
List Decoding of Polar Codes

EMILIA JOHANSSON
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2017

EM
ILIA

 JO
H

A
N

SSO
N

List D
ecoding of Polar C

odes
LU

N
D

 2017

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2017-607

http://www.eit.lth.se

“Exjobbreport” — 2017/10/31 — 21:44 — page 1 — #1

List Decoding of Polar Codes

Emilia Johansson
elt12ejo@student.lu.se

Department of Electrical and Information Technology
Lund University

Supervisor: Michael Lentmaier,
Saeedeh Moloudi

Examiner: Thomas Johansson

October 31, 2017

“Exjobbreport” — 2017/10/31 — 21:44 — page 2 — #2

c© 2017
Printed in Sweden
Tryckeriet i E-huset, Lund

“Exjobbreport” — 2017/10/31 — 21:44 — page i — #3

Abstract

Channel coding is an important instrument used in communication to correct
errors that occur on channels. It is interesting to find the best suited channel code
for different communication systems.

Polar codes have been in the spotlight lately for their simple structure and
performance when in combination with list decoding and cyclic redundancy check
code. Polar codes have a recursive structure that makes them interesting to imple-
ment in hardware, and they have lately been chosen as a standard for short code
communication in 5G to correct bit errors. However, polar codes by themselves
are shown to work poorly for practical block lengths, and it is therefore of interest
to research them further.

This thesis investigates polar codes with a suggested combination of list de-
coding and CRC. The combination is shown to improve short polar codes enough
to compete with the best-known channel codes today for short block lengths. This
thesis investigates why this combination works so well with polar codes. The
focus lies on the selection of frozen bits in polar codes, in comparison with the
similar Reed-Muller codes, and on the size and bit-placement of the CRCs. All
investigations focus on codes with length 128 bits and code rate 0.5.

We find that a slightly modified frozen bit selection can result in huge perfor-
mance changes of polar codes. We also find how the use of a list decoder with
a large list size improves Reed-Muller codes such that they challenge polar codes
both with and without added CRCs.

We study if a long CRC is preferred, or if the code performance can be im-
proved by dividing it into several shorter CRCs spread out over the polar code.
Results from different modifications to polar codes are presented and discussed.

Keywords: Channel coding, polar codes, list decoding, CRC, Reed-Muller
codes, short codes, 5G.

i

“Exjobbreport” — 2017/10/31 — 21:44 — page ii — #4

ii

“Exjobbreport” — 2017/10/31 — 21:44 — page iii — #5

Acknowledgments

First, I want to thank my supervisor Michael Lentmaier for making this Master
Thesis project possible. I am grateful for his knowledge and enthusiasm in the
project, and all his guidance that helped me solve problems that occurred along
the way.

I would also like to thank my co-supervisor Saeedeh Moloudi for all her help; all
time spent finding resources to help me understand the theory behind the project
and all her valuable hints for writing this thesis.

I also want to thank my housemates for always questioning my ones and zeros,
and for their daily reminders that I need to simulate.

Finally, I send thanks to my family and the house dog.

iii

“Exjobbreport” — 2017/10/31 — 21:44 — page iv — #6

iv

“Exjobbreport” — 2017/10/31 — 21:44 — page v — #7

Table of Contents

1 Introduction 1
1.1 Project Goal . 2
1.2 Related Work . 2
1.3 Thesis Contributions . 3
1.4 Outline of Report . 4

2 Theoretical Background 5
2.1 Coding Theory . 5

2.1.1 Notations 5
2.1.2 Channel Coding 6
2.1.3 Channel Models 6
2.1.4 Symmetric Capacity and the Bhattacharyya Parameter 7

2.2 Polar Codes . 7
2.2.1 Introduction to Polar Codes 8
2.2.2 Polarization Phases 8
2.2.3 Butterfly Structure 8
2.2.4 Frozen Bits and How They Are Selected 10
2.2.5 Encoding 12
2.2.6 Decoding 14
2.2.7 Decoding Example 16
2.2.8 List Decoding 16
2.2.9 Cyclic Redundancy Check and List Decoding 17

2.3 Reed-Muller Codes . 18
2.3.1 Reed Muller Codes with CRC 19

3 Polar Codes and Reed Muller Codes for Short Block Lengths 21
3.1 Polar Code Design-SNR . 21
3.2 Design-SNR for a Longer Polar Code 22
3.3 Reed-Muller Code and Polar Code 23
3.4 Polar Code with SC List Decoding 25
3.5 Reed-Muller Code with SC List Decoding 26
3.6 Chapter Summary . 29

v

“Exjobbreport” — 2017/10/31 — 21:44 — page vi — #8

4 Polar and Reed Muller Codes with List Decoding and CRC 31
4.1 Adding CRC . 31
4.2 Polar Code with List Decoding and CRC-7 31
4.3 Reed-Muller Code with List Decoding and CRC 32
4.4 Compared Results of RM and Polar Codes with CRC 35
4.5 CRC Lengths, Polar Code . 35
4.6 Chapter Summary . 37

5 List Decoding and CRC, Separated CRC and Changed CRC Positioning 39
5.1 (128,72) Polar Code Performances Depending on the CRC Polynomial 40
5.2 (128,72) L32 Polar Code Performances for Changed CRCs 41
5.3 (128,72) L8 Polar Code Performances for Changed CRCs 43
5.4 (128, 72) Polar Code, Divided CRC Used to Lower Complexity 45
5.5 Chapter Summary . 46

6 Conclusions and Future Work 47
6.1 The Dependence of a Good Frozen Bit Selection 47
6.2 The Adding of CRCs to Polar and RM Codes 48
6.3 Modified CRCs with Polar Codes 48
6.4 The Three Parameters of Modified Polar Codes 49
6.5 Conclusions . 49
6.6 Future Work . 49

References 51

vi

“Exjobbreport” — 2017/10/31 — 21:44 — page vii — #9

List of Figures

2.1 Channel coding block diagram . 6
2.2 The butterfly structure . 8
2.3 Butterfly structure, second recursion step 9
2.4 Polar code N = 8 structure . 10
2.5 The Bhattacharyya parameter . 11
2.6 Channel values after polarization N=128, 1.4186 dB, Z0=0.5 12
2.7 Channel values after polarization N=256, 1.4186 dB, Z0=0.5 13
2.8 Likelihood calculation influences. 15
2.9 List decoding tree . 17

3.1 (128,64) PC design-SNR, WER . 22
3.2 (1024,512) PC design-SNR, WER 23
3.3 (128,64) PC vs RM, WER . 24
3.4 (128,64) PC vs RM, BER . 24
3.5 (128,64) PC with list decoding, WER 25
3.6 (128,64) PC with list decoding, BER 26
3.7 (128,64) RM with list decoding, WER 27
3.8 (128,64) RM with list decoding, BER 27
3.9 (128,64) PC vs RM with list decoding, WER 28
3.10 (128,64) PC vs RM with list decoding, BER 28

4.1 (128,71) PC with list decoding and CRC, WER 33
4.2 (128,71) PC with list decoding and CRC, BER 33
4.3 (128,71) RM with list decoding and CRC, WER 34
4.4 (128,71) RM with list decoding and CRC, BER 34
4.5 (128,71) PC vs RM code, WER . 36
4.6 PC code with differnet list-CRC combinations, WER 36
4.7 PC code with differnet list-CRC combinations, BER 37

5.1 (128,72) PC L=32 8 bit CRC compare polynomials, WER 40
5.2 (128,72) PC L=32 8 bit CRC compare polynomails, BER 41
5.3 (128,72) PC L=32 8 bit split CRC, WER 42
5.4 (128,72) PC L=32 8 bit split CRC, BER 43
5.5 (128,72) PC L=8 split CRC, WER 44

vii

“Exjobbreport” — 2017/10/31 — 21:44 — page viii — #10

5.6 (128,72) PC L=8 split CRC, BER 44
5.7 (128,72) PC L=16 split CRC, WER 45
5.8 (128,72) PC L=16 split CRC, BER 46

viii

“Exjobbreport” — 2017/10/31 — 21:44 — page ix — #11

List of Tables

2.1 Butterfly equations . 9

4.1 CRC generator polynomials . 32

ix

“Exjobbreport” — 2017/10/31 — 21:44 — page x — #12

x

“Exjobbreport” — 2017/10/31 — 21:44 — page xi — #13

List of Acronyms

AWGN Additive white Gaussian noise

B-DMC Binary-input Discrete Memoryless Channel

BEC Binary Erasure Channel

BER Bit Error Rate

BSC Binary Symmetric Channel

CRC Cyclic Redundancy Check (Code)

CRC-8 8 bits CRC

LDPC Low-Density Parity-Check (Code)

LLR Log-Likelihood Ratio

ML Maximum Likelihood

PC Polar Code

RM Reed-Muller (Code)

SC Successive Cancellation

SCL Successive Cancellation List

SNR Signal-to-Noise Ratio

WER Word Error Rate

xi

“Exjobbreport” — 2017/10/31 — 21:44 — page xii — #14

xii

“Exjobbreport” — 2017/10/31 — 21:44 — page 1 — #15

Chapter 1
Introduction

Transferring information between devices plays an important role today. The rising
demand for good data transmission and the planning of 5G increase the interest
in finding ways to improve the rate and reliability of data transmission. Channel
coding plays a significant role in improving these; they let us reduce the number
of errors occurring on channels to any desirable level.

Recently, polar codes have been in the spotlight, and much research is currently
being performed on them. Polar codes are proven to achieve channel capacity for
long block lengths, and they are mathematically simple with a recursive structure
and low complexity. These are highly desirable properties in channel codes and
make them attractive for, e.g., hardware implementation. Polar codes, therefore,
received much attention already from the start. However, they have also been
shown to perform relatively poorly for all practical short block lengths, of up
to a few thousand bits, and are hence not commonly used in practice without
modification.

It is well known that codes that work well for short block lengths are hard to
construct. The low complexity and excellent results of polar codes for long block
lengths have motivated much research, trying to improve them also for short block
lengths.

Recent research has found a way to improve the code performance, using a
combination of successive cancellation list (SCL) decoding and cyclic redundancy
check (CRC) code with the polar code. The SCL decoder extends the successive
cancellation (SC) decoder that was originally used with polar codes. It gives us a
list of possible codewords when decoding, and the CRC check is used in the last
decoding step to help select the correct word from the list. These added elements
reduce the decoding simplicity but have shown impressive results for short block
lengths. Polar codes with this combination go from performing relatively bad
to competing with well-researched codes for short block lengths. They are even
the best performing codes on some channels. Another recent development is that
polar codes have been chosen as the standard to implement in 5G for short block
lengths.

It is now interesting to find out why. What is it about the specific combination
of polar codes, list decoding and CRC that creates better codes?

There are many details about polar codes that can be researched further, and
many questions are still unanswered. We know for example that the older Reed-
Muller codes have a similar structure to polar codes. Moreover, Reed-Muller codes

1

“Exjobbreport” — 2017/10/31 — 21:44 — page 2 — #16

2 Introduction

are stronger than polar codes with larger minimum distances between codewords.
Is it possible to use the same techniques of list decoding and CRC on those codes
and get similar improvements? The structural difference between the codes lies in
the selection of frozen bits, which in short means what set of possible codewords
we can send on the channel. How does the selection of frozen bits influence the
improvement caused by list decoding and CRC? In classic uses of CRC, the com-
puted CRC-bits are placed to the end of the code. However, in combination with
polar codes, could it possibly be better to put the CRC in another position, or
even separate the bits used into a few different CRCs along the codeword? Some
early polar code decisions are commonly made on weaker channels, so could an
early removal of incorrect paths with CRC in the list possibly improve the code?
What it the CRC size needed to fulfill the necessity of the polar code? This thesis
investigates and aims to answer some of these questions.

1.1 Project Goal

In this thesis, polar codes with list decoding and CRC are investigated for short
block lengths of 128 bits, focusing on how variations of the three components,
frozen bits, CRC and list decoding, change the polar code performance. First, the
add of list decoding and CRC to polar codes will be compared with the same add
to Reed-Muller codes, to understand how the selection of frozen bits influence the
result. Second, a few different modifications to the traditional CRC will be made
in size and placement in the code, to find if the combination can improve for short
block length polar codes.

The project goal is to understand what about the list decoding with CRC
that works so well with polar codes, what role the frozen bit selections play, and
possibly to find ways to improve the combination.

1.2 Related Work

The interest of this thesis project grew from previous related work on polar codes,
their similarity with Reed-Muller codes, and results showing polar codes with
list decoding and CRC to outperform other codes available today for short block
lengths on some channels.

Arikan first introduced polar codes in his 2008 article, where they were shown
to achieve channel capacity for infinite block lengths [1]. Already in that article, the
close association between polar codes and the older Reed-Muller (RM) codes was
mentioned, and the relation was further explored by Arikan in [2]. A performance
comparison between the two codes, without added outer codes and for short block
lengths of 32 and 256 bits, was made in [3], finding polar codes to outperform RM
codes for short block lengths under SC decoding. They were also compared in [4]
using maximum likelihood (ML) decoding, under which the RM code performed
better than polar codes, but at a high cost of decoding complexity.

Tal and Vardy suggested the use of list decoding with CRC on polar codes, in
the prize awarded [5], with their first results shown in [6]. The article [5] includes
results showing improved polar codes of 2048-bit block lengths beating LDPC

“Exjobbreport” — 2017/10/31 — 21:44 — page 3 — #17

Introduction 3

codes of length 2304 and rate 0.5. The improved polar code combination was also
looked at in [7], showing polar codes of the short block length of 128 bits and rate
0.5 to outperform both LDPC and turbo codes of the same size and code rate, for
frame error rates down to 10−6.

Some proposed methods of improving the frozen bit selection for polar codes
have been made. Vangala and Viterbo compared some different suggested ways of
selecting frozen bits in [8] for (2048, 1024) codes. It was shown in [9] that LLR
values of unfrozen bits could be used to identify unreliable channels and swap them
with some good frozen channels, improving the polar code performance. Experi-
ments have also been done with combining polar codes and Reed-Muller codes in
different ways in [10] and [11], finding improved results of these interpolated/hybrid
RM-polar codes.

Reed-Muller codes are well known, they were invented in 1950’s but have
only recently been proven to reach capacity. These codes, being older than polar
codes, have been the subject of a lot of research through the years, including many
suggested improvements of the decoder. Recursive list decoding and improvement
of the frozen bit selection for short Reed-Muller codes was suggested in [12].

Many studies have also been made, trying to find the best CRC polynomials to
use for different block lengths for long burst error detection, among them is [13],
describing a good practical way of selecting general CRC polynomials for short
codes.

1.3 Thesis Contributions

Previous research has demonstrated that the asymptotic design criteria for polar
codes, working well for long polar codes, does not show great performance in short
polar codes. However, results in [7] showed that the combination suggested in
[5] could be used to improve polar codes enough to compete with the best. The
desired polar code simplicity and implementation in 5G motivated us to investigate
the code performance of short polar codes further.

In this thesis, we gain a better understanding of why CRC and list decoding
work so well with polar codes. The effect of the three variables, list decoding, CRC
and the selection of frozen bits, are investigated, together with the connection
between polar and Reed-Muller codes.

The thesis first compares some different frozen bit selections, reconstructing
and verifying results from recent research for short block lengths, finding how the
selection of frozen bits changes the code performance. Comparisons are made with
the same combination added to Reed-Muller codes.

The selection of CRC is looked at, and observations are made about how
different CRC polynomials change the outcome of the code. The advantages of
splitting a longer CRC at the end of the decoder into several shorter CRCs along
the decoding process are demonstrated. We suggest how a split CRC can be used
to improve code performance without changing expensive parameters such as polar
code rate or list size.

All investigations are performed with simulations from code written in Matlab.

“Exjobbreport” — 2017/10/31 — 21:44 — page 4 — #18

4 Introduction

1.4 Outline of Report

The report outline is as follows. The Background chapter introduces theory and
concepts that this thesis is based on. Theory includes a detailed explanation of
polar codes, Reed-Muller codes, list decoding, and cyclic redundancy check code.

Following, every chapter investigates a certain aspect of polar codes, and in-
cludes problem description, design method, results, and conclusions.

Chapter 3 reconstructs polar code results from previous research, for short
block lengths of size 128 bits. The polar code design adapts the frozen bit selec-
tion after the channel it is designing for. This chapter starts by comparing the
performance of polar codes designed for different channels. The best performing
polar code design for a range of channels is then selected to be used in the rest
of this thesis. The code performance is also compared with that of the RM code,
both under SC and SCL decoding.

Following, Chapter 4 adds CRCs to both polar codes and Reed-Muller codes
with list decoding to find how the sets of frozen bits influences the resulting code.

The fifth chapter contains comparisons between different ways of using the
CRC, including varying generator polynomials, check value position and spread-
out CRC in the list decoder.

Conclusions and future work are discussed in Chapter 6.

“Exjobbreport” — 2017/10/31 — 21:44 — page 5 — #19

Chapter 2
Background Theory

This chapter introduces relevant theory that the following chapters are based on.
First, Section 2.1 explains channel coding and Shannon capacity, including essen-
tial terms and definitions. Following, Section 2.2 introduces channel polarization
and polar codes, including a detailed description of the encoding and decoding
processes, with and without list decoding and CRC. Last, Reed-Muller codes and
their similarity with polar codes are explained in Section 2.3.

2.1 Coding Theory

We communicate over different channels daily. Channels include physical trans-
mission mediums, such as wires, and wireless channels such as radio channels.
When messages are transferred over a channel, bit errors can occur. It is interest-
ing to construct messages in a way such that errors caused by the noisy channel
can get detected and corrected by the receiver. This is done with a channel code,
where the idea is to add redundancy to the message on the sender side and remove
it in a decoding stage on the receiver side. Redundant bits are added in a way
such that the decoder can use them to detect and sometimes correct errors that
occurred on the channel. This increases the amount of data that can be reliably
transmitted on the channel per time unit.

2.1.1 Notations

In the following chapters, we will use the code notation (N, k), where N is the
length of the sent codeword in bits after encoding, and k the bit length of the
uncoded information. We will use the channel notation W , improved channel
after polarization W+, and worsened channel W−.

Bit vectors are represented by xN
1 , as short for (x1, ..., xN). The k bit infor-

mation sequence is denoted uk
1 , encoded codeword vN1 , input on the channel is xN

1

and output is noted yN1 . The input on the receiver is rN1 , and output from the
decoder ûk

1 . The Hamming weight is denoted dh.

5

“Exjobbreport” — 2017/10/31 — 21:44 — page 6 — #20

6 Theoretical Background

uk
1 Encoder vN1 Channel rN1 Decoder ûk

1

Figure 2.1: Encoding in the transmitter lengthens the word to be
transmitted from k information bits to N bits. The channel
adds noise to the codeword, and the decoder, receiving a mod-
ified codeword rN1 , uses the extra bits to detect and/or correct
possible transmission errors. The decided word after the de-
coder has notation ûk

1 and is hopefully the same as the original
information word uk

1 .

2.1.2 Channel Coding

The interest of coding arose after Shannon’s 1948 article [14], where channel capac-
ity was introduced. Channel capacity is the maximum theoretical rate at which
information can be reliably transmitted over a specific communication channel.
The Shannon capacity theorem sets a theoretical upper bound of the transmission
rate at which data can be reliably transmitted over a link. It states that, as long
as the transmission data rate does not exceed the channel capacity, coding can be
used to reduce error rates on the channel to any desired level.

Channel coding is used to detect and correct errors when transferring data on
communication channels. They work by adding redundancy to the information
message in ways such that the receiver can use it to detect and/or correct errors
that occur on the channel. Codes that can correct errors are commonly called
error correcting codes, and the encoding and decoding steps in the transmitter
and receiver are shown in Figure 2.1. First, a k-bit information sequence uk

1 is
sent to the encoder in the sender from some information source. The k bit long
information sequence gets encoded into an N -bit codeword vN1 , where N > k, and
transmitted on the channel. The channel is subject to noise, and hence a slightly
changed received codeword rN1 reaches the receiver and enters the decoder. The
decoder uses the N received bits to decide the most likely k-bit information word
ûk
1 . The cardinality of the set of possible codewords is 2k.

2.1.3 Channel Models

The channel is the medium over which the data is transmitted. A channel W is
usually modeled with an input alphabet X , an output alphabet Y, and transmis-
sion probabilities W (y|x), x ∈ X , y ∈ Y. The noise level on a channel is measured
in signal-to-noise ratio (SNR), which is the ratio between the signal and noise
power. Some more important channel definitions follow below:

B-DMC (Binary-input discrete memoryless channel) Binary-input means that the
input alphabet is X ∈ [0, 1]. A memoryless channel can send bits indepen-
dently of what was previously sent.

BSC (Binary Symmetric channel) A symmetric channel with alphabet Y = {0, 1}.
This is a simple channel where the received bit after the channel is either
the sent bit, or a flipped bit. The bit is flipped with a small crossover

“Exjobbreport” — 2017/10/31 — 21:44 — page 7 — #21

Theoretical Background 7

probability pe. The channel is symmetric, so p(0|1) = p(1|0) = pe and
p(0|0) = p(1|1) = 1− pe.

BEC (Binary erasure channel) A symmetric channel on which for each y, out
of W (y|1) and W (y|0), one is zero and one is one, or W (y|1) = W (y|0),
i.e. the probability for each decision is either 1, 0 or e (erasure symbol).
This means that the receiver either receives the correct bit or an erasure
bit, letting the receiver know that the bit was not received correctly. This
simplified channel model is often easy to analyze, and therefore commonly
used to describe codes.

AWGN (Additive white Gaussian noise) A model used to mimic random noise
that is added to data on channels. The added noise is normal distributed
with uniform power across the frequency band.

In this report, only binary channels are considered.

2.1.4 Symmetric Capacity and the Bhattacharyya Parameter

Two important parameters for B-DMC’s are defined below, the symmetric capacity
and the Bhattacharyya parameter.

I(W) (Symmetric capacity) The symmetric capacity
I(W) �

∑
y∈Y

∑
x∈X

1
2W (y|x) log W (y|x)

1
2W (y|0)+ 1

2W (y|1) is the highest transmis-
sion rate at which reliable communication is possible across W , using inputs
of W with equal frequency. The symmetric capacity equals the Shannon ca-
pacity when W is a symmetric channel.

Z(W) (Bhattacharyya parameter) The Bhattacharyya parameter
Z(W) �

∑
y∈Y

√
W (y|0)W (y|1) measures the reliability of a channel. It is

an upper bound of the probability that an error occurs using ML decision,
when a channel W is used to transmit a single bit.

Note that both parameters take values [0, 1], and that when one is approxi-
mately one, the other is approximately zero. Desirable are channels with Bhat-
tacharyya parameters close to zero.

2.2 Polar Codes

Polar codes are a group of codes using channel polarization, invented by E. Arikan
in 2008 [1], and proved to be capacity achieving. Polar codes make use of the
fact that channels can be polarized, such that some channels become very reliable
and others completely unreliable. All information gets sent on reliable channels.
Channel polarization is a phenomenon that occurs naturally. Arikan introduced
polar codes on binary-input, discrete, memoryless, symmetric channels.

Polar codes were proven to be capacity achieving for infinite block lengths,
i.e., they perform well for long data sequences. They are mathematically simple
and have a recursive structure with low complexity, which makes them desirable
and efficient to implement in hardware [5].

Following, polar codes are explained in detail.

“Exjobbreport” — 2017/10/31 — 21:44 — page 8 — #22

8 Theoretical Background

u1 ⊕ W

u2 W

y1

y2

u1

u2

W−

W+

x1

x2

Figure 2.2: The butterfly structure makes up the base of Polar
codes. The butterfly structure is shown to the left and the new
channel representations to the right.

2.2.1 Introduction to Polar Codes

As the name suggests, and as is mentioned above, polar codes make use of channel
polarization. Channel polarization operates on N identical independent copies of
a channel W , {W (i)

N : 1 ≤ i ≤ N}, to output a second set of N channels where, if
N is large, the symmetric capacity I(W

(i)
N) of close to all channels in the second

set, tend towards 0 or 1. The subset of reliable channels is chosen to send data
on. All other channels are called frozen and send bits known to both the sender
and receiver, usually zeros [1]. An (N, k) polar code uses N channels to send k
information bits, and they are sent on the k most reliable channels out of the N
possible.

2.2.2 Polarization Phases

Arikan divided channel polarization into two phases: the channel combining phase
and the channel splitting phase. The channel combining phase combines two chan-
nel copies recursively until N channels are combined. The channel splitting phase
splits the combined channel back into N channels, but with changed reliability.
Some of the new channels have capacities close to one, some have capacities close
to zero, and some are mediocre channels with capacities between one and zero.
The fraction of average channels goes to zero as N goes large. That makes it easy
to select what channels to send data on, and what channels to choose as frozen.
The combined capacity is preserved after polarization.

2.2.3 Butterfly Structure

The butterfly structure in Figure 2.2 lies the base for polar codes and polarization.
The figure represents one step in the recursive polarization, polarizing two channel
copies. Denoted y1 and y2 in the butterfly structure in Figure 2.2 are two copies of
the physical channel W and on the left both polarized channels, one with improved
reliability and one with inferior. To the right in the figure are the new polarized
channel representations.

The encoding step generates x1 and x2 as in the first row of Table 2.1. The
bit at u2 gets sent as x2, and u1 and u2 are combined into x1. The capacities of
the two new channels are I(u1; y1, y2) and I(u2; y1, y2, û1).

To understand polarization, consider a BEC with error probability ε. First, u1

is decoded using knowledge from the channel of y1 and y2. The decision depends on
the bit-addition of the two channel values as in Table 2.1. With a BEC, the decided

“Exjobbreport” — 2017/10/31 — 21:44 — page 9 — #23

Theoretical Background 9

Figure 2.2 (1) (2)
x1 = u1 ⊕ u2 x2 = u2
u1 = x1 ⊕ x2 u2 = x1 ⊕ u1

Table 2.1: Equations representing coding and decoding in Figure
2.2. The first column (1) shows encoding and decoding for the
top row in the butterfly structure, and (2) shows the same for
the lower part of the figure.

W−−

W−+

W+−

W++

⊕ W−

W−

⊕ W+

W+

⊕

⊕

⊕

⊕

W

W

W

W

Figure 2.3: The second recursion step of the butterfly structure. The
resulting channels of two copies of the same butterfly structure
is shown to the left. Two channel copies are combined together
in a new butterfly structure, shown in the second part of the
figure. To the right is the resulting code structure of the N = 4
polar code.

value is correct only if both y1 and y2 are correct, hence the error probability is
p = 2ε − ε2. The data from u2 is unknown when u1 is decided and looked at in
the decoder as noise.

After u1 is decided, the calculations to find u2 starts. The decision of u2 is
influenced by the decision of u1. Knowing the value of u1 hence makes the second
part of the butterfly structure a repetition code. Since BEC is considered, the
correct value of u2 is decided if any of the two inputs y1 and y2 are correct. The
error probability is p = ε2.

It is now easy to see that the first channel has worsened reliability, and that
the second is improved. The better channel after polarization is denoted W+,
and the worse W−. The total channel capacity of the system is conserved since
p(W−) + p(W+) = 2ε− ε2 + ε2 = 2p(W).

Polar codes were introduced using successive cancellation (SC) decoding, which
means that one bit is decided before the probabilities for the next bit is calculated.
The SC decoder in this case first decides the bit at the worse position u1, and then
at u2. If u1 is known to the decoder before decoding, then the probability to decide
the correct value at u2 is improved from the original channel. In polar codes, bad
channels are frozen. This means in the mini-case of the butterfly structure that
the value at u1 is known to both the sender and receiver, and only the value at u2

is unknown before decoding.

“Exjobbreport” — 2017/10/31 — 21:44 — page 10 — #24

10 Theoretical Background

A recursive addition of butterfly structures results in more polarized channels.
Figure 2.3 shows how the size N = 4 polar code is constructed by combining
two copies of the butterfly structure. Two copies of the improved channel are
combined into a new butterfly structure, and so are two copies of the worsen
channel. Together, they make up a polar code structure and four new channels
with different reliabilities from the original channel. The figure shows the combined
butterfly structure as well as the new channel representations.

Figure 2.4 shows the structure of an N = 8 polar code. The input bit sequence
uN
1 on the left-hand side is N bits long, of which k bits are information bits, and

the other N − k bits are frozen and known to both sender and receiver. In the
figure, it is also seen how two copies of polarized channels of the same polarization
are always combined to create two new channels.

u1

u2

u3

u4

u5

u6

u7

u8

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕
⊕

⊕
⊕

y1

y2

y3

y4

y5

y6

y7

y8

n1

n2

n3

n4

n5

n6

n7

n8

n9

n10

n11

n12

n13

n14

n15

n16

n17

n18

n19

n20

n21

n22

n23

n24

Figure 2.4: Encoding generator matrix structure for the N = 8
example.

2.2.4 Frozen Bits and How They Are Selected

The Bhattacharyya parameter was used to select frozen bits in the introduction
of polar codes in [1]. Some other frozen bit computations have been suggested
and used since then. For the interested, see [8] for a comparison between some
different suggested ways of finding frozen bits for polar codes. In this paper, we use
the Bhattacharyya parameter when computing channel reliabilities and selecting
frozen bits.

The Bhattacharyya parameter measures the reliability of a channel; it is an
upper bound of the probability that an error occurs using maximum-likelihood
decision when a channel W is used to transmit a single bit. The physical channel
has Bhattacharyya parameter

Z(W) = e−R·Eb/N0 (2.1)

and depends on the physical channel that the polar code is designed for.

“Exjobbreport” — 2017/10/31 — 21:44 — page 11 — #25

Theoretical Background 11

One butterfly step changes the parameters of both channels involved as in
(2.2), with equality in the first equation in the special case of BEC.{

Z(W−) ≤ 2Z(W)− Z(W)2

Z(W+) = Z(W)2
(2.2)

Iterating these calculations from (2.2) as in Figure 2.5 until the tree has N
leaves gives the new channel Bhattacharyya values for all N polarized channels. N
channel values are found after n = log2(N) iterations. Every step in the tree uses
the equations on the current Z-value to find two child node Z-values. The N − k
channels with the highest Bhattacharyya values are selected as frozen channels
[1]. Frozen bit values are known to both the sender and receiver, and are in this
project always set to zero. In this thesis, calculations to decide frozen bits are
made with the approximation that Z(W−) = 2 · Z(W)− Z(W)2 for all channels.

z = e−
REb
N0

z2

(z2)2

. . .

. . .

2(z2)− (z2)2

. . .

. . .

2z − z2

(2z − z2)2

2(2z − z2)− (2z − z2)2

l0 l1 l2 l3 . . . ln

Figure 2.5: Bhattacharyya parameter calculations on polarized chan-
nels. The physical channel on level l0 and all separate polar
channels on level ln, with n = log2(N).

Polar codes adapt to channels, so a polar code found for one channel might
not be the polar code found for another. This is due to how the Bhattacharyya
parameter of the physical channel influence the values of all polarized channels. It
is not practical to change the set of frozen bits for a polar code after implemen-
tation, hence it is usually optimized for a special design-SNR. The polar code is
designed for one channel with some channel parameters, and keep the same set of
frozen bits if the channel changes.

The resulting Bhattacharyya parameters of all synthesized channels can be
seen in Figure 2.6 for an N = 128 code on a channel with design-SNR 1.4186 dB.
The choice of design-SNR is made as suggested by Arikan [8], where the initial
value in the calculations was Z = 0.5. The initial value 0.5 is obtained at 1.4186 dB
from equations below in (2.3) and (2.4).

“Exjobbreport” — 2017/10/31 — 21:44 — page 12 — #26

12 Theoretical Background

20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.6: Polarization Z-values for all channels, EbN0 =
1.4186 dB, N = 128.

designSNR = 10
designSNRdB

10 (2.3)

Zchannel = e−R·designSNR (2.4)

It can be seen in the figure that some channels after polarization are unreliable,
some are reliable, and a set of channels are neither. As the size of the polar code
construction is increased, the fraction of mediocre channels goes to zero. The
Bhattacharyya parameters for a longer polar code with the same design-SNR is
shown in Figure 2.7. There, a larger fraction of channels are polarized to values
close to 1 or 0. Note that the Bhattacharyya parameter is an upper bound, and
some channels might be better than approximated.

Bhattacharyya parameters are usually calculated in log domain to expand the
numerical span of results from [0 1]. The design-channel log-domain Bhattacharyya
parameter z(W) is calculated as

z(W) = −R · design-SNR. (2.5)

The code rate R is 0.5 throughout this report.

2.2.5 Encoding

Encoding of polar codes can be done in two ways: recursively, using the butterfly
structures of the code shown in for example Figure 2.4; or more straightforward

“Exjobbreport” — 2017/10/31 — 21:44 — page 13 — #27

Theoretical Background 13

50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.7: Polarization Z-values for all channels, Eb/N0 =
1.4186 dB, N = 256.

through multiplication with the generator matrix G. For a code with block length
N , the generator matrix G is found from the base matrix F by taking the Kronecker
power F⊗n, where n = �log2(N)� and F is defined as

F �
[
1 0
1 1

]
. (2.6)

The Kronecker product A⊗B and Kronecker power A⊗N are explained below.
Consider m × n matrix A and r × s matrix B, then the Kronecker product of A
and B is a mr × ns matrix defined as

A⊗B =

⎡
⎢⎣
A11B · · · A1nB

...
. . .

...
Am1B · · · AmnB

⎤
⎥⎦ . (2.7)

As an example, see matrices A and B,

A =

[
a11 a12
a21 a22

]
, B =

[
b11 b12
b21 b22

]
, (2.8)

and their Kronecker product

“Exjobbreport” — 2017/10/31 — 21:44 — page 14 — #28

14 Theoretical Background

A⊗B =

⎡
⎢⎢⎣
a11b11 a11b12 a12b11 a12b12
a11b21 a11b22 a12b21 a12b22
a21b11 a21b12 a22b11 a22b12
a21b21 a21b22 a22b21 a22b22

⎤
⎥⎥⎦ . (2.9)

The B-matrix is multiplied with every value of the A-matrix separately, and
the result is saved in a new matrix. The Kronecker power is defined as

C = A⊗n = A⊗(n−1) ⊗A (2.10)

with A⊗0 � 1, and n being an unsigned integer [1]. This means that the
generator matrix G is found from the n:th Kronecker power of F

G = F⊗n. (2.11)

The encoding of information word u to codeword v is simply yielded from the
matrix multiplication in 2.12

v = u ·G. (2.12)

Frozen bits are set to zero in the vector u before multiplication with the
generator matrix as in (2.12).

After encoding, the codeword v is sent on the channel.

2.2.6 Decoding

Polar codes were introduced with a successive cancellation (SC) decoding algo-
rithm. Successive cancellation implies that the bits are decoded one at the time
in a specified order, here from top to bottom as in Figure 2.4, first deciding û1

and last ûN , using hard decision decoding. One bit decision ûi is made before the
calculations to find the next bit ûi+1 starts, and already decided bits influence the
decision of following bit decisions.

To make one decision, first, all associated likelihood ratios must be calculated.
All positions that influence the bit are relevant. For bit u1 in Figure 2.4, these
positions are y1 to y8, n17 to n20, n9, n10 and n1. Likelihood ratios on all those
nodes are computed in the mentioned order (recursively) before the first decision
can be made.

Likelihood ratios (LR) L(ui) = log p(ui=0|r)
p(ui=1|r) are used to make bit decisions

during decoding. They get calculated in two different ways for polar codes de-
pending on decoding node position and are calculated as functions f(L1, L2) or
g(L1, L2) as ⎛

⎝ f(L1, L2)

g(us, L1, L2)

⎞
⎠ =

⎛
⎝

L1L2+1
L1+L2

L2 · L(1−2·us)
1

⎞
⎠ . (2.13)

This can be compared to the butterfly structures in Figure 2.8. As seen in
the figure, LR values from the f -function depend only on LR-values of nodes a

“Exjobbreport” — 2017/10/31 — 21:44 — page 15 — #29

Theoretical Background 15

Lc = f(La, Lb) ⊕
0

a

b

⊕us

Lc = g(us, La, Lb)

a

b

Figure 2.8: Likelihood calculation influences.

and b, and LR values calculated with the g-function are in addition to that also
influenced by the result from the f -function. The g-function is calculated as L1 ·L2

if the decided bit on position us is zero, or L2

L1
if the decision of us is one.

In general, the decision of any bit ûi in uN
1 , {1 ≤ i ≤ N}, is influenced by all

previous decisions ûi−1
1 .

Because of numerical issues in calculating likelihood ratios, all calculations are
made in log domain to avoid underflow [24]. Log-likelihood ratios (LLR) of L1

and L2 are written as l1 and l2, and they are calculated as

⎛
⎝ ln(f(el1 , el2))

ln(g(el1 , el2 , u))

⎞
⎠ =

⎛
⎜⎜⎝
ln

1 + exp(l1 + l2)

exp(l1) + exp(l2)

l2 + (−1)us l1

⎞
⎟⎟⎠ . (2.14)

Log-likelihood ratios on channel values in case of AWGN channels are found
as Lch = 2

σ2 r
The decision made in the f -function decides if the g-function LLR is calcu-

lated as l2 + l1 or l2 − l1. The f -function is often referred to as the box-plus
operation and is also used in LDPC decoding. The function can be approximated
to ln(f(el1, el2)) ≈ sign(l1) · sign(l2) ·min(|l1|, |l2|) for faster calculations, but this
approximation is not used in this project.

The estimate ûi is ui if ui is frozen, or decided as hi in the decision function
defined as

hi =

⎧⎪⎨
⎪⎩
0, if

W
(i)
N (y, û|0)

W
(i)
N (y, û|1)

≥ 1

1, otherwise
(2.15)

After a hard decision is made, that value is saved together with all decided
node bit values. After deciding nodes û1 to û4, bit decisions at nodes n1 to n4, n9

to n12, n17 and n18 in Figure 2.4 are found and saved. These values are used in
all future g-function calculations in the decoder [1].

“Exjobbreport” — 2017/10/31 — 21:44 — page 16 — #30

16 Theoretical Background

2.2.7 Decoding Example

To show how decoding is done, this section describes the SC decoder in a step-by-
step example. Consider the (8, 4) polar code in Figure 2.4. Frozen bits are u1, u2,
u3 and u5, found with the use of Bhattacharyya parameters. Known at the start
of decoding are only the channel values and their LLRs are calculated as described
in previous section, in the figure LLRs of yN1 .

The SC decoder starts by making a hard decision of the bit at û1, after cal-
culating the LLR value at node n1. The LLR value at node n1 depends on all
channel values in the channel vector yN1 , and LLR-values at positions n17, n18,
n19, n20, n9, n10, and n1. These are all calculated in the mentioned order, using
the f -function from (2.13) on previous level values, due to upper node positions.
Since the node u1 is frozen, the decision ûi is zero. The LLR-value of node n1 is
found even though u1 is frozen because of implementation simplicity.

The LLR-value at n2 depends on LLR-values of nodes n9 and n10, both already
calculated, and û1, and is found using the g-function. The decision is again made
from being in a frozen position. Here we can see that we only need to update nodes
from level 1, level 0 being decision positions, and level 3 being channel values.

When looking at the whole decoding algorithm, there is a pattern in how many
levels of nodes that need to be updated at each decoding step. The number of
levels that needs updating is found from the bit-representation of the decision-
node in u, numbering the nodes from zero to N − 1. The first position in the
bit-representation being a one, from the least significant bit (LSB), is how many
steps needs updating. For example, the node just calculated is represented as
[001], the first 1 being at position one from LSB. We, therefore, know that we
only need to update from level one in decoding implementation. We also know
that LLRs of the deepest level to be calculated every iteration is found with the
g-function.

The third bit to decide is û3 in the figure, bit represented by [010]. The second
bit from LSB being the first 1, so we know that we need to update LLRs from
level 2. We calculate LLRs at nodes n11 and n12 using the g-function with decided
values for n9 and n10 being known, and last n3 with the f -function. The frozen
decision is made.

This decision order continues. The LLR of n4 is decided using the g-function,
and the decision value is decided using (2.15). We have now hard decision values
for nodes n1−4, n9−12 and n17−20, and the later will be used in the next g-functions,
starting calculations for the decision of û5, the last frozen bit.

In the decision of û6, we find the LLR-value of n6 by ln(g(el1 , el2 , u)), using
l-values of nodes n13−14, and û5. The decision of û6 is again made with decision
cases in 2.15. Finding the last two decision values is a repetition of finding LLR-
values for û3−4, only decisions are made from those calculated values since they
are not frozen.

After decoding, we find the 4 bit decided information message to be [û4, û6, û7, û8].

2.2.8 List Decoding

The SC decoder is very straightforward, easy to implement and fast. However, it
has some limitations, since we only get competitive performance for unreasonably

“Exjobbreport” — 2017/10/31 — 21:44 — page 17 — #31

Theoretical Background 17

long polar codes using this decoder. Successive cancellation list decoding together
with CRC code has been found to improve the polar code and make it perform
well for shorter code lengths [6].

.

u1=0

u2=0

u3=0

u4=0u4=1

u3=1

u2=1

u3=0

u4=0u4=1

u3=1

u4=0u4=1

u1=1

u2=0

u3=0u3=1

u2=1

u3=0u3=1

u4=0u4=1

Figure 2.9: List decoding, L = 4 example. Dotted lines represent
paths with low probability that are erased.

List decoding is a well-known concept that has been used for other channel
codes before polar codes and means that we consider that one early decision error
could have significant consequences for the rest of the decoding process. For polar
codes, if one bit is incorrectly decided, this cannot be corrected later in the SC
decoder and could influence the decoder to make later bit errors.

Instead of only saving the most likely path after every decision level, a list
decoder saves all possible paths, together with their calculated likelihood. At the
end of decoding, the probabilities of all paths in the list are compared, and the
most likely path, in the end, is decided. The list decoder is expensive; it increases
the decoding complexity from O(n log n) for SC to O(Ln log n) for optimized SCL
decoding, L being the list size. A straightforward implementation of the SCL
decoder takes O(Ln2) [5].

For a better trade-off between complexity and performance, a fixed number of
most likely paths can be saved in the list, instead of every possible path. Figure
2.9 shows some early steps of a list decoder with list size L=4. The first step saves
all possible paths, since the list is not filled, and so does the second step. From
step 3 and forward, probabilities of all different paths are calculated as a sum of
likelihoods for each step, but only the four most likely paths are saved in the next
list step. The dotted lines in the figure represent the least likely paths that are not
saved, and the full lines represent all paths saved in the list for that step. Children
of a node represent the continuing of a path with either a decided zero or one.

2.2.9 Cyclic Redundancy Check and List Decoding

Cyclic Redundancy Check (CRC) codes are simple channel codes that can detect,
but not correct errors. Redundant bits, found through the polynomial division of
the code word with a predefined generator polynomial, are added to the end of
the message as a check value before transmission. The decoder receives the code
word including redundant bits, and perform the same polynomial operations as
the encoder. If the calculated check value is the same as in the received word, the
code word gets accepted, otherwise usually discarded.

“Exjobbreport” — 2017/10/31 — 21:44 — page 18 — #32

18 Theoretical Background

In polar codes with list decoding, CRC comes in handy in the last step of
decoding. The L most likely paths get saved in a list during decoding, and in the
last decoding step, the most likely path out of those L paths gets selected as the
decoded codeword. It was found in [5] when errors occurred in polar codes with
list decoding, that the correct codeword was often in the final list, but that it was
not the codeword with the highest likelihood and hence not selected in the last
step of the decoder. With a CRC added to the codeword, the CRC check could
be used to make the decoder choose the correct codeword out of the list. If a
word in the list in the end of decoding has higher calculated probability than the
real codeword, but is not a valid codeword according to the CRC check, it gets
discarded, and the most likely codeword that is valid with its CRC gets selected
instead. This was shown to improve error rates for polar codes in [5]. Note that
adding CRCs to polar codes changes the polar code rate, but not the total code
rate.

The selection of generator polynomials plays a big part in maximizing the CRC
performance. The ability to find long burst errors depend on it and many studies
have been made trying to find the best polynomials to use. A longer polynomial
can in general correct longer burst errors, but has a higher cost of code rate. Many
polynomials that work well for some code length do not work well for other [13].
In use with polar codes, it is not clear if long burst errors, that CRCs are designed
to correct, are the types of errors that occur for the polar code, or if polar code
errors are spread out over the word.

2.3 Reed-Muller Codes

The Reed-Muller (RM) codes were first invented by Reed [21] and Muller [22]
in 1954. They were some of the first used channel codes, and much research is
available for the interested, see for example [12, 23] on improved RM decoders.
The codes were not proven to reach capacity until recently and are not used a lot
in practice. They are similar to polar codes construction-wise.

The encoding of Reed-Muller codes can be done through multiplication with
the same encoding generator matrix as for polar codes, only differing in the choice
of frozen bits. Where polar codes base the selection of frozen bits on channel
parameters, for example with the use of the Bhattacharyya parameter, Reed-
Muller codes instead choose the rows in the same generator matrix with the lowest
Hamming weights as frozen. A generator matrix for size 8 Reed-Muller code and
Hamming weights of each row can be seen in (2.16).

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

dh = 1
dh = 2
dh = 2
dh = 4
dh = 2
dh = 4
dh = 4
dh = 8

(2.16)

“Exjobbreport” — 2017/10/31 — 21:44 — page 19 — #33

Theoretical Background 19

Reed-Muller codes were originally defined to freeze all rows of up to a certain
Hamming weight. They were hence only defined for a few different code rates.
With for example the code of length N with the generator matrix (2.16), the rate
R = 5/8 RM code is not defined.

In this thesis we need to freeze bits of other code rates than those originally
defined for Reed-Muller codes, to keep the code rate to R = 0.5 after CRCs
are added. We call all codes where the decision of frozen rows depends on the
Hamming weight for Reed-Muller codes. This means for example that there are
three different possible (8, 5) RM codes, since there are three rows in the generator
matrix with Hamming weight dh = 4.

RM and polar codes have the same frozen bits for code size smaller than 32
and rate 0.5 [2]. The different frozen bit selections for longer codes make RM code
stronger with a larger minimum distance between codewords. However, RM codes
are channel-independent while polar codes pay attention to channel polarization
and work better with SC decoding [1]. RM codes, in contrast to polar codes, get
weaker for increasing block lengths [20].

Reed decoding, which was used when RM codes were first invented, is based
on the fact that every possible codeword is a linear combination of the rows in the
generator matrix G, and one of the rows is the all-one vector. Hence, the codeword
is v = a0v0 + a1v1 + .. + akvk and the received vector r = (y0..yN) and decoding
is done with simple linear computation. Some linear combination of active rows
in the generator matrix is closest to the received codeword bitwise. Since the
invention of RM code, many different decoders have been used. In fact, both SC
decoding and list decoding were introduced for RM code long before polar codes
were introduced [1].

2.3.1 Reed Muller Codes with CRC

When Reed-Muller codes are investigated with list decoding and CRC, it is im-
portant to specify what bits to freeze when several matrix rows in the generator
matrix have the same Hamming weight. Several different frozen bit selections can
be used to create for example a (128,71) RM code. These various codes might
show different performances.

“Exjobbreport” — 2017/10/31 — 21:44 — page 20 — #34

20 Theoretical Background

“Exjobbreport” — 2017/10/31 — 21:44 — page 21 — #35

Chapter 3
Polar Codes and Reed Muller Codes for

Short Block Lengths

In this chapter, some results found in the previous research of polar codes (PC)
and Reed-Muller (RM) codes are re-investigated for short 128-bit block lengths.
First, the performances of polar codes designed with different design-SNRs are
compared. Simulation results are used to decide the design-SNR to be used in
all following investigations of polar codes. The performance results found from
using different design-SNRs for the (128, 64) PC are compared with the same
design-SNR investigation of the (1024, 512) PC.

Later, RM and polar code performances are compared, first under SC decoding
and later with the SCL decoder.

The basic polar code was implemented in Matlab with some inspiration from
the open source code found in [24] and expanded for this project. Simulation
results are presented as word error rate (WER) and bit error rate (BER) perfor-
mances as a functions of channel-SNRs on AWGN channels.

3.1 Polar Code Design-SNR

The polar code design suggested in [1] varies for different channel-SNRs. Modified
channel parameters lead to a changed set of frozen bits.

To change the frozen bit set of an implemented polar code is known to be
unpractical. A more practical approach for implementation is to choose a polar
code that works for a range of channels, so that the polar code still performs
well when a channel changes slightly. Therefore, the investigation of polar codes
started with a comparison of polar codes constructed with different design-SNRs
over a changing channel. The design-SNR of the best performing polar code for
the range of channels was then selected as the design-SNR to use in the rest of the
project.

The choice of design-SNRs to compare was motivated by results in [8], and
chosen so that design-SNRs were close to the channel-SNRs that were simulated
for. Results are shown in Figure 3.1.

It can be seen in the figure how a polar code with a certain design-SNR is
not necessarily the polar code that performs best for that channel-SNR. Examples
of this are found at channel-SNR 4 dB and 5 dB in the figure. The polar code

21

“Exjobbreport” — 2017/10/31 — 21:44 — page 22 — #36

22 Polar Codes and Reed Muller Codes for Short Block Lengths

designed for the 5 dB channel works better than that for the 4 dB channel when
the channel-SNR is 4 dB. We conclude that it is not trivial to find the best (128,64)
polar code for a known channel.

The results suggest that all lower design-SNRs, 3 dB to 5 dB, work well for low
SNR channels, but that 5 dB gives the most reliable code out of them for the span
of channels that are simulated over. Design-SNRs 6 dB and 7 dB perform worse for
most of the channel span. However, they catch up with the better codes around
5 dB.

Since the polar code designed for the 5 dB channel worked well for the whole
span, 5 dB was selected as design-SNR to be used when designing polar codes for
all further polar code investigations in this project.

1 1.5 2 2.5 3 3.5 4 4.5 5
E

b
/N

0
 (dB)

10-5

10-4

10-3

10-2

10-1

100

W
or

d
E

rr
or

 R
at

e

(128, 64) PC design-SNR 3dB
(128, 64) PC design-SNR 4dB
(128, 64) PC design-SNR 5dB
(128, 64) PC design-SNR 6dB
(128, 64) PC design-SNR 7dB

Figure 3.1: (128, 64) Polar code performance for some different
design-SNRs.

3.2 Design-SNR for a Longer Polar Code

To control if results from the previous section were consistent with other short
polar codes, and not a special case for the (128,64) polar code, the design-SNR
test was complemented with a run for the longer (1024, 512) polar code, with
resulting word error rates shown in Figure 3.2.

Just as for the shorter code can we observe that the polar code designed for
4 dB channels is not the best for the channel of that SNR. The polar code that
adapts for every new channel-SNR does not work well compared to the other
codes with fixed design-SNRs. Conclusions from the previous section stand for

“Exjobbreport” — 2017/10/31 — 21:44 — page 23 — #37

Polar Codes and Reed Muller Codes for Short Block Lengths 23

both tested short polar codes. It is not trivial to find the best short polar code for
a channel, given a channel parameter, and the selection of frozen bits is essential
for polar code performances.

1 1.5 2 2.5 3 3.5 4
E

b
/N

0
 (dB)

10-6

10-5

10-4

10-3

10-2

10-1

100

W
or

d
E

rr
or

 R
at

e

(1024, 512) designSNR 6 dB
(1024, 512) designSNR 5 dB
(1024, 512) designSNR 4 dB
(1024, 512) adaptive design

Figure 3.2: (1024, 512) Polar code performance for some different
design-SNRs, and for the adaptive polar code.

3.3 Reed-Muller Code and Polar Code

Previous results show that the design-SNR changes the polar code performance,
which means that the selection of frozen bits is vital. The different set of frozen
bits for the Reed-Muller code has been shown to have worse performance than the
polar code [2]. This section re-investigates these results by comparing the RM set
of frozen bits with the previously selected polar code design.

The (128,64) Reed-Muller and (128,64) polar code with design-SNR 5 dB were
compared under SC decoding, and the resulting WER and BER are shown in
Figures 3.3 and 3.4. The polar code shows better results under the SC decoder
than the RM code, as expected and found in previous research. This can be
explained by that even though the RM code is stronger, the polar code is designed
to work well with the SC decoder and therefore work better in this case. The
strong RM code needs a stronger decoder to show good performance.

“Exjobbreport” — 2017/10/31 — 21:44 — page 24 — #38

24 Polar Codes and Reed Muller Codes for Short Block Lengths

1 1.5 2 2.5 3 3.5 4 4.5 5
E

b
/N

0
 (dB)

10-4

10-3

10-2

10-1

100

W
or

d
E

rr
or

 R
at

e
(128, 64) polar code
(128, 64) RM code

Figure 3.3: WER of polar code and Reed-Muller code under SC
decoding. Polar code frozen bits are selected with Bhattacharya
parameters with design-SNR 5 dB .

1 1.5 2 2.5 3 3.5 4 4.5 5
E

b
/N

0
 (dB)

10-5

10-4

10-3

10-2

10-1

100

B
it

E
rr

or
 R

at
e

(128, 64) polar code
(128, 64) RM code

Figure 3.4: BER of polar code and Reed-Muller code under SC
decoding. Polar code frozen bits are selected with Bhattacharya
parameters with design-SNR 5 dB.

“Exjobbreport” — 2017/10/31 — 21:44 — page 25 — #39

Polar Codes and Reed Muller Codes for Short Block Lengths 25

3.4 Polar Code with SC List Decoding

Polar codes with N = 2048 have shown to perform slightly better under successive
cancellation list decoding than SC decoding [5].

The motivation of adding a list decoder is to go around the negative aspects
of a hard decision decoder. When a false decision occurs in the decoder, the other
correct path is saved too, and we rely on that the final correct codeword has a
higher likelihood at the end of the decoder so that it gets picked over the incorrect
path.

The performances of the (128, 64) polar code with SCL decoding of different list
sizes are shown in Figures 3.5 and 3.6. We observe that list decoding improves the
code performance, but that a larger list size does not show significant performance
gain compared to a smaller. The longer list size is expensive, and the result does
not motivate the use of a long list size in applications.

The fact that a longer list size does not improve the polar code mush is a
consequence of that the decoder does not select the correct codes at the end of
decoding, which has been previously observed in [5].

1 1.5 2 2.5 3 3.5 4 4.5 5
E

b
/N

0
 (dB)

10-5

10-4

10-3

10-2

10-1

100

W
or

d
E

rr
or

 R
at

e

(128, 64) PC L=1
(128, 64) PC L=2
(128, 64) PC L=4
(128, 64) PC L=32
(128, 64) PC L=64

Figure 3.5: WER of (128,64) polar code with list decoding, varying
list sizes L.

“Exjobbreport” — 2017/10/31 — 21:44 — page 26 — #40

26 Polar Codes and Reed Muller Codes for Short Block Lengths

1 1.5 2 2.5 3 3.5 4 4.5 5
E

b
/N

0
 (dB)

10-5

10-4

10-3

10-2

10-1

100
B

it
E

rr
or

 R
at

e

(128, 64) PC L=1
(128, 64) PC L=2
(128, 64) PC L=4
(128, 64) PC L=32
(128, 64) PC L=64

Figure 3.6: BER of (128,64) polar code with list decoding, varying
list sizes L.

3.5 Reed-Muller Code with SC List Decoding

SCL decoding of the (128, 64) RM code was investigated for different list sizes,
with results found in Figures 3.7 and 3.8.

The Reed-Muller code shows a much greater performance improvement than
the polar code from the improved, more complex decoder. Greater list sizes im-
prove the performance, but less per list size step as the performance gets closer to
the ML performance. Only a short list is needed to make RM code comparable
with the same size polar codes, and longer list results in the RM code outper-
forming the polar code. Results comparing RM and polar codes with and without
list decoding are shown in Figures 3.9 and 3.10. It can be seen how the RM code
performs better after list decoding is added.

Another observation is that the difference in performance between the two
codes under list decoding is larger for high SNRs than for low. This can be
explained by that the benefits of a strong code in combination with a good decoder
always can be observed at high SNRs, but not always at low.

“Exjobbreport” — 2017/10/31 — 21:44 — page 27 — #41

Polar Codes and Reed Muller Codes for Short Block Lengths 27

1 1.5 2 2.5 3 3.5 4 4.5 5
E

b
/N

0
 (dB)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

W
or

d
E

rr
or

 R
at

e

(128, 64) RM, L=1
(128, 64) RM, L=4
(128, 64) RM, L=32
(128, 64) RM, L=64

Figure 3.7: WER of (128,64) RM with list decoding, varying list
sizes L.

1 1.5 2 2.5 3 3.5 4 4.5 5
E

b
/N

0
 (dB)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

B
it

E
rr

or
 R

at
e

(128, 64) RM, L=1
(128, 64) RM, L=4
(128, 64) RM, L=32
(128, 64) RM, L=64

Figure 3.8: BER of (128,64) RM with list decoding, varying list
sizes L.

“Exjobbreport” — 2017/10/31 — 21:44 — page 28 — #42

28 Polar Codes and Reed Muller Codes for Short Block Lengths

1 1.5 2 2.5 3 3.5 4 4.5 5
E

b
/N

0
 (dB)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

W
or

d
E

rr
or

 R
at

e
(128, 64) RM L=1
(128,64) PC L=1
(128,64) RM L=32
(128,64) PC L=32

Figure 3.9: WER comparison of (128,64) polar and RM codes under
and SC and SCL decoding.

1 1.5 2 2.5 3 3.5 4 4.5 5
E

b
/N

0
 (dB)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

B
it

E
rr

or
 R

at
e

(128, 64) RM L=1
(128,64) PC L=1
(128,64) RM L=32
(128,64) PC L=32

Figure 3.10: BER comparison of (128,64) polar and RM codes under
and SC and SCL decoding.

“Exjobbreport” — 2017/10/31 — 21:44 — page 29 — #43

Polar Codes and Reed Muller Codes for Short Block Lengths 29

3.6 Chapter Summary

The polar code design is not uniquely defined, and a small change in selected frozen
bits, for example as a result of a changed design-SNR, can have significant impacts
on the code performance. A polar code designed with Bhattacharyya parameters
for one channel might not be the best code for that channel, but can work better
for a different channel.

Polar codes perform better than RM codes using SC decoding, but the RM
code gains more from the use of list decoding, and perform better than polar codes
for long list sizes.

“Exjobbreport” — 2017/10/31 — 21:44 — page 30 — #44

30 Polar Codes and Reed Muller Codes for Short Block Lengths

“Exjobbreport” — 2017/10/31 — 21:44 — page 31 — #45

Chapter 4
Polar and Reed Muller Codes with List

Decoding and CRC

Previous research has shown that short polar codes with list decoding and CRC
can perform better than both turbo codes and LDPC codes of the same length and
rate. This chapter re-investigates the polar code performance with list decoding
and CRC and different sets of frozen bits, and compare them to Reed-Muller codes
with the same combination.

We look at how an added CRC changes the performances of first the polar
codes, and later the RM codes. The resulting codes are compared, and so are the
performances of polar codes with some different CRC sizes.

4.1 Adding CRC

From research suggesting the use of CRC with list decoding for polar codes, it
is not clear what type of errors that the CRC was added to correct. Do polar
codes have problems with long burst errors or spread out short errors? CRC codes
are built and optimized for burst errors, but it is not a certainty that a CRC
polynomial that finds the longest burst errors is the best to use for polar codes.

Some selected CRC generator polynomials for this project are listed in Table
4.1. All generator polynomials were found from [17] and [18], where good and
commonly used CRC polynomials are listed. Two different CRC polynomials are
compared for CRC-4 and CRC-8, to see the effect of the polynomial selection for
polar codes.

4.2 Polar Code with List Decoding and CRC-7

Polar codes with list decoding and CRC have shown superior performance for some
short block lengths and channels. The (128,71) polar code with list decoding and
CRC performed well in [7], so we use the same parameters to investigate the polar
code presented in this thesis. The result from the (128,71) polar code designed
with design-SNR 5 dB, frozen bits found with the Bhattacharyya parameter, and
CRC-7 from Table 4.1, is shown in Figures 4.1 and 4.2, compared with polar code
results from the previous chapter. Observed is that the added CRC improves the

31

“Exjobbreport” — 2017/10/31 — 21:44 — page 32 — #46

32 Polar and Reed Muller Codes with List Decoding and CRC

Name Type CRC GeneratorPolynomial

p1 PP CRC-1 x+ 1
p2 PP CRC-2 x2 + x+ 1
p4a PP CRC-4 x4 + x+ 1
p4b - CRC-4 x4 + x3 + x2 + x+ 1
p5 PP CRC-5 x5 + x2 + 1
p7 PP CRC-7 x7 + x6 + x3 + x+ 1
p8a PP CRC-8 x8 + x4 + x3 + x2 + 1
p8b - CRC-8 x8 + x7 + x6 + x4 + x2 + 1

Table 4.1: List of generator polynomials used for CRCs in this
project. Type PP stand for primitive polynomials. Two com-
monly used not primitive CRC polynomials for CRC-4 nd CRC-8
are used for comparison. The polynomial names will be used to
reference to polynomials further in the text.

performance and make the polar code a stronger code, working better for high
SNRs.

The combined polar code in [7] used a different way of calculating channel
estimates, resulting in slightly changed selections of frozen bits. The used CRC-7
polynomial in that paper was also another. The resulting combined polar codes
in [7] showed a somewhat better performance than the (128, 71) polar code in
Figures 4.1 and 4.2.

4.3 Reed-Muller Code with List Decoding and CRC

The otherwise uniquely specified RM codes are modified to be combined with the
CRC without changing the code rate. The selection of frozen bits for Reed-Muller
codes with added CRC is not uniquely specified for these rates. This happens
when many rows in the generator matrix have the same Hamming weight, but
only a few of them are selected to send data. In the case of finding a (128, 71)
RM code, there are 36 rows in the generator matrix with Hamming weight 8, but
only 7 of them are needed to send data.

It is known from polar code results in the previous chapter that a small change
of frozen bits can change the code performance. To see how much some different
frozen bit selections affect the performance, two (128,71) RM codes with CRC-7
were compared under L-32 list decoding. One code selected the seven first rows
to send data on, from the range of rows with the same Hamming weight in the
generator matrix. The other code instead chose the seven last rows with the
same Hamming weight. From Figure 2.6 and Figure 2.7, showing the distribution
of calculated Z-values over all channels, it can be seen how earlier channels are
more likely to be unreliable, and late channels are more likely to be reliable. It is
therefore presumed that the RM code with an early selection of frozen bits could
perform better than the RM code with later frozen bits.

“Exjobbreport” — 2017/10/31 — 21:44 — page 33 — #47

Polar and Reed Muller Codes with List Decoding and CRC 33

1 1.5 2 2.5 3 3.5 4 4.5 5
E

b
/N

0
 (dB)

10-6

10-5

10-4

10-3

10-2

10-1

100

F
ra

m
e

E
rr

or
 R

at
e

(128, 64) PC
(128, 64) PC L32 CRC-7
(128, 64) PC L32

Figure 4.1: Word error rates of polar codes with list decoding and
CRC, compared with the performance of polar codes under SC
decoding and list decoding. N = 128, L = 32 and CRC-7.

1 1.5 2 2.5 3 3.5 4 4.5 5
E

b
/N

0
 (dB)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

B
it

E
rr

or
 R

at
e

(128, 64) PC
(128, 64) PC L32 CRC-7
(128, 64) PC L32

Figure 4.2: Bit error rates of polar codes with list decoding and
CRC, compared with the performance of polar codes under SC
decoding and list decoding. N = 128, L = 32 and CRC-7.

“Exjobbreport” — 2017/10/31 — 21:44 — page 34 — #48

34 Polar and Reed Muller Codes with List Decoding and CRC

1 1.5 2 2.5 3 3.5 4 4.5 5
E

b
/N

0
 (dB)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
W

or
d

E
rr

or
 R

at
e

(128, 71) RM L=32 CRC-7 last bits frozen
(128, 71) RM L=32 CRC-7 first bits frozen
(128, 64) RM L=32
(128, 64) RM

Figure 4.3: Word error rates of RM codes with list decoding and
CRC, compared with the performance of RM codes under SC
decoding and list decoding. Two RM codes with different sets
of frozen bits are compared.

1 1.5 2 2.5 3 3.5 4 4.5 5
E

b
/N

0
 (dB)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

B
it

E
rr

or
 R

at
e

(128, 71) RM L=32 CRC-7 last bits frozen
(128, 71) RM L=32 CRC-7 first bits frozen
(128, 64) RM L=32
(128, 64) RM

Figure 4.4: Bit Error Rates of RM codes with list decoding and
CRC, compared with the performance of RM codes under SC
decoding and list decoding. Two RM codes with different sets
of frozen bits are compared.

“Exjobbreport” — 2017/10/31 — 21:44 — page 35 — #49

Polar and Reed Muller Codes with List Decoding and CRC 35

The result comparing the two RM codes under list decoding with CRC is
shown in Figure 4.3 for word error rates and Figure 4.4 for bit error rates. The
figures also include the performance of the (128,64) RM code with and without
list decoding.

It is easy to see that the frozen bit selection changes the code performance
dramatically. As per predicted did the RM code with data sent on later channels
perform better than RM code sending data on earlier channels. The better RM
code improved the code performance with CRC from that with only list decoding,
but the bad RM code instead worsened the performance. The second (128, 71) RM
code got higher frame error rates than the (128, 64) RM code under SC decoding.
The frozen bit selection again shows to be of great importance for these codes.

4.4 Compared Results of RM and Polar Codes with CRC

The better performing RM code and the polar code with list decoding and CRC
are compared in Figure 4.5. From the figure, we can observe that the RM code still
outperforms the polar code after adding CRC under long list decoding. However,
as previously mentioned, this polar code shows a worse performance than the polar
code with the same parameters in previous research [7]. That combined polar code
performed better than the RM code in Figure 4.5.

It is not only the selection of frozen bits for the polar code that can change. The
set of frozen bits for the RM code is chosen arbitrarily from the channel position,
and could also be improved. We can therefore not conclude from results in Figure
4.5 which of a polar code or an RM code would work better if optimized under
these circumstances. We can, however, conclude that these results are exciting
and that further research is necessary.

4.5 CRC Lengths, Polar Code

So far, all test performed with list decoding and CRC are simulated for (128, 71)
codes with list size 32. Here, that combination is compared with other polar codes
of different list sizes and CRC combinations. Results are shown in Figures 4.6 and
4.7. We can observe that the (128,71) polar code performs well compared to some
other CRC-list combinations.

We observe that the shortest list size resulted in the worst performance. A
correct codeword has a higher chance of making it to the final list in the decoder
if the list is long. The added CRC can only help the decoder to choose the correct
codeword if it is in the final list.

The longer lists perform better with CRC-7 than with both CRC-4 and CRC-
8. The CRC-4 check seems to be too short to find the correct codeword, and the
CRC-8 could be too long. Different CRC sizes changes the polar code rate. The
more bits allocated for the CRC, the worse does the actual polar code perform,
since data is sent on more channels, and the polar code needs to select previously
frozen channels to transmit data on. A long CRC can decrease the polar code
performance more than it improves the combined code.

“Exjobbreport” — 2017/10/31 — 21:44 — page 36 — #50

36 Polar and Reed Muller Codes with List Decoding and CRC

1 1.5 2 2.5 3 3.5 4 4.5 5
E

b
/N

0
 (dB)

10-6

10-5

10-4

10-3

10-2

10-1

100

W
or

d
E

rr
or

 R
at

e

(128, 71) RM L=32 CRC-7
(128, 64) PC L32 CRC-7

Figure 4.5: WER Performance comparison of (128, 71) polar code
and Reed Muller code with CRC-7 and list decoding.

1 1.5 2 2.5 3 3.5 4 4.5 5
E

b
/N

0
 (dB)

10-6

10-5

10-4

10-3

10-2

10-1

100

W
or

d
E

rr
or

 R
at

e

(128, 71) L32 CRC-7
(128, 68) L8 CRC-4, p4a
(128, 68) L32 CRC-4, p4a
(128, 72) L32 CRC-8, p8a

Figure 4.6: WER N = 128 polar codes with different list size and
CRC combinations.

“Exjobbreport” — 2017/10/31 — 21:44 — page 37 — #51

Polar and Reed Muller Codes with List Decoding and CRC 37

1 1.5 2 2.5 3 3.5 4 4.5 5
E

b
/N

0
 (dB)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

B
it

E
rr

or
 R

at
e

(128, 71) L32 CRC-7
(128, 68) L8 CRC-4, p4a
(128, 68) L32 CRC-4, p4a
(128, 72) L32 CRC-8, p8a

Figure 4.7: BER N = 128 polar codes with different list size and
CRC combinations.

4.6 Chapter Summary

We have looked at the performance gain of polar codes and RM codes, when
in combination with list decoding and CRC. Both polar and RM codes can be
improved with the add of a CRC to the end of the code, compared to using list
decoding only. The CRC must be of a good length to enhance the code to a
maximum. It should not be too long nor too short. The selected frozen bits for
the changed rate RM code also has to be optimized.

The combined (128, 71) RM code performs better than the polar code of the
same size. This does not have to mean that every RM code of this size perform
better than polar codes, but it is an interesting observation for these codes and
list lengths.

“Exjobbreport” — 2017/10/31 — 21:44 — page 38 — #52

38 Polar and Reed Muller Codes with List Decoding and CRC

“Exjobbreport” — 2017/10/31 — 21:44 — page 39 — #53

Chapter 5
List Decoding and CRC, Separated CRC

and Changed CRC Positioning

Cyclic redundancy check codes are usually implemented with the check sequence
added to the end of the data. A longer CRC polynomial adds a longer check data
sequence to the code and can detect longer burst errors in the message (provided
that a suitable polynomial is used). This gives an outcome that is typically pre-
ferred when CRC is used and maximizes the performance gain of every added bit
to the message. Previous researchers interested in how to select good CRC poly-
nomials have tried to optimize CRC such that they can detect the longest possible
burst errors.

Adding CRC to the end of the message in polar codes improved the code
performance under list decoding. The CRC is added to aid the decoder in the
step where a codeword is decided from a list. It was found in [5] to improve
the polar code performance dramatically for some CRCs. However, the correct
codeword was not always selected at the end of the decoder even after this aid was
added. We found that this in most cases was not because the CRC had approved
incorrect messages, but since the correct codeword had not made it to the final list
of possible codewords in the last decoder step. A more extended list could solve
this problem, but would also increase the unwanted decoding complexity.

Instead of adding a longer list, we investigated if it is possible to gain the
same improved performance by changing the CRC structure. Since we are not
sure what type of errors it is that normally occur for polar codes, we do not know
if the CRC is aiding the decoder in finding long burst errors or short spread out
errors. Therefore, we do not know if the longer CRC, in the end, is the best option,
or for example, a few short spread out over the decoder. An earlier elimination
of incorrect paths in the decoder could maximize the gain from a shorter list size
with polar codes since it would minimize the risk that the correct codeword gets
incorrectly discarded in an early decoding step.

In this chapter, we try to find out if there is a simple way to improve the CRC,
either by dividing a longer CRC into shorter spread out, to discard incorrect paths
earlier, or by moving the whole CRC to an earlier position in the code. We also
compare the use of different CRC generator polynomials, to see how much the
polynomial selection could influence the combined code performance.

39

“Exjobbreport” — 2017/10/31 — 21:44 — page 40 — #54

40 List Decoding and CRC, Separated CRC and Changed CRC Positioning

1 1.5 2 2.5 3 3.5 4 4.5 5
E

b
/N

0
 (dB)

10-6

10-5

10-4

10-3

10-2

10-1

100
W

or
d

E
rr

or
 R

at
e

(128, 72) PC L=32 2xCRC-4, p4a
(128, 72) PC L=32 2xCRC-4, p4b
(128, 72) PC L=32 1xCRC-8, p8a
(128, 72) PC L=32 1xCRC-8, p8b

Figure 5.1: WER of polar codes with different CRC polynomial
selections.

5.1 (128,72) Polar Code Performances Depending on the CRC
Polynomial

The first test compares different CRC polynomials for a (128,72) polar code un-
der list decoding. It is interesting to see if the selection of generator polynomial
affects the final result significantly. Compared are the two CRC-4 and two CRC-8
polynomials. The CRC-4 polynomials are divided, as will be described in detail
in the next section. In short, two CRC-4s with the same generator polynomial
are added to the message in different locations before polar encoding. Simulation
results are presented in Figures 5.1 and 5.2.

We observe that the polar code performance changes for both CRC lengths
depending on generator polynomials. Most significant is the difference between
the two CRC-4 polynomials.

“Exjobbreport” — 2017/10/31 — 21:44 — page 41 — #55

List Decoding and CRC, Separated CRC and Changed CRC Positioning 41

1 1.5 2 2.5 3 3.5 4 4.5 5
E

b
/N

0
 (dB)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

B
it

E
rr

or
 R

at
e

(128, 72) PC L=32 2xCRC-4, p4a
(128, 72) PC L=32 2xCRC-4, p4b
(128, 72) PC L=32 1xCRC-8, p8a
(128, 72) PC L=32 1xCRC-8, p8b

Figure 5.2: BER of polar codes with different CRC polynomial se-
lections.

5.2 (128,72) L32 Polar Code Performances for Changed CRCs

When adding a CRC to the polar code, the resulting code rate is preserved, but
the polar code rate increases. As described earlier, more channels are used to send
data on, and all newly selected channels have lower computed reliability than the
channels used for the lower rate polar code. When adding CRCs, we hence have
to balance between the gain of the CRC and worsen polar code performance. We
want to find ways to optimize the use of CRCs.

To see how a changed CRC structures influence the performance, we fix the
polar code rate and list size and test for some CRCs of different compositions. In
Figure 5.3 and Figure 5.4, this is done for the (128,72) polar code with list size
L = 32.

The 8 bits dedicated to CRC are used in a few different ways. Comparisons
are made between the single classic CRC-8 at the end of the message, and shorter
CRCs spread out over the message. We check if a single CRC placed earlier in the
decoder can improve the code, compared to a single check at the end.

The performance of dividing the eight bits into two CRC-4s is already shown
in Figure 5.1 and Figure 5.2. Here, this change is further compared. We check
how the code performance changes when the bits are divided into four CRC-2s
and eight CRC-1s, and call this separated CRCs.

Separated CRCs are added independently to different parts of the message.
To for example use four CRC-2s, the original 64-bit message is divided into four
equal 16-bit parts. Each piece gets a CRC-2 check value calculated and added to
the end of it, and all four new 18 bit parts are then concatenated before they are

“Exjobbreport” — 2017/10/31 — 21:44 — page 42 — #56

42 List Decoding and CRC, Separated CRC and Changed CRC Positioning

1 1.5 2 2.5 3 3.5 4 4.5 5
E

b
/N

0
 (dB)

10-6

10-5

10-4

10-3

10-2

10-1

100
W

or
d

E
rr

or
 R

at
e

(128, 72) PC L=32 4xCRC-2
(128, 72) PC L=32 1xCRC-8, p8b
(128, 72) PC L=32 1xCRC-8, p8a
(128, 72) PC L=32 8xCRC-1
(128, 72) PC L=32 1xCRC-8, p8b mid
(128, 72) PC L=32 2xCRC-4, p4a
(128, 72) PC L=32 2xCRC-4, p4b

Figure 5.3: WER of (128, 74) polar codes with different CRC con-
structions.

encoded in the polar code. The decoder first decodes the first 18 information bits,
then removes incorrect paths from the list with help of the first CRC check, before
continuing the decoding process for the next set of bits, and so on.

Results for the (128,72) polar codes with L-32 list decoding are shown in Figure
5.3 and Figure 5.4 for frame error and bit error rates. In both figures, we see that
a separated CRC into two CRC-4 improves the polar code performance for low
SNRs. Shorter CRCs, however, does not help with the polar code decision. The
worst performance is found for the eight separated CRC-8.

Another test shown in the same figures is the performance of polar code with
one CRC-8 positioned halfway through the message. The hypothesis was that
removing all incorrect paths earlier in the decoder, when the correct path was
more likely to be in the list of possible codewords, would keep the correct path
in the list until the end. Since many other paths were removed early, the correct
path could possibly influence the rest of the decoding process so that the decoder
decided the correct word in the end without help from a CRC check. Repositioning
the CRC turned out to not work in favor of this polar code, as seen in Figures 5.3
and 5.4.

“Exjobbreport” — 2017/10/31 — 21:44 — page 43 — #57

List Decoding and CRC, Separated CRC and Changed CRC Positioning 43

1 1.5 2 2.5 3 3.5 4 4.5 5
E

b
/N

0
 (dB)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

B
it

E
rr

or
 R

at
e

(128, 72) PC L=32 4xCRC-2
(128, 72) PC L=32 1xCRC-8, p8b
(128, 72) PC L=32 1xCRC-8, p8a
(128, 72) PC L=32 8xCRC-1
(128, 72) PC L=32 1xCRC-8, p8b mid
(128, 72) PC L=32 2xCRC-4, p4a
(128, 72) PC L=32 2xCRC-4, p4b

Figure 5.4: BER of (128, 74) polar codes with different CRC con-
structions.

5.3 (128,72) L8 Polar Code Performances for Changed CRCs

Similar comparisons as in the previous section were performed for the polar codes
with list size 8 SCL decoding and different CRCs. The results are shown in Figures
5.5 and 5.6. One CRC-8 is compared with two CRC-4, finding that dividing the
CRC improves performance. Both (128, 72) codes were also compared with one
(128, 68) code with a single CRC-4 positioned at the end. The CRC-4 work better
for low SNRs than the single CRC-8, but not as well as the divided CRC.

“Exjobbreport” — 2017/10/31 — 21:44 — page 44 — #58

44 List Decoding and CRC, Separated CRC and Changed CRC Positioning

1 1.5 2 2.5 3 3.5 4 4.5 5
E

b
/N

0
 (dB)

10-6

10-5

10-4

10-3

10-2

10-1

100

W
or

d
E

rr
or

 R
at

e

(128, 72) L=8 1xCRC-8, p8b
(128, 72) L=8 2xCRC-4, p4a
(128, 68) L=8 1xCRC-4, p4a

Figure 5.5: (128,64) PC with L = 8 and split CRC compared to
shorter CRC, WER.

1 1.5 2 2.5 3 3.5 4 4.5 5
E

b
/N

0
 (dB)

10-6

10-5

10-4

10-3

10-2

10-1

B
it

E
rr

or
 R

at
e

(128, 72) L=8 1xCRC-8, p8b
(128, 72) L=8 2xCRC-4, p4a
(128, 68) L=8 1xCRC-4, p4a

Figure 5.6: (128,64) PC with L = 8 and split CRC compared to
shorter CRC, BER

“Exjobbreport” — 2017/10/31 — 21:44 — page 45 — #59

List Decoding and CRC, Separated CRC and Changed CRC Positioning 45

1 1.5 2 2.5 3 3.5 4 4.5 5
E

b
/N

0
 (dB)

10-6

10-5

10-4

10-3

10-2

10-1

100

W
or

d
E

rr
or

 R
at

e

(128, 72) PC L16 2xCRC-4, p4b

(128, 72) PC L16 4xCRC-2, p2

(128, 72) PC L32 1xCRC-8, p8b

Figure 5.7: WER of (128,72) PC with L16 and split CRC to com-
pensate for a longer list.

5.4 (128, 72) Polar Code, Divided CRC Used to Lower Com-
plexity

Observed in previous results is that a split CRC can improve performance com-
pared with the same total length CRC positioned at the end of the message. It
is interesting to investigate if these results lead to that we can find the perfor-
mance of some polar codes with longer list sizes, in other polar codes with shorter
list sizes, by dividing the CRC polynomial. A shorter list means lower decoder
complexity but has until now also resulted in worse code performance.

To see if this is possible for some polar codes, the (128, 72) polar code is further
investigated with different list sizes. Results are shown in Figures 5.7 and 5.8. One
CRC-8 at the end of the code with list size 32 is compared with split CRCs at the
end of the polar code with list size 16. Results show that a good choice of split
CRC can improve the code performance to compensate for a longer list size.

“Exjobbreport” — 2017/10/31 — 21:44 — page 46 — #60

46 List Decoding and CRC, Separated CRC and Changed CRC Positioning

1 1.5 2 2.5 3 3.5 4 4.5 5
E

b
/N

0
 (dB)

10-7

10-6

10-5

10-4

10-3

10-2

10-1
B

it
E

rr
or

 R
at

e

(128, 72) PC L16 2xCRC-4, p4b
(128, 72) PC L16 4xCRC-2, p2
(128, 72) PC L32 1xCRC-8, p8b

Figure 5.8: BER of (128,72) PC with L16 and split CRC to com-
pensate for a longer list.

5.5 Chapter Summary

In this chapter, we observe that several shorter CRCs split over the original mes-
sage can work better than a single longer CRC at the end of the decoder. These
findings can in some cases be used to lower the complexity of a polar code with
list decoding and CRC, since a divided CRC seem to be able to compensate for a
shorter list size. A too short CRC, however, does not work well with polar codes.
The choice of CRC-polynomial is also critical in finding the best polar code.

More tests must be run for several combinations to be able to make general
conclusions about the polar code combination with list decoding and CRC.

“Exjobbreport” — 2017/10/31 — 21:44 — page 47 — #61

Chapter 6
Conclusions and Future Work

Polar codes are relatively new, and there are still many open questions about how
the code should be constructed to optimize performance for different channels and
short code lengths. Some beneficial changes to short polar codes were recently
suggested, including combining polar codes with list decoding and CRC.

This thesis tried to understand how modifications of the three parameters
CRC, list decoding, and frozen bits, change the code performance of short 128-bit
polar codes. We contribute with a comparison between short polar and RM codes
with list decoding and CRC and investigations with modified CRCs.

6.1 The Dependence of a Good Frozen Bit Selection

The project started with a study of the frozen bit decision in polar codes. Early
findings showed that small changes in frozen bits resulted in substantial changes
of polar code performances. Interesting results from polar codes with different
design-SNRs revealed that a polar code designed for one SNR sometimes did not
perform well for channels with that SNR, but that the same code could be the best
performing for a channel with some other SNR. The better design-SNR seem to be
slightly shifted from the channel-SNR. A possible explanation for this could be that
the design uses the Bhattacharyya parameter. The parameter is an upper bound
of the probability that an error occurs, which means that the real probabilities
could be lower than we approximate them for some channels.

We conclude from this result that it is not trivial to construct the best polar
code for short channels and that testing some variations is necessary when trying
to find the best short polar code.

The frozen bit selection was further investigated by comparing polar codes with
Reed-Muller codes, both under SC and SCL decoding. We observed that polar
codes were better performing under SC decoding. However, RM codes showed
significant improvements under SCL decoding, where polar codes only showed
slight improvements. Only a relatively short list size was needed for RM codes to
perform better than polar codes under list decoding. RM codes are stronger with
larger minimum distance due to how they are constructed. The results showed the
benefits of selecting a stronger code together with a good decoder.

47

“Exjobbreport” — 2017/10/31 — 21:44 — page 48 — #62

48 Conclusions and Future Work

6.2 The Adding of CRCs to Polar and RM Codes

Interesting observations were made when using the combination of CRC and list
decoding on polar and RM codes. Polar codes improved with the combination
compared to those without CRC, which is consistent with what was found in
previous research. The RM code also improved, provided that the extended frozen
bit selection was done with care. Interesting was that the RM code performed
better than the polar code after these modifications. This could however not be
used to make general assumptions about the codes, since it seem that both the
modified RM and polar code compared could be improved. A shorter list size
could also possibly result in a better polar than RM code. From comparison
with previous research, we see that the way of selecting frozen bits in [7] should
be preferred over the use of Bhattacharyya parameters, and is recommended for
further research.

From comparing the two RM codes with different frozen bit selections in Figure
4.3, it was observed how much some changes in the frozen bit selection can change
the performance. The reason that a Red-Muller code with the combination could
perform worse than the original RM code, is that the performance gain from
using a CRC did not compensate for the loss from changing the code rate and
transmitting on unreliable channels, and hence we get a worse performing code.

We conclude that both RM and polar codes can work well with list decoding
and CRC, that we cannot say that one of the two codes is better under all circum-
stances, and again that the selection of frozen bits is critical when constructing
short polar codes.

6.3 Modified CRCs with Polar Codes

The add of CRCs to polar codes was further looked into for modified CRCs. We
investigated varying CRC polynomials, the CRC placement in the decoder and
long CRCs split into smaller CRCs spread out over the code. All performance
tests were run for N = 128 polar codes with the combined code rate of 0.5 and
changing list sizes in the SCL decoder.

We found that a split CRC sometimes improved the polar code combination
compared to a single longer CRC at the end of the decoder. In some cases, divided
CRCs could be used to improve the code complexity, since the split code worked
as well for a shorter list size as the original CRC did for a more extended list
decoder.

Other observations from adding CRCs to polar codes with list decoding, was
that the CRC could be both too short and too long. Shorter CRCs did not find
enough errors to help the decoder, and too long CRCs changed the polar code rate
too much, so that more information got sent on unreliable channels. Moving the
CRC to the middle of the decoder also showed to be a bad idea. Errors occurred
again after the CRC removed wrong paths halfway through the decoder, those
errors were not corrected, and the decoder continued to choose incorrect paths as
most likely paths in the last decoder step.

“Exjobbreport” — 2017/10/31 — 21:44 — page 49 — #63

Conclusions and Future Work 49

6.4 The Three Parameters of Modified Polar Codes

Important to note when analyzing polar codes with list decoding and CRC, is that
the addition of both CRC and list decoding change the polar code, and this thesis
does not look at in detail how the three parameters affect each other.

The design-SNR used in this project was optimized for polar codes of rate 0.5,
but in the codes with CRCs, the combined code rate is 0.5, and the polar code
rate is therefore higher. The preferred design-SNR, in that case, could be another.
The design-SNR also optimizes the polar code under SC decoding. We have seen
when comparing with RM codes the the frozen bit set optimal for SC decoding
was not the best performing set under SCL decoding. The frozen bit selection
should, therefore, be investigated more in combination with list decoding and
CRC before any conclusions are drawn. Also, the selection of CRC polynomials
must be controlled since the choice changes performance.

6.5 Conclusions

We conclude that it is not trivial to find the best short polar code to use on any
channel. From observations, we know that many factors play a role in the search
for the perfect short polar code. The frozen bits play a significant role, and a small
change in the frozen bit selection result in considerable performance changes. The
Bhattacharyya parameter is not be the best way to select frozen bits for different
channels.

Both the construction and placement of CRCs play a part in finding an optimal
polar code for a channel. Generator polynomial and lengths of divided CRCs must
be optimized and tested before implementation, since all parameters influence the
code performance. The whole CRC should however not be moved to a earlier
decoder step.

In short, we conclude from the results in this thesis, that more elaborate tests
must be done to find the best polar code for every system. We have to be careful
when designing polar codes for short messages, such as in 5G, since all parameters
change the code performance and it is not self-evident how to find the best code
for any short code system.

We should also not exclude the RM code or a combined RM-polar from the
search of the best short codes.

6.6 Future Work

A lot can be done with polar codes to continue the research.
This project ran tests for some different selected polar codes with list decoding

and CRC, with the goal to understand how the parameters added to the excellent
performance of polar codes that were found in previous research. These tests were
not elaborate enough to draw any general conclusions from, or suggest design
parameters for the best polar codes for different channels. This thesis found that
every part of polar codes changes the performance, but not how they affect each
other’s performances.

“Exjobbreport” — 2017/10/31 — 21:44 — page 50 — #64

50 Conclusions and Future Work

Future work should therefore include investigations of whether and how the
add of CRC and list decoding change the preferred polar code design-SNR for
different list sizes in the decoders. The selection of frozen bits in polar codes
should also be updated to some other with better working channel estimates than
that with the Bhattacharyya parameter. The best CRC polynomials to use with
polar codes needs to be found, together with an analysis of if the same CRC
polynomials are preferred for all short polar codes. It is interesting to investigate
if unevenly split CRCs could improve the outcome further.

This thesis found exciting results for the N = 128 polar code, and they should
be complemented with similar simulations for some different length short polar
codes, to see if results are consistent between all short polar codes.

The exciting finding that RM codes sometimes work better than short polar
codes with CRC, in use of a long list size, leads to new questions. The param-
eter combination is that suggested for polar codes to make them applicable in
5G, and we here observe that RM codes can work as well or better under some
circumstances. From all Reed-Muller code results, we observe that the main im-
provements of the code are due to the use of a long list size. One can assume
that polar codes would outperform all RM codes if short enough list sizes are
used. Since low complexity is desirable in most cases, it is interesting to test if
this hypothesis validates.

The three parameters investigated in this thesis can be combined in many ways
for short polar codes. What combination that is the best depends on the system
it is constructed for, but more tests, aiming to find more general patterns, could
be performed. A frozen selection influenced by both RM and polar codes could
in some cases improve the combined code performance, according to [10] and [11],
and should be firmly investigated in combination with list decoding and CRC.

In short, there is a lot that should be investigated and many tests that should
be run for short polar codes before they get implemented, to optimize performance
when using the combination of polar codes with list decoding and CRC.

“Exjobbreport” — 2017/10/31 — 21:44 — page 51 — #65

References

[1] E. Arikan, Channel polarization: A Method for Constructing Capacity-
Achieving Codes for Symmetric Binary-Input Memoryless Channels, IEEE
Trans. Inform. Theory, vol. 55, no. 7, July 2009.

[2] E. Arikan, A Survey of Reed-Muller Codes from Polar Coding Perspective,
IEEE Inform. Theory Workshop on Information Theory, Jan 2010.

[3] E. Arikan, A Performance Comparison of Polar Codes and Reed-Muller
Codes, IEEE Communications Letters, vol. 12, no. 6, June 2008.

[4] E. Arikan, H. Kim, G. Markarian, Ü. Özgür, E. Poyraz, Performance of
short polar codes under ML decoding, Proceedings of the ICT-Mobile Summit
Conference, June 2009.

[5] I. Tal, A. Vardy, List Decoding of polar Codes, IEEE Transactions on Infor-
mation Theory, 61 (5), 2213 - 2226, 2015.

[6] I. Tal, A. Vardy, List Decoding of polar Codes, IEEE International Symposium
on Information Theory Proceedings, 2011.

[7] G. Liva, L. Gaudio, T. Ninacs, T. Jerkovits, Code Design for Short Blocks:
A Survey, arXiv preprint arXiv:1610.00873, Oct. 2016.

[8] H. Vangala, E. Viterbo, A Comparative Study of Polar Code Constructions
for the AWGN Channel, arXiv, Jan. 2015.

[9] M. Qin, J. Guo, A. Bhatia, A. Fàbregas, Polar Code Constructions Based on
LLR Evolution, IEEE Communications Letters, vol. 21, no. 6, June 2017.

[10] B. Li, H. Shen, D. Tse, A RM-Polar codes, arXiv, July 2014.

[11] M. Mondelli, S. H. Hassani, R. L. Urbanke, From Polar to Reed-Muller Codes:
A Technique to Improve the Finite-Length Performance, IEEE Transactions
on Communications, vol. 62, no. 9, Sept. 2014.

[12] I. Dumer, K. Shabunov, Soft Decision decoding of Reed-Muller codes: recur-
sive lists, IEEE Trans. Inform. Theory, vol. 52, pp. 1260 to 1266, 2006.

[13] P. Koopman, T. Chakravarty Cyclic Redundancy Code (CRC) Polynomial
Selection For Embedded Networks, Preprint: The International Conference
on Dependable Systems and Networks, DSN-2004.

51

“Exjobbreport” — 2017/10/31 — 21:44 — page 52 — #66

52 References

[14] C. E. Shannon, A Mathematical Theory of Communication, The Bell System
Technical Journal, vol. 27, pp. 379-423, 623-656, July, Oct. 1948.

[15] G. Lindell, Introduction to Digital Communications, Lund University, Elec-
trical and Information Technology, Aug. 2006.

[16] I. Tal, A. Vardy, How to Construct Polar Codes, IEEE Transactions on In-
formation Theory, vol. 59, no. 10, pp. 6562, 6582, Oct. 2013.

[17] P. Koopman, Best CRC Polynomials, Carnegie Mellon University
https://users.ece.cmu.edu/ koopman/crc/index.html.

[18] Mathworks Documentation, comm.CRCGenerator System object,
https://se.mathworks.com/help/comm/ref/comm.crcgenerator-class.html.

[19] H. D. Pfister, A Brief Introduction to polar Codes, Lecture Notes, April 2012.

[20] K. K. Nagar, K. Sharma, S. Tyagi, Implementation of REED MULLER
CODE in MATLAB, International Journal of Scientific and Engineering Re-
search, vol. 9, no. 9, Sept. 2013.

[21] I. Reed, A class of multiple-error-correcting codes and the decoding scheme,
IRE Trans. Inform. Theory, vol. 4, pp. 39-44, Sept. 1954.

[22] D. E. Muller, Application of Boolean Algebra to Switching Circuit Design and
to Error Detection, IRE Trans. Electronic Computers, col. EC-3, pp. 6-12,
Sept. 1954.

[23] R. Lucas, M. Bossert, A. Dammann, Improved soft-decision decoding of Reed-
Muller codes as generalized multiple concatinated codes, Proc. ITG Conf. on
Source and Channel Coding, Aachen, Germany, pp. 137-141, 1998.

[24] Polar Codes, polarcodes.com

List Decoding of Polar Codes

EMILIA JOHANSSON
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2017

EM
ILIA

 JO
H

A
N

SSO
N

List D
ecoding of Polar C

odes
LU

N
D

 2017

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2017-607

http://www.eit.lth.se

