
How efficient is Efficient NDP?

DIMITRIS KALOMOIRIS
TIAN XU
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2017

D
IM

ITR
IS K

A
LO

M
O

IR
IS &

 TIA
N

 X
U

H
ow

 effi
cient is Effi

cient N
D

P
?

LU
N

D
 2017

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2017-604

http://www.eit.lth.se



“NDP3” — 2017/10/10 — 21:11 — page 1 — #1

How efficient is Efficient NDP?

Dimitris Kalomoiris & Tian Xu
wir15dka@student.lu.se & wir15txu@student.lu.se

Department of Electrical and Information Technology
Lund University

Advisors:
Jens A Andersson (EIT LTH)

Stefan Höst (EIT LTH)

Examiner:
Maria Kihl (EIT LTH)

October 10, 2017



“NDP3” — 2017/10/10 — 21:11 — page 2 — #2

Printed in Sweden
E-huset, Lund, 2017



“NDP3” — 2017/10/10 — 21:11 — page i — #3

Abstract

In the following years we will experience a transition towards Internet Protocol
version 6 (IPv6). The reason is the depletion of IPv4 address space due to the
rapid increasing numbers of Internet of Things (IoT) devices connection. This
transition however poses a problem, since the majority of these devices mostly are
mobile and not connected to power source.

Neighbor Discovery Protocol (NDP) defined in RFC 4861 is used in IPv6
networks, to manage the address configuration as well as the network prefix and
maintain lists of all the neighbors connected to that network. However, this proto-
col does not work as good in wireless connected devices as in wired. The messages
exchange in the network disrupts the sleep mode of the nodes resulting in lower
battery time. Hence the energy efficiency of these devices is now something we
should consider. To solve this problem, the Efficient NDP draft was introduced as
one of the optimized methods.

This thesis takes the previous theses of analysis and simulations of IPv6 Neigh-
bor Discovery for wireless networks further, to explore the ND protocol in RFC
4861 (legacy NDP), and compare it to the Efficient NDP draft in terms of energy
efficiency for the devices mentioned above. Several dynamic network cases are
taken into analysis, and simulation scenarios for these cases are tested in OM-
NeT++. These simulation models follow the implementation process introduced
in the protocols with consideration of network scalability, and present the result
that the Efficient NDP has large improvement in saving multicast messages in ND
process.
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Popular Science Report

In the real world, people need addresses to identify their locations. Similar to this,
devices also need to have network labels which called IP addresses for identification
and locating when they connect to the Internet. Internet Protocol version 4 (IPv4)
is a protocol which introduces a 32-bits IP address format and popularly used in
today’s networks. However, the increased number of devices connecting to the
Internet has led to the depletion of available IPv4 addresses. IPv6 was introduced
with more address space to solve IPv4 address exhaustion problem. But on the
other hand, many existing protocols used in IPv4 have to be extended or redesigned
to fit IPv6 networks.

A network always contains many nodes (routers and hosts). A node recognizes
other nodes in its located network as its neighbors. Discovering neighbor locations,
gathering neighbor information and defining the communication methods between
neighbors are the contents in IPv6 Neighbor Discovery Protocol (NDP). The legacy
NDP was announced 10 years ago in RFC 4861. It relies on periodical multicast
Internet Control Message Protocol version 6 (ICMPv6) control messages to main-
tain relationship between neighbors. Which means that these control messages
are sent to all the members in a group. Although these messages are only relevant
to a specific member in this group at most of time, other members also have to
receive and process them.

As we known, receiving and processing messages require power consumption.
It is inefficient for nodes to handle these unnecessary messages frequently, espe-
cially for wireless devices. As wireless devices are always not connected to power
supplies, power saving becomes an important point for their battery life.

To solve the high power consumption problem in legacy NDP, a more efficient
protocol the Efficient NDP was announced. This protocol introduces a registration
mechanism for hosts with a router. In this mechanism, the router does not need
to send periodical control messages to the hosts for asking their updates, but give
a registration timer to each host. A host only has to wake up and send messages
to the router when the timer is reached, and can keep in sleep mode for a long
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time. This can significantly reduce the power consumption. On the other hand,
as the router functions as a registration point in the network, it has the knowledge
of each node address information, so it can help hosts for handling address related
issues with their neighbors.

From analysis, we have already known that the Efficient NDP provides a good
solution in power saving, comparing with the legacy NDP. But how efficient it can
achieve? To answer this question, an evaluation is required. As today’s networks
are always dynamic networks, nodes are able to enter, leave and change their
locations in networks at any time, it is worth for us to analyze the performance
of these two protocols in this environments. However, as implementing a real
dynamic network environment is too complex, simulation becomes an ideal method
for evaluation.

Two scenarios were taken into analysis and simulations in this thesis, one is
nodes entering and leaving a network scenario, and another is nodes losing con-
nection to a network case in movement scenario. As network scalability is an
important parameter for evaluation, simulation models were designed with differ-
ent network sizes. The obtained results indicate that in both of these scenarios,
the Efficient NDP can achieve very high messages saving percentages in large net-
works. On the other word, it provides a great power saving solution.

vi
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Chapter 1
Introduction

The Internet of Things (IoT) offers a platform to devices for communication and
information sharing within a smart environment, and it provides increasing of the
benefits for organizations and individuals [1]. With the rapid development of IoT,
there will be a continuous increasing of devices connected to the Internet in the
next few years.

As a solution of Internet Protocol version 4 (IPv4) address exhaustion problem,
IPv6 provides much more address space which can satisfy the Internet connection
requirement from billions of devices. In addition, IPv6 has the features of secu-
rity solution, Stateless Address Auto-configuration (SLACC), multicast and group
operation, resource allocation [2]. With these features, IPv6 is required in many
IoT networks and it will have more implementation in the near future for Internet
access.

The IPv6 Neighbor Discovery Protocol (NDP) was defined in RFC 4861 [3].
Information sharing and address registration in this legacy protocol is processed by
exchanging multicast control signals. However, unnecessary control messages cause
additional power consumption and make this protocol inefficient, especially in
wireless network environments. The Efficient NDP draft [4] introduces solutions of
reducing these multicast messages, and the optimizations provided by this protocol
are what we need to verify in this thesis work.

1.1 Background

The rapid growth of IoT and Machine to Machine (M2M) market nowadays brings
new requirements and complex implementation of network neighbor discovery.
RFC 4861 defines the node behavior in a network: locating neighboring routers, de-
termining address configuration and gathering neighbor information. These events
are performed by exchanging Internet Control Management Protocol version 6
(ICMPv6) messages over the link. Most of these ICMPv6 messages are periodical

1
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2 Introduction

and multicasted as defined in NDP.

The high mobility of IoT networks reveals the weakness of NDP in wireless
network environments. Although NDP performs well for those devices connected
to power supplies, it has power saving problem for wireless battery devices due to
periodical multicast messages exchanging within the network. The inefficiency of
legacy NDP in different types of wireless networks has been analyzed in many re-
searches, and the limitations of legacy NDP will be discussed in details in Chapter
2. The goal of the Efficient NDP draft is to provide solutions for power consump-
tion problem by reducing multicast traffic as much as possible.

1.2 Problem definition

Legacy NDP was introduced by RFC 4861 in 2007. At that time, networks were
simpler than they are today. Most of networking devices and clients were connected
to power supplies which provide unlimited power support. Five different types of
messages are used in this protocol to establish communication links between hosts
and routers, hosts and hosts. The usage of these messages will be explained in
Chapter 2.

Since more and more wireless powered devices have been used to replace wired
powered devices in today’s networks, the inefficiency of legacy NDP appears: Af-
ter a host has established connection with the router, configured its address and
obtained neighbor information, it would like to be kept in sleep mode if it does
not have necessary communication with other nodes. However, when it reaches
message receiving time or other nodes have activities within the network, this host
has to be awakened to receive and handle irrelevant messages, as they are in the
same multicast group. This costs unnecessary power consumption which has no
benefits for wireless device battery life.

In RFC 4919 [5], apart from power consumption being low, low bandwidth
and a small packet size is proposed. To achieve this, the IPv6 layers and headers
must be compressed whenever possible and the actual data size could be smaller
than the IPv6 packet size, IPv6 requires a minimum Maximum Transmission Unit
(MTU) of at least 1280 bytes, fragmentation and reassembly is required. SLACC
and routing protocols which support multi-hop mesh networks are necessary.

RFC 6775 [6] proposes the initiated interaction between nodes such as Neigh-
bor Solicitation or Router Advertisement information, allowing hosts to have more
time to sleep as the hosts are not required to receive periodic messages from the
routers over IPv6 Low-Power Wireless Personal Area Networks (6LoWPAN). Ev-
ery host periodically wakes up and updates its address registration.

As another solution of this problem, the Efficient NDP draft defines optimized
methods for all kinds of wireless networks. This protocol aims at removing the use
of multicast traffic for Duplicate Address Detection (DAD), and handling DAD
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in a better strategy which does not require hosts to always be awakened [4]. The
details about the methods used in this protocol will be introduced in Chapter 3.

1.3 Previous work

In the thesis "Analysis of IPv6 Neighbor Discovery for Mobile and Wireless Net-
works" [7] written by Hariharasudan Vigneswaran and Jeena Rachel John, the
theoretical analysis and comparison between legacy NDP and the Efficient NDP
was presented. Such scenarios as IPv6 ND behavior, scalability of the network,
transient behavior of the network, multicast messages exchange over the network
and sleep & wake up behavior of nodes were taken into analysis. They also in-
vestigated the implementation of the routers via Routing Advertising Daemon
(RADVD) under Unix environment.

In the thesis "Efficient IPv6 Neighbor Discovery in Wireless Environment" [8]
written by Dragos Neagoe and Antonios Pateas, a deeper study of legacy NDP
and the Efficient NDP nodes sleep & wake up scenario was presented. In their
thesis work, network models were designed and simulations were performed to
compare with the results from the theoretical analysis. They also implemented
router behavior by RADVD and host behavior in Linux Kernel.

As a continuation of the above thesis work, this thesis focuses on the Efficient
NDP performance in wireless dynamic network environments which was partly
discussed in [7], continues with the theoretical analysis and performs simulations
for several dynamic network scenarios, and evaluates the improvement provided
by the Efficient NDP in these scenarios.

1.4 Approach

The goal of this project is to identify how much efficiency can be achieved by the
Efficient NDP compare with legacy NDP in wireless dynamic network environ-
ments. In order to achieve this goal, network model design and simulations are
performed for the following objectives:

• The impact of the power consumption between legacy NDP and the Efficient
NDP in nodes entering and leaving a network

• The impact of the power consumption between legacy NDP and the Efficient
NDP in nodes movements within the network

For each case, network models for legacy NDP and the Efficient NDP are created.
The same parameters such as the number of hosts and routers in the network, the
default timers for registration or unreachability check are assigned in these two
protocols, in order to make a conformance standard for evaluation and comparison.
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4 Introduction

The open source software OMNeT++ is used as the simulation tool, the details
about its running environment and hardware requirements will be introduced in
Chapter 6.

1.5 Organization of thesis

The thesis work is organized with 9 chapters: Chapter 1 describes the background,
identifies the problem and methods. Chapter 2 and Chapter 3 separately introduce
the features defined in legacy NDP and the Efficient NDP. Chapter 4 provides the
theoretical analysis of the behavior in two specific dynamic wireless network cases.
Chapter 5 and Chapter 6 describe the network model design and the simulation
implementation, which are the main parts in this thesis work. Chapter 7 lists the
results obtained from the simulations, and these results are verified according to
the theoretical analysis. Chapter 8 states the performance and evaluation of the
efficiency provided by the Efficient NDP in wireless dynamic networks. Chapter 9
concludes what has been done in this thesis and gives suggestion for future work.

The topic of this thesis was announced by Department of Electrical and Infor-
mation technology (EIT), Lund University. In this thesis, Dimitris was responsi-
ble for protocol introduction and result evaluation, while Tian was responsible for
theoretical analysis and simulation design. The rest parts were done by both of
authors.
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Chapter 2
The Legacy Protocol RFC 4861 Overview

RFC 4861 introduces NDP for IPv6 networks. Neighbor Discovery is the procedure
for nodes (routers and hosts) to determine their link-layer addresses and gather the
information about their neighbors on the attached link. With Neighbor Discovery,
nodes are able to configure and update their data link and network addresses,
maintain routing table, obtain the path information to their active neighbors and
solve a set of problems caused by the interaction between nodes [3].

2.1 Messages

In NDP, five types of messages are used to establish and maintain the connection.
They are:

• Router Solicitation (RS)

• Router Advertisement (RA)

• Neighbor Solicitation (NS)

• Neighbor Advertisement (NA)

• Redirect message

Once a host joins a network, the first thing it does is attempting to find routers. In
NDP, locating routers is done by sending RS to the all-routers multicast address
over the links. The function of RS is asking for immediate RA, instead of waiting
for the next periodic one to arrive.

RA are the messages which are periodically multicasted by each router to
hosts. RA contain the information such as link-layer addresses, link prefixes,
MTU, whether use SLAAC in address configuration or not. RA have periodical
advertising timer as every 7 to 10 minutes by default [9], but they can also be
trigged by the received RS.

5
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6 The Legacy Protocol RFC 4861 Overview

NS are the messages which have the same function as ARP in IPv4. NS can
be used by any nodes at any time to request the link-layer addresses of their
neighbors. NS are also used to check if the link-layer address has already been
used and if the target neighbor is still reachable.

In response to NS, the other node(s) sends NA. NA can also be sent unsolicited
by a node when this node needs to announce the change of its link-layer address.

Redirect messages are used by routers to notify a host for a better first-hop to
its destination.

Table 2.1 summarizes the features of these messages in ND.

Message Communication Type Direction Function
RS multicast host to routers Request RA

RA multicast when reach timer
unicast when triggered by RS router to host(s) Provide information

NS unicast when verify reachability
multicast when resolve address node to node(s) Request NA

DAD, NUD

NA unicast when triggered by NS
multicast when is unsolicited node to node(s) Response NS

Announce change
Redirect unicast router to host Inform better path

Table 2.1: Summary of ND ICMPv6 Messages in RFC 4861

2.2 Addresses

2.2.1 Overview of IPv6 addressing

IPv4 address has 32 address bits, and it allows for approximately 4,200,000,000
possible addressable nodes. IPv6 increases the number of address bits from 32 to
128, and it provides approximately 3.4× 1038 reserved addresses for nodes [10].

The typical IPv6 addresses are written as eight sets of hexadecimal numbers,
with colons between each set of four hexadecimal digits, which represents 16 bits.
But the addresses can also be written as the format of shortened notation.

In IPv6, three main types of addresses are defined:

• Unicast address: Address of a single interface, packets to this address will
be sent to that interface.

• Multicast address: Address of multiple interfaces on different devices within
the same multicast group, packets to this address will be sent to all interfaces
in the multicast group.
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• Anycast address: Address of multiple interfaces on different devices, packets
to this address will be sent to the closet interface.

2.2.2 NDP addressing

As described in Chapter 2.1, the ND process is the process of unicast and multicast
messages exchange. Several types of addresses are used in NDP, they are:

• All-nodes multicast address: FF02::1. This is the link-local scope address
and packets aim at this address will be sent to all nodes in multicast group.

• All-routers multicast address: FF02::2. This is the link-local scope address
and packets aim at this address will be sent to all routers in multicast group.

• Solicited-node multicast address: FF02::1:FFXX:XXXX. This is a link-local
scope multicast address which is computed as a function described in [11].
The XX:XXXX is the far right 24 bits of the corresponding unicast or any-
cast address for the node.

• Link-local address: FE80::/10. This is a unicast address having link-only
scope that can be used to reach neighbors. It is also used for SLAAC and
router discovery.

• Unspecified address: 0:0:0:0:0:0:0:0. This is a reserved address which indi-
cates there is no certain address due to address missing or unknown. This
address can be used as source address if the sender does not know its address,
but never used as a destination address.

Table 2.2 summarizes the addresses used in ND.

Type Address Function
All-nodes multicast FF02::1 Address to all nodes
All-routers multicast FF02::2 Address to all routers

Solicited-node multicast FF02::1:FFXX:XXXX Address resolution
Link-local FE80::/10 ND, router discovery, SLACC
Unspecified 0:0:0:0:0:0:0:0 Indicate lack of an address

Table 2.2: Summary of ND Addresses

2.3 Router and Prefix Discovery

In NDP, the communication between hosts and routers is established via RS and
RA messages. Router Discovery is the process for hosts to discover and identify the
location of neighbor routers over a link, and to learn the configuration parameters
related to SLAAC which is described in RFC 4862. Prefix Discovery is the process
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for hosts to directly learn IP addresses over a link without asking routers for further
information.

Once a host enters in or re-connects with a network, it either receives the
periodic RA (this hardly happens) or sends RS to the all-routers multicast address
asking for RA in order to get knowledge of the local network and configure its
address. Routers that receive RS firstly check the validity of the message to decide
whether to process it or not. If a solicitation passes the validity check, the router
then sends a RA directly to the host for response.

Hosts that receive RA also check the validity of the message to decide if the
information included in RA is usable. If the RA is valid, the hosts then accept the
information. However, when the next RA comes, it might contain information for
a specific parameter or option which is different from the information before. In
this case, the hosts will update with the most recently received information.

Figures 2.1 illustrates the procedure of router discovery.

Figure 2.1: The process of RS, RA exchange
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There might exist multiple routers on a link, thus the new incoming host has
to make a default router selection. Usually, the host receives the first valid RA and
selects the source router of this RA as its default router. The criterion for selecting
a router also depends on the reachability of the router, this will be explained in
the next section. When the lifetime of the default router expires, the router will
be removed from the default router list, and then the host selects the next-hop
determination router for sending traffic.

2.4 Behavior between neighbors

While RS and RA are the messages used in the communication between hosts
and routers, NS and NA are used by all the nodes (both hosts and routers) to
request and response for neighbor information with the main functions as address
resolution, DAD and Neighbor Unreachability Detection (NUD).

Similar to RS and RA, NS and NA also have validity checks, messages that sat-
isfy the requirements can be recognized as valid and then the information included
in messages can be considered as usable.

2.4.1 Neighbor Cache Entry

Similar to ARP cache in IPv4, Neighbor Cache Entry (NCE) is used by nodes to
record the link-layer address information of their neighbors in IPv6. According to
the knowledge of neighbors, NCE has five states:

• INCOMPLETE: a NS has been sent to the solicited-node multicast address
of the target but has no response yet.

• REACHABLE: The forward path to the neighbor functions positive.

• STALE: The forward path to the neighbor was positive last time, but it has
been longer than the ReachableTime milliseconds since the last packet sent.

• DELAY: The forward path to the neighbor was positive last time and the
ReachableTime milliseconds has passed this time. Additional time is given
to upper-layer protocols in order to confirm the reachability.

• PROBE: No reachability confirmation has been received, the node starts to
retransmit NS until it receives reachability confirmation.

2.4.2 Address Resolution

After the initial entering procedure, a node should be able to know the IP address
of each neighbor that has been registered on the link. Apart from this, this node
may also need to know neighbor link-layer addresses (MAC addresses) which are
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the unique identification of each neighbor. To determine the link-layer address of
a neighbor by the given IP address, nodes must perform address resolution.

When a node has a unicast packet to a target neighbor, the first thing it does
is checking the existence of the target neighbor’s NCE to determine whether it has
known the link-layer address of this neighbor or not. If the entry is empty, the
node then creates a NCE, marks it with INCOMPLETE state and sends NS to
the solicited-node multicast address where the target neighbor address locates in.

All the nodes within the solicited-node multicast group will receive the NS,
they check whether the request from the NS is related to themselves or not. Only
the target neighbor responses with a NA, this NA will be sent as a unicast packet
directly to the source of the NS (the sender node). However, if the source address
has not been specified, the NA will be sent to the all-nodes multicast address.

Once the sender node receives the NA, the information about target neighbor’s
link-layer address will be recorded on sender’s NCE. The sender node changes NCE
state to REACHABLE.

Figure 2.2 illustrates the procedure of address resolution.

Figure 2.2: The procedure of address resolution



“NDP3” — 2017/10/10 — 21:11 — page 11 — #27

The Legacy Protocol RFC 4861 Overview 11

2.4.3 Duplicate Address Detection

In IPv6 networks, SLLAC is a mechanism used for address auto-configuration. It
requires no manual configuration of hosts, minimal configuration of routers, and
no additional servers [12].

Figure 2.3: The procedure of DAD

After a host joins a network, it obtains address information by RA from a
router. If SLLAC is allowed in this network, RA provides host the information
about network prefix instead of a certain address. The host has to pick an IP
address included in the given network prefix by itself. It is then that the problem
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happens, the process of a host configuring its IP address is according to its own
knowledge, but this address might have already been used by another host within
the same network. To solve this address conflict issue, DAD must be performed.

To check whether the IP address is available to use, the new host which just
configured an IP address sends NS to solicited-node multicast group for request.
Once the hosts in the group receive the NS, they will check whether the IP address
is being used by themselves. The receiver host which detects the conflict of the
address then responses with NA to inform the sender. Since the sender’s address
is duplicated of its own address, the receiver host sends the NA to the all-nodes
multicast group.

The sender receives the NA and notices this IP address is being used by some-
one, it then selects a new address and continues with the same process until it gets
an address not used by anyone. After this, it sends NA to other hosts for updating
their NCEs and starts with address resolution if it has packets to send.

Figure 2.3 illustrates the procedure of DAD.

2.4.4 Neighbor Unreachability Detection

Communication can fail due to hardware and interface issues. In this case, a node
needs to perform NUD check with its neighbors.

The process of checking the reachability is done by exchanging NS and NA. As
described in Chapter 2.4.1, nodes use NCE to state neighbor information: When
a node performs address resolution, it creates an entry in INCOMPLETE state;
When it confirms the reachability to its neighbor, NCE state changes to REACH-
ABLE; When ReachableTime milliseconds has passed since the last confirmation,
NCE state changes from REACHABLE to STALE; If an entry is in STALE and a
node has a packet to send, it will change the state from STALE to DELAY and set
a timer; If the timer expires and still has no confirmation, the state of NCE will
change to PROBE, then the node begins to retransmit NS to its neighbor period-
ically; After the retransmission timer expires, the node will consider the neighbor
is no longer available to reach and delete the NCE.

NUD is a mechanism that follows a series of steps performed by nodes. It pro-
vides a reliable reachability detection procedure. However, once a path fails, de-
pending on the usage of the neighbor, possible recovery will be performed: restart
address resolution, switch to another router, etc.

2.5 Limitations

As described earlier, one major problem caused by NDP RFC 4861 is high power
consumption. For these wired power supply connected devices, power support
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can be seen as unlimited. But for wireless devices, power support is from their
batteries, and more power consumption means shorter battery life.

For unicast traffic, only one sender and one receiver has to pay the power for
creating, forwarding and processing packets if these packets can be transmitted
directly. But for multicast traffic, multiple receivers are required to receive and
process the packets. This procedure in fact requires more power.

As explained in Chapter 2.4.2 and 2.4.3, nearly all the messages used in address
resolution and DAD are multicast traffic. Although these messages are only useful
for the sender and a specific receiver, all the members in the solicited-multicast
group have to receive and process these messages. This wastes a lot of unnecessary
energy in networks.

Apart from power consumption, the use of multicast traffic in NDP RFC 4861
causes many other problems. It is pointed out in IEEE 802.11 wireless networks
half-duplex media are shared, if a node has multicast traffic in transmission, other
nodes on the link must wait for the end of this transmission before they can start
to talk [13]. In [14], a problem that increased utilization of the radio interface and
increased processing loads in the nodes due to multicast traffic over IoT/M2M net-
works is stated. In cellular networks, unnecessary control signals cause additional
consumption of radio resource.
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Chapter 3
The Optimizations of the Efficient NDP

Legacy NDP as described in RFC 4861, although it is a start, is inefficient for
wireless connected devices majority of which are mobile. The reason is that this
protocol widely uses multicast signals in nodes interaction which forces devices to
wake up from their sleep cycle, and as a consequence of reducing their battery
lifetime. As an optimization of power consumption problem in legacy NDP, the
Efficient NDP extends some of the methods defined in RFC 6775 [6] to reduce
multicast messages in ND as much as possible, and faces to all kinds of networks.

3.1 Goals and improvements

The main goal defined in the Efficient NDP draft is reducing multicast traffic
within the network. Multicast messages used in DAD and address resolution
are replaced by unicast messages, and periodic multicast RA are removed in this
protocol. This is done by giving more centralized control to the default router
with more efficient address issue handling strategies.

However, the benefit of router’s centralized control is not only reducing the
multicast traffic. The default router always functions as a middle point between
hosts communication, this simplifies the process of a host knowing other neighbors
state and significantly saves the messages in NUD.

3.2 Definitions

The RA format for legacy NDP is introduced in [15] as Figure 3.1 shown. In the
Efficient NDP, to identify which mode the routers and hosts work in, a new flag
field ’E’ takes use of the first reserved field as Figure 3.2 shown.

15
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Figure 3.1: RA flag field in RFC 4861 [15]

Figure 3.2: RA flag field in the Efficient NDP [4]

There are three main work modes defined in the Efficient NDP, they are:

• Legacy mode: Nodes in this mode work the same as defined in RFC 4861.

• Efficient aware mode: The router in this mode performs as a NEAR (ND
Efficient Aware Router), the RA sent by a NEAR have the E flag value as
1 while in all the other cases it must be set as 0. The host in this mode
performs as a EAH (Efficient Aware Host).

• Mixed mode: A NEAR supports both legacy hosts and EAH, other routers
on the link can be either legacy or NEAR.

In this thesis, only the efficient aware mode will be introduced and analyzed.

3.3 Nodes initialization

Once a host enters a network, it initially works as a legacy host and multicasts
RS to the all-routers multicast address in order to find a default router. In the
Efficient NDP, the RS include Source Link-Layer Address (SLLA) option in order
for the routers to target the new incoming hosts as they have not configured IP
address so far. Routers which receive the RS reply with a unicast RA message to
share the network information to the new incoming host. Usually, a new incoming
host makes the selection of the default router according to where the first valid
RA comes from.

In the Efficient NDP, hosts become members of the all-nodes multicast group
but they do not join the solicited-node multicast group.
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As described before, there are no periodic multicast RA sent by routers in the
Efficient NDP, the update information provided by routers is always included in
NA. However, multicast RA are sometime used in order for newly arrived hosts
and routers to find each other.

3.4 Behavior between neighbors

The efficiency provided by the Efficient NDP mainly exists in neighbor message
exchange, this section introduces the optimizations in the process of address reg-
istration, DAD and NUD.

3.4.1 Address Registration Option

The Address Registration Option (ARO) was defined in RFC 6775 and the Ef-
ficient NDP extends it to handle different unique identifiers than EUI-64 and a
Transaction ID [4]. The new format of NS and NA messages in this protocol is
shown in Figure 3.3.

Figure 3.3: NS and NA format [4]

In the Efficient NDP, the default router has a table to record the host infor-
mation, such as their registered IP addresses and MAC addresses, and performs
as a responsible point to handle address related issues. Hosts have to update their
address information by sending a NS with an ARO option which includes Regis-
tration Lifetime, Unique Interface Identifier (UIID), Transaction Identifier (TID)
and SLLA to their default router. These Registration NS are usually sent by hosts
at their 2/3 Registration Lifetime to refresh the registration. The default router
updates the address information according to the recent received Registration NS
and replies with a NA as confirmation and then the Registration Lifetime is reset
by the hosts. The Registration Lifetime value is announced in the RA messages
with a maximum 9000 seconds.
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Unlike RFC 4861, hosts do not always need to wake up and protect their
addresses in the Efficient NDP (this will be explained in the next subsection).
Thus, they can stay in a long sleeping cycle after the registration if they do not
have any activities in the network. When a host has to communication with a
neighbor, it wakes up and communicates with the default router first to obtain the
most recent address information for the target neighbor.

3.4.2 Duplicate Address Detection

In the Efficient NDP, DAD is handled by the default router as it has the address
table which records all the addresses of nodes in its responsible network.

After a new incoming host finishes the router discovery process, it selects an
address in the given address range and sends a Registration NS to its default
router in order to use this address. If the selected address is available to use, the
default router sends a NA with DAD pass option as reply, and then the incoming
host finishes the address registration process. If the selected address is duplicated
with one of the being used address recorded in the router’s table, the default router
sends a NA with DAD fail option back, then the host has to select another address
and send a Registration NS to the default router again until it obtains the DAD
pass information.

Figure 3.4: DAD procedure in the Efficient NDP
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During this process, only the incoming host and the default router participate
in the DAD, none of other nodes has to wake up or send any messages. Only
unicast traffic is used. Figure 3.4 illustrates an example procedure of DAD.

3.4.3 Neighbor Unreachability Detection

A network connection can be unstable, especially in wireless networks. Similar
to the unreachability detection mechanism in legacy NDP, NUD is also used in
the Efficient NDP for nodes to maintain their NCE tables. However, as the de-
fault router in the Efficient NDP always functions as a middle point between host
communication, a more optimized NUD mechanism is introduced in this protocol.

In the Efficient NDP, more recovery time is given to the unreachable hosts.
As described before, a host (sender) which wants to communicate with a neighbor
has to send the packet to its default router and let the default router forward the
packet to the target neighbor. If the sender has lost connection to the network, this
packet is not able to reach the default router, then the sender has to perform NUD
with the default router. The NUD process is in fact the same as it in legacy NDP.
However, even if the final check indicates the default router is unreachable, instead
of deleting the NCE immediately as it is defined in legacy NDP, the router’s NCE
can be kept and marked with UNREACHABLE state by the host in the Efficient
NDP. Until the Registration Lifetime expires, then the NCE will be deleted.

This optimized mechanism can significantly reduce the number of messages
exchanged in the network, although the messages used in NUD are not multicast
messages. After the sender marks the default router’s NCE as UNREACHABLE,
if it has to communicate with a neighbor again, the sender has to send another
packet to its default router. As the default router’s NCE has already been in
UNREACHABLE state, no NUD has to be performed this time.
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Chapter 4
Theoretical Analysis

In thesis work [7], several different ND scenarios are analyzed for legacy NDP
and the Efficient NDP. In this chapter, the performance of these two protocols in
dynamic networks is taken into deeper analysis.

Wireless devices can enter and leave a network at any time, and their location
can change frequently due to the high mobility. To evaluate the efficiency achieved
by the Efficient NDP, the ND behavior and scalability in dynamic network envi-
ronments are necessary to be considered.

One thing needs to be mentioned. In the analyzed cases of nodes entering
and leaving a network and nodes movements within the network, we only focus
on node behavior in ND and ND related procedure. Node behavior mentioned in
routing protocols is not discussed in this chapter.

4.1 Nodes entering and leaving a network

4.1.1 Nodes entering a network

A node follows a series of steps to finish the process of entering a network, from
coming into a network until it becomes a full function member.

The legacy NDP

In the initial phase, the incoming node performs the router discovery to request
network information. As explained in Chapter 2, in legacy NDP, this process is
usually a two-way handshake. The node multicasts RS to the all-routers multicast
address asking for RA, all the routers within this address receive the request and
reply with a unicast RA.

The next step is the DAD check. After the node selected an IP address, it
has to multicast NS to the solicited-node multicast group to check if this ad-

21
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dress is available to use before configures with this address. If another node in the
solicited-node multicast group detects the duplication, it sends NA to the all-nodes
multicast group to inform the new node. In legacy NDP, this process continuous
until the new node finds an available address. The node finishes address configu-
ration and multicasts NA to announce its address to other nodes.

However, the amount of exchanged messages during DAD procedure has rela-
tionship with the number of nodes in this network and the subnet size. In fact, a
certain subnet size is defined when the network is established and hardly changes.
It means that with increasing number of nodes in this network, the available ad-
dresses become less, and the new incoming node has greater possibility to select
the address that is being used by someone else.

After address configuration, the node needs to become a member of a solicited-
node multicast group. This is done by following Multicast Listener Discovery
(MLD) protocol [16] or the updated version Multicast Listener Discovery version
2 (MLDv2) protocol [17], and there are two ways to achieve this.

In the MLD protocol, a multicast router sends periodical Multicast Listener
Query (MLQ) to listeners asking for which multicast group they wish to join.
Listeners reply with Multicast Listener Report (MLR) to tell the router their
ideal multicast group and send Multicast Listener Done (MLD) when they have
finished listening traffic to this multicast group. In the MLDv2 protocol, MLRv2
is used with the function of both MLR and MLD messages.

Another way is the node sending unsolicited MLR to router to specify which
multicast group it wishes to join.

In both of these two methods, MLR is unicast traffic which directly forwarded
to the default router.

The Efficient NDP

The procedure of router discovery and address configuration in the Efficient
NDP is the same as described in legacy NDP. The new incoming node sends
multicast RS for requesting RA and all the routers provide reply with a unicast
RA. According to the information contained in RA, the node configures its address.

The next step is address registration. As mentioned in Chapter 3, in the Effi-
cient NDP, instead of the new node multicasts NS to the solicited-node multicast
group to check whether its address is duplicated or not, DAD is performed with
the default NEAR. The new node sends unicast NS with ARO option directly to
its NEAR requesting for registration, the NEAR decides whether the request can
be approved or not and sends NA as feedback.

In the Efficient NDP, a node is a member of the all-nodes multicast group but
does not need to join the solicited-node multicast group. So far, the node has
finished the procedure of entering a network.
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4.1.2 Nodes leaving a network

Once a node leaves a network, it should be removed from default router’s list.

The legacy NDP

In legacy NDP, there are two mechanism defined in leaving a network.

One is called "soft leave (silent leave)". As explained before, multicast routers
send periodical queries to learn the multicast addresses of listeners. In this mecha-
nism, the node does not respond to these queries. When the source timer expires,
the node will be deleted from the Include List. However, in order to verify whether
the node is still remaining in the network or not, the default router sends a series
of messages for checking before it makes decision.

Another mechanism is "fast leave". The node that wants to leave the multicast
group sends a leave report to the router (MLD message in MLD protocol and
MLRv2 message in MLDv2 protocol). In this mechanism, only one message is
required in the leaving process if this message can be successfully received and
accepted by the router.

The Efficient NDP

In the Efficient NDP, the node that wants to leave the network should send
a de-registration message to its NEAR. De-registration message is a unicast NS
with an ARO and contains the information of Registration Lifetime set to zero. If
in some cases, the NEAR does not receive the de-registration message, the NCE
of that node will be kept until the Registration Lifetime expires.

4.2 Nodes movements within the network

In wireless networks, the location of the nodes might change at anytime. Usually,
the node which changes its location does not need to send any messages to inform
other nodes of this activity, but a location change might cause one or more of the
following issues:

• If a node moves to a place where the wireless network is unstable (the WiFi
signal strength is weak or signal interference is high), it might lose the
network connection.

• A node attempts to re-connect to the network which it lost connection to
or it previously visited.

• A node changes its location and joins another subnet.

The following diagrams describe the impact and procedure of nodes movements.
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Figure 4.1: The legacy NDP movement procedure
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Figure 4.2: The Efficient NDP movement procedure
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4.2.1 Losing connection

As described in Chapter 2, nodes use NCE to keep attention of neighbors reacha-
bility. A node itself never knows whether it loses network connection or not. The
only knowledge is the reachability to its neighbors according to the record in NCE.
When the node notices that it has problems to communicate with its neighbors,
it performs NUD.

The legacy NDP

In legacy NDP, if a node does not have any packets to send to its neighbors,
even after connection loss for a long time, the neighbors NCE is still kept in
REACHABLE state.

When this node has a packet to a target neighbor, it realizes the unreachability
and then performs NUD with that target neighbor. As described in Chapter 2, a
series of packets are sent during NUD process. When the node has a packet to
another target neighbor, the same process happens.

Assume in a network, nodes have to communicate with each other periodically.
The total amount of messages sent by a node which loses its connection should be
the number of nodes within the network multiplied by the number of packets for
each NUD process.

The Efficient NDP

In the Efficient NDP, the node which loses connection also performs NUD, but
the target is its NEAR. As described in Chapter 3, if a node has a packet to a
neighbor, it first sends this packet to its NEAR. Once the node realizes it does not
get any reply for the request, it begins to check the reachability to its NEAR and
determines the state of NCE.

If the NEAR fails the NUD check, the state is marked as UNREACHABLE.
After this, if this node has another packet to any neighbor, it attempts to commu-
nicate with its NEAR by sending the packet again. However, as the NEAR’s NCE
has already been in UNREACHABLE state, no NUD is performed this time.

After the Registration Lifetime expires, the NCE will then be deleted.

4.2.2 Re-connecting

Nodes can also re-connect to the network and re-establish the connection with their
neighbors. However, the procedure depends on whether the target neighbor’s NCE
has been deleted or not.

The legacy NDP

If a node re-connects to the network before it deletes the NCE of the default
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router, it is still a member of this network. The only thing it has to do is to perform
address resolution with neighbors which are not recorded in the NCE table.

If a node re-connects to the network after it deletes the NCE of the default
router, it has to follow the entering process explained in Chapter 4.1.1.

The Efficient NDP

If a node re-connects to the network before it deletes the NCE of the NEAR,
it does not need to do anything. When it sends Registration NS to its NEAR and
obtains a reply, the NCE state will be changed back to REACHABLE.

If a node re-connects to the network after it deletes the NCE of the NEAR,
the situation is the same as if a node joins a network it previously visited. This
will be explained in the next section.

4.2.3 Movement between subnets

Assume that there is a node which is a member of Network A. After a location
change, this node comes to a place where the service of Network B is also available.
This node can decide to become a member of Network B instead of Network A, or
become a member of both Network A and Network B (roaming).

In the first situation, the node simply performs a leaving process or a losing
connection process of Network A and performs an entering process of Network B.
In the second situation, the node performs an entering process of Network B with
no action of Network A. We are interested of the entering process of Network B.

The legacy NDP

The node follows the entering process explained in Chapter 4.1.1.

The Efficient NDP

If a node enters or re-connects to the network it previously visited, it will follow
the procedure introduced in Simple Detecting Network Attachment (Simple DNA),
RFC 6059 [18].

In this mechanism, a node needs to always maintain the Simple DNA address
table (SDAT) which includes the information of a router’s address and the address
configuration methods (SLAAC or DHCPv6). The node uses a unicast NS to
detect whether a previously encountered router is on the link and the previous
address configuration of itself is still valid. If it is not, then the node relies on RA
for configuration.
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Chapter 5
Network Model Design

To accurately evaluate the performance between legacy NDP and the Efficient
NDP in dynamic networks, proper network models need to be designed before
simulations. According to this goal, network model design should follow these
principles:

• The network topologies should be designed the same for legacy NDP and
the Efficient NDP in each comparison case. They should have the same
assigned parameters, eg: the number of hosts and routers in the model, the
processing time of a packet, channel parameters.

• In this thesis, we only focus on the impact of specific events in a network. Ir-
relevant node behavior such as periodical RA exchanging, address updating
are not taken into consideration.

• Events should follow proper distributions and the network scalability should
be considered.

Chapter 5.1 and 5.2 describes the network model design for two dynamic network
scenarios.

5.1 Entering and leaving scenario

5.1.1 Overview

In this network model, we assume all the nodes are new nodes, which means that
they never joined any networks and have no IP address configured.

In legacy NDP, a node follows three steps to finish the procedure of entering
a network: Router discovery, DAD and joining a multicast group. In the Efficient
NDP, a node follows two steps to finish the procedure of entering a network: Router
discovery and address registration.

29
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As described in Chapter 4, nodes can implement either soft leave or fast leave
mechanism to leave a network or a group in legacy NDP. In this network model,
only the fast leave mechanism is used as this is the best leaving case that requires
the least messages. In the Efficient NDP, a node performs de-registration when it
leaves group.

5.1.2 Network topology and description

Figures 5.1 illustrates the network topology used in this scenario.

Figure 5.1: Entering & leaving scenario topology

Network A only has a router at the beginning. Incoming nodes enter Network
A with an entering rate λ while outgoing nodes leave Network A with a leaving
rate μ.

From the time, the system boots up until a certain defined time Ts, nodes enter
Network A with an entering rate λ1 and nodes leave Network A with a leaving
rate μ1. λ1 should be larger than μ1 to make sure Network A always has nodes. In
this time period, with the time increasing, there should be more and more nodes
staying in Network A. As Network A has a certain subnet size, the usage rate of
the subnet increases. However, the number of nodes within Network A should not
exceed the subnet capacity. In this situation, entering events dominate the system.

From Ts until the end of the simulation, nodes enter Network A with an
entering rate λ2 and nodes leave Network A with a leaving rate μ2. λ2 is defined
to be smaller than μ2. In this time period, with the time increasing, there should
be less and less nodes staying in Network A and the usage rate of the subnet
decreases. However, Network A should always have nodes. In this situation,
leaving events dominate the system.

Both entering events and leaving events follow a uniform distribution. For
example, if the entering rate λ is 5 nodes per hour, the first entering event happens
at a random time between 0 to 12 minutes and the second entering event happens
at a random time between 12 to 24 minutes. The reason for this distribution and
the parameters defined in this network model will be discussed in the next chapter.
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5.2 Movements scenario

5.2.1 Overview

In this thesis, connection loss caused by node movements is modeled and simulated.

At the beginning of the simulation, all the nodes are full function members
within a network. Each node has a unique IP address and the knowledge of all the
neighbor link-layer addresses, the NCE state of each neighbor is REACHABLE.

After a node loses its connection, it performs the NUD check with other nodes
which are recorded in its NCE table. As we focus on the losing connection ef-
fect in this scenario, no re-connecting events happen in the simulation, thus this
connection lost node will delete the neighbor NCEs after the NUD.

5.2.2 Network topology and description

Figures 5.2 illustrates the network topology used in this scenario.

Figure 5.2: Losing connection topology

Network A has a router and 100 hosts which is represented by Host 100 at the
beginning (The initial number of hosts can be different values, more information
will be discussed in the next chapter). After the system boots up, hosts lose their
connection to Network A with a losing connection rate α.

The losing connection events in this network follow a uniform distribution.
Which means that a losing connection event is expected to happen at a random
time in its respective time interval.

There are no re-connecting events or entering and leaving events in Network A.
With the time increasing, there are less and less nodes remaining in the network.
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As described before, NUD happens when a node has packets to its neighbors.
To achieve this, periodically multicast user packets are generated by each host at
specific defined times. These user packets are sent to all the neighbors recorded
in NCE table and expected with a reply back. However, only the packets sent by
the connection lost hosts are what we should pay attention to, as these packets
can not reach neighbors, NUD check is required.

The parameters defined in this network model will be discussed in the next
chapter.
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Chapter 6
Simulations

In legacy NDP, nodes use multicast messages to configure themselves and update
neighbor information. In the Efficient NDP, many of these multicast messages are
optimized as the unicast traffic in order to reduce network overload and power
consumption. To evaluate the efficiency of this change, simulations are required.

In this chapter, the simulations of the legacy NDP and the Efficient NDP in
dynamic network environments are presented. These simulations are built on the
network models described in Chapter 5, for analyzing nodes entering and leaving
scenario and the losing connection case in nodes movement scenario. According
to the amount of the total exchanged messages recorded from the simulations, an
estimation of power consumption in these two protocols can be made. The results
of the simulations will be presented in the next chapter.

OMNeT++ is the software used for this simulation work, its running environ-
ment, usage and project design will be introduced in Chapter 6.1. The simulation
parameters, discrete event distribution and simulation design for each scenario will
be discussed in Chapter 6.2 and Chapter 6.3. The limitations in our simulation
models are stated in Chapter 6.4.

6.1 Simulation tool overview

As a continuation of thesis work "Efficient IPv6 Neighbor Discovery in Wireless
Environment" [8], the same software OMNeT++ newest version 5.1 is chosen as
the platform in this thesis simulation.

OMNeT++ is a C++ based software which is free for academic and education
usage and can be downloaded from the webpage [19]. It runs on Windows, Linux,
Mac OSX, and other Unix-like systems and has different release and installation
requirements for each of these systems [20].

OMNeT++ is an open-source modular discrete event network simulator used
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for modeling telecommunication networks, network protocols, queuing systems,
distributed systems, etc. It provides a hierarchical network structure which is
generally consisted by three layers as Figure 6.1 shown. Users can model simple
modules first and group them into compound modules. The largest compound
module is called network and it is consisted by all the other compound modules
and simple modules.

Figure 6.1: Simple and compound modules [21]

In OMNeT++, users use Network Description (NED) language to build com-
ponents, connect and assemble these components as a system and define commu-
nication parameters like channel delay, bandwidth, etc. Instead of entering code
to achieve these, for many Operating Systems (OS), OMNeT++ also provides an
Integrated Development Environment (IDE) which allows users to place the com-
ponents, configure parameters and define communication types in an operation
Graphical User Interface (GUI). User’s operation in GUI will be automatically
transferred into code in the NED source file. Figure 6.2 and Figure 6.3 illustrates
a simple example of connecting a LAN in NED design and its transferred code in
NED source file.

For each OMNeT++ project, modules have to be defined in source files. The
programming language of these source files can be C or C++. Module’s behavior
such as generating a packet, handling a packet and forwarding a packet in the
simulation will follow the definition in the source files. OMNeT++ has many
cooperation libraries such as INET to provide already defined modules. By using
these libraries, users can simply import modules from the libraries and do not need
to always define them in source files by themselves.

Figure 6.2: Connect LAN by NED design
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Figure 6.3: NED source code

OMNeT++ also needs an initialization (INI) file to control the simulation. The
simulation running time, source and destination ports and message parameters can
be defined in this file.

6.2 Entering and leaving scenario

In entering and leaving scenario, the simulation of the router discovery process
was finished in thesis work [8]. In this thesis work, a full entering process which
includes router discovery, DAD and nodes joining a multicast group (this only
happens in legacy NDP) is simulated. Further more, leaving events are also added
into this system to present a dynamic network function.

As described in Chapter 5, the simulation of the entering and leaving scenario
can be recognized as two phases. In the first phase, the nodes entering rate is
larger than the leaving rate while in the second phase it is smaller. This gives us
a view of how many messages that will be exchanged in either entering events or
leaving events dominate the system situation.

6.2.1 Simulation parameters and event distribution

In order to perform and see the effect of DAD, a certain network prefix has to be
defined at the beginning of the simulation. In this simulation, 512 (2 × 16 × 16)
usable addresses are assigned in the network. While one address is assigned for the
router’s address and one address is assigned for the network address, 510 remaining
addresses are reserved for host addressing.
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In this simulation, we are only interested in how many messages are exchanged
during the entering process and the leaving process. Thus, periodical exchanged
messages such as periodical RA, Efficient NDP registration messages are not taken
into consideration. If there are more hosts remaining in the network, more mes-
sages are required as these messages aim at all the nodes or hosts in the network.
Furthermore, as a certain number of addresses (510) is reserved for hosts, the more
hosts remaining in the network, the higher the possibility is for a new incoming
host to select a duplicated address.

As described before, each simulation is divided into two phases. In the first
phase, hosts enter network with an entering rate λ1. Define that after half of the
simulation time, it turns into the second phase until the end of the simulation.
During this period, hosts enter network with an entering rate λ2, λ2 = 1/2 λ1.

In the first phase, hosts leave the network with a leaving rate μ1, define μ1
= 1/2 λ1 which means that the leaving rate is half of the entering rate. In the
second phase, hosts leave network with a leaving rate μ2, define μ2 = 2 λ2 which
means that the leaving rate is twice as the entering rate during this period.

A uniform distribution is used to describe the events in this simulation to
ensure events can happen randomly in their respective time intervals. We also use
this distribution to control the entering rate and the leaving rate.

However, due to the fact that a host should always enter the network before
leave. We define the first leaving event is located in the second time interval. In
each simulation model, the total number of leaving events is one less than the
number of the entering events.

Network scalability is important to evaluate the network performance. Con-
sidering this, up to 300 entering events are expected to happen in a long simulation
time. However, to compare the performance between legacy NDP and the Efficient
NDP in this process, other numbers of entering events are also simulated. Table
6.1 presents this.

Simulation time Hosts Entering event
distribution

Leaving event
distribution**

2h 9 0 - 1h, (0, 600)*
1 - 2h, (0, 1200)

0 - 1h, (0, 1200)
1 - 2h, (0, 600)

6h 30 0 - 3h, (0, 540)
3 - 6h, (0, 1080)

0 - 3h, (0, 1080)
3 - 6h, (0, 540)

16h 120 0 - 8h, (0, 360)
8 - 16h, (0, 720)

0 - 8h, (0, 720)
8 - 16h, (0, 360)

24h 300 0 - 12h, (0, 216)
12 - 24h, (0, 432)

0 - 12h, (0, 432)
12 - 24h, (0, 216)

* An example of this distribution model can be found in Figure 6.4
** The first leaving event is located in the second time interval

Table 6.1: Events uniform distribution time intervals in seconds
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In the simulations, channel delay and packet processing time is also considered.
Their values may vary depending on which kind of packets are transmitted and
processed. In the most busy case, this value is set to 1 second, which means that
after a node transmits a packet, the other node takes up to 1 second to finish the
procedure of receiving and processing the packet.

In the entering process, DAD can fail many times if the entering host always
selects unavailable addresses. Considering this situation, additional time has to
be given to the process. In each simulation case, this time is set as 40 seconds.

For example, in the first simulation case, 9 hosts will enter the network in 2
hours. The first 6 hosts will enter the network in the first hour and the rest in the
following hour. The first entering event happens and finishes during the time 0
to 600 seconds. At a random time T during the period 0 to 560 seconds, the first
host host[0] enters the network. During T to T + 40 seconds, this host begins and
finishes to perform router discovery, DAD and joining a multicast group.

In the first leaving event respective time interval 1200 to 2400 seconds, host[0]
leaves the network by sending a notification message to the router. Additional
1 second is given to host[0] to make sure it can finish its leaving process in its
respective time interval.

Figure 6.4 illustrates the example described above.

Figure 6.4: Example events schedule

In this simulation scenario, the channel is assumed as an ideal channel, the
channel delay is always kept to the configured value. The system is assumed as a
reliable system, all the packets can successfully pass the validity check and there
is no packet loss or retransmission.
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6.2.2 Simulation details

The simulation models were built based on the TicToc model from OMNeT++
library, which gives an example of packets transmission between nodes. However,
by editing the source files, we get more control of the system. A defined type
of packets can be generated in a specific time interval and sent from a specific
port to its destination. Nodes follow a defined rule to handle a packet and decide
their next action depends on the packet type. The implementation and detailed
explanation can be found in Appendix A.

The legacy NDP

Figure 6.5 illustrates the simulation model for legacy NDP.

Figure 6.5: Simulation model for legacy NDP (3 hosts)

In this simulation model, each host is initially connected with a router and a
dadbridge. However, only after the host joins the network, it is able to send or
receive packets. And after it leaves the network, it is not able to send or receive
any packets. Hosts do not have direct connection with other hosts.

dadbridge is a logic existence in this simulation model which functions as a
communication bridge between hosts, and handles DAD related issues. We reduce
the complexity of node behavior by adding this bridge in our simulation model. As
dadbridge does not exist in the real networks, all the packets received by dadbridge
should not be counted in the record.

There are no actual IP addresses configured for any nodes in this system, thus
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dadbridge uses host ID to perform DAD. dadbridge has a counter to record how
many hosts have left the network. The counter has an initial value as 0 and once
dadbridge receives a MLRv2 leave message, the counter is added by 1. As the hosts
follow the order of their ID to enter and leave network one by one, it is very clear
to know which hosts remain in the network. For example, if the entering host’s ID
is host[3] and counter value is 1, it means that host[0] has left the network while
host[1] and host[2] are still remaining in the network.

As described before, there are 510 addresses reserved for host addressing. dad-
bridge takes a random number x between 0 to 509 to represent the entering host
selected address. dadbridge also takes n (n equals to the number of remaining
hosts in the network) different random numbers x0 x1 ... xn-1 between 0 to 509
to represent the addresses already used by hosts in the network. If the duplica-
tion happens (x equals to any number in x0 x1 ... xn-1), then it indicates that a
duplicated address is selected by the entering host.

The following steps describe the procedure of the system:

• Router Discovery: The entering events follow the uniform distribution de-
scried in Chapter 6.2.1. Once the entering event happens, a host enters the
network, it immediately sends a RS to the router. The router replies with
a RA.

• DAD: The host that received RA sends a NS to dadbridge, dadbridge copies
NS and multicasts them to all the other hosts remaining in the network.
dadbridge performs DAD instead of the other hosts themselves. If DAD is
successful, then nothing happens. Otherwise dadbridge multicasts NA to
all the other nodes (without the NS sender host) in the network instead of
the duplication address detected host, the entering host then sends a NS to
dadbridge again. After the entering host successfully configures an address,
it multicasts NA to all the other nodes to announce itself.

• Joining a multicast group: The entering host sends a MLRv2 enter message
to the router.

• Leaving the network: The leaving events follow the uniform distribution
descried in Chapter 6.2.1. Once the leaving event happens, the host sends
a MLRv2 message to the router and dadbridge. dadbridge counter is added
by 1.

The Efficient NDP

The simulation model for the Efficient NDP is very similar to the model for
legacy NDP. Instead of performing DAD by a logic dadbridge, in the Efficient NDP,
this is done by the NEAR itself.

The same as in legacy NDP, a counter with the initial value 0 is set by the
router, once the router receives a de-registration message, the counter is added by
1. It is use to record the leaving events and monitor how many hosts are remaining
in the network.
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Figure 6.6 illustrates the simulation model for the Efficient NDP.

Figure 6.6: Simulation model for the Efficient NDP (3 hosts)

The following steps describes the procedure of the system:

• Router Discovery: The entering events follow the uniform distribution de-
scried in Chapter 6.2.1. Once the entering event happens, a host enters the
network, it immediately sends a RS to the router. The router replies with
a RA.

• DAD: The host sends a registration NS to the router. Router performs DAD.
If DAD is successful, then it sends a NA with DAD pass option. Otherwise
the router sends a NA with DAD fail option, then the entering host sends
a registration NS to the router again. The entering host does not need to
announce its address, as the requested address which passes DAD will be
recorded by the router and updated to other nodes when they request it.

• Leaving the network: The leaving events follow the uniform distribution
descried in Chapter 6.2.1. Once the leaving event happens, the host sends a
de-registration message to the router, and the router’s counter is added by
1.

6.3 Movements scenario

As described in Chapter 4, nodes movement can cause many events and the most
common one is losing connection. A node never knows if it has already lost the
connection, it only knows whether its neighbors are reachable or not. If it does
not receive an expected packet from the neighbor, it then performs a reachability
check.

A node follows many steps in NUD, however, only the message exchange part
is what we are interested in.
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6.3.1 Simulation parameters and event distribution

At the beginning of the simulation, there is a network with n hosts (n = 30, 50,
100) and one router. In order to see the impact of losing connection events, there
are no entering, leaving or re-connecting events happen. The number of hosts in
this network is reduced by losing connection events.

As described in Chapter 2, a host follows a series of steps to check the reach-
ability to its neighbors. In the first few steps, a host sets different kinds of timer
to change the state of NCE. When the NCE enters the PROBE state, the host
begins to retransmit NS probe messages to the target neighbor and this is the only
part with message exchange in NUD. In this simulation, instead of setting a timer
to control retransmission of NS probes, we simply define a host can maximally
transmit x (x = 5, 10) probes.

The expected result caused by a host losing connection is that it deletes all the
neighbor NCEs. In legacy NDP, once a NCE enters the UNREACHABLE state,
it is deleted immediately. However, in the Efficient NDP, the UNREACHABLE
state NCE is kept until the registration time expires.

In the simulation, irrelevant messages such as periodical RA are not performed.
In the Efficient NDP, periodical registration NS and registration confirmation NA
are performed, as they are important for the NCE state. The Registration Lifetime
is set by default as 9000 seconds and the hosts wake up at 2/3 of the Registration
Lifetime to refresh their registration by sending a NS to the NEAR. It means that
when a host receives a registration confirmation NA from the NEAR, it goes into
the sleeping cycle. After 6000 seconds, it wakes up and sends a registration NS to
the NEAR. At the beginning of the simulation (simulation time = 0), every host
sends a registration NS to the NEAR.

In order to perform NUD, periodical user packets are used in the simulation.
User packets are generated by each host and they are aimed at all the other nodes
which have existed in the NCE table with a period 1 hour (The first series of
user packets are generated at 3600 seconds, the second series of user packets are
generated at 7200 seconds, etc).

For example, in legacy NDP, host[0] (the first connection lost host) loses con-
nection at 2400 seconds. At 3600 seconds, it generates a user packet and multicasts
it to all the other nodes, as their NCEs are existing in host[0]’s NCE table, then
it performs NUD for all the other hosts and deletes their NCEs. At 7200 seconds,
it generates another user packet and attempts to forward it, but this time it does
not have any neighbor NCEs, so no packet is sent.

Each losing connection event is expected to happen at a random time located
within its respective time interval. A uniform distribution is used to describe the
event schedule. Considering the network scalability, simulations are performed in
a long simulation time with different numbers of losing connection events. Table
6.2 presents this.
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Initial hosts
number

NUD probes
number

Simulation
time*

Events
number

Events
schedule

30 5 2h 1 (0, 7200)
30 5 4h 5 (0, 2880)**
30 5 12h 20 (0, 2160)
30 10 2h 1 (0, 7200)
30 10 4h 5 (0, 2880)
30 10 12h 20 (0, 2160)

50 5 2h 1 (0, 7200)
50 5 4h 5 (0, 2880)
50 5 12h 20 (0, 2160)
50 5 16h 50 (0, 1152)
50 10 2h 1 (0, 7200)
50 10 4h 5 (0, 2880)
50 10 12h 20 (0, 2160)
50 10 16h 50 (0, 1152)

100 5 2h 1 (0, 7200)
100 5 4h 5 (0, 2880)
100 5 12h 20 (0, 2160)
100 5 16h 50 (0, 1152)
100 5 24h 100 (0, 864)
100 10 2h 1 (0, 7200)
100 10 4h 5 (0, 2880)
100 10 12h 20 (0, 2160)
100 10 16h 50 (0, 1152)
100 10 24h 100 (0, 864)

* Additional 100 seconds is given for each simulation to finish exchanging probes
** An explanation for this value can be found under the table

Table 6.2: Events distribution time interval in seconds

For example, in the case mentioned in the table. 5 losing connection events
happen in 4 hours simulation time. As they follow the uniform distribution, the
simulation time (4 hours) should be divided into 5 equal time thresholds (Every
2880 seconds). And each event happens randomly in its respective time threshold
(event 1 happens somewhere in 0 - 2880 seconds, event 2 happens somewhere in
2880 - 5760 second and so on).

In the simulation, channel delay and packet processing time are also imple-
mented. The number of the hosts remaining in the network does not have any im-
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pact on the exchanged messages, as hosts send packets to all the targets recorded
in their NCEs. On the other hand, NUD check does not happen immediately after
a losing connection event, it begins at the next packet sending time. Thus, hosts
do not need to have any additional time reserving for NUD in their event time
intervals. However, the last periodical packets are always generated at the end of
the simulation time as the table above shows. Hosts which rely on these packets
for NUD can not finish the NUD check. Considering this, additional 100 seconds
is added for each simulation.

6.3.2 Simulation details

The simulation models were built based on the TicToc model from OMNeT++
library. The implementation and detailed explanation can be found in Appendix
B.

The legacy NDP

Figure 6.7 illustrates the simulation model for legacy NDP.

Figure 6.7: Movement model legacy NDP (5 hosts)

The example model above gives a view of the system with one router and 5
hosts. However, in the real simulation model, there are n hosts with ID host[0] to
host[n] existed in the topology. The router in this simulation model only has the
function of receiving packets.

In real wireless networks, each node (host and router) should have a connection
to other nodes in the network. To simplify this, in this simulation model, a bridge
nudbridge is designed as a middle point for connections. If a host has a multicast
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packet which aims at all the other nodes in the system, it sends the packet to
nudbridge, nudbridge then copies the packet and multicasts the copy to all the
other nodes in the system. It needs to be mentioned that nudbridge is only used
to simplify the system connection and does not exist in real networks, thus the
packets received by the nudbridge should not be counted in the record.

The following steps describe the procedure of the simulation:

• Losing connection event: The losing connection event of a specific host with
host ID host[i] happens at a random time during its respective time interval
described in Chapter 6.3.1.

• Sending user packet: When it reaches the next user packet sending time,
host[i] sends a user packet to nudbridge, nudbridge multicasts this packet to
all the nodes except host[i] in the system. These packets are unreachable to
these nodes, as host[i] has lost its connection to this network.

• NUD: host[i] expects to receive reply for each user packet it sent. However,
losing connection makes this impossible. After 5 seconds, host[i] begins to
send the first NS probe to nudbridge, nudbridge multicasts the NS probe to
all the nodes except host[i] in the system. After this, with a time duration
of every 5 seconds, the same process happens until the 5th or the 10th NS
probe is multicasted by nudbridge.

The Efficient NDP

Figure 6.8 illustrates the simulation model for the Efficient NDP.

Figure 6.8: Movement model the Efficient NDP (5 hosts)

The same as in the simulation model for legacy NDP, we use 5 hosts in the
example model figure above while there are n hosts existing in the real simulation
model.

In this simulation model, NEAR is used as the middle point for the connection
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of all the hosts, to instead of nudbridge in legacy NDP model. As described before,
NEAR is the target that hosts perform NUD with.

The tricky part is that not only the user packet sent by a host can trigger
NUD, the periodical registration NS can also trigger NUD. The sending time of
user packets and registration NS is mentioned in Chapter 6.3.1. To explain this, a
simple example is shown in figure 6.9. In this example, a distribution of 5 hosts in
4 hours simulation time, 30 initial hosts in the system, 5 probes in NUD, is used.

Figure 6.9: Example of Efficient NDP movement model

In the figure above, the losing connection event of eah[1] is assumed that is
happening somewhere in (3600, 5760). However, if it is located somewhere in
(2880, 3600), the process is the same as eah[0].

In the example above, the losing connection event of eah[2] is located in a uni-
form distribution time interval (5760, 8640). There can be three cases to describe
the behavior of eah[2].
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Event located somewhere in (5760, 6000)

The process for eah[2] is completely the same as eah[1] described in the example
figure.

Event located somewhere in (6000, 7200)

• At the 6000th second, eah[2] sends a registration NS to the near. The near
replies with a registration confirmation NA. The Registration Lifetime of
eah[2] gets refreshed for additional 9000 seconds and will be expired at the
15000th second.

• At the 7200th second, eah[2] sends a user packet, then it sends 5 NS probes.

• At the 10800th second, eah[2] sends a user packet.

• At the 12000th second, eah[2] sends a registration NS.

• At the 14400th second, eah[2] sends a user packet.

• At the 15000th second, eah[2] deletes NCEs.

In the last five steps above, there is no response from the near.

Event located somewhere in (7200, 8640)

• At the 6000th second, eah[2] sends a registration NS to the near. The near
replies with a registration confirmation NA. The Registration Lifetime of
eah[2] gets refreshed for additional 9000 seconds and will be expired at the
15000th second.

• At the 10800th second, eah[2] sends a user packet, then it sends 5 NS probes.

• At the 12000th second, eah[2] sends a registration NS.

• At the 14400th second, eah[2] sends a user packet.

• At the 15000th second, eah[2] deletes NCEs.

In the last four steps above, there is no response from the near.

In this simulation model, many periodical NS are sent in order to refresh the
registration time of hosts. However, as defined before, the exchanged messages
in the losing connection scenario should be counted after the losing connection
event happens. Only these messages without a reply are counted to evaluate the
performance of the Efficient NDP.

6.4 Limitations

The message transmission is assumed as 100% reliable transmission in our simu-
lation models, thus there is no packet drop and re-transmission mechanism in the
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simulations. In real networks, the number of exchanged messages could be more
than the results we obtained from simulations due to re-transmission. On the
other hand, network overload situation and queue systems are not implemented
in our simulations, they can affect the processing time and make the system more
complex, and the number of the exchanged messages could be different by these
features.

There is no exact IP address configuration and table implementation in our
simulation models. As described before, in our analyzed cases, a main part requires
IP addresses and tables is DAD in the entering and leaving scenario. As it is too
complex to configure exact IP address for each node and implement tables to
record neighbor address information, we simply use random number selection to
achieve this. In fact, the address auto-configuration is also a random selection
process in real networks. However, implementing IP addresses and tables can
make simulations more similar to real networks.

Channel delay and packet processing time are added to the models, but always
kept in specific values. In wireless networks, channel delay might be different in
communication links. Packet processing time may also vary depends on which
packet is processed by which device.

In the movement scenario, user packets are assumed as periodical packets every
3600 seconds and the Registration Lifetime is set as 9000 seconds by default. The
results from the simulations can be different if we use other values instead. As
time is limited for this thesis, we only take the defined situation into simulations.
More simulation models for further situation could be done in the future.
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Chapter 7
Results

The results of the two dynamic network simulation scenarios described in Chapter
6 are presented in this chapter. As explained in Chapter 6, for both the nodes
entering and leaving scenario and the nodes movement scenario, several simula-
tion models which correspond to different network environments were designed.
According to this, a comprehensive analysis of how efficiency can be achieved by
the Efficient NDP in different size of networks can be made.

7.1 Entering and leaving scenario

7.1.1 The legacy NDP results

As described in Chapter 4, a new entering host selects a random address in the
network prefix and performs DAD. DAD can fail many times dependent on how
many available addresses in the network and how large the network prefix is. In
the 300 entering events simulation model, at the half simulation time (the 12th
hour), there is quite a high possibility (close to 1/5) for DAD failing. This is
presented by the number of NS and NA messages. Table 7.1 presents the results
of legacy NDP entering and leaving scenario.

Hosts RS RA MLRv2
entering NS NA MLRv2

leaving
Total

messages
9 9 9 9 17 25 8 77
30 30 30 30 163 193 29 475
120 120 120 120 2809 3051 119 6339
300 300 300 300 17063 19005 299 37267

Table 7.1: Messages in legacy NDP (entering & leaving)
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7.1.2 The Efficient NDP results

In the Efficient NDP, the multicast traffic in DAD is optimized as the unicast
traffic. A lot of messages can be saved in the DAD process, and this can be
presented by the number of Registration NA and NS messages. The results are
recorded in Table 7.2.

Hosts RS RA Registration
NS NA De-registration

NS
Total

messages
9 9 9 9 9 8 44
30 30 30 30 30 29 149
120 120 120 123 123 119 605
300 300 300 328 328 299 1555

Table 7.2: Messages in the Efficient NDP (entering & leaving)

7.1.3 Summary

The following graphs compare the results obtained from the simulation between
legacy NDP and the Efficient NDP.

Figure 7.1: Comparison of total exchanged messages in entering &
leaving scenario between legacy NDP and Efficient NDP
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Figure 7.2: Comparison of DAD exchanged messages in entering &
leaving scenario between legacy NDP and Efficient NDP

While other types of messages have the amounts equal to the entering or
leaving event numbers, the number of the messages exchanged in the DAD process
has a big impact to the number of messages exchanged in the network, especially
in the situation where there are larger numbers of entering and leaving events.
The reason is the messages used in DAD are optimized to the unicast messages in
the Efficient NDP.

Table 7.3 and Table 7.4 conclude the message saving percentage results.

Hosts Legacy NDP Efficient NDP Message Saving
9 77 44 42.86%
30 475 149 68.63%
120 6339 605 90.46%
300 37267 1555 95.83%

Table 7.3: Total messages saved by hosts

Hosts Legacy NDP Efficient NDP Message Saving
9 42 18 57.14%
30 356 60 83.15%
120 5860 246 95.80%
300 36068 656 98.18%

Table 7.4: DAD messages saved by hosts (The saving percentage
of multicast messages)
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7.2 Movement scenario

Unlike entering and leaving scenario, a losing connection event is defined as a
moment event which happens and finishes at the same time. To evaluate how
many messages are used as the result of the losing connection events, periodical
multicast user packets and periodical registration NS (only in the Efficient NDP)
are used for triggering NUD and removing neighbor NCEs for the connection lost
hosts.

7.2.1 The legacy NDP results

In our test case, all the connection lost hosts have to delete their neighbor NCEs
as an indication of finishing the NUD check. However, as the number of NCEs
equals to the initial host number, and the number of messages used in each NUD
check is also defined as a constant. It gives us a deterministic analytical result
before the simulation outcomes.

TotalMessages = MessageNUD ×NUDtargets× Eventnumber (7.1)

where MessageNUD is defined as the number of messages required in each NUD
process (userpacket + NS probes), NUDtargets equals to the initial host number.

For example, in the case that 30 initial hosts, 5 probes in NUD, and 1 losing
connection event. The number of the exchanged user packets should equal to:

Userpackets = 1× 30× 1 = 30 (7.2)

where the first 1 represents one user packet sent to one neighbor, 30 represents the
number of neighbors, and the last 1 represents one losing connection event.

The number of the exchanged NS probes should equal to:

NSprobes = 5× 30× 1 = 150 (7.3)

where 5 represents the number of NS probes used in NUD check with one neighbor,
30 represents the number of neighbors, and 1 represents one losing connection
event.

This gives us 180 messages are exchanged in this defined losing connection
process. Table 7.5 presents the number of messages exchanged in 30 initial hosts,
5 probes for NUD case.

Events User packet NS probe Total messages
1 30 150 180
5 150 750 900
20 600 3000 3600

Table 7.5: Messages exchanged in legacy NDP losing connection
scenario with 30 initial hosts and 5 probes for NUD
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Our simulations verify the results from the analytical calculation. Figure 7.3
is an example for the number of the messages exchanged in 30 initial hosts, 5 NS
probes for NUD, 1 losing connection event outcome.

Figure 7.3: Example simulation outcome

However, in all the test cases, the nodes which remain in the network at the
end of the simulation time still have the NCEs of the connection lost hosts. As
the simulations focus on the amount of the exchanged messages caused by the
losing connection events, the nodes remaining in the network are not expected to
perform NUD with all the connection lost hosts and delete their NCEs. On the
other hand, if they do this, there will be more messages.

7.2.2 The Efficient NDP results

Similar to legacy NDP models, user packets are generated by the connection lost
hosts every 3600 seconds for their NUD. In the Efficient NDP, periodical regis-
tration NS can also trigger the NUD, as they are expected to obtain NA from
the NEAR as reply. The detailed explanation and an example can be found in
Chapter 6.3.2.

Table 7.6 - 7.11 present the results obtained from the simulation.

Events User packet NS probe Registration NS Total messages
1 1 5 1 7
5 7 25 4 36
20 34 100 19 153

Table 7.6: Messages exchanged in the Efficient NDP losing connec-
tion scenario with 30 initial hosts and 5 probes for NUD

Events User packet NS probe Registration NS Total messages
1 1 10 1 12
5 7 50 4 61
20 34 200 19 253

Table 7.7: Messages exchanged in the Efficient NDP losing connec-
tion scenario with 30 initial hosts and 10 probes for NUD
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Events User packet NS probe Registration NS Total messages
1 1 5 1 7
5 7 25 4 36
20 34 100 19 153
50 78 250 46 374

Table 7.8: Messages exchanged in the Efficient NDP losing connec-
tion scenario with 50 initial hosts and 5 probes for NUD

Events User packet NS probe Registration NS Total messages
1 1 10 1 12
5 7 50 4 61
20 34 200 19 253
50 78 500 46 624

Table 7.9: Messages exchanged in the Efficient NDP losing connec-
tion scenario with 50 initial hosts and 10 probes for NUD

Events User packet NS probe Registration NS Total messages
1 1 5 1 7
5 7 25 4 36
20 34 100 19 153
50 78 250 46 374
100 161 500 97 758

Table 7.10: Messages exchanged in the Efficient NDP losing con-
nection scenario with 100 initial hosts and 5 probes for NUD

Events User packet NS probe Registration NS Total messages
1 1 10 1 12
5 7 50 4 61
20 34 200 19 253
50 78 500 46 624
100 161 1000 97 1258

Table 7.11: Messages exchanged in the Efficient NDP losing con-
nection scenario with 100 initial hosts and 10 probes for NUD

It is obvious from the tables above, that for each simulation environment
(30, 50 and 100 initial hosts in the simulation), the amounts of the exchanged
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messages are the same. This is because that OMNeT++ implements Mersenne
Twister PRNG algorithm [22] to generate random number, and this algorithm
always generates the same result for the same simulation. We used this algorithm
for the uniform distribution in our simulations as it is easy to implement. Although
this algorithm makes the results a bit deterministic, the results recorded in the
tables above can be seen as reliable: The user packets are generated every 3600
seconds while the registration NS are generated every 6000 seconds, in a large
simulation time with many events, the user packets generated by the connection
lost hosts should be 1.67 times of the registration NS generated by the connection
lost hosts. This can be seen from the results.

Another thing is that according to the theoretical analysis, it is expected for
each connection lost host to transmit one registration NS after its event. But in
the record tables, these numbers are always less than the event numbers. The
reason is that for the last few connection lost hosts, the next registration time
is over the simulation time. These hosts have done the NUD and the NCEs are
marked as UNREACHABLE, but their registration time has not expired and these
NCEs has not been deleted.

7.2.3 Summary

The following graphs and tables compare the results of the number of exchanged
messages and messages saving percentage for movement losing connection scenario.

Figure 7.4: Exchanged messages, 30 initial hosts, 5 probes in NUD

Events Legacy NDP Efficient NDP Message Saving
1 180 7 96.11%
5 900 36 96%
20 3600 153 95.75%

Table 7.12: Messages save, 30 initial hosts and 5 probes in NUD
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Figure 7.5: Exchanged messages, 30 initial hosts, 10 probes in NUD

Events Legacy NDP Efficient NDP Message Saving
1 330 12 96.36%
5 1650 61 96.3%
20 6600 253 96.17%

Table 7.13: Messages save, 30 initial hosts and 10 probes in NUD

Figure 7.6: Exchanged messages, 50 initial hosts, 5 probes in NUD

Events Legacy NDP Efficient NDP Message Saving
1 300 7 97.67%
5 1500 36 97.6%
20 6000 153 97.45%
50 15000 374 97.51%

Table 7.14: Messages save, 50 initial hosts and 5 probes in NUD
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Figure 7.7: Exchanged messages, 50 initial hosts, 10 probes in NUD

Events Legacy NDP Efficient NDP Message Saving
1 550 12 97.82%
5 2750 61 97.78%
20 11000 253 97.7%
50 27500 624 97.73%

Table 7.15: Messages save, 50 initial hosts and 10 probes in NUD

Figure 7.8: Exchanged messages, 100 initial hosts, 5 probes in NUD

Events Legacy NDP Efficient NDP Message Saving
1 600 7 98.83%
5 3000 36 98.8%
20 12000 153 98.73%
50 30000 374 98.75%
100 60000 758 98.74%

Table 7.16: Messages save, 100 initial hosts and 5 probes in NUD
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Figure 7.9: Exchanged messages, 100 initial hosts, 10 probes in
NUD

Events Legacy NDP Efficient NDP Message Saving
1 1100 12 98.91%
5 5500 61 98.89%
20 22000 253 98.85%
50 55000 624 98.87%
100 110000 1258 98.86%

Table 7.17: Messages save, 100 initial hosts and 10 probes in NUD

The messages used in NUD process are not real multicast messages in legacy
NDP. A node always performs NUD with a target neighbor and this process re-
quires many times of retransmitting NS probes. When it comes to another target
neighbor, the same process happens.

In a real network, a node always has to communicate with its neighbors, so
we set the goal: A connection lost host is required to perform NUD with all the
other nodes recorded in its NCE table. Once NUD is performed many times, the
number of the exchanged messages becomes a large number, and the messages
used in NUD can be seen as multicast messages.

In the Efficient NDP, when the connection lost host attempts to communicate
with a target neighbor, it first communicates with the router and performs NUD
with the router. Thus, the NUD only needs to be performed once. This is the
reason that in the larger network, the more NUD messages can be saved.

In the network model designed for this thesis, only one router is located in the
network, if the NCE of this router is deleted, then all the other neighbor NCEs
will be deleted. However, in the real networks, there can be other routers function
as backups, even if the default router’s NCE is deleted, the other neighbor NCEs
can be kept if the connection lost host can establish the connection link with one
of its backups in time.
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Chapter 8
Conclusion

8.1 Entering and leaving scenario

A major goal defined in the Efficient NDP draft [4] is reducing the multicast traffic
in DAD as much as possible. This was presented from our results in Chapter 7.

In the simulations, although the number of entering events equals the hosts
number, as mentioned in Chapter 7.1, as leaving events also happen in the simu-
lations, the number of hosts in the network has a maximum of about 1/3 of the
entering events. Thus 9 hosts model can be seen as a very small network. Al-
though it is a very small network, the multicast message saving percentage can be
achieved to 57.14%, which presents a considerable result.

When it becomes a larger network, in which multicast messages have more
targets, the multicast message saving percentage can be further improved, and
achieve more than 90%. It is obvious to see the great performance in multicast
message saving from the Efficient NDP.

8.2 Movement scenario

Another benefit provided by the Efficient NDP, as described in Chapter 7.2.3, is
that it simplifies node behavior to save messages in NUD. It is worth mentioning
again, the messages used in NUD are not really multicast messages. A node
always performs NUD with a specific neighbor and retransmits many NS probes
in this process. While nodes perform NUD with target nodes directly every time
in legacy NDP, it is defined nodes that perform NUD with their default router in
the Efficient NDP. In the Efficient NDP, a node which has a packet to send to
a neighbor will send this packet to its default router and the default router will
handle this issue. As no NS probe is expected to be sent if the target’s NCE has
marked as UNREACHABLE, a host only needs to perform NUD once.
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From the results, we notice that even if in a small network, the Efficient NDP
can save more than 95% messages. And with the increased network size and the
increased number of NS probes in NUD, this percentage can be further improved.

As mentioned in Chapter 7.2.2, the message saving percentage obtained from
the simulations should be a bit higher than the exact value, because the last few
connection lost hosts have not deleted NCEs at the end of the simulation time in
the Efficient NDP. However, it is still obvious that the Efficient NDP provides a
great solution in NUD mechanism.

In realistic networks, nodes movement can be a very complex case. It can
cause nodes lose the connection to the network permanently as it has been done
in this thesis, nodes lose the connection to the network but re-connect before or
after NUD, nodes quit the network and join another network or become members
in both of two networks. And these behavior may happen together. Due to time
limit for this thesis, only one of these cases (losing connection) was simulated while
other cases were shortly analyzed in Chapter 4.
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Chapter 9
Future work

While entering and leaving scenario was finished, the movement scenario was partly
done in this thesis. As explained before, there can be three possible effects caused
by nodes movement, the losing connection case was analyzed and simulated in this
thesis, but re-connecting and movement between subnet cases were only analyzed
due to time limit.

In these two cases, an important implementation is Simple DNA as it is defined
in RFC 6059 for the Efficient NDP. It is a mechanism for node to record the
previous joined network information in SDAT and simplify the procedure in the
entering process. Simulations are expected for these two cases, as the re-connecting
model can be built based on the losing connection model in this thesis, movement
between subnets model is the extension of the entering and leaving scenario. After
this, a complete movement scenario which mixes these three cases can be tested
and simulated.

The channel parameters and packet delay were added in this thesis simulations,
but the packet drop and re-transmission mechanism were not implemented. This
can be easily done by adding a probability, however, then the event distribution
needs to be re-considered as it may require a quite long time for nodes to make
re-transmission decision.

In this thesis simulations, all the messages are assumed to pass the validity
check. This needs to be optimized since in the real networks this is not always
true. A flag used to identify the validity is expected to be added in the messages.

No IP address was configured for any nodes in this thesis simulations. It was
assumed there is only one multicast group in the network and we simply performed
DAD by host ID and random numbers. Allocating exact IP addresses could make
the simulations much more complex, but then more multicast groups can be set
in the network which makes the model more realistic.
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Appendix A
Entering & leaving scenario implementation

The implementation of entering and leaving scenario is followed the Efficient NDP
sleep and wake up scenario in thesis work [8]. However, more control is added in
this implementation to properly describe the procedure for the events.

The initialize() function is used to schedule the solicited events by hosts. It
works with generateMessage() function to create self-generated messages in a spe-
cific distributed time. The most important function used in this scenario is han-
dleMessage(), the coding in this function defines the devices behavior when they
receive messages or self-generate messages.

DAD is implemented by random number selection instead of checking IP ad-
dresses. This is done by a C++ based time seed random number generator algo-
rithm. While one random number in the defined range is used to represent the
host selected IP address, the other few random numbers in the same range is used
to represent the already configured addressed. Pass or fail DAD depends on the
duplication in these numbers. The implementation code of the model is shown in
the following lists.

Listing A.1: OMNeT++ coding for legacy NDP

#inc lude <s t r i n g . h>
#inc lude <s td i o . h>
#inc lude <omnetpp . h>
#inc lude <iostream>
#inc lude <algorithm>
#inc lude <array>
#inc lude <random>
#inc lude <chrono>

us ing namespace omnetpp ;
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c l a s s Router : pub l i c cSimpleModule
{

protec ted :
v i r t u a l void i n i t i a l i z e ( ) ov e r r i d e ;
v i r t u a l void handleMessage ( cMessage ∗msg) ove r r i d e ;

} ;
Define_Module ( Router ) ;
void Router : : i n i t i a l i z e ( ) {}
void Router : : handleMessage ( cMessage ∗msg) {

cModule ∗x = msg−>getSenderModule ( ) ;
i n t sn = x−>getIndex ( ) ;
const char ∗ t = msg−>getName ( ) ;
i f ( strcmp ("RS" , t )==0) {
cMessage ∗RA = new cMessage ("RA" ) ;
send (RA, "outR" , sn ) ;
}

}

c l a s s Host : pub l i c cSimpleModule
{

protec ted :
v i r t u a l void i n i t i a l i z e ( i n t n) ove r r i d e ;
v i r t u a l cMessage ∗ generateMessage ( ) ;
v i r t u a l cMessage ∗generateMessageA ( ) ;
v i r t u a l cMessage ∗generateMessageB ( ) ;
v i r t u a l cMessage ∗generateMessageC ( ) ;
v i r t u a l void handleMessage ( cMessage ∗msg) ove r r i d e ;

} ;
Define_Module ( Host ) ;
void Host : : i n i t i a l i z e ( i n t n) {

f o r ( i n t i =0; i <500; i++) {
i f ( getIndex()== i ) {

i f ( i <6) {
cMessage ∗msg = generateMessage ( ) ;
i n t k = uniform (600∗ i , 600∗( i +1)−40);
scheduleAt (k , msg ) ;
cMessage ∗msg3 = generateMessageC ( ) ;
i n t k3 = k+38;
scheduleAt ( k3 , msg3 ) ;
cMessage ∗msg2 = generateMessageA ( ) ;
i n t k1 = k+40;
scheduleAt ( k1 , msg2 ) ;
}
e l s e {
i n t j = i − 6 ;
cMessage ∗msg = generateMessage ( ) ;
i n t k = 3600 + uniform (1200∗ j , 1200∗( j +1)−40);
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scheduleAt (k , msg ) ;
cMessage ∗msg3 = generateMessageC ( ) ;
i n t k3 = k+38;
scheduleAt ( k3 , msg3 ) ;
cMessage ∗msg2 = generateMessageA ( ) ;
i n t k1 = k+40;
scheduleAt ( k1 , msg2 ) ;
}

}
}

f o r ( i n t i =0; i <500; i++) {
i f ( getIndex()== i ) {

i f ( i <2) {
cMessage ∗msg3 = generateMessageB ( ) ;
i n t k2 = uniform (1200∗( i +1) , 1200∗( i +2)−1);
scheduleAt ( k2 , msg3 ) ;
}
e l s e {

i n t j = i − 2 ;
cMessage ∗msg3 = generateMessageB ( ) ;
i n t k2 = 3600 + uniform (600∗ j , 600∗( j +1)−1);
scheduleAt ( k2 , msg3 ) ;

}
}

}
}

cMessage ∗Host : : generateMessage ( )
{

cMessage ∗msg = new cMessage ("RS" ) ;
r e turn msg ;

}
cMessage ∗Host : : generateMessageA ( )
{

cMessage ∗msg2 = new cMessage ("MLRv2enter " ) ;
r e turn msg2 ;

}
cMessage ∗Host : : generateMessageB ( )
{

cMessage ∗msg = new cMessage ("MLRv2leave " ) ;
r e turn msg ;

}
cMessage ∗Host : : generateMessageC ( )
{

cMessage ∗msg = new cMessage ("NAannounce " ) ;
r e turn msg ;
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}
void Host : : handleMessage ( cMessage ∗msg) {

const char ∗ t t=msg−>getName ( ) ;
i f ( strcmp ( tt , "RS")==0) {

send (msg , " outH " ) ;
}
i f ( strcmp ( tt , "MLRv2enter")==0) {

send (msg , " outH " ) ;
}
i f ( strcmp ( tt , "MLRv2leave")==0) {

send (msg , " outH " ) ;
cMessage ∗msg2 = new cMessage ("MLRv2leave " ) ;
send (msg2 , " outB " ) ;

}
i f ( strcmp ( tt , "RA")==0) {

cModule ∗xx = msg−>getArr ivalModule ( ) ;
i n t SNx = xx−>getIndex ( ) ;
i f ( SNx > 0) {
cMessage ∗NS = new cMessage ("NS" ) ;
send (NS, "outB " ) ;
}

}
i f ( strcmp ( tt , "NAfai l ")==0) {

cMessage ∗NS = new cMessage ("NS" ) ;
send (NS, "outB " ) ;

}
i f ( strcmp ( tt , "NAannounce")==0) {

send (msg , "outB " ) ;
}

}

c l a s s DADbridge : pub l i c cSimpleModule
{

p r i va t e :
i n t counter ;

p ro tec ted :
v i r t u a l void i n i t i a l i z e ( ) ov e r r i d e ;
v i r t u a l void handleMessage ( cMessage ∗msg) ove r r i d e ;

} ;
Define_Module (DADbridge ) ;
void DADbridge : : i n i t i a l i z e ( ) {

counter =0;
}
void DADbridge : : handleMessage ( cMessage ∗msg) {

cModule ∗y = msg−>getSenderModule ( ) ;
i n t SN = y−>getIndex ( ) ;
const char ∗ t t t = msg−>getName ( ) ;
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i f ( strcmp ("MLRv2leave " , t t t )==0) {
counter++;

}
i n t SN1 = counter ;
i f ( strcmp ("NS" , t t t )==0) {

f o r ( i n t j=SN1 ; j < SN; j++) {
cMessage ∗NScopy = new cMessage ("NScopy " ) ;
send (NScopy , "outDAD" , j ) ;

}
std : : array<int ,510> foo {} ;
f o r ( i n t i =0; i <510; i++) {
foo [ i ]= i ;
}
unsigned seed =
std : : chrono : : system_clock : : now ( ) .
time_since_epoch ( ) . count ( ) ;
s h u f f l e ( foo . begin ( ) , foo . end ( ) ,
s td : : default_random_engine ( seed ) ) ;
i f ( foo [ 0 ] < (SN−SN1) ) {

cMessage ∗NA = new cMessage ("NA" ) ;
send (NA, "outL " ) ;
cMessage ∗NAfai l = new cMessage (" NAfai l " ) ;
send ( NAfail , "outHR" , SN) ;
f o r ( i n t g = SN1 ; g < SN; g++) {
cMessage ∗NA =new cMessage ("NA" ) ;
send (NA, "outHR" , g ) ;
}

}
}
i f ( strcmp ("NAannounce" , t t t )==0) {

i f (SN == 0) {
cMessage ∗NAannounceR = new cMessage ("NAAnnounceR" ) ;
send (NAannounceR , "outL " ) ;
}
e l s e {
f o r ( i n t h = SN1 ; h < SN; h++) {
cMessage ∗NAannounce = new cMessage ("NAAnnounce " ) ;
send (NAannounce , "outHR" , h ) ;
}
cMessage ∗NAannounceR = new cMessage ("NAAnnounceR" ) ;
send (NAannounceR , "outL " ) ;
}

}
}
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Listing A.2: OMNeT++ coding for the Efficient NDP

#inc lude <s t r i n g . h>
#inc lude <s td i o . h>
#inc lude <omnetpp . h>
#inc lude <iostream>
#inc lude <algorithm>
#inc lude <array>
#inc lude <random>
#inc lude <chrono>

us ing namespace omnetpp ;

c l a s s Router : pub l i c cSimpleModule
{
p r i va t e :

i n t counter ;
p ro tec ted :

v i r t u a l void i n i t i a l i z e ( ) ov e r r i d e ;
v i r t u a l void handleMessage ( cMessage ∗msg) ove r r i d e ;

} ;
Define_Module ( Router ) ;
void Router : : i n i t i a l i z e ( ) {

counter =0;
}
void Router : : handleMessage ( cMessage ∗msg) {

cModule ∗x = msg−>getSenderModule ( ) ;
i n t sn = x−>getIndex ( ) ;
const char ∗ t = msg−>getName ( ) ;
i f ( strcmp ("De−r e g i s t r a t i o n " , t )==0) {

counter++;
}
i n t sn1 = counter ;
i f ( strcmp ("RS" , t )==0) {
cMessage ∗RA = new cMessage ("RA" ) ;
send (RA, "outR" , sn ) ;
}

e l s e i f ( strcmp (" Registrat ionNS " , t )==0) {
std : : array<int ,510> foo {} ;
f o r ( i n t i =0; i <510; i++) {

foo [ i ]= i ;
}
unsigned seed =
std : : chrono : : system_clock : : now ( ) .
time_since_epoch ( ) . count ( ) ;
s h u f f l e ( foo . begin ( ) , f oo . end ( ) ,
s td : : default_random_engine ( seed ) ) ;
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i f ( f oo [ 0 ] < ( sn−sn1 ) ) {
cMessage ∗NA =new cMessage (" NAfai l " ) ;
send (NA, "outR" , sn ) ;
}
e l s e {
cMessage ∗NA2 =new cMessage ("NApass " ) ;
send (NA2, "outR" , sn ) ;
}

}
}

c l a s s Host : pub l i c cSimpleModule
{

protec ted :
v i r t u a l void i n i t i a l i z e ( i n t n) ove r r i d e ;
v i r t u a l cMessage ∗ generateMessage ( ) ;
v i r t u a l cMessage ∗generateMessageA ( ) ;
v i r t u a l void handleMessage ( cMessage ∗msg) ove r r i d e ;

} ;
Define_Module ( Host ) ;
void Host : : i n i t i a l i z e ( i n t n) {

f o r ( i n t i =0; i <500; i++) {
i f ( getIndex()== i ) {

i f ( i <6) {
cMessage ∗msg = generateMessage ( ) ;
i n t k = uniform (600∗ i , 600∗( i +1)−40);
scheduleAt (k , msg ) ;
}
e l s e {
i n t j = i − 6 ;
cMessage ∗msg = generateMessage ( ) ;
i n t k = 3600 + uniform (1200∗ j , 1200∗( j +1)−40);
scheduleAt (k , msg ) ;
}

}
}
f o r ( i n t i =0; i <500; i++) {

i f ( getIndex()== i ) {
i f ( i <2) {

cMessage ∗msg3 = generateMessageA ( ) ;
i n t k2 = uniform (1200∗( i +1) , 1200∗( i +2)−1);
scheduleAt ( k2 , msg3 ) ;

}
e l s e {

i n t j = i − 2 ;
cMessage ∗msg3 = generateMessageA ( ) ;
i n t k2 = 3600 + uniform (600∗ j , 600∗( j +1)−1);
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scheduleAt ( k2 , msg3 ) ;
}

}
}

}
cMessage ∗Host : : generateMessage ( )
{

cMessage ∗msg = new cMessage ("RS" ) ;
r e turn msg ;

}
cMessage ∗Host : : generateMessageA ( )
{

cMessage ∗msg3 = new cMessage ("De−r e g i s t r a t i o n " ) ;
r e turn msg3 ;

}
void Host : : handleMessage ( cMessage ∗msg) {

const char ∗ t t=msg−>getName ( ) ;
i f ( strcmp ( tt , "RS")==0) {

send (msg , " outH " ) ;
}
i f ( strcmp ( tt , "De−r e g i s t r a t i o n ")==0) {

send (msg , " outH " ) ;
}
i f ( strcmp ( tt , "RA")==0) {

cMessage ∗NS = new cMessage (" Registrat ionNS " ) ;
send (NS, "outH " ) ;

}
i f ( strcmp ( tt , "NAfai l ")==0) {

cMessage ∗NS = new cMessage (" Registrat ionNS " ) ;
send (NS, "outH " ) ;

}
}
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Movement scenario implementation

Similar to entering and leaving scenario, generateMessage() function is mainly
used to create self-generated messages and handleMessage() is used to make next
behavior decision by which kind of messages the device receives or generates.
However, periodical generated messages are used in this scenario.

Listing B.1: OMNeT++ coding for legacy NDP

#inc lude <s t r i n g . h>
#inc lude <omnetpp . h>

us ing namespace omnetpp ;

c l a s s Near : pub l i c cSimpleModule
{

protec ted :
v i r t u a l void i n i t i a l i z e ( ) ov e r r i d e ;
v i r t u a l void handleMessage ( cMessage ∗msg) ove r r i d e ;

} ;
Define_Module ( Near ) ;
void Near : : i n i t i a l i z e ( ) {}
void Near : : handleMessage ( cMessage ∗msg) {}

c l a s s EAH : pub l i c cSimpleModule
{

protec ted :
v i r t u a l void i n i t i a l i z e ( i n t n) ove r r i d e ;
v i r t u a l cMessage ∗ generateMessage ( ) ;
v i r t u a l cMessage ∗generateMessageA ( ) ;
v i r t u a l cMessage ∗generateMessageB ( ) ;
v i r t u a l void handleMessage ( cMessage ∗msg) ove r r i d e ;

73
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} ;
Define_Module (EAH) ;
void EAH: : i n i t i a l i z e ( i n t n) {

f o r ( i n t j =0; j <100; j++) {
i f ( getIndex()== j ) {

i n t k = uniform (3600∗ j , 3600∗( j +1)) ;
cMessage ∗msg = generateMessage ( ) ;
scheduleAt (k , msg ) ;
i n t a = (k/3600+1)∗3600;
cMessage ∗msg2 = generateMessageA ( ) ;
scheduleAt (a , msg2 ) ;
f o r ( i n t g=0; g<5; g++) {

cMessage ∗msg3 = generateMessageB ( ) ;
i n t b = a + 5∗( g+1);
scheduleAt (b , msg3 ) ;

}
}

}
}
cMessage ∗EAH: : generateMessage ( )
{

cMessage ∗msg = new cMessage
(" LoseConnec t i onEventSe l fNot i f i c a t i on " ) ;
r e turn msg ;

}
cMessage ∗EAH: : generateMessageA ( )
{

cMessage ∗msg2 = new cMessage (" UserpacketNS " ) ;
r e turn msg2 ;

}
cMessage ∗EAH: : generateMessageB ( )
{

cMessage ∗msg3 = new cMessage ("NSprobe " ) ;
r e turn msg3 ;

}
void EAH: : handleMessage ( cMessage ∗msg) {

const char ∗ t t=msg−>getName ( ) ;
i f ( strcmp ( tt , "UserpacketNS")==0) {

send (msg , " outH " ) ;
}
i f ( strcmp ( tt , "NSprobe")==0) {

send (msg , " outH " ) ;
}

}

c l a s s NUDbridge : pub l i c cSimpleModule
{
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protec ted :
v i r t u a l void i n i t i a l i z e ( ) ov e r r i d e ;
v i r t u a l void handleMessage ( cMessage ∗msg) ove r r i d e ;

} ;
Define_Module (NUDbridge ) ;
void NUDbridge : : i n i t i a l i z e ( ) {}
void NUDbridge : : handleMessage ( cMessage ∗msg) {

const char ∗ t t t=msg−>getName ( ) ;
cModule ∗x = msg−>getSenderModule ( ) ;
i n t sn = x−>getIndex ( ) ;
i f ( strcmp ( t t t , "UserpacketNS")==0) {

f o r ( i n t i =0; i <5; i++) {
i f ( i != sn ) {
cMessage ∗userpacketNS =
new cMessage (" userpacketNS " ) ;
send ( userpacketNS , "outN" , i ) ;
}

}
cMessage ∗userpacketNS =
new cMessage (" userpacketNS " ) ;
send ( userpacketNS , "outtoR " ) ;

}
i f ( strcmp ( t t t , "NSprobe")==0) {

f o r ( i n t i =0; i <5; i++) {
i f ( i != sn ) {
cMessage ∗nsprobe = new cMessage (" nsprobe " ) ;
send ( nsprobe , "outN" , i ) ;
}

}
cMessage ∗nsprobe = new cMessage (" nsprobe " ) ;
send ( nsprobe , "outtoR " ) ;

}
}
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Listing B.2: OMNeT++ coding for the Effcient NDP

#inc lude <s t r i n g . h>
#inc lude <omnetpp . h>

us ing namespace omnetpp ;

c l a s s Near : pub l i c cSimpleModule
{

protec ted :
v i r t u a l void i n i t i a l i z e ( ) ov e r r i d e ;
v i r t u a l void handleMessage ( cMessage ∗msg) ove r r i d e ;

} ;
Define_Module ( Near ) ;
void Near : : i n i t i a l i z e ( ) {}
void Near : : handleMessage ( cMessage ∗msg) {

cModule ∗x = msg−>getSenderModule ( ) ;
i n t sn = x−>getIndex ( ) ;
const char ∗ t = msg−>getName ( ) ;
i f ( strcmp (" Registrat ionNS " , t )==0) {
cMessage ∗NA = new cMessage ("NA" ) ;
send (NA, "outR" , sn ) ;
}

}

c l a s s EAH : pub l i c cSimpleModule
{

protec ted :
v i r t u a l void i n i t i a l i z e ( i n t n) ove r r i d e ;
v i r t u a l cMessage ∗ generateMessage ( ) ;
v i r t u a l cMessage ∗generateMessageA ( ) ;
v i r t u a l cMessage ∗generateMessageB ( ) ;
v i r t u a l cMessage ∗generateMessageC ( ) ;
v i r t u a l cMessage ∗generateMessageD ( ) ;
v i r t u a l cMessage ∗generateMessageE ( ) ;
v i r t u a l void handleMessage ( cMessage ∗msg) ove r r i d e ;

} ;
Define_Module (EAH) ;
void EAH: : i n i t i a l i z e ( i n t n) {

cMessage ∗msg = generateMessage ( ) ;
scheduleAt (0 , msg ) ;
f o r ( i n t j =0; j <100; j++) {
i f ( getIndex()== j ) {

i n t k1 = uniform (3600∗ j , 3600∗( j +1)) ;
cMessage ∗msg2 = generateMessageA ( ) ;
scheduleAt ( k1 , msg2 ) ;
f o r ( i n t i =0; i< ( k1 /6000) ; i++) {

cMessage ∗msg = generateMessage ( ) ;



“NDP3” — 2017/10/10 — 21:11 — page 77 — #93

Movement scenario implementation 77

scheduleAt (6000∗( i +1) , msg ) ;
}
i n t a = ( k1 /3600+1)∗3600;
i n t a1 = ( k1 /6000+1)∗6000;
i f ( ( a−k1 ) > ( a1−k1 ) ) {

cMessage ∗msg3 = generateMessageB ( ) ;
scheduleAt ( a1 , msg3 ) ;
f o r ( i n t g=0; g<5; g++) {

cMessage ∗msg4 = generateMessageC ( ) ;
i n t b = a1 + 5∗( g+1);
scheduleAt (b , msg4 ) ;

}
cMessage ∗msg6 = generateMessageE ( ) ;
scheduleAt (a , msg6 ) ;

}
e l s e i f ( ( a−k1 ) == (a1−k1 ) ) {

cMessage ∗msg3 = generateMessageB ( ) ;
scheduleAt ( a1 , msg3 ) ;
f o r ( i n t g=0; g<5; g++) {

cMessage ∗msg4 = generateMessageC ( ) ;
i n t b = a1 + 5∗( g+1);
scheduleAt (b , msg4 ) ;

}
cMessage ∗msg5 = generateMessageD ( ) ;
scheduleAt (a , msg5 ) ;

}
e l s e {

cMessage ∗msg5 = generateMessageD ( ) ;
scheduleAt (a , msg5 ) ;
f o r ( i n t g=0; g<5; g++) {

cMessage ∗msg4 = generateMessageC ( ) ;
i n t b = a + 5∗( g+1);
scheduleAt (b , msg4 ) ;

}
cMessage ∗msg3 = generateMessageB ( ) ;
scheduleAt ( a1 , msg3 ) ;
cMessage ∗msg6 = generateMessageE ( ) ;
scheduleAt ( a+3600 , msg6 ) ;

}
}

}
}

cMessage ∗EAH: : generateMessage ( )
{

cMessage ∗msg = new cMessage (" Registrat ionNS " ) ;
r e turn msg ;
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}
cMessage ∗EAH: : generateMessageA ( )
{

cMessage ∗msg2 = new cMessage
(" LoseConnec t i onEventSe l fNot i f i c a t i on " ) ;
r e turn msg2 ;

}
cMessage ∗EAH: : generateMessageB ( )
{

cMessage ∗msg3 = new cMessage (" r eg i s t r a t i onNS " ) ;
r e turn msg3 ;

}
cMessage ∗EAH: : generateMessageC ( )
{

cMessage ∗msg4 = new cMessage ("NSprobe " ) ;
r e turn msg4 ;

}
cMessage ∗EAH: : generateMessageD ( )
{

cMessage ∗msg5 = new cMessage (" UserpacketNS " ) ;
r e turn msg5 ;

}
cMessage ∗EAH: : generateMessageE ( )
{

cMessage ∗msg5 = new cMessage (" userpacketNS " ) ;
r e turn msg5 ;

}
void EAH: : handleMessage ( cMessage ∗msg) {

const char ∗ t t=msg−>getName ( ) ;
i f ( strcmp ( tt , " Registrat ionNS")==0) {

send (msg , " outH " ) ;
}
i f ( strcmp ( tt , " r e g i s t r a t i onNS ")==0) {

send (msg , " outH " ) ;
}
i f ( strcmp ( tt , "UserpacketNS")==0) {

send (msg , " outNS " ) ;
}
i f ( strcmp ( tt , "NSprobe")==0) {

send (msg , " outH " ) ;
}
i f ( strcmp ( tt , "userpacketNS")==0) {

send (msg , " outNS " ) ;
}

}
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