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Abstract

Today, transistors with 20 nanometer (nm) channel length are in mass produc-
tion and many researchers believe that we are reaching a limit with downsiz-
ing conventionally used silicon metal-oxide-semiconductor field-effect transistors
(MOSFETs) [1]. To keep up with the trend of making the transistor smaller,
new channel materials are studied, and graphene has come into the spotlight.
Graphene became a serious contender mostly due to its high mobility, but other
properties such as high velocity saturation and the two-dimensional (2D) nature
of the material have gained more attention in recent years [2–4].

The first graphene field-effect transistor (GFET) was reported in 2004, since
many transistors with graphene as a channel material have been successfully
fabricated [3]. It is important to have accurate simulation models that showcase
all the peculiar behaviours of GFETs. Even though several new models with high
accuracy, have been presented in recent years, few theoretical explanations exist.
This thesis work focuses greatly on the theory behind two different simulation
models for GFETs. Several parameter approximations are investigated, with
focus on the possibility of showcasing negative differential resistance (NDR).

In conclusion, we can see that the drift-diffusion (DD) model show good
agreement with data and showcases NDR, while the virtual source (VS) model is
more unstable and does not give NDR. I hope this thesis can act as a knowledge
base, to facilitate for future simulation models.
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Populärvetenskaplig
sammanfattning

Transistor av materialet grafen

En av världens största uppfinningar är också den minsta av dom alla. Transis-
torn storlek är endast 1/5000 av ett hårstrå. Men låt inte detta lura er, tack
vare denna smarta uppfinning utför din mobil mer och mer avancerade uppgifter.

Transistorn sägs vara en av de största uppfinningarna i modern historia. Upp-
finningen har nämnts i samma klass som bilen och telefonen. Idag finns tran-
sistorn i nästan all modern elektronik, vilket inte är så chockerande då 2 913
276 327 576 980 000 000 stycken transistorer har tillverkats industriellt sedan
1947 [5]. Siffran blir inte mer greppbar bara för att man ser hur många tran-
sistorer det är per person på jorden; 388 436 843 677 stycken transistorer per
person.

Trots detta, är inte transistorn något som diskuteras i vardagliga samman-
hang. Så vad är en transistor? Enkelt uttryckt så är det en elektronikkompo-
nent, som kan efterliknas vid en ventil. Vanligtvis har transistorn tre terminaler,
vid varje terminal kan spänningen regleras. Beroende på spänningsstyrkorna än-
dras strömsignalen genom komponenten.

Har du märkt att våra tv-apparater, datorer och telefoner tycks bli mindre,
lättare och smidigare trots att de har högre prestanda, kan lagra mer infor-
mation och arbetar snabbare? Detta är till stor del tack vare utvecklingen av
transistorerna. Idag finns det transistorer så små som 20 nanometer (nm) i
massproduktion [3]. Okej, tänker du då, hur stort är 20 nm? Det är en mycket
bra fråga, som inte är helt enkel att svara på. Generellt brukar man säga att
ett hårstrå på ditt huvud är 0.1 mm, det betyder att 20 nm endast är 1/5000
av ett hårstrå. Transistorerna vi tillverkar idag är med andra ord otroligt små.

De flesta transistorer som används idag görs av Kisel. Men när dessa ska
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tillverkas så små som 20 nm börjar det bli problem med materialet Kisel. Det
blir läckage och oönskade kapacitanser som gör att mer energi krävs för att få
önskad effekt. Forskare behövde därför fundera på om det är möjligt att byta
ut Kisel mot något bättre material. Materialet grafen kom upp som tänkbar
ersättare. Grafen är gjort av Kol-atomer och är ett otroligt starkt material.
Materialet är dessutom bättre än någon metall på att leda ström.

I denna rapport tittar jag närmare på speciella egenskaper hos grafen. Jag
går sedan vidare till teorin bakom grafen-transistorer, här beskriver jag vad som
händer när man ändrar spänningen vid de olika terminalerna. Jag har skapat
visuella bilder för att se vad som händer inne i transistorn. Till sist, beskriver
jag hur man kan skapa en matematisk modell som beskriver strömmen som går
genom grafen-transistorn.

Målet med mitt arbete var att på ett grundläggande sätt förklara teorin
bakom de matematiska modellerna för grafen-transistorer. Ofta måste fören-
klingar göras då det är svårt att beskriva allt i en transistor matematiskt. Jag
har undersökt vad tidigare forskare har gjort och jämfört olika förenklingar samt
hur dessa påverkar strömsignalen.
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Chapter 1

Introduction

1.1 Background

In 1965, Gordon E. Moore published the paper Cramming more components
onto integrated circuits [11]. In the paper, Moore projected that the number
of transistors per integrated circuit would have an annual doubling. Moore
updated his prediction in 1975, to a doubling every second year. Today, the
prediction is commonly known as “Moore’s law” and even though over half a
century has passed, the prediction is still true [12]. Transistors with 20 nanome-
ter (nm) channel length are in mass production and many researchers believe
that we are reaching a limit with downsizing conventionally used silicon metal-
oxide-semiconductor field-effect transistors (MOSFETs) [1]. To keep up with
the trend of making the transistor smaller, new channel materials are studied
and graphene has come into the spotlight. Graphene became a serious contender
mostly due to its high mobility, but other properties such as high velocity sat-
uration and the two-dimensional (2D) nature of the material have gained more
attention in recent years [2–4].

The first graphene MOSFET was reported in 2007 [13] and since then, a num-
ber of graphene field-effect transistors (GFETs) have been fabricated [3]. Even
though plenty of working transistors have been created, modeling GFETs re-
mains complicated and complex. Several GFET models using the drift-diffusion
(DD) model have been presented in the past [14–16]. These models are only
valid when the channel length L is longer than the mean free path λ, otherwise
short channel effects have to be taken into consideration. As the down-scaling
of transistors and GFETs continues, it remains important to create accurate
models that do not ignore the effects that occur in short channel devices.
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1.2 Aim

As far as developing simulation models is concerned, one of the greatest chal-
lenges lies in combining high accuracy with simple mathematics, the latter to
allow implementation and model understanding. To create accurate models,
it is important to have good fundamental knowledge. I have experienced that
there are many articles with advanced GFETs simulation models, but few that
explain the particular behaviours that we see in GFETs.

Therefore, the main goal of the Master’s thesis is to describe, explain, show-
case along with mathematically prove the different behaviours in GFETs. I
want to showcase equations as well as visual images to simplify the understand-
ing of the complicated behaviours of GFETs. I hope to create a good basis, for
someone to read who is interested in modelling GFETs.

This thesis work will then use the theory when comparing some different
simulation models. I will look into how they are built and how this ties in
with the theory. I aim to get an understanding of why different models give
accurate and inaccurate results, as well as which approximations work and why.
I will only look at models that can or have been implemented in the hardware
description language Verilog-A. These models can be run with the simulation
program Advanced Design System (ADS) [17]. I will use MATLAB [18] to
analyse, compare and verify equations at earlier stages.

During my studies, I have always been encouraged to do background research
and understand the usefulness of my work result, which is why a part of my
thesis report will focus on the state of art, prospects and obstacles of graphene
as well as GFETs.

My thesis work will take place at Queen Mary University of London (QMUL),
in the Electronics department. At the department, a group of people are focus-
ing on negative differential resistance (NDR) in GFETs. Therefore I will favour
models that manage to showcase that particular phenomena. I will also focus
on understanding the different explanations for the phenomena.

1.3 Report Structure

This report focuses greatly on the theory behind GFET. Chapter 2 Graphene
explores graphene from the atomic to the practical scale. It is followed by
Chapter 3 Field-Effect Transistor, that gives a general introduction to field-effect
transistors (FETs). Chapter 4 Graphene Field-Effect Transistor and Chapter 5
Modelling Graphene Field-Effect Transistor both focus on GFETs, the first on
the theory and visual representation to understand the transport behaviours,
while the latter presents different simulation models. Finally, concluding with

2



Chapter 6 Discussion of Result that discusses the different models together with
an idea of what I think can be done in future work. A list of acronyms as well
as notations are shown in the pre-matter, please refer back to these lists if an
abbreviation is unclear.
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Chapter 2

Graphene

Graphene is a fascinating material that not only conducts heat and electricity
better than any other metal, but is also transparent and flexible. The ma-
terial can withstand mechanical deformation and be folded without breaking.
Graphene has high impermeability for gases and is chemically inert and stable.
What makes graphene unique and so intriguing is that all these sought-after
properties are combined into one single material [3].

In this chapter, graphene is described in depth. The chapter starts of on
the atomic scale and continues to up-scale to the band structure, charge density
and concludes with graphene applications.

2.1 Atomic Structure

Carbon (C) is an essential element to our existence [6]. It is the second most
common element in the human body and a key component of all known life.

2s

2p
x

2p
z

π

sp2

sp2

sp22p
y

Figure 2.1: Visual representation of the orbitals in carbon (C) before and after sp2-
hybridisation.
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Still, it was very recently discovered that carbon in its two-dimensional (2D)
form, can be stable under ambient conditions [10].

Carbon has got four valence electrons in the 2s, 2px, 2py and 2pz or-
bitals. Through sp2-hybridisation, three sp2 orbitals are created, connecting
each orbital to the adjacent carbon neighbour with a strong covalent in-plane
σ-bond [6, 19]. The connected carbon atoms create a single-layered honeycomb
structure material known as graphene [3, 6, 20]. The last valence electron, from
the 2pz orbital, creates the π-orbital perpendicular to the other orbitals. The
π-orbitals define the thickness and enable high conductivity in graphene [19],
which is why graphene under many circumstances can be treated as a material
with just one conduction electron per atom [21].

The atomic arrangement of graphene can be described as a triangular Bravais
[7] lattice with a basis of two atoms per unit cell, see figure 2.2. The lattice
points shown to the left in figure 2.3 can be written as

a1 =

(
3

2
aC−C ,

√
3

2
aC−C

)
,

a2 =

(
3

2
aC−C , −

√
3

2
aC−C

)
,

(2.1)

Where aC−C is the carbon-carbon distance. The three nearest-neighbour vec-
tors, to the left in figure 2.3, can be written as

δ1 = (aC−C , 0) ,

δ2 =

(
− 1

2
aC−C ,

√
3

2
aC−C

)
,

δ3 =

(
− 1

2
aC−C ,−

√
3

2
aC−C

)
.

(2.2)

GrapheneTwo Atom Basis

A B

Triangular Lattice

Figure 2.2: Triangular lattice structure with two atom basis gives the honeycomb struc-
ture of graphene.
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b1

b2

a1

∂1

∂2

∂3

a2

Reciprocal SpaceReal Space

Figure 2.3: Lattice structure for graphene, in real (left) and reciprocal space (K-space)
(right).

The Wigner-Seitz cell definition is typically used to describe the primitive
cell in a crystal. The area of the Wigner-Seitz cell is defined as containing
exactly one Bravais lattice point (in this case the basis of two atoms) as well as
the area constructed by separating the bisectors in between each lattice point
with perpendicular lines. The hexagonal Wigner–Seitz cell for graphene, in real
space, is shown in figure 2.3 to the left.

Real space gives a good understanding of the atomic arrangement, but some
aspects are difficult to showcase, therefore reciprocal space (also known as mo-
mentum space or K-space) can be used. For example, reciprocal space shows
wave interactions more clearly, which is useful when working with electronic
materials on a low scale [22]. After conversion, the reciprocal lattice vectors, a1

and a2 in figure 2.3, can be written as

b1 =

(
2π

3aC−C
,

2π√
3aC−C

)
,

b2 =

(
2π

3aC−C
, − 2π√

3aC−C

)
.

(2.3)

The Wigner-Seitz cell in reciprocal space, commonly known as the the first
Brillouin zone [6, 23], is marked to the right in figure 2.3.

2.2 Band Structure

Graphene can, as was mentioned earlier, be treated as a material containing only
one conduction electron per atom [21]. Therefore, to get a better understanding
of graphene, it is wise to look at the energy dispersion (band structure) of the

6



Figure 2.4: Energy dispersion in graphene as a function of kx and ky from equa-
tion (2.4).

electrons in the π-orbitals. The energy,

E±(k) = ± h0

√
|f(k)|2 − h1|f(k)|2, (2.4)

is derived from the tight-binding Hamiltonian considering that electrons in the
π-orbitals can hop to both their nearest and next-nearest neighbour atoms1.
|f(k)|2 is defined as

|f(k)|2 = 3 + 4 cos

(√
3

2
kyaC−C

)
cos

(
3

2
kxaC−C

)
+ 2 cos

(√
3kyaC−C

)
(2.5)

h0 is the hopping integral between the nearest atom neighbours, while h1 is the
next-nearest neighbour hopping integral [6]. If electrons are considered to only
hop to their nearest neighbour h1 = 0 can be set [19]. k is the momentum vector
defined as (kx, ky), while aC−C is the carbon-carbon distance. The positive part
of the energy dispersion refers to the conduction band and the negative part to
the valence band. Figure 2.4 shows a visual representation of equation (2.4) as
a function of momentum, kx and ky. The values used are [6]

h0 = 2.8 eV,

h1 = 0.1 eV.
(2.6)

An enlargement focusing on the Brillouin zone is shown in figure 2.5. In the
1All calculations, assumptions and approximations are shown explicitly in Appendix A

Graphene energy dispersion using tight-binding approximation.
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Figure 2.5: Enlargement of figure 2.4 focusing on the Brillouin zone. Circled area
shows magnification at K-point.

figure, it is clear that the conduction and valence band meet at six corner points
at the edge of the Brillouin zone. These conical meeting points are often referred
to as the Dirac or K-points of the hexagonal Brillouin zone [6,24]. Their position,
relative to the centre of the Brillouin zone, can be written as

K =

(
2π

3aC−C
,

2π

3
√

3aC−C

)
,

K ′ =

(
2π

3aC−C
,− 2π

3
√

3aC−C

)
.

(2.7)

A magnification close to one of the Dirac points is shown to the left in figure 2.5.
The magnification shows that particles in graphene exhibit linear dispersion
relation close to the Dirac points as

E = ±~vF |k|, (2.8)

where vF is the Fermi velocity of graphene and ~ is the reduced Planck con-
stant. The shape of the band structure, especially close to the Dirac point, is
of great interest, as it does not resemble the shape of conventional metals and
semiconductor materials, where the band structure is approximately parabolic
near the band gap [6, 10]. Another noticeable finding is that graphene has no
band gap unlike an insulator and no partly filled bands like a metal, instead the
valence and conduction band meet at the Dirac points. Graphene is therefore
sometimes referred to as a semi-metal [3]. See figure 2.6 for a visual comparison
between the materials.
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E

Figure 2.6: Energy dispersion for an insulator, a metal and graphene.

2.3 Anti-particles

The linear energy dispersion of graphene closely resembles the Dirac spectrum
of massless Dirac particles [6]. An essential feature of the Dirac spectrum is
the existence of anti-particles: electrons and positrons (fermions). For Dirac
particles with massm, there is an energy band gap between the minimal electron
energy, E0 = mc2, and the maximal positron energy, −E0. This means that the
size of the energy band gap depends on the mass of the fermions, decreasing for
particles with less mass. Far away from the band gap, the energy of the Dirac
fermion depends linearly on the wave vector as

E = ±~c|k|, (2.9)

where c is the speed of light. For Dirac particles without mass the band gap is
zero and the linear relation, in equation (2.9), holds at any energy [10]. This
linear energy dispersion in massless Dirac fermions, is very similar to that
of graphene, which is why graphene is often compared with massless Dirac
fermions. It is an interesting similarity since it explains a lot of the specific
characteristics in graphene, that are normally seen for Dirac particles. More
specifically for graphene, this means that for any electron state with a positive
energy E, a corresponding conjugated hole state with energy -E must exist.
This property is often referred to as the charge-conjugation symmetry [9,10,24].
Electrons and holes in graphene are interconnected, which is rare in other com-
monly used materials where electrons and holes are described by separate (non-
connected) Schrödinger equations [6, 8].
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Figure 2.7: Carrier densities for electrons n and holes p, versus the difference between
the Fermi level and the Dirac point Ef − Ed.

2.4 Local Equilibrium

Before merging further into the traits of graphene it is important to clarify
some expressions. A system that does not exchange matter or heat with the
surroundings, where the variables of the system are independent of time but vary
with position, is said to be in non-uniform equilibrium. For a system to be in
non-uniform equilibrium the electrochemical potential, also known as the Fermi
level, has to be constant. If a voltage is applied over a graphene sheet the Fermi
level cannot be constant and non-uniform equilibrium cannot be established.
But, if in some small neighbourhood of a point one can assume that the potential
is close to constant the system is said to be in local (non-uniform) equilibrium.
For these local points quasi-Fermi levels can be established [25]. In this report
the expression Fermi level, with the notation Ef , will be used for both Fermi
levels and quasi-Fermi levels . Now that the notation of Ef has been clarified
let us move on to the charge density.

2.5 Charge Density

At absolute zero temperature, in neutral and discrepancy free graphene, the
valence band is completely filled and the conduction band is empty, meaning
that the Fermi level Ef goes straight through the Dirac point Ed [21]. However
if a potential is applied, creating an electric field, the Fermi level moves which
therefore change the charge density. For electrons and holes, the charge densities
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can be expressed as

n =
2(kT )2

π(~vF )2
F1

(
Ef − Ed
kT

)
, (2.10)

p =
2(kT )2

π(~vF )2
F1

(
−Ef − Ed

kT

)
. (2.11)

F1(·) is the first-order Fermi-Dirac integral, k is Boltzmann constant and Ef−Ed
is the distance between the Fermi level and the Dirac point. As |Ef − Ed|
gets larger, the total charge density n + p, will increase, thereby increasing
the conductivity and thus making graphene more metallic [7]. This effect is
known as the electric field effect, and was shown experimentally in one of the
first publications about graphene. The effect is a fundamental trait used in
electronic devices, for example in field-effect transistors (FETs) [26].

Unfortunately, graphene is normally not as simple as described above. It
is common that, even in unloaded graphene, due to discrepancies and imper-
fections as well as materials in conjunction interacting with graphene, that
Ef 6= Ed [6]. This means that the conductivity minimum might might oc-
cur when no potential is applied, but rather when a specific potential is applied
moving the levels so that Ef = Ed. The potential needed is referred to as the
Dirac voltage Vdirac [20].

2.6 Klein Tunnelling

In conventional mechanics, where particles is described as point masses, par-
ticles cannot propagate through a region where the potential energy is higher
than the total energy of the particle. However, in (non-relativistic) quantum
mechanics, particles are described by a probability wave from the Schrödinger
equation. When a probability wave hits a potential barrier, it will go inside the
barrier, contrary to conventional mechanics. The wave will decay exponentially
inside the barrier, with greater damping for higher barriers. For thick and high
barriers, the wave will be very dampened for a long period, so that only a tiny
part or no part at all comes out on the other side of the barrier. Hence, the
probability of tunnelling and the transmission coefficient will be small. How-
ever, for a thinner and lower barriers a greater part of the probability wave can
penetrate, which increases the probability of tunnelling and gives a higher trans-
mission coefficient. This phenomena, when the total energy of the particle does
not exceed that of the potential barrier, but it still goes through the barrier, is
known as quantum tunnelling [27].

Then again, as we have discovered electrons and holes in graphene are not
described by the Schrödinger equation. So, it is intriguing to see what happens
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portional to the transmission coefficient.
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the Dirac equation is applied to the barrier problem. To get a better under-
standing of the problem, let us start by looking at what happens with a single
relativistic electron.

2.6.1 Single relativistic electron

The energy eigenvalues of the Dirac equation for a single relativistic electron,
with mass m, can be written as

E = ±
√

(~ck)2 + (mc2)2, (2.12)

and is shown visually in figure 2.9. The upper branch E+ represents the positive
part of the equation and the lower branch E− represent the negative part of the
equation. From the figure it can be seen that, for real values of k we must have
E > mc2 or E < −mc2. Let us imagine that an electron is in a positive energy
state E+ and that it is travelling in the positive x-direction as seen in figure 2.9.
At some point the electron encounters a potential barrier V0. If E − V0 > mc2

the electron will continue travelling in the positive x-direction, but with a wave
number that now has to satisfy

E − V0 =
√

(~ck)2 + (mc2)2. (2.13)
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Equation (2.13) can only be satisfied if k2 > 0, which means that k cannot be
imaginary. For positive group velocity, k also has to be positive. On the other
hand, if the potential very high so that E−V0 < −mc2, the wave number must
satisfy

E − V0 = −
√

(~ck)2 + (mc2)2. (2.14)

For equation (2.14) to be satisfied k cannot be imaginary. The electron will be
in the E− branch, but for it to have a positive group velocity, k also have to be
negative. This means that the particle continues to propagate in the positive
x-direction with a negative k-value. This is what Klein noted in his famous
publication Die Reflexion von Elektronen an einem Potentialsprung nach der
relativistischen Dynamik von Dirac from 1929 [28].

If the value of V0 is something in between our two examples, −mc2 <

E − V0 < mc2, then the dispersion relationship in equation (2.12) can only
be satisfied if k2 < 0. That means that k has to be imaginary. An imaginary
wave number gives a exponential decay, just like in quantum mechanics, there-
fore if this condition is fulfilled, the wave will be completely or partly reflected.

Perfect transmission is accomplish if the value of V0 goes to infinity, this
is the phenomena known as Klein paradox [29]. The essence of the paradox
lies in the prediction that when a relativistic quantum particle, described by
the Dirac equation, travels towards a barrier, such as in figure 2.8, the barrier
becomes more transparent with increased potential V0, in contrast to a conven-
tional non-relativistic particle, described by the Schrödinger equation, where the
probability of tunnelling decreases with increased potential [8]. Even though the
paradox is well accepted there are still different theoretical explanations [30].
One common and intuitive explanation is that, a strong potential is repulsive
for electrons but attractive for holes, which results in holes being carriers [31].

2.6.2 Massless relativistic particle

When the massm, in equation (2.12) and figure 2.9, goes towards zero the energy
dispersion E will coincide with the two lines L and R. Particles belonging to
line L have a negative group velocity, therefore travelling in the left direction,
while particles on line R have a positive group velocity and will travel in the
right direction. This means that there is no gap between the lowest energy of
E+ and the highest energy of E−, hence there is no imaginary k-phase where
the wave can be reflected. The expression,

E = ±~c|k|. (2.15)

always holds for the massless case [29]. Once again it is noticable that equa-
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Figure 2.10: Klein tunnelling in graphene.

tion (2.15) is very similar to equation (2.8), except that the speed of light c, is
used instead of the Fermi velocity vF ≈ c/300 [8].

The transmission probability for particles in graphene is derived to further
emphasise the theory of Klein tunnelling. For simplicity, a perfectly rectangular
potential barrier such as

V (x) =

V0, if 0 < x < L

0, otherwise,
(2.16)

is used, see figure 2.10. The Dirac-like Hamiltonian for graphene, sometimes
referred to as the Weyl Hamiltonian2, in equation (B.10), is used together with
a factor for the potential barrier V0. The incoming graphene particle is assumed
to propagate with an angle γ1 in respect to the x-axis. The expression for the
transmission probability can be written as [8]

T = 1− |r|2

= 1−

∣∣∣∣∣∣∣∣2ie
iγ1 sin(c1L)

sin(γ1)− c2 sin(γ2)

c2

(
e−ic1L cos(γ1 + γ2) + eic1L cos(γ1 − γ2)

)
− 2i sin(c1L)

∣∣∣∣∣∣∣∣
2

(2.17)
2The Weyl Hamiltonian is described further in Appendix B Weyl Hamiltonian for graphene
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where the variables are defined as

c1 =

√
(E − V0)2

~2vF 2
− ky2, (2.18)

c2 = sgn(E) sgn(E − V0), (2.19)

γ2 = arctan

(
ky
c1

)
. (2.20)

Equation (2.17) can be simplified for when |V0| � |E| as

T =
cos2(γ1)

1− cos2(c1L) sin2(γ1)
. (2.21)

The result in equation (2.21) show that perfect transmission always occurs when
particles travel parallel to the x-axis, in other words when γ1 = 0. The same ap-
plies for all values that satisfy c1L = πn, n ∈ Z [8]. In summary, for high enough
barriers particles, who travel parallel to the x-axis, tunnel through unimpeded.

Throughout this section we have seen why Klein tunnelling is such an impor-
tant trait to consider for graphene. The key fact to remember for graphene, is
that both electrons and holes can be charge carriers in the channel at the same
time. In regions where the particle energy is higher than the barrier energy,
charge transport is assured by electrons, whereas when the particle energy is
lower than the barrier energy, holes assure the charge transport role. Therefore
in graphene devices, when one uses the term barrier, it does not indicate a re-
gion with total reflection or exponential dampening, but rather a region where
charge transport is undertaken by holes instead of electrons [9].

2.7 Physical Parameter Values

When using graphene in electronic application it is important to know its exact
physical parameter values. Table 2.1 contains a summary of important param-
eters for graphene. These values are used in this work, unless otherwise stated.

Parameter Value Unit Reference

Carbon-carbon distance, aC−C 1.42 Å [6]
Mean free path, λ 0.3 µm [20,32]
Fermi velocity, vF 106 m/s [8–10]
Maximum current density 108 A/cm2 [3, 20,33]
Strength per density 48 000 kNm/kg [3]

Table 2.1: Physical properties of graphene
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Figure 2.11: Visual representation of the strength of graphene [35].

The extreme strength shown in graphene is because of the strong σ-bond
between the carbon atoms. Professor James Hone of Columbia University ex-
pressed the strength of graphene in a very eloquent way [34]

Our research establishes graphene as the strongest material ever
measured, some 200 times stronger than structural steel. It would
take an elephant, balanced on a pencil, to break through a sheet of
graphene the thickness of Saran Wrap.

A visual representation of the expression is shown in figure 2.11.
Another well known and important trait for graphene is its mobility. The

high mobility has often been seen as the main reason why researchers have had
so high beliefs for material [3]. It has been shown that free standing graphene
has the highest carrier mobility of all semiconductors [36, 37]. The carrier mo-
bility, for free standing graphene, is limited almost only by the acoustic phonon
scattering.

Yet, no parameter value for the mobility is shown in table 2.1. Graphene
is usually placed on or between materials, which due to Coulomb scattering
and optical surface phonons, decreases the mobility. Other factors such as the
quality of graphene, temperature as well as applied electric field also effects
the mobility in graphene [38]. To accurately calculate the carrier mobility, in
a electronic device with graphene, these different effects have to be taken into
consideration, hence why no static value can be added to table 2.1. The mobility
is discussed further in Section 5.2.6 Mobility.
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2.8 Applications

The chapter is concluded with this final section on the prospects and obstacles
for electronic graphene applications.

There are many different areas where graphene is a prosperous material
candidate for electronic applications. Experts talk about graphene having a big
impact in technological fields such as wearable and flexible devices, photonic
devices, nano-electromechanical systems (NEMS), solar cells, batteries, super
dense data storages, bioelectronics as well as high-frequency devices. A closer
look into patent applications shows that the dominant fields are synthesis and
electronics which suggest that graphene is still at an early stage of development
[3].

Graphene is process compatible with conventional processing of semicon-
ductors, which puts the material in a favourable position [20]. Thanks to the
process compatibility, it is possible to integrate graphene components in to sili-
con (Si)-based electronics with the possibility of gradually replacing Si [3]. The
International Technology Roadmap for Semiconductors (ITRS) have stated that
they consider graphene to be a possible candidate for post-Si electronics [39].

The first graphene integrated circuit, in which all components, including
inductors and graphene field-effect transistors (GFETs), integrated on a wafer,
was created in 2011 [1]. Positive results from the circuit showed that graphene
devices with useful functionality and performance can be accomplished [3].

Using graphene as a channel material in transistors is an exciting idea be-
cause of the high mobility, current density and because particles in graphene
show relativistic behaviour [3]. However, graphene gives a poor on-off current
ratio due to its lack of energy band, which is why it is not suitable for logic cir-
cuits [16]. The missing band gap is often discussed as a big obstacle for graphene
in electronic applications. A band gap can be opened, but it comes with the
cost of decreased mobility. It has therefore been expressed that it would be
better to use graphene in new applications rather than as a material to replace
Si [1]. One example is negative differential resistance (NDR), a phenomena that
is normally only seen in two-terminal devices [9].

In analogue and radio frequency (RF) circuits, a band gap is not as im-
portant. Instead, other figure of merit (FOM) such as the intrinsic gain Av,
maximum oscillation frequency fmax and cut-off frequency fT play larger role,
all of which are possible to achieve without a band gap [16]. The theory of
intrinsic gain, maximum and cut-off frequency are described further in chapter
Chapter 3 Field-Effect Transistor.

For possible applications, the problems with manufacturing has to be over-
come. The cost of manufacturing good quality graphene is today too high for
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commercial use. Different techniques are developed and used to create graphene;
micro-mechanical cleavage, chemical vapour deposition (CVD), growth on alter-
native substrates as silicon carbide (SiC) and hexagonal boron nitride (h-BN)
are among some of the most common techniques [3]. Micro-mechanical cleavage
was the technique originally used by Andre Geim and Konstantin Novoselov [40].
The technique was for a long time the best to get large single crystalline struc-
tures. It is still often used in fundamental research because of its low cost
and simplicity. In essence, the only tools needed are a pencil and some tape.
CVD is a useful processing technique since it is used commercially for many
other materials, however the method still has to improve to consistently create
large single crystalline graphene sheets. Growth on alternative substrates have
several benefits such as speed, better lattice match and higher control over the
thickness to ensure that only one monolayer is deposited. But even though both
SiC and h-BN give better results quicker, the cost is still too high compared to
conventionally used Si substrates. In 2011, the cost of SiC was about 25-30
times more expensive than Si [3].
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Chapter 3

Field-Effect Transistor

A field-effect transistor (FET) is an electronic device with at least three ter-
minals: source, drain and gate. A channel, where the current can flow, is in
between the source and drain. An insulator is placed in between the channel
and the gate terminal. Figure 3.1 shows this conventional layout. In most
conventional FETs silicon (Si) is used as a channel material [3].

As its name suggests, FETs relies on an electric field. When a potential
is applied to the gate, an electric field is created. The electric field repels
or attracts electrons in the channel thereby altering the number of free charge
carriers (electrons or holes) available for conduction, hence changing the channel
conductivity [41]. The transistor is in its on-state when the free carrier density
in the channel is high, on the contrary when the free carrier density is low
the transistor is said to be in its off-state. Conventional FETs are unipolar
transistors meaning that the majority charge carriers in the channel are electrons
or holes [20].

Source

Top-gate

Insulator

Channel
Substrate

Drain

Figure 3.1: Layout of typical FET.

20



3.1 Analogue Amplifier

FETs can be used in logic or analogue and radio frequency (RF) applications. In
the latter case, the FETs are commonly used as analogue amplifiers. A typical
set-up is shown in figure 3.2. A potential Vgs applied between gate and source,
controls the current Ids flowing between drain and source. The current Ids
flows through the resistor RL, causing a voltage drop and therefore the output
potential Vout is altered. The difference between the output Vout and input
voltage Vin = Vgs gives the important figure of merit (FOM) called intrinsic
voltage gain,

Av =
Vout
Vin

=
Vout
Vgs

. (3.1)

From the definition, it can be seen that the intrinsic voltage gain depends on
both the transconductance,

gm =
dIds
dVgs

, (3.2)

and the load resistance, RL. To improve the value of Av, large currents must
be achieved. This can be done by enhancing the carrier concentration and
velocity. There are different methods that can be used for enhancement, some
common methods include channel doping, channel material choice as well as size
reduction of channel and gate insulator [20].

V
gs

=

V
in

V
out

R
L

G
D

S

Figure 3.2: Schematic of an analogue amplifier using FET.

Voltage gain Av > 1 is required in general-purpose electronic circuits, such
as analogue voltage amplifiers and digital logic gates. [3]
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Two other important FOM is the cut-off frequency fT and the maximum
oscillation frequency fmax. The cut-off frequency is defined as the frequency
at which the energy flowing through the system is no longer attenuated. This
occurs when intrinsic current gain decreases to unity, so that the current gain
is 0 dB . The maximum oscillation frequency on the other hand, is defined as
the frequency at which the power gain is 0 dB [7].

22



Chapter 4

Graphene Field-Effect
Transistor

In graphene field-effect transistors (GFETs), the channel material is graphene.
The first GFET was reported in 2004, this was a back-gated device that showed
that it was possible to use graphene as a channel material. However, the tran-
sistor had intrinsic voltage smaller than unity Av < 1, and it suffered from
large parasitic capacitances and therefore could not be integrated with other
components [3]. The first graphene metal-oxide-semiconductor field-effect tran-
sistor (MOSFET) was reported in 2007. The results showed that the current
could be controlled with the applied gate voltage and the envisaged capabil-
ity of GFETs was confirmed [13]. After that a number of transistors, that use
graphene as a channel material, have been successfully fabricated [3]. In 2010, a
report showed a successful fabrication of a GFET with Av > 1 [42]. Year 2012,
a group of researchers fabricated a GFET with 67 nanometer (nm) gate length
and the impressive cut-off frequency fT = 427 GHz [43]. The fast development
of GFETs is a good indicator for the potential of the device.

In this chapter we will discuss the theory behind GFETs. The chapter begins
with Section 4.1 Basic Principles where the basic principles are explained along
with some notations. Section 4.2 Carrier Density Inside the Channel further
explores the carrier density as well as the channel potential Vch, for different
biasing conditions. The chapter is concluded with Section 4.3 Negative Differ-
ential Resistance, where the theoretical explanation as well as needed biasing
conditions for negative differential resistance (NDR) are discussed.
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4.1 Basic Principles

A very basic GFET-layout is used in this work. Starting with a wafer, an oxide
layer is deposited. The oxide both acts as a back-gate oxide as well as a material
onto which graphene can be grown more easily. The combination of silicon (Si)
wafer and silicon dioxide (SiO2) is commonly mentioned in literature [3,44,45].
On the oxide the graphene layer is grown, and subsequently the source and drain
terminals as well as the gate-oxide and the gate terminal. The back terminal is
placed at the bottom of the sample. See figure 4.1 for a visual representation. It
is conventional to ground the source and consider it the reference potential in the
device [16]. For simplicity, only the part under the gate terminal is considered
in GFET simulations, this region is called the intrinsic device [14].

Source
Top-gate

Top-oxide

Graphene

Drain

Back-gate

Back-oxide

Substrate

Figure 4.1: Layout of typical GFET.

The carrier concentration in the channel is modulated by the applied gate-
to-source voltage Vgs. In figure 4.1, as in many GFETs, two gates are used
to modulate the potential: top-gate Vgs−top and back-gate Vgs−back [16]. The
applied voltages creates a field-effect in the channel which repels or attracts
electrons or holes. To achieve a high effect for the applied potentials Vgs−top
and Vgs−back, it is important to use thin and high-K (dielectric constant) oxides
between the gates and the channel [3].

The Dirac voltage Vdirac, is a parameter commonly used in analysis, mod-
elling and discussions of GFETs. We have earlier in this report defined it as the
gate potential when the Fermi-level Ef , passes through the Dirac point Ed, see
Section 2.5 Charge Density. This still holds true for GFETs, if there is no charge
difference between source and drain Vds = 0. For that particular case one could
think of Vdirac as the gate potential where the majority charge concentration in
the channel changes sign [6, 46]. However, for the more general case the Dirac
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Figure 4.2: Carrier densities for electrons n and holes p, versus channel potential Vch.

potential is often defined as the gate voltage at minimum current [20]. As will
become evident, the Dirac voltage changes with applied drain-to-source voltage,
which is why in this report we will refer to Vdirac−0 as the Dirac voltage when
Vds = 0. This way Vdirac−0 stays constant, even for changed biasing conditions.

The Dirac voltage should not be confused with the flat-band voltage, Vfb,
which is defined as the voltage needed for no electric field to exist over the
oxide [16,20].

4.2 Carrier Density Inside the Channel

It is crucial to understand how applied potential effects the characteristics and
potential inside the GFET channel.

4.2.1 Channel Potential

The potentials at the source, drain and gate terminals effects both the level of
the Dirac point Ed, as well as the Fermi level Ef . The difference between Ef
and Ed is of great importance as it determines the type of charge as well as the
charge density in the channel. The relationship

Ef − Ed = −qVch, (4.1)
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Figure 4.3: Equivalent circuit of GFET electrostatics used to calculate the channel
potential Vch.

is commonly used, where Vch is known as the channel potential. If Vch < 0,
then Ef is above Ed, on the contrary if Vch > 0, then Ef is below Ed [15].
Vch is discussed and used in many GFET simulations and in modelling, we
will therefore often refer to it instead of Ed and Ef [14–16, 47, 48]. Vch can be
substituted into equations (2.10) and (2.11), hence giving

n =
2(kT )2

π(~vF )2
F1

(
−qVch
kT

)
, (4.2)

p =
2(kT )2

π(~vF )2
F1

(
qVch
kT

)
. (4.3)

Figure 4.2 shows a plot of equations (4.2) and (4.3). In the figure, the effect
of the channel potential on the carrier density is clear; for Vch < 0, the carrier
density of electrons will be the highest, while for Vch > 0 the carrier density for
holes will be the highest.

To calculate Vch in GFETs, an equivalent capacitive circuit of the GFET gate
electrostatics can be used, see figure 4.3. Both top- and back-gate potentials
are regulated as

Vgs−top
′ = Vgs−top − Vdirac−0−top, (4.4)

Vgs−back
′ = Vgs−back − Vdirac−0−back. (4.5)

Vgs−top and Vgs−back are the applied top- and back-gate voltages while Vdirac−0−top

and Vdirac−0−back are the Dirac voltages when Vds = 0 as well as when the re-
spective gate voltage is zero. Vgs−back = 0 for Vdirac−0−top and Vgs−top = 0 for
Vdirac−0−back. [15]. The gate-oxide capacitance for respective top- and back-gate
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are calculated as

Cox−top =
εox−top
tox−top

, (4.6)

Cox−back =
εox−back
tox−back

, (4.7)

where t is the oxide thickness and ε is the oxide permittivity [45]. The exact
expression for the quantum capacitance Cq is [14, 49]

Cq =
2q2kT

π(~vF )2
ln

(
2

(
1 + cosh

(
qVch
kT

)))
. (4.8)

V in figure 4.3 is the voltage drop between the channel and ground. V gets
a relatively simple expression when source is grounded; at the source end the
voltage drop is zero V (x = 0) = 0, while at the drain end the voltage drop it is
equal to the drain-to-source voltage V (x = L) = Vds [16].

The expression

Vch = − (Vgs−top
′ − V ) · Cox−top + (Vgs−back

′ − V ) · Cox−back
Cox−top + Cox−back + α(Vch)Cq(Vch)

, (4.9)

can be derived from figure 4.3 [15,45]. The simplified expression

Vch = − (Vgs−top
′ − V ) · Cox−top

Cox−top + α(Vch)Cq(Vch)
, (4.10)

should be used if the device does not have a back-gate terminal [48].

α =
kT

qVch
·
F1

(
qVch
kT

)
− F1

(
− qVchkT

)
ln
(

2
(

1 + cosh
(
qVch
kT

))) , (4.11)

is the capacitance weighting factor [15]. It is possible to calculate the value of
Vch in both equations (4.9) and (4.10), if the values of V and Vgs are known.

4.2.2 Biasing Configurations

Different biasing configurations are studied in this section, to get a better un-
derstanding of the carrier density inside the channel of GFETs. No back-gate
is used for the sake of simplicity, and the top-gate is therefore denoted as Vgs.
The source is grounded in all configurations. Visual images are used to give
a clearer understanding of how the channel looks, but note that the images
are representative rather than mathematically correct. However, as shown in
the images, the voltage drop in the channel should always be the highest when
the Fermi energy passes through the Dirac point, as the resistivity there is the
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Figure 4.4: First instance of scenarios.

highest [45,50].
In the first instance, scenarios A.1–A.3, it is assumed that there is no po-

tential difference between source and drain, Vds ≈ 0.

Scenario A.1: Vgs < Vdirac. In this scenario Ef is below Ed, Vch > 0. From
figure 4.2, this means that there will be a high concentration of holes. For
decreased values of Vgs, Ef and Ed move further away from each other, which
increases the hole concentration and thereby the conductivity in the channel.
But, when Vgs is increased, Ef and Ed move closer together, thereby decreasing
Vch.

Scenario A.2: Vgs = Vdirac. With this applied potential, Ef goes through Ed,
Vch = 0. This means that the minimum charge density for electrons and holes
is reached, see figure 4.2. The conductivity in the channel is very low.

Scenario A.3: Vgs > Vdirac. In this scenario, Ef is above Ed, Vch < 0. As
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Figure 4.5: Channel potential Vch for when the drain-to-source voltage Vds ≈ 0 V and
the Dirac voltage Vdirac−0 = 0.5 V, scenario A.1-A.3.

can be seen in figure 4.2, this means that the electron density is high. As
Vgs is increased, Ef and Ed move further apart, decreasing Vch and therefore
increasing the electron concentration, hence again increasing the conductivity
in the channel [16].

Equation (4.10) is used in MATLAB [18] to calculate Vch in scenarios A.1–
A.3, the result is displayed in figure 4.5. Vch is calculated at source and drain,
since V is only known at these points. The results are in good agreement with
the theory. Vch has the same value at both source and drain, and as expected
Vch changes sign at Vgs = Vdirac. The correlating charge densities are also
calculated at source and drain, see figure 4.6. In the figure it is somewhat
difficult to see all curve values since they overlap. Nevertheless, we can see that
the results agree with the theory and that same pattern is followed; first high
charge density for holes, which becomes smaller as Vgs increases towards Vdirac.
When Vgs > Vdirac electrons dominate the channel, with increasing density for
larger values of Vgs.

Moving on, in the second instance of scenarios, it is assumed that Vds � 0

creating a clear potential difference between source and drain. This means that
charges can flow in the channel.

Scenario B.1: Vgs < Vdirac−0. In this scenario, Ef is below Ed everywhere
in the channel, Vch > 0. The hole density is high and holes travel from drain
to source generating a current in the same direction. Holes are said to be
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Figure 4.6: Carrier density when the drain-to-source voltage Vds ≈ 0 V and the Dirac
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the majority charge carriers. As Vgs increases the difference between Ed and
Ef decreases, which means the hole density will decrease, which decreases the
channel conductivity and thereby the current.

Scenario B.2: Vgs = Vdirac−0. In this scenario, Ef coincides with Ed at the
source end, Vch = 0. This occurrence is often referred to as the Dirac cone being
introduced into the channel, see figure 4.7b. Of course, one should note that
the Dirac cones are not moving into the channel, it is merely an expression. It
would have been more correct to say that at this occurrence, there is a point
in the channel where Ef and Ed coincide. Ef is below Ed in the rest of the
channel, Vch > 0. Holes are still majority charge carriers for this scenario,
but the channel conductivity is lower compared to scenario B.1 [16]. The local
channel resistivity is inversely proportional to the local carrier density, which
means that most of the voltage drop occurs at the source side where the local
carrier density is the lowest [50].

Scenario B.3: Vdirac−0 < Vgs < Vdirac−0 + Vds. Increasing the potential fur-
ther creates this interesting scenario. Ef is above Ed, Vch < 0, in part of the
channel, while Ef is below Ed, Vch > 0, in the other part of the channel. At the
side closest to source, where Vch < 0, there is a high density of free electrons.
The potential difference, Vds, will push the electrons from source to drain, con-
tributing to the current in the opposite direction. Simultaneously, on the drain
side, where Vch > 0, holes will have a higher density and the potential differ-
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ence will push the holes from drain to source, contributing to the current in the
same direction. Increased gate voltage will decrease the part where Vch > 0,
hence decreasing the hole density, this it is often described as the Dirac cone
moving further into the channel. When the Dirac cone reaches the middle of the
channel both carrier concentrations are equal. However, the minimum current
will probably not occur exactly at this point, since the mobility of holes and
electrons often differ.

Scenario B.4: Vgs = Vdirac−0 +Vds. Ef and Ed coincide, Vch = 0, at the drain
side and in the rest of the channel Vch < 0. One could say that at this point
the Dirac cone have moved all the way through the channel from the source to
the drain side.

Scenario B.5: Vgs > Vdirac−0 + Vds. As the voltage continues to increase Ef
and Ed move away from each other everywhere in the channel, Vch < 0. The
electron density and the conductivity thereby continue to increase [16].

Calculations are again made with MATLAB [18] for scenarios B.1–B.5. The
results are displayed in figures 4.8 and 4.9. Figure 4.8 shows that the source
side is Vch = 0 when Vgs = Vdirac−0, while at drain end is Vch = 0 first at
Vgs = Vdirac−0 + Vds. As expected, that means that for certain values Vch have
different signs throughout the channel, meaning that both electrons and holes
will be charge carriers and thereby contribute to the current. This can also be
seen clearly in figure 4.9 where the type of majority charge carriers differs from
source and drain when Vdirac−0 < Vgs < Vdirac−0 + Vds.
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Figure 4.7: Second instance of scenarios.
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Figure 4.9: Carrier density when the drain-to-source voltage Vds ≈ 1.5 V and the Dirac
voltage Vdirac−0 = 0.5 V, scenarios B.1–B.5.

For these first two instances of scenarios, A and B, Vds has been constant
while the value of Vgs has increased. Let us now continue by looking at a
third and last instance of scenarios where Vgs is static while Vds changes, here
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Figure 4.10: Last instance of scenarios.

Vgs � Vdirac−0.

Scenario C.1: Vds = 0. In the first scenario, no potential is applied between
source and drain. Ef is above Ed, with Vch < 0 having the same value every-
where in the channel. Even though there is a large electron density everywhere
in the channel, the total current, Ids, will be very small due to the lack of po-
tential difference between source and drain. If Vds is decreased, the gap between
Ef and Ed gets wider, hence increasing the carrier density of electrons, but it
would also creating a potential difference, that would generate a current.

Scenario C.2: Vds = Vgs−Vdirac−0. At this point, the Dirac cone is introduced
into the channel on the drain side, Vch = 0. The difference between Ef and Ed
at the source side does not change, hence why Vch at the source end remains the
same. The potential difference in the channel makes electrons go from source
to drain, generating a current in the opposite direction.
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Scenario C.3: Vds > Vgs − Vdirac. Ef is below the Ed, Vch > 0, close to the
drain side. As Vds continues to increase, the Dirac cone moves throughout the
channel. However, since Vch remains constant the source end, the Dirac cone
cannot move all the way. The channel will have both negative and positive Vch,
meaning that both electrons and holes will contribute to the current [16].
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Figure 4.11: Channel potential Vch when the gate-to-source voltage Vgs = 2.0 V and
the Dirac voltage Vdirac−0 = 0.5 V, scenarios C.1–C.3.
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Final calculations using MATLAB [18] are displayed in figures 4.11 and 4.12.
In figure 4.11, the theory of Vch remaining constant at the source end is con-
firmed. It is also shown that the potential Vch at the drain end, change sign at
Vgs = Vgs − Vdirac−0, just like anticipated. In figure 4.12, it can be seen that
both electrons and holes will contribute to the current for Vds > Vgs−Vdirac−0.

In summary, the most important thing that we can note from this is that
in some scenarios, both electrons and hole contribute to the total current. In
regions where Vch < 0, charge transport will be assured by electrons, and on
the contrary where Vch > 0, holes assume the charge transport role.

When discussing general field-effect transistors (FETs), it is accustomed to
express the channel as either n-type, when electrons are charge carriers, or p-
type, when the charge carriers are holes. That the channel can be adjusted, to
be both n- and p-type, is referred to the transistor as having ambipolar charac-
teristics. This is an unusual trait of FETs, since most conventional transistors
are either n- or p-type, not both [8, 9].

4.3 Negative Differential Resistance

An interesting phenomena, that in GFETs is associated with the ambipolar
transport, is the negative differential resistance (NDR). The term negative re-
sistance refers to when an increased voltage across a device’s terminals results
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in a decrease in the electric current. Mathematically NDR can be described as

∆v

∆i
< 0, (4.12)

while
dIds
dVds

< 0. (4.13)

is used more specifically for GFETs [9]. Theoretical and experimental results
show that NDR occurs in GFETs with all sorts of graphene quality, oxides and
gate lengths [9, 38, 50]. It is a general feature of graphene that occurs under
certain biasing conditions [50]. Other devices where NDR can be observed
are resonant tunnel diodes, single-electron-transistors and Esaki diodes. These
devices have a high peak-to-valley current ratio but they suffer due to low peak
current densities. Because of the high current carrying capabilities of GFETs,
the devices do not suffer from low peak current densities [38], which is one of
the main advantages with using GFETs for NDR. Another advantage, is that
it is a three-terminal device, where the gate controls the current flow, which
means that the NDR behaviour can be switched on and off.

4.3.1 Theoretical Explanation

In 2012, a group of researchers proposed that the NDR phenomena, in GFETs,
occurs as a result of the ambipolar transport [50]. However in 2015, Sharma et
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al. showed that the ambipolar transport can only be part of the reason. The
group proposed that NDR occurs due to the competition between the carrier
drift velocity and carrier density [38].

A double-gated GFETmodel is simulated in Advanced Design System (ADS)
[17] and displayed using MATLAB [18] in figure 4.13. The simulation model
is described further in Section 5.2.10 Simulation Model 3. Figure 4.13 shows
Ids versus Vgs−top for six different values of Vds. As can be seen, the point of
minimum current moves to the right for increased potential which leads to an
overlap in the curves around 5 V. The area is enlarged in figure 4.13, between 5

and 6 V it is clear that the simulations with less applied potential Vds, produce
larger currents. This means, that for these bias values NDR behaviour should
be visible. A new simulation is therefore made with the potential value Vgs−top
chosen somewhere in the region where the curves overlap. The simulation results
are shown in figure 4.15, where NDR is clearly visible.

The value of dIds/dVds is shown in figure 4.16, to more easily observe where
the negative differential starts and ends. Extracted from the figure, the NDR
occurs around Vds ≈ 5−6 V. To understand the behaviour, the channel potential
Vch as well as the carrier densities n and p, are calculated using equations (4.2),
(4.3) and (4.9), as in previous scenarios. Figures 4.17 and 4.18 show the result
of the calculations. Ids increases linearly for low values of Vds, however from
figure 4.18, it can be seen that the electron carrier density decreases with in-
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creased Vds. The current continues to grow because a greater potential leads
to an increased drift velocity. The drift velocity continues to increase until it
reaches the velocity saturation, which is inversely proportional to the square
root of the total carrier density. This means that the velocity saturation is high
for low carrier densities, while the velocity saturates at lower values for high
carrier densities [45].

If NDR is wanted in a GFET, it is important to know about the physics
behind the phenomena as it will help when choosing biasing conditions. For
NDR to be visible an increase in the potential Vds needs to lead to a decrease
in carrier density. However, the total carrier density should be large enough
to cause velocity saturation [45], otherwise no NDR will be visible. This often
means applying large gate potentials, which has been done in this simulation
example.
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Chapter 5

Modelling Graphene
Field-Effect Transistor

In this chapter, different simulation models for graphene field-effect transistors
(GFETs) are investigated further. All models must be compatible with the
hardware description language Verilog-A. This means that we are restricted to
the models that we can solve analytically, since the program cannot solve equa-
tions numerically. However, equations are solved numerically in MATLAB [18],
to compare and validate calculations as well as approximations before imple-
mentation. The full models are run using the simulation program Advanced
Design System (ADS) [17].

The general current expression for GFETs can be written as

Ids = −WQ(x)vdrift(x), (5.1)

where W is the width of the channel, Q is the charge carrier density and vdrift
is the drift velocity of the carriers [14,16,45,51]. The assumptions, calculations
and approximations made to 5.1 will determine the accuracy of the model.

This chapter contains four different simulation models, all of which have
been implemented in Verilog-A and run with ADS [17]. All models have been
explained and most calculations are shown explicitly. The chapter begins with
Section 5.1 Ballistic Transport that clarifies how transistor length effects what
model that can be used. Section 5.2 Drift-Diffusion Model compares different
parameter approximations for the drift-diffusion (DD) model, all calculations
and graphs are displayed using MATLAB [18]. Finally, Section 5.3 Virtual
Source Model gives a short introduction into the virtual source (VS) model.
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5.1 Ballistic Transport

The basic concept of local equilibrium have been discussed in Section 2.4 Local
Equilibrium. The assumption of local equilibrium in GFETs is based on the
fact that electrons scatter and collide inside the channel. The average length
each electron travels before a scattering event is called the mean free path λ

[25]. When the channel length becomes smaller, going towards λ, the carriers
start travelling without experiencing any collisions or scatterings that impede
their motion. This type of transport is called ballistic transport. When no
scattering or collisions occur, the assumption of local equilibrium is no longer
valid. Therefore no (quasi-)Fermi levels can be defined, which is one of the
reasons why modelling of ballistic semiconductors is more complicated [52]. The
mean free path for graphene, see table 2.1, is relatively long which means that
ballistic transport cannot be ignored even for transistors that normally are seen
as long channel devices. Additionally, ballistic behaviour for GFETs has been
detected for device lengths longer than 10 µm [3].

5.1.1 Quasi-Ballistic Transport

In literature, the common way to denote quasi-ballistic transport, is any device
in which ballisticity can be detected to such degree that it cannot be neglected,
irrespectively of the channel length [25, 53]. In quasi-ballistic devices, high en-
ergy carriers travel ballistically while other particles travel diffusively. This
means that a model for quasi-ballistic transport has to consider both collision-
free and collision-dominated transport [53].

One interesting point in quasi-ballistic transport models is that quasi Fermi
levels cannot be determined. This makes the carrier mobility a questionable
concept from a theoretical standpoint. Nevertheless, the mobility can still be
measured practically even in the smallest devices [54].

5.2 Drift-Diffusion Model

The drift-diffusion (DD) model is commonly used in literature as well as sci-
entific reports. The model is made under the assumption of local equilibrium.
Local equilibrium enables calculations of local quasi-Fermi levels, from which the
carrier distribution can be calculated using Fermi-Dirac statistics [25]. However,
because local equilibrium must be established, the DD model have a distinct
restriction; the model can only be used on GFETs with channel length longer
than the mean free path λ [14].
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5.2.1 Drift Velocity and New Current Expression

To calculate the current of the model we firstly focus on the last part of equa-
tion (5.1), the drift velocity vdrift. The drift velocity can be written as

vdrift =
µE

1 + µ|E|
vsat

=
µ(−dVdx )

1 +
µ|− dVdx |
vsat

, (5.2)

where µ is the mobility, V is the potential in the channel compared to ground,
and vsat is the saturation velocity [15, 45]. Substituting the expression from
equation (5.2) into equation (5.1) gives

Ids = −WQ(x)
µ
(
−dVdx

)
1 +

µ|− dVdx |
vsat

. (5.3)

Upon first glance, the expression seems daunting, but after some re-arrangement
and calculations,

Ids

(
1 +

µ|dVdx |
vsat

)
= WQ(x)µ

(
dV

dx

)
,

L∫
0

Ids

(
1 +

µ|dVdx |
vsat

)
dx =

L∫
0

WQ(x)µ

(
dV

dx

)
dx,

Ids

L+

L∫
0

µ|dVdx |
vsat

dx

 = W

L∫
0

Q(x)µ

(
dV

dx

)
dx,

Ids

L+

∣∣∣∣∣∣
Vds∫
0

µ

vsat
dV

∣∣∣∣∣∣
 = W

Vds∫
0

Q(x)µdV,

(5.4)

a relatively simple form,

Ids = W

Vds∫
0

Q(x)µdV

L+

∣∣∣∣∣Vds∫0 µ
vsat

dV

∣∣∣∣∣
, (5.5)

can be found. The dilemma with equation (5.5) is that the integral is over
V , instead of the preferable Vch, which most of our variables have a known
dependency on. Because the relationship between V and Vch is well known
from equation (4.9), the following replacement

dV = dV
dVch
dVch

= dVch
dV

dVch
, (5.6)
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Figure 5.1: The weighting factor α versus the channel potential Vch. The exact expres-
sion from equation (4.11) [15] and different approximations [14, 16, 45]. The relative
error between the exact expression and the approximation in equation (5.7) is shown,
with the scale on the right side.

can be made. However, to be able to calculate the derivative from equation (4.9),
the expressions for α and Cq have to be simplified or approximated.

5.2.2 Capacitance Weighting Factor

The capacitance weighting factor α in equation (4.11) has a dependency on Vch.
Yet, a static value of either 1 or 0.5 has been used in earlier works [45,47,51]. The
exact value of α, from equation (4.11), is shown in figure 5.1 using MATLAB [18].
The value of α goes towards 0.5 for q|Vch| � kT , on the contrary α goes towards
1 when q|Vch| � kT . The simple static values α = 1 and α = 0.5 are shown
in the figure. The first gives, as can be seen in figure 5.1, an overestimation for
large values of Vch, while the latter gives an underestimation when Vch is small.

To avoid inaccurate results, yet get a simplified expression, Jing et al. [14]
suggest the following approximation,

α =

(
1

1 + c3Vch2
+ 1

)
αmin, (5.7)

where αmin = 0.5 and the constant is defined as

c3 =
q2

(kT ln(4))2
. (5.8)
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Using MATLAB [18], the relative error, between equation (5.7) and equa-
tion (4.11), is calculated. The biggest error occurs when Ef and Ed are in
close proximity of each other, with maximum value of 11.78% . The relative
error becomes almost undistinguishable for large values of |Vch|.

5.2.3 Quantum Capacitance

Because of the complexity of equation (4.8) approximations are commonly ac-
cepted. Two different approximations as well as the exact value are shown in
figure 5.2. A very simple approximation expressed as

Cq = 2qc4|Vch| (5.9)

can be used [47], where the constant c4 is defined as

c4 =
q2

π(~vF )2
. (5.10)

However, the approximation in equation (5.9) is inaccurate in the proximity of
Vch = 0. Another approximation, commonly known as the square-root-based
approximation,

Cq =
2q2kT ln(4)

π(~vF )2

√
1 +

(
qVch

kT ln(4)

)2

, (5.11)

can be used to improve the accuracy [51]. The relative error, between the
square-root approximation and the exact result, is calculated and displayed
with MATLAB [18], the maximum relative error is 7.97%.

5.2.4 dV/dVch

The derivative of equation (4.9) can be written in a simple form if one assumes
that capacitance weighting factor α = 1 and if one ignores the fact that the
quantum capacitance Cq depends on Vch. This gives the expression

dV

dVch
= 1 +

Cq(Vch)

Cox−top + Cox−back
. (5.12)

If one instead uses equation (5.7) for α and the square-root approximation in
equation (4.8) for Cq substituted into equation (4.9), the derivative can be
expressed as

dV

dVch
= 1 +

c5αmin
(
2 + c3Vch

2
(
3 + 2c3Vch

2
))

(1 + c3Vch2)
3
2

. (5.13)
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Figure 5.2: Quantum capacitance Cq. Exact value, square-root approximation [51] as
well as a second approximation [16]. The relative error between the exact expression
in equation (4.8) and the approximation in equation (5.11) is shown, with the scale on
the right side.
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Where the definition of c3 is shown in equation (5.8) and c5 is defined as

c5 =
2q2kT ln(4)

(Cox−top + Cox−back)π(~vF )2
. (5.14)

Equations (4.6) and (4.7) show further details about Cox−top and Cox−back.
A comparison of the two approximations for dV/dVch from equations (5.12)
and (5.13) are shown in figure 5.3. The figure shows that the biggest difference
occurs in the vicinity of Vch = 0, with maximum value -4.7%.

5.2.5 Carrier Density

There are three important parameters that have not been discussed yet: Q(x),
µ and vsat. The net mobile sheet charge density Qnet can be used as the charge
carrier density, and is expressed as

Qnet = |q(p− n)|. (5.15)

Equation (5.15) is useful for conventional field-effect transistors (FETs). How-
ever, this approximation underestimates the carrier density for when Ef and
Ed are in close proximity, because holes and electrons in graphene both addi-
tively contribute to the overall current, as discussed in Section 4.2.2 Biasing
Configurations. Accurate result is therefore only given from equation (5.15)
when q|Vch| � kT . The charge density relevant for transport,

Qt = q(p+ n), (5.16)

can be used as a mean to improve the model [51]. Equation (5.16) goes towards
equation (5.15) when q|Vch| � kT , but gives a better approximation for small
values of Vch. Figure 5.4 shows a comparison of equations (5.15) and (5.16).

Using the exact expression for Qt demands calculations of n and p with the
Fermi-Dirac integral, which is not completely trivial. A simplification proposed
by Parrish et al. [51] can be written as

Qt ≈
qπ(kT )2

3(~vF )2
+

q3Vch
2

π(~vF )2
, (5.17)

and will be used in this report. The simplification shows good agreement with
the exact data, see figure 5.5. The maximum relative error is only 0.0001%.

Another constant is introduced, to simplify for later calculations:

c6 =
π(kT )2

3(~vF )2
, (5.18)
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Figure 5.6: Comparison between the Qt and Qtot from equations (5.19) and (5.21).

Together with c4 in equation (5.10) this gives the very short expression

Qt = q(c6 + c4Vch
2). (5.19)

Finally, the residual charge density known as electron-hole puddles,

npud =
∆2

π(~vF )2
(5.20)

where ∆ is the spatial inhomogeneity of potential resulting in the puddles [15],
has to be added to the expression. This gives

Qtot = q(c6 + c4Vch
2 + npud). (5.21)

5.2.6 Mobility

The second undefined parameter, is the mobility µ. The effective carrier mobility
µeff is defined as

µeff =
nµn + pµp + npud

(
µn+µp

2

)
n+ p+ npud

, (5.22)

where µn and µp are the low field mobilities for electrons and holes. However,
the fact that the mobility decreases with increased carrier density also has to
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be taken into consideration. An added factor such as

µeff =
nµn + pµp + npud

(
µn+µp

2

)
n+ p+ npud

(
s

s+ Vch2

)
, (5.23)

give better agreement with reality [55]. s is in the unit the square of the reference
channel potential, used as an empirical fitting parameter. Once again, we want
to avoid complicated calculations and instead have a dependency on Vch, as
this will help us for future calculations. A simplification for µnp is suggested by
Dorgan et al. [55] and can be written as follows

µnp =

(
14(µp − µn)Vch√

1 + c3Vch2
+
µp + µn

2

)
. (5.24)

Together with the approximated expression for (n+ p), in equation (5.19), the
expression

µeff =

(
14(µp − µn)(c6 + c4Vch

2)Vch

(c6 + c4Vch2 + npud)
√

1 + c3Vch2
+
µp + µn

2

)(
s

s+ Vch2

)
(5.25)

is derived. The constants are defined in equations (5.8), (5.10) and (5.18).
The expressions for mobility in equations (5.22), (5.23) and (5.25) are shown in
figures 5.7 and 5.8. The relative difference between equations (5.23) and (5.25)
is also shown. The biggest difference occurs in the proximity of Vch = 0 with
the value 0.9% .

5.2.7 Velocity Saturation

Finally the third variable, vsat is reviewed. Velocity saturation is assumed to
be caused by scattering of phonons, once the carrier reaches a specific energy
threshold, it will immediately scatter [56]. In some literature [16, 47], vsat has
been modelled as being constant, for example as

vsat =
2vF
π
. (5.26)

However, the velocity saturation changes with Vch, as we know from Section 4.3
Negative Differential Resistance. Therefore, other approximations of vsat have
to be used to accurately represent this dependency. To model vsat as being
inversely proportional to Vch has been fairly popular. A fitting parameter is
often added to improve the accuracy of the model [16, 51, 56]. One simple
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Figure 5.9: Four approximations for vsat. The constant approximation corresponds
to equation (5.26) [16], Approximation 1 corresponds to equation (5.27) [16, 51, 56],
Approximation 2 corresponds to equation (5.28) [15, 57] and finally the continuous
function in Approximation 3 corresponds to equation (5.29) [14]. The relative differ-
ence between Approximation 2 and 3 is shown, with the scale on the right side.

example, without a fitting parameter, is

vsat =
~Ω

~
√

πQnet
q

, (5.27)

where ~Ω is the optical phonon energy [16, 51, 56]. Equation (5.27) provides
good results for high values of |Vch|, but goes to infinity as Vch goes towards
zero, giving unrealistic values. A two-region model such as,

vsat =


2qΩ

π2~vFQnet

√
πQnet(~vF )2

q −
(~Ω

2

)2
, when |Qnet| ≥ q Ω2

2πvF 2 ,

2vF
π , when |Qnet| < q Ω2

2πvF 2 ,
(5.28)

can be used to avoid the inaccuracy in the proximity of Vch = 0 [15,57]. However,
a two-region model is not optimal since it causes problems, for example by giving
discontinuities in gm. A continuous model that does not go to infinity would be
optimal. The approximation

vsat = vF

(
vsat(max)−vsat(min)

vF

1 + c7Vch2
+
vsat(min)

vF

)
, (5.29)
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Figure 5.10: Drain-to-source current Ids versus drain-to-source potential Vds shown
for both measured data provided by Wang et al. [32] and DD model derived from equa-
tion (5.33).

where
c7 =

( q

5kT

)2

, (5.30)

gives reasonable results with a continuous function [14]. Figure 5.9 shows a
comparison between the approximations. The relative difference between equa-
tions (5.28) and (5.29) is visible with the scale on the right side. The difference
is biggest when Ed and Ef are in close proximity with each other, with the
maximum difference 6.84%.

5.2.8 Simulation Model 1

My first simulation model begins with the expression described in equation (5.5).
The model assumes that the mobility is not dependent on the potential, in the
same manner as has been done by Jiménez [47]. Furthermore, vsat is also said
to be independent on the potential, as in equation (5.26). This means that the
expression can be simplified

Ids =

µW
Vds∫
0

Q(x)dV

L+ µπ|Vds|2vF

. (5.31)
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We then use the simplified version of dV /dVch described in equation (5.12),
which gives an expression that can be written as

Ids =

µW
Vch−source∫
Vch−drain

Q(x)
(

1 +
Cq

Cox−top+Cox−back

)
dVch

L+ µπ|Vds|2vF

. (5.32)

The relative simple expression for the quantum capacitance in equation (5.9) is
used, together with the final expression for the carrier density in equation (5.21),
the expression can be written as

Ids =

µW
Vch−source∫
Vch−drain

(
q(c6 + c4Vch

2 + npud)
) 2qc4|Vch|
Cox−top+Cox−back

dVch

L+ µπ|Vds|2vF

. (5.33)

This expression gives the following numerator integral

q
(

(c6 + npud)

(
Vch +

qc4
Cox−top + Cox−back

Vch
2 sgn(Vch)

)

+ c4

(
Vch

3

3
+

qc4
2(Cox−top + Cox−back)

Vch
4 sgn(Vch)

))∣∣∣∣∣
Vch−source

Vch−drain

.

(5.34)

The model have been implemented in Verilog-A and run with the simulation
program ADS [17]. A comparison between the model and actual measured data
by Wang et al. [32] is shown in figure 5.10. The following parameter values
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L = 5 µm, (5.35)

W = 1 µm, (5.36)

tox−top = 15 nm, (5.37)

tox−back = 300 nm, (5.38)

εox−top = 8.9, (5.39)

εox−back = 3.9, (5.40)

Vgs−back = 0 V, (5.41)

Vdirac−0−top = 1.1 V, (5.42)

Vdirac−0−back = 11 V, (5.43)

Rsource = 2 mΩ, (5.44)

Rdrain = 2 mΩ, (5.45)

µn = 920 cm2/(Vs), (5.46)

µp = 1330 cm2/(Vs), (5.47)

∆ = 0.092 V2, (5.48)

are used in the simulation, all of which are extracted from the measured data
by Wang et al. [32]. Vgs−top have four different values; -1,0,1 and 2 V as shown
in the figure. The mobility is assumed to be constant in this simple simulation
model and is taken as a average between the hole and electron mobility.

5.2.9 Simulation Model 2

In this simulation model we start by making the same assumptions as in Sec-
tion 5.2.8 Simulation Model 1; the mobility µ is independent of the potential,
the velocity saturation vsat is said to be constant as in equation (5.26) and
dV /dVch is described by equation (5.12). This gives us the same expression as
in equation (5.32). However, moving forward we use the more accurate square-
root approximation in equation (5.11) for the quantum capacitance Cq. The
following expression is obtained

Ids =

µW
Vch−source∫
Vch−drain

Q(x)

1 +

2q2kT ln(4)

π(~vF )2

√
1+
(

qVch
kT ln(4)

)2

Cox−top+Cox−back

 dVch

L+ µ

∣∣∣∣∣Vds∫0 1
vsat(Vch)dV

∣∣∣∣∣
. (5.49)
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Figure 5.11: Drain-to-source current Ids versus drain-to-source potential Vds shown
for both measured data provided by Wang et al. [32] and DD model derived from equa-
tion (5.49).

The numerator integral can then be calculated analytically, which gives

qc4
3
Vch

3 − c8
8(c3)3/2

arcsinh (
√
c3Vch)

+
√

1 + c3Vch2

(
c8
8c3

Vch +
c8
4
Vch

3

)∣∣∣∣∣
Vch−source

Vch−drain

+ q (c6 + npud)Vds

(5.50)
where the constants are defined as equations (5.8), (5.10) and (5.18) as well as

c8 =
1

Cox−top + Cox−back
· 2q5kT ln(4)

π2(~vF )4
. (5.51)

The model is implemented in Verilog-A and run using the simulation pro-
gram ADS [17]. The same parameter values as in Section 5.2.8 Simulation
Model 1, equations (5.35)–(5.48) are used, with the result shown in figure 5.11.

5.2.10 Simulation Model 3

In this section we derive a simulation model that uses the most the more pre-
cise approximations described in previous sections. The mobility is therefore
not assumed to be independent of the potential, but instead as described in
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Figure 5.12: Drain-to-source current Ids versus drain-to-source potential Vds shown
for both measured data provided by Wang et al. [32] and DD model derived from equa-
tions (5.53) and (5.54).

equation (5.25). Equation (5.13) is substituted into equation (5.5) which gives

Ids = W

Vch−source∫
Vch−drain

Qµ

(
1 +

c5αmin(2+c3Vch
2(3+2c3Vch

2))
(1+c4Vch2)

3
2

)
dVch

L+

∣∣∣∣∣Vch−source∫
Vch−drain

µ
vsat

(
1 + c5αmin(2+c3Vch2(3+2c3Vch2))

(1+c4Vch2)
3
2

)
dVch

∣∣∣∣∣
. (5.52)

Substituting equations (5.21), (5.25) and (5.29) into equation (5.52) gives an
expression, with the numerator

W

Vch−source∫
Vch−drain

(
q(c6 + c4Vch

2 + npud)
)

·
(

14(µp − µn)(c6 + c4Vch
2)Vch

(c6 + c4Vch2 + npud)
√

1 + c3Vch2
+
µp + µn

2

)(
s

s+ Vch2

)
·

(
1 +

c5αmin
(
2 + c3Vch

2
(
3 + 2c3Vch

2
))

(1 + c4Vch2)
3
2

)
dVch.

(5.53)
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and the denominator

L+

∣∣∣∣∣∣∣∣
Vch−source∫
Vch−drain

(
14(µp−µn)(c6+c4Vch

2)Vch

(c6+c4Vch2+npud)
√

1+c3Vch2
+

µp+µn
2

)(
s

s+Vch2

)
vF

(
vsat(max)−vsat(min)

vF

1+c7Vch2 + vsat(min)
vF

)
∣∣∣∣∣∣∣∣

·

∣∣∣∣∣
(

1 +
c5αmin

(
2 + c3Vch

2
(
3 + 2c3Vch

2
))

(1 + c4Vch2)
3
2

)
dVch

∣∣∣∣∣ .
(5.54)

To simplify the calculation of the expression we assume is assumed that Vch for
npud is the average value of Vch−drain and Vch−source, the same approximation
has been made by Jing et al. [14]. The expression is solved analytically and
implemented in Verilog-A. A simulation is made using ADS [17]. Figure 5.12
shows a comparison between measured data, from Wang et al. [32], and the
simulated DD model from equations (5.53) and (5.54). The same parameter
values as in Section 5.2.8 Simulation Model 1, equations (5.35)–(5.48) are used.

5.3 Virtual Source Model

The model described in this section focuses on ballistic transport and is there-
fore applicable for shorter channels where the ballistic transport is dominant.
However, adjustments can be made to the model so that it works also in the
diffusive regime.

The VS model is an alternative transport model based on the concept of one
(or several) virtual source(s). The height of the VS modulates the number of
charge carriers injected. All carriers that exceed the potential of the VS are said
to travel ballistically to the other terminal with a drift velocity in accordance
with the potential difference between source and drain Vds [4, 25,32].

For graphene this means that a positive drain-to-source potential Vds will
create an electric field that makes holes travel from drain to source, while elec-
trons will travel from source to drain. According to the VS model, the electrons
that are injected from the source with energies higher than the VS at source,
travel ballistically through the channel to the drain side. Simultaneously, holes
injected from the drain side, with energies lower than the VS at source, will
travel ballistically to the source side. Both electrons and holes contribute to the
drain-to-source current Ids. The carriers that cannot pass the barrier on their
respective side are reflected back [4, 48,52].

The principle for ballistic transport starts off the same way as any other long
channel GFETs. The gate voltages electrostatics controls the charge density at
the virtual sources. The concentrations at the virtual sources can be calculated
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as [4, 32,48]

QV S−elec = Cox−topc9φt ln

(
1 + e

Vgs−Vt−elec
c9φt

)
+Qdis, (5.55)

QV S−hole = Cox−topc9φt ln

(
1 + e

Vgs+Vt−hole
c9φt

)
+Qdis, , (5.56)

where Vt−elec and Vt−hole can be found by solving

Vt−elec = Vdirac−0−top − c10φt
1

1 + e

Vgs−(Vt−elec− c10φt2 )
c10φt

2

, (5.57)

Vt−hole = Vdirac−0−top − c10φt
1

1 + e

Vgs+(Vt−hole+ c10φt2 )
c10φt

2

.. (5.58)

Some clarification regarding the notations are in order; Qdis is the charge density
as a result of electron-hole puddles, both c10 and c9 are related to the sub-
threshold, and φt is the thermal voltage defined as

φt =
kT

q
. (5.59)

Qdis, c9, c10 and the oxide thickness tox−top are fitting parameters that have to
be adjusted to experimental data or numerical calculations, for each simulation
[32,48].

Calculation of the drift velocity can be done in a similar manner as for the
DD model. Rakheja et al. [48] presents the following equation

vdrift =
Vdsµ

L

(
1 +

(
Vds
vsat

)β) 1
β

,

=
Vdsµ

L

(
1 +

(
Vdsµ
vV S0L

)β) 1
β

(5.60)

The expression is presented in a different manner but contains the same com-
ponents; a dependency on the mobility µ and the velocity saturation vsat. L is
the length of the transistor channel, vV S0 is the carrier injection velocity at the
virtual source and β is a fitting parameter. The injection velocity and mobility
are the same for both holes and electrons [48]. Instead a contact resistances
are used as a means to compensate for the different behaviours in the hole and
electron branch. Rhole < Relec for when the hole transport is larger [4].

What is interesting with this approximation is that the final current expres-
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sion
Ids = W (QV S−elec +QV S−hole)vdrift, (5.61)

can be found in a relatively simple manner.

5.3.1 Simulation Model 4

The final simulation model is implemented in Verilog-A and run using ADS [17].
The parameters used are taken from Rakheja et al. [48] or the parameter is
assumed to be the same as for the other simulations.
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Figure 5.13: Drain-to-source current Ids versus drain-to-source potential Vds shown
for both measured data provided by Rakheja et al. [48] and VS model derived from
equation (5.61).
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Chapter 6

Discussion of Result

I realised, already at the beginning of my thesis work, that there was a lack of
fundamental explanations for the advanced simulation models used for graphene
field-effect transistors (GFETs). Graphene and GFETs are relatively new fields,
so it is not peculiar that there is room for improvement and that the educational
material is sparse at some levels.

Simultaneously, researchers try to push the limits and be first in discovering
the next revolutionary step for graphene. This means that there is an abundance
of advanced articles to read, but not much that cover the fundamentals. I want
to note that we cannot expect articles to explain every detail as most publisher
have strict length limits. But I still find it rather discouraging that the reader is
assumed to have a deep understanding of not only electronics, but also physics,
quantum mechanics, mathematics and fabrication processes. That is why I
decided to put a large emphasis on the theory behind GFETs, maybe it could
make more people discover the interesting fields of graphene and GFETs.

If the fundamental knowledge is missing, I experienced that it is demanding
to understand why some simulation models are more or less accurate. That
every author seems to claim that their model is as accurate as it can get does
not make it any easier. On several occasions, [14–16, 32, 47, 53] authors use
another person’s findings together with their own improvements. However, I
have from time to time encountered articles where it seems like the author has
not fully understood the theory from the previous author, on which they are
now building their model.

Furthermore, if a basic understanding is missing, notations and terms can
get lost and mixed together, which means that two simulation models can have
the same terms, yet mean different things. For example, Rakheja et al. [48]
present a simulation model that has the parameter Qdis. This parameter is said
to describe the electron-hole puddles, which has been denoted as npud in other
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Figure 6.1: Comparison between the charge density QV S−elec and QV S−hole from equa-
tions (5.55) and (5.56) [48], and the charge density in equations (4.2) and (4.3).

simulation models [15, 16]. However, in the former model the parameter is also
used as a fitting parameter, which means that it has to be adjusted. For me,
that is something that is likely to create confusion.

When I started my thesis work, my first choice was to look at the virtual
source (VS) model since it works even in the ballistic regime. However, the
model did not succeed in showing negative differential resistance (NDR). The
next question therefore became why did it not showcase NDR. As described
in this report, the theory behind NDR has been under debate and different
theories have been put forward. Again, I felt like the fundamental knowledge
was missing. I therefore decided to not only research the theory behind graphene
and GFETs, but also to look at the more commonly used drift-diffusion (DD)
model that I know manages to showcase NDR.

Comparing the VS model with the DD model is complicated. A simple
comparison is shown in figure 6.1. The values of Qdis, c9, c10 and tox−top have
been adjusted according to the model by Rakheja et al. [48] and the value of
npud has been set so that the two graphs give good agreement. We can see that
the graphs have a relatively similar shape which can give us an indication that
the calculations of the charge carrier density are done in an equivalent manner.

Therefore, to get a better understanding of NDR, I decided to investigate
what parameters, in the DD model, are important for the NDR. My hypothesis
was that if I made too large approximations in the parameters such as the
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velocity saturation, the NDR would not be visible. However, all DD models
showed NDR. The only simulation that did not show NDR was the VS model.
This behaviour is somewhat peculiar as I was expecting NDR not to be visible on
the account of the explanation from Sharma et al. [38], see Section 4.3 Negative
Differential Resistance. However, due to a mishap in my programming, I did
some simulations where the drain-to-source voltage Vds in the denominator was
set to 1. For those instances, NDR was not present. Unfortunately, since the
equation have been re-written, it is not simple to draw any type of conclusion
from what that means for the physical device.

Going through the different parameters in the DD model, to see what ap-
proximations are made, was an important part of my work. It gave me a good
insight into what approximations have been made successfully in earlier works
as well as a good understanding of the physics behind the GFET. The relative
error differed from 11.78% for the weighting factor, see figure 5.1, to as little
as 0.0001% for the charge density relevant for transport, see figure 5.5. Most
parameters yield inaccuracy, particularly in the vicinity of the Dirac point, so
that for small values of |Vch|, the model is inaccurate. As a consequence, under
certain biasing conditions, analogue properties are altered, which can drastically
affect the outcome of the circuit design. The approximation improvements in
Section 5.2 Drift-Diffusion Model all look minuscule, but together they amount
in a big difference for the end result, as can be seen in figure 5.10.

In figure 6.2, the three DD models are shown in the same graph. It is
quite arduous to see, but the second simulation model in Section 5.2.9 Simula-
tion Model 2 actually give less accurate result than the simple first simulation
model in Section 5.2.8 Simulation Model 1. This is because the first model
overestimates dV /dVch while Cq is underestimated. This means that these two
parameters actually help to compensate each other, giving a more accurate end
result. If we use the most accurate approximation of Cq, as in simulation model
2, there is no compensation and the result give a greater overestimation. Overall
we can see that the denominator is too small for the first two simulations since
vsat is overestimated, as can bee seen in figure 5.9.

The DD model was pleasant to work with as most parameters have a clear
physical meaning. This also makes it easier for users who are interested in using
the model, rather than understanding all of its different aspects. On the other
hand, the DD model does not consider particles that travel ballistically. Even
though the model gives good agreement with data, one should expect it to fail
for smaller resistor lengths. Ballistic transport is extremely important as the
channel length continues to decrease, which is one of the reasons why I wanted
to focus also on other models than the DD model. Unfortunately, from my
experience, the VS model is much more complex to use. To be able to use the
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Figure 6.2: Drain-to-source current Ids versus drain-to-source potential Vds shown for
both measured data provided by Wang et al. [32] and three different DD models. Model
from Section 5.2.8 Simulation Model 1 is shown with dotted. Model from Section 5.2.9
Simulation Model 2 is shown with dashed lines. The last model from Section 5.2.10
Simulation Model 3 is shown with sold lines.

model, experimental data as well as numerical calculations are needed to match
with the simulation data. The model needs improvement and a reduction in the
amount of fitting parameters. I think that if the theory was studied further,
with the knowledge that I have gained from the DD model, the reason why NDR
is not visible would become clear.

6.1 Further Work

I believe that, for this field to continue to develop, the fundamental knowledge
of all the different properties of graphene and GFETs is crucial. From this,
we will be able to understand what assumptions we make and why they fail
or work. For future work, I believe that the VS model should be investigated
further. I think the model has good potential, especially since it can be adjusted
to function both in the diffusive and ballistic regime. Like I mentioned before, I
think fewer fitting parameters with clearer physical meaning is central in future
work.
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Appendix A

Graphene energy dispersion
using tight-binding
approximation

The following Appendix describes in detail how to calculate the energy dis-
persion of graphene using the tight-binding approximation. The tight-binding
approximation assumes that the electronic wavefunction is well approximated
by a sum of atomic orbitals. Since graphene is described as a triangular Bra-
vais lattice with a base of two atoms the final wavefunction is made out of two
normalised orbital bases

ψ = CAψA + CBψB . (A.1)

Each one can be written as

ψA =
1√
N

∑
A

e2πik·rAφA(r − rA), (A.2)

and
ψB =

1√
N

∑
B

e2πik·rAφB(r − rB). (A.3)

ψA has a sum of all the atomic orbitals belonging to the group of lattice points
named A, see figure 2.2. ψB on the other hand has the sum over the lattice
points B, see figure 2.2.

The Hamiltonian operator is used in quantum mechanics and corresponds
to the total energy of a system. It can be written as

Hψ = Eψ, (A.4)
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where E is the eigen energy of the system [6, 58]. To calculate E the equation
is modified as follows

ψ∗Hψ = ψ∗Eψ∫
ψ∗Hψ dτ =

∫
ψ∗Eψ dτ∫

ψ∗Hψ dτ = E

∫
ψ∗ψ dτ,

(A.5)

where the integral calculated over all space. From this the estimated expectation
value of the energy E can be calculated as

E =

∫
ψ∗Hψ dτ∫
ψ∗ψ dτ

. (A.6)

Substituting the expression from equation (A.1) gives

E =

∫
(CAψA + CBψB)∗H(CAψA + CBψB) dτ∫
(CAψA + CBψB)∗(CAψA + CBψB) dτ

. (A.7)

Next, the expressions in equations (A.2) and (A.3) are added

E =
C∗ACA

∫
ψ∗AHψA dτ + C∗ACB

∫
ψ∗AHψB dτ + C∗BCB

∫
ψ∗BHψB dτ + C∗BCA

∫
ψ∗BHψA dτ

C∗ACA
∫
ψ∗AψA dτ + C∗ACB

∫
ψ∗AψB dτ + C∗BCB

∫
ψ∗BψB dτ + C∗BCA

∫
ψ∗BψA dτ

.

(A.8)
The widely used notation of ∫

ψ∗JψI dτ = 〈ψ∗J |ψI〉 (A.9)

is used to simplified the expression a bit. Which gives

E =
C∗ACA 〈ψ∗A|H|ψA〉+ C∗ACB 〈ψ∗A|H|ψB〉+ C∗BCB 〈ψ∗B |H|ψB〉+ C∗BCA 〈ψ∗B |H|ψA〉

C∗ACA 〈ψ∗A|ψA〉+ C∗ACB 〈ψ∗A|ψB〉+ C∗BCB 〈ψ∗B |ψB〉+ C∗BCA 〈ψ∗B |ψA〉
(A.10)

The so called overlap integrals are given the following notations

SAA = 〈ψ∗A|ψA〉 ,

SBB = 〈ψ∗B |ψB〉 ,

SAB = 〈ψ∗A|ψB〉 ,

SBA = 〈ψ∗B |ψA〉 .

(A.11)
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The hopping integrals get the following notations

HAA = 〈ψ∗A|H|ψA〉 ,

HBB = 〈ψ∗B |H|ψB〉 ,

HAB = 〈ψ∗A|H|ψB〉 ,

HBA = 〈ψ∗B |H|ψA〉 = H∗AB .

(A.12)

From these notations the expression can be simplified to

E =
CACAHAA + CACBHAB + CBCBHBB + CBCAHBA

CACASAA + CACBSAB + CBCBSBB + CBCASBA
. (A.13)

Moving the denominator of the expression over to the other side, the expression
can be written as

E(CACASAA + CACBSAB + CBCBSBB + CBCASBA)

= CACAHAA + CACBHAB + CBCBHBB + CBCAHBA.
(A.14)

Which we write in matrix shape to

[
CA CB

] [ESAA ESAB

ESBA ESBB

][
CA

CB

]
=
[
CA CB

] [HAA HAB

HBA HBB

][
CA

CB

]
[
CA CB

] [HAA − ESAA HAB − ESAB
HBA − ESBA HBB − ESBB

][
CA

CB

]
= 0.

From this, one can derive the secular determinant∣∣∣∣∣HAA − ESAA HAB − ESAB
HBA − ESBA HBB − ESBB

∣∣∣∣∣ = 0, (A.15)

that becomes

(HAA−ESAA)(HBB −ESBB)− (HAB −ESAB)(HBA−ESBA) = 0. (A.16)

Solving for E gives

E = −HABSBA +HBASAB −HAASBB −HBBSAA
2 (SAASBB − SABSBA)

±

√
HABSBA +HBASAB −HAASBB −HBBSAA

2 (SAASBB − SABSBA)
−HAAHBB +HABHBA

(A.17)
The assumption that there is no orbital overlap (Huckel approximations) makes
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the calculations more manageable [6, 58]. The assumption can be written as

〈φ∗(r − rI)|φ(r − rJ)〉 =

0, if rI 6= rJ ,

1, if rI = rJ .
(A.18)

From this assumption the calculation of the overlap integral becomes simpler.
SAA in (A.19) still looks very complex. But all terms containing two different
lattice point will be zero since there is no orbital overlap, (A.18). On the other
hand when a term have the same lattice point, it will remain and add 1/N to
the total sum. A total of N lattice points means that the value of SAA will be
1, thanks to the normalisation of the wave functions. Note A and A′ are in the
calculations to make it easier to differentiate, but both are referring to the same
atom basis and will be constituted of the same lattice vectors.

SAA′ =

∫
ψ∗AψA′ dτ =

1

N

∑
A

e−ik·rA
∑
A′

eik·rA′ 〈φ∗(r − rA)|φ(r − rA′)〉

=
1

N
eik·(a1−a1) 〈φ∗(r − a1)|φ(r − a1)〉

+
1

N
eik·(a1−a2) 〈φ∗(r − a2)|φ(r − a1)〉

...

+
1

N
eik·(a1−aN ) 〈φ∗(r − aN )|φ(r − a1)〉

+
1

N
eik·(a2−a1) 〈φ∗(r − a1)|φ(r − a2)〉

+
1

N
eik·(a2−a2) 〈φ∗(r − a2)|φ(r − a2)〉

...

+
1

N
eik·(a2−aN ) 〈φ∗(r − aN )|φ(r − a2)〉

...

+
1

N
eik·(aN−a1) 〈φ∗(r − a1)|φ(r − aN )〉

+
1

N
eik·(aN−a2) 〈φ∗(r − a2)|φ(r − aN )〉

...

+
1

N
eik·(aN−aN ) 〈φ∗(r − aN )|φ(r − aN )〉

=
1

N
(e0 · 1)N = 1

(A.19)
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Since the wave functions in graphene are equal, SBB = SAA and therefore

SBB = 1. (A.20)

Calculating the other overlap integrals in the same manner gives

SAB = 0,

SBA = SAB = 0.
(A.21)

Now the name “overlap integral” is clarified. When two wave functions do
not overlap at all, the value will be zero. On the contrary, if we are looking at
two wave functions that completely overlap, in the normalised case, the vale of
the overlap integral will be one.

Unfortunately, calculating the hopping integrals is not as easy as calculating
the overlap integrals. When calculating the hopping integrals, it is important
to know which approximations can be made. A common assumption is that the
atoms only interact with their nearest neighbour atoms. But other approxima-
tions, such as next-nearest, next-next-nearest neighbour and so on can also be
used to get a more precise expression. For simplicity, we start by looking at
when atoms are only assumed to interact with their nearest neighbours. This
means that

〈φ∗(r − rI)|H|φ(r − rJ)〉 =

0, if |rI − rJ | > |δ1,2,3|

> 0, otherwise
(A.22)
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The hopping integral HAB can then be calculated as

HAB =

∫
ψ∗AHψB dτ =

1

N

∑
A

e−ik·rA
∑
B

eik·rB 〈φ∗(r − rA)|H|φ(r − rB)〉

=
1

N
eik·(b1−a1) 〈φ∗(r − a1)|H|φ(r − b1)〉

+
1

N
eik·(b1−a2) 〈φ∗(r − a2)|H|φ(r − b1)〉

...

+
1

N
eik·(b1−aN ) 〈φ∗(r − aN )|H|φ(r − b1)〉

+
1

N
eik·(b2−a1) 〈φ∗(r − a1)|H|φ(r − b2)〉

+
1

N
eik·(b2−a2) 〈φ∗(r − a2)|H|φ(r − b2)〉

...

+
1

N
eik·(b2−aN ) 〈φ∗(r − aN )|H|φ(r − b2)〉

...

+
1

N
eik·(bN−a1) 〈φ∗(r − a1)|H|φ(r − bN )〉

+
1

N
eik·(bN−a2) 〈φ∗(r − a2)|H|φ(r − bN )〉

...

+
1

N
eik·(bN−aN ) 〈φ∗(r − aN )|H|φ(r − bN )〉 .

(A.23)
The only terms that will remain, is when bm − an is equal to −δ1, −δ2 or −δ3
since that means that the terms are neighbours. The exponential part will be
the same for all terms

eik·(−δ1) + eik·(−δ2) + eik·(−δ3). (A.24)

When using the fact that k = (kx, ky) as well as the values of δ1,2,3 as specified
in (2.2), the expression can be written explicitly as

f(k) = eikxaC−C + e
−iaC−C

(
1
2kx+

√
3

2 ky
)

+ e
−iaC−C

(
1
2kx−

√
3

2 ky
)

= eikxaC−C + 2 cos

(√
3

2
kyaC−C

)
e−i

1
2kxaC−C .

(A.25)
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The other part of HAB we define as

h0 =
1

N

∑
A

∑
B

〈φ∗A(r − rA)|H|φB(r − rB)〉 (A.26)

for all A and B where |bm − an| = |δ1,2,3|. This gives us a simpler expression

HAB = f(k)h0, (A.27)

where the first part is known. Calculating HBA can be done in the same manner
and will show that

HBA = H∗AB , (A.28)

which will prove useful for us. Next, we take a look at the hopping integrals for
the same sublattices. Starting off with HAA′ . Note that the use of the notation
A and A′ are used even though they represent the same sublattice. Since we
have made the assumption that atoms only interact with their nearest neighbour
atoms, the hopping integral will be zero unless it is the same lattice vector in
the term. This means that we can simplify the expression as follows

HAA =

∫
ψ∗AHψA′ dτ =

1

N

∑
A

e−ik·rA
∑
A′

eik·rA′ 〈φ∗(r − rA)|H|φ(r − rA′)〉

=
1

N
e0
∑
A

〈φ∗(r − rA)|H|φ(r − rA)〉 .

(A.29)
The value is sometimes written as HAA = E2p. Using the same method, the
expression of HBB can be found. Since the two different subsets of lattices all
have the same atoms

HAA = HBB = E2p. (A.30)

The expression for the energy dispersion is now somewhat simplified as

E = E2p ±
√
−E2p − E2pE2p + f(k)h0(f(k)h0)∗

= E2p ±
√
|f(k)h0|2 − E2p(1 + E2p).

(A.31)

The positive part of the energy dispersion refers to the conduction band and
the negative part to the valence band. In calculations, one often consider E2p =

0, to centre the band structure around zero, [6, 19] this further simplifies the
expression

E = ±h0

√
|f(k)|2. (A.32)
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We already know the value of |f(k)|2, which can be simplified as

|f(k)|2 = f∗(k)f(k)

=

(
e−ikxaC−C + e

iaC−C
(

1
2kx+

√
3

2 ky
)

+ e
iaC−C

(
1
2kx−

√
3

2 ky
))

·
(
eikxaC−C + e

−iaC−C
(

1
2kx+

√
3

2 ky
)

+ e
−iaC−C

(
1
2kx−

√
3

2 ky
))

= 3 + 4 cos

(√
3

2
kyaC−C

)
cos

(
3

2
kxaC−C

)
+ 2 cos

(√
3kyaC−C

)
.

(A.33)
Using the same method and technique, while instead approximating so that

the orbitals interact also with their next-nearest neighbours. The energy dis-
persion for this approximation can be written as

E±(k) = ± h0

√
|f(k)|2 − h1|f(k)|2, (A.34)

where h0 is the hopping integral as described earlier and h1 is the next-nearest
neighbour hopping energy defined as

h1 =
1

N

∑
A

∑
B

〈φ∗A(r − rA)|H|φB(r − rB)〉 (A.35)

for all A and B where |bm − an| = |δ1′,2′,3′,4′,5′,6′ | [19, 58].
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Appendix B

Weyl Hamiltonian for
graphene

Equation 2.9 describes the dispersion relation in graphene near the K-points,
the equation is shown figure 2.9 as L and R. Even though (2.9) is often referred
to as being linear, |k| does not necessarily have to be linear. For example, if
k = (kx, ky), the energy dispersion is

Eψ = ±~vF
√
kx2 + ky2 (B.1)

which is not linear. But with some small tricks the useful Weyl Hamiltonian for
graphene can be derived. Firstly, using the deBroglie relationship

p = ~k, (B.2)

the expression for E can be re-written as

Eψ = ±vF
√

(~kx)2 + (~ky)2ψ = ±vF
√

(px)2 + (py)2ψ. (B.3)

Next, using the following relationship

p = −i~∇, (B.4)

the expression can be written as

Eψ = ±vF
√

(−1)2i2~2∇2ψ = ±~vF
√
−∇2ψ,

= ±i~vF
√
∇2ψ.

(B.5)
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Here we can see that we need to take the square root of the Laplacian operator,
which makes the problem less trivial than it first appeared. But with the help
of Pythagoras theorem, the absolute value of k can be written in a different
manner.

k2 = kx
2 + ky

2, (B.6)

together with a re-write version of k as a linear function

|k| = k = σxkx + σyky. (B.7)

From this a relationship between σ and k can be expressed such as

k = σxkx + σyky

⇔

k2 = (σxkx + σyky)2

⇔

kx
2 + ky

2 = σ2
xkx

2 + (σxσy + σyσx)kxky + σ2
yky

2

⇔ 
σ2
x = 1

σ2
y = 1

σxσy + σyσx = 0.

(B.8)

A re-write of (B.5), using equations (B.2) and (B.4) as well and the notation
σ = (σx, σy) gives [29]

Eψ = ±i~vFσ · k = ±ivFσ · p = ±vFσ · (−i~∇) (B.9)

Which is how we get the Hamiltonian for massless Dirac particles, the so called
Weyl Hamiltonian [59]

H = −i~vFσ ·∇, (B.10)

commonly used in research literature [29].

Eψ = ±i~vF
(
σx

δ

δx
+ σy

δ

δy

)
ψ. (B.11)
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