

EM modeling and power cables

Sven Nordebo

Department of Physics and Electrical Engineering Linnæus University, Sweden

2nd SSF workshop on Optimal and Automated Design of Electromagnetic Structures, Lund, 14 January, 2015.

Outline

Research activities

Electromagnetic losses in three-phase power cables

On the natural modes of helical structures

Sven Nordebo, Department of Physics and Electrical Engineering, Linnæus University, Sweden. 2(14)

Previous research activities

VR-ABB-PhD: Electromagnetic dispersion modeling and analysis for power cables. Broadband pulse propagation on HVDC power cables, for fault localization, length estimation, etc.

Current and planned research activities within the SSF-project: *Complex analysis and convex optimization for EM design*

- SSF-ABB-PhD: Electromagnetic losses in cable armour. Characterization, measurements and estimation of the induced conduction and hysteresis losses in the cable steel armour.
- SSF-ABB-mobility: Electromagnetic losses in three-phase power cables. On the natural modes of helical structures.

Outline

Research activities

Electromagnetic losses in three-phase power cables

On the natural modes of helical structures

Sven Nordebo, Department of Physics and Electrical Engineering, Linnæus University, Sweden. 4(14)

Electromagnetic losses in three-phase power cables

There is a great potential of accurate electromagnetic modeling, analysis, and optimization (design) of three-phase power cables, with regard to

- conductor losses, skin-effect
- induced conduction losses in metal sheaths and armour
- iron losses in armour (hysteresis losses)

Images from: Workshop on Mathematical Modelling of Wave Phenomena 2013, Linnæus University. Presentation by Danijela Palmgren: http://lnu.se/polopoly fs/1.85931!Palmgren.pdf

Electromagnetic losses in three-phase power cables

Armour loss measurement: Armoured cable

ABB Mages from: Workshop on Mathematical Modelling of Wave Phenomena 2013, Linnæus University. Presentation by Danijela Palmgren: http://lnu.se/polopoly fs/1.85931!Palmgren.pdf

Sven Nordebo, Department of Physics and Electrical Engineering, Linnæus University, Sweden. 6(14)

Estimation of electromagnetic losses in cable armour

- Build and model a transfomer based on the cable steel
- Conduction losses (eddy currents) $J = \sigma E \Rightarrow D = \epsilon_0 (\epsilon_r + i \frac{\sigma}{\omega \epsilon_0}) E$
- Iron losses (hysteresis effect) $B = \mu_0 \mu(H)$
- ► How to estimate, simultaneously, the conduction losses as well as the (non-linear) hysteresis losses in the cable steel?
 - Linear model, proximity effects
 - Micromagnetic models: Jiles-Atherton model (1984-1986)
 - Variational models based on thermodynamics (1997-2011)
- Identify model (material) parameters based on measurements.
 EM-theory, estimation theory, convex optimization.

Sven Nordebo, Department of Physics and Electrical Engineering, Linnæus University, Sweden. 7(14)

Estimation of electromagnetic losses in cable armour

Modeling of magnetic hysteresis losses in steel

Left: Classical non-linear Jiles-Atherton model. Right: Linear model.

Sven Nordebo, Department of Physics and Electrical Engineering, Linnæus University, Sweden. 8(14)

Estimation of electromagnetic losses in cable armour

Modeling of magnetic hysteresis losses in steel

Left: Classical non-linear Jiles-Atherton model. Right: Linear model.

Sven Nordebo, Department of Physics and Electrical Engineering, Linnæus University, Sweden. 9(14)

Outline

Research activities

Electromagnetic losses in three-phase power cables

On the natural modes of helical structures

Sven Nordebo, Department of Physics and Electrical Engineering, Linnæus University, Sweden. 10(14)

Floquet wave number for periodic structures $m{J}(m{r}) = \widetilde{m{J}}(m{r}) \mathrm{e}^{\mathrm{i}eta z}$

Periodic electric Green's dyadic

$$\boldsymbol{E}(\boldsymbol{r}) = \mathrm{i}\omega\mu_0\mu \int_S \int_0^p \boldsymbol{G}_{\mathrm{ep}}(\boldsymbol{r},\boldsymbol{r}',k,\beta) \cdot \boldsymbol{J}(\boldsymbol{r}') \,\mathrm{d}S' \,\mathrm{d}z'$$

Poisson summation formula

$$\begin{split} \boldsymbol{G}_{\mathrm{ep}}(\boldsymbol{r},\boldsymbol{r}',k,\beta) &= \sum_{n=-\infty}^{\infty} \boldsymbol{G}_{\mathrm{e}}(\boldsymbol{r},\boldsymbol{r}'+\hat{\boldsymbol{z}}np,k) \mathrm{e}^{\mathrm{i}\beta pn} \\ &= \frac{1}{p} \sum_{n=-\infty}^{\infty} \boldsymbol{G}_{\mathrm{e}}(\boldsymbol{\rho},\boldsymbol{\rho}',k,\beta+n\frac{2\pi}{p}) \mathrm{e}^{\mathrm{i}(\beta+n\frac{2\pi}{p})(z-z')} \end{split}$$

Spectral representation of the free-space electric Green's dyadic

$$\boldsymbol{G}_{\mathrm{e}}(\boldsymbol{r},\boldsymbol{r}',k) = \{\boldsymbol{I} + \frac{1}{k^{2}}\nabla\nabla\}\frac{\mathrm{e}^{\mathrm{i}k|\boldsymbol{r}-\boldsymbol{r}'|}}{4\pi|\boldsymbol{r}-\boldsymbol{r}'|} = \frac{1}{2\pi}\int_{-\infty}^{\infty}\boldsymbol{G}_{\mathrm{e}}(\boldsymbol{\rho},\boldsymbol{\rho}',k,\alpha)\mathrm{e}^{\mathrm{i}\alpha(z-z')}\,\mathrm{d}\alpha$$

Sven Nordebo, Department of Physics and Electrical Engineering, Linnæus University, Sweden. 11(14)

▶ Periodic volume integral equation for the electric field, based on the Floquet mode e^{iβz}

$$[\boldsymbol{I} + \hat{\boldsymbol{\rho}}\hat{\boldsymbol{\rho}} \cdot \boldsymbol{\chi}(\boldsymbol{r})] \cdot \boldsymbol{E}(\boldsymbol{r}) - k^2 \int_{S} \int_{0}^{p} \boldsymbol{G}_{ep}^{0}(\boldsymbol{r}, \boldsymbol{r}', k, \beta) \cdot \boldsymbol{\chi}(\boldsymbol{r}') \cdot \boldsymbol{E}(\boldsymbol{r}') \, \mathrm{d}S' \, \mathrm{d}z' = \boldsymbol{0}$$

- Expansion of the periodic dyadic Green's function $G_{ep}^0(r, r', k, \beta)$ in cylindrical vector waves.
- A two-dimensional Fourier series expansion yields an infinite system of coupled one-dimensional integral equations

$$\boldsymbol{E}_{mn}(\boldsymbol{\rho}) + \hat{\boldsymbol{\rho}}\hat{\boldsymbol{\rho}} \cdot \sum_{m'} \sum_{n'} \boldsymbol{\chi}_{m-m',n-n'}(\boldsymbol{\rho}) \cdot \boldsymbol{E}_{m'n'}(\boldsymbol{\rho})$$
$$-k^2 2\pi \int_0^a \boldsymbol{a}_m(\boldsymbol{\rho},\boldsymbol{\rho}',k,\beta+n\frac{2\pi}{p}) \cdot \sum_{m'} \sum_{n'} \boldsymbol{\chi}_{m-m',n-n'}(\boldsymbol{\rho}') \cdot \boldsymbol{E}_{m'n'}(\boldsymbol{\rho}') \rho' \, \mathrm{d}\boldsymbol{\rho}'$$
$$= \mathbf{0}$$

Material twist-modes χ_{mn} in Fourier space

Azimuthal Floquet mode E_{mn} containing the "excitation" factor $e^{i\phi}$ Quasi-static assumption: The mode shapes of E is the same as for χ

Sven Nordebo, Department of Physics and Electrical Engineering, Linnæus University, Sweden. 13(14)

Issues

Proper treatment of the source point (here in cylindrical coordinates)

$$\boldsymbol{G}_{\mathrm{e}}(\boldsymbol{r},\boldsymbol{r}',k) = \{\boldsymbol{I} + \frac{1}{k^2} \nabla \nabla\} \frac{\mathrm{e}^{\mathrm{i}k|\boldsymbol{r}-\boldsymbol{r}'|}}{4\pi|\boldsymbol{r}-\boldsymbol{r}'|} = \boldsymbol{G}_{\mathrm{e}}^{0}(\boldsymbol{r},\boldsymbol{r}',k) - \frac{1}{k^2} \hat{\boldsymbol{\rho}} \hat{\boldsymbol{\rho}} \delta(\boldsymbol{r}-\boldsymbol{r}')$$

- ► The volume integral formulation is known to be "strongly" singular.
- Each one-dimensional integral operator is only weakly singular (discontinuous kernel).
- Spectral theory, characterization of spectral properties similar to Fredholm theory?
- Analytic function theory view. Existence of modes (residues), radiation modes are the contributions from an integration along the branch-cut.