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2. Analytic (holomorphic) functions

Let X ⊂ C, a ∈ X be a point, z = x + iy , z̄ = x − iy .

The di�erential of a function f : X → C is:

daf =
∂f

∂x
(a)dx +

∂f

∂y
(a)dy =

∂f

∂z
(a)dz +

∂f

∂z̄
(a)dz̄ ,

where dz = dx + iy , dz̄ = dx − idy , and

∂

∂z
=

1

2

(
∂

∂x
− i

∂

∂y

)
, and

∂

∂z̄
=

1

2

(
∂

∂x
+ i

∂

∂y

)
,

For functions of n complex variables z = (z1, . . . , zn), where
zj = xj + iyj , the di�erential is

daf =
n∑
j=1

∂f

∂zj
(a)dzj +

n∑
j=1

∂f

∂z̄j
(a)dz̄j = ∂f + ∂̄f .
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De�nition f is analytic if daf is C-linear at every point a in X ,

which means that the Cauchy-Riemann-equations are satis�ed:

∂f

∂z̄j
(a) = 0, j = 1, . . . , n.

The set of all analytic functions on X is denoted by O(X ).

It is actually possible to give a weaker de�nition:

Theorem (Hartogs 1906): If f : X → C is a function and for every

point a ∈ X the function

ζ 7→ f (a1, . . . , aj−1, ζ, aj+1, . . . , an)

is analytic in a neighbourhood of aj , then f ∈ O(X )
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A Cauchy formula and power series:
Let

D = D(a1, r1)× · · · × D(an, rn)

be a polydisc and denote the distinguished boundary by

∂0D = ∂D(a1, r1)× · · · × ∂D(an, rn)

If f is analytic in a neigbourhood of D, then

f (z) =
1

(2πi)n

∫
∂0D

f (ζ1, . . . , ζn)

(ζ1 − z1) · · · (ζn − zn)
dζ1 · · · dζn, z ∈ D.

This gives a local power series expansion

f (z) =
∑
α

∂αf (a)(z − a)α,

where

∂α =
∂|α|

∂zα1
1
· · · ∂zαnn

, ξα = ξα1
1
· · · ξαnn , |α| = α1 + · · ·+ αn.
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3. Holomorphic maps

Let X be open in Cn. A map F = (F1, . . . ,Fm) : X → Cm is said

to be holomorphic if Fj ∈ O(X ) for all j .

If m = n and F is bijective onto its image Y = F (X ), then we say

that F is biholomorphic.

We say that two domains X and Y are biholomorphically equivalent

if there exists a biholomorphic map on X with Y = F (X )

The Riemann Mapping Theorem: If X is a simply connected

domain in C, ∅ 6= X and X 6= C, then X is biholomorphically

equivalent to D the unit disc in C.
This does not generalize to higher dimensions:

Theorem: If n > 1, then the unit ball

Bn = {z ∈ Cn ; |z1|2 + · · ·+ |zn|n < 1}

in Cn is not biholomorphically equivalent to a polydisc.
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4. Domains of holomorphy

With the aid of the Weierstrass product theorem it is possible to

show that for every open X in C there exits f ∈ O(X ), which can

not be extended to a holomorphic function in a neighbourhood of a

boundary point of X .

Theorem (Hartogs 1906): Let X be an open subset of Cn, n > 1,

K be a compact subset of X such that X \ K is connected. Then

every function f ∈ O(X \ K ) extends uniquely to a function

F ∈ O(X ).

We have a little bit technical de�nition:

De�nition: An open set X is said to be a domain of holomorphy if

there do not exist non-empty open sets X1 and X2 with X2 is

connected, X2 6⊂ X , and X1 ⊂ X ∩ X2, such that for every

f ∈ O(X ) there exists F ∈ O(X2) such that f = F on X1.

There exist many equivalent characterizations of domains of

holomorphy: (Oka, Cartan, Bremermann, and Norguet,

c.a. 1937-1954).
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5. Integral representations

The Cauchy-Fantappiè-Leray formula: Let ω be a domain in X with

smoooth boundary ∂ω in X and assume that ω is de�ned by the

function % in the sense that

ω = {z ∈ X ; %(z) < 0}

and the gradient

%′ = (∂%/∂z1, . . . , ∂%/∂zn)

is non-zero at every boundary point.

Then for every f ∈ O(X ) we have

f (z) =
1

(2πi)n

∫
∂ω

f (ζ) ∂% ∧ (∂̄∂%)n−1

〈%′(ζ), ζ − z〉n
, z ∈ ω.
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6. Plurisubharmonic functions

A function ϕ : X → R ∪ {−∞} is said to be plurisubharmonic if

∑
j ,k

∂2ϕ

∂zj∂z̄k
wj w̄k ≥ 0.

Examples:

(i) Convex functions on convex domains X .

(ii) ϕ = log |f |, f ∈ O(X ).

(iii) ϕ = log(|f1|p1 + · · ·+ |fm|pm), fj ∈ O(X ).

The class of PSH(X ) of plurisubharmonic functions has many

good properties which enables us to construct functions, e.g.,

ϕ = sup{ϕ1, . . . , ϕm} ∈ PSH(X ), if ϕj ∈ PSH(X )
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7. The inhomogeneous Cauchy-Riemann equations

Assume that we have a function g ∈ C∞(X ) and that we want to

modify g , so that it becomes holomorphic, i.e., we want to �nd

u ∈ C∞(X ) such that

F = G − u.

Then u has to satisfy the inhomogeneous Cauchy-Riemann

equations
∂u

∂z̄j
= fj , with fj =

∂G

∂z̄j



Hörmander's existence theorem

Let X be a domain of holomorphy, fj ∈ C 1(X ) be functions on X

satisfying
∂fj
∂z̄k

=
∂fk
∂z̄j

.

and let ϕ : X → R ∪ {−∞} be a plurisubharmonic function.

Then

there exists a function u on X satisfying the Cauchy-Riemann

equations
∂u

∂z̄j
= fj ,

with the L2-estimate of u in terms of f = (f1, . . . , fn),∫
X

|u|2(1 + |z |2)−2e−ϕ dλ ≤
∫
X

|f |2e−ϕ dλ



Hörmander's existence theorem

Let X be a domain of holomorphy, fj ∈ C 1(X ) be functions on X

satisfying
∂fj
∂z̄k

=
∂fk
∂z̄j

.

and let ϕ : X → R ∪ {−∞} be a plurisubharmonic function. Then

there exists a function u on X satisfying the Cauchy-Riemann

equations
∂u

∂z̄j
= fj ,

with the L2-estimate of u in terms of f = (f1, . . . , fn),∫
X

|u|2(1 + |z |2)−2e−ϕ dλ ≤
∫
X

|f |2e−ϕ dλ


