_1”. By doing so, the requested 
ADC channel is being sampled, and the gateway will respond with the 
digital value. The serial VI will output this value to the measurement VI that 
is being created, and the resulting value is plotted on the graph. The graph 
is mostly there for manual testing purposes, such as when doing a large 
number of trials. 
 
In the top right corner is the outputs of the VI. A “peak detector”-function 
keeps track of the maximum and minimum values. Another function 
computes the mean value and standard deviation of the set of data samples. 
That data can then be compared to threshold limits laid down for each test. 
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Data from the “measurement-VI” described above is used in the respective 
test sub-VIs for the two ADC voltage channels, the two ADC current 
channels, the two external temperature channels, and the two rails (battery 
and 3.3V). 
 
A similar test is done with the DAC but in the reverse order. Digital values 
from the gateway provide a voltage at the LabJack input. It is being sampled 
there and evaluated in the same way. 
 
All but one of the wake-up trigger tests (the one for a button press) are 
executed with the serial VI and the LabJack plugin in conjunction. A 
requirement for the sleep mode to work is that the battery is connected. To 
not having to do this manually, the battery connection is controlled via the 
relay module. The sequence starts with a digital output from the LabJack to 
the relay which closes the battery circuit to the gateway. The power supply 
is then turned off, but since on battery power now, the gateway is 
commanded to go to sleep. 
 
To check that the gateway really is in sleep mode a dummy command to turn 
a LED on is sent to it. No response is expected; if a confirmation of the LED 
command is received, the gateway is awake, and the test halts and fails. 
Otherwise, the test continues by activating one of the wake-up triggers. In 
the first case, a high signal is sent to the gateways digital I/O. The unit is 
expected to wake-up, and after delaying the test to allow the MCU to boot 
up, another dummy command is sent to the gateway, also trying to activate 
a LED. This time the gateway should respond with a confirmation of the 
action for the test to pass. When this is determined, the last steps in the 
sequence turns the LED off, reconnects the power supply, disconnects the 
battery and resets the LabJack output. 
 
The general idea is the same for the “power-on”, RTC and “button press” 
wake-up functions. In the “power on”-test, the only difference is that 
reconnection of the PSU is supposed to trigger the wake-up. The same 
dummy command method for determining if the gateway is asleep and has 
woken up correctly is used, as is the battery and PSU 
connection/disconnection, and reset of the LabJack and gateway. 
 



 
 

45 

For testing that the unit can wake itself up using the onboard RTC chip, one 
additional command must be sent to the gateway to set the duration of the 
sleep period. When putting the gateway to sleep, it is expected to wake-up 
after that time. The dummy method confirms that the gateway is sleeping, 
then the test sequence waits, allowing for the fixed period to pass and the 
gateway to boot. If everything is right, the second time the dummy test is 
performed, a confirmation is received that the unit has woken up and the test 
passes. 
 
With the “button press”-test things are a little different. No automation of 
the button pressing is being made. The test operator must perform this action 
manually. Everything is the same as for the first two wake-up tests up to the 
point when the gateway is confirmed that it is sleeping. Instead of automatic 
triggering, a pop-up message is shown to the operator requesting a button 
press (on the gateway) and then for pressing an OK-button on-screen. After 
the OK-button is pressed, the test proceeds by waiting for the gateway to 
boot and continues with the confirmation that the gateway is awake, power 
disconnection and reset. 
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4.4 Building the interface 

 
Figure 44: The finished interface 

Figure 44 shows the finished interface. It is built around the LabVIEW 
event-blocks. All the other tests sub-VI’s are contained within the main VI’s 
block diagram. There is a while loop constantly running if the stop button is 
not pressed. That will halt execution and terminate the main VI. The buttons 
are Boolean controls, and they are associated with different events that then 
associate with the sub-VI’s of all the different tests. Some buttons as the 
power control directly send commands to both the PSU and the gateway. 
 
When running the main VI, the program will display a few user input 
requests. The first of the two reminds the user to plug in the right cables for 
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the terminal block and Ethernet and battery and to put in an SIM-card. An 
image of this can be seen in chapter 4.6. 
 
The “voltage” and “limit” radio buttons set the voltage and current limit for 
the PSU. It is done in the same manner as in the case with the ADC’s in 
chapter 4.3; using concatenation of numbers and strings to form commands. 
The selectable voltage is in the range of what the gateway can handle, and 
the limits are set a little higher than what it consumes at most, for each 
voltage. 
 
Pressing the “on” button turns the power supply on, and the button changes 
face and function to “off”. “Reboot” sends a command to the gateway to 
perform a soft reboot. The “initialized” indicator will turn off and turn on 
again when the gateway has responded that boot is complete. “Reset” resets 
all tests and turns off all the indicators for them. “Stop” of course stops the 
execution of the program. Then there are different buttons for each test, 
which when pressed will light up the “running” indicator and if passed, turn 
on the green indicator next to the button. 
 
Using the main-VI and its interface allowes for a semi-automated test. It was 
created while building the different test as a way to make sure that the VI’s 
behaved properly. As the final product, the interface will not be used. All of 
the VI test execution will be automized by using Teststand. Chapter 4.6 
presents and describes the fully automated finished product. 

4.5 Setting pass limits 
When testing gateways, a certain number of samples will be taken from each 
ADC/DAC. These samples will have a mean and a standard deviation of 
values that should both be within certain limits. To calculate what they 
should be set at, five gateways was sampled to find the average value and 
standard deviation for that population. Establishing the boundaries for an 
individual gateway to be ±3σ from the populations mean and mean standard 
deviation, make the limits statistically represent practically all the gateways 
used to set them. Therefore, the limit reflects how the manufacturing process 
and design are working right now, with the current batch. A future batch 
might have values drifting from the current mean or with a larger spread, 
indicating that something has changed and needs to be addressed. 
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Setting the limits was done by the following procedure: 
 

1. Sample five gateways 99 times each. 
2. Calculate the mean value of each gateway as MGx 
3. Calculate the standard deviation of each gateway as σGx. 
4. Calculate the mean value of the population as MM,Gx 
5. Calculate the standard deviation of the population mean values as 

σM,M,Gx 
6. Set high and low mean pass thresholds to MM,Gx±3*σM,M,Gx 
7. Set high and low standard deviation thresholds to ±3*σGx 

It can be challenging to follow the algorithm, so an example of the above, 
calculated for the 4mA DAC output, is given: 
 

 MGx σGx. 
G1 3,95 0,006 
G2 3,93 0,004 
G3 4,02 0,006 
G4 3,97 0,009 
G5 3,98 0,005 

Table 1: Measurement data 

 
MM,Gx is calculated as:  

σM,M,Gx is calculated as:  

Mσ,Gx is calculated as:  
 
The mean DAC current pass limits are set to: 
 

  
 
The standard deviation pass limits for each set of measurements is set to: 
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4.6 Automating the process 
To automate the whole testing process proved an easy thing with NI’s 
Teststand. When all the test VI’s were completed and confirmed working in 
the manual interface, they were ready to be imported into Teststand. Because 
NI is the company behind both software products, the integration is 
seamless. When importing a VI into Teststand, all its routed variables will 
show up in the settings pane. In the example of figure 45, available input 
parameters are “Voltage” and “Limit”, which is being set to 15 and 0.2. 
“Voltage” and “Idle current” are the possible outputs, where the latter is the 
one evaluated by Teststand to determine if the idle current is between set 
limits. The first is simply ignored but could be used as a test input as well. 
 

 
Figure 45: Teststand module settings 

Importing the VI’s one by one, soon the test sequence is completed. Mainly 
two types of tests were used in the projects test sequence; the “pass/fail” test 
and the “numerical limit” test. Most of the created VI’s will run their 
command sequences to the gateway and evaluate the results from them, then 
return the result a Boolean true or false. The variable is then set up in 
Teststand to a “pass/fail” test. Analog tests use the “numerical limit” test of 
course. With each of them, the limits are configured in Teststand using the 
values calculated for each corresponding analog function. 
 
 



 
 

50 

 
Figure 46: The final test sequence in Teststand 

 

Besides showing a list of imported VI’s and the test types described in the 
previous paragraph, figure 46 also shows some steps for user input in the 
sequence. Teststand has a feature where the program can halt and display 
messages and pictures to the operator. Not only that, but it can also take 
input such as the modem's IMEI number that is being requested a bit into 
the sequence. 
 

 
Figure 47: Message shown to user at startup 
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The first step in the list of sequences displays a picture; this is shown in 
figure 47. A photo has been taken and edited to clearly instruct the operator 
of what to do and where to do it. Pedagogy and clarity are keys when it is 
not known who will perform the tests. Many things can be misunderstood 
or neglected, and this needs to be avoided. After the confirmation, some 
steps are setting up the PSU and the gateway before the main test sequence 
starts. Tests are performed one by one and give a green or red indication of 
the result. The read and write delays to the gateway have been optimized for 
maximum speed so that the test should be quick.  
 

 
Figure 48: The sequence has halted, and the test has failed. 

 

Figure 48 shows a complete test execution. This example has failed, and an 
explicit notification showing this is displayed to the operator. Following the 
completion of a test, the operator gets the choice of either continuing with 
testing of another unit or end testing and review the test reports. A serial 
number that has been asked for as the absolute first step; not programmed in 
the sequence but implied by Teststand itself, identifies the gateway. Reports 
save to a local directory as an HTML file with DUT serial and time/date as 
the filename. The reports can also be uploaded to a database, but JEMAC 
does not currently use one, so local storage was considered sufficient. The 
report that was generated from the test example above can be found in its 
whole in appendix D. 
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5 Verification 
As a part of the project objective was beside building the test rig, also to 
verify that it works as intended. This was done in two ways; by measuring 
values externally on the devices, and by provoking errors by various means. 
Even though not explicitly stated in the problem specification, basic 
calibration of the analog measurements was also done to eliminate offset 
errors. 

5.1 Provoking errors 
To have something to compare against and verify that the tests worked, and 
not gave positive results no matter what circumstance, errors were provoked 
in various ways. One obvious thing was to simply not plugging in cables to 
the terminal block. Besides proving that the tests were OK, this method also 
caused confusion a lot of times when a test was expected to work. With the 
digital I/O’s, wrong commands were being sent from the gateway and the 
LabJack to check for test correctness. The signals were also verified high 
and low, respectively; measuring with a multimeter to see that there were 
voltage and ground on the LabJack’s terminals. 
 
For modem verification, the wrong or no SIM-card was inserted, making all 
the tests fail. Commands to turn on internal circuitry were omitted as another 
way to verify tests. The battery was connected when it was not supposed to 
and disconnected when it was to, rendering the wake-up tests to fail. RS-232 
and 485 had their COM-ports set to mismatching baud rates. The Ethernet 
cable was left unconnected, or the IP was initiated in the wrong way. All 
these kinds of provocations to the system was constantly made, and 
gradually increased the confidence of its stability. 

5.2 Measurements 
The analog parts of the system were tested by measurement. LabJack’s 
terminals were a good place to probe for voltages to confirm that they were 
present when the system thought that they were, and the other way around. 
As stated before, calibration was simultaneously performed. Expected 
values were compared with real values, and factors of correction were 
calculated and inserted into the test VI’s. When the DAC and ADC current 
input sequences were being programmed, the actual current was measured 
by a four-digit Fluke multimeter to calculate a relationship between current 
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and bits. However, only the most evident and easy to do calibrations were 
being done and not much time was put into that matter. The project was 
about functional testing and was to ensure that the unit’s work, not on how 
good they are working. Verification that the reality was what it was pictured 
as in the test system was of course needed to make the project trustworthy 
and the test rig solid. 
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6 Results 

The project has produced a test system in LabVIEW for a client in need of 
improvements in functional testing. This chapter describes the results of the 
project from both the perspective of the goals specified in chapter 1.3 and 
from a general standpoint. 

6.1 Goals of the project 
A test specification was to be created, and this has been done and is found 
in chapter 3.2. It defines the pass criteria for each of the tested features. Since 
the project is about functional testing, this specification is not an extensive 
description of the underlying technical functionality that makes it possible 
for the features to function, but merely of a very basic level. After 
verification testing, it is assumed that the circuits should work.  
 
The goal of creating a hardware and software system has also been met. The 
client requested the possibility to extend and continue to work on the test 
rig; this has been provided. The system runs on a well-used software and 
should be flexible enough to handle changes in hardware. Further 
development and possible improvements are discussed in chapter 7.  
 
Verification of the test system has been done to the best of abilities. With a 
small population of gateways to test, limited time, limited budget, there is 
still some uncertainty left in the system. However, verification has 
concluded that the system is stable enough to be used in development, due 
to that the rig has been tested in conditions that would expect a fault, and 
correctly recorded these faults. Long-term stability is not assessed but is 
anticipated to be mainly a hardware issue; some improvements will be 
discussed. 
 

6.2 Reliability 
Doing the manual test, a technician needed to spend hours reading the 
cluttered and confusing bench test document. There was a huge possibility 
for the test not to be carried out in the same way, as they were being done 
by different persons. For a functional test, not being able to compare the 
products fairly, against a fixed reference, makes it impossible to guarantee 
each unit. 
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The reliability of the test system was gradually improved to the point that it 
finally was considered stable. Many “bugs” were found in the way, causing 
confusion at first but later proved to be of critical importance. As the test rig 
was developed, hardware engineers were doing verification tests 
simultaneously. They found some unexpected characteristics of the gateway 
that led to that the functional testing failed some of the tests. After having 
technicians correcting the problems, the tests passed. This was considered a 
good marker for the rig’s sturdiness. 
 
Somewhere the middle of the project, the firmware developers ran into some 
issues when trying to initialize an IP using Ethernet. The problem caused the 
firmware to crash and the unit to lock up. Ethernet testing had been 
implemented in the test rig at this time, and this circumstance provided an 
opportunity to perform functional testing in a live case. While testing 
continuously and making changes to the gateway, the cause of the failure 
was narrowed down and finally found. The ability to repeat tests quickly 
contributed to the hardware engineer’s efforts to resolve the problem.   
 
Also, the verification described in chapter 5 all suggests that the test system 
works as planned. In agreement with the client, the author draws the 
conclusion that the company’s goal of test standardization has been met. 

6.3 Time-savings 
No quantification of the time needed to perform manual testing was made, 
but it is estimated to be something close to one hour. The automated test, on 
the other hand, performs all the steps in approximately one minute, time 
which is documented by Teststand in every generated test report. The project 
has provided a significant improvement in this aspect. There is not much 
more to conclude about this; the improvement in time-savings make the 
stakeholders consider the process streamlined. 

6.4 Ease of use 
As stated, the manual tests were complicated and confusing to perform. The 
developed test software makes the process effortless. It is not complicated 
to use. All that is required from the user is to connect the cables, enter the 
gateway identification and IMEI-number, and press the button when 
requested. The test sequence runs indefinitely, processing gateways one by 
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one until the operator exits the test program. There needs to be no training 
or education for personnel to be able to perform the task of testing; 
instructions are provided by the program. The fact that the information is 
graphical, makes it understandable internationally. Since mass production 
usually takes place in Asia, this is a great feature. Not having to hire 
engineers or technicians for the task can make contributions to the 
company’s economy, especially when hitting large volumes.  
 

6.5 Risk 
When delivering gateways for evaluation to potential customers, the 
company wants to be able to perform one final test when the gateway has 
been assembled, before packaging it and letting it go. Delivering a lot of 
units, testing could not be carried out due to the time it would take. 
Uncertainty and risk of the gateway to fail when being assessed by a 
potential customer was, of course, the result of not testing every unit; 
problems that have been eradicated with the development of the test rig. 

6.6 Omitted features 
When defining the test system requirements, the goal was to test all the 
features of the gateway. But not being able to acquire a new version of the 
BIST limited the possible tests that could be made; not all the features could 
be tested. CAN and USB were omitted. There were efforts made at the 
earliest stages, but the company that was supposed to develop and deliver 
the BIST did not succeed with doing so in time.  
 
The implied improvement of replacing the 5 V relay supply, found in chapter 
4.2, was also omitted. In a future hardware build, it is suggested to find a 
neater solution. 
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7 Conclusions and possible improvements 

This chapter will first answer the questions in the problem specification 
found in chapter 1.4. The author concludes that the development of the rig 
has laid some groundwork for more extensive testing. The core software 
features can be used as the base for more detailed testing, manual or 
automatic. A comment on this is found in the forthcoming chapter 7.4. Some 
other remarks about the result of the project is commented in the other 
subsequent chapters. 
 

1. How should the testing be performed? 
 
It was decided that the testing should be a continuation of existing 
practices. That is; testing should be performed with serial 
communication with the gateway, using pre-programmed firmware to 
send and receive commands to verify different functionality. Instead 
of recording and evaluating results manually, this was to be done 
automatically in the test system software. 
 

2. What are the requirements for each parameter to be considered OK? 
 
The pass requirements for the analog tests have been addressed in 
chapter 4.5. Conclusively, they have not been set to an arbitrary value, 
but have been calculated to reflect the state of the manufacturing 
process as it is currently performed, and thus serving a double 
purpose; ensuring proper function of the units and at the same time 
benchmarking the manufacturing process. 
 

3. What parts should constitute the test system? 
 
To be able to develop an automated version of the manual testing the 
system needs to consist of a PC with suitable software, a power 
supply, a relay module, a measurement device and USB adapters for 
the serial communication. The software has been described in chapter 
2.3 and the hardware in chapter 3.3. 
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4. What are the requirements of the test system hardware? 
 
The client request that the test system hardware should be replaceable 
in case of failure, calibrated for confidence in measurements and 
reasonably inexpensive to fit the project budget. 
 

5. How should information be shown in the user interface? 
 
The interface has been discussed in chapter 4.4 and 4.6. It was to be 
simple enough to be operated by a person with minimal or no 
technical knowledge. It was also to be easy to understand and require 
minimal human interaction. 
 

6. How should settings and data be stored? 
 
Due to the fact that the company has no servers with the ability to host 
databases, it was considered good enough to save files to a shared 
directory on the test system PC. Another reason for this is also that 
the test system so far handles small batches of units and there is no 
real need for organization in a database. 

7.1 Terminal blocks 
Some issues remains regarding the terminal block connections. The wire 
gauge on the USB-to-serial adapters proved too thin at several times during 
development. It was addressed and fixed, but the long-term stability of the 
blocks is in question. An improvement would be to alter the wires that are 
connecting to the terminal block to a proper gauge. The male connector of 
the terminal itself could also be modified to be easier to connect to the block 
female. As is, some force is required to disconnect it, suggesting long-term 
fatigue of the operator. The male part of the headers could also be fixed to 
each other to eliminate the possibility for a wrong insertion. 

7.2 Battery simulator 
Another more advanced test is to check the battery charger; an inclusion of 
a battery simulator circuit would suit this purpose. The circuit should behave 
so that a control signal can be used to simulate the battery’s voltage at empty 
and full (3.0 and 4.2 V). When set to 3 V, the circuit should handle the 
battery chargers charging current, which should be recorded and evaluated. 
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The simulated voltage should then change to 4.2 V, and at this voltage, the 
battery charging should be confirmed to have stopped. The PSU can be used 
to measure current or using a shunt and one of the LabJack’s free analog 
inputs. Control signals are available in BIST to read charger status. 

7.3 Casing and wiring 
As can be seen in the pictures of the finished hardware; the layout is quite 
primitive. This was not considered a problem from the client’s side, but there 
is room for improvement. For prolonged use of the test rig in unknown 
environments, the rig is vulnerable. The problem is thought to be in the 
casing and wiring underneath the table. 
 
It is suggested that all the test devices are neatly and safely placed inside a 
shielded box for protection of external sources of influence. The wiring 
could be changed to shielded cables to reduce the risk of electromagnetic 
interference. The “rats nest” underneath the table should be sorted out by 
shortening the serial adapters and at the same time handling the gauge issue. 

7.4 Usage of extra I/O 
As suggested in the first paragraph of this chapter; the availability of extra 
I/O’s on the LabJack and relay module lends itself to the development of 
more detailed testing, for example testing linearity and offset errors of the 
analog interfaces, or verifying the digital signal thresholds. It can also be 
used to connect/disconnect a USB power supply, test the gateways ability to 
drive the relays, and surely many other things conceivable if doing further 
development. 

7.5 ESD protection 
JEMAC has taken measures to minimize the risk of ESD damage in their 
premises. While working on the test system’s hardware development, 
handling of the gateway was done on an ESD mat, and before entering the 
workspace, one would be encouraged to discharge by touching a metal 
piece, potentially being charged from walking around in the building. These 
measures provide protection while developing, but there could be ESD 
protection built into the system. A small ESD mat could be placed on the 
test table, and a bracelet could also be attached, with the user being 
encouraged to use it through a message at the beginning of the testing 
procedure. 
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Appendix A 
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Appendix B 
1. Power 

 
2. Can Bus and Serial Interfaces 

 
3. Digital IO and Extension Signals (connections to Add On Board on 
internal header J6) 

 
4. Analogue IO 
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Appendix C 
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Appendix D 

 
UUT Report 
 
Station ID: JEMAC-172 
Serial Number: 14853397 

Date: den 24 april 
2017 

Time: 14:18:23 
Operator: administrator 

Execution Time: 17.1559061 
seconds 

Number of Results: 11 
UUT Result: Terminated 
 

 
Begin Sequence: MainSequence  
(C:\Desktop\LabView NEW\Sequence File 1.seq) 
Connection check 
Status: Done 
Button Index: 1 
 

Power on 
Status: Failed 
Measurement: 35 
Units: milliampere 
Limits: 
   Low: 45 
   High: 70 
Comparison Type: GELE (>= <=) 
Voltage [In]: 2 
Module Time: 3.0417263 
 

Transmitting RS232 data 
Status: Passed 
Module Time: 0.5751838 
 

Recieving RS232 data 
Status: Passed 
Module Time: 0.4831744 
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Transmitting RS485 data 
Status: Passed 
Module Time: 0.599104 
 

Recieving RS485 data 
Status: Passed 
Module Time: 0.6039543 
 

Initializing accelerometer 
Status: Passed 
Module Time: 0.1867405 
 

Initializing ethernet IP 
Status: Passed 
Module Time: 0.5855339 
 

Pinging gateway 
Status: Passed 
Module Time: 4.9387234 
 

Checking IMEI 
Status: Passed 
Module Time: 0.5834398 
 

Checking signal quality 
Status: Terminated 
Module Time: 0.5585506 

 
End Sequence: MainSequence 
End UUT Report 
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