
Robust Security Updates

for Connected Devices

Jonathan Sönnerup, Nooxet@gmail.com
Jonathan Karlsson, Jonathan.karlsson7@gmail.com

Department of Electrical and Information Technology
Lund University

Supervisor:
Dr. Martin Hell, EIT

Fredrik Larsson

January 25, 2016

Printed in Sweden
E-huset, Lund, 2016

Abstract

We are emerging into the IoT (Internet of Things) era as the IoT market is quickly
increasing, giving us connected devices everywhere, from personal accessories to
smart homes and even whole city infrastructures. The manufacturing companies
need to stay competitive in this rapidly evolving market, so they need to minimize
the price and optimize the Time To Market (TTM). When new versions of a
product are released, the older versions do not get the same priority. Still there are
many devices based on the old version in use. With all these old devices connected
to the Internet, problems are raised when software vulnerabilities are found because
they will be more exposed to attackers. This can have severe consequences, not
only for users’ privacy, but also for the security of the society.

This thesis is part of a bigger perspective where the goal is to overcome these
problems. To offer security and risk analysis of systems and to implement and
deploy security patches for them. This thesis focuses on the implementation of a
patching mechanism and the deployment of it in a robust way. Also, to consider
the security aspects of it such as encryption, signing, PKI but also the need for
failure recovery of the system.

i

ii

Table of Contents

List of Abbreviations ix

1 Introduction 1
1.1 Purpose and Goals . 3
1.2 About LTH . 3

2 Background 5
2.1 Internet of Things . 5
2.2 Lightweight Protocols . 5
2.3 Operating Systems in IoT . 7
2.4 Wireless Sensor Networks . 9
2.5 Security . 10

2.5.1 Symmetric Cryptography 10
2.5.2 Asymmetric Cryptography 11
2.5.3 Digital Signatures 11
2.5.4 Cryptographic Hash Functions 11

2.6 Public Key Infrastructure . 12
2.6.1 Digital Certificates 12

2.7 Security in Wireless Sensor Networks 12
2.7.1 Attacks and security in WSNs 13

2.8 Updates . 13
2.8.1 Dissemination 14
2.8.2 Dynamic Software Updates 14
2.8.3 ∆-patches 15
2.8.4 Major/Minor Updates 15
2.8.5 Over the Air 16

2.9 Device Management . 16
2.10 Risk Analysis . 16

3 Vulnerability Assessment 19
3.1 Identification of Vulnerabilities . 19
3.2 Evaluation of Vulnerabilities . 23

4 Case Study - Evaluation 27

iii

4.1 Heartbleed . 27
4.2 Poodle . 28
4.3 Apache module mod_lua . 28
4.4 CSRF . 29
4.5 A More Efficient Assessment . 30

5 Deployment Use Cases 35
5.1 Reference Use Cases . 35

5.1.1 Android 35
5.1.2 Chromebook 37

5.2 Targeted Use Cases . 39
5.2.1 The Company Use Cases 39
5.2.2 WSN 41

5.3 Comparison . 43

6 Deployment 45
6.1 Planning . 45
6.2 Testing . 46
6.3 Proposed Solution . 46

7 Roll Out 49
7.1 Protocols . 49
7.2 Operating Systems . 49
7.3 Security . 50
7.4 Distribution . 50

7.4.1 Dissemination 50
7.5 Architectural considerations . 50

7.5.1 OverlayFS 50
7.6 Our Program / Deploy a Patch ????? 50

7.6.1 Future improvements 52

8 Conclusion 55

9 Crypto Benchmark 57

A Test Appendix 63

iv

List of Figures

1.1 A five step model for secure updates 2

2.1 The TCP/IP and the IoT IP stack 6
2.2 Typical WSN model . 10
2.3 Advertisement Pattern . 14
2.4 Subscription Pattern . 15

3.1 The two main parts in vulnerability assessment. 19

4.1 Sample output from Nessus after scanning a camera. 30
4.2 A typical method for identification and evaluation. They are very

general and the output is based on a high-level description of a
system. 31

4.3 Showing how a better identification and evaluation solution could
work, using machine learning techniques for evaluation of vulnera-
bilities in different environments and with different configurations.
The output is based on a low-level, more fine-grained, description
of a system. 32

5.1 Update process in Android . 37
5.2 Update process in Chrome OS . 38
5.3 Update process for the public transport company 40
5.4 Update process for the enterprise company 41
5.5 Update process in WSNs . 42

6.1 The three main parts in patch deployment. 45
6.2 Ideal Update Process - Semi-Automatic 47
6.3 Ideal Update Process - Fully Automatic 47
6.4 Ideal Update Process (Graphical Illustration) 48

7.1 UML diagram of our patch program 53

v

vi

List of Tables

2.1 Comparison of the OSs . 9

4.1 Summary of how configuration and environment affect the applica-
bility of an attack. A product is marked green if it is not vulnerable.
It is marked red if vulnerable . 33

5.1 Use case comparison . 43

9.1 The table shows benchmark results of different signing algorithms
on different systems. 57

vii

viii

IoT Internet of Things

M2M Machine to Machine

IP Internet Protocol

HTTP Hypertext Transfer Protocol

TCP Transmission Control Protocol

UDP User Datagram Protocol

ICMP Internet Control Message Protocol

MQTT Message Queuing Telemetry Transport

CoAP Constrained Application Protocol

REST Representational State Transfer

RPL IPv6 Routing Protocol for Low-Power and Lossy Networks

6LowPAN IPv6 over Low power Wireless Personal Area Networks

OS Operating System

RTOS Real-time Operating System

MCU Micro Controller Unit

RTSP Real Time Streaming Protocol

WSN Wireless Sensor Network

DTLS Datagram Transport Layer Security

SSL Secure Socket Layer

AES Advanced Encryption Standard

ECC Elliptic Curve Cryptography

DSA Digital Signature Algorithm

ECDSA Elliptic Curve Digital Signature Algorithm

DES Data Encryption Standard

MAC Message Authentication Code

CA Certificate Authority

PKI Public Key Infrastructure

DoS Denial of Service

DM Device Management

MDM Mobile Device Management

OTA Over the Air

x

Chapter1
Introduction

“Although it has been with us in
some form and under different
names for many years, the
Internet of Things (IoT) is
suddenly the thing.”

– Windriver

The IoT revolution has just started and we see a tremendous increase in the number
of devices connected to the Internet. Many companies estimates it to reach a
number of about 50 billion connected devices by the year of 2020 [5]. With such
a remarkable amount of devices we will face an unprecedented security challenge.
The software does not only need to implement security features and be built in a
robust way. It also has to stay updated by receiving security patches in case any
vulnerabilities are found. Another problem is all the older software versions used
in products that are no longer produced or maintained by companies. Products
that are still widely in use. All these products can pose a threat to the society and
the user privacy if the software is outdated and exposed to the Internet. It is of
uttermost importance to find viable ways to increase the security in all IoT devices,
even the older ones. With a cost efficient and fast security update mechanism, the
security can be maintained in the long term.

One way to increase the security is to always keep the devices up-to-date and
for this, a well defined patch management process is necessary. First of all, the
existence of a vulnerability needs to be detected and identified. Then, the severity
needs to be evaluated for a specific device or system, hence enough information
about the system is needed in order to take appropriate action. Planning is needed
to decide when the patch should be implemented and if all devices should be
updated or just a subset. Furthermore, a patch needs to be written and tested or
in case a patch already exists, just tested. Lastly, the patch needs to be deployed
to all vulnerable devices in a secure way. This process is summarized in figure 1.1.
It can be utilized in any area of software patch management, where our focus will
be on IoT devices and on The Company’s products.

1

2 Introduction

Figure 1.1: A five step model for secure updates

Introduction 3

1.1 Purpose and Goals
The purpose for this Master’s thesis is to further develop the idea of a security
update mechanism for IoT, to determine the potential and to investigate different
possibilities for maintaining up-to-date software.

Some of the sub goals to this are to investigate the current state of the art
methods for updating and for software management and also to investigate the
contemporary software used in IoT devices. Another goal is to implement a proof
of concept, with a working and secure update mechanism.

Much of this Master’s thesis’ work is done at The Company, and it is a col-
laboration between Lunds Tekniska Högskola (LTH) and The Company.

1.2 About LTH
Lunds Tekniska Högskola is a faculty of the Lund University. With almost 10 000
students it is one of the biggest technical higher degree schools in Sweden. LTH
and Lund University has been listed in the top 100 University rankings for several
years [37] [10].

4 Introduction

Chapter2
Background

This chapter introduces some of the fundamental concepts for understanding the
Internet of Things and security related issues.

2.1 Internet of Things

Internet of Things is the trending term for objects or “things” equipped with
processors and sensors, begin able to be aware of its surroundings and communicate
with each other. This is also known as Machine to Machine (M2M) communication.
One of the goals of IoT is to build networks of connected devices to create smart
and autonomous systems.

The security in IoT is becoming more important now than ever, especially
because of the large increase in the number of connected devices. The more con-
nected devices there are, the larger the “playground” is for adversaries. This opens
up a whole new world and it leads to almost endless possibilities, and the impacts
can be severe. This puts serious pressure on the security mechanisms in IoT. Many
times, the security is not even considered when a product is being developed. The
main goal is to make it work, for as low cost as possible. Implementing security
is both time consuming and makes the code bigger and more complex which is
undesirable, especially in IoT devices. As security is becoming such a crucial part
of the software development, one can not afford to not have it implemented.

The IoT devices are to be integrated into an already existing ecosystem - the
Internet.

2.2 Lightweight Protocols

The standard protocols, such as HTTP, TCP etc. used to communicate over the
Internet are often too heavy for the small and resource constrained IoT devices.
However, they still have to use the standard IP stack in some sense to be able to
communicate with other connected devices. Some sort of adaptation is needed.
For this reason, some lightweight protocols specifically designed to meet the needs
of these devices have in recent years been developed, either to replace the standard
protocols or to adapt to them.

5

6 Background

Some widely used, new standard lightweight protocols are explained below.
Figure 2.1 shows the differences and similarities between the original TCP/IP
stack and the lightweight focused IoT stack.

Figure 2.1: The TCP/IP and the IoT IP stack

CoAP1 (Constrained Application Protocol) is a transfer protocol for machine-to-
machine communication (M2M) used in IoT devices. It is based on the REST
architecture and runs on top of UDP, unlike HTTP which operates over TCP.
CoAP also integrates well with JSON, XML and CBOR among other formats.
It is designed to operate on small devices, even 8-bits MCUs, with memory as
low as tenths of kilobytes. Despite this, CoAP provides security in the form
of DTLS which with default parameters is equal to a 3072-bits RSA key.

UDP2 is a stateless protocol since delivery of packets is not guaranteed. Unlike
TCP, packets can arrive in any order in UDP. This makes UDP more of a
lightweight protocol compared to TCP, and thus more suited for IoT devices.

1http://coap.technology/
2https://www.ietf.org/rfc/rfc768.txt

http://coap.technology/
https://www.ietf.org/rfc/rfc768.txt

Background 7

RPL1 is a protocol for IPv6 for low-power and lossy networks. It provides support
for point-to-point (between two nodes in the network), point-to-multipoint
(from a gateway to several nodes in the network) and multipoint-to-point
(from nodes to the gateway) communication over the network.

RPL also provides security features such as keys to provide message au-
thenticity, confidentiality and integrity. It also has counters and consistency
checks to protect against replay attacks, as well as a cryptographic mode of
operation. It offers different security levels where the messages has different
security implementations.

6LowPAN2,3 is an adaptation protocol that makes it possible to send and recieve
IPv6 packets over IEEE 802.15.4 networks.

6LowPAN provides security services to achieve authentication, authoriza-
tion, non-repudiation and prevention from replay attacks etc. Recent research
on asymmetric cryptography has proven ECC to be feasible for sensor net-
works. ECC provides the same level of security as of RSA or AES but with a
smaller key size.

IEEE 802.15.44 is a standard for resource constrained devices on the physical
layer and the MAC layer. It can build up a wireless embedded Internet together
with 6LowPAN. It is also basis for other standards such as ZigBee5.

The MAC sub-layer of 802.15.4 maintains an access control list where
different security levels can be specified for certain communications. It also
provides a frame security function which is a set of optional security services
for upper layers. Process authentication and key exchange are not defined in
the protocol due to the variety of applications in the upper layers.

2.3 Operating Systems in IoT
IoT devices often have a small amount of memory (ROM and RAM), a lightweight
CPU operating on low power, and small sensors. Due to the constrained environ-
ment IoT devices impose, one must be careful when developing the operating
system (OS). The OS needs to utilize the components to the fullest but still be
able to fit in memory. Below we introduce some open-source operating systems
commonly used in IoT devices. In Table 2.1 the OSs are put against each other
to point out differences and similarities [3].

Contiki6 is a real time operating system (RTOS), written in C, originally devel-
oped for use in Wireless Sensor Networks (WSNs). A full Contiki installation
only needs about 30 kB of ROM and 10 kB of RAM to run.

Contiki provides the full IP (uIP and uIPv6) stack supporting protocols

1https://tools.ietf.org/html/rfc6550
3https://tools.ietf.org/html/rfc4944
3https://tools.ietf.org/html/rfc6282
4http://www.ieee802.org/15/pub/TG4.html
5http://www.zigbee.org/
6http://www.contiki-os.org/

https://tools.ietf.org/html/rfc6550
https://tools.ietf.org/html/rfc4944
https://tools.ietf.org/html/rfc6282
http://www.ieee802.org/15/pub/TG4.html
http://www.zigbee.org/
http://www.contiki-os.org/

8 Background

such as IPv4, IPv6, TCP, UDP and HTTP. It also provides Rime which is a
lightweight layered communication stack. The code footprint of Rime is less
than one kilobyte and the memory footprint is in the order of tens of bytes [8].

Contiki also supports low-power protocols such as CoAP, RPL and 6Low-
PAN, however a customized implementation of 6LowPAN called SICSLowPAN
is used to fit Contiki [30]. SICSLowPAN implements header compression, ad-
dressing and fragmentation mechanisms.

Contiki can be run on a variety of devices, ranging from small devices such
as AVR, MSP430 and PIC to more powerful devices such as ARM. Supported
sensor nodes include Mica2, MicaZ, TelosB among others [3]. Contiki is a
multi-threaded OS and offers for example a UNIX-like shell. Communication
security is provided via ContikiSec [34], a protocol for network layer security.

TinyOS1 is an operating system written in NesC, designed for WSNs, smart
meters and other low-power wireless devices. It is an event-driven and non-
blocking OS, which in this case means it returns from method calls almost
immediately after the call. After a while, a callback method is run to check if
the previous method call is done. Because of this, there is not much that can
be blocked by any other running code.

TinyOS uses a protocol for multihop called the FTSP (Flooding Time Syn-
chronization Protocol) protocol and one that they created themselves called
the CTP (Collection Tree Protocol), used to collect data to a gateway.

Furthermore, it supports the full IPv6 stack with RPL and 6LowPAN. It
also supports protocols such as TCP, UDP, HTTP and COAP. TinyOS’s first
implementation of 6LowPAN was called 6lowpancli but drawbacks led to a
second implementation, BLIP (Berkeley Low-Power IP stack) [30].

TinyOS can at the moment be run on a few microcontrollers such as the
MSP430 and the Atmega128, and support for Cortex M3 is in progress. It
also has a great support for sensor nodes [3] including the whole Mica family,
TelosB, IRIS, XYZ etc. The communication security in TinyOS is provided
via TinySec [36], which is a link-layer security architecture for WSNs.

RIOT2 is an RTOS with support for both the C and C++ programming lan-
guages and tools such as gcc, gdb and Valgrind. It supports multi-threading
and is modular due to the small amount of hardware dependent code. It sup-
ports the 6LoWPAN, IPv6, RPL, UDP, CoAP and CBOR protocols. RIOT
can be run on many devices ranging from 8-bit MCUs such as the Arduino
2560, to 32-bits MCUs such as ARM, and it is partial POSIX-compliant. The
constraints on hardware are small, thus making RIOT a suitable option in
small connected devices.

LiteOS3 is an OS written in LiteC++ with the goal to provide a Unix-like envi-
ronment for WSNs. It has a hierarchical file system and a shell interface with
UNIX-like commands for the user. The kernel and the user applications are
separated which is utilized for software updates [12]. LiteOS supports multi-

1http://www.tinyos.net/
2http://www.riot-os.org/
3http://http://www.liteos.net/

http://www.tinyos.net/
http://www.riot-os.org/
http://http://www.liteos.net/

Background 9

Contiki TinyOS RIOT LiteOS
Publication 2000 2004 2013 2008
Static / dy-
namic

Dynamic Static Dynamic Dynamic

Monolithic /
modular

Modular Monolithic Modular Modular

Networking
support

uIP, uIPv6,
Rime

Active Message IPv6 File-
assisted

Language
support

C nesC C, C++ LiteC++

File System Coffee FS Single level FS
(ELF, Match-
box)

Not yet
supported

Hierarchical
Unix-like

Platform
support

Tmote,
TelosB,
ESB, AVR,
MSP430

Mica, Mica2,
MicaZ, TelosB,
Tmote, XYZ,
IRIS, Tinynode,
Eyes, Shimmer

Arduino,
MSP430,
ARM

MicaZ,
IRIS, AVR

Table 2.1: Comparison of the OSs

threading and dynamic loading and can be run on the MicaZ and IRIS sensor
nodes as well as on AVR [3].

2.4 Wireless Sensor Networks

Wireless Sensor Networks (WSNs) is an emerging technology, consisting of a group
of small (IoT-)devices or sensors (called nodes), often connected to each other in a
mesh network. The nodes are normally very resource restricted and usually does
not have a connection to the Internet by themselves. For this reason, a gateway is
used as a master for all the nodes in the network. It handles the communication
between the nodes and the Internet. Figure 2.2 shows a typical configuration for
a WSN.

These WSNs are usually Low Power and Lossy Networks, meaning that packets
are sometimes lost during transmission. The loss rate is increasing with increased
range [1], which is why it is important that the nodes can communicate with each
other. Otherwise the range from the gateway to the furthest node might be too
large, resulting in a too high frequency of lost packets. For the nodes to be able to
communicate with each other, something called dissemination protocols are used
[2]. These protocols define the transmission between nodes, and are explained
more in section 2.8.

WSNs are usually deployed in areas that are hard to access [15] [11]. Be-

10 Background

cause of this, an over-the-air update mechanisms is often a requirement. Some
examples of WSN applications are wildlife monitoring, military command, intelli-
gent communication, critical infrastructure observation, smart homes, distributed
robotics, traffic monitoring etc [14]. Because of the broadcasting nature of WSNs,
eavesdropping is a big threat to the networks. This and other security concerns
regarding WSNs are explained more in section ??.

The Internet

Gateway

Wireless Sensor Network

Sensor node

Server

Figure 2.2: Typical WSN model

2.5 Security
In the growing development of connected devices, security is a must to prevent
attackers from gaining access to the devices, but also to ensure privacy for the
customers in the case where devices transmits personal data. Below, we introduce
basic theory on security. For a more detailed description regarding security and
cryptography, consult the Handbook of Applied Cryptography [21].

2.5.1 Symmetric Cryptography
Symmetric encryption schemes use a single cryptographic key, K for both encryp-
tion, eK , and decryption, dK .

eK(p) = c (p being the plaintext)
dK(c) = p (c being the ciphertext)

The key is shared between the involving parties, thus often referred to as a
shared key. Popular symmetric algorithms include Blowfish, AES, 3DES among
others.

Background 11

2.5.2 Asymmetric Cryptography
Asymmetric encryption schemes use a key pair, consisting of a public key, pubkey,
and a private key, privkey. The public key is used for encryption whereas the
private key is used for decryption. This works since the keys are mathematically
linked together. A message encrypted with the public key can only be decrypted
with the corresponding private key.

epubkey(p) = c

dprivkey(c) = p

The public key can be seen by everyone (the senders), hence the name, whereas
the private key is to be kept secret, i.e. only known by the recipient. Some well
known asymmetric cryptographic schemes is described below.

RSA is one of the most used asymmetric cryptosystems today1. RSA [28] is based
on large prime numbers from where the public and private key are derived.
The strength of RSA lies in the difficulty of factoring large prime numbers2.

ECC (Elliptic curve cryptography [23]) is another asymmetric cryptosystem. It
is based on elliptic curves which is an algebraic structure. Compared to non-
ECC cryptography, ECC yields the same level of security with a smaller key
size. An elliptic curve satisfies the following equation:

y2 = x3 + ax+ b

The strength of ECC is based on the discrete logarithm problem which is
considered to be infeasible to solve3.

2.5.3 Digital Signatures
The use of the key pair in asymmetric cryptography is not limited to encryption
and decryption, but may also be used in so called digital signatures. A valid digital
signature proves that the sender is who he/she claims and that the sender can not,
at a later point, deny having sent the message. A digital signature also ensures that
the original message was not altered. This yields authentication, non-repudiation
and integrity.

Some commonly used signing algorithms include RSA, DSA and ECDSA,
where ECDSA is based on the DSA algorithm but utilizes elliptic curve cryp-
tography instead.

2.5.4 Cryptographic Hash Functions
A cryptographic hash function is a non-invertible function that maps an input of
any size to a fixed-size output, known as a hash. Cryptographic hash functions
is commonly used in digital signatures and message authentication codes (MACs)

1http://searchsecurity.techtarget.com/answer/What-are-new-and-commonly-used-public-key-cryptography-algorithms
2https://en.wikipedia.org/wiki/Integer_factorization
3https://en.wikipedia.org/wiki/Discrete_logarithm

http://searchsecurity.techtarget.com/answer/What-are-new-and-commonly-used-public-key-cryptography-algorithms
https://en.wikipedia.org/wiki/Integer_factorization
https://en.wikipedia.org/wiki/Discrete_logarithm

12 Background

to provide authentication of a message. The hash functions need to be resistant
against attacks, thus the following properties must hold:

• Pre-image resistance

– Given a hash value, h, it should be infeasible to find a message, m, such
that H(m) = h, H being the hash function.

• Second pre-image resistance

– Given a message, m1, it should be infeasible to find a different message,
m2, such that H(m1) = H(m2).

• Collision resistance

– It should be infeasible to find two different messages, m1 and m2, such
that H(m1) = H(m2). Such a pair is known as a hash collision.

2.6 Public Key Infrastructure
A public key infrastructure1 (PKI) enables parties to securely exchange data in an
insecure environment, such as the internet, by the use of asymmetric encryption.
A PKI consists of both software and hardware, but also a set of policies and
standards for management of administration, distribution, creation and revocation
of certificates and keys.

A public key is linked to a user’s personal data in form of a digital certificate,
see below. This certificate is digitally signed by an authority known as a Certificate
Authority (CA). The user’s identity can now be trusted, given that the CA is
trusted. In order to trust the CA, the CA’s own certificate needs to be signed by
another authority. This forms a hierarchy of authorities with a root CA at the
top.

2.6.1 Digital Certificates
A digital certificate, or public key certificate, contains information about a public
key and the corresponding user, thereby providing the ownership of the public key.

2.7 Security in Wireless Sensor Networks
Because of a wide range of deployment in many different scenarios, especially in
hostile environments with intelligent opposition, the security in WSNs is essential.
Many sensor nodes may be deployed in unattended environments, which makes the
network vulnerable for attacks, both virtually and physically. The combined com-
putational power of the nodes and the wireless communication will attract many
adversaries. The security in WSNs gives rise to many challenges. Because of its
limited resources it is infeasible to implement some of the conventional security
solutions [14]. The main security goals are still the same as for conventional secu-
rity though - to achieve message confidentiality, integrity, authenticity, availability
and non-repudiation.

1http://searchsecurity.techtarget.com/definition/PKI

http://searchsecurity.techtarget.com/definition/PKI

Background 13

2.7.1 Attacks and security in WSNs

In WSNs, large volumes of information is transferred between the nodes with
sometimes little thought of security. Hence, these networks are susceptible to
attacks such as eavesdropping and monitoring. Adversaries can gather information
remotely and anonymously. Even if the messages are encrypted, there is still a
possibility that communication patterns can be analyzed. In addition to these
passive attacks, active attacks also forms a major threat. Some examples of active
attacks are Denial of Service (DoS) attacks, Message Corruption, False Nodes and
Routing attacks.

To protect against these attacks, different security mechanisms can be used.
Some of them might be stripped down from its conventional solution to fit the
restrictions in WSNs. Others can be used as they are. Due to the sometimes
hostile environments and the broadcasting nature of WSNs, data confidentiality is
often seen as the most important security issue [4]. To achieve data confidentiality
and protect against eavesdropping etc., the standard way is to encrypt the sent
data with a secret key. But only confidentiality does not make the data safe. It is
complemented with data integrity and data freshness etc.

To be able to secure the data with these mechanisms, a good key infrastruc-
ture is needed. When applying security mechanisms to WSNs, caution must be
taken. Security mechanisms such as encryption infers more bits to be transferred,
hence leading to extra memory and power consumption which are important re-
sources. It can also increase delay and result in more packet losses. Questions
like how to generate, manage and distribute keys also needs careful consideration.
Traditionally, all asymmetric cryptography techniques were seen as too intense for
sensor networks [4]. This is still true in the general case, but it is shown that it
can be done with the right selection of algorithms [33]. RSA and even Elliptic
curves [29] can be implemented on even the smallest 8-bit microprocessor. Still,
of course, many symmetric techniques are used such as 3DES, RC5 and AES. A
survey made on block ciphers showed that Skipjack would be the most suitable
cipher for sensor networks [4].

2.8 Updates

A software update is basically just a new version of the software with added or
removed code. Usually an update is expected to add some new features to improve
the user experience. If companies have a big infrastructure of employed systems
that works, they would most likely not want to update their system unless it is
absolutely necessary. They already have something that works and an update both
takes time and introduces a risk that something could stop working.

We have to distinguish between a regular update and a security update. A
security update, which is what we focus on, is not supposed to touch any features.
Its only purpose is to fix security vulnerabilities and to make the code more secure.
Companies might be more interested in those kind of updates, and even more
important, if the code are based on open source, the security updates could have
already been tested by the community.

14 Background

2.8.1 Dissemination
Data dissemination is a term for ‘distribution of data’ and is used in Wireless Sen-
sor Networks. Many protocols have been developed to optimize the dissemination
of the data in WSNs [2]. One common example is Deluge [6] which is developed
to propagate large amounts of data, especially dissemination of software image
updates. Deluge builds on Trickle1, which was one of the originally developed dis-
semination protocols. Deluge splits the image into fixed size pages and the pages
into fixed size packets before disseminating it. When a node has received a full
page, it broadcasts the packets from that page to its neighbours before requesting
a new page.

The protocols have the advantage that the nodes in the network can act both
like sources and sinks, i.e. they can receive a patch, apply it and pass it through to
its neighbours. Because of this, the server responsible for sending the patch does
not have to send it to every node in the network, only the gateway, thus saving a
lot of unnecessary bandwidth.

A typical pattern for the nodes is called the advertisement pattern (Figure
2.3). This pattern normally consists of four steps; advertise any available software,
selection of a source node, request updates and download the updates to the
sink. When a sink has received an update, it can in turn become a source. The
opposite approach is called the subscription pattern (Figure 2.4, where the
sinks subscribe on new updates from the sources. However, this results in increased
overhead at the source, making it infeasible for use in WSNs [2].

Source Sink

1. Advertisement

3. Request

4. Reliable download

2. Selection

Figure 2.3: Advertisement Pattern

2.8.2 Dynamic Software Updates
Dynamic Software Updating (DSU) is when programs can be updated while they
still are running. This puts many demands on the system and it has to keep track
of program states and code. Today, operating systems and programming languages

1https://tools.ietf.org/html/rfc6206

https://tools.ietf.org/html/rfc6206

Background 15

Source Sink

1. Subscription

3. Reliable download

2. Target Tracking

Figure 2.4: Subscription Pattern

are typically not designed with DSU in mind1. To allow for DSU it is common to
implement specialised compliers to preserve the semantics of the program and to
make it possible to dynamically update it.

2.8.3 ∆-patches

Delta patching is a kind of update where the user only has to download the changes
in the code instead of a whole binary. However, depending on implementation,
the delta can sometimes be even bigger in size compared to the whole binary.
That is because the delta patch also contains other information than just the
code. It also has to keep track of the differences and where they are. But one
advantage with a delta patch is that when using compression algorithms on the
code, the patch can become very small, smaller than the original binary because
of recurring information.

2.8.4 Major/Minor Updates

There is a difference between a major and a minor update. When a major update
where many parts of the code is changed is about to be rolled out, the best option
might not be a delta patch but a “normal” update. The many changes in the code
will make the delta become infeasibly large. But for minor updates where just
small parts of the code is changed, the delta patch would be a better option in
most cases.

1https://en.wikipedia.org/wiki/Dynamic_software_updating

https://en.wikipedia.org/wiki/Dynamic_software_updating

16 Background

2.8.5 Over the Air

2.9 Device Management

Device management (DM) is software used for administrating devices remotely.
The most common DM is used in mobile devices, known as Mobile device man-
agement (MDM). This lets the IT department manage, troubleshoot and secure
the employees’ mobile devices, independent of mobile platform, e.g. operating
system. The mobile devices can also be updated and configured over-the-air using
MDM.

The Open Mobile Alliance1 (OMA) have defined protocols for device manage-
ment, described below:

OMA DM2 is a protocol targeting mobile devices. It is an XML based architec-
ture that runs over several communication protocols, such as USB, GSM,
WAP and HTTP. It is a request response protocol with authentication so
that server and client only can communicate after proper authentication.

OMA LWM2M3 Lightweight M2M, or LWM2M, is a device management pro-
tocol designed for constrained devices, such as IoT. It utilized the CoAP
protocol and runs over UDP, with or without DTLS, and can also use SMS
to send and recieve data. The protocol features include support for device
monitoring, configuring and updating.

2.10 Risk Analysis

A risk can be defined in many ways. One definition of a risk is “A random event
that may possibly occur, and if it did occur, would have a negative impact on the
goals of the organization” [35]. Another one is “The combination of a possibility of
an unwanted event, times the severity of that event on the most critical assets of
the organization, times the probability of such an event actually occurring” [20].

Before a patch is distributed or even considered, a thorough risk analysis has to
be done - a risk analysis covering the whole system architecture and the affected
open source software. The implementation of a patch is just the last part of a
much bigger process. Doing a risk analysis is a time-consuming part of it and
costs a lot of money for the companies. Tools exist that tries to analyze the
severity of software vulnerabilities, for example CVSS (Common Vulnerability
Scoring System) and other tools that comprises databases with publicly known
software vulnerabilities such as CVE (Common Vulnerabilities and Exposures) and
CWE (Common Weakness Enumerator). These are explained more in chapter 3 .

1http://openmobilealliance.org/
2http://openmobilealliance.org/about-oma/work-program/

device-management/
3http://technical.openmobilealliance.org/Technical/

technical-information/release-program/current-releases/
oma-lightweightm2m-v1-0

http://openmobilealliance.org/
http://openmobilealliance.org/about-oma/work-program/device-management/
http://openmobilealliance.org/about-oma/work-program/device-management/
http://technical.openmobilealliance.org/Technical/technical-information/release-program/current-releases/oma-lightweightm2m-v1-0
http://technical.openmobilealliance.org/Technical/technical-information/release-program/current-releases/oma-lightweightm2m-v1-0
http://technical.openmobilealliance.org/Technical/technical-information/release-program/current-releases/oma-lightweightm2m-v1-0

Background 17

Sometimes these tools does not give a completely accurate result, thus making it
less likely for the company to make an ideal decision.

The risks have to consider the impact of not applying a security patch but also
the impact of applying it. First of all, a security hole needs to be identified. Then
it has to be evaluated, i.e. how does this vulnerability affect the systems? After
the evaluation and the decision to implement a patch the planning phase begins.
After that, the actual implementation and roll out of the patch can be done.

18 Background

Chapter3
Vulnerability Assessment

“There are no secure systems,
only degrees of insecurity.”

– Adi Shamir

Vulnerabilities in The Company’s products is a major concern since it allows an
attacker to gain access to the video stream. The cameras are also often accessible
over a public network, making them an easy target.

Vulnerability assessment can be divided into two main parts: identification
and evaluation, shown in figure 3.1. There exist lots of methods and tools on the
market for identification and evaluation of software vulnerabilities and its impacts.

This chapter presents the basic ideas of software risk analysis, how it is cur-
rently being incorporated by The Company, and improvements for conducting risk
analysis in a formalized manner.

Figure 3.1: The two main parts in vulnerability assessment.

3.1 Identification of Vulnerabilities
There are numerous ways of tracking and finding security vulnerabilities. The
CVE dictionary is a government funded, comprehensive database compiled from
more than 150 organizations [18] feeding the database with information. Even
though the CVEs cover lots of vulnerabilities, they are not complete. In a report

19

20 Vulnerability Assessment

[27], it is argued that using CVE as a sole source is bad due to its lack of several
important vulnerabilities, found in Google Chrome and Microsoft products.

CWE1 is a set of known software weaknesses created to provide a standard for
how to identify, mitigate and prevent software vulnerabilities. The difference be-
tween a software vulnerability and a software weakness is that a software weakness
is something that might lead to a vulnerability. The main purpose of the CWE
initiative is to prevent vulnerabilities at its very core, before they happen in a spe-
cific software package. While CVE is a list of vulnerabilities in particular software
packages, e.g. CVE-2015-7858: SQL injection in Joomla, CWE is a more general
classifier, e.g. CWE-89: SQL injection. CWE was developed as a complement to
CVE, to address problems where classifications were too rough.

The National Vulnerability Database2 (NVD) is a U.S. government repository
of vulnerability management standards, all represented using the Security Con-
tent Automation Protocol3 (SCAP). SCAP combines open standards and offers
methods to score vulnerabilities and to perform automated vulnerability manage-
ment. Some of the SCAP components include CVE, CWE among others, as well
as scoring systems such as CVSS, explained more in section 3.2.

The Open Sourced Vulnerability Database4 (OSVDB) is a project originating
from the Blackhat5 and DEF CON6 conferences in 2002. The goal of OSVDB is to
ensure unbiased, accurate information regarding security vulnerabilities. OSVDB
also offers Vuln Web Search, a search engine that scans both OSVDB itself and
several other websites and mailing lists. OSVDB also analyzes the vulnerability
reports to qualify them as real or fake. This is of interest due to many fake reports.
If a vulnerability is classified as “verified”, either a vendor or an OSVDB volunteer
have confirmed the vulnerability.

Other information sources such as SecurityFocus7 provides detailed informa-
tion on vulnerabilities and mailing lists for subscription. It is also possible to
follow open source projects directly, GitHub8, SourceForge9 etc.

The methods described above regards only publicly known vulnerabilities. To
have a greater coverage, one should perform static and/or dynamic analysis on
the device/system itself, using tools such as Fortify10, Coverity11, Nessus12 among
others.

1https://cwe.mitre.org/about/index.html
2https://nvd.nist.gov/
3http://scap.nist.gov/
4http://osvdb.org/
5https://www.blackhat.com/
6https://www.defcon.org/
7http://www.securityfocus.com/
8https://github.com/
9http://sourceforge.net/

10http://www8.hp.com/us/en/software-solutions/static-code-analysis-sast/
index.html

11http://www.coverity.com/
12http://www.tenable.com/products/nessus-vulnerability-scanner

https://cwe.mitre.org/about/index.html
https://nvd.nist.gov/
http://scap.nist.gov/
http://osvdb.org/
https://www.blackhat.com/
https://www.defcon.org/
http://www.securityfocus.com/
https://github.com/
http://sourceforge.net/
http://www8.hp.com/us/en/software-solutions/static-code-analysis-sast/index.html
http://www8.hp.com/us/en/software-solutions/static-code-analysis-sast/index.html
http://www.coverity.com/
http://www.tenable.com/products/nessus-vulnerability-scanner

Vulnerability Assessment 21

Identification at The Company
In The Company’s case, the people responsible for the code architecture stays up-
to-date by checking online for new vulnerabilities. They might check for announced
CVEs, or sporadically in forums and from news sources. There is no formalized
process for finding and evaluating vulnerabilities, which in turn could lead to some
of the smaller and not so famous vulnerabilities not being noticed.

Approach for Improving Identification
In [31], it is determined that more than 80 per cent of a typical application consists
of open source components, and that many open source components have flaws.
Even worse, companies does not seem to check if known vulnerabilities exist in
the components they use. To ensure that vulnerabilities for the used components
in a system are intercepted, The Company should utilize several of the above
information sources:

• CVE Details1 offers RSS feeds and JSON URLs based on given criteria.
The output contains information about the vulnerability, a CVSS score,
information about affected software components and links to known exploits,
if such exists. The information is gathered from the CVE dictionary. It is
also possible to search for, and track, specific products, e.g. Bash and
OpenSSL. This makes it easy to track only those components used in a
product. A sample output of a vulnerability from the JSON feed is shown
in listing 3.1.

• Use the OSVDB database search engine along with the Web Vuln search
engine to cover what CVEs do not. The OSVDB API yields responses in
XML or CSV formats.

• Subscribe to mailing lists. Bugtraq2 is one of the most used mailing lists.
Another comprehensive mailing list is Fulldisclosure3, where as much infor-
mation is posted as possible, including exploits.

• There is no centralized infrastructure for notifications regarding security vul-
nerabilities in the open source community [31] resulting in a lack of aware-
ness of the flaws. Thus, scanning repository logs as a complement to other
sources is a must to obtain those vulnerabilities.

• A system for generating a list of open source software components used in the
system should be incorporated in the build process. This makes it easy for
mapping the components to possible vulnerabilities in an automated man-
ner. Using Yocto4 as building tool, a license manifest file is automatically
generated during the build process [24], example output shown in listing 3.2.
From this manifest, all open source software can then be extracted using a
simple script, an example shown in listing 3.3.

1http://www.cvedetails.com/
2http://seclists.org/bugtraq/
3https://nmap.org/mailman/listinfo/fulldisclosure
4https://www.yoctoproject.org/

http://www.cvedetails.com/
http://seclists.org/bugtraq/
https://nmap.org/mailman/listinfo/fulldisclosure
https://www.yoctoproject.org/

22 Vulnerability Assessment

{
’cve_id ’: ’CVE -2014-0749’,
’cvss_score ’: ’10.0’,
’cwe_id ’: ’119’,
’exploit_count ’: ’1’,
’publish_date ’: ’2014-05-16’,
’summary ’: ’Stack -based buffer overflow in lib/Libdis/

disrsi_.c in Terascale Open -Source Resource and Queue
Manager (aka TORQUE Resource Manager) 2.5.x through

2.5.13 allows remote attackers to execute arbitrary
code via a large count value.’,

’update_date ’: ’2015-07-24’,
’url ’: ’http://www.cvedetails.com/cve/CVE -2014-0749/’
}

Listing 3.1: An output from the CVE Details feed, in JSON format

PACKAGE NAME: apache2
PACKAGE VERSION: 2.4.16
RECIPE NAME: apache2
LICENSE: Apache -2.0

PACKAGE NAME: avrflash
PACKAGE VERSION: 1.3.0
RECIPE NAME: avrflash
LICENSE: Proprietary

Listing 3.2: Sample output from Yocto manifest file.

There is lots of information available to be gathered and analyzed, like CVE,
GitHub, OSVDB etc. It can be quite daunting for a company to keep track of and
sift among all vulnerabilities. To analyze all information in an automated manner,
text mining algorithms can be used. In [38] it is shown that bug reports are easily
mislabelled as non security related when they in fact are. They have also developed
a statistical text mining model to identify the mislabelled bug reports. By using
such tool(s), The Company could scan all reports, security and non-security, to
find those mislabelled reports in an automated way. The same techniques can
be adapted to find all security reports, given some basic information, regarding a
specific product.

There exist commercial services available to summarize and provide the secu-
rity information, given the open source components in a product. Two of the most
occurring services are listed below:

1https://www.riskbasedsecurity.com/vulndb/

https://www.riskbasedsecurity.com/vulndb/

Vulnerability Assessment 23

#!/usr/bin/python

import sys

with open(sys.argv[1], ’r’) as f:
lines = f.read().splitlines ()
lines = [i for i in lines if i is not ’’]
split rows into key and value
lines = [tuple(i.split(’: ’)) for i in lines]
group the packages together
lines = list(zip(*[iter(lines)]*4))
create dictionary for each package with key and value
lic = [dict(i) for i in lines]

for i in lic:
if ’Proprietary ’ not in i[’LICENSE ’]:

print(i)

Listing 3.3: A simple script for extracting open source software from
Yocto manifest file.

VulnDB1 , from Risk Based Security, offers an information service for tracking
vulnerabilities. It includes a RESTful API, email alerting, impact analysis and
much more, for companies to utilize.

Black Duck Software2 analyzes source code for identification of open source
libraries and components. The applications using these components/libraries
are then mapped to known vulnerabilities using a knowledge base3. Customers
are alerted of new vulnerabilities throughout the application’s lifetime [7].

3.2 Evaluation of Vulnerabilities

Once a security vulnerability has been identified, it needs to be thoroughly an-
alyzed to establish whether it affects a given system or not. Software tools and
databases, open source or proprietary, can be used in order to evaluate a system.
One of the most common ones is the scoring system CVSS. It produces a score
from 0 to 10 on the severity of a vulnerability. However, CVSS is a general eval-
uator since it does not concern any specific product or system. For example, the
base score in CVSS v2 is defined as follows:

BaseScore = 1.176 ∗ (3I
5

+
2E

5
− 3

2
) (3.1)

2https://www.blackducksoftware.com/
3https://www.blackducksoftware.com/products/knowledgebase

https://www.blackducksoftware.com/
https://www.blackducksoftware.com/products/knowledgebase

24 Vulnerability Assessment

where I is the impact and E is the exploitability. The score is rounded to one
decimal or just set to 0 if I is equal to 0. The impact and exploitability components
are themselves also constructed by static values depending on an Access Vector
score. Even though these metrics were carefully considered, it is unlikely that
they will give a lasting model of vulnerability severity, and even less likely, a result
specific for a company [26].

CWSS1 is a scoring system that is quite similar to CVSS. To calculate a
vulnerability score, it uses 18 metrics divided into three groups: The Base Findings
group (the core risk of the weakness), the Attack Surface group (obstacles an
attacker must overcome) and the Environmental group (weaknesses in specific
environmental contexts). The final CWSS score is calculated by the product of
each of the metric group scores. CWSS is a part of the CWE project, maintained by
the Mitre group and developed as a complement to CVSS. Some major differences
between the two is for example that CVSS assumes an already discovered and
verified vulnerability as input, while CWSS can apply the scoring to vulnerabilities
in an earlier stage. CVSS does not account for incomplete information, while
CWSS does [19].

A framework called CWRAF2 provides a way for companies to apply CWSS
and customize it on the CWEs most relevant to the company’s own system, thereby
getting more relevant information about different weaknesses. It was previously a
part of the CWSS system but is now its own framework. CWRAF yields a result
based on a specific system configuration, leading to a faster and better evaluation
process. However, CWRAF only provides a result that is partly specific for a
system. The problem with the results being too general still exists. Even though
CWRAF knows the company domain, the result might be misleading compared
to the reality.

Evaluation at The Company
When a software vulnerability has been found, The Company begins a process of
meetings. The employees also discuss it in the hallways and in small groups. They
need to make a decision if this vulnerability is affecting them in any way. For some
vulnerabilities the developers can instantly tell if it affects them or not, leading to
less time spent in board meetings.

Sometimes a vulnerability affects some of the cameras but not others depend-
ing on the configuration or used software. By looking at the CVEs for the af-
fected software and evaluating them in accordance with The Company’s systems,
a vulnerability report specifically for The Company comes as a result from the
evaluation process. The amount of man-hours spent can vary widely depending
on the effect of the vulnerability. A significant amount of time can be saved by
setting up guidelines for this process and to specify roles and responsibilities for
it.

The Company uses vulnerability scanners, like Nessus, in order to find any
weaknesses. Nessus scans a target and ranks any vulnerabilities based on CVSS.
If a vulnerability is found it is reported and the process described above begins.

1https://cwe.mitre.org/cwss/cwss_v1.0.1.html
2https://cwe.mitre.org/cwraf/introduction.html

https://cwe.mitre.org/cwss/cwss_v1.0.1.html
https://cwe.mitre.org/cwraf/introduction.html

Vulnerability Assessment 25

Problems with Evaluating Vulnerabilities
The website CVE Details contains, as previously mentioned, information about
CVEs along with a CVSS score for each CVE. By analyzing different CVEs, we
find that the scoring system does not take consequences of an exploit on the
system into account. For the Heartbleed bug (CVE-2014-0160)1, CVE Details
ranks this as a medium vulnerability (5.0/10.0), due to integrity- and availability
impact being set to “None”. However, if an attacker can read sensitive data, e.g.
admin cookies, private keys and passwords, the integrity and availability is broken.
Hence, more information about a product/system configuration is needed in order
to fully analyze and understand the impacts of a vulnerability.

Approach for Improving Evaluation
As a first step towards better evaluation, The Company could incorporate the
previously mentioned methods and frameworks for evaluating vulnerabilities:

• Use CWRAF to identify the CWEs with the highest impact on the system.
CWRAF takes the CWSS score and adds weightings to it according to
a system description and a technical impact scoreboard2. This method
prioritizes the impacts on how they affect the system. It goes from a general
scoring to a scoring with regards to what kind of system it is.

• Analyze the CVSS score on the relevant CVEs.

• Buy a service that provides help with the assessment, such as Black Duck
or Risk Based Security.

The existing solutions for evaluating vulnerabilities require lots of manual work
and is time consuming to handle for any company. It would be desirable to au-
tomate this process to a much larger extent. The available CWRAF tool which
tries to make the assessment more relevant still requires some manual work, but
many steps are automated. First, so called vignettes3 (a technical and business
context) have to be defined, either to create a new one or choose from existing
ones. Weightings for specific business cases has to be added for the vignette. Then
analysis tools is used on the code to find relevant CWEs. The CWSS Scoring En-
gine then takes the CWEs and the vignette definition to produce scores for each
CWE. A limitation of the CWRAF tool is that it only considers CWEs and not
for example CVEs.

Vulnerabilities needs to be tracked from many different sources and combined
into one result. Unfortunately, the available tools does not give a specific result
with system configurations in mind.

A future step to take could be to implement machine learning algorithms as in
[26]. This automates the evaluation process to a larger extent, and better addresses
the problems with the static equations.

1http://www.cvedetails.com/cve/CVE-2014-0160/
2https://cwe.mitre.org/cwraf/scoringincwraf.html
3https://cwe.mitre.org/cwraf/introduction.html

http://www.cvedetails.com/cve/CVE-2014-0160/
https://cwe.mitre.org/cwraf/scoringincwraf.html
https://cwe.mitre.org/cwraf/introduction.html

26 Vulnerability Assessment

Chapter4
Case Study - Evaluation

In order to perform adequate identification and evaluation of vulnerabilities, we
need to obtain relevant information of the product or system. In this case study,
we have analyzed different vulnerabilities and evaluated the impact on a product
based on different environments and scenarios.

4.1 Heartbleed
A well known vulnerability, Heartbleed1, was introduced in December 2011 in
the OpenSSL library. The vulnerability allows adversaries to read protected data
including, but not limited to, secret keys, user names and passwords. The impacts
of a successful attack may lead to full root access to the camera and the video
stream.

This attack is mainly dependent on system configurations, i.e. if this software is
in use and what version it has. To some extent it also has to do with environmental
aspects, e.g. if the system is behind a firewall, the attack will be much harder to
execute. The Company’s products have not been affected by the vulnerability
since a different version of the library is being used. From CVE details, we get the
following information:

“The (1) TLS and (2) DTLS implementations in OpenSSL 1.0.1 be-
fore 1.0.1g do not properly handle Heartbeat Extension packets, which
allows remote attackers to obtain sensitive information from process
memory via crafted packets that trigger a buffer over-read, as demon-
strated by reading private keys, related to d1_both.c and t1_lib.c, aka
the Heartbleed bug.”

Comparing this information with the open source packages extracted from the
Yocto manifest shown below, it is easily confirmed that the vulnerability does not
pose a threat.

PACKAGE NAME: openssl
PACKAGE VERSION: 1.0.2d
RECIPE NAME: openssl
LICENSE: openssl

1http://heartbleed.com/

27

http://heartbleed.com/

28 Case Study - Evaluation

4.2 Poodle
Poodle1 is a weakness in the SSL 3.0 protocol targeting the CBC-mode ciphers.
It makes websites with this SSL version vulnerable to active Man-in-the-middle
attacks, where the attacker can decrypt and acquire the data sent over the con-
nection by using crafted HTTPS requests.

All of The Company’s products supported the SSL v3 protocol which made
them vulnerable. The given impact analysis by The Company is as follows:

“This vulnerability is only applicable to products configured to use
HTTPS. Products installed on critical systems that are configured to
only allow HTTPS connects need immediate attention. Risk level is
low if the camera is only accessible within a LAN for a malicious
client to exploit the vulnerability. Risk level is high if the products are
accessible from the internet.”

The effects of this vulnerability is easily removed by just disabling SSL v3 and use
TLS instead. It is especially important for products used in critical environments.
Newer firmware versions are now shipped with SSL v3 disabled by default.

As seen here, this bug also affects a system based on some different configura-
tion aspects. But even though all cameras did use the vulnerable SSL version, it
only affected those that also used HTTPS. The risk level of this attack was also
dependent on the system environment in which cameras accessed from the Internet
were more exposed.

4.3 Apache module mod_lua
The Apache module mod_lua2 is a module that lets users extend the server with
scripts written in the Lua programming language. The vulnerability allows an
attacker to cause a denial of service attack against a vulnerable product.

By scanning a camera with Nessus, we find that Nessus flags the “mod_lua”
module as exploitable, see figure 4.1. This is also verified by manually checking
which version of Apache is being used by scanning the revision file. The version in
use is found to be 2.4.10 which is vulnerable. This vulnerability is not dependent
on the environment in which the system resides. However, by reviewing the system
configuration and investigating which modules are loaded in to Apache, it is found
that the “mod_lua” module is not included:

1https://poodle.io/
2https://httpd.apache.org/docs/trunk/mod/mod_lua.html

https://poodle.io/
https://httpd.apache.org/docs/trunk/mod/mod_lua.html

Case Study - Evaluation 29

> httpd -M
Loaded Modules:
core_module (static)
so_module (static)
http_module (static)
suexec_module (static)
mime_module (shared)
mpm_worker_module (shared)
unixd_module (shared)
alias_module (shared)
rewrite_module (shared)
cgid_module (shared)
log_config_module (shared)
setenvif_module (shared)
ssl_module (shared)
socache_shmcb_module (shared)
authn_core_module (shared)
authz_core_module (shared)
authn_file_module (shared)
authz_user_module (shared)
authz_owner_module (shared)
auth_digest_module (shared)
auth_basic_module (shared)
systemd_module (shared)
authn_encoded_user_file_module (shared)
authz_urlaccess_module (shared)
trax_module (shared)
iptos_module (shared)
axsyslog_module (shared)

Thus, even though a professional vulnerability scanning tool warns about software
being exposed to threats, it might not be the actual case.

4.4 CSRF
Cross-Site Request Forgery1 (CSRF), is an attack where an adversary can act as
a trusted user to execute commands on a web application. The user privileges are
inherited so if the user is root, the attacker will also be identified as root. This will
allow the attacker to perform critical tasks such as acquiring user credentials or
the video stream. The CSRF attack2 is specified in the CWE list3, where severe
consequences are presented and only limited by the user’s privileges. Evaluating
the vulnerability based solely on the configuration, the attack may seem severe.
However, the overall impact of an attack exploiting this vulnerability is at mini-
mum for The Company since only a few, estimated to 5 %, cameras are accessed

1https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
2http://www.cvedetails.com/cve/CVE-2007-5213/
3https://cwe.mitre.org/data/definitions/352.html

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
http://www.cvedetails.com/cve/CVE-2007-5213/
https://cwe.mitre.org/data/definitions/352.html

30 Case Study - Evaluation

Figure 4.1: Sample output from Nessus after scanning a camera.

through the web interface. Of course, if the web interface is used in critical envi-
ronments, e.g. Supermax prison, banks and military facilities, the impact may be
severe.

4.5 A More Efficient Assessment
The modern solutions for identification and evaluation of vulnerabilities are limited
to a local scope, as shown in the case study. They only consider a vulnerability as
is, and does not take the whole system into account. This may result in mislead-
ing information, thus increasing the risk to spend time on unnecessary evaluation.
Static methods such as CVSS was not designed for the rapid development of con-
nected devices in mind, such as IoT products where interconnectivity is the focus
[13]. A representation of a typical process when identifying and evaluating vulner-
abilities is shown in figure 4.2.

From the examples in this case study, it is shown that the two dominating
factors for impact analysis is the system configuration and its environment. Some
examples, as found in the case study, of the factors are show below.

• The software that is being used (config.).

• Which software components/modules that actually are in use (config.).

• How the product is being used, e.g. Web interface (env.).

Case Study - Evaluation 31

• In what environment the product resides (env.).

By having some insight in these factors, one can, with simple means, evaluate a
vulnerability more accurately. Figure 4.3 shows an improved evaluation process
when the factors are being taken into consideration.

There exist lots of products in different environments and with different con-
figurations. To evaluate impacts of vulnerabilities, one would need to do compre-
hensive work to evaluate which configuration- and environment parameters that
are of use, but the end result would be worth-while.

From the simple examples in the case study, it is shown that with limited
knowledge of the system, it would be easy to perform evaluation of simpler vul-
nerabilities in an automated fashion. This is shown in table 4.1, with configuration
and environment as input, and the impact analysis as output.

For more complex attacks, it is not an easy task to automate the evaluation
in a simple way. As an example, assume a product is vulnerable to CSRF attacks.
A patch might be to include a secret token in all http requests. This prevents an
adversary to act on behalf of the user. The secret token is stored as a cookie in the
browser. If the product further is vulnerable to XSS, the attacker may read the
cookie information and use this to perform the CSRF attack anyway. Evaluating
the XSS attack using the typical process would not capture the consequential
impact of the CSRF attack. The scalability of evaluation is not obvious, but
machine learning might be of use, both during identification via text mining and
evaluation via impact analysis.

The conclusion from this case study shows that with some knowledge about
the system, a more fine-grained evaluation can be achieved. The process can be
automated to a larger extent using machine learning. The more complex a system
is, the more extensive the data gathering must be.

Figure 4.2: A typical method for identification and evaluation. They
are very general and the output is based on a high-level descrip-
tion of a system.

32 Case Study - Evaluation

Figure 4.3: Showing how a better identification and evaluation so-
lution could work, using machine learning techniques for eval-
uation of vulnerabilities in different environments and with dif-
ferent configurations. The output is based on a low-level, more
fine-grained, description of a system.

Case Study - Evaluation 33

Table 4.1: Summary of how configuration and environment affect
the applicability of an attack. A product is marked green if it
is not vulnerable. It is marked red if vulnerable

Attack Configuration Environment

Mod Lua

Behind firewall Exposed globally
Module exists and
loaded 3 7

Module exists,
not loaded 3 3

Module is not
compiled into
Apache

3 3

Heartbleed

Behind firewall Exposed globally
Vulnerable ver-
sion in use 3 7

No vulnerable
version in use 3 3

CSRF

Web UI used Web UI not used
CSRF prevention
used 3 3

No CSRF preven-
tion used 7 3

Poodle

HTTPS used HTTP used
SSL version 3 be-
ing used 7 3

Any TLS version
being used 3 3

34 Case Study - Evaluation

Chapter5
Deployment Use Cases

Once a vulnerability in a product is known, there is a need to update the software.
The update process is dependent on the product itself and its environment.

To map contemporary problems and solutions regarding software updates, we
have analyzed different network connected products and built use cases for the
update processes in said products.

5.1 Reference Use Cases

We are using an Android product, the Nexus 5X, and a Chromebook as references
due to their already working update mechanisms. These products are then com-
pared to small IoT devices in WSNs and also to The Company’s cameras. Lastly,
a proposed ideal combined solution for the update process in connected devices
is presented, which is expected to work across many different platforms. This is
then used as a stepping stone for further development.

5.1.1 Android

Android is an open-source operating system, based on the Linux kernel, developed
by Google. Android is being used in many products today, ranging from smart-
watches to tablets to game consoles. The most common product using Android is
the smartphone and tablet. They are stand-alone devices used in different envi-
ronments, such as homes, offices and in the public. This entails different scenarios
regarding security. At home, using the WiFi, the Android device is most likely
behind a firewall (home router). The impact of a vulnerability in software is mod-
erately severe as all of your personal information is stored on the device [9] [17]
[25].

The user is the sole owner of his/her product, but Google still has some respon-
sibility when it comes to keeping the products up-to-date and secure to maintain
a good reputation. The interest for updates lies of course on the owner as well, as
new features and bug fixes are often desirable.

The update process, specifications and security for the Nexus 5X is described
below.

35

36 Deployment Use Cases

Nexus 5X Specifications

• Chipset: Qualcomm MSM8992 Snapdragon 808 (CPU: Hexa-core ARM
Coretex-A57 + ARM Coretex-A53 @ 1.8 GHz)

• Memory: 2 GB (RAM), 32 GB (flash)

• OS: Android OS v6.0

• Communication: WiFi 802.11a/b/g/n/n 5GHz/ac, BT4.2, GPS, NFC, LTE

• Protocols: JSON over HTTP(S) (RESTful), SSL, RTSP

• Sensors: Accelerometer, gyroscope, proximity, compass, barometer

File system

Yaffs2 and ext4 are the two mainly used file systems in Android. Yaffs2 was
used as the initial file system for the system partition, but was later changed to
ext4 because of the better support for multi-threaded software. There are several
partitions on an Android system, such as boot, system, userdata etc. The system
partition is mounted as read-only and the only way to change the contents is during
an OTA update. Partitions where user data resides are mounted as read-write.

Update process

The system partition is read-only, which means code changes cannot be done on
that partition on-the-fly. When a new update is downloaded it is saved on a special
partition. Then the system is restarted in order for the update to be applied to
the system partition.

User installed applications are stored on a userdata partition which is read-
write. When applications are run they are sandboxed, meaning that the app data
is isolated from other apps. If an app needs to access system parts, it has to
explicitly ask for permissions to do so.

A typical OTA update contains the following steps1:

• The device performs a pull-request to the servers to see if there is an available
update pending.

• The update is placed in the cache or data partition and certificates is used
to check the cryptographic signature.

• After the installation is accepted by the user, the system reboots into recov-
ery mode. This mode allows the system to be read-write since the recovery
partition is booted instead of the normal boot partition.

• Recovery binary is started and points to the downloaded package.

• Now the recovery checks the cryptographic signature with the public keys,
which are part of the RAM disk in the recovery partition.

1https://source.android.com/devices/tech/ota/

https://source.android.com/devices/tech/ota/

Deployment Use Cases 37

• The update is being applied to the necessary partitions.

• After the update is applied, the device reboots normally. The newly updated
boot partition is loaded and it mounts the system partition as read-only, and
starts executing the updated firmware.

The system update is now complete! A graphical representation of the update
procedure is shown in figure 5.1

Figure 5.1: Update process in Android

Security

Cryptographic signatures are used in two places:

• All .apk-files

• OTA update packages

When an Android OS image is built, test keys are used to sign the .apk-files. These
test keys are publicly known, thus the files needs to be signed with a set of release
keys only known by you.

Each key pair comes in two files - a certificate and a private key. The private
key is used to sign packages. The certificate contains the public key and is used
to verify packages signed with the corresponding private key1.

5.1.2 Chromebook
The Chromebook is a new type of computer, running Chrome OS, developed by
Google. Chrome OS is based on one of the most used software applications – the
browser. Below, we describe the update process and other parts related to it, such
as the file system.

We have consciously excluded a specific product running Chrome OS since, at
the time of writing (2015), only computers, i.e. high performance devices, support
the operating system. Computers will not be the limiting factor in this project,
unlike small IoT devices, e.g. WSNs, smartwatches.

1https://source.android.com/devices/tech/ota/sign_builds.html

https://source.android.com/devices/tech/ota/sign_builds.html

38 Deployment Use Cases

File System

The disk is divided into at least three partitions: the user data (home folder, logs
etc.) and two root partitions. One of the two root partitions is used at a given
time by the OS. The other is used by the update program to update the device.
It is also used as a fallback if the updated partition fails to boot. The booted
partition is mounted as read-only while the second root partition is mounted as
read-write. The user data partition is also mounted as read-write.

Update Process

The updates are automatic and silent in Chrome OS, i.e. The user does not have to
interact with the update process, nor will the user be notified of pending updates.

From the Chromium documentation1 we find the update process flow, here
compiled as figure 5.2. The updates are directly written to the second partition,
without interrupting the user running on the first partition. Updates are also
stacked, meaning that if the system is currently running version N and receives
a new update, then the version of the second partition is N + 1. If yet another
update is installed, without rebooting, the second partition will now be at version
N + 2 but the user still runs version N . After reboot, the user will run version
N + 2.

An update is generated by calculating the difference between the current
firmware and the new firmware. This is known as delta compression. Using delta
compression results in significantly smaller data transmission and faster updates,
since less code has to be written to flash. A graphical representation of Chome
OS’s update procedure is shown in figure 5.2.

Figure 5.2: Update process in Chrome OS

Security

All updates are downloaded over HTTPS which means that the communication is
encrypted, thus it is less likely that the updates have been tampered with on the

1https://www.chromium.org/chromium-os/chromiumos-design-docs/
filesystem-autoupdate

https://www.chromium.org/chromium-os/chromiumos-design-docs/filesystem-autoupdate
https://www.chromium.org/chromium-os/chromiumos-design-docs/filesystem-autoupdate

Deployment Use Cases 39

way to the user. A checksum and a signature is also sent along with the update.

5.2 Targeted Use Cases
The following use cases are the focus of this Master’s thesis. Their update processes
might not be ideal, but with the knowledge about the update processes of the
reference use cases, they can be improved.

5.2.1 The Company Use Cases
The Company has a variety of products used in many different scenarios. Here,
we present two use cases and discuss the demands on the cameras, etc.

A public transport company
A customer of The Company, a public transport company, recently installed The
Company’s cameras in some of their trains. The chosen infrastructure of the
systems is of a fully self-contained kind, i.e. there is no uplink to any central cite
and no direct connection to the Internet for the cameras. This implies that the
system is not reachable from outside and that found software vulnerabilities are not
of great impact. However, sometimes an update, and especially security updates,
would be preferable and then this is done as a part of the regular maintenance
procedure.

Update Process

There is no general update process for the surveillance system as this is not seen
as essential, but some things are common for all the systems:

• When an update is done, it is done at the workshop as a part of the main-
tenance procedure. That is because the trains needs to be out of service for
as little as possible as that costs money.

• The cameras are updated per train, by the maintenance technicians.

• It takes about ten minutes to update the cameras in a train once the tech-
nician is connected to the train network.

• If it is not essential to update, it is avoided where possible because it takes
effort.

• “Never change a running system.”

Today the updates are installed manually by the technicians. Instead of this,
a fully automated update procedure would be of interest. Primarily because that
would lower the out of service time. But, a fully automated update procedures
also introduces problems. The whole system has to be considered and everything
needs to support the latest firmware. There is also a risk that some units will
stop functioning after an applied update. However, the on-board video systems
are not considered operation critical, i.e. if a camera fails, it can be fixed at the
next maintenance. The current update process is described in figure 5.3

40 Deployment Use Cases

Figure 5.3: Update process for the public transport company

Security

Security is considered to be important, but that statement is not well supported
in real life. For example, no https or 802.1x are used and the cameras have their
default passwords. If these basic things are not taken into account, then any
security update would not make much of a difference anyway.

An Enterprise Retailer
A big customer of The Company have hundreds of thousands cameras in use
throughout their stores for video surveillance. With that many cameras, not only
one responsible department is enough, but several departments within their ecosys-
tem work with surveillance and security.

Update Process

When security vulnerabilities are found, it is extremely important to patch the
systems as soon as possible. This is a time consuming process for a big enterprise
like this. It is not unusual that this process takes several months. Many things
need to be considered and tested to make sure everything still works after the
update. Firstly, the benefits of the new update are reviewed and then a decision
is taken if the update is necessary.

Secondly, the new firmware needs to be tested with 3rd party software plat-
forms to make sure no interruptions are introduced by the patch. Examples of
this could be blocking of a communication port, user authentication changes, etc.

When an update is about to be distributed, the cameras are updated in
batches. This process mostly runs with scripts, much due to the limitations in
today’s Device Management. All cameras in the ecosystem does not run the same
firmware version. The size of the system and the current update mechanisms
makes it nearly impossible to keep everything up-to-date.

Much of the work today is done manually by the Camera infrastructure engi-
neering team. A fully automated process would not be of interest either as it would
introduce more problems than it solves. That is because of all the validation and
testing the firmware has to go through before it can be safely applied. Instead,
a process with a more semi-automatic character would be considered, i.e. the

Deployment Use Cases 41

responsible departments can pull updates and test them and then automatically
push the updates to all affected cameras. The update process is shown in 5.4

Figure 5.4: Update process for the enterprise company

Security

When it comes to security, the integrity of the customers is the biggest concern.
If a security vulnerability is found, a patch is usually desirable. But the fact that
this process is so time consuming is a vulnerability in itself. If the update process
can be boosted, many threats can be reduced, at least in time.

5.2.2 WSN

A Wireless Sensor Network is a network of usually small devices or sensors with
wireless communication capabilities. These devices are called “nodes”. The Mica2
Mote is an example of a WSN node. The word “mote” comes from the old English
word “mot” which means a small speck or dust particle.

Mica2 Mote Specifications

• Chipset: Atmel ATmega 128L

• OS: TinyOS

• Memory: 4 kB (RAM), 4kB (EEPROM), 128 kB (flash)

• Communication: UART, radio, IPv6, 6LowPAN

• Protocols: CoAP, UDP

• Sensors: Light, temperature, RH, barometric, pressure, acceleration/ Seis-
mic, acoustic, magnetic

42 Deployment Use Cases

Update Process

When a security update is about to be distributed to a Wireless Sensor Network,
the update is sent to a “master”, a gateway. The gateway then starts the dis-
tribution by sending it to its connected nodes. For this purpose, dissemination
protocols are used such as Deluge or MOAP. The dissemination protocols allow
the nodes to distribute an incoming update to its neighbouring nodes. WSNs are
lossy networks where the loss rate of packages is increasing with increased range.
So without a dissemination protocol, the loss rate would be too high. The nodes
themselves would not do any pull-requests. It is the gateway that pushes the
updates to the nodes. The process can be seen in figure 5.5.

Since WSNs often consists of resource restricted devices, it is important to
have as low data transmission as possible. For this purpose, delta-compressed
updates is essential, just like in the Chromebook OS case.

Some WSNs might have an uptime requirement of 100% which makes them
undesirable to update because of the downtime that implies. If they still get
updated at some point, the risk of faulty devices and downtime must be weighted
against the potential gain from the update.

Figure 5.5: Update process in WSNs

Security

In [11], the security in WSNs is discussed and said that attacks in WSNs are similar
to those in wired networks. It also says that WSNs are often more susceptible to
security threats because of the unguided medium.

Several security schemes have been developed to mitigate the effect of or avoid
attacks on WSNs, for example TinySec which prevents spoofing and replay at-
tacks.

Deployment Use Cases 43

5.3 Comparison
Table 5.1 compares the different use cases in terms of protocols and gives an
overview of the differences and similarities.

OS Protocols & Network

C
on

ti
k
i

T
in

y
O

S

L
in

u
x

W
iF

i

3G
/L

T
E

R
ad

io

H
T

T
P

C
oA

P

T
C

P

U
D

P

IP
v
6

R
P
L

6L
ow

P
A

N

80
2.

15
.4

Yanzi Led X X X X X X X X X
Mica2 Mote (WSN) X X X X X X X X

Android OS X X X X X X X
Chrome OS X X X X X X X

The Company’s cameras X X X X

Table 5.1: Use case comparison

44 Deployment Use Cases

Chapter6
Deployment

Figure 6.1: The three main parts in patch deployment.

6.1 Planning

The planning phase of the assessment is initialized if a vulnerability at this point
was considered important enough to be patched. Questions like when and how to
deploy the patch are raised here. The scheduling of the patch will be based on the
overall risk that the vulnerability poses to the device, system or environment. If it
is a low-risk patch, a possible scenario could be that the patch will be deployed in
the next scheduled firmware update. If it is urgent, it might be deployed outside
of the regular schedules.

This phase is not the focus of this thesis and will thus not be explored further.

45

46 Deployment

6.2 Testing
This phase includes both assembling and testing of the patch. If a patch already
exists, the assembly could very simple by just applying it to the device. It might
also involve complete rebuilds of the image to make the patch applicable. To find
an already existing patch is often the case for popular open source software. For
proprietary software and for some open source software, the patch needs to be
built.

When the patch has been assembled, it is tested in virtual test environments
similar to the real environment. A test process should start with a verification of
of the patch’s source and integrity and it should contain some form of a digital
signature or a checksum [22]. This ensures that the patch is valid and not altered
with. The mechanisms in the test process can vary much from one company to the
next. It is dependent on system criticality and availability, how severe the patch
is, and the available resources.

The test phase sometimes interlaces with the roll out phase because of potential
acceptance testing after the deployment of a patch.

6.3 Proposed Solution
Before we continue to the roll out phase we consider the deployment use cases in
chapter 5 again. By combining desired functionalities from the use case study, we
have proposed a solution that is generic and usable across many different devices,
from the smallest IoT sensor to computers with high computational power.

Presented below is a proposed update process combining the desired function-
alities from existing processes, and ensuring compatibility for multiple platforms.
Two different processes are included, one fully automatic and one semi-automatic.
One should not omit the other. For some systems it is not desirable with a fully
automated process e.g. for a security camera system, while for some it might be,
e.g. a sensor network.

Both processes include a trusted source distributing the updates. That could
also be done by the company itself. Figure 6.2 presents the semi-automatic solution
and figure 6.3 the fully automatic solution.

This proposed solution uses two redundant partitions in order for updates
to be downloaded and stacked on a running system. This also gives a natural
and intuitive roll-back function. Figure 6.4 visualizes what happens on the two
partitions during a patch.

The solution is very generic and thus omits parts of the process. For example,
the system might need some sort of version management - it needs to keep track
of what version every device has in order to know what patch to deploy. This and
other considerations are omitted in order to keep it as generic as possible.

Pros and Cons with Some of the Design Choices
Two partitions

Pros: Being able to apply updates while the system is running (but not on
the running partition), as well as to stack updates. Also gives the possibility

Deployment 47

Figure 6.2: Ideal Update Process - Semi-Automatic

Figure 6.3: Ideal Update Process - Fully Automatic

48 Deployment

part. 1 part. 2

part. 1 part. 2

part. 1 part. 2

part. 1 part. 2

1

2

3a 4/1

System running on partition 1.

Partition 2 is identical.

Checks for updates.

Update found

User is noti ed

about the precense

of a new update.

Download and apply the

update to partition 2.

Partition 1 is still running.

User accepts

part. 1 part. 2

User

declines

Update found

Still runs partition 1.

Checks for updates.

Updates are stacked.

Reboots from

partition 2.

Checks if all OK.

OK

System now runs on

the newly updated

partition 2. Update is

also applied to partition 1

3b

CoAP

UDP

RPL

6LowPAN

802.15.4

The IP Stack

Not OK

Revert

Figure 6.4: Ideal Update Process (Graphical Illustration)

to do a roll-back
Cons: Requires more hard drive space. Requires a reboot to run the newly
updated partition.

Deltas
Pros: Less code transmitted over the network.
Cons: Harder to handle than a full firmware update. Needs tables for
version management.

User notification
Pros: Gives the user control of what is updated and when.
Cons: It is not installed instantly, which might be a problem for crucial
security updates.

Chapter7
Roll Out

When a patch has been fully tested and verified in test environments, the roll out
can begin (see figure 6.1). If the vulnerability was considered severe, the roll out
should start as soon as possible. If not, it can be deployed in a batch together
with other scheduled updates.

Today at The Company, the common case is that all updates for the cameras
are being sent as part of the regular scheduled updates. There is no mechanism
for making a quick patch but the regular updates can be brought forward if there
is a severe vulnerability. The updates are being sent to the cameras as they are -
a full firmware and uncompressed. A checksum is calculated and sent along with
the binary to detect any errors in the transmitted data.

To send a full firmware every time a camera is being updated means an un-
necessarily large amount of data being transmitted over the network. However,
when an update contains many changes, a full firmware update could still be the
best way to do it. When it is a matter of minor bug fixes and small changes, a
patch will result in a much smaller amount of data being transmitted. For The
Company, with devices with considerably large amount of storage and with a good
TCP connection, the gain in decreasing the number of bits transmitted is marginal.
Still, a mechanism for patching and even more so, more added security features, is
desirable for The Company. Not only because of less transmitted bits, but also to
be able to increase the update frequency of the cameras. For smaller IoT devices,
a patching mechanism is even more important because of the limited storage and
bandwidth they possess.

7.1 Protocols

7.2 Operating Systems
Our patch program is written for Linux because The Company’s cameras are run-
ning Linux. It is convenient because many known algorithms for data compression
and delta encoding already exist for Linux. For many IoT devices, Linux is too
large to be used as an operating system. For these devices other types of operating
systems are used, for example Contiki, TinyOS, RIOT and liteOS mentioned in
Chapter 2. There already exist libraries ported to for example Contiki, such as
the bsdiff delta encoding algorithm and the LZ77 (de)compression algorithm [32].

49

50 Roll Out

Those two algorithms are also shown to be the best combination of compression
and delta encoding in terms of performance [16].

7.3 Security

7.4 Distribution

7.4.1 Dissemination

7.5 Architectural considerations
The architecture of the high level hardware must be carefully considered. One of
the most important goals to achieve is to have roll back capabilities - if something
goes wrong, we can always go back to a working version.

7.5.1 OverlayFS
OverlayFS is a file system that allows files to be written to a “shadow” file. It
makes several file systems appear as one when mounted. It was introduced in
Linux in kernal version 3.18 and is now a part of the mainline kernel. An overlay-
filesystem is the concept of one filesystem placed on top of another, called the
upper and lower filesystems1. If a file exists in both filesystems, you only see the
file from the upper filesystem while the lower file is hidden. If the object instead
is a directory then a merged directory is created. When a lookup is requested in
a merged directory, the lookup is performed in each actual directory. The lower
filesystem can be of any kind supported by Linux, writable or not. It can even be
an overlay filesystem in itself. The upper filesystem is usually writable.

A desirable feature for this project is that this file system architecture allows
the OS to roll back to a previous version by simply not reading the “shadow” file,
in case the update crashed or similar.

A negative part of OverlayFS is that it fails to look exactly like a normal
filesystem. The objects visible in the filesystem do not all appear to belong to
that filesystem. An example of this is the st_dev field returned by stat(2), where
directories will report the field from the overlay-filesystem, and other files will
report the field from the actual filesystem that is providing the object. These
events does not effect normal usage, since most applications does not care about
these field values.

7.6 Our Program / Deploy a Patch ?????
We have implemented a program to patch binaries on The Company’s cameras in
a secure way. The current solution uses a server/client based approach. The server
is run on a host, e.g. a server of The Company, containing binaries to updated
programs used in the cameras. The client is run on the cameras for example once

1https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txt

https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txt

Roll Out 51

every hour to check if there is a new version of a program on the server. If there is
a program on the server that is not on the camera, the program is downloaded. If
there is a new version of an existing program, the patch is downloaded - A “diff”
between the currently running program and the updated version of it.

The patch data that is being sent over the network contains a header with
information about the patch. The structure of the whole packet looks like this:

Packet:

| Header | Compressed data |

The structure of the header is seen below. It consists of 5 fields:

Header:

1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-------+---+
| dsize | Path |
+-+-+---+---+
|F|L| ECDSA Signature
+-+-+--

------------------------------+----------------------------------
|

------------------------------+

Decompressed size (dsize)
The decompressed/uncompressed size of the data. This is used when allo-
cating a memory buffer at the client side when patching.

Path
The path to the file being patched or replaced.

Flags (F)
An eight-bit field for indicating what kind of data is being sent. From MSB
to LSB, they are:

• bit 7 to 3: For future use.

• bit 2: data is compressed.

52 Roll Out

• bit 1: data contains a full binary.

• bit 0: data contains a patch.

Signature length (L)
The length of the ECDSA signature.

ECDSA Signature
The ECDSA signature value. The maximum signature length is 141 bytes,
but the actual signature length can be much smaller. This is due to a
non-deterministic function for calculating the signature.

When a patch is to be distributed, the server runs the diff program. The server
side needs to have both the old version and the new version of the program in order
to create the patch. The diff program builds the header for the packet. It also
calculates a checksum for the whole packet and adds its signature to it, verifying
the authenticity of the sender (The Company) and making sure the integrity is
kept. The signature and the signature length is put in the header together with
all other relevant information before it is sent to the client.

The client checks for updates, receives a patch and starts to read the header.
If anything has happened with the packet during the transmission, the client will
notice it and discard the packet. This includes events such as lost data during
transmission, someone who altered the packet on its way, someone who sent an-
other packet trying to make it look like a packet from The Company etc. The
signature makes sure all those events are prevented.

The confidentiality of the packet can not be ensured since we decided not to
encrypt the data because we only focus on open source software. The data is
public anyway. If also proprietary code is to be sent, confidentiality can be easily
ensured in the future by adding encryption such as AES.

When the packet is verified by the client patch program, the patch process can
start. If the data is compressed it first needs to be decompressed. In case of a full
binary, the program can just be installed and run. If it is a patch, the running
program needs to be shut down before it gets patched. When the patch process is
done, the program can be started again.

An overview of the program structure can be seen in Figure 7.1.

7.6.1 Future improvements
• The server side needs to have a version table that keeps track of the versions

of all the connected camera’s software. It needs functionality that makes
sure that a patch destinating to one camera does not go to other cameras.
Instead of a server/client based approach, the patch program should be
integrated into a package manager in order to be utilized by The Company.

• Another desirable function could be a check to see if the new or patched
program still works after the patch process. Even though the patch succeeds,
it does not mean that the new program will work as intended.

• A desirable mechanism considering the roll out could be to make the cam-
eras cooperate with each other in their network just like dissemination in a

Roll Out 53

Figure 7.1: UML diagram of our patch program

54 Roll Out

Wireless Sensor Network. A group of cameras which all get the same update
could announce a “master” that receives the update from the server and let
the cameras cooperate to distribute the update to each other, thereby de-
cresing the transmission rate from the server to the cameras with a factor
of the number of cameras in the network. This means that the cameras
must have knowledge about all other cameras in the network, as well as an
implemented protocol for dissemination.

Chapter8
Conclusion

55

56 Conclusion

Chapter9
Crypto Benchmark

System Scheme Strength (bits) Sign (ms) Verify (ms)

PC\

RSA 1024 80 0.129 0.009
RSA 2048 112 0.878 0.027
RSA 4096 142 6.34 0.101
ECDSA 160 80 0.052 0.195
ECDSA 224 112 0.058 0.122
ECDSA 256 128 0.041 0.011

P3367

RSA 1024 80 34.6 0.57
RSA 2048 112 210.6 1.68
RSA 4096 142 1400 19.2
ECDSA 160 80 4.9 15.7
ECDSA 224 112 6.9 22.4
ECDSA 256 128 7.9 26.0

\
Intel Core i7-3770 CPU @ 3.4GHz, 24GB RAM

Table 9.1: The table shows benchmark results of different signing
algorithms on different systems.

57

58 Crypto Benchmark

Bibliography

[1] J. Shin, U. Ramachandran, M. Ammar. “On Improving the Reliability
of Packet Delivery in Dense Wireless Sensor Networks”. In: (2005).

[2] C. J. Sreenan, S. Brown. “Software Updating in Wireless Sensor Net-
works: A Survey and Lacunae”. In: (2013).

[3] W. Dong, C. Chen, X. Liu, J. Bu. “Providing OS Support for Wireless
Sensor Networks: Challenges and Approaches”. In: (2010).

[4] J. Paul Walters, Z. Liang, W. Shi, V. Chaudhary. “Wireless Sensor
Network Security: A Survey”. In: (2006).

[5] Cisco. Seize New IoT Opportunities with the Cisco IoT System. 2015.
url: http://www.cisco.com/web/solutions/trends/iot/portfolio.
html (visited on 10/13/2015).

[6] Jonathan W. Hui, David Culler. “The Dynamic Behavior of a Data
Dissemination Protocolfor Network Programming at Scale”. In: (2004).

[7] Black Duck. Finding the Right Security Testing Tools for Your Organi-
zation. 2015. url: https://www.blackducksoftware.com/noindex/
salesforce/pdfs/RPT_Security_Tools_UL.pdf.

[8] Adam Dunkels. “Poster Abstract: Rime — A Lightweight Layered
Communication Stack for Sensor Networks”. In: (2007).

[9] Max Eddy. Is Stagefright Over? Hacker Reveals More Android At-
tacks. 2015. url: http : / / www . pcmag . com / article2 / 0 , 2817 ,
2489167,00.asp (visited on 10/05/2015).

[10] Times Higher Education. Times Higher Education World University
Rankings. 2015. url: https://www.timeshighereducation.com/
world-university-rankings/lund-university?ranking-dataset=
133819 (visited on 12/01/2015).

[11] A. Khan Pathan, H. Lee, C. Seon Hong. “Security in Wireless Sensor
Networks: Issues and Challenges”. In: (2006).

59

http://www.cisco.com/web/solutions/trends/iot/portfolio.html
http://www.cisco.com/web/solutions/trends/iot/portfolio.html
https://www.blackducksoftware.com/noindex/salesforce/pdfs/RPT_Security_Tools_UL.pdf
https://www.blackducksoftware.com/noindex/salesforce/pdfs/RPT_Security_Tools_UL.pdf
http://www.pcmag.com/article2/0,2817,2489167,00.asp
http://www.pcmag.com/article2/0,2817,2489167,00.asp
https://www.timeshighereducation.com/world-university-rankings/lund-university?ranking-dataset=133819
https://www.timeshighereducation.com/world-university-rankings/lund-university?ranking-dataset=133819
https://www.timeshighereducation.com/world-university-rankings/lund-university?ranking-dataset=133819

60 BIBLIOGRAPHY

[12] T. Vu Chien, H. Nguyen Chan, T. Nguyen Huu. “A Comparative
Study on Operating System for Wireless Sensor Networks”. In: (2011).

[13] Dan J. Klinedinst. CVSS and the Internet of Things. 2015. url:
https://insights.sei.cmu.edu/cert/2015/09/cvss-and-the-
internet-of-things.html (visited on 12/29/2015).

[14] Y. Kumar, R. Munjal, K. Kumar. “Wireless Sensor Networks and
Security Challenges”. In: (2011).

[15] G. Werner-Allen, K. Lorincz, M. Welsh, O. Marcillo, J. Johnson, M.
Ruiz, J. Lees. “Deploying a Wireless Sensor Network on an Active
Volcano”. In: (2006).

[16] Milosh Stolikj, Pieter J. L. Cuijpers, Johan J. Lukkien. “Efficient re-
programming of wireless sensor networks using incremental updates
and data compression”. In: (2012).

[17] Q.A. Chen, Z. Qian, Z.M. Mao. “Peeking into Your App without Ac-
tually Seeing It: UI State Inference and Novel Android Attacks”. In:
(2014).

[18] MITRE. About CVE. url: https://cve.mitre.org/about/index.
html (visited on 12/11/2015).

[19] MITRE. Common Weakness Scoring System (CWSSTM). url: https:
//cwe.mitre.org/cwss/cwss_v1.0.1.html (visited on 12/11/2015).

[20] Thomas L. Norman. Risk Analysis and Security Countermeasure Se-
lection. Second Edition. CRC Press, 2016.

[21] Alfred J. Mendez, Paul C. van Oorschot, Scott A. Vanstone. Handbook
of Applied Cryptography. ISBN: 9780849385230. CRC Press, 1996.

[22] Patchmanagement.org. Patch Management Essentials. 2004. url: http:
//patchmanagement.org/pmessentials.asp (visited on 12/14/2015).

[23] Certicom Research. “Standards for Efficient Cryptography 1 (SEC 1):
Elliptic Curve Cryptography”. In: (2009).

[24] Scott Rifenbark. Yocto Project Mega-Manual. 2015. url: http://
www.yoctoproject.org/docs/2.0/mega-manual/mega-manual.
html (visited on 12/22/2015).

[25] Michael Roppolo. New hack could steal personal information from
Gmail, other popular apps. 2014. url: http://www.cbsnews.com/
news / new - hack - could - steal - personal - information - from -
gmail-other-popular-apps/ (visited on 10/05/2015).

[26] M. Bozorgi, L. K. Saul, S. Savage, and G. M. Voelker. “Beyond Heuris-
tics: Learning to Classify Vulnerabilities and Predict Exploits”. In:
(2010).

https://insights.sei.cmu.edu/cert/2015/09/cvss-and-the-internet-of-things.html
https://insights.sei.cmu.edu/cert/2015/09/cvss-and-the-internet-of-things.html
https://cve.mitre.org/about/index.html
https://cve.mitre.org/about/index.html
https://cwe.mitre.org/cwss/cwss_v1.0.1.html
https://cwe.mitre.org/cwss/cwss_v1.0.1.html
http://patchmanagement.org/pmessentials.asp
http://patchmanagement.org/pmessentials.asp
http://www.yoctoproject.org/docs/2.0/mega-manual/mega-manual.html
http://www.yoctoproject.org/docs/2.0/mega-manual/mega-manual.html
http://www.yoctoproject.org/docs/2.0/mega-manual/mega-manual.html
http://www.cbsnews.com/news/new-hack-could-steal-personal-information-from-gmail-other-popular-apps/
http://www.cbsnews.com/news/new-hack-could-steal-personal-information-from-gmail-other-popular-apps/
http://www.cbsnews.com/news/new-hack-could-steal-personal-information-from-gmail-other-popular-apps/

BIBLIOGRAPHY 61

[27] Risk Based Security. CVE/NVD: The High Price of “Free”. 2015. url:
https://www.riskbasedsecurity.com/reports/CVE%20&%20NVD%
20-%20The%20High%20Price%20Of%20Free.pdf.

[28] R.L. Rivest, A. Shamir, and L. Adleman. “A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems”. In: (1978).

[29] N. Gura, A. Patel, A. Wander, H. Eberle, S. Shantz. “Comparing
elliptic curve cryptography and rsa on 8-bit cpus”. In: (2004).

[30] Edosoft Factory, S.L. “ISN - Interoperable Sensor Networks - Contiki
and Tiny OS”. In: (2012).

[31] Sonatype. Executive Brief: Addressing Security Concerns in Open Source
Components. 2012. url: http://img.en25.com/Web/SonatypeInc/
%7Bd6035e8b-53b7-4dfa-ad94-efbf718329d2%7D_sonatype_executive_
security_brief_final_(2).pdf.

[32] Milosh Stolikj. Decompression library for Contiki. 2012. url: http://
www.win.tue.nl/~mstolikj/compression/ (visited on 01/14/2016).

[33] G. Gaubatz, J.P. Kaps, B. Sunar. “Public key cryptography in sensor
networks - revisited”. In: (2004).

[34] L. Casado, P. Tsigas. “ContikiSec: A Secure Network Layer for Wire-
less Sensor Network under the Contiki Operating System”. In: (2008).

[35] David Vose. Risk Analysis - A Quantitative Guide. Third Edition.
John Wiley & Sons, Ltd., 2008.

[36] C. Karlof, N. Sastry, D. Wagner. “TinySec: A Link Layer Security
Architecture for Wireless Sensor Networks”. In: (2004).

[37] QSWU.QS Top Universities. 2015. url: http://www.topuniversities.
com/universities/lund-university (visited on 12/01/2015).

[38] M. Gegick, P. Rotella, T. Xie. “Identifying Security Bug Reports via
Text Mining: An Industrial Case Study”. In: (2010).

https://www.riskbasedsecurity.com/reports/CVE%20&%20NVD%20-%20The%20High%20Price%20Of%20Free.pdf
https://www.riskbasedsecurity.com/reports/CVE%20&%20NVD%20-%20The%20High%20Price%20Of%20Free.pdf
http://img.en25.com/Web/SonatypeInc/%7Bd6035e8b-53b7-4dfa-ad94-efbf718329d2%7D_sonatype_executive_security_brief_final_(2).pdf
http://img.en25.com/Web/SonatypeInc/%7Bd6035e8b-53b7-4dfa-ad94-efbf718329d2%7D_sonatype_executive_security_brief_final_(2).pdf
http://img.en25.com/Web/SonatypeInc/%7Bd6035e8b-53b7-4dfa-ad94-efbf718329d2%7D_sonatype_executive_security_brief_final_(2).pdf
http://www.win.tue.nl/~mstolikj/compression/
http://www.win.tue.nl/~mstolikj/compression/
http://www.topuniversities.com/universities/lund-university
http://www.topuniversities.com/universities/lund-university

62 BIBLIOGRAPHY

AppendixA
Test Appendix

Some code here?

63

	List of Abbreviations
	Introduction
	Purpose and Goals
	About LTH

	Background
	Internet of Things
	Lightweight Protocols
	Operating Systems in IoT
	Wireless Sensor Networks
	Security
	Symmetric Cryptography
	Asymmetric Cryptography
	Digital Signatures
	Cryptographic Hash Functions

	Public Key Infrastructure
	Digital Certificates

	Security in Wireless Sensor Networks
	Attacks and security in WSNs

	Updates
	Dissemination
	Dynamic Software Updates
	-patches
	Major/Minor Updates
	Over the Air

	Device Management
	Risk Analysis

	Vulnerability Assessment
	Identification of Vulnerabilities
	Evaluation of Vulnerabilities

	Case Study - Evaluation
	Heartbleed
	Poodle
	Apache module mod_lua
	CSRF
	A More Efficient Assessment

	Deployment Use Cases
	Reference Use Cases
	Android
	Chromebook

	Targeted Use Cases
	The Company Use Cases
	WSN

	Comparison

	Deployment
	Planning
	Testing
	Proposed Solution

	Roll Out
	Protocols
	Operating Systems
	Security
	Distribution
	Dissemination

	Architectural considerations
	OverlayFS

	Our Program / Deploy a Patch ?????
	Future improvements

	Conclusion
	Crypto Benchmark
	Test Appendix

