Simulation and data analysis of peer-to-peer

traffic for live video streaming

ANTHONY SMITH

ANDREAS JOHANSSON LINDGREN

MASTER’S THESIS

DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

l' VP~ Y/

“output” — 2017/11/29 — 11:38 — page 1 — #1

Simulation and data analysis of peer-to-peer
traffic for live video streaming

Anthony Smith, Andreas Johansson Lindgren
datl2asl@student.lu.se, dicl2all@student.lu.se

Department of Electrical and Information Technology

Lund University

Supervisors: Maria Kihl, LTH
Jonny Lundell, Entecon AB
Magnus Hoem, Entecon AB

Examiner: Christian Nyberg

November 29, 2017

“output” — 2017/11/29 — 11:38 — page 2 — #2

(© 2017
Printed in Sweden
Tryckeriet i E-huset, Lund

“output” — 2017/11/29 — 11:38 — page i — #3

Abstract

Evaluating and testing changes or configurations to peer-to-peer systems or even
understanding their behaviour can be complicated. One approach is to simulate a
large peer-to-peer system and visualise the results. In this master’s thesis a study
is performed to understand how an actual implementation of a hybrid peer-to-peer
live video streaming system behaves and performs under different scenarios.

The behaviour and performance of a hybrid live video streaming system con-
sisting of an unstructured mesh-pull-based P2P network and a classic content
delivery network solution is studied by simulating the system with different sce-
narios such as flash crowds and flash disconnects. The simulation system includes
a network model taking latency and bandwidth into consideration.

As expected the mesh-based system performed well under user churn. Al-
though the system consisted of approximately 80% free-riders the utilisation of
the content distribution network was reduced by 95% on average. The data analy-
sis was successful in improving the system’s overall performance. Furthermore, the
visualisations and data analysis were used to understand the system’s behaviour.

Keywords - P2P, Peer-to-Peer, Hybrid Live Video Streaming System, Mesh-
based-pull Approach, Unstructured Network, Simulation, Visualisation.

“output” — 2017/11/29 — 11:38 — page ii — #4

ii

“output” — 2017/11/29 — 11:38 — page iii — #b5

Acknowledgements

We are very grateful to Entecon AB, and our supervisors Jonny Lundell and Mag-
nus Hoem, for giving us the opportunity and resources to execute the project.
Many thanks to Jonny Lundell providing invaluable guidance, commitment, and
many good ideas during this master’s thesis. Even more praise for remaining pos-
itive and encouraging throughout the project. Praise and thanks towards Magnus
Hoem are in order. Providing invaluable feedback, and helping us maintain our
ambition and goals. Lastly, we would like to thank Maria Kihl for being a very
flexible and friendly supervisor, and helping us with the academic process and
conducting this master’s thesis.

iii

“output” — 2017/11/29 — 11:38 — page iv — #6

v

“output” — 2017/11/29 — 11:38 — page v — #7

Popular science summary

The behaviour and overall performance of peer-to-peer live video stream-
ing systems are complex, and known to be notoriously hard to math-
ematically model and theorise. Peer-to-peer live video streaming sys-
tems utilise the users’ resources to improve the system’s scalability,
robustness, and to reduce costs. In this master’s thesis a peer-to-peer
live video streaming system is simulated and tested in various scenarios
in order to visualise the results and understand its overall performance.

Peer-to-peer (P2P) protocols such as BitTorrent share content in a more static
environment where it is easier to keep track of where to find each part of the
content. These parts can be obtained in any order, or at any specific instance.
However, in a live environment content has a life span and then becomes obsolete.
The order is also vital to avoid interruptions in playback. Users can swap chan-
nels creating a dynamic environment, imposing other problems than for the static
environment.

There exists several types of P2P live video streaming systems and multiple ways
of simulating them. In such streaming systems, users streaming the same me-
dia content attempt to help each other obtain it by sharing their resources. In
the P2P solution studied in this master’s thesis users select what media content
they want to stream, and this is noted by a supervising entity. The supervising
entity keeps track of which users recently began streaming, and what they are
streaming. When users begin to stream the supervising entity provides a list of
users streaming the same content. This list of users along with algorithms that
for example determine which users to request content from, and when to request
content without needlessly flooding the P2P network with requests, is all that is
needed to outperform classical streaming systems.

Studies on simulating P2P live streaming systems usually take a mathematical
approach and specify strict assumptions and conditions for the simulation. In
this master’s thesis an actual implementation of P2P solution for live streaming is
used, and the simulation attempts to simulate real conditions.

The common denominators for P2P live video streaming systems are their com-

“output” — 2017/11/29 — 11:38 — page vi — #8

plexity, and their enormous potential to outperform classical live video streaming
systems while also reducing costs. Therefore, when developing P2P solutions for
live video streaming there is a need to test and evaluate how changes and con-
figurations affect the system. Due to the complexity of P2P solutions it can be
challenging to understand how certain changes will improve the system or if they
will improve it all, and testing this with real users is both expensive and time
consuming.

vi

“output” — 2017/11/29 — 11:38 — page vii — #9

Contents
Introduction 1
1.1 Background 1
1.2 Projectaims 2
1.3 Approach 2
1.4 Limitations 3
15 Outline 3
Background 5
2.1 Videostreaming 5
2.2 Content delivery networks L. 7
2.3 Network address translation 7
24 P2Pnetworks 8
25 Network modelling 11
26 Peeringgrade L 13
2.7 Related Work 13
2.8 Description of Voddler's P2P solution 16
Methodology 21
3.1 Approach 21
3.2 Simulation & Visualisation 21
3.3 Simulation scenarios 22
Design & Implementation 23
4.1 Design of the simulation system 23
4.2 Design of the visualisation system 24
4.3 Implementation of the simulation system 25
4.4 Implementation of the visualisation system 26
Results 27
5.1 Simulationsetup 27
5.2 Hypothesises 28
53 Optimalscenario 30
54 Defaultscenario. 33
5.5 Flash crowd scenario L. 36

vil

“output” — 2017/11/29 — 11:38 — page viii — #10

5.6 Flash disconnects scenario

6 Data Analysis

6.1 Optimalscenario
6.2 Defaultscenario.
6.3 Flash crowd scenario
6.4 Flash disconnects scenario
6.5 Improvements

7 Discussion

7.1 Simulation environment
7.2 System specific findings oo oL
7.3 Sourcesof error
7.4 Futurework

8 Conclusions

Bibliography

A Content distribution visualisations

B Network structure

viii

45
45
45
46
46
46

49
49
49
50
51
53
54
59

61

“output” — 2017/11/29 — 11:38 — page ix — #11

List of Figures

21
2.2
2.3
2.4
2.5
2.6

2.7

4.1

5.1

5.2

5.3

54

55

5.6

5.7

5.8

5.9

The HTTP Live Streaming Architecture
Index file of a live session, updated for every new segment.
Single tree topology. L
Multi-tree topology.
Mesh topology.
The peer in grey, and its neighbours in white. Considers latency and
stratum difference when determining its best candidates.
Content distribution flow from the CDN to the peer.

Overview of the simulation system's key components.

Peering grade optimal scenario: results for 100 peers plotted in orange,
and 1000 peers plotted in blue.
Optimal scenario: hit/request-ratio for different stratum buckets (0-
20 blue, 21-40 orange, 41-60 green, 61-80 red, 81-100 purple) when
simulating 100 peers.
Optimal scenario: hit/request-ratio for different stratum buckets (0-
20 blue, 21-40 orange, 41-60 green, 61-80 red, 81-100 purple) when
simulating 1000 peers.
Optimal scenario: histogram for the number of peers in the different
stratum buckets at the 50th segment, when simulating 100 peers. . .
Optimal scenario: histogram for the number of peers in the different
stratum buckets at the 50th segment, when simulating 1000 peers.

Peering grade default scenario: results for 100 peers plotted in orange,
and 1000 peers plotted in blue.
Default scenario: hit/request-ratio for different stratum buckets (0-
20 blue, 21-40 orange, 41-60 green, 61-80 red, 81-100 purple) when
simulating 100 peers.
Default scenario: hit/request-ratio for different stratum buckets (0-
20 blue, 21-40 orange, 41-60 green, 61-80 red, 81-100 purple) when
simulating 1000 peers. Lo
Default scenario: histogram for the number of peers in the different
stratum buckets (101-120 are disconnected peers) at the 50th seg-
ment, when simulating 100 peers.

ix

O O OV N

18

24

30

31

31

32

32

35

“output” — 2017/11/29 — 11:38 — page x — #12

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18

5.19

5.20

5.21

5.22

5.23

5.24

Default scenario: histogram for the number of peers in the different
stratum buckets (101-120 are disconnected peers) at the 50th seg-
ment, when simulating 1000 peers. 35

Peering grade flash crowd scenario: results for 100 peers plotted in
orange, and 1000 peers plotted in blue. 36

Flash crowd scenario: hit/request-ratio for different stratum buckets
(0-20 blue, 21-40 orange, 41-60 green, 61-80 red, 81-100 purple) when
simulating 100 peers, and 50 peers flash connecting at the 40th segment. 37

Flash crowd scenario: hit/request-ratio for different stratum buckets
(0-20 blue, 21-40 orange, 41-60 green, 61-80 red, 81-100 purple) when
simulating 1000 peers, and 500 peers flash connecting at the 40th
segment. ... L 37

Flash crowd scenario: histogram for the number of peers in the dif-
ferent stratum buckets (101-120 are disconnected peers) right before
the flash crowd, when simulating 150 peers. 38

Flash crowd scenario: histogram for the number of peers in the differ-
ent stratum buckets (101-120 are disconnected peers) 3 minutes after
the flash crowd, when simulating 150 peers. 38

Flash crowd scenario: histogram for the number of peers in the dif-
ferent stratum buckets (connected peers in blue, disconnected peers
placed in 101-120 in red) right before the flash crowd, when simulating
1500 peers. 39

Flash crowd scenario: histogram for the number of peers in the differ-
ent stratum buckets (101-120 are disconnected peers) 3 minutes after
the flash crowd, when simulating 1500 peers. 39

Peering grade flash disconnects scenario: results for 100 peers plotted
in orange, and 1000 peers plotted in blue. 40

Flash disconnect scenario: hit/request-ratio for different stratum buck-
ets (0-20 blue, 21-40 orange, 41-60 green, 61-80 red, 81-100 purple)
when simulating 100 peers. Lo 41
Flash disconnect scenario: hit/request-ratio for different stratum buck-
ets (0-20 blue, 21-40 orange, 41-60 green, 61-80 red, 81-100 purple)
when simulating 1000 peers. 41
Flash disconnects scenario: histogram for the number of peers in the
different stratum buckets (101-120 are disconnected peers) right be-
fore the flash disconnects, when simulating 100 peers. 42

Flash disconnects scenario: histogram for the number of peers in the
different stratum buckets (101-120 are disconnected peers) 3 minutes
after the flash disconnects, when simulating 100 peers. 42
Flash disconnects scenario: histogram for the number of peers in the
different stratum buckets (101-120 are disconnected peers) right be-
fore the flash disconnects, when simulating 1000 peers. 43
Flash disconnects scenario: histogram for the number of peers in the
different stratum buckets (101-120 are disconnected peers) 3 minutes
after the flash disconnects, when simulating 1000 peers. 43

“output” — 2017/11/29 — 11:38 — page xi — #13

6.1

6.2

Al

A2

A3

B.1

Peering grade: 100 peers with a content sample interval of 15 minutes
(orange, label: 1000), and 100 peers with a content sample interval
of 1 minute (blue, label: 100im). 47
Peering grade: 1000 peers with a content sample interval of 15 minutes
(orange, label: 1000), and 1000 peers with a content sample interval
of 1 minute (blue, label: 1000im). 47

Optimal scenario: content flow for certain chunk, from CDN (red node
and lines) through the P2P network for 100 peers, at the 40th segment. 59
Optimal scenario: content flow for certain chunk from CDN (red node
and lines) through the P2P network for 1000 peers, at the 40th segment. 60
Flash crowd scenario: content flow from CDN (red node and lines)
through the P2P network for 100 peers, 1 minute after the flash crowd. 60

Flash disconnect scenario: snapshot of stratum oscillation in the net-
work structure when simulating 100 peers. 61

X1

“output” — 2017/11/29 — 11:38 — page xii — #14

xii

“output” — 2017/11/29 — 11:38 — page xiii — #15

List of Tables

5.1 The network configurations used in the simulations.
5.2 The peer configurations used in the simulations.
5.3 The optimal configurations.
5.4 The default configurations.,
5.5 The network configurations used in the simulations.
5.6 The flash disconnects configurations.

xiii

“output” — 2017/11/29 — 11:38 — page xiv — #16

Xiv

“output” — 2017/11/29 — 11:38 — page xv — #17

List of Acronyms

CDN - Content Distribution Network
CRID - Content Reference Identifier
GNP - Global Network Positioning
HLS - HTTP Live Streaming

ISP - Internet Service Provider
NAT - Network Address Translation
OTT - Over The Top

P2P - Peer-to-Peer

QoS - Quality of Service

RTT - Round Trip Time

VoD - Video on Demand

XV

“output” — 2017/11/29 — 11:38 — page xvi — #18

XVi

“output” — 2017/11/29 — 11:38 — page 1 — #19

Chapter]_

Introduction

This master’s thesis will introduce and examine the field of peer-to-peer (P2P)
systems for live video streaming on behalf of Voddler Sweden AB in Stockholm,
Sweden. The work was performed at Entecon AB, who conduct the development
for Voddler. Voddler will be used as an abbreviation throughout the report.

The motivation of the master’s thesis is to study and analyse the behaviour
and overall performance of an actual implementation of a P2P live video streaming
system, under different scenarios. The study is performed by simulating the sys-
tem. This includes simulating network resources such as latency and bandwidth
limitations. The long term goal for Voddler is to be able to use the simulation
system to simulate proposed improvements and see what implications they have.

1.1 Background

One of the absolute largest parts of internet traffic today is video traffic. In 2015
video represented 70% of all traffic on the internet, and this volume is expected
to grow to three times as much in 2020, and will at that time represent 83% of all
traffic. [1]

Essentially all commercially available models of video distribution are based on
unicast, where each viewer has its own direct connection to the back-end, placing
enormous pressure on the back-end infrastructure. [2]

The operators, both over the top (OTT) providers like Netflix and operators
like Ericsson, are trying to remedy this by putting servers with big discs that
act as local caches as close to the customers as possible. However, this is a very
expensive solution, especially in areas where population is sparse, or if the area
has poor network infrastructure.

Providers of live streams have further problems with spikes in what people
watch, and when they watch it. This can for example arise when users of live
streaming systems watch popular sporting events, many users will begin stream-
ing close to kickoff and then watch something else in half-time. It is expensive
to purchase a lot of bandwidth and server supply to meet the demand for the
occasional enormous sporting event, and then just have it unused.

To solve these dilemmas, Voddler developed a hybrid peer-to-peer system that
copes well with many users in the same area watching the same streams. It enables

“output” — 2017/11/29 — 11:38 — page 2 — #20

2 Introduction

material that is being streamed, to be peered (redistributed) to others watching
the same stream.

In this thesis a hybrid live video streaming system, consisting of an unstruc-
tured P2P network and a classic content delivery network (CDN) solution, is simu-
lated. Material being watched by many peers (users) is peered between them, and
less popular material is being distributed directly from the CDN to the end user.
The system uses some notable algorithms that have been created by Voddler, e.g
when to get data from peers, what to get from whom, and when it is better to get
data from the CDN in a live environment etc. These algorithms will be described
more in detail later.

1.2 Project aims

The main goal of the thesis is to evaluate and analyse how the system performs
under various scenarios through simulation. Thus, this thesis will try to answer
the following questions:

1. How will the P2P network change over time in terms of: content distribution
in the network, and peers’ responsibilities?

2. How will the P2P network cope under different scenarios, flash crowds and
bursts of sudden disconnects etc?

3. Can changes and configurations that improve the simulated system be found,
and if so, are these alterations likely to improve the actual system?

1.3 Approach

How will a hybrid P2P live video streaming system perform with different scenar-
ios? Can changes and configurations of a hybrid P2P live video streaming system
be tested and evaluated by simulation? The thesis’ approach is to study an imple-
mentation of said system by simulation, with different scenarios, and then visualise
and analyse the results.

The first step consists of researching the field and related work.

The second step is to create a simulation system that includes a network model,
and create a visualisation system that visualises the results generated in the sim-
ulations.

The third step is working with skilled developers, with great knowledge of live
video streaming and P2P solutions, to accurately simulate their system.

The last steps are to state hypothesises for expected behaviour, simulate dif-
ferent scenarios, and perform a data analysis of how the system performed, and if
configurations and changes can be found to improve its overall performance.

“output” — 2017/11/29 — 11:38 — page 3 — #21

Introduction 3

1.4 Limitations

There are limitations to the work conducted in this master’s thesis. User behaviour
was not studied, nor attempted to be fully replicated in the simulated system.
Instead attempts to replicate user behaviour are based on assumptions.

Although the work in this thesis has deployed great system focus, the simu-
lations do not consider media player behaviour, or a peer’s bandwidth changing
over time.

Hardware limitations are not considered. Resulting in that the simulation
does not for example differentiate between an old Android device’s or modern
computer’s RAM or CPU.

1.5 OQutline

The report is outlined as follows:

e Chapter 2 Background: Explains the theory to understand video stream-
ing, peer-to-peer networks, simulation systems, network modelling, and the
simulated system.

o Chapter 3 Methodology: Explains the methodology that is being used to
create the simulation system and the visualisation system, to perform the
data analysis, and how to reach conclusions and recommendations.

o Chapter J Implementation: Explains how the simulation system and the
visualisation system were designed and implemented, and motivation of why.

e Chapter 5 Results: Presents the results and visualisations from the simula-
tion.

e Chapter 6 Data Analysis: Analyses the results and visualisations from the
simulations.

e Chapter 7 Discussion: Contains a discussion about the results and data
analysis, both in project aims and in general, possible sources of error and
future work.

e Chapter 8 Conclusions: Presents the conclusions of this master’s thesis
project.

“output” — 2017/11/29 — 11:38 — page 4 — #22

Introduction

“output” — 2017/11/29 — 11:38 — page 5 — #23

Chapter 2

Background

This chapter will describe concepts relevant to the thesis, related work and the
live streaming system that was simulated.

2.1 Video streaming

During the early 2000s the Internet saw a booming escalation of network band-
width. Combined with improved media compression algorithms and more powerful
computer systems streaming delivery of media content became possible. The term
streaming, the only alternative for a live scenario, refers to a method of relaying
data over a computer network as a stable continuous stream, granting playback
of obtained content while consecutive data is being received. This differs from
download-and-then-play, where playback starts when all the data has been down-
loaded. Instant playback is the main advantage of streaming delivery as the user
is no longer required to wait until the entire download is completed. [3]

2.1.1 On-demand vs live streaming

There are two cases for streaming media, on-demand streaming and live streaming.
In the first case, the media has been recorded and compressed in advance. The
media content is stored on a server and delivered to receivers upon request (on-
demand). A great number of sites provide streaming of stored media content
today, Youtube [4] being one example. However, in live streaming, the media is
captured, compressed and transmitted on the fly. Live streaming is more complex
in terms of requiring significant amount of computing capabilities and usually
specific hardware support on the back-end. In our thesis we have solely focused
on simulating live streaming of media content. [3]

2.1.2 Apple’'s HTTP live streaming

There are several media streaming solutions in the marketplace today. The simu-
lated system operates the most widespread standard, Apple’s HT'TP live streaming
(HLS) solution. HLS follows approximately the same principle as other systems,
such as DASH and Smooth Streaming.

“output” — 2017/11/29 — 11:38 — page 6 — #24

6 Background

This subsection will introduce the architecture of HLS, how the technology
functions, supported formats, server requirements, and what clients are available.
This section borrows greatly from Apple’s documentation. [5]

HTTP live streaming architecture

Theoretically, HLS can be seen as three components: the server component, the
distribution component, and the client software.

Server Distribution
media stream
encoder segmenter
ndex |\
file 15
i
. =
Client

Figure 2.1: The HTTP Live Streaming Architecture

e The server component handles input streams of media and encodes them
digitally, encapsulates them in suitable format for delivery, and prepares
the media for distribution.

e The distribution component consists of standard web servers. They handle
accepting client requests and delivering the prepared media and dedicated
resources to the client.

e The client software determines the appropriate media to request, downloads
those resources, and then reassembles them so that the media can be played
back to the user in a continuous stream.

In a typical setup H.264 video and AAC audio, which is packaged in a MPEG-
2 Transport Stream or a FMP4 container, is divided into short media files by a
software stream segmenter. These files are placed on a web server.

An indez file containing a list of the media files is generated and maintained
by the segmenter. The index file’s URL is published on the web server. Client
software reads the index, then requests the media files that are listed in order and
displays them without interruptions between segments.

An example of a simple HLS setup can be seen in Figure 2.1. The MPEG-2
stream is divided by a software stream segmenter and stored as a series of media
files.

“output” — 2017/11/29 — 11:38 — page 7 — #25

Background 7

The index file is created by the segmenter and contains a list of media files
and metadata, the index file is in .M3US8 format. After the URL of the index file
is accessed by clients, the indexed media files are requested in sequence. [5]

2.1.3 Using HTTP live streaming

In the case of a live session of streaming media, newly created media files are
made available to the users by updating the index file. The index file, which can
be seen as a sliding window, is the basis for the continuous stream. In Figure 2.2
a graphical representation of this sliding window phenom is depicted. The index
file always contains the z most recent segments, this is achieved by removing the
oldest segment when adding a new segment. [5]

k k+1 k+2 K+3 kK+4 k+5 kK+6 k+7 kK+8

index file window

Figure 2.2: Index file of a live session, updated for every new seg-
ment.

Stream alternatives

Index files usually reference multiple streams of the same media content with
varying levels of quality for different bandwidths or devices. The client software
uses heuristic methods for determining what quality to stream and when to switch
between the alternates. Currently the heuristic methods are based on the recent
trends measured in the network throughput. [5]

2.2 Content delivery networks

Content delivery networks (CDNs) are large distributed systems of servers, which
provide a geographically distributed caching infrastructure. To meet the grow-
ing demand of content, CDN providers offer an efficient and common method to
provide content to end-users. The mirror servers copy and cache the content of
the main server. Mirror servers are placed close to the customers to provide high
quality service and convenient access. [6]

Akamai and Amazon Cloudfront are examples of CDNs.

2.3 Network address translation

Users that are part of the Internet behind network address translators (NATs) are
commonly encountered in large amounts, typically around 70-80%. The presence

“output” — 2017/11/29 — 11:38 — page 8 — #26

8 Background

of NATs cripples the functioning of P2P systems as they block direct communi-
cation between NATed users. This results in that NATed users, can’t contribute
with its resources to the system. Although there was an attempt to standardise
NAT, especially to improve the support for P2P applications, not all vendors have
complied to the standard. [7]

Developing P2P applications utilizing the NAT has constraints, due to that
that two or more computing systems, in different private networks, are unable to
send messages between them without a public address. Protocols such as NAT-
PMP [8], PCP [9] and UPnP [10] employ communication protocols to configure the
gateway and create a port-forwarding without the obligation of user configuration.
[11]

2.4 P2P networks

Content publishing and distribution is often conducted in a costly and inefficient
manner through Client/Server models. Client/Server models provide negative
network externalities in that each user causes more costs by increasingly congesting
the system due to consumption of scarce resources. Let us define the model as
a distributed network where the server is the central registering unit as well as
the only provider of content and service. A client only requests content or the
execution of services, without sharing any of its own resources. [12]

During the the 1990s, the Internet consisted mainly of client/server models. In
recent years, a considerable amount of new techniques have surfaced that enticed
customers into desiring more than purely text and images. Several aspects such
as the widespread boom of broadband Internet, improved connection reliability,
better compression technology, more storage capability, more CPU power and
the fact that a great amount of content resides on end users’ personal computers
changed how Internet was consumed. All these aspects make P2P networks, where
users can share their resources, a promising solution for various areas. [12]

2.4.1 P2P network types

A P2P system is unstructured when users and data are positioned without certain
rules and in an ad hoc manner in the network. Most unstructured systems are
characterised by heavy consumption of bandwidth in terms of message traffic.
However, this type of system is mostly very resilient. [12]

In structured networks users and data are being placed in a structured way
throughout the network according to specific rules, this increases the localisation
of data and the scalability. [12]

Many live streaming systems operate P2P solutions to provide users with
Internet-delivered real-time multimedia content, CoolStreaming [13] and PPLive
[14] being examples. These systems are constructed in an unstructured manner
with information exchanges occurring in an epidemic-style, and users deciding who
to interact with in an interactive manner. Unstructured systems are thought to
be winning against the structured counterparts due to their operational simplicity
and relative robustness to changing user populations. Structured systems require

“output” — 2017/11/29 — 11:38 — page 9 — #27

Background 9

significant overhead when re-configuring their local topology due to user arrivals
or departures. [15]

2.4.2 Overlay construction

P2P systems usually operate single tree, multi-tree, or mesh topology for live video
streaming.

Figure 2.3: Single tree topology.

Single tree topology is a structured topology. Users participating in a live
streaming session form a tree structure at the application layer, where the video
source server acts as a root of the tree. Each peer receives the streamed con-
tent from its parent peer located one level above itself, and forwards the received
content to its children peers located one level below. This topology focuses on
minimising the depth of the tree by increasing the number of peers at each level.
The reason for this being to minimise the number of hops taken by the chunks,
thus reducing video delay, especially at the lower levels. Although tree topology
provides a good structure for live streaming, it comes with drawbacks. Problems
occur when a peers leaves the streaming session, namely its children peers and
descendant peers will also leave. [16]

[substream 1] @ [substream 2
=

Figure 2.4: Multi-tree topology.

Multi-tree is an unstructured topology, resulting in that this type of topology
consists of more than one sub-tree as opposed to one streaming tree. The server
divides streaming the content into multiple sub-streams, where each sub-stream
provides one of the sub-trees. Multi-tree topology intends to counteract the passive

“output” — 2017/11/29 — 11:38 — page 10 — #28

10 Background

leaves that occur in single tree topology, this is achieved by a leaf in one sub-
tree being a middle peer in another sub-tree. Multi-tree topology also solves the
problems that occur when a peer leaves, due to its children receiving from peers
in another sub-tree. However, a drawback is increasing overhead of streaming
compared to single tree, and when a peers becomes a leaf in all sub-trees. [16]

Figure 2.5: Mesh topology.

Mesh topology is an unstructured topology. In mesh topology peers download
from and upload to multiple peers. Mesh topology provides robustness against
peers who often change between on and off state. Although most P2P systems
with mesh topology form neighbourhoods randomly, other systems implement se-
lection rules aiming to improve the network’s structure. These selection rules can
be comprised of the peers’ functions, resource availability, bandwidth, CPU and
memory usage. Peers in mesh topology are not limited to making connections when
neighbouring peers leave, they change neighbours optionally to achieve improved
performance. [16]

2.4.3 Push/Pull-based P2P

Push-based P2P refers to each peer immediately forwarding all incoming data
blocks to its neighbouring peers (pushing). Such a solution results in significant
overhead, as a peer may receive multiples of the same data block by receiving it
from different peers. [17]

Pull-based P2P on the other hand refers to peers requesting missing data
blocks explicitly. In this scheme peers have to initiate the transmission of data
blocks towards themselves (pulling). Although a pull-based approach prevents
receiving duplicates, it comes at a cost of latencies as notifications and requests
are sent back and forth. Thus, there is a trade-off between efficiency and overhead.
17]

Peers that form a mesh-shaped overlay, pushing or pulling content from each
other, are either mesh-push or mesh-pull approaches. [18]

“output” — 2017/11/29 — 11:38 — page 11 — #29

Background 11

2.5 Network modelling

In order to make the simulation more accurate network limitations were taken into
consideration.

2.5.1 Bandwidth

When evaluating P2P live streaming systems by simulation, it is vital to correctly
model how the underlying network manages the bandwidth capacity if peers dis-
tribute large amounts of content between each other. [7]

In the simulation system in this thesis, peers are assigned download and up-
load capacities. When a peers downloads content, or uploads content, a share of
the capacity is allocated. If a peer attempting to download content has insuffi-
cient remaining download capacity, or a peer attempting to upload content has
insufficient remaining upload capacity, the content distribution request fails.

2.5.2 Internet service providers

P2P systems are becoming increasingly popular and contribute with a great amount
of overall network traffic. [19] However, these systems have put Internet Service
Providers (ISPs) in a dilemma. Although applications running with P2P systems
have increased revenue for ISPs, P2P traffic is extremely challenging from a traf-
fic engineering point of view. This is due to most P2P systems depending on
application layer routing based on an overlay topology upon the Internet, thus
depending on Internet routing. Inefficient downloads can occur if neighbours are
chosen poorly by P2P traffic crossing boundaries several times. [20]

To simulate latency occurred by crossing ISP boundaries, peers are assigned
to different ISPs with additional latencies if their boundaries are crossed.

2.5.3 Packet Loss

User access links are assumed as the bottlenecks in P2P networks. Many peers are
home users connected with e.g. a cable modem to the Internet. Thus, a majority
of the available upload bandwidths are unused resulting in low pack loss rates due
to congestion. [21]

To simulate packet loss, probabilities were used from a mesh-based P2P packet
loss estimation. [22]

2.5.4 Latency

Internet latency can be modelled and abstracted in various levels of detail by using:
statistical models, Global Network Positioning (GNP), or network simulators. [23]

Statistical models

Statistical models compress the behaviour of the Internet into a formula. Advan-
tages are minimal computational effort, simplicity, and virtually no memory costs.

“output” — 2017/11/29 — 11:38 — page 12 — #30

12 Background

Statistical models are found to satisfactorily approximate end-to-end round trip
times (RTT) with constant plus gamma distributions, given that the time interval
when estimating the distribution is kept short. Statistical models are unsuitable
if the tested system depends on (region dependent) jitter, or locality. [23]

Global network positioning

Global Network Positioning (GNP) [24] computes delay by using distance in some
Euclidean space. OverSim [25] is an overlay simulation framework featuring a
network model that uses geographical distance between two locations to estimate
network delay. [23]

“For this, each node is placed into a two-dimensional Euclidean space.
In addition the peer is assigned to a logical access network character-
ized by bandwidth b,,, access delay d,, and packet loss, so that het-
erogeneous access networks can be simulated. The end-to-end packet
delay d. of packet P with length {p between overlay nodes A and B
is then calculated as follows where c is constant.”

l l
de=di+ L +c ||[A=Blls+do+ 2 (1)
b1 ba
In this thesis peers were placed randomly into a two-dimensional Euclidean
space, and equation 1 was used to determine the RTT between peers, and also
considering jitter and ISP crossing latencies.

Network simulators

While statistical models mimic some statistical aspects of the Internet, network
simulators model the essentials of the Internet, including backbone networks and
routing protocols. A detailed model simulates behaviour of the real Internet better,
however this requires considerable simulation effort and many optimisations. [23]

2.5.5 Jitter

Studies of network jitter, the variation in the delay of received packets, in large
scale P2P systems have assumed ¢) the majority of peers in large scale P2P systems
are comprised of computers connected to the Internet via cable modem. i) The
access links are bottlenecks in these end-to-end Internet connections. i) The
Internet congestion caused by a single user is negligible. These assumptions lead
to dividing delay from end-to-end connections into two characteristic classes: [23]

1. If there is little load on the access links, the delay is characterized by the
sum of the deterministic upload transmission delay, the stochastic Internet
delay, and the deterministic downstream transmission delay on the receiving
side.

2. If there is network load on the up-link, however, significant additional delay
is caused by queuing before the up-link and the end-to-end delay is much
larger.

“output” — 2017/11/29 — 11:38 — page 13 — #31

Background 13

Work on modelling jitter based on geographical location for P2P systems has
observed measurement data to conclude that the inter quartile range generated by
a log-normal distribution usually has values between 0-20 ms. [26]

This thesis simulates network jitter by using random values between 0-20 ms.

2.6 Peering grade

The peering grade is a measure of how much of the data that are being transmitted
from the CDN to the peers and how much is actually transmitted between the
peers. It is defined as:

total data downloaded from CDN
total data in network

peering grade = 1 —

(2)

2.7 Related Work

When researching the area of mesh-based P2P systems I. Chatzidrossos’ Doctoral
Thesis [27] has served as a constant source of inspiration.

The following subsections mention the related work that has inspired this thesis
the most.

2.7.1 On Reducing Mesh Delay for Peer-to-Peer Live Streaming

This subsection address related work that focused on reducing mesh delay for P2P
live streaming. This was then simulated and evaluated. [28]

Summary

In this paper the minimum delay problem was formulated and shown to be NP-
hard. Then a centralised heuristic based on complete knowledge was proposed, to
serve as benchmark and optimal solution for all schemes under comparison. The
heuristic is built around a concept called power (in network), given by the ratio of
throughput and delay. The network achieves low delay by maximising the network
power. The paper discusses a simple distributed algorithm where peers select their
parents based on the power concept. Simulation results show that the algorithm
performs well compared to the centralised heuristic, and outperforms traditional
and modern solutions.

Mesh Delay: Simulation Setup

Software was used to generate ten different two levels top-down hierarchical topolo-
gies. Each topology consists of eight autonomous systems which has 625 routers
each. peers are attached randomly to the routers. Evaluation metrics used in the
analysis:

1) Delay: Time taken for data to travel from the streaming server to the peers
measured. Both average and maximum source of delay are measured.

“output” — 2017/11/29 — 11:38 — page 14 — #32

14 Background

2) Hop Count: Refers to number of intermediate peers involved on the overlay
path from the source to a peer. Provides an idea of the depth of the overlay.

3) Source Workload: Workload is defined as the amount of bandwidth that
the source uses to upload the peer that directly connect to it.

2.7.2 PULSE: An Adaptive, Incentive-Based, Unstructured P2P Live
Streaming System

This section address the related work PULSE, which has been evaluated under
realistic conditions via simulation and emulation. [29]

Summary

PULSE is an unstructured mesh-based P2P system designed to support live stream-
ing of media content on a large scale, under the arbitrary resource availability
usually caused by the Internet. PULSE is a highly dynamic system, constantly
optimising its mesh of data connections using feedback based peer selection rules.
The paper evaluates PULSE under realistic conditions via simulation and emula-
tion and presents the advantages of their approach, being best-effort response to
resource limitations in the system and high resilience to peer churn.

PULSE: System Overview

This subsection presents the main parts of PULSE, basic terms and concepts, and
details of structure and its components.

1) PULSE operates in P2P fashion. All peers are identical except the source,
which differs as it is the first peer to distribute the original content. Peers can
freely exchange short messages among themselves regarding the average stream
reception performance. Along with this information and current measurements,
peers temporarily connect to exchange data.

2) PULSE is mesh-based. Peers can easily change position and rearrange
themselves based on membership changes and bandwidth capacities. This, likewise
Voddler’s solution, provides more flexibility.

3) PULSE is unstructured, making design and analysis more straightforward.

4) PULSE is incentive-based, incentives are used as local polices serving as
global optimisation. The paper stresses that these incentives have not been in-
troduced to achieve fairness in the system, but to optimise the overall system
performance.

PULSE: Simulation Setup

PULSE was evaluated under different network sizes, access bandwidth distribu-
tions, buffer parameters, and peer arrival patterns. Mainly worst-case bandwidth
availability and heterogeneity scenarios were focused, which provided meaningful
insights.

The PULSE simulations were conducted using a simple round-based simula-
tor. The simulated network has a single-stub topology. Peers with configurable

“output” — 2017/11/29 — 11:38 — page 15 — #33

Background 15

bandwidth were connected to the stub through access links. Bandwidth allocation
was performed using a slot-based mechanism. Network latencies were not taken
into account.

All scenarios had the same set-up in terms of upload bandwidth, size of sliding
window, and trading window.

2.7.3 LayerP2P: Using Layered Video Chunks in P2P Live Streaming

This subsection address the related work LayerP2P, which has been prototyped,
deployed and validated. [30]

Summary

LayerP2P is a P2P live streaming system that is designed to improve three band-
width aspects.

1) Users should contribute with bandwidth resources.

2) Provide adaptation to aggregate bandwidth availability.

3) Countermeasure bad video quality when bandwidth availability falls below
bandwidth supply.

LayerP2P was implemented in C-++, prototypes were deployed in PLanetLab,
and performed extensive. A wide range of scenarios were examined with test-driven
simulations. The results showed that the P2P system had high efficiency, provided
differentiated service, adapted to different bandwidth scenarios, and eliminated
free-riders.

LayerP2P combines layered video, mesh P2P distribution, and a tit-for-tat-like
algorithm (where more upload contribution receives better video quality).

LayerP2P: System Overview

This section provides an overview of the design of LayerP2P.

1) LayerP2P uses layered video, as opposed to single-layer video which we are
simulating, on chunk-based mesh P2P live streaming systems. Much like Voddler’s
solution, in LayerP2P a peer joining the system receives a peer-list from which it
can form neighbour relationships. In LayerP2P each peers aim to maximize its
upload in order to receive better video quality.

2) Neighbour management is conducted by each peer classifying its neighbours
into imitators and receptors to treat them differently (sending different initiation
messages).

3) Tit-For-Tat with layered video providing user incentives to maximise upload
in order to receive better video quality, inspired by BitTorrent’s incentive.

4) Receivers side scheduler, allows receiving peers to determine how to request
missing data in order to maximise its received video quality.

“output” — 2017/11/29 — 11:38 — page 16 — #34

16 Background

LayerP2P: Simulation Setup

An implementation of LayerP2P following the description above was created. The
LayerP2P engine, the core software peace, was implemented in C++. The en-
gine obtains peer lists, chooses neighbours, and exchanges media content between
neighbours.

The LayerP2P philosophy was validated by a large-scale experiment conducted
in PlanetLab. The validation included different types of peers: 1) institutional
peers; 2) residential peers; and 3) free-riders. Two scenarios were considered,
an underloaded system without presence of free-riders, and an overloaded system
with presence of free-riders. Flash crows were included in the simulation, peers
connected during a short time interval and stayed in the system for a considerable
amount of time.

2.8 Description of Voddler's P2P solution

This work simulated Voddler’s system, which is a mesh-pull-based P2P solution
for live video streaming and video on demand(VoD). As the scope does not con-
sider VoD, multi bitrate, or several available live streams, this is neglected in the
description of the system.

Here follow definitions for terms used throughout the description:

i) peering - distribution of content between peers

it) stratum - value indicating a peer’s contribution to the P2P network.

Voddler’s solution can be quantified into three generalised components:

1. Initialisation of a peer starting the live stream: a peer begins stream-
ing and finding connected peers that are watching the same content reference
identifier (CRID).

2. Selection rules: the peers determine which neighbours to request content
from.

3. Maintaining the P2P network: the peers regularly evaluate their con-
tribution to self-regulate and improve the entire P2P network.

2.8.1 Initialisation of a peer starting the live stream

Peer initialisation

When a peer behind a firewall is added to the P2P network it receives stratum 100,
while peers not behind firewalls randomly receive a stratum value between 20-80.
These stratum values should ideally converge relative to the peers’ download and
upload resources.

Finding peers

When a peer starts a live stream, it attempts to find peers watching the same
CRID. This is achieved by communicating with an entity called Buddy Server.

“output” — 2017/11/29 — 11:38 — page 17 — #35

Background 17

The Buddy Server responds with a list, referred to as recent-list, of peers it has
been in contact with recently to the peer it is serving, it then adds the served peer
to this list. The Buddy Server can not guarantee that the peers in its recent-list
are available, however it is probably worth attempting to communicate with them.

The Buddy Server’s recent-list will at some point in the beginning of the stream
be empty, or contain a limited number of peers. To control how frequently each
peer can communicate with the Buddy Server a grace period exists, avoiding the
peers first connecting to the stream to spam the Buddy Server as they attempt to
discover more peers.

When a peer receives the recent-list, it asks all these peers if they know any
peers. The peers that respond, now known to be connected and active, answer with
the peers they usually communicate with, and that also probably are connected.
This leads to clusters pollinating each other with peers, resulting in that peers
gain knowledge of the P2P network quickly.

2.8.2 Selection rules

0 —=x
Stratum:
7ms stratum
stratum diff: 9
diff: 12 W
100 —¥

Figure 2.6: The peer in grey, and its neighbours in white. Con-
siders latency and stratum difference when determining its best
candidates.

There is no centralised process that manages the system. Instead each peer in
the network has a value, referred to as stratum, that can be viewed as a measure-
ment of how powerful the peer is in terms of downloading and peering the content,
it is an indication of when the peer will have obtained content. Peers with low
stratum will obtain content earlier than the rest of the P2P network, and be able to
peer content better. The peers with the lowest stratum have the desired resources
to download content from the CDN and upload it to its neighbours. Peers with
high stratum should obtain content later than the rest of the P2P network, and
probably have lesser resources to peer content to its neighbours.

Each peer calculates a closeness value for all its neighbours, see Figure 2.6.
The closeness value is based on the peers difference in stratum and how close the
peers are to each other in terms of latency.

“output” — 2017/11/29 — 11:38 — page 18 — #36

18 Background

Each peer then sorts its neighbours in a list referred to as prospect-list, based
on these closeness values to determine which neighbours (prospects) it should
request content from. This should generate a self-regulated P2P network with
very efficient content flow from the CDN to the least powerful peers, as the system
alms to minimise content requests from the CDN.

Stratum:

100 —*

Figure 2.7: Content distribution flow from the CDN to the peer.

2.8.3 Maintaining the P2P Network

Each peer reevaluates its stratum periodically according to an algorithm to de-
termine if it should decrease, increase, or remain the same. Stratum can also be
viewed as a contract of how much content the peer should be capable of download-
ing and peering. The algorithm calculating the stratum value is based on: content
requests from other peers, and how successfully the peer downloaded and peered
content relative to its current contract. The algorithm considers content statistics
based on samples from the last 15 minutes.

This creates an ordered network where the peers are ordered by their stratum
and always request content from neighbouring peers with stratum lower than their
own. This should ideally form the network in a pyramid structure where the layers
will receive the content sequentially, and peers with good resources will climb
further up the pyramid.

2.8.4 Network structure

One of the proposed solution’s key aspects, is that every peer calculates a time
to start peering content, depending on the peer’s position (stratum), viewed as a
distance from the CDN. This introduces a set latency in the network and gives the
network time to distribute the data in a more controlled way. Meaning that for
each time slot in the beginning of a published segment, peers with lower stratum are
contributing their upload resources to the peers with higher stratum because they
obtain content first. This leads to the assumption that a pyramid like structure is

“output” — 2017/11/29 — 11:38 — page 19 — #37

Background 19

preferred due to 80% of all peers are behind a firewall/NAT and can not contribute,
i.e. the majority of the network are free-riders. As these peers can’t provide upload
resources, they receive the worst stratum and are placed in the lowest level in the
pyramid. Because the network is not trying to be an optimal, or pure P2P solution,
this should lower, but not eliminate, the need for peers to request content from
the CDN. To mitigate the latency and stress on the peers that can provide upload
resources, from the CDN there exists a fallback mechanism that lets them collect
the missing data of a segment that is stated to be obtained at a certain time in
their contract. This should also minimise the propagation of latency from one
layer to the next. This in turn leads to the system not being best effort in terms
of distributing content as live as possible.

The users of the system will however not experience the latency difference
between one another even if they have different upload capacity because the system
then regulates the time that they say is live. If one peer is closer to the CDN in
the network it will buffer the segment until the whole system has the content and
then deliver it to the media player.

All peers in the network will watch the stream at the same time, due to the
media player requesting content with a set delay. Resulting in that content does
not need to be obtained strictly in sequential order, and if any content is missing
a certain panic time before the player will request the content, the missing chunks
are downloaded from the CDN.

“output” — 2017/11/29 — 11:38 — page 20 — #38

20

Background

“output” — 2017/11/29 — 11:38 — page 21 — #39

Chapter 3

Methodology

This chapter will describe the methodology of how the work was conducted and ex-
ecuted. This chapter will also describe the different scenarios that were simulated
and how the data was visualised, in order to perform the data analysis.

3.1 Approach

The aim of the thesis was to study a real implementation of a P2P system for
live video streaming, and analyse its overall performance when simulating various
scenarios. This was achieved by creating a simulation system, and a visualisa-
tion system to visualise and analyse the results from the simulation. The thesis
consisted of four phases.

The first phase consisted of designing and implementing a simulation system in
Golang [31] that simulated the P2P system. The data produced in the simulation
was recorded and parsed into JSON [32] format by using Python [33] scripts.

We worked with an agile approach, implementing in three week sprints. Every
third week we reconciled with Voddler and evaluated our work in the three week
span, and lastly, decided what to include in the following three week sprint. We
also designed scenarios that the simulation should cover, these are listed in section
3.3.

The second phase consisted of visualizing the recorded data. This was achieved
by implementing a visualisation system using a JavaScript library called D3 [34].

The third phase consisted of verifying that the P2P system was simulated
correctly. This was achieved by performing code reviews, explaining our solution to
Voddler’s senior developers who had designed and implemented the P2P solution,
and by performing extensive testing to validate the simulated system.

The forth phase consisted of interpreting and performing a data analysis of
the visualisations and results.

3.2 Simulation & Visualisation

This section will describe what the thesis aimed to include in the simulation and
the visualisation.

21

“output” — 2017/11/29 — 11:38 — page 22 — #40

22 Methodology

3.2.1 Requirements

The first phase of the thesis included that some common requirements were gath-
ered to ensure that the time was managed efficiently and the scope of the thesis
was as expected. The requirements we decided on are:

1. The simulation system should include a network model that takes bandwidth
and latency into consideration.

2. It should be possible to simulate the system with different scenarios.

3. It should be possible to alter and configure key components of the different
algorithms of the system.

4. The visualisation system should visualise the simulation in different aspects.

3.2.2 Proposed implementation

The simulation system shall simulate the system in great detail allowing for the
different algorithms to be altered and configured. The resulting data from the
alterations can then be visualised in order to perform a data analysis. This simu-
lation system shall be implemented in Golang [31].

The network model of the simulation system shall take bandwidth and latency
implications into consideration to improve the accuracy of the results compared
to the real world. Key components of the network model should be configurable.

The aim of the visualisation system is to visualise how content flows through
the network, how the peers change responsiblities over time and what knowledge
peers achieve of other peers in the P2P network, how the peering grade changes
over time etc. This tool shall be implemented in JavaScript, using a library called
D3 [34].

3.3 Simulation scenarios

This section defines scenarios that were deemed of great importance to simulate
in the thesis, in order to evaluate the system with these scenarios.

Throughout the thesis these scenarios will be referred to as "scenario 3.3.X",
with the X being the number in the list below:

Optimal scenario: peers do not disconnect from the stream.
Default scenario: peers disconnect and reconnect to the stream (zapping).

Flash crowd: many peers connect in a short time interval.

Ll

Flash disconnects: many peers disconnect in a short time interval.

“output” — 2017/11/29 — 11:38 — page 23 — #41

Chapter 4

Design & Implementation

This chapter will describe the design and implementation of the simulation system
and the visualisation system used in this thesis.

4.1 Design of the simulation system

4.1.1 Considerations

As the simulation system will simulate peers in a P2P system, it must be designed
in such a way that thousands of small processes can run simultaneously. Therefore,
the simulation system will be implemented in Golang. The programming language
is known for its modern concurrency features.

The simulation system will simulate an extensive live video streaming system,
and it is to extensive to attempt simulating the entire system in detail. Therefore,
the system’s multi bitrate and on demand streaming features will be omitted from
the thesis scope.

4.1.2 Design

The design approach is to model each key component from the P2P solution as
realistically as the time frame for the thesis allows.

The CDN is designed to have its key functions: publish new content and
answer peers’ content requests. To establish that the peers will communicate with
the CDN in a realistic fashion, an API will be created that specifies how the peers
and the CDN should communicate with each other.

The BuddyServer is designed to have its key functions: serving peers commu-
nicating with it, and providing the peers with a list of peers it has served recently.

The peers are designed to in great detail behave as peers in the real P2P
system, all key algorithms for the live streaming part will be modelled. The peers
are designed to run independently and concurrently.

The NetworkModel is designed in such a way that bandwidth and latency real-
istically simulate network implications. The NetworkModel shall be configurable
allowing for the simulation to consist of peers with different download/upload
bandwidths, latencies and transmission rates.

23

“output” — 2017/11/29 — 11:38 — page 24 — #42

24 Design & Implementation
Peer <
Run()
FindNeighbours()
BuddyServer | SelectionRules()
DownloadContent() ¥
Run()) UploadGontent() —
RecentPeersList() EvaluateOwnCapabilites() Communication
AddPeersToRecents() -
playListRequest
playListAnswer
h 4
NetwarkModel sliceAnswer
Bandwidthimplications() sliceRequest
Latencylmplications() A
Logger [e—
Run()
WriteToFile()
SaveFile() CDN
Runi()
PublishNewContent(}
GiveRequestedContent()

Figure 4.1: Overview of the simulation system’s key components.

The Logger was designed to record and save various information of the simu-
lation and related statistics so the simulation results could be analysed.

4.2 Design of the visualisation system

4.2.1 Considerations

Because there will be so much data and events happening all the time in the
simulation it is hard to try and single out what exactly happened in graphs using
average and clustering. Therefore the Visualisation could be seen as a complement
to the graphs. The graphs are used to find timeslots in the simulation that are
interesting where something happened. The visualisations are used to playback the
events for each peer at a given time to try and understand the system’s behaviour.

The logging occurs with nanosecond precision that will lead to big gaps be-
tween some events and make the graphs skew. Therefore some data for the graphs
are sampled each second instead to make the data more readable.

4.2.2 Design

The hit-per-request ratio is the ratio between how many of the peers’ requests that
result in a transmission of data between peers. The purpose of this measurement
is that if the peers and the network are correctly balanced almost all requests will
result in a transmission because all the peers will fulfil their contract.

The triangle is one of the visualisations that changes over time. It replicates
the topology and shows how each peer is exchanging data with other peers. This
is used to understand what type of peers take on different upload responsibilities.

“output” — 2017/11/29 — 11:38 — page 25 — #43

Design & Implementation 25

The changes made to the topology is in relation to what data segment is being
sent.

Network topology is a visualisation that depicts the topology in a more event
driven fashion that shows how the topology reconfigured itself during the stream.

4.3 Implementation of the simulation system

Golang

Golang is a free and open source programming language created in 2007 as an ex-
periment by Google, with the aim of removing undesired traits of the most popular
languages and keeping the positives. Golang is statically typed, has garbage col-
lection, memory safety features and CSP-style concurrent programming features.
Golang is suitable when many small processes run simultaneously, say thousands
of peers communicating to download and upload content between each other for
instance. [31]

Implementation

The simulation system was implemented in Golang version 1.8. The objective
was to simulate many peers simultaneously, preferably around 10 000 peers. This
requires efficient concurrent programming and data structures. In order to make
it possible for a large amount of peers we utilised Golang’s concurrency constructs
goroutines and channels.

Golang’s primary concurrency construct is the goroutine which is a type of
light-weight process. A function call prefixed with the go keyword starts a function
in a new goroutine. Goroutines are multiplexed into a smaller set of operating
system threads. [35]

While Golang’s standard library package features most of the classical con-
currency control structures (mutex locks, etc.), idiomatic concurrent programs
prefer channels which send messages between goroutines. The special syntax
"+ channel :" forces the executing goroutine to block until it receives on the
channel chan.

select {
case contentRequest := <- channel:
// receive on channel, do something with input
processContentRequest (contentRequest)

“output” — 2017/11/29 — 11:38 — page 26 — #44

26 Design & Implementation

4.4 |mplementation of the visualisation system

The visualisation system consists of a web page programmed in JavaScript that
displays graphs and visualisations created with the JavaScript library D3.js. [34]

D3

D3.js is a JavaScript library that allows for visualisation of documents based on
data. D3 uses HTML, SVG, and CSS to visualise data.

“output” — 2017/11/29 — 11:38 — page 27 — #45

Chapter 5

Results

In this chapter, the results are presented by means of graphs, and various visuali-
sations.

5.1 Simulation setup

The simulations were visualised in order to fully understand the results and the
system’s behaviour. The results and visualisations presented in this chapter are
based on simulations generated with the Network configurations and the Peer
configurations in Table 5.1 and 5.2 respectively.

It was decided to simulate the different scenarios with 100, and 1000 peers to
understand how the system performed with different P2P network sizes. It is also
easier to analyse and study the behaviour of the system when simulating fewer
peers. As multi bitrate and several streams are neglected in the scope of this
work, it was concluded that running the different scenarios for ten minutes would
be sufficient to analyse the results.

Network configurations
streaming bitrate 4000 kbit /s
segment size ~ 3000 — 3300 KB
chunk size 128 KB
NAT probability 80%
packet loss probability rand(0.005 - 0.1 %)
number of ISPs 3
latency for crossing ISP 25 ms (one-way)
jitter rand(0-20 ms)

Table 5.1: The network configurations used in the simulations.

27

“output” — 2017/11/29 — 11:38 — page 28 — #46

28

Results

Peer configurations

Ethernet 100 mbit/s quantity
download rates d,

upload rates

minimum network specific latency

8%

30 + rand (0-15) [mbit/s]
assigned d, - 0.80

2 ms

LTE 12 mbit/s quantity
download rates (d,)

upload rates

minimum network specific latency

2%

8 + rand(0-4) [mbit/s|
assigned d,. - 0.40

50 ms

CUSTOM SLOW quantity
download rates (d,)

upload rates

minimum network specific latency

30%

8 + rand(0-4) [mbit/s]
assigned d, - 0.33

10 ms

CUSTOM MEDIUM quantity
download rates (d,)

upload rates

minimum network specific latency

30%

15 + rand(0-7.5) [mbit/s]
assigned d, - 0.45

6 ms

CUSTOM _FAST quantity
download rates (d,)

upload rates

minimum network specific latency

30%

25 + rand(0-12.5) [mbit/s]
assigned d, - 0.60

3 ms

Table 5.2: The peer configurations used in the simulations.

5.2 Hypothesises

5.2.1 Optimal scenario hypothesis

The hypothesis for the optimal scenario is that the lack of peers disconnecting from
the stream will provide desirable P2P circumstances for good peering grade. As
peers with different stratum have different responsibilities, they will differ in when
obtaining content. Therefore, we expect the P2P network to form a pyramid
structure with 4-5 layers. The reason that a pyramid is expected, and not a
square, is that the peers with low stratum will obtain content from the CDN, and
then the content will be peered between peers (lower stratum providing data to
higher stratum). Ideally, few peers should obtain content from the CDN, and the
layers below will consist of an increasing numbers of peers, relative to the previous
layer. As the peers can obtain stratum values 0-100, and they primarily attempt
requesting content from peers in a range of 20 stratum less than themselves, layers
are expected to occur in 0-5, 20-25, 40-45, 60-65, 80-85, and the NATed peers at
100, in stratum. The P2P network will not immediately take this form, it will occur
over time and as there are no disconnects it will probably occur quickly. As the
peers reevaluate their stratum and can change their stratum 48 every five seconds

“output” — 2017/11/29 — 11:38 — page 29 — #47

Results 29

(being randomly assigned between 20-80), we expect the network to stabilise after
approximately one minute. The system is expected to have a good hit-per-request
ratio when requesting content in this scenario.

5.2.2 Default scenario hypothesis

The hypothesis for the default scenario is that it will behave similarly as stated in
the optimal hypothesis. However, in the default scenario peers will randomly dis-
connect, with increasing probability towards the end of the stream, and randomly
reconnect. Therefore, it is expected to have a slightly lower peering grade than in
the optimal scenario, especially in the end of the stream. It is also expected to
form a fairly stable pyramid structure, and that more peers are required to ob-
tain content from the CDN. As the peers constantly gather knowledge of the P2P
network, such as connected/disconnected status and ping times of the other peers
by pinging them and assuming that peers are disconnected when not receiving a
response within three seconds, disconnects are expected to not affect the results
too severely.

5.2.3 Flash crowd scenario hypothesis

The hypothesis for the flash crowd scenario is that the system will deal well with
new peers connecting, in terms of peering grade and hit-per-request ratio decreas-
ing and then recovering. Having worked with the system, there are concerns that
the established NATed peers will not gain knowledge of the newly connected peers.
The reasoning for this is that knowledge mainly spreads in network by ping, con-
tent and other type of requests. As peers do not send requests to NATed peers
(as they do not have knowledge of them, nor can the requests be answered), the
established NATed peers probably will not gain knowledge of the newly connected
peers and thus could lose out on potential resources, resulting in clusters where
no established NATed peers request content from the newly connected peers.

5.2.4 Flash disconnects scenario hypothesis

The hypothesis for the flash disconnects scenario is that the system will deal well
with peers flash disconnecting, in terms of peering grade decreasing and then
recovering. The hit-per-request ratio is expected to decrease, as peers will most
likely have disconnected peers in their prospect-list, which will influence the peering
grade at first. As knowledge of the P2P network is acquired fast, and echoes
through the network, the peers are expected to update their prospect-lists and
request content from peers that are connected. The factor expected to influence the
recovery time the most, is the content sample interval (a factor when considering
content statistics in the reevaluation algorithm). A long sample interval should
generate low stratum oscillation in the network, and long recovery time (from for
example flash disconnects or crowds). This phenomenon is expected as recent
changes in the P2P network barely make in impact as the content statistics have
been gathered over such a significant amount of time (15 minutes). In contrast if

“output” — 2017/11/29 — 11:38 — page 30 — #48

30 Results

the system was to use a short sample interval, this should generate high stratum
oscillation in the network, and shorter recovery time.

5.3 Optimal scenario

This section presents the results generated when simulating an optimal scenario,
i.e. a stable streaming session where none of the peers disconnect from the stream.
The purpose of simulating this scenario is to investigate if the system behaves as
expected and stated in the hypothesis. The results in this scenario can also serve
as a benchmark for the results in the other scenarios.

Optimal configurations

stream session 100 segments

segment length 6s

number of peers (n) 1000

peers’ inter arrival time first 10 segments m + rand(0 — 0.005) |[s]
peers’ inter arrival time after 10 segments 0.0ﬁ + rand(0 — 0.005) |[s]
disconnect probability all segments 0%

Table 5.3: The optimal configurations.

The peering grade, see Equation 2, is shown for every segment for 100 and
1000 peers in the optimal scenario in Figure 5.1.

peering grade
0.99 1000

0.98

0.974

0.961 1/ !
y

0.954 ‘| \ !

0.944 ‘| ~ /

0.934 ‘

0.924

0.91

0.904

0 10 20 30 40 50 80 70 80 90 segment ID

Figure 5.1: Peering grade optimal scenario: results for 100 peers
plotted in orange, and 1000 peers plotted in blue.

“output” — 2017/11/29 — 11:38 — page 31 — #49

Results 31

The hit-per-request ratio (successful requests) in the optimal scenario is visu-
alised for 100 and 1000 peers, see Figure 5.2 and Figure 5.3. In these visualisations,
peers are categorised into buckets. Each bucket contains continuous values, for ex-
ample stratum bucket 20 contains all peers with stratum 0-20, bucket 40 contains
all peers with stratum 21-40, and so on.

hit-per-request ratio
1.

08 /’"MWW\"/\BU

0.8
60

0.7

0.6]

0.5

04 40

0.3

0.2

0.1

20

10 20 30 40 50 60 70 80 90 segment ID

Figure 5.2: Optimal scenario: hit/request-ratio for different stratum
buckets (0-20 blue, 21-40 orange, 41-60 green, 61-80 red, 81-
100 purple) when simulating 100 peers.

hit-per-request ratio

0
10 20 30 40 50 60 70 80 90 segment ID

Figure 5.3: Optimal scenario: hit/request-ratio for different stratum
buckets (0-20 blue, 21-40 orange, 41-60 green, 61-80 red, 81-
100 purple) when simulating 1000 peers.

“output” — 2017/11/29 — 11:38 — page 32 — #50

32 Results

The network structures (in terms of stratum distribution) for the optimal sce-
nario, see Figure 5.4 and Figure 5.5, show the network structures for 100 and 1000
peers.

[20 40 80 80 100 120

Figure 5.4: Optimal scenario: histogram for the number of peers
in the different stratum buckets at the 50th segment, when
simulating 100 peers.

0 20 a0 50 80 100 120

Figure 5.5: Optimal scenario: histogram for the number of peers
in the different stratum buckets at the 50th segment, when
simulating 1000 peers.

“output” — 2017/11/29 — 11:38 — page 33 — #51

Results 33

5.4 Default scenario

This section presents the results generated when simulating a default scenario, i.e.
a streaming session where the peers disconnect from and reconnect to the stream.
The purpose of simulating this scenario is to investigate if the system behaves as
expected and stated in the hypothesis.

Default configurations

stream session 100 segments
Segment length 6s
number of peers (n) 100, 1000

peers’ inter arrival time first 10 segments | o5 + rand(0 — 0.005) [s]
peers’ inter arrival time after 10 segments | 5o + rand(0 — 0.005) [s]
disconnect probability (Py) first 85 seg- || 1% 1

ments, every 30s
P, after 85 segments, every 30s previous Py + 3%
reconnect probability (P,), every 30s 5%

Table 5.4: The default configurations.

The peering grade, see Equation 2, is shown for every segment for 100 and
1000 peers in the default scenario in Figure 5.6.

peering grade

0.98
0.964
0.94
0.92 { T . 1 1 I | I
| \

0.90-| ! ! ! ! ! ||‘ ! /\/\\ 1

| fro0
o.aaf‘ { \/ ! UI

0.86
0.84

0.82

0.80+ I I | | | | _
0 10 20 30 40 50 80 70 80 90 segment ID

Figure 5.6: Peering grade default scenario: results for 100 peers
plotted in orange, and 1000 peers plotted in blue.

“output” — 2017/11/29 — 11:38 — page 34 — #52

34 Results

The hit-per-request ratio (successful requests) in the default scenario is visu-
alised for 100 and 1000 peers, see Figure 5.7 and Figure 5.8. In these visualisations,
peers are categorised into buckets. Each bucket contains continuous values, for ex-
ample stratum bucket 20 contains all peers with stratum 0-20, bucket 40 contains
all peers with stratum 21-40, and so on.

hit-per-request ratio
1.0

/—\/7 M

00

0

0

0

o o vt e ol -
= o w ES @ o
RS @ @

0

10 20 30 40 50 80 70 80 90 segment ID

Figure 5.7: Default scenario: hit/request-ratio for different stratum
buckets (0-20 blue, 21-40 orange, 41-60 green, 61-80 red, 81-
100 purple) when simulating 100 peers.

hit-per-request ratio

0.8

08
07
06
05
0.4
00
03 80
60
02
0
0.1
0

10 20 30 40 50 60 70 80 90 segment ID

=

Figure 5.8: Default scenario: hit/request-ratio for different stratum
buckets (0-20 blue, 21-40 orange, 41-60 green, 61-80 red, 81-
100 purple) when simulating 1000 peers.

“output” — 2017/11/29 — 11:38 — page 35 — #53

Results

35

The network structures (in terms of stratum distribution) for the default sce-
nario, see Figure 5.9 and Figure 5.10, show the network structures for 100 and

1000 peers.

0

Figure 5.9: Default scenario: histogram for the number of peers in
the different stratum buckets (101-120 are disconnected peers)
at the 50th segment, when simulating 100 peers.

732

Figure 5.10: Default scenario: histogram for the number of peers in
the different stratum buckets (101-120 are disconnected peers)
at the 50th segment, when simulating 1000 peers.

“output” — 2017/11/29 — 11:38 — page 36 — #54

36

Results

5.5 Flash crowd scenario

This section presents the results generated when simulating a flash crowd scenario,
i.e. a streaming session where the peers disconnect from and reconnect to the
stream, and a large amount of new peers suddenly connecting to the stream.
The purpose of simulating this scenario is to investigate if the system behaves as

expected and stated in the hypothesis.

Flash crowd configurations

stream session

segment length

number of peers (n)

peers’ inter arrival time first 10 segments
peers’ inter arrival time after 10 segments
number of peers flash connecting

specific flash connect time ¢,

flash connect occurrence

disconnect probability (P;) first 85 seg-
ments, every 30s

P, after 85 segments, every 30s

reconnect probability (P,), every 30s

100 segments

6s

100, 1000

@ + rand(0 — 0.005) [s]
0.01n + Tcmd(() — 0005) [S]
50, 500

rand(0-10s)

35th segment + ¢y,

1%

previous Py + 3%
5%

Table 5.5: The network configurations used in the simulations.

The peering grade, see Equation 2, is shown for every segment for 100 and
1000 peers in the flash crowd scenario in Figure 5.11.

peering grade
0.99

10 20 30 40 50 80

70 80 90 segment ID

Figure 5.11: Peering grade flash crowd scenario: results for 100
peers plotted in orange, and 1000 peers plotted in blue.

“output” — 2017/11/29 — 11:38 — page 37 — #55

Results

37

The hit-per-request ratio (successful requests) in the flash crowd scenario is
visualised for 100 and 1000 peers, see Figure 5.12 and Figure 5.13. In these vi-
sualisations, peers are categorised into buckets. Each bucket contains continuous
values, for example stratum bucket 20 contains all peers with stratum 0-20, bucket
40 contains all peers with stratum 21-40, and so on.

fiperreq

uest ratio

o e ° o o ° o o
» @ > o ° S © ©

10 20 30 40 50 80 70 80

0

60
40

0

90 segment ID

Figure 5.12: Flash crowd scenario: hit/request-ratio for different
stratum buckets (0-20 blue, 21-40 orange, 41-60 green, 61-80
red, 81-100 purple) when simulating 100 peers, and 50 peers
flash connecting at the 40th segment.

hit-per-request ratio

i

100
80

=

10 20 30 40 50 60 70 80 90 segment

D

Figure 5.13: Flash crowd scenario: hit/request-ratio for different
stratum buckets (0-20 blue, 21-40 orange, 41-60 green, 61-80
red, 81-100 purple) when simulating 1000 peers, and 500 peers

flash

connecting at the 40th segment.

“output” — 2017/11/29 — 11:38 — page 38 — #56

38 Results

The network structures (in terms of stratum distribution) for the flash crowd
scenario show the network structures right before and three minutes after the flash
crowd for 150 and 1500 peers, see Figures 5.14, 5.15, 5.16 and 5.17.

0 20 40 60 8 100 120

Figure 5.14: Flash crowd scenario: histogram for the number of
peers in the different stratum buckets (101-120 are disconnected
peers) right before the flash crowd, when simulating 150 peers.

0 20 40 60 80 100 120

Figure 5.15: Flash crowd scenario: histogram for the number of
peers in the different stratum buckets (101-120 are disconnected
peers) 3 minutes after the flash crowd, when simulating 150
peers.

“output” — 2017/11/29 — 11:38 — page 39 — #57

Results

39

4 20 a0 60 80 100 120

Figure 5.16: Flash crowd scenario: histogram for the number of
peers in the different stratum buckets (connected peers in blue,
disconnected peers placed in 101-120 in red) right before the
flash crowd, when simulating 1500 peers.

0 20 40 60 80 100 120

Figure 5.17: Flash crowd scenario: histogram for the number of
peers in the different stratum buckets (101-120 are disconnected
peers) 3 minutes after the flash crowd, when simulating 1500
peers.

“output” — 2017/11/29 — 11:38 — page 40 — #58

40

Results

5.6 Flash disconnects scenario

This section presents the results generated when simulating a flash disconnects
scenario, i.e. a streaming session where the peers disconnect from and reconnect
to the stream, and a large amount of new peers suddenly disconnecting from the
stream. The purpose of simulating this scenario is to investigate if the system
behaves as expected and stated in the hypothesis.

Flash disconnects configurations

stream session

segment length

number of peers (n)

peers’ inter arrival time first 10 segments
peers’ inter arrival time after 10 segments
flash disconnect quantity

specific flash disconnect time .

flash connect occurrence

disconnect probability (Py) first 85 seg-
ments, every 30s

Py after 85 segments, every 30s

reconnect probability (P,), every 30s

100 segments

6s

100, 1000

@ + rand(0 — 0.005) [s]
oo + rand(0 — 0.005) [s]
0.5

rand(0-10s)

35th segment + ¢y,

1%

previous Py + 3%
5%

Table 5.6: The flash disconnects configurations.

The peering grade, see Equation 2, is shown for every segment for 100 and
1000 peers in the flash disconnects scenario in Figure 5.18.

peering grade

10.55

\
|“ ’.‘
\

10 20 30 40 50 60

70 80

90 segment ID

Figure 5.18: Peering grade flash disconnects scenario: results for
100 peers plotted in orange, and 1000 peers plotted in blue.

“output” — 2017/11/29 — 11:38 — page 41 — #59

Results 41

The hit-per-request ratio (successful requests) in the flash disconnects scenario
is visualised for 100 and 1000 peers, see Figure 5.19 and Figure 5.3. In these
visualisations, peers are categorised into buckets. Each bucket contains continuous
values, for example stratum bucket 20 contains all peers with stratum 0-20, bucket
40 contains all peers with stratum 21-40, and so on.

hit-per-request ratio
1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

20

0.0 0
10 20 30 40 50 60 70 80 90 segment ID

Figure 5.19: Flash disconnect scenario: hit/request-ratio for dif-
ferent stratum buckets (0-20 blue, 21-40 orange, 41-60 green,
61-80 red, 81-100 purple) when simulating 100 peers.

hit-per-request ratio

0.9
0.8
0.7
0.6
0.5
0.4
0.3

02
100
01 80

60
140

0.0

0
10 20 30 40 50 60 70 80 90 segment ID

Figure 5.20: Flash disconnect scenario: hit/request-ratio for dif-
ferent stratum buckets (0-20 blue, 21-40 orange, 41-60 green,
61-80 red, 81-100 purple) when simulating 1000 peers.

“output” — 2017/11/29 — 11:38 — page 42 — #60

42 Results

The network structures (in terms of stratum distribution) for the flash discon-
nects scenario show the network structures right before and three minutes after
the flash disconnects for 150 and 1500 peers, see Figures 5.21, 5.22, 5.23 and 5.24.

0 20 40 60 8 100 120

Figure 5.21: Flash disconnects scenario: histogram for the number
of peers in the different stratum buckets (101-120 are discon-
nected peers) right before the flash disconnects, when simulat-
ing 100 peers.

o 20 40 60 80 100 120

Figure 5.22: Flash disconnects scenario: histogram for the num-
ber of peers in the different stratum buckets (101-120 are dis-
connected peers) 3 minutes after the flash disconnects, when
simulating 100 peers.

“output” — 2017/11/29 — 11:38 — page 43 — #61

Results

43

0 20 40 60 80 100 120

Figure 5.23: Flash disconnects scenario: histogram for the number
of peers in the different stratum buckets (101-120 are discon-
nected peers) right before the flash disconnects, when simulat-
ing 1000 peers.

14
[} 20 40 60 80 100 120

Figure 5.24: Flash disconnects scenario: histogram for the num-
ber of peers in the different stratum buckets (101-120 are dis-
connected peers) 3 minutes after the flash disconnects, when
simulating 1000 peers.

“output” — 2017/11/29 — 11:38 — page 44 — #62

44

Results

“output” — 2017/11/29 — 11:38 — page 45 — #63

Chapter 6

Data Analysis

In this chapter, the results are analysed and discussed, and the system’s perfor-
mance is evaluated for the different scenarios.

6.1 Optimal scenario

The simulations showed that the peering grade is slightly better for 1000 peers,
compared to 100 peers, see Figure 5.1. This is expected for mesh-based solutions
as they have good scalability. Due to the static environment of this scenario where
no peers disconnect, bandwidth is stable over time, and the network structure does
not change, the peering grade stabilises. When simulating 100 peers only 4 peers
utilised the fallback mechanism resulting in a peering grade of 96%, see Figure
A.1 in Appendix A. When simulating 1000 peers, 10 peers utilised the fallback
mechanism when resulting in a peering grade of 99%, see Figure A.2. Our hypoth-
esis expected a pyramid like structure, which occurs when simulating 1000 peers.
However, this is less evident when simulating 100 peers, see Figures 5.4 and 5.5.
Although simulating 100 peers did not generate the expected pyramid like network
structure, the system’s overall performance was good due to peers requesting con-
tent from multiple layers, see Figure A.1. Independent of the network’s structure
peers with higher stratum wait longer before requesting content from peers, which
should lead to higher stratum having better hit-per-request ratios. This occurs
when simulating both 100 and 1000 peers confirming our hypothesis, see Figures
5.2 and 5.3.

6.2 Default scenario

The simulations showed that the peering grade is slightly better for 1000 peers,
compared to 100 peers, see Figure 5.6. As in the previous scenario, this is expected
for mesh-based solutions. As expected the peering grade is similar, yet slightly
lower and does not stabilise over time, compared to the optimal scenario. As more
peers disconnect than reconnect, the peering grade decreases slightly over time.
The hit-per-request ratios are similar, see Figures 5.7 and 5.3 compared to the
optimal scenario. Surprisingly the hit-per-request ratios are slightly higher in the
default scenario compared to the optimal scenario (until the end of the stream

45

“output” — 2017/11/29 — 11:38 — page 46 — #64

46 Data Analysis

when peers increasingly disconnect). The network structures is more pyramid-like
when simulating 1000 compared to 100 peers, see Figures 5.10 and 5.9, the same
tendency as in the optimal scenario.

6.3 Flash crowd scenario

The simulations showed that the peering grade decreased and then recovered (even
increasing), at the occurance of the flash crowds, see Figure 5.11. The simulations
showed that 1000 peers receiving 500 flash connected peers, outperformed 100
peers receiving 50 peers, in terms of peering grade. The system deals well with
flash crowds, this is expected due to mesh-based solutions’ robustness. Although
the peering grade recovers, the hit-per-request ratio does not, see Figures 5.12 and
5.13. This could be linked to the hypothesised clustering behaviour which occurs,
see Figure A.3 in Appendix A. This visualisation shows that no established peers
obtain content from the newly connected peers, thus more peers request content
without utilising all resources and this results in lower hit-per-request ratio as more
peers compete for bandwidth. The network structures are similar right before
the flash crowd and three minutes after the flash crowd suggesting that network
reconfigures itself, see Figures 5.14, 5.15, 5.16 and 5.17. Like in the previous
scenarios the network takes a more pyramid like structure when simulating 1000
peers compared to 100.

6.4 Flash disconnects scenario

The simulations showed that the peering grade decreased slightly and then re-
covered, at the occurance of flash disconnects, see Figure 5.18. The simulations
showed that the peering grade is slightly better for 1000 peers, compared to 100.
The system deals well with flash disconnects, this is expected for mesh-based so-
lutions. Like for the flash crowd scenario the peering grade recovers, while the
hit-per-request ratio does not, see Figures 5.12 and 5.13. Furthermore, the hit-
per-request ratio recovers less compared to the flash crowds scenario. This can
be explained by that resources are increased in the flash crowd scenario, while
resources are lost in the flash disconnects scenario. The network structures are
similar right before the flash disconnects and three minutes after the flash dis-
connects suggesting that network reconfigures itself, see Figures 5.21, 5.22, 5.23
and 5.24. Like in the previous scenarios the network takes a more pyramid-like
structure when simulating 1000 peers compared to 100.

6.5 Improvements

From the data analysis it was concluded that the system had problems towards the
end of the streaming session when faced with flash disconnects. This is thought to
occur as the system has already lost a lot of resources in the flash disconnects. As
stated in our hypothesis, and discussed in section 6.4, it was possible to increase the

“output” — 2017/11/29 — 11:38 — page 47 — #65

Data Analysis a7

system’s responsiveness and robustness by decreasing the sample interval (a factor
when considering content statistics in the reevaluation algorithm) for the content
statistics. When decreasing the sample interval from 15 minutes to 1 minute, the
system considered more recent content statistics and was better equipped to adapt
to changes. The system performed better towards the end of the stream in terms
of peering grade when peers increasingly disconnected, see Figures 6.1 and 6.2.
However, utilising shorter content sample intervals could lead to oscillations in
stratum, and thus the network will reconfigure itself constantly.

peering grade

10 20 30 40 50 60 70 80 90 segment ID

Figure 6.1: Peering grade: 100 peers with a content sample interval
of 15 minutes (orange, label: 1000), and 100 peers with a
content sample interval of 1 minute (blue, label: 100im).

peering grade
098

10 20 30 40 50 60 70 80 90 segment ID

Figure 6.2: Peering grade: 1000 peers with a content sample interval
of 15 minutes (orange, label: 1000), and 1000 peers with a
content sample interval of 1 minute (blue, label: 1000im).

“output” — 2017/11/29 — 11:38 — page 48 — #66

48

Data Analysis

“output” — 2017/11/29 — 11:38 — page 49 — #67

Chapter 7

Discussion

In this chapter the results and data analysis are discussed, and includes possible
sources of error and future work.

7.1 Simulation environment

Simulating few peers was a conscious choice, as it is easier to analyse and visualise
the behaviour of a smaller P2P network. When simulating relatively small P2P
networks, the simulations are affected more by randomness (say a peer with high
upload contribution disconnecting, compared to a peer with low, or none, upload
contribution disconnecting). Repeated simulation of the same scenarios behaved
very similarly when simulating a 1000 peers, and varied slightly when simulating
a 100 peers. The simulations showed the same behaviour when repeating the
scenarios.

The simulation environment consisted of assigning X and Y coordinates to the
peers so that distance between peers would influence the latency. In the simulations
the peers are distributed in an area approximately twice the size of Lund, Sweden.
It could be interesting to simulate peers having much greater distances in order
to analyse the latency’s implication. As the simulation environment is limited to
assigning the peers to one of three ISPs, this could influence the results generated
in the simulations. Simulating with more available ISPs, and different boarder
crossing latencies between the different ISPs, could improve the accuracy of the
results. Further developing the ISP and latency modelling could for example
simulate peers watching the same stream and distributing content between each
other, although being positioned at different parts of the world.

7.2 System specific findings

A finding from the literature indicated that a way to regulate the admittance of
free-riders is to use algorithms potentially blocking these peers from connecting to
the network. The algorithms mentioned in [27], make use of heuristics in the peers
to estimate the capacity of the network. Our results are based on an approach
accepting all peers (free-riders are welcome). Although free-riders are unable to
contribute their resources to the system, the simulated system accepts them and

49

“output” — 2017/11/29 — 11:38 — page 50 — #68

50 Discussion

assigns them the lowest priority. The reason being that all content that can be
provided to them from peers, and not the fallback mechanism, reduces the cost.
Although the system admitted around 80% free-riders, and attempting to minimise
data obtained from the CDN, our experiments indicates that approximately 95%
of all data exchanges between peers.

An interesting artefact is that although the network has a complex structure,
and no centralised entity controlling the content flow, the system quickly structures
and stabilises itself, allowing for good peering grade.

Our findings show that for a live streaming service, where the majority of the
peers are not able to contribute resources to the system, the utilisation of the CDN
can be reduced without a significant impact for the end users.

The results show that although most content is distributed by the P2P net-
work, there is a lot to gain by using the CDN as a fallback mechanism. Newly
connected peers can utilise the fallback mechanism while finding neighbouring
peers and while the P2P network is reconfiguring. The fallback mechanism func-
tions as a safety measure so the peers can fulfil their (content) contract, thus
increasing the system’s scalability and robustness. CDN data transfers were reg-
istered at around 5% in a live environment, with 80% of the network consisting of
free-riders. Indicating that this is a stable solution, as simulation of the scenarios
showed that the mesh properties of the network dealt with user churn sufficiently.

When performing the data analysis it was concluded that reducing the content
sample interval, and structuring the network based on more recent content statis-
tics, the system’s adaptiveness improved when simulating the flash disconnects
scenario. This improvement should be further analysed due to its interesting side
effect. When resetting the content statistics more frequently, stratum oscillations
were introduced, see Figure B.1 in Appendix B. Peers frequently changing stratum
could complicate the selection process when determining which neighbouring peers
to request content from, possibly introducing a ripple effect through the network.

The simulations and visualisations made it is easier to understand key miss
concepts, faults in the network on a topology level, and provided a basis to find
configurations and alterations of the network, that could further improve the sys-
tem.

7.3 Sources of error

A main aspect of P2P networks, is how data is transmitted and received over the
Internet. This is very complex and hard to model, and in parts of our network
modelling assumptions and cut-offs could be factors for errors. Instead of creating
the whole network stack and simulating how lower network layers influence the
transmission, the simulation is based on assumptions. In the master’s thesis, com-
ponents of the P2P system were generalised. Allowing to study the system when
simulating different scenarios, and to find tendencies of its overall performance.
However, as the system and the network model are generalised, the results could
potentially be influenced by unintentionally neglecting important artefacts. Gen-
eralising the network modelling in terms of simulating with static bandwidth and
a generous bandwidth model, and accurately modelling user behaviour, could be

“output” — 2017/11/29 — 11:38 — page 51 — #69

Discussion 51

a factor in the simulations’ high and stable peering grade.

It is of course in the realm of possibility, that bugs slipped through the screen-
ing process and code-review conducted by ourselves, and Voddler.

We have seen that most trends scale quite well from 100 to 1000 peers, but
we can not say for certain that it will scale well beyond that. We theorise that a
network of 1000 peers would be enough to find most trends on a larger scale.

7.4 Future work

We suggest creating a more advanced, or somehow utilise, a more advanced net-
work model. The generalisation of the system of course plays a part in this,
however it is our opinion that the network model is extremely important in order
to obtain more accurate results.

In the scope of this master’s thesis we neglected multi bitrate (adaptive stream-
ing). It would be interesting to introduce multi bitrate and see its results when
simulating our scenarios. Studying multi bitrate could result in new findings, po-
tentially sub clusters for the different bitrates. As peers with good resources can
download additional bitrates to the one it is streaming, it could help the other
clusters with their peering. This is a potential bridge between the different clus-
ters?

Are P2P networks wanted in a environment with mobile phones, what are
the effects in terms of energy consummation and data transfers, should they be
freeloaders?

We have seen studies that point out the problems of P2P networks operating
across ISP boundaries, in terms of latency and clustering effects and the problems
this imposes. In this thesis the boundary crossing is taken into account, but no
further analysis is done. This could be interesting to study to see how different
configurations impact the performance and behaviour.

“output” — 2017/11/29 — 11:38 — page 52 — #70

52

Discussion

“output” — 2017/11/29 — 11:38 — page 53 — #71

Chapter 8

Conclusions

This master’s thesis has investigated and studied how an actual implementation
of a hybrid P2P live video streaming system performs under different scenarios by
simulation. The study showed that the mesh-based P2P solution performed well
when simulating under user churn. When simulating with approximately 80%
free-riders the CDN utilisation was reduced with 95% on average. The system
dealt better with the flash crowd scenario than the flash disconnects scenario, in
terms of peering grade and hit-per-request ratio recovering.

When performing the data analysis, it was determined that the P2P network
adopted the expected structure when simulating larger networks. Although sim-
ulating small networks resulted in less of a pyramid like structure, good peering
grade was achieved. The mesh-based approach and unstructured network utilising
a fallback mechanism provides robustness against user churn.

The system performed well in all scenarios when simulated. To further improve
the accuracy and credibility of the results, we suggest utilising a more detailed and
complex network model.

P2P networks are complex and difficult to theorise, seen in our partially in-
correct hypotheses. Therefore, we found that the simulations and visualisations
were of great assistance in understanding the system’s behaviour and overall per-
formance.

93

“output” — 2017/11/29 — 11:38 — page 54 — #72

54

Conclusions

“output” — 2017/11/29 — 11:38 — page 55 — #73

Bibliography

1]

2l
3]

4]
[5]

[6]

17l

8]

19]

[10]

[11]

VNI Cisco. “Cisco Visual Networking Index: Forecast and Methodol-
ogy 2014-2019 White Paper”. In: Cisco, Tech. Rep (2015).

FENG Li. “The Future of Video”. In: (2016).

Andrew Fecheyr-Lippens. “A review of http live streaming”. In: Inter-
net Citation (2010), pp. 1-37.

Youtube. https://wuw.youtube.com/. Accessed: 2017-10-13.

Apple Inc. HTTP Live Streaming Overview. 2009. URL: http: //
developer.apple.com/iphone/library/documentation/NetworkingIntern
Conceptual/StreamingMediaGuide (visited on 06/29/2017).

P. Hillmann et al. “Modeling the Location Selection of Mirror Servers
in Content Delivery Networks”. In: 2016 IEEE International Congress
on Big Data (BigData Congress). June 2016, pp. 438-445. DOI: 10.
1109/BigDataCongress.2016.68.

Roberto Roverso. “A System, Tools and Algorithms for Adaptive
HTTP-live Streaming on Peer-to-peer Overlays”. PhD thesis. KTH
Royal Institute of Technology, 2013.

RFC 6886, 2013. NAT Port Mapping Protocol (NAT-PMP) [online]
RFC. https://tools.ietf.org/html/rfc6886. Accessed: 2017-10-
28.

RFC 6887, 2013. Port Control Protocol (PCP) [Online] RFC. https:
//tools.ietf.org/html/rfc6887. Accessed: 2017-10-28.

Hidekazu Suzuki, Yuji Goto, and Akira Watanabe. “External dynamic
mapping method for NAT traversal”. In: 2007 International Sympo-
sium on Communications and Information Technologies. Oct. 2007,
pp. 723-728. DOI: 10.1109/ISCIT.2007.4392111.

Felipe Rocha Wagner, Marcio Garcia Martins, and Arthur Toérgo
Gomez. “A Peer to Peer Architecture Applied to Multiplayer Games”.
In: ICN 2015 (2015), p. 66.

95

et/

“output” — 2017/11/29 — 11:38 — page 56 — #74

56

BIBLIOGRAPHY

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

De Boever. “Peer-to-Peer Networks as a Distribution and Publishing
Model”. In: ELPUB. 2007.

Xinyan Zhang et al. “CoolStreaming/DONet: A data-driven overlay
network for peer-to-peer live media streaming”. In: INFOCOM 2005.
2/th Annual Joint Conference of the IEEE Computer and Commu-
nications Societies. Proceedings IFEE. Vol. 3. IEEE. 2005, pp. 2102—
2111.

Xiaojun Hei et al. “A measurement study of a large-scale P2P IPTV
system”. In: IEEE transactions on multimedia 9.8 (2007), pp. 1672
1687.

L. Massoulie. “Peer-to-peer live streaming: Optimality results and
open problems”. In: 2008 42nd Annual Conference on Information
Sciences and Systems. Mar. 2008, pp. 313-315. pOI: 10.1109/CISS.
2008.4558542.

A. W. AlTuhafi, S. Ramadass, and Y. W. Chong. “Concepts and types
of peer-to-peer network topology for live video streaming”. In: 2013
IEEE International Conference on RFID-Technologies and Applica-
tions (RFID-TA). Sept. 2013, pp. 1-4. DOI: 10.1109/RFID-TA.2013.
6694540.

Thomas Locher et al. “Push-to-pull peer-to-peer live streaming”. In:
Distributed Computing (2007), pp. 388-402.

Xiaojun Hei, Yong Liu, and Keith W Ross. “IPTV over P2P streaming
networks: the mesh-pull approach”. In: IEEE Communications Mag-
azine 46.2 (2008).

Thomas Karagiannis et al. “Is p2p dying or just hiding?[p2p traf-
fic measurement|”. In: Global Telecommunications Conference, 2004.

GLOBECOM’04. IEEE. Vol. 3. IEEE. 2004, pp. 1532-1538.

Vinay Aggarwal, Anja Feldmann, and Christian Scheideler. “Can ISPs
and P2P users cooperate for improved performance?” In: ACM SIG-
COMM Computer Communication Review 37.3 (2007), pp. 29-40.

Kolja Eger et al. “Efficient Simulation of Large-scale P2P Networks:
Packet-level vs. Flow-level Simulations”. In: Proceedings of the Second
Workshop on Use of P2P, GRID and Agents for the Development of
Content Networks. UPGRADE ’07. Monterey, California, USA: ACM,
2007, pp. 9-16. 1sBN: 978-1-59593-718-6. DOI: 10 . 1145/ 1272980 .
1272986. URL: http://doi.acm.org/10.1145/1272980.1272986.

“output” — 2017/11/29 — 11:38 — page 57 — #75

BIBLIOGRAPHY 57

[22] Chi-Wen Lo et al. “A packet loss estimation model and its application
to reliable mesh-based P2P video streaming”. In: Multimedia and Expo
(ICME), 2011 IEEE International Conference on. IEEE. 2011, pp. 1-
6.

[23] Philipp Berndt, Dominic Battré, and Odej Kao. “A hybrid approach
to modeling end-to-end delay in P2P networks”. In: Proceedings of
the 2010 ACM workshop on Advanced video streaming techniques for
peer-to-peer networks and social networking. ACM. 2010, pp. 37-42.

[24] TS Eugene Ng and Hui Zhang. “Global network positioning: a new ap-
proach to network distance prediction.” In: Computer Communication
Review 32.1 (2002), p. 61.

[25] Ingmar Baumgart, Bernhard Heep, and Stephan Krause. “OverSim:
A flexible overlay network simulation framework”. In: IEEE Global
Internet Symposium, 2007. IEEE. 2007, pp. 79-84.

[26] Sebastian Kaune et al. “Modelling the Internet Delay Space Based on
Geographical Locations”. In: Proceedings of the 2009 17th Euromicro
International Conference on Parallel, Distributed and Network-based
Processing. PDP ’09. Washington, DC, USA: IEEE Computer Society,
2009, pp. 301-310. 1SBN: 978-0-7695-3544-9. DOI: 10.1109/PDP.2009.
44. URL: http://dx.doi.org/10.1109/PDP.2009.44.

[27] Tlias Chatzidrossos. “Live Streaming Performance of Peer-to-Peer Sys-
tems”. PhD thesis. KTH Royal Institute of Technology, 2012.

[28] D. Ren, Y. T. Li, and S. H. Chan. “On Reducing Mesh Delay for
Peer-to-Peer Live Streaming”. In: IEEE INFOCOM 2008 - The 27th
Conference on Computer Communications. Apr. 2008. DOI: 10.1109/
INFOCOM.2008.160.

[29] F. Pianese et al. “PULSE: An Adaptive, Incentive-Based, Unstruc-
tured P2P Live Streaming System”. In: IEEFE Transactions on Multi-
media 9.8 (Dec. 2007), pp. 1645-1660. 1SSN: 1520-9210. DoI: 10.1109/
TMM.2007.907466.

[30] Z. Liu et al. “LayerP2P: Using Layered Video Chunks in P2P Live
Streaming”. In: IEEE Transactions on Multimedia 11.7 (Nov. 2009),
pp. 1340-1352. 18sN: 1520-9210. DOI: 10.1109/TMM. 2009 .2030656.

[31] Golang documentation. https://golang.org/doc/. Accessed: 2017-
10-16.

[32] JSON. https://www.python.org/. Accessed: 2017-10-31.
[33] Python. http://www.json.org/. Accessed: 2017-10-31.
[34] DS3.js. https://d3js.org/. Accessed: 2017-10-30.

“output” — 2017/11/29 — 11:38 — page 58 — 476

58

BIBLIOGRAPHY

[35]

Golang gorutines. https://golangbot.com/goroutines/. Accessed:
2017-10-16.

“output” — 2017/11/29 — 11:38 — page 59 — #77

Appendix A

Content distribution visualisations

The content flow for a certain chunk from the CDN through the P2P network in
the optimal scenario is visualised for 100 peers in Figure A.1, and for 1000 peers
in Figure A.2.

Figure A.1: Optimal scenario: content flow for certain chunk, from
CDN (red node and lines) through the P2P network for 100
peers, at the 40th segment.

99

page 60 — #78
Content distribution visualisations

11:38

D
d v,(“/‘/\“\«l*\\\\‘/"élaw Y A

o9

/
il

Yar,
il

0

iy

2017/11/29

“output”

60

Figure A.2: Optimal scenario: content flow for certain chunk from

CDN (red node and lines) through the P2P network for 1000

peers, at the 40th segment.

The content flow for a certain chunk from the CDN through the P2P network

in the flash crowd scenario is visualised for 100 peers in Figure A.3.

Figure A.3: Flash crowd scenario: content flow from CDN (red node

and lines) through the P2P network for 100 peers, 1 minute after

the flash crowd.

“output” — 2017/11/29 — 11:38 — page 61 — 479

Appendix B

Network structure

A snapshot of the network structure from the flash disconnect scenario when sim-
ulating a 100 peers with a content sample interval of 1 minutes. The arrows in the
visualisation show which stratum values the peers oscillate between.

0=

HOEDO@EMEEEEDEDED @D OEIDEO0 ID@DED CIDEDE@IIDO

NodelD

T T T T T T T T T 1
10 20 30 40 50 60 70 80 % 100

Figure B.1: Flash disconnect scenario: snapshot of stratum oscilla-
tion in the network structure when simulating 100 peers.

61

UNIVERSITY

Series of Master’s theses
Department of Electrical and Information Technology
LU/LTH-EIT 2017-611

http://www.eit.Ith.se

£107 punT "18sny-3 1 12132411 Aq parulid

