Complex Analysis in Several Variables

Ragnar Sigurdsson University of Iceland

SSF Workshop, Lund, Sweden January 14, 2015

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Contents:

1. Overview of compex analysis in several variables.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- 2. Analytic (holomorphic) functions.
- 3. Holomorphic maps.
- 4. Domains of holomorphy.
- 5. Integral representations.
- 6. Plurisubharmonic functions.
- 7. Cauchy-Riemann equations.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

(i) Function theory in domains of \mathbb{C}^n .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(i) Function theory in domains of Cⁿ.
(ii) Complex manifolds.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- (i) Function theory in domains of \mathbb{C}^n .
- (ii) Complex manifolds.
- (iii) Analytic geometry and complex spaces.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- (i) Function theory in domains of \mathbb{C}^n .
- (ii) Complex manifolds.
- (iii) Analytic geometry and complex spaces.
- (iv) Applications to PDE.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- (i) Function theory in domains of \mathbb{C}^n .
- (ii) Complex manifolds.
- (iii) Analytic geometry and complex spaces.
- (iv) Applications to PDE.
- (v) Applications to Fourier-analysis.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- (i) Function theory in domains of \mathbb{C}^n .
- (ii) Complex manifolds.
- (iii) Analytic geometry and complex spaces.
- (iv) Applications to PDE.
- (v) Applications to Fourier-analysis.
- (vi) Study of special PDE.

2. Analytic (holomorphic) functions

Let $X \subset \mathbb{C}$, $a \in X$ be a point, z = x + iy, $\overline{z} = x - iy$.

2. Analytic (holomorphic) functions

Let $X \subset \mathbb{C}$, $a \in X$ be a point, z = x + iy, $\overline{z} = x - iy$. The differential of a function $f : X \to \mathbb{C}$ is:

$$d_a f = \frac{\partial f}{\partial x}(a) dx + \frac{\partial f}{\partial y}(a) dy = \frac{\partial f}{\partial z}(a) dz + \frac{\partial f}{\partial \overline{z}}(a) d\overline{z},$$

where dz = dx + iy, $d\overline{z} = dx - idy$, and

$$\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right), \quad \text{and} \quad \frac{\partial}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right),$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

2. Analytic (holomorphic) functions

Let $X \subset \mathbb{C}$, $a \in X$ be a point, z = x + iy, $\overline{z} = x - iy$. The differential of a function $f : X \to \mathbb{C}$ is:

$$d_a f = \frac{\partial f}{\partial x}(a) dx + \frac{\partial f}{\partial y}(a) dy = \frac{\partial f}{\partial z}(a) dz + \frac{\partial f}{\partial \overline{z}}(a) d\overline{z},$$

where dz = dx + iy, $d\overline{z} = dx - idy$, and

$$\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right), \text{ and } \frac{\partial}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right),$$

For functions of *n* complex variables $z = (z_1, ..., z_n)$, where $z_j = x_j + iy_j$, the differential is

$$d_a f = \sum_{j=1}^n \frac{\partial f}{\partial z_j}(a) dz_j + \sum_{j=1}^n \frac{\partial f}{\partial \overline{z}_j}(a) d\overline{z}_j = \partial f + \overline{\partial} f.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition f is analytic if $d_a f$ is \mathbb{C} -linear at every point a in X, which means that the Cauchy-Riemann-equations are satisfied:

$$rac{\partial f}{\partial ar{z}_j}(a) = 0, \qquad j = 1, \dots, n.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition f is analytic if $d_a f$ is \mathbb{C} -linear at every point a in X, which means that the Cauchy-Riemann-equations are satisfied:

$$rac{\partial f}{\partial ar{z}_j}(a)=0, \qquad j=1,\ldots,n.$$

ション ふゆ アメリア メリア しょうくしゃ

The set of all analytic functions on X is denoted by $\mathcal{O}(X)$.

Definition f is analytic if $d_a f$ is \mathbb{C} -linear at every point a in X, which means that the Cauchy-Riemann-equations are satisfied:

$$rac{\partial f}{\partial ar{z}_j}(a)=0, \qquad j=1,\ldots,n.$$

The set of all analytic functions on X is denoted by $\mathcal{O}(X)$. It is actually possible to give a weaker definition: Theorem (Hartogs 1906): If $f : X \to \mathbb{C}$ is a function and for every point $a \in X$ the function

$$\zeta \mapsto f(a_1,\ldots,a_{j-1},\zeta,a_{j+1},\ldots,a_n)$$

is analytic in a neighbourhood of a_j , then $f \in \mathcal{O}(X)$

A Cauchy formula and power series: Let

$$D = D(a_1, r_1) \times \cdots \times D(a_n, r_n)$$

be a polydisc and denote the distinguished boundary by

$$\partial_0 D = \partial D(a_1, r_1) \times \cdots \times \partial D(a_n, r_n)$$

If f is analytic in a neigbourhood of \overline{D} , then

$$f(z) = \frac{1}{(2\pi i)^n} \int_{\partial_0 D} \frac{f(\zeta_1, \ldots, \zeta_n)}{(\zeta_1 - z_1) \cdots (\zeta_n - z_n)} d\zeta_1 \cdots d\zeta_n, \qquad z \in D.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A Cauchy formula and power series: Let

$$D = D(a_1, r_1) \times \cdots \times D(a_n, r_n)$$

be a polydisc and denote the distinguished boundary by

$$\partial_0 D = \partial D(a_1, r_1) \times \cdots \times \partial D(a_n, r_n)$$

If f is analytic in a neigbourhood of \overline{D} , then

$$f(z) = \frac{1}{(2\pi i)^n} \int_{\partial_0 D} \frac{f(\zeta_1, \ldots, \zeta_n)}{(\zeta_1 - z_1) \cdots (\zeta_n - z_n)} d\zeta_1 \cdots d\zeta_n, \qquad z \in D.$$

This gives a local power series expansion

$$f(z) = \sum_{\alpha} \partial^{\alpha} f(a)(z-a)^{\alpha},$$

where

$$\partial^{\alpha} = \frac{\partial^{|\alpha|}}{\partial z_{1}^{\alpha_{1}} \cdots \partial z_{n}^{\alpha_{n}}}, \quad \xi^{\alpha} = \xi_{1}^{\alpha_{1}} \cdots \xi_{n}^{\alpha_{n}}, \quad |\alpha| = \alpha_{1} + \cdots + \alpha_{n}.$$

Let X be open in \mathbb{C}^n . A map $F = (F_1, \ldots, F_m) : X \to \mathbb{C}^m$ is said to be holomorphic if $F_j \in \mathcal{O}(X)$ for all j.

Let X be open in \mathbb{C}^n . A map $F = (F_1, \ldots, F_m) : X \to \mathbb{C}^m$ is said to be holomorphic if $F_j \in \mathcal{O}(X)$ for all j.

If m = n and F is bijective onto its image Y = F(X), then we say that F is biholomorphic.

We say that two domains X and Y are biholomorphically equivalent if there exists a biholomorphic map on X with Y = F(X)

ション ふゆ く 山 マ チャット しょうくしゃ

Let X be open in \mathbb{C}^n . A map $F = (F_1, \ldots, F_m) : X \to \mathbb{C}^m$ is said to be holomorphic if $F_j \in \mathcal{O}(X)$ for all j.

If m = n and F is bijective onto its image Y = F(X), then we say that F is biholomorphic.

We say that two domains X and Y are biholomorphically equivalent if there exists a biholomorphic map on X with Y = F(X)

ション ふゆ アメリア メリア しょうくしゃ

The Riemann Mapping Theorem: If X is a simply connected domain in \mathbb{C} , $\emptyset \neq X$ and $X \neq \mathbb{C}$, then X is biholomorphically equivalent to \mathbb{D} the unit disc in \mathbb{C} .

Let X be open in \mathbb{C}^n . A map $F = (F_1, \ldots, F_m) : X \to \mathbb{C}^m$ is said to be holomorphic if $F_j \in \mathcal{O}(X)$ for all j.

If m = n and F is bijective onto its image Y = F(X), then we say that F is biholomorphic.

We say that two domains X and Y are biholomorphically equivalent if there exists a biholomorphic map on X with Y = F(X)

The Riemann Mapping Theorem: If X is a simply connected domain in \mathbb{C} , $\emptyset \neq X$ and $X \neq \mathbb{C}$, then X is biholomorphically equivalent to \mathbb{D} the unit disc in \mathbb{C} .

This does not generalize to higher dimensions:

Theorem: If n > 1, then the unit ball

$$\mathbb{B}_n = \{ z \in \mathbb{C}^n ; |z_1|^2 + \dots + |z_n|^n < 1 \}$$

in \mathbb{C}^n is not biholomorphically equivalent to a polydisc.

With the aid of the Weierstrass product theorem it is possible to show that for every open X in \mathbb{C} there exits $f \in \mathcal{O}(X)$, which can not be extended to a holomorphic function in a neighbourhood of a boundary point of X.

With the aid of the Weierstrass product theorem it is possible to show that for every open X in \mathbb{C} there exits $f \in \mathcal{O}(X)$, which can not be extended to a holomorphic function in a neighbourhood of a boundary point of X.

Theorem (Hartogs 1906): Let X be an open subset of \mathbb{C}^n , n > 1, K be a compact subset of X such that $X \setminus K$ is connected. Then every function $f \in \mathcal{O}(X \setminus K)$ extends uniquely to a function $F \in \mathcal{O}(X)$.

ション ふゆ く 山 マ チャット しょうくしゃ

With the aid of the Weierstrass product theorem it is possible to show that for every open X in \mathbb{C} there exits $f \in \mathcal{O}(X)$, which *can not* be extended to a holomorphic function in a neighbourhood of a boundary point of X.

Theorem (Hartogs 1906): Let X be an open subset of \mathbb{C}^n , n > 1, K be a compact subset of X such that $X \setminus K$ is connected. Then every function $f \in \mathcal{O}(X \setminus K)$ extends uniquely to a function $F \in \mathcal{O}(X)$.

We have a little bit technical definition:

Definition: An open set X is said to be a *domain of holomorphy* if there *do not exist* non-empty open sets X_1 and X_2 with X_2 is connected, $X_2 \not\subset X$, and $X_1 \subset X \cap X_2$, such that for every $f \in \mathcal{O}(X)$ there exists $F \in \mathcal{O}(X_2)$ such that f = F on X_1 .

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ の へ ()

With the aid of the Weierstrass product theorem it is possible to show that for every open X in \mathbb{C} there exits $f \in \mathcal{O}(X)$, which *can not* be extended to a holomorphic function in a neighbourhood of a boundary point of X.

Theorem (Hartogs 1906): Let X be an open subset of \mathbb{C}^n , n > 1, K be a compact subset of X such that $X \setminus K$ is connected. Then every function $f \in \mathcal{O}(X \setminus K)$ extends uniquely to a function $F \in \mathcal{O}(X)$.

We have a little bit technical definition:

Definition: An open set X is said to be a *domain of holomorphy* if there *do not exist* non-empty open sets X_1 and X_2 with X_2 is connected, $X_2 \not\subset X$, and $X_1 \subset X \cap X_2$, such that for every $f \in \mathcal{O}(X)$ there exists $F \in \mathcal{O}(X_2)$ such that f = F on X_1 .

There exist many equivalent characterizations of domains of holomorphy: (Oka, Cartan, Bremermann, and Norguet, c.a. 1937-1954).

5. Integral representations

The Cauchy-Fantappiè-Leray formula: Let ω be a domain in X with smoooth boundary $\partial \omega$ in X and assume that ω is defined by the function ρ in the sense that

$$\omega = \{z \in X ; \varrho(z) < 0\}$$

and the gradient

$$\varrho' = (\partial \varrho / \partial z_1, \ldots, \partial \varrho / \partial z_n)$$

ション ふゆ アメリア メリア しょうくしゃ

is non-zero at every boundary point.

5. Integral representations

The Cauchy-Fantappiè-Leray formula: Let ω be a domain in X with smoooth boundary $\partial \omega$ in X and assume that ω is defined by the function ρ in the sense that

$$\omega = \{z \in X ; \varrho(z) < 0\}$$

and the gradient

$$\varrho' = (\partial \varrho / \partial z_1, \dots, \partial \varrho / \partial z_n)$$

is non-zero at every boundary point.

Then for every $f \in \mathcal{O}(X)$ we have

$$f(z) = \frac{1}{(2\pi i)^n} \int_{\partial \omega} \frac{f(\zeta) \, \partial \varrho \wedge (\bar{\partial} \partial \varrho)^{n-1}}{\langle \varrho'(\zeta), \zeta - z \rangle^n}, \qquad z \in \omega.$$

◆□▶ ◆圖▶ ★ 圖▶ ★ 圖▶ / 圖 / のへぐ

6. Plurisubharmonic functions

A function $arphi:X
ightarrow\mathbb{R}\cup\{-\infty\}$ is said to be plurisubharmonic if

$$\sum_{j,k} \frac{\partial^2 \varphi}{\partial z_j \partial \overline{z}_k} w_j \overline{w}_k \ge 0.$$

6. Plurisubharmonic functions

A function $\varphi:X \to \mathbb{R} \cup \{-\infty\}$ is said to be plurisubharmonic if

$$\sum_{j,k} \frac{\partial^2 \varphi}{\partial z_j \partial \bar{z}_k} w_j \bar{w}_k \geq 0.$$

ション ふゆ アメリア メリア しょうくしゃ

Examples:

(i) Convex functions on convex domains X. (ii) $\varphi = \log |f|, f \in \mathcal{O}(X).$ (iii) $\varphi = \log(|f_1|^{p_1} + \cdots + |f_m|^{p_m}), f_j \in \mathcal{O}(X).$

6. Plurisubharmonic functions

A function $arphi:X
ightarrow\mathbb{R}\cup\{-\infty\}$ is said to be plurisubharmonic if

$$\sum_{j,k} \frac{\partial^2 \varphi}{\partial z_j \partial \bar{z}_k} w_j \bar{w}_k \ge 0.$$

Examples:

(i) Convex functions on convex domains X.
(ii) φ = log |f|, f ∈ O(X).
(iii) φ = log(|f₁|^{p₁} + ··· + |f_m|^{p_m}), f_j ∈ O(X).
The class of PSH(X) of plurisubharmonic functions has many good properties which enables us to construct functions, e.g.,

$$\varphi = \sup\{\varphi_1, \dots, \varphi_m\} \in \mathcal{PSH}(X), \quad \text{ if } \quad \varphi_j \in \mathcal{PSH}(X)$$

7. The inhomogeneous Cauchy-Riemann equations

Assume that we have a function $g \in C^{\infty}(X)$ and that we want to modify g, so that it becomes holomorphic, i.e., we want to find $u \in C^{\infty}(X)$ such that

$$F = G - u$$
.

Then u has to satisfy the inhomogeneous Cauchy-Riemann equations

$$rac{\partial u}{\partial \overline{z}_j} = f_j, \qquad ext{with} \qquad f_j = rac{\partial G}{\partial \overline{z}_j}$$

Hörmander's existence theorem

Let X be a domain of holomorphy, $f_j \in C^1(X)$ be functions on X satisfying

$$\frac{\partial f_j}{\partial \bar{z}_k} = \frac{\partial f_k}{\partial \bar{z}_j}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

and let $\varphi: X \to \mathbb{R} \cup \{-\infty\}$ be a *plurisubharmonic function*.

Hörmander's existence theorem

Let X be a domain of holomorphy, $f_j \in C^1(X)$ be functions on X satisfying

$$\frac{\partial f_j}{\partial \bar{z}_k} = \frac{\partial f_k}{\partial \bar{z}_j}.$$

and let $\varphi : X \to \mathbb{R} \cup \{-\infty\}$ be a *plurisubharmonic function*. Then there exists a function u on X satisfying the Cauchy-Riemann equations

$$\frac{\partial u}{\partial \bar{z}_j} = f_j,$$

with the L^2 -estimate of u in terms of $f = (f_1, \ldots, f_n)$,

$$\int_X |u|^2 (1+|z|^2)^{-2} e^{-\varphi} \, d\lambda \leq \int_X |f|^2 e^{-\varphi} \, d\lambda$$

ション ふゆ く 山 マ チャット しょうくしゃ