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Abstract

The current state of security found in the IoT domain is highly flawed, a major
problem being that the cryptographic keys used for authentication can be eas-
ily extracted and thus enable a myriad of impersonation attacks. In this MSc
thesis a study is done of an authentication mechanism called device fingerprint-
ing. It is a mechanism which can derive the identity of a device without relying on
device identity credentials and thus detect credential-based impersonation attacks.

A proof of concept has been produced to showcase how a fingerprinting system can
be designed to function in a resource constrained IoT environment. A novel ap-
proach has been taken where several fingerprinting techniques have been combined
through machine learning to improve the system’s ability to deduce the identity
of a device.

The proof of concept yields high performant results, indicating that fingerprinting
techniques are a viable approach to achieve security in an IoT system.

Keywords — IoT, Device Fingerprinting, Machine Learning, Machine to Ma-
chine Authentication, Impersonation Attacks, Spoofing Attacks, Wireless Sensor
Network
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Popular Science Summary

Two devices that communicate without presence of a human being
usually identify themselves using cryptographic keys stored in their
firmware. Studies have shown that it is possible to extract such keys
from the devices and thus impersonate them. The proposed solution to
this problem is to add an additional layer of security to identify such
impersonations.

There exists several methods to authenticate a device that are not based on cryp-
tographic keys alone. One such method is physical device fingerprinting which
stems from the fact that physical properties of a device contains some measure of
uniqueness. Thus, these physical properties can be used to authenticate a device.

Studies have previously been done to test the accuracy of such methods, how-
ever, most have been tested in laboratory environments with high-end equipment.
As a large number of the systems that communicate without human presence are
low-cost and low-power it was unclear if physical device fingerprinting would be
possible in such systems.

Two of the physical device fingerprinting methods analyzed were deemed possi-
ble to implement, clock skew and RSSI mean clustering. Clock skew is based on
minuscule differences in devices’ perception of time and RSSI mean clustering uti-
lizes many antennae to see if a device moves to a different location.

Authentication tests using both of the implemented fingerprinting methods and
four tested devices showed very good results. The system demonstrated that it
is possible to detect an impersonation attempt in all the tests and very rarely
misjudged a legitimate device as an impersonating device. However, the system
has to be tested more extensively with an increasing number of tested devices as
well as in different environmental settings to see if the results hold.
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Chapter 1
Introduction

With the rise of Internet of Things (IoT), the number of embedded devices with
Internet connectivity is seeing an exponential growth. A society that is fully con-
nected down to the bare things in our everyday life has many benefits but does also
raise a number of security concerns, autonomous authentication between machines
–machine to machine authentication– being one of them.

Most IoT systems employ credential based authentication. Similar to smart hand-
held devices or traditional mobile phones, it is the keys stored in the device’s
non-volatile memory that are the very credentials on which the devices are au-
thenticated. However, unlike smart hand-held devices, IoT devices do not enjoy
the security of being carried on the owner’s physical being, they are most often
unmanned and unmonitored. Thus, IoT devices are highly susceptible to attacks
where a potential adversary could extract the necessary credentials and pose as
the device in question.

1.1 Background

Authentication of embedded devices are in many cases credential based which can
be seen in [1] and [2]. A device is deemed authenticated by being able to produce
the credentials, most often stored in a SIM-card or the device’s firmware, during
the authentication procedure. Credentials in this context denotes the device’s PKI
keys. The type of authentication utilized is called machine to machine (M2M) au-
thentication, where two machines interact with each other without the presence of
a human being.

In traditional use cases such as hand held smart devices or personal comput-
ers, human presence is a fact. In such cases, an assumption can be made that
the devices are not compromised since they are located at the owner’s physical
being. Thus a potential adversary does not have the physical presence necessary
to extract said credentials from the devices in question. However, what means
are available to assert that a physical device is not in fact compromised when the
owner of said device is not physically present?

Experiments done in [3] showed that it is possible to retrieve the PKI keys by
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2 Introduction

reading the flash of a node without expensive hardware or software. Thus, the pa-
per emphasizes the need to secure such nodes. With the PKI keys, an adversary
can then impersonate a node as presence of the keys often is the only means of
authentication when initiating a connection [4].

Research has been done on various authentication mechanisms that operate on
top of the traditional credential based authentication. In machine-metrics based
authentication various metrics such as computation time given a certain random
problem, hardware fingerprint and other characteristics can be used to deduce the
identity of the authenticating device. The core of the concept is to identify the
proving party through information which cannot be readily found in the device’s
non-volatile memory. Such mechanisms are often designed for more traditional
systems such as personal computers or smart hand held devices. However, can
such authentication models be extended to embedded systems where computa-
tional resources are more restrained?

The target environment of this project is Tritech’s demonstration system con-
sisting of end devices in the form of temperature sensors which are equipped with
system on a chip Mighty Gecko [5], the sensors comprise a fog network whose
gateway is realized by a Raspberry Pi with Internet connectivity which in turn
is communicating with an Amazon Web Services (AWS) deployment. The AWS
instance enables an application interface which can be reached from desktops or
smart hand-held devices to read data from the different end devices but also to
control them. The design of the solution to be produced in the project will be
specifically aimed towards systems with similar characteristics to the ones found
in Tritech’s demonstration platform.

1.2 Project Aims

The main goal of the Master’s thesis is to investigate different means to contin-
uously authenticate a device. This will be implemented in a monitoring system
designed to detect compromised nodes in an IoT network. Thus, the questions
which this thesis will try to answer are the following:

1. Given a node in an embedded systems network whose private credentials
have been compromised, what mechanisms can be deployed to identify and
subsequently reject data originating from such a node?

(a) The methods for authentication which will be evaluated will fall within
the category of machine-metrics based authentication, the core of the
concept is to identify the proving party through information which
cannot be readily found in the device’s non-volatile memory.

(b) Due to the resource constrained nature of the environment, an anal-
ysis will be done on the hardware and software requirements of the
implemented system and how the resource demands scale in a network
of many nodes.
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2. From the analysis in 1, can a system be produced and tailored to fit onto
a resource constrained environment? What compromises will need to be
done in order to achieve such an implementation and what impact will such
compromises have on the security level of the system?

3. Can the implementation produced distinguish between a legitimate and cor-
rupt node regardless of possession of underlying credentials?

1.3 Scope

The scope of the MSc thesis is to investigate authentication techniques which are
operating on top of credential based authentication and apply these techniques to
an embedded wireless system.

System Characteristics

The system in question will be a static one, nodes are fixed and will not change
their spatial location without an explicit reconfiguration procedure where the new
location of the node in question is registered. The network topology is star-shaped
with the access point acting as the center of the topology. The network hop count
is limited to one hop, meaning that each node will have to be directly connected
to the AP. In order to conduct a well-defined discussion on the topic, a thorough
definition of terms used throughout the report is given.

• Credentials, data found in device memory which the device can use to
prove its identity. E.g. MAC address and cryptographic keys.

• Embedded system, a system whose computational abilities are highly
constrained in comparison to a more typical system where storage, CPU
power and power supply is not considered a highly limited resource. An
example of an embedded systems is a wireless sensor network (WSN), where
the connected sensors are constrained in their functional and computational
capabilities.

• Authentication, the act of verifying the identity of a connecting party.
An authentication procedure involves two parties: the proving party and
the verifying party. The former is in the context of the thesis a connecting
device whose goal is to establish its identity. The latter’s function is to
verify the identity of the proving party and subsequently accept or deny
connection based on the outcome of the verification.

• Compromised, a device’s credentials are said to be compromised if an
adversary were to gain unlawful access to them.

1.3.1 Attack model

As mentioned in the background section, the thesis project will evaluate vulner-
abilities in an embedded system where the credentials of one or more nodes have
been compromised. Once the credentials have been compromised, they can be
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relocated to a device at the disposal of the attacker who now has the means to
pose as a compromised node. Consider Alice a proving node, Bob a verifying party
and Eve a malicious entity. In an authentication scheme where private public key
pair constitute the means of authentication, Eve has gained access to the crypto
keys used between Alice and Bob. Being in posession of the crypto keys, Eve can
now impersonate Alice and send a message to Bob without Bob detecting it. In
this project, a protocol will be created such that Bob should be able to detect if a
packet originates from Alice or Eve, even if Eve in some way claims to be Alice.

1.4 Outline

The report will be structured as follows: Chapter 2 will present and describe basic
concepts to provide preliminary knowledge required to understand following chap-
ters. Chapter 3 intends to describe the fingerprinting techniques discovered during
the literature-study as well as methods to generate and authenticate a fingerprint.
In Chapter 4, the attacks relevant to the thesis project are presented, including
attacks on the different fingerprinting techniques. An evaluation of the finger-
printing techniques based on the previous chapters will be described in Chapter 5
which will result in the techniques to pursue during implementation. In Chapter
6, the experimental setup and methodology will be presented. The results from
the experimentation will then be displayed in Chapter 7. Chapters 8 and 9 will
deal with discussion of results and conclusion respectively.



Chapter 2
Preliminaries

This chapter will describe concepts relevant to the MSc project.

2.1 Wireless Sensor Network

A wireless sensor network (WSN) is a network of connected nodes that most often
have limited processing, computing and power resources. These nodes can be
equipped with one or more sensors that in some way measure the environment [6].
The number of nodes in a network range from a handful up to thousands. Once
deployed, the network is left unattended and the nodes can either be static or
mobile depending on their functionality and purpose [6].

2.1.1 Transport Media

The transport media used in a wireless sensor network can vary depending on the
application and environment it is used in. Notable transport media in this context
include 802.11, Bluetooth Low Energy and 802.15.4 [7].

IEEE 802.11

IEEE 802.11 is a collection of standards for Wireless Local Area Networks (WLAN),
the most prominent one being Wifi. Usage of 802.11 is most often seen in local
networks where devices communicate on either 2.4GHz or 5GHz frequency bands.
With a recently standardised specification [8] frequency band at sub 1GHz were
enabled. This makes 802.11 more appropriate to use in constrained environments
since it provides larger wireless coverage, lower obstruction losses as well as smaller
energy consumption [9].

Bluetooth Low Energy

Bluetooth Low Energy (BLE) is an adaptation of Bluetooth that is designed for
ultra-low-power applications. This is achieved by reducing the number of chan-
nels, data throughput, lower range among others [10].

5



6 Preliminaries

BLE defines two distinct device roles: central and peripheral. A central can man-
age multiple connections with different peripheral simultaneously while a periph-
eral can only be connected to one central. In context of WSN, an end node will
most often act as a peripheral. These can spend idle periods in sleep mode to
preserve energy [11].

IEEE 802.15.4

The IEEE 802.15.4 standard [12] which technologies like ZigBee [13] and Thread
[14] are based on. It is designed to provide communication where throughput is
small in order to enable inexpensive devices with constrained resources to be part
of a wireless networks without rapidly depleting their limited power supply.

Received Signal Strength Indicator

Received Signal Strength Indicator (RSSI) [15] is a measure of the perceived power
of a received radio signal. It is expressed in decibels and takes on a negative value.
The RSSI is perceived as stronger as it grows towards zero.

Signal to Noise Ratio

The Signal to Noise Ratio (SNR) [16] is a measure of how much power a signal
has relative the noise on the channel as described by (2.1).

SNR =
Psignal

Pnoise
(2.1)

As nodes in WSN often are low-power devices with low transmission power, a noisy
channel can affect bit error rate and frame error rate negatively.

2.1.2 Network Topology

To be able to act upon the sensor data generated by each node, the nodes has to be
able to communicate with a base station. How the communication between a node
and a base station is done is decided by the topology of the network. Commonly
used network topologies in WSN is star, multi-hop mesh and two-tier cluster [17]
which can be seen in figure 2.1.

The star topology is based on the idea that every node in the network has a
direct communication link with the base station. The two-tier cluster topology
can be viewed as an expansion of the star topology. Each node communicates
with a cluster head that in turn communicate with the base station. Thus, the
base station can communicate with many cluster heads which in turn can com-
municate with many nodes [18]. In the multi-hop topology every node can relay
messages from other nodes, hence all nodes do not need to have a direct commu-
nication link with the base station [17].
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(a) Star topology (b) Mesh topology

(c) Two-tier cluster topology

– Cluster Head

– Base Station

– End node

Figure 2.1: Visualisation of different network topologies commonly
used in WSN

2.1.3 Applications

WSN offers a lot of application areas including military, environmental, health,
home and other commercial applications [19]. Applications that are static by
nature and, thus, more relevant to this paper include:

• Home automation applications where sensors are part of domestic devices
such as intrusion detection systems, smart meters, household appliances and
more.

• Environmental control in buildings as well as in smart agriculture.

• Environmental irregularity detection. Can be used for anything from nuclear
launch detection systems to early forest fire detection.

• Industrial machinery.

2.2 Machine Learning

Machine learning is a field where a computer can be trained to make statistical
predictions of unseen data based on previously recorded data. Many different
machine learning algorithms exist and they can all be divided into two distinct
categories, supervised and unsupervised.
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2.2.1 Supervised Learning

In supervised learning, the algorithm requires a dedicated training set. It consists
of input and its corresponding output where the latter is labeled as belonging to
a certain class. The algorithm then uses the labeled data set to find a mapping
between input and output that can be used to predict the output of unseen input.

2.2.2 Unsupervised Learning

Unsupervised learning does, in contrary to supervised learning, not require any
labeled data set. Instead, the algorithm is trained with only input data. The gen-
erated output then depends on the algorithm and its application. In an anomaly
detection application using the Isolation Forest algorithm [20], the algorithm will
give a verdict on whether or not unseen data is reminiscent of the input data
observed during training. A negative verdict will be given if a recorded value is
abnormal considered the trained model and a positive one will be given if the data
is considered to be in coherence with those in the training data [21].

2.3 F-Score

To measure the accuracy of a model, F-Scores can be used [22]. F-Score is calcu-
lated with the rate of true negatives and true positives.

True positives is a measurement of how accurately a model generates positive
outcomes given that the outcome is correctly assessed as positive. The true posi-
tive score is always a value between 0 and 1. By taking 1 minus the true positive
rate, the false negative rate is given. A false negative value is given when a posi-
tive outcome is misjudged as a negative. A true negative is given when a negative
outcome is correctly judged as a negative and on the contrary, a false positive is
given when a negative outcome is misjudged as a positive.

Two measures can be derived from true positives and true negatives: Precision
which denotes how accurate a model is in detecting negatives and recall which
indicates the model’s accuracy in regards to positives. The equation for precision
and recall can be seen in (2.2) and (2.3) where FP is false positives, FN is false
negatives and TP is true positives.

Precision =
TP

TP + FP
(2.2)

Recall =
TP

TP + FN
(2.3)

With the precision and recall, the F-score can be calculated as in (2.4). As can be
seen by the equation, F-score is a combined measure of precision and recall that
ranges from 0 to 1. Because of this, the F-score can be described as a measure of
the accuracy of a model.

F = 2× precision× recall
precision+ recall

(2.4)



Chapter 3
Device Fingerprinting Techniques

In this chapter, techniques to extract device specific attributes – device finger-
prints – in order to uniquely identify a device will be described. An evaluation of
the various techniques will be done in Chapter 5.

Device fingerprinting techniques can be divided into two categories, active and
passive fingerprinting [4]. The former refers to the fact that the verifying party
performs some form of active interrogation, causing the proving party to actively
respond to said activity. It is the interrogation data on which the verifying party
will build the fingerprint. Conversely, passive techniques does not require an in-
terrogation phase to collect data from the verifying party. Data is gathered by
monitoring network communications between the two parties, from this a device
fingerprint is achieved.

By putting as much logic and computation at the verifying party, the attack sur-
face of the system is limited. For this reason, passive fingerprinting techniques are
the main focus of this thesis.

3.1 Fingerprinting Flow

Fingerprinting techniques can vary significantly in their approach and core fun-
damentals. However, on a higher level, most fingerprinting techniques follow the
same steps in their respective procedures [23] [24] [25].

1. Learning Phase, a reference fingerprint is generated through data from
a legitimate device and stored in the verifying device. This is then used
during device authentication, where a derived fingerprint is compared with
its corresponding reference fingerprint.

(a) Data collection. The data collection during the learning phase is
extensive. A large data set is collected in order to produce a reference
fingerprint that is representative for the device. If a small data col-
lection is used to create the reference fingerprint, the effect of outliers
and irregular data will have a greater impact.

(b) Fingerprint Generation. During this phase, fingerprinting tech-
niques most often use the collected data to create a reference finger-

9



10 Device Fingerprinting Techniques

print with the use of statistical methods, which vary between finger-
print techniques.

2. Authentication. Once a reference database has been created for all au-
thorized devices, the system is open for connecting nodes.

(a) Data collection. The data set collected is significantly smaller than
the one collected during the learning phase. This, in order to keep
authentication time to a minimum.

(b) Fingerprint Generation. The fingerprint generation is done in the
same manner as during the learning phase.

(c) Similarity Measurement. In order to authenticate a device, the
device’s fingerprint has to be matched against the stored reference
fingerprint for said device. Since fingerprints are estimations, an ex-
act match is unlikely to be derived. Instead, a threshold is set which
dictates if the authentication fingerprint is considered a match against
the corresponding reference fingerprint. Therefore, similarity measure-
ment techniques are used not only to find similarity metric between
a derived fingerprint and its corresponding reference, but also to find
a threshold value where the false negative and false positive rate are
minimized.

3.2 Clock skew

A computer clock is driven by a quartz crystal. Due to sub-micron imperfections
found within said quartz crystals, each computer’s perception of time will differ.
This holds for computers of identical component setup, with components of same
model produced from one single manufacturing batch. Thus, a slight skew in time
will appear between two computers if time is measured with fine enough granu-
larity. The differing perceptions of time is referred to as clock skew [23]and it is
unlikely to be the same for any given pair of computers. A fingerprinting technique
has been developed from this phenomenon and is based on deriving the proving
party’s clock skew relative the verifying party’s clock.

Research have shown various ways [26] [27] to identify a node through clock skew.
The core concept is to collect data points over time, the points representing time of
departure and time of arrival for a network packet. In [23], the timestamps found
within TCP packets denotes the time of departure of the packet and the time of
arrival is recorded at the receiving end as soon as the packet arrives. When a data
set has been collected, statistical methods are applied to fit a function to the time
series data. The derivative of said function constitutes the clock skew and thus it
is ultimately the function’s derivative which dictates the identity of the proving
party.
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3.2.1 Data collection

Although numerous clock skew techniques exist, they are all dependent on time
of departure and time of arrival in various forms. The authors of [23] have made
use of the timestamps found in TCP packets or ICMP packets. In [26] [28], the
authors utilize management mechanisms found in the IEEE 802.11 standard to
derive timestamps of high granularity from beacon probes. The beacon probes are
used to advertise the existence of an Access Point (AP) and synchronize the clock
of the connecting party with the AP’s clock. 802.11 beacon frames are sent between
10 to 100 times per second which in comparison to regular TCP traffic proves to
be a source which will generate a large amount of data in a short amount of time.
However, beacon frames are advertised by APs –not devices– which renders the
data collection approach in [26] useless in the context of this project.

3.2.2 Fingerprint Generation

The basis of generating a clock skew fingerprint is to calculate the offset in time
which the proving device p has in relation to the verifying device v. In [29] the
offset o for a specific packet i is calculated by oi = vti−pti where vti is the time when
v receives packet i and pti is the time p sends packet i. The offset is calculated
for j packets. The clock skew can then be calculated with linear regression as the
slope between

∑j
1 oi and

∑j
1 v

t
i where vt constitutes the x-axis and o the y-axis.

The accuracy of the clock skew is influenced by the total sample size used in the
linear regression as well as the number of outliers in the sample [29].

3.2.3 Similarity Measurement

As stated in Section 3.1, fingerprints are estimations rather than absolute truths.
However, the similarity measurement dictates how precise the estimations will
be. For a given identity, a derived clock skew is compared to its corresponding
reference clock skew. A clock skew fingerprint is a constant which makes the
similarity measurement fairly trivial. The clock skew similarity metric is equal to
the difference between the derived clock skew sv and the reference clock skew for
the identity in question. A set error margin threshold will dictate whether or not
the device will be authenticated and is in the magnitude of parts per million (ppm).
However, there is no definitive consensus regarding the value of said threshold in
order to uniquely identify a device [23] [26] [28].

3.2.4 Experiment Results

The author of [25] describes an experiment setup which was executed in an isolated
lab environment consisting of four computers of same specification, communicat-
ing over wired connection. Under such conditions, it was concluded that an error
margin of 1ppm had to be set to uniquely identify a device. However, the condi-
tions used in the experiment does not reflect real-world conditions in public places
with real wireless user traffic. The experiment in [28] was performed in numerous
locations, all of them public places with a set of participating devices in the mag-
nitude of hundreds. A sample size of 300 packets recorded under 30 seconds was
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needed to generate a clock skew with 0.5 ppm precision. The experiment showed
that 88% of all tested clock skews managed to reach at least 0.5ppm error margin.

3.3 Inter Arrival Time

Packet inter-arrival time (IAT) analyses the inter-arrival time in a sequence of
packets in order to derive a device fingerprint. Since IAT is based on the time of
reception, the technique is not dependent on timestamps found within the packets
themselves. The implications of this is that IAT analysis is transport layer agnostic
[30] [31]. Research seen in [31] pioneered packet IAT fingerprinting. The research
showed how the technique could classify the device type of a proving AP i.e.
the manufacturer and model of the AP. However, the technique was not able to
uniquely identify a device. Hence, the research was extended in [30] where the
device type identification is complemented with machine learning techniques to
arrive at a unique device identity.

3.3.1 Data Collection

In [31] [30], IAT fingerprinting is done against wireless network APs to detect rogue
APs. Data is extracted from the AP by generating a packet train at one of the
wireless network nodes. The packet train emulates normal but intense network
traffic and is sent to put the AP in question under stress. The corresponding
output from the AP is recorded, especially the packets’ shift in time. It is the
shift in time between the output’s packets that constitutes the packet inter-arrival
time.

3.3.2 Fingerprint Generation

Fast fourier transform is applied to the output of the data collection phase. The
inter-arrival times of the corresponding output to the packet train constitutes an
input signal which is used to generate a fingerprint to compare against known
device type fingerprints [31] [30].

The fingerprint is generated by applying wavelet transform to the input signal.
More specifically, the input signal is run through a high-pass filter and the cor-
responding output is saved as a wavelet transform coefficient and then used as
input in a new wavelet transform. This is done in a recursive fashion until at least
five coefficients have been produced. The generated coefficients constitutes the
device type fingerprint. Through empirical studies it is shown that coefficients 2
through 5 are the values that show most variations between device types and are
thus the ones from which one can most easily detect a deviating device fingerprint.
In [32] [30], the authors extend upon this method by applying it to device identity
as well. Thus, a system is derived which classifies device type and establishes
device identity.



Device Fingerprinting Techniques 13

3.3.3 Similarity Measurement

The IAT analysis implementations [30] [32] use an approach where device type
classification is used as a pre-procedure to establishing the actual device ID. This
is done in order to reject illegitimate nodes at an early stage without having to
execute the full authentication procedure. Thus, two authentication steps are
executed.

1. Device Type Authentication. The device type of an authenticating node
is established. Packet IATs are collected, a device type fingerprint is gener-
ated and matched against the reference database. The derived fingerprint
must match a reference fingerprint above a set similarity threshold and will
either be accepted or rejected based on this.

2. Device Identity Authentication. Based on the device type derived in
the previous step, the authenticating node will be matched against refer-
ence device identity fingerprints of same device type. Similar to device type
authentication, a given similarity threshold must be passed in order for the
authenticating node to be considered matched against a reference finger-
print.

As stated, a similarity measurement is executed to match the fingerprint against
a set of known fingerprints found in the reference database. It is done by cross-
correlating derived coefficient di against known coefficient ki where index 2 ≤ i ≤
5. E.g. each derived coefficient is compared to its corresponding coefficient in a
known fingerprint. The output from the similarity measurement is a metric be-
tween 0 and 1 for each coefficient. In the case of device type authentication, if the
derived fingerprint belongs to a specific device type, the similarity measurement
for each coefficient will differ by no more than 10 parts per thousand. A similarity
measurement between two differing device types will yield a deviation in the mag-
nitude of 100 parts per thousand. In the case of device identity authentication, the
similarity measurement must yield an output across all coefficients that is above a
given threshold. In [32], empirical studies showed that a 90% similarity threshold
would yield minimal decision error rate.

3.3.4 Experiment Results

In [30] two experiments were performed, one in an isolated test environment and
one in the live network of a school campus during peak hours. For both of the
experiments, packet trains were repeatedly sent to the proving devices. The packet
train sent was crafted in such a way that it would yield a response from the proving
party with the size of 2500 packets transmitted under a period of 0.4375s. In the
former experiment, an average true positive rate of 80% was produced. In the
latter experiment, the true positive rate decreased to 58%.

3.4 Received Signal Strength Indication

The Received Signal Strength Indication (RSSI) over a wireless network can be
used as a means of fingerprinting. It is a technique which can be executed with
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most standard wireless systems of today requiring no additional hardware. Fur-
thermore, RSSI data can be read out from most standard wireless device drivers,
further lowering the integrational effort of an RSSI based scheme.

3.4.1 Data Collection

The data collection in an RSSI scheme consists of monitoring the received RSSI
level for each device on a packet basis [33]. I.e. for each received packet, the
packet’s corresponding RSSI level is recorded and the packet is annotated with
the sending device. In its simplest form the packets are recorded by a single
receiver. In such a case the data holds one dimension and the verifying party can
only estimate the distance to the proving party. However, many schemes utilize
several receivers in order to achieve multi-dimensional and fine-grained localization
estimates [33] [34] [35] [36].

3.4.2 Fingerprint Generation

When building a device fingerprint based on RSSI techniques, one cannot derive a
fingerprint based on a specific RSSI value. Noise, multi-path effects and environ-
mental variance will affect the wireless channel in such a way that RSSI for a given
device will yield significant variations between measurements. Instead a multitude
of techniques have been researched to accommodate to wireless channel variance
factors. The approach described in [34] [36] utilizes the Euclidean distance in sig-
nal space between clusters of RSSI values to differentiate devices. Signal space
denoting the n-dimensional geometric space in which the recorded RSSI values ex-
ists. Another technique makes use of a vector of receiver RSSI values, the vector
makes the device fingerprint in this case and is called a signalprint [33]. It is a
simplistic approach to RSSI-based localization where the core of the technique is
based on the claim that the RSSI of a static node will not differ by more than 5db
between contiguous packets.

In [34], an approach is described utilizing k-means clustering of RSSI values. The
technique is based on the distance in signal space between two devices. As de-
scribed above, one or multiple receivers can be used to record RSSI for a given
packet. In the case of a single receiver, the signal space is one dimensional. The
recorded RSSI values for two devices whom are spatially separated, will yield two
clusters with their respective centroids located at different values along the X-axis.
This can be further extended to a two-dimensional signal space, where the clusters
will be found in different locations on the plane. In this fashion one can add more
receivers in order to further differentiate devices in an n-dimensional signal space.

Research seen in [37] [33] gives an alternative approach utilizing signalprints as
device fingerprints. A signalprint is a vector of arbitrary length where each cell
represents an RSSI value from a given receiver. It is generated by aggregating the
RSSI values from different receivers for a given packet transmission. The number
of receivers must be larger than one. The signalprint can be used in two ways,
either with the raw absolute RSSI values or with differential values. The latter is
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a modified signalprint where the smallest value is subtracted from all remaining
values in the vector. This way, the impact of RSSI oscillation is reduced. The
experiment makes use of six spatially distributed receivers. This due to a larger
number of receivers yielding a signalprint of greater accuracy. The authors of [33]
argue that battery discharge will have a significant impact on the transmission
power of a device. For this reason signalprints are used, since they in their dif-
ferential value mode become agnostic of reducing transmission power of a battery
driven device.

The authors of [36] registered the RSSI values of 1500 different indoor locations
on 86 APs. The resulting data collection was then used as a training set for three
different machine learning algorithms, namely, Random Forest, k-NN and JRip to
assess which algorithm creates the most reliable device classification.

3.4.3 Similarity Measurement

In the case of using RSSI clustering [34] in signal space to differentiate devices,
the collection of RSSI values for a given device acts as a fingerprint. A similarity
measurement is done by calculating the distance between the centroids of the
derived fingerprint and the corresponding reference fingerprint. If the Euclidean
distance between the two is below threshold τ , the device is authenticated. The
calculation of distance between the two RSSI clusters in a one-dimensional signal
space is given by

4P = 10γlog(
d2
d1

) +4S (3.1)

where P denotes the transmitting power, d1 and d2 represents distance of the two
nodes to the receiver, τ is the path loss exponent and S is is the shadow fading,
i.e. a PDF for attenuation due to radio channel distances. The equation for RSSI
distance in n-dimensional signal space is as follows

4D =
√
4P 2

1 + · · ·+4P 2
n . (3.2)

The challenge of determining authentication threshold τ is to find a threshold
where the number of decision errors is minimized. This is done by comparing the
compound PDF for two devices d1, d2 placed at the same location and another
PDF where d2 is relocated to a different location whilst d1 remains stationary. The
two PDFs will have their respective means in different locations along the X-axis
but a certain overlap can be seen between the tails of the two PDFs. The over-
lap is used to produce a threshold where false negatives as well as false positives
are minimized. Hence, if communication is initiated with a node whose claimed
identity is a but produces an RSSI cluster whose distance to the reference cluster
of a is above the set threshold, it will be considered illegitimate and subsequently
rejected from the network.

The technique showcased in [37] has a twofold approach to detecting identity-
based attacks. Firstly, a max matching rule is used to assert that two subsequent
signalprints S1 and S2 are originating from the same device. Secondly, the max
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matching rule is combined with a min matching rule. The latter determines if
S1 and S2 have been sent from two different devices. A max matching rule is
formulated as follows, signalprints S1 and S2 are assumed to originate from the
same device if the number of max matches between them is greater or equal to
Nmax. A max matching occurs when two corresponding values found in S1 and
S2 respectively, show a difference that is less than or equal to threshold τmax. The
rule notation for max matching is written as

maxMatches(S1, S2, τmax) ≥ Nmax . (3.3)

The min matching rule is defined as, signalprints S1 and S2 are sent from the two
different devices if the number of min matches between them is greater or equal
to Nmin. A min matching is seen when two corresponding values in S1 and S2

are greater or equal to threshold τmin. The min matching rule is based on the
fact that even though RSSI values from the same fluctuates, they usually do not
see fluctuation above 5 dB. Therefore, if a larger difference can be seen at many
receivers for two subsequent signalprints, the packets in question can be assumed
to arrive from two different devices. Similar to max matching, the rule notation
for min matching is

minMatches(S1, S2, τmin) ≤ Nmin . (3.4)

In [36], authentication was achieved on a packet basis. Meaning, every incoming
packet was classified using the three different machine learning models. As only
classification methods were used, every incoming packet was mapped to one of
the 1500 locations registered during the fingerprint generation. Because of this, a
packet sent from a previously unseen location would still be classified as belonging
to one of the registered locations.

3.4.4 Experiment Results

In [34], the experimental setup consists of five receivers evenly distributed across
an office floor where nodes located in 94 different locations have been placed. In
order to evaluate an impersonation attack, a pair of nodes were randomly selected,
where one acts as the compromised node and the other one as the impersonating
node. Since the pair of nodes were chosen at random, the distance between them
would vary between executions. However, the summarized result shows that for
a false-positive rate less than 5%, a 97% detection rate was achieved. When per-
forming tests with a 6.1 meter distance between the two nodes, the detection rate
reduced to 90%.

The experiment performed in [37] had a similar experiment setup to the one
seen in [34]. Distributed over an office floor, were 135 nodes acting as prov-
ing parties. Six receivers were used to capture RSSI data. The experiment
did not explicitly measure detection of a spoofing device. Hence, no detection
rate metric was produced. Instead, the experiment evaluated the number of
false positives produced given a set of matching rules. For matching rules where
maxMatches = (S1, S2, 5) ≥ 5 and minMatches(S1, S2, 10) = 0 a false positive
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rate of 1.1% was produced. The fraction of false positives mapped to the distance
between S1 and S2 when it was observed can be seen in Table 3.1.

Table 3.1: The fraction of false positives mapped to distance
between nodes when maxMatches = (S1, S2, 5) ≥ 5 and
minMatches(S1, S2, 10) = 0 is applied.

Pair distance False positive occurrences
≤ 10m 99.0%
≤ 7m 90.7%
≤ 5m 72.2%

Results in [36] showed that Random Forest was the highest performing out of the
three algorithms tested. It achieved a classification accuracy, or false negative rate,
of above 90%.

3.5 Physically Unclonable Function

A physically unclonable function (PUF) maps a set of challenges to a set of re-
sponses based on a complex physical system [38]. PUFs are based on characteristics
of the integrated circuit (IC), such as memory elements, logic delays, resistance
and so on [39].

PUFs were first mentioned in [40], where it is proposed that manufacturing process
alone create enough variations in the IC characterizations to be able to uniquely
identify an IC. As a result of this, a PUF utilizes this uniqueness to provide ran-
domness, i.e. given specific input, the PUF will generate unique output. Today a
lot of different versions of PUFs are being used and researched, e.g. Arbiter PUF,
Ring Oscillator PUF, SRAM PUF, Butterfly PUF, Flip-flop PUF, Bistable Ring
PUF and more [41].

PUFs can, as described in [42], be divided into two primary types - strong PUFs
and weak PUFs. Strong PUFs are capable to handle a large number of challenge-
response pairs, in contrast to weak PUFs, which results in them being suited for
authentication purposes. Weak PUFs on are the other hand better suited for key
storage and key generation.

3.5.1 Data collection

The data collection, or enrollment phase, used by PUF is rather an active mapping
of challenge-response pairs than a data collection. The verifying part generates
random data, that is sent to the proving device as a challenge. The challenge is
then used to generate unpredictable output, a response, via use of the PUF that
is sent back to the verifying device and mapped to the sent challenge [43].
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3.5.2 Fingerprint Generation

The challenge-response pair generated from the enrollment phase are stored in the
verifying part [43]. Thus, the PUF fingerprint consists of a number of challenge-
response pairs, where the challenges are randomly chosen by the verifying part
and the responses are generated by the PUF in the proving device.

3.5.3 Similarity Measurement

During authentication, the verifying part sends one of the previously stored chal-
lenges to the proving part. If the response is not equivalent to that of the stored
challenge-response pair, the proving part is not authenticated [43]. To prevent
false positives, a number of challenges should be sent to the proving part [40].

3.5.4 Experiment Results

In [38] experiments which allowed a maximum 10 out of 128 bits to be incorrect to
authenticate a device showed promising results. A false positive rate of 2.1∗10−21
and a false negative rate of 5 ∗ 10−11 was achieved.

3.6 Preamble Manipulation

Preamble manipulation is not a fingerprinting method in the sense that it can
uniquely distinguish any kind of device. However, preamble manipulation can be
used to separate different transceivers from each other [44]. Preamble manipula-
tion utilizes that different transceivers, especially between manufacturers, respond
differently to alterations in the physical layer preamble. The preamble is normally
used to synchronize transmission timing between devices. It consists of a known
set of bits that indicate start of frame.

3.6.1 Data Collection

In [44] and [45] a USRP Software Defined Radio (SDR) is used to capture packets
and modify the preamble. Different alterations of the preamble are then produced
and sent to a collection of different transceivers. A number of packets with com-
pulsory replies, such as beacon requests, are then sent to the proving transceivers.
For every packet with a manipulated preamble sent there are two possible out-
comes, either a response is sent back or the packet is ignored. Thus, for every
preamble combination the proving transceivers can be divided into two groups,
one with those that, despite the manipulation, responds to the packet and one
group with those that do not.

3.6.2 Fingerprint Generation

Many preamble alterations are then tested and based on the groups generated
from the data collection a decision tree can be created. The fingerprint of any
given transceiver can hence be described as a node in the decision tree.



Device Fingerprinting Techniques 19

3.6.3 Similarity Measurement

Devices can then be identified through the previously created scheme. This is
done by starting in the root of the decision tree and then following the path
created to the target node. If the device responds to each manipulated preamble
in accordance to the decision tree, the device is authenticated.

3.6.4 Experiment Results

As preamble manipulation is based on a decision tree rather than matching a
generated fingerprint with a reference fingerprint the results are not comparable
with other fingerprinting techniques. Furthermore, the results presented in [44]
and [45] are preliminary and more extensive testing has to be done to properly
evaluate the method.

3.7 Radio Frequency Fingerprinting

When two devices communicate on a wireless channel they send data by transmit-
ting radio signals. When said radio signals are being generated several hardware
components are being used, for example DA converters, power amplifiers and radio
frequency oscillators. Any variety in said components will slightly alter the gener-
ated radio signal [39]. This makes radio frequency fingerprinting (RFF) indepen-
dent of the location of the transmitting device, as long as it is in communication
range of the receiver. However, the ability to identify devices based on RFF is
strongly affected by the SNR on the channel. As even little noise can affect the
signal characteristics used for authentication [46], thus, longer distances on noisy
channels can increase the error rate.

There exists two different categories of RFF, transient based and modulation
based [47]. Transient based RFF utilizes differences in the turn-on/off transient of
a radio signal. Modulation based RFF does instead utilize differences in the part
of the signal that constitutes the transmitted data. Differences in the data part of
the signal include frequency, magnitude and phase errors due to differences in the
physical layer for example.

3.7.1 Data Collection

The differences in the transmitted signal caused by the hardware components can
be used to identify devices in a wireless sensor network [48] [49]. Attributes that
can be extracted from the RF signal, and used for identification, include [50]:

• transient waveform

• instantaneous phase and amplitude of the signal

• the signal tendency

• transient ramp profile in a temporal range

• the evolution in time
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To be able to extract such attributes, most researchers have used software defined
radio platforms such as USRP N210 [24].

3.7.2 Fingerprint Generation

To avoid having to store a lot of data on the verifying part and to fingerprint a de-
vice by individual RF characteristics a feature extraction can be done where redun-
dant information is removed. One feature selection technique that can achieve this
is Empirical Mode Decompositions first introduced in [51] and described in [46].
In Empirical Mode Decompositions the signal is decomposed into a set of Intrinsic
Mode Functions. Intrinsic Mode Functions are a finite number of sub-signals with
different frequency band, time and frequency distribution that together represent
the whole signal. Thus, the differences in the Intrinsic Mode Functions can be
viewed as differences in the signal. Other RFF extraction methods include Fourier
transform and Wavelet transform [49].

3.7.3 Similarity Measurement

Authentication is done by matching a testing fingerprint with a reference finger-
print previously stored in the verifying part. There are a number of ways to
achieve this, in [46] Transient Frequency Distribution is used to compare different
Intrinsic Mode Functions. In [49] methods such as Norm Difference and Linear
Discriminant Analyses strategy are described.

3.7.4 Experiment Results

Experiments in [24] showed that it was possible to identify a transceiver through
RFF given the SNR at the receiver is 15dB or higher, the experiments used seven
transceivers of the same model. In [52] RFF combined with Bayesian filter achieved
an average true negative rate of 94-100% intrusion detection, however, they do not
mention the false negative rate or differences caused by SNR. The results in [53]
presented a true negative rate of above 90% at an SNR of 12 or greater at the
receiver.

3.8 Radio Frequency Distinct Native Attribute Fingerprinting

All devices leak electromagnetic energy during normal operation that can be cap-
tured by – for example – a near field probe connected to an oscilloscope [54]. Radio
Frequency Distinct Native Attribute (RF-DNA) fingerprinting is based on the fact
that such electromagnetic emissions can be used to uniquely identify a device. The
emissions can be both intentional and unintentional, where unintended emissions
are generated by components on the IC [55].

3.8.1 Data Collection

The RF-DNA fingerprint consists of attributes of the RF emissions such as ampli-
tude, phase and frequency. In [56] and [57] these attributes, or characteristics, are
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derived individually and the RF emissions are transformed into the attribute do-
main in question. The statistical features – standard deviation, variance, skewness
and kurtosis – are then generated.

3.8.2 Fingerprint Generation

The features generated in the data collection are combined to form one sample,
multiple samples are then collected to generate a device fingerprint through sta-
tistical methods such as MDA training, which is described in [57].

3.8.3 Similarity Measurement

Devices can then be classified, or authenticated, as belonging to a specific group
of devices or in a device verification situation where a rogue device impersonates
a trusted device.

3.8.4 Experiment Results

Experiments [56] [57] showed that it was possible to correctly classify a device 90
percent of the time with an SNR of 12dB in inter-manufacturer cases and with an
SNR of 16dB in intra-manufacturer cases.
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Chapter 4
Attacks Against Fingerprinting Techniques

In this chapter, attacks designed to thwart the fingerprinting techniques listed
in Chapter 3 will be discussed. Attacks against fingerprinting techniques aim to
replicate the behavior of a legitimate device in order to forge its corresponding
fingerprint [32].

4.1 Clock Skew Replication Attack

Malicious entity Eve can observe network traffic between Alice and Bob. Further-
more, she can collect timestamps and calculate the clock skew of Alice. Once the
clock skew of Alice is captured, Eve can replicate the clock skew to cheat Bob [58].
The replication is done by first calculating r according to (4.1), where s1 is the
skew difference between Eve and Bob and s2 is the skew difference between Eve
and Alice.

r =
1 + s1
1 + s2

(4.1)

Every altered timestamp (t′i) is then calculated by (4.2), where t1 is the first
timestamp.

t′i = t1 + r(ti − t1) (4.2)

There are more complex ways to calculate the altered timestamp that also can
handle changes to the sending period. However, they are based on the same
principle [58].

4.2 Packet IAT Attack

In [30] an approach to forge a packet IAT fingerprint is described. In the attack,
an adversary has to compute the PDF of its own network communication along
with the PDF of the legitimate node which is to be impersonated. Once the two
PDFs have been obtained, the difference between them has to be derived. The
PDF difference will dictate how the adversary will have to change the frequency of
its packet transmissions in order to emulate the behavior of the legitimate device.
To emulate network behavior such as packet rate, an emulation tool like netem
can be used.

23
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4.3 Attacking RSSI

RSSI fingerprinting uses spatial correlation to distinguish nodes [34]. I.e. nodes
are identified based on their respective spatial location. Thus, the success rate
of RSSI-based replication detection is dependent on how capable the RSSI fin-
gerprinting system is when it comes to distinguishing devices that are in close
proximity to each other [59]. Experiment results in [34] show that detection rate
decreases as distance between adversary and the node being impersonated shrinks.
When the distance between the two nodes is 4.6m, the detection rate can fall as
low as 55%. Thus, an adversary could place an illegitimate node close enough to
the node being impersonated in order to bypass detection. However, if multiple
receivers are used at the verifying party to measure the RSSI of a proving party,
a multi-dimensional RSSI fingerprint is achieved. To successfully impersonate a
node through the aforementioned approach, rather than matching only one RSSI,
the adversary is now required to match all RSSIs registered at each antenna re-
spectively.

4.4 Attacking RFF

In RFF fingerprinting signal characteristics unique to a device are captured by
analyzing a device’s wireless communication at the physical layer. In [60] two
RFF impersonation attacks are described, Impersonation by Feature Replay and
Impersonation by Signal Replay.

4.4.1 Impersonation by Feature Replay

The approach is designed for modulation-based RFF fingerprinting and makes
use of an USRP SDR to craft a signal where the features extracted from the
signal of the legitimate device are replicated [60]. More specifically, the SDR is
used to modify parameters frequency offset, SYNC correlation, I/Q origin offset,
magnitude and phase errors of the frame. The modification of the parameters are
done according to recorded communication data of the device to be impersonated.
E.g. to produce the correct frequency offset, an analysis is done of the power
spectrum density of the signal transmitted by the target device. One can derive
the carrier frequency from such an analysis and from this set the frequency offset
of the adversary node accordingly. The remaining parameters are set in the same
fashion.

4.4.2 Impersonation by Signal Replay

The signal replay attack can be used for transient-based and modulation-based
RFF fingerprinting respectively. In contrast to the feature replay attack where a
signal is modified to match the signal transmitted by the target device, a recorded
radio packet is replayed in full [60]. With the help of a high-end arbitrary waveform
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generator [61], the recorded packet can be regenerated and subsequently retrans-
mitted with high precision. Impersonation by signal replay needs not know the
underlying signal features which are used to generate a fingerprint at the verify-
ing party, it simply replays recorded packets in their entirety. Signal replay can
be further extended. By replaying parts of a recorded packet, a crafted payload
can be embedded in a packet which utilizes parts of a previously recorded packet.
However, in such cases the adversary requires in-depth knowledge of the specific
features relevant to the fingerprint generation in order to successfully impersonate
a legitimate node with a crafted packet.

4.5 Attacks against preamble manipulation

As preamble manipulation only identifies different transceiver types, an attacker
with knowledge of the target system can use a similar transceiver to authenticate
[44]. Additionally, an attacker can through the use of an SDR read the preamble
and selectively ignore manipulated preambles to imitate the behavior of a specific
transceiver.

4.6 PUF impersonation attack

Despite its name, research have shown that PUFs are in fact cloneable [62]. A PUF
can be reverse engineered by estimating the various delays at the different logical
gates in the IC. From the gate delay estimations, it is possible to synthesize an IC
which reproduces the same behavior as the target IC. However, measuring delay
at gate-level requires high-end and fine-grained equipment which would result in a
high cost of executing such measurements. Alternatively, a different approach can
be seen in measuring the global power leakage consumption and modify factors
–which has a direct effect on global power leakage consumption– such as the input
vector of the IC, supplied voltage and thermal conditioning [63]. By doing so,
multiple linearly independent equations can be produced in order to formulate a
system of linear equations from which the delay of each gate can be derived [62]
[64]. It is assumed that the attacker has obtained a detailed list of the PUF’s
circuit design. Thus, a circuit design copy in combination with gate-level delay
estimates is used to emulate a PUF.

4.7 Hill-climbing attack

A hill-climbing attack is an attack that can be harmful to most fingerprinting
techniques as well as biometric recognition systems [65]. The attack is based on
a repetitive submission of data and can be compared to a more intelligent version
of brute-force attack that requires less memory [66]. In contrast to a brute-force
attack, a hill-climbing attack only needs to store the sent data that is closest to
the authentication threshold [67]. The attack requires that the adversary has a
attained a side-channel to the verifying party where a similarity score can be read
for each authentication attempt. A similarity score telling the distance between
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the most recent attempt and the authentication threshold. If the value was closer
to the threshold than the previously saved, the new value is saved as a template.
Following messages are then slightly altered versions of the template message [65].

4.8 Jamming and Denial of Service

Any fingerprinting technique that relies on features in the radio signal, such as
RFF, RSSI and RF-DNA, are vulnerable to jamming as Eve can transmit a weak
jamming signal to alter the characteristics of Alice’s signal enough to prevent Alice
from authenticating [48] [47]. If the jamming signal is stronger, it can disrupt the
whole network and sabotage the authentication process no matter what technique
is used [68].

4.9 Attacking the learning phase

If the learning stage is polluted by Eve, i.e. if packages sent from Eve is included in
the fingerprint generation of Alice, the reference fingerprint will be sabotaged [32].
This could lead to Eve being able to authenticate as Alice even with the added
security layer.



Chapter 5
Evaluation of Fingerprinting Techniques

This chapter will discuss the various fingerprinting techniques with respect to fea-
sibility to implement given the limited time frame, ability to distinguish different
devices, equipment requirements and replication effort. The outcome of the evalu-
ation will be a listing of the various fingerprinting techniques in order of maturity
and applicability to perform fingerprinting in a static WSN.

5.1 Feasibility

The different fingerprinting techniques show various degrees of implementational
effort. Hence, feasibility to implement a given fingerprinting technique is heavily
dependent on the short time frame of the project. Below the implementational ef-
fort will be discussed. Given the software engineering background of the authors,
solutions that require hardware alterations in the device, such as PUF, will be
overlooked.

Clock skew has the advantage of being a software implementation. However, as
the clock skew requires timestamps from the proving device as described in Section
3.2, TCP or ICMP must be used. As most computationally restrained systems do
not implement any protocol with timestamps, such functionality has to be imple-
mented. This differs from IAT as, even though it also bases the fingerprinting on
packets sent from the prover, it does not require timestamps from the transmit-
ting device. Furthermore, a potential issue in both clock skew and IAT is where
timestamping of a received packet should occur, i.e. when does the implementa-
tion interpret a packet as being received. If a received packet is timestamped in
the upper layers of the stack, internal processes in the receiver such as queues in
the RX-buffer could lead to unwanted delays. On the contrary, timestamping a
packet in the lower layers of the stack will many times be more time-consuming
to implement.

Preamble manipulation requires generation of a decision tree before it can be
used to classify devices. To be able to generate a decision tree, extensive exper-
imentation with a large number of transceivers has to be done as described in
Section 3.6. An undertaking which would most likely consume the majority of the
implementation time of the project.

27
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RFF, RF-DNA and preamble manipulation all require external hardware to be
able to identify devices. This could be difficult to integrate with the rest of the
experimental setup. Additionally, RFF and RF-DNA both involve complex mathe-
matical theory to extract and interpret features from a wireless signal. Implement-
ing such algorithms is a non-trivial task which itself could most likely constitute
a number of MSc thesis projects.

Problems could arise when implementing RSSI functionality as reading and in-
tegrating the RSSI value with the implementation could be more difficult than
expected. Often times devices will present RSSI data for a network as a whole.
However, achieving RSSI data on a per packet basis could also be difficult if it
would prove to be a performance sink for network interface hardware in cases
where network traffic is lively and numerous packets are received simultaneously.

5.2 Distinguishability

Each fingerprinting technique described in Chapter 3 provide different accuracy
in classifying devices. The ability to distinguish one device from another can be
compared to the uniqueness of a generated fingerprint. Fingerprinting techniques
such as preamble manipulation and to some extent IAT are only able to distinguish
between different device types, i.e. they are not able to separate devices of the
same manufacturer and model. RFF and RF-DNA is able to identify individual
devices during optimal network conditions, however, in systems with low SNR the
ability to classify inter-manufacturer devices decreases significantly. Clock skew,
RSSI and PUF are claimed to provide the means to differentiate on a device-level.

5.3 Robustness

Robustness is a measure of change of the fingerprinting data over time and in ex-
tension a measure of stability of the initially produced fingerprint. Robustness has
a direct impact on the security of a system since the implication of low robustness
is that a fingerprint produced by a device at time t will be difficult to reproduce for
the same device at time t′. Hence, in the case of a fingerprint with low robustness,
the reference fingerprint will have to be continuously updated in order to avoid a
high rate of decisions error.

5.3.1 Data Variance

Major differences in robustness can be seen between fingerprinting techniques.
The fingerprinting techniques IAT and clock skew found in Sections 3.3 and 3.2
are highly dependent on timestamps over network communications. Therefore,
network conditions with high variance will result in unstable data on which to
build a fingerprint. In [23], the stability of clock skews were evaluated. A packet
trace of 38 days for 69 devices was divided into data sets of 12 hours. For the
12 hour fingerprints, the largest difference in clock skew for a single device during



Evaluation of Fingerprinting Techniques 29

the 38 days was 6.04 ppm. The mean for difference between 12 hour clock skews
arrived at 2.28 ppm. Recall that in [25] an optimistic threshold to uniquely iden-
tify a device was set to 1 ppm. The mean variability for the 38 day experiment
surpasses this threshold with more than a 100%. The literature summarized in
Section 3.3 did not contain an explicit evaluation of the stability of IAT finger-
prints. However, fingerprint variance can be inferred from the various detection
experiment results found in the same section. The best test result showed an 80%
true positive rate, whilst worst case was the true positive rate decreased to 58%.
In comparison, the test results from [28] presented a true positive rate of 88%.

The robustness of RSSI-based authentication schemes varies among the different
implementations [34] [33] [35] [37]. The nature of RSSI is an unstable one where a
multitude of factors all have an impact on the received signal. The techniques de-
scribed in Section 3.4 are all designed with noise and signal attenuation factors in
mind. In [34] the remedy against signal attenuation factors is double. Firstly, the
described approach makes use of several receivers. Secondly, the authentication is
based on the Euclidean distance in signal space between the derived fingerprint and
its corresponding reference. The distance threshold dictating the authentication
of a node is determined through a rigorous process where the rate of error decision
is minimized. Thus, the impact of noise and signal attenuation factors is kept to
a minimum. The RSSI experiment results seen in Section 3.4 are overwhelmingly
positive. However, a major limitation can be seen in RSSI fingerprinting, the spa-
tial location of a device is used as its identity. The implications of this is that two
devices located less than 6.1 meters from each other will be difficult to differentiate.

The authors of [37] presents the use of signalprints as a more simplistic approach
to RSSI fingerprinting. A major positive is that the technique provides per packet
authentication. Hence, the verifying party does not need to capture x number of
packets before generating a fingerprint, which is the case in [34]. Instead, given
properly set matching rules, a single packet will suffice in detecting an illegitimate
node. However, the scheme draws on the sheer number of receivers rather than
a rigorous statistical foundation when generating its fingerprint. A signalprint
where the number of receivers is below six will produce a high rate of decision
errors. One could argue that the approach is not as robust regarding the signal
attenuation factors which [34] mitigates efficiently.

RF-DNA does in many cases show stable and robust results, however, some vari-
ance can be noted. In [57] results showed that the general true negative rate
of unauthorized devices is relatively high at 90% or greater. Nevertheless, for a
certain device in the experiment the true negative rate of 15% was recorded, show-
casing that significant variance exists.

In [53], experiments with 3 smart meters and 3 RZUSBsticks as authorized devices
and 3 RZUSBsticks as spoofing devices. The reference fingerprint consisted of data
from 300 signals per device. Results showed that most of the spoofing attempts
achieved a true positive rate of above 90% while keeping false positive rate under
2%. However, two of the spoofing attacks achieved false positive rates of 54% and
32% respectively, given a true positive rate of above 90%.
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Based on the previous work included in the thesis project there is no data vari-
ance in the case of PUF and preamble manipulation described in previous research.
However, as preamble manipulation fingerprinting is a classifier based on a manu-
ally defined decision tree, any transceiver which is not part of the tree will yield an
error. This case could arise in a scenario of a heterogeneous network where a large
number of transceiver types are communicating. It would be practically infeasible
to generate a decision tree for that large a number of transceiver classes.

5.3.2 Environmental Effects

The experiment results obtained in [28] which can be seen in Section 3.2 shows that
clock skew could function in real-life conditions. However, part of the experiment
investigated variation of clock skew for a given device during the course of a day.
Its results showed variations of 1-2ppm between clock skew measurements where
significant temperature differences could be seen. These were variations which
would far surpass the 1ppm error margin threshold to uniquely identify a device.
IAT, which in comparison to clock skew performed much worse in terms of true
positive rate and data variance, does not suffer from variations due to temperature
changes.

RF-DNA and RFF is highly sensitive to the noise on the channel. Results in [53]
shows that at low SNRs the average ability to correctly identify a device is very
low, e.g. 50% true positive rate at 3dB SNR. Similar results can also be seen in
the case of RF-DNA [57]. Furthermore, as the bit error rate is generally increased
with low SNRs, authentication with PUF could be less applicable in low SNRs as
it is based on number of bit errors as described in Section 3.5.4.

5.3.3 Device Aging

The scheme proposed in [34] has failed to account for the impact of battery dis-
charge. Battery discharge has a direct effect on the transmitted signal power
and a reference fingerprint will be invalidated given enough time. In this respect,
signalprints [37] outperforms the RSSI spatial correlation approach. By utilizing
differential signalprints instead of the raw absolute value equivalent, the approach
is unaffected by the impact of reduced battery energy on transmitted signal power.

5.4 Additional Hardware

Some of the techniques listed in Chapter 3 require additional hardware. Additional
hardware is in this case described as hardware components that is not included in
a modern off-the-shelf personal computer. In the case of PUF fingerprinting, the
physical unclonable function is actualized through hardware. The PUF is an IC
mounted on the proving device itself, as mentioned in Section 3.5.

RF-DNA, preamble manipulation and RFF requires additional equipment to be
able to extract the features that form a fingerprint, as described in Section 5.1. In
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contrast to PUF where the additional hardware is internal, the additional hard-
ware in this case is achieved through external equipment. It comes in the form of
external radio signal capturing devices, e.g. an USRP SDR platform. IAT, RSSI
and clock skew can be implemented without any additional hardware or hardware
alternations.

5.5 Attack Persistence

As described in Chapter 4 there exist attacks against most of the fingerprinting
techniques presented in Chapter 3. Most of the attacks are based on replication
of the legitimate fingerprint.

Replication attacks can be divided into two categories, those that require ad-
ditional equipment and those that do not. The attacks listed against clock skew
and IAT fall into the second category as they both require the attacker to alter the
frequency with which they send packets – which can be done purely in software.
RSSI replication does not require additional hardware either as it is sufficient to
place an attacking node in proximity to the target node. RFF and preamble ma-
nipulation replication fall in the first category as they both require the adversary to
be able to read features in the transmitted signals. In addition to that, RFF repli-
cation also requires hardware that can manipulate the transmitted signal to match
that of the target node. PUF replication attacks, although theoretically possible
as described in Section 4.6, can be seen the attack most difficult to pursue. It
requires an adversary with in depth knowledge of the PUF-based authentication
scheme, copies of the PUF circuit connectivity and high-cost equipment.

Additionally, there are disruptive attacks that can increase the probability of au-
thentication errors from a legitimate device. Fingerprinting techniques that are
based on features in the transmitted signal, such as RFF and RF-DNA, are par-
ticularly vulnerable to such attacks.

5.6 Evaluation Verdict

Based on the various aspects of this evaluation, it can be seen that the fingerprint-
ing techniques have reached different levels of maturity in their respective research
fields. Some are too unreliable to be included in a live authentication system
whilst others could work in conjunction with other authentication mechanisms.
The fingerprinting techniques will be enumerated by descending level of maturity.

1. PUF, the fingerprinting technique that outperforms the remaining tech-
niques . This holds true across all features considered apart from feasibility.
In regards to feasibility, the major drawback of PUF fingerprinting is that
it requires an IC that has to be mounted during the manufacturing process
as it is difficult to do so subsequent to deployment.

2. RSSI, it maps the location of a device to the device’s identity. In a static
network such an assumption is valid. The performance results of RSSI are
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high, especially given many receivers working in parallel. However, draw-
backs come in the form of difficulties in distinguishing devices which are
closer than 6m from each other and its dependence on multiple receivers to
record RSSI values per packet. This means that a large number of receivers
will have to be distributed across the network so that several RSSI values
can be recorded for each message sent from each node in the entire network.

3. Clock Skew, shows overall strong results in uniquely identifying a device.
However, the technique lacks in robustness since environmental factors such
as temperature has a large impact on the derived fingerprint during au-
thentication. But if one could overcome such limitations, clock skew would
definitely be a mature fingerprinting technique fit to be incorporated into a
live security system.

4. RFF, research shows promising results but is dependent on a high SNR as
well as short distances between proving and verifying parties. Hence, RFF-
based authentication is infeasible in deployments where nodes are further
than 2m from the AP. Furthermore, additional hardware in the form of a
USRP or equivalent SDR is required at the receiving end. This proves a
major financial obstacle if one were to incorporate it in an already deployed
system since the cost of the additional hardware is in the order of thousands
of dollars.

5. IAT,performance results will vary widely depending on device class. Certain
device classes will contain devices which are easily distinguishable. Whilst
other classes contain devices which prove to be indistinguishable. Further-
more, in an embedded scenario, IAT might be too power consuming due to
its large number of packets under short time frame that need be collected
in order to produce a fingerprint.

6. RF-DNA, looks very promising at first glance. However, when looking
into details of experimental setups, it is clear that most of them are done in
optimal environments, with short distances and powerful receivers. Thus,
the applicability of RF-DNA is highly limited and does not fit with the WSN
scenario discussed in the thesis project.

7. Preamble manipulation, is deemed as not suited for use in an authen-
tication system in its current state. Not enough research with different
transceiver types has been done to evaluate the technique properly. If many
devices are to be considered when creating the decision tree, chances are
that the tree would get too big and consequently too power consuming due
to many round trips. Another disadvantage with preamble manipulation is
the fact that it can not uniquely identify specific devices, only transceiver
types.

The fingerprinting techniques to implement will differ from the top listings above.
In the case of PUF it is not feasible to integrate it in to an pre-existing system,
which is the topic of this thesis project. Furthermore, RFF seems promising to
implement, however, as it requires additional hardware that can not be obtained
given the limited resources of the thesis project. IAT seemed good at first glance,
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however, it is designed for authenticating an intermediary node in a network such
as an AP. The burst of packets IAT requires to provide reasonable results does
not fit the constrained environment of the thesis project. RF-DNA and preamble
manipulation both rate very low on the evaluation verdict hence they will not be
tested. In conclusion the techniques to implement will be clock skew and RSSI.
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Chapter 6
Method

This chapter will chronicle the different phases of the experiment execution. Firstly
identifying what requirements needs be fulfilled by the experiment system and how
this informs the design and implementation of the testbed. Thereafter the trial and
errors of the packet capturing process and lastly the implementation and testing
of the different fingerprinting techniques will be described.

6.1 Developing the Testbed

Clock skew and RSSI-based fingerprinting techniques impose a specific set of re-
quirements on the experiment system. Each respective fingerprinting technique
operates on a specific set of attributes in the network traffic. Thus, the testbed
must be designed in such a way that for each packet sent in the wireless network
the different attributes can be easily extracted. The network traffic attributes in
question are packet departure timestamp, packet receiver timestamp and packet
RSSI.

Furthermore, in the case of clock skew, timestamp data of high resolution and
accuracy is essential. Timestamp accuracy meaning that the timestamping occurs
as close as possible to the physical event in question. For instance, one could argue
that TCP packet timestamps do not satisfy the timestamp accuracy requirement.
The time between injection of a TCP packet timestamp and the physical trans-
mission of the packet in question can be highly variable [26]. TCP timestamps
denotes the time when the operating system has scheduled the transmission of the
packet. However, an arbitrary number of interrupts might occur between injection
of timestamp and the actual transmission of the packet and thus the packet depar-
ture can be subject to a delay which is not reflected in the sending timestamp [26].
In contrast, wifi beacon timestamps broadcasted by access points are considered
highly accurate, the timestamping occurs in direct conjunction with transmission
of a packet when the network interface card has sensed the channel to be free. Sim-
ilarly, the timestamp at the receiving end needs be generated close to the physical
reception of the packet. From this, two more requirements are imposed on the
system: accurate timestamping at sender and accurate timestamping at receiver.
The requirements of the system are the following:

35
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1. Sending timestamp of packet, used in conjunction with receiver times-
tamp to enable clock skew.

2. Receiver timestamp of packet, used by clock skew.

3. RSSI of packet, essential for generating signalprints and other RSSI based
fingerprints.

4. Accurate timestamping at sender.

5. Accurate timestamping at receiver.

6.1.1 Technology Selection

The system requirements informs the selection of technologies which will comprise
the experiment system. The selection of protocol stack was limited to ones found
in the IoT domain. The main contenders being Thread protocol stack, Bluetooth
Low Energy and regular Wifi.

The Thread protocol stack was a natural option, being used in the Tritech
demo system with a tool suite readily available for use. However, when evaluating
the API of the platform [5] on which Tritech’s demo system is built, it was estab-
lished that RSSI data on a per packet resolution could not be achieved without
making extensive modifications to the internals of the platform. As with many
regular desktop operating systems, the network interface hardware registers an
RSSI upon receiving a packet. Nonetheless, the RSSI data is most often discarded
before leaving kernel space [69]. As is the case with the demo platform. Moreover,
the Thread protocol stack has yet to see widespread adoption in the IoT domain.
Thus, it will not be compatible with a majority of off-the-shelf computers acting
as a gateway devices. An external dongle is needed for a gateway to talk Thread.
This has major implications on the accuracy of the receive timestamp. The ex-
ternal thread dongle does not include an arrival timestamp with the information
forwarded to its host device, and therefore timestamping does not occur until the
packet has traveled through the dongle and reached the kernel of the gateway de-
vice itself [70] which heavily decreases the accuracy of the timstamp.

In contrast, Wifi is a de-facto-standard in wireless home networks and does not
face the same compatibility issues as Thread with off-the-shelf hardware, but sim-
ilarly to Thread the wifi devices discard packet RSSI data before leaving kernel
space. The wifi devices were all running a Raspbian distribution of Linux and the
kernel could without too big an effort be modified to retain RSSI data and thus let
it travel all the way to user space. However, by doing so one would put the devices
in a monitor state where a device will listen to all packets sent in a network but
it cannot send packets itself. For the means and purposes of the experiment, the
devices were required to be able to both send and receive packets.

Although relatively new, the Bluetooth Low Energy stack has seen widespread
use and is readily available as a standard communications protocol in many recent
devices ranging from desktop computers to smartphones. The packet RSSI data
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which is difficult to obtain in Thread and Wifi is a required header field in the
Bluetooth Low Energy standard. Thus, BLE transport satisfied the three network
attribute requirements send timestamp, receive timestamp and RSSI by default.
Furthermore, the BLE devices nRF52832 [71] available for use at the Tritech office
proved excellent in terms of accurate timestamping capabilities. The nRF52832
are specifically designed for BLE communication and they are development boards
running without an operating system. Therefore, the code does not run atop sev-
eral layers of operating system abstractions giving the developer more fine grained
control of when the sending timestamp will be generated and injected into the
packet.

Regardless of the transport protocol stack, the gateway of the experiment sys-
tem would be realized by a computer running the linux operating system. The
requirement of achieving an accurate receive timestamp would have to be fulfilled
by a linux available tool. Many of the research papers which this thesis is based
on [25] [32] utilize the pcap software to monitor their device network interfaces in
order to obtain receive timestamps of high accuracy. The pcap software leverages
the timestamps generated in the kernel of the receiving device. Furthermore, the
pcap software is able to listen to all of the three contending transport medias.
Therefore, accurate timestamping at receiver is satisfied.

Table 6.1: Transport media suitability

Protocol
Stack

Send TS receive TS RSSI Accurate
send TS

Accurate
receive TS

Thread 3 3 7 3 7

Wifi 3 3 7 3 3

BLE 3 3 3 3 3

Table 6.1 shows the requirements met by each transport media. As can be seen,
BLE is the one satisfying all of requirements. For this reason Tritech’s Thread
based demo platform was discarded in favor of a BLE driven system.

6.2 Testbed Overview

The system derived for the thesis experiment can be seen in Figure 6.1. It simu-
lates a wireless sensor network and consists of four sensors reporting sensory data.
The data is received by a number of spatially separated antennae who relay the
data to the gateway of the network. The gateway in turn forwards the data to a
remote machine for fingerprint generation. The computed fingerprints are stored
in the remote machine to be used for continuously authorizing all subsequent data
originating from the sensory nodes. In this way the remote machine acts as the
verifying party and the sensory nodes makes the proving party.
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Figure 6.1: Overview of experiment system

The experiment is conducted using four nRF52832 development boards to sim-
ulate the proving nodes of the network. The nodes are broadcasting BLE data at
a constant rate consisting of their MAC-address as well as a sending timestamp.
Raspberry Pi Zero Ws are used as relaying antennae to be able to register RSSI
data at different positions. They read the RSSI of all incoming BLE packets and
relay it to the main receiver through UDP, where the information is stored. More-
over, two additional devices are used to receive BLE data and produce receive
timestamps of high accuracy. These devices acts as time reference in for the clock
skew fingerprint. The two devices used for this are an inexpensive Raspberry Pi
3 and a more costly laptop equipped with an Intel i7 processor. The two are used
to assess how the timestamping capabilities of a lower-end machine fares against
a more high-end one. From this it can be concluded if a fingerprinting system can
be realized with low-cost hardware.

A Raspberry Pi 3 Model B is used as gateway of the network. The gateway
is the connection between the local network of nodes and the outside world. As
previously stated, the computations —fingerprint generation and authentication—
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are performed at a remote machine. In a real-life scenario this would be realized
by a cloud service, but in the testbed a regular desktop computer is used for the
computations.

6.3 Network Traffic Capture

The fingerprinting system is developed to meet the performance requirements of
a live scenario. Still, network traffic capture data will be primarily used when
implementing the fingerprinting techniques. To compare the different implemen-
tations of the fingerprinting techniques, one needs to achieve reproducible output
from the system. Since the system input —network traffic— in this instance is
highly variable, making use of network traffic captures is essential when evaluat-
ing and refining the different implementations. Moreover, one needs to be able to
ensure that the authentication results of the experiments are dependable and not
a product of temporary network conditions at the specific time of capture. For
this reason, the collected data sets needs to be continuous captures, large in size,
not only in the number of packets collected but also in their duration of time.

The testbed was setup according to Figure 6.2. The location was a home en-
vironment where the nodes in the testbed could operate without interference from
other network devices. The length of the traffic captures varied between 12 to 24
hours.

Figure 6.2: System layout

6.4 Fingerprint Implementation

The implementation and design of the different fingerprinting techniques followed
the papers reviewed in Chapter 3. Remember that the generation of a reference
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fingerprint is required for each device before an authentication can take place.
Additionally, a certain data set size is needed in order to perform a reliable au-
thentication of a device against the aforementioned reference fingerprint. The
smaller the required data set size, the sooner it can be determined if a node is
legitimate or not. Hence, the aim of the experiment is to minimize the number
of packets required to generate a reference and authentication respectively whilst
still producing reliable authentication results.

Once an initial implementation had been achieved, network traffic captures were
used to evaluate the implementation. Evaluation of the different fingerprinting
techniques would take the following steps:

1. Fingerprint specific parameters are set in order to trace what impact they
have on the authentication correctness of the implementation.

2. A subset of the traffic capture is used to generate a reference fingerprint
Fref for each device in the network.

3. The remainder of the traffic capture is used to generate authentication fin-
gerprints.

4. The true device ID of each authentication fingerprint Fauth is known, but
in order to assess the reliability of the fingerprint implementation, Fauth

is authenticated against all Fref . Knowing the true ID of Fauth and Fref

one can immediately see if the fingerprinting implementation has decided
correctly in its authentication verdict.

5. After a set number of authentications against the fingerprint implementa-
tion, the total false positive and false negative rate is calculated.

In this manner, the fingerprinting techniques were implemented and further re-
fined. Between each invocation of a fingerprint evaluation, the fingerprint parame-
ters would be modified. The false positive and false negative rate acts as a measure
of the implementation’s overall performance. To obtain a single metric on which
to compare the different implementations, the f-score was derived from the false
positive and false negative results.

6.4.1 Clock Skew

The clock skew implementation used was heavily influenced by [29] to compute
the individual skews using offset between received and sent time for each packet.
To detect impersonating nodes, two different methods were used, one threshold
solution and one machine learning solution using Isolation Forest [21].

Threshold solution

Based on the research in Chapter 3, most previous experimentation with clock
skew have used a threshold value of some kind to separate legit from corrupt
nodes. Because of this, a threshold solution that takes the mean of a number of
clock skews then checks if a packet to authenticate is within a certain error margin
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was implemented. Different values of the error margin was tested to find the most
suitable value.

Isolation Forest solution

In addition to the threshold solution a machine learning solution based on Iso-
lation Forest was created. The reason for this was mainly the fact that it was
difficult to visualize how a threshold solution for a combined fingerprint would be
implemented. The Isolation Forest solution was because of this tested on the clock
skew values alone as well to find the conditions under which it performs the best.

6.4.2 RSSI

Two RSSI-based implementations were derived based on the techniques described
in Section 3.4, signalprints and RSSI fingerprinting through unsupervised learning.

The motivation behind the signalprint technique [37] is that node compromisa-
tion can be detected on a per packet basis with RSSI-based fingerprints. The
thesis of the authors of [37] is that, even though highly variable, the RSSI of a
static node will not differ by more than 5dB between subsequent packets. Thus,
a variation larger than 5dB can be seen as a sign of node compromisation. A sig-
nalprint is a vector of RSSI readings from different antennae for a given network
packet. As described in Section 3.4, rules were set for how strictly contiguous sig-
nalprints should be judged. When evaluating the signalprint implementation, the
strictness of the signalprint rule was gradually changed from the most lenient of
settings to the most rigorous, to find the setting that produced the highest f-score.

The second RSSI implementation was influenced by the findings in article [36]
where a random forest classifier is used for classifying the location of moving ob-
jects in an indoor environment. In contrast to said system, the aim of the RSSI
fingerprinting in the testbed is to assess the location of a static node. For this
reason, a more simplistic implementation has been derived. The authors of [36]
used single RSSI values as input to their positioning system to achieve a rapid
system response. The system of the MSc project does not have as strict timing
requirements. Thus, it can afford to take time to aggregate RSSI values for each
respective antenna. It then computes the average of the aggregated values and
uses it as system input. The aggregating and averaging of RSSI data is done in
order to decrease the effect of variance in the RSSI data and consequently increas-
ing the stability. To find the minimum viable data set size required to generate
reliable RSSI fingerprints, the number of RSSI values aggregated was decreased
between executions along with the total size of the training data set.

6.5 Combined Fingerprint

In the last step of the experiment, it was assessed if an authentication verdict
produced by a combined fingerprint would perform better than the comprising
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fingerprinting techniques individually. More specifically, the combined implemen-
tations were clock skew and RSSI fingerprinting through unsupervised learning.
The two demonstrated best results during the individual evaluations. and were
also the techniques which were most easy to reason about when considering a com-
bined fingerprint.

In the combined fingerprint, Isolation Forest was used with clock skew as one
feature and each antennae used as a feature each. Two experiments will be con-
ducted, one where the clock skew and only the RSSI value originating from the
gateway receiver will be used and one where the clock skew as well as the RSSI
values from four receivers will be used.



Chapter 7
Results

In this chapter, the results of from the experimentations will be presented. The
chapter will be divided into three sections, where the results from the clock skew
and signalprint experimentations will first be presented individually. Then the
combined results will be presented.

The four nRF52 development kits used as nodes are identified by their MAC-
address. The MAC-addresses share the same first seven bytes (c0:ca:fe:ba:be) and
only differ in the last byte. Thus, the different nodes will be referred to as 00, 01,
02 and 03.

7.1 Clock Skew Results

As described in Section 3.2 the size of the data sample affects the accuracy of a
generated clock skew. This section will present results from different aspects in
the generation of clock skews as well as authentication methods based on clock
skew.
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Figure 7.1: Data from 1000 packets sent from device 00

7.1.1 Data Gathering

As described in Section 3.2, the clock skew is calculated as the slope of the line
generated by taking the linear regression between the offset and the server time
for several packets. Figure 7.1 shows the data points gathered from 1000 packets
with a packet interval of 0.5 packets per second.

7.1.2 Accuracy of Linear Regression

Table 7.1 shows the relationship between data sample size, packet sending fre-
quency and the coefficient of determination (R squared) from the linear regression.
To prevent effect of outliers, the R squared values presented in the table are an
average of ten samples generated by data sent from device 00 rounded to four
decimals.
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Table 7.1: Relationship between linear regression accuracy, sample
size and sending frequency.

Number of packets per sample Packets per second Average R squared
100 0.5 0.3526
200 0.5 0.6735
500 0.5 0.9269
1000 0.5 0.9805
100 1 0.1042
200 1 0.3753
500 1 0.7805
1000 1 0.9360
100 2 0.0326
200 2 0.1287
500 2 0.4616
1000 2 0.7725

7.1.3 Clock Skew Generation

The clock skews of the four nodes are visualised in Figures 7.2a to 7.2b. The
dotted lines represent the min and max clock skew recorded during the capture
for each device. All clock skews presented in the figures are generated from the
same packets, although with different sample sizes and sampling devices. The
sending frequencies were all set to 1 packet per second.

7.1.4 Threshold Authentication Results

The results of the threshold authentication can be seen in Table 7.2. The ppm
precision is calculated by taking the mean of N packets where N is the number of
clock skews in the learning phase and then plus-minus with a variable D. A clock
skew x will thus be authenticated if N − D < x < N + D. Note that the false
negatives and false positives presented in Table 7.2 are average scores of all four
nodes. Tests were done with varying N , however, no table change was observed.
Thus, all values presented in Table 7.2 were conducted with N = 10.



46 Results

(a) Laptop capture with 1000 packets/clock skew. Tight clustering of clock skew
values

(b) Raspberry Pi capture with 500 packets per clock skew. Wide spread within clock
skew clusters.

(c) Laptop capture with 500 packets per clock skew. Wide spread within clock skew
clusters.

Figure 7.2: Clock Skew quality produced by different devices
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Table 7.2: Clock skew threshold results

Packets per skew D (1e-6) False positives False negatives
1000 0.25 0.005 0.435
1000 0.5 0.0175 0.145
1000 0.75 0.1125 0.0125
1000 1 0.1875 0.0
500 0.25 0.0425 0.78
500 0.5 0.0825 0.5625
500 0.75 0.13 0.3675
500 1 0.175 0.2125

Based on the results in 7.2 a test with D = 0.8e − 6 and 1000 packets per skew
was conducted. The results of which are presented in Table 7.3.

Table 7.3: Clock skew threshold results per device

Device False positives False negatives F-score
00 0.2 0.0 0.9091
01 0.2 0.0 0.9091
02 0.0 0.0 1
03 0.14 0.0 0.9346

7.1.5 Isolation Forest Authentication Results

An overview of the results from the isolation forest authentication experimentation
is presented in Table 7.4. All false negative and false positive values presented are
averages for all four devices.

Table 7.4: Clock skew results with isolation forest

Packets per skew Skews per model False positives False negatives
500 20 0.4877 0.0833
500 40 0.2778 0.0967
500 60 0.3002 0.045
1000 10 0.7630 0.0611
1000 20 0.2725 0.0725
1000 30 0.0173 0.05
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Table 7.5 shows the results of the isolation forest experimentation per device. The
data is generated using 1000 packets per clock skew and 30 clock skews per model.

Table 7.5: Clock skew results with isolation forest per device

Device False positives False negatives F-score
00 0.0100 0.1143 0.9344
01 0.0421 0.0857 0.9347
02 0 0 1
03 0.0171 0 0.9915

7.2 RSSI Results

This section will present the results of the RSSI-based implementations. The
results display the two implementations’ performance in making correct authenti-
cation decisions given the setup presented in Figure 6.2.

7.2.1 Signalprint

Recall that the signalprint technique applied a set of rules to help distinguish de-
vices. The number of max matches for a pair of subsequent signalprints acts as
a measure for the two signalprints originating from the same device. Conversely,
the number of min matches provides an indication of how likely it is that a pair of
signalprints originates from different devices. The rules applied will set a threshold
for the number of max matches required and the highest number of min matches
allowed.

The signalprint results obtained from the experiment data can be seen in Fig-
ures 7.3 and 7.4. Figure 7.3 shows how the system performs in terms of false
negatives and false positives. Do note that the average for the system as a whole
is presented rather than for each device individually. In 7.3a, no min matches are
allowed and the max matches threshold is gradually increased and. In 7.3b, no
restriction is applied to min matches and the max matches threshold is once again
increased gradually. In 7.4 the f-score for each device is presented for the most
strict and most permissive rule.
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(a) Strict rules where no min matches are allowed.

(b) Permissive rules where min matches restriction is removed from the matching rule.

Figure 7.3: Signalprint total average when applying different rules.
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(a) Strict rules where no min matches are allowed.

(b) Permissive rules where min matches restriction is removed from the matching rule.

Figure 7.4: Signalprint f-Score when applying different rules.
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In Table 7.6 the top results are displayed. For all devices, the system produced
best results when no min matching rule was applied and the number of required
max matches was equal to 2.

Table 7.6: The most performant signalprint results per device

Device False positives False negatives F-score
00 0.3975 0.3058 0.6638
01 0.2757 0.3352 0.6852
02 0.1301 0.1096 0.8814
03 0.3812 0.1880 0.7405

7.2.2 RSSI fingerprinting through unsupervised learning

The RSSI through unsupervised learning implementation utilizes the mean value
of a set of aggregated RSSI values. This is done in order to achieve more stable
RSSI data to act as input for the unsupervised learning algorithm. The difference
in fluctuation between the raw RSSI data and the corresponding mean data can
be seen in Figure 7.5.

Figure 7.5: Fluctuation of raw RSSI and mean of 100 RSSI values.



52 Results

The performance results for the RSSI implementation utilizing unsupervised learn-
ing are presented in Table 7.7. Do note that the false positive and false negative
values are the derived mean for the system as a whole, not the individual de-
vices. The packets per average column denotes the number of packets that were
aggregated and averaged. The averages per model column represent the number
of averages used to train the model.

Table 7.7: Isolation forest RSSI, system mean

Packets per average Averages per model False positives False negatives
100 50 0.3640 0.0775
100 100 0.1353 0.1475
100 300 0 0.055
200 30 0.3309 0.1350
200 50 0.1975 0.0175
200 100 0 0.0225
500 20 0.0026 0.1925
500 30 0.0008 0.22
500 50 0.0009 0.3225
1000 10 0.1394 0.2643
1000 20 0 0.4143
1000 30 0.0450 0.3072

Table 7.8 shows the top performing results from Table 7.7 on a device basis. The
mean value input to the unsupervised model was calculated from 200 RSSI values
and in total 100 means were used to train the model.

Table 7.8: Isolation forest RSSI

Device False positives False negatives F-score
00 0 0.01 0.995
01 0 0.04 0.9796
02 0 0 1
03 0 0.04 0.9796

7.3 Combined Results

The combined results can be presented in two different categories. First, the case
when only the gateway is used to receive packets. The other case is when several
antennas are used to register RSSI values from different positions. Only the best
results from each experiment is presented. Both results are generated from 1000
packets per skew, 30 skews per model, 100 packets per average RSSI and 300
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RSSI averages per model. As the feature vectors have different length, the clock
skew feature vector is oversampled by duplicating entries. The results from the
experimentation with one receiver is presented in Table 7.9 and the results with
four receivers in Table 7.10.

Table 7.9: Combined fingerprint with only one receiver

Device False positives False negatives F-score
00 0.01 0.0857 0.9503
01 0.0211 0 0.9896
02 0 0 1
03 0 0 1

Table 7.10: Combined fingerprint with four receivers

Device False positives False negatives F-score
00 0 0 1
01 0 0 1
02 0 0.0571 0.9706
03 0 0 1
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Chapter 8
Discussion

In this chapter the results presented in Chapter 7 as well as future works will be
discussed.

8.1 Test Bed and Data Capture

The test bed was created with a live scenario in mind. Because of this, a vast
majority of the implementation effort has been spent on creating a system that
captures live data, builds a model and then authenticates a device against said
model. If instead a system that only worked with previously captured pcap files
had been implemented, more effort and time would have been put into executing a
more comprehensive experiment study of the fingerprinting techniques. As a more
extensive study could have revealed factors with high impact on the implemen-
tations’ performance, a more solid foundation of knowledge would have informed
the process of refining the fingerprinting techniques.

Moreover, the system can accomodate to the addition of more nodes to the net-
work. Functionality to move all calculations to a remote server has been imple-
mented. Thus, The fingerprinting functionality is no longer constrained by the
limited resources seen in the constrained devices of the local system. Additionally,
the sensory nodes in the system perform few calculations as their sole task is to
update their advertisement data with a timestamp. One possible bottleneck that
could arise when scaling up the system is the gateway’s ability to handle incoming
packets. Furthermore, the memory requirements of the local system are relatively
low as most data is stored remotely, in either cloud or as in the setup used during
the experimentation, on a remote laptop.

However, the authentication decision making was originally planned to be per-
formed at the gateway device whilst the model building would still be done at
the remote server. By doing this, more swift feedback could be seen from the
system as soon as an illegitimate device was discovered. Illegitimate data would
be stopped at gateway-level and thus the remote server would never be reached
by data originating from a corrupt node. However, it was deemed too taxing both
computationally and memory-wise on the gateway device. Thus, all fingerprinting
logic was moved to the remote server. It can be seen as a trade-off between sys-

55



56 Discussion

tem security and resource consumption on the local system. The gateway is now
able to handle a larger number of nodes whilst the system feedback immediacy
is lowered. Furthermore, since data originating from an illegitimate node is no
longer discarded at gateway-level, there is now a possibility to perform the denial
of service attacks against the remote system.

Due to the limited time frame of this thesis project and the amount of time re-
quired to capture an adequate amount of data, there are a number of different
capture setups that could not be tested. For example, a capture in different types
of environments could be tested to understand how the system behaves in different
situations. Furthermore, all captures were done with completely static nodes, it
could be interesting to study how the system behaves if one or many nodes are
moved slightly during a data capture.

8.2 Clock Skew

As can be seen in Table 7.1, the accuracy of a generated clock skew is increasing
with the number of packets used in the linear regression. However, as there seems
to be no or very small differences if the number of packets are doubled but the
sending frequency of the packets are cut in half, it is reasonable to assume that the
accuracy of the clock skew is more reliant on the time between the first and the
last captured packets. Although, a very small number of recorded packets would
increase the effect of outliers.

The original test set up was aiming to use a Raspberry Pi model 3B as gate-
way. Early results showed that the accuracy of the clock skews, i.e. the ppm
differences between collected clock skews, were inadequate for device separation.
At first, it was thought that BLE – since it has, to the knowledge of the writers,
never been tried in a clock skew fingerprinting scheme – was the cause of the irreg-
ular results. However, when a laptop was used as a collecting device, the results
improved significantly. Thus, it is concluded that the hardware of the Raspberry
Pi is insufficient to be able to generate accurate clock skews. This is most likely
due to the inaccuracy of the clock used, but it could also be due to the network
capabilities of the Raspberry Pi for example.

As can be seen in Figure 7.1, the number of outliers in the data captures were
next to none. As most other papers on the subject experienced outliers this was
a bit surprising at first. Since the experiments done in this paper used BLE and
most other papers measured the clock skew via either WLAN or Ethernet this
is most likely the cause. One plausible explanation for this is the fact that the
number of BLE devices used are more uncommon than WLAN devices, thus, the
channel is less noisy.

The results shown in Table 7.2 show that authentication with threshold values
perform well. It is easy to see that a low value of D decreases the false positives
and increases the false negative and vice versa. The false positive result depends on
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the clock skew of the other devices tested and thus difficult to generalize. Because
of this, a system that generated virtually zero false negatives while still maintain-
ing a low false positive rate was favorable. This resulted in Table 7.3 that, for the
tested data sample, generated zero false negatives while still generating low false
positive rates. Table 7.3 also shows that the false positive rate is affected by the
results presented in Figure 7.2a. Device 02 has a clock skew that is separated by a
higher ppm than the other devices and also generates the lowest false positive score.

Isolation forest results with clock skew as the only feature generally perform quite
well as can be seen in Table 7.4. However, it does require a lot of data to build
the model for stable results. Just as with the threshold experimentation, device
02 performs best as can be seen in Table 7.5, while devices 00 and 01 perform the
worst in both cases. When comparing the two, the results presented show that
isolation forest performs better given a large amount of data. However, if a small
data sample is used to generate the model, the results suggest that a threshold
solution is better.

The clock skew results are very much affected by the devices used. As differ-
ent devices may or may not have different clock skews, an experiment with this
small number of nodes could just as well have ended in the skews of all nodes be-
ing overlapped. Figure 7.2a shows that, while the differences between the devices
are small (about 6ppm between the largest and smallest value), only devices 00
and 03 have overlapping clock skews given they are generated by 1000 packets.
In another scenario, the devices could each be separated by >10ppm or all be
overlapping. Because of this, experiments with a large number of nodes would
have to be conducted to confirm the results. Another thing worth mentioning is
the fact that the experiment only captured clock skews from devices of identical
model and specifications. If devices from another manufacturer were to be used by
a maleficent entity to attack the system, it is probable that the clock skew would
be off by several ppm.

8.3 RSSI

This section will discuss the results obtained from the experiment study of the two
RSSI-based implementations.

8.3.1 Signalprint

The experiment results showed that the signalprint technique was too unstable to
be used in an authentication solution. At its most strict setting, when the system
was configured to only accept network packets which it deemed likely to originate
from a legitimate device, virtually all packets were rejected as seen in Figure 7.3a.
For each device, signalprints delivers a verdict on each packet based on the imme-
diately preceding accepted packet. This makes signalprints highly dependent on a
continuous packet stream with minimal packet loss. However, when applying the
most strict rule the largest factor contributing to the high rate of false negatives
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is the no min matches requirement. The rule demands that no antenna may re-
ceive a packet where the perceived RSSI value differs by more than 8 dB from the
preceding one, otherwise the packet is rejected. In Figure 7.5 it can be seen that
this requirement does not work since the per-packet RSSI data sees fluctuations
far surpassing 8dB.

As seen in Table 7.6, the best signalprint results were seen when applying no
min matching rule and the required max matches were greater or equal to 2. This
indicates that the max matches alone could be sufficient for distinguishing devices.
Nonetheless, the measured decision correctness was still too low for signalprints to
be used in an authentication system. This could have been further investigated in
a testbed with a larger number of end devices and antennae. The signalprint re-
search performed in [37] does recommend that the number of antennae be greater
or equal to six. As the testbed was only equipped with five antennae, this could
be a contributing factor to the poor results.

Signalprints operates on a per packet basis. Contrasting this with the clock skew
and RSSI through unsupervised learning who operate on aggregate values, it was
difficult to reason about how to incorporate signalprints in a combined fingerprint.
Moreover, the poor experiment results of signalprints finalized the decision that
the technique would not be further pursued.

8.3.2 RSSI fingerprinting through unsupervised learning

The aggregating and averaging of RSSI values before being input to an isolation
forest model proved to be a highly effective way to identify and distinguish the end
devices. By calculating the mean of a set of aggregated RSSI values, the violent
oscillation in RSSI which can typically be seen in continuous RSSI readings was
virtually cancelled out.

The results displayed in Table 7.7 shows how the number of aggregated pack-
ets along with the size of the model training set affects the decision correctness.
The initial assumption was that the rate of decision correctness would grow as
the number of aggregated values were increased. This proved to be an incorrect
assumption. The experiments showed that the decision correctness would grow
until the number of aggregated values was 200. From that point the the decision
correctness saw a decline due to the rate of false negatives growing rapidly. When
examining the data which gave rise to false negatives, it was seen that the authen-
tication values differed from the extreme points of the training data by fractions
of a dB. Remember that the raw data in this case is RSSI data which can oscil-
late well above 8dB. Thus, it is believed that the that the underlying isolation
forest model was fed mean values which were clustered so tightly that subsequent
authentication data would be rejected unless the values fell right inside of the
training cluster.
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8.4 Combined Fingerprint

The results presented in Tables 7.9 and 7.10 show that combining RSSI and clock
skew yields a slightly better result compared to using the fingerprinting methods
separately. However, a more large scale test would have to be done to definitely
prove that our results hold. As the system requires 30000 packets to fit the Iso-
lation Forest model, and the sending frequency used was only one packet per
second, 24 hour data was only enough to do 35 authentication tests. Because of
this, the data presented in the combined results constitute of 35 authentications. It
is probable that the F-score will decrease slightly in a more substantial experiment.

Another advantage of using multiple fingerprinting techniques in a combination is
the fact that the system as a whole will be more difficult to attack, seeing as an
adversary would have to penetrate more layers of security.

One major disadvantage with using the fingerprinting techniques in a combined
method is the amount of packets needed to separate legitimate and corrupt nodes.
Seeing as a system that only utilizes RSSI would require less packets to detect
anomalies.

The Sklearn API for Isolation Forest contains a lot of variables that can be chosen
when generating a model. If a variable is not specified a default value is selected.
Some experimentation has been done with especially the contamination parame-
ter, which has been varied between 0 and 0.1. However, the results of this tweaking
is not presented in the results as it would add an overwhelming amount of data.
Because of this, only the best value for each individual result is selected.

As 1000 packets are used to generate one clock skew while only 100 packets are
used to calculate an average RSSI, the feature vector lengths differ. To make them
equal length, oversampling of the clock skew feature vector was performed. The
oversampling was realized by duplicating the clock skew values. This could have
a negative impact on the results as it could result in an over-fitted model. A more
sophisticated oversampling method could be used to further improve the results.

8.5 Future Works

Due to time and financial constraints, many of the fingerprinting techniques listed
in Chapter 3 were not tested. A more elaborate system containing additional fin-
gerprinting methods could be created to achieve better and more robust results.
Furthermore, more attributes could be taken from the existing fingerprinting tech-
niques to be used as input to the unsupervised learning model. E.g. clock skew
values are an aggregate of a set of packets, it is possible to derive statistical fea-
tures such as variance and mean for the aggregate data set. Similar analysis could
be applied to RSSI data to derive features beside the RSSI data itself.

As mentioned in the previous sections, the results seen in this thesis project needs
to be confirmed in a more comprehensive study. Such a study would require a
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larger number of nodes, preferably with a more heterogeneous set of devices to be
fingerprinted. Additionally, an increased number of machine learning algorithms
can be tested such as One-Class Support Vector Machine and Local Outlier Factor
as well as a threshold based solution for RSSI averages.

To better get an understanding of how the system would operate in a live appli-
cation, experimentation in a lively environment would be beneficial. For example
in a busy factory with a large number of people in movement and where the po-
sition of the nodes may alter slightly due to bumps etc. Environmental factors
should also be more closely studied, establishing what elements have a large impact
on derived fingerprints will help in developing a more robust fingerprinting system.

Finally, experiments investigating attacks against the system created in this paper
could be done. It is known, as can be seen in Chapter 4, that there exists nu-
merous attacks against the fingerprinting techniques used in the system. Such a
study would answer questions such as feasibility of fingerprinting attacks and give
an indication of how much of an added security layer the system provides.



Chapter 9
Conclusion

This master thesis project has investigated how to authenticate a device in a wire-
less sensor network without the use of device identity credentials. The experiment
study shows that device fingerprinting can be employed in order to deduce the
identity of a device.

Previous research studied device fingerprinting techniques individually, in this the-
sis a novel approach has been taken where different fingerprinting methods have
been combined to achieve better results. By utilizing the clock skew and RSSI of
a device, it is possible to identify a device as legitimate or corrupt to a high degree
of certainty. However, for accurate results, it has shown that a large data set is
required to do so and instant discovery of corrupt nodes is not possible with the
method used in the project.

Fingerprinting techniques are usually applied to environments where computa-
tional and memory resources are abundant. This project has shown how such tech-
niques can be used in a more resource constrained environment. This is achieved
by relocating resource demanding operations to a remote location, thus, lowering
the resource demands on the devices found in the wireless static network. How-
ever, by doing so, the system takes a highly centralized character. Placing all
computations and storage of data at a centralized server could however impose a
security risk on the system.
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