Complex Analysis in Several Variables

Ragnar Sigurdsson
University of Iceland

SSF Workshop, Lund, Sweden
January 14, 2015

Contents:

1. Overview of compex analysis in several variables.
2. Analytic (holomorphic) functions.
3. Holomorphic maps.
4. Domains of holomorphy.
5. Integral representations.
6. Plurisubharmonic functions.
7. Cauchy-Riemann equations.

1. Overview of compex analysis in several variables

(i) Function theory in domains of \mathbb{C}^{n}.

1. Overview of compex analysis in several variables

(i) Function theory in domains of \mathbb{C}^{n}.
(ii) Complex manifolds.

1. Overview of compex analysis in several variables
(i) Function theory in domains of \mathbb{C}^{n}.
(ii) Complex manifolds.
(iii) Analytic geometry and complex spaces.
2. Overview of compex analysis in several variables
(i) Function theory in domains of \mathbb{C}^{n}.
(ii) Complex manifolds.
(iii) Analytic geometry and complex spaces.
(iv) Applications to PDE.

1. Overview of compex analysis in several variables

(i) Function theory in domains of \mathbb{C}^{n}.
(ii) Complex manifolds.
(iii) Analytic geometry and complex spaces.
(iv) Applications to PDE.
(v) Applications to Fourier-analysis.

1. Overview of compex analysis in several variables

(i) Function theory in domains of \mathbb{C}^{n}.
(ii) Complex manifolds.
(iii) Analytic geometry and complex spaces.
(iv) Applications to PDE.
(v) Applications to Fourier-analysis.
(vi) Study of special PDE.
2. Analytic (holomorphic) functions

Let $X \subset \mathbb{C}, a \in X$ be a point, $z=x+i y, \bar{z}=x-i y$.

2. Analytic (holomorphic) functions

Let $X \subset \mathbb{C}, a \in X$ be a point, $z=x+i y, \bar{z}=x-i y$. The differential of a function $f: X \rightarrow \mathbb{C}$ is:

$$
d_{a} f=\frac{\partial f}{\partial x}(a) d x+\frac{\partial f}{\partial y}(a) d y=\frac{\partial f}{\partial z}(a) d z+\frac{\partial f}{\partial \bar{z}}(a) d \bar{z},
$$

where $d z=d x+i y, d \bar{z}=d x-i d y$, and

$$
\frac{\partial}{\partial z}=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right), \quad \text { and } \quad \frac{\partial}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)
$$

2. Analytic (holomorphic) functions

Let $X \subset \mathbb{C}, a \in X$ be a point, $z=x+i y, \bar{z}=x-i y$.
The differential of a function $f: X \rightarrow \mathbb{C}$ is:

$$
d_{a} f=\frac{\partial f}{\partial x}(a) d x+\frac{\partial f}{\partial y}(a) d y=\frac{\partial f}{\partial z}(a) d z+\frac{\partial f}{\partial \bar{z}}(a) d \bar{z},
$$

where $d z=d x+i y, d \bar{z}=d x-i d y$, and

$$
\frac{\partial}{\partial z}=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right), \quad \text { and } \quad \frac{\partial}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)
$$

For functions of n complex variables $z=\left(z_{1}, \ldots, z_{n}\right)$, where $z_{j}=x_{j}+i y_{j}$, the differential is

$$
d_{a} f=\sum_{j=1}^{n} \frac{\partial f}{\partial z_{j}}(a) d z_{j}+\sum_{j=1}^{n} \frac{\partial f}{\partial \bar{z}_{j}}(a) d \bar{z}_{j}=\partial f+\bar{\partial} f
$$

Definition f is analytic if $d_{a} f$ is \mathbb{C}-linear at every point a in X, which means that the Cauchy-Riemann-equations are satisfied:

$$
\frac{\partial f}{\partial \bar{z}_{j}}(a)=0, \quad j=1, \ldots, n .
$$

Definition f is analytic if $d_{a} f$ is \mathbb{C}-linear at every point a in X, which means that the Cauchy-Riemann-equations are satisfied:

$$
\frac{\partial f}{\partial \bar{z}_{j}}(a)=0, \quad j=1, \ldots, n .
$$

The set of all analytic functions on X is denoted by $\mathcal{O}(X)$.

Definition f is analytic if $d_{a} f$ is \mathbb{C}-linear at every point a in X, which means that the Cauchy-Riemann-equations are satisfied:

$$
\frac{\partial f}{\partial \bar{z}_{j}}(a)=0, \quad j=1, \ldots, n .
$$

The set of all analytic functions on X is denoted by $\mathcal{O}(X)$. It is actually possible to give a weaker definition:
Theorem (Hartogs 1906): If $f: X \rightarrow \mathbb{C}$ is a function and for every point $a \in X$ the function

$$
\zeta \mapsto f\left(a_{1}, \ldots, a_{j-1}, \zeta, a_{j+1}, \ldots, a_{n}\right)
$$

is analytic in a neighbourhood of a_{j}, then $f \in \mathcal{O}(X)$

A Cauchy formula and power series:

Let

$$
D=D\left(a_{1}, r_{1}\right) \times \cdots \times D\left(a_{n}, r_{n}\right)
$$

be a polydisc and denote the distinguished boundary by

$$
\partial_{0} D=\partial D\left(a_{1}, r_{1}\right) \times \cdots \times \partial D\left(a_{n}, r_{n}\right)
$$

If f is analytic in a neigbourhood of \bar{D}, then

$$
f(z)=\frac{1}{(2 \pi i)^{n}} \int_{\partial_{0} D} \frac{f\left(\zeta_{1}, \ldots, \zeta_{n}\right)}{\left(\zeta_{1}-z_{1}\right) \cdots\left(\zeta_{n}-z_{n}\right)} d \zeta_{1} \cdots d \zeta_{n}, \quad z \in D .
$$

A Cauchy formula and power series:

Let

$$
D=D\left(a_{1}, r_{1}\right) \times \cdots \times D\left(a_{n}, r_{n}\right)
$$

be a polydisc and denote the distinguished boundary by

$$
\partial_{0} D=\partial D\left(a_{1}, r_{1}\right) \times \cdots \times \partial D\left(a_{n}, r_{n}\right)
$$

If f is analytic in a neigbourhood of \bar{D}, then

$$
f(z)=\frac{1}{(2 \pi i)^{n}} \int_{\partial_{0} D} \frac{f\left(\zeta_{1}, \ldots, \zeta_{n}\right)}{\left(\zeta_{1}-z_{1}\right) \cdots\left(\zeta_{n}-z_{n}\right)} d \zeta_{1} \cdots d \zeta_{n}, \quad z \in D
$$

This gives a local power series expansion

$$
f(z)=\sum_{\alpha} \partial^{\alpha} f(a)(z-a)^{\alpha}
$$

where

$$
\partial^{\alpha}=\frac{\partial^{|\alpha|}}{\partial z_{1}^{\alpha_{1}} \cdots \partial z_{n}^{\alpha_{n}}}, \quad \xi^{\alpha}=\xi_{1}^{\alpha_{1}} \cdots \xi_{n}^{\alpha_{n}}, \quad|\alpha|=\alpha_{1}+\cdots+\alpha_{n} .
$$

3. Holomorphic maps

Let X be open in \mathbb{C}^{n}. A map $F=\left(F_{1}, \ldots, F_{m}\right): X \rightarrow \mathbb{C}^{m}$ is said to be holomorphic if $F_{j} \in \mathcal{O}(X)$ for all j.

3. Holomorphic maps

Let X be open in \mathbb{C}^{n}. A map $F=\left(F_{1}, \ldots, F_{m}\right): X \rightarrow \mathbb{C}^{m}$ is said to be holomorphic if $F_{j} \in \mathcal{O}(X)$ for all j.
If $m=n$ and F is bijective onto its image $Y=F(X)$, then we say that F is biholomorphic.
We say that two domains X and Y are biholomorphically equivalent if there exists a biholomorphic map on X with $Y=F(X)$

3. Holomorphic maps

Let X be open in \mathbb{C}^{n}. A map $F=\left(F_{1}, \ldots, F_{m}\right): X \rightarrow \mathbb{C}^{m}$ is said to be holomorphic if $F_{j} \in \mathcal{O}(X)$ for all j.
If $m=n$ and F is bijective onto its image $Y=F(X)$, then we say that F is biholomorphic.
We say that two domains X and Y are biholomorphically equivalent if there exists a biholomorphic map on X with $Y=F(X)$
The Riemann Mapping Theorem: If X is a simply connected domain in $\mathbb{C}, \varnothing \neq X$ and $X \neq \mathbb{C}$, then X is biholomorphically equivalent to \mathbb{D} the unit disc in \mathbb{C}.

3. Holomorphic maps

Let X be open in \mathbb{C}^{n}. A map $F=\left(F_{1}, \ldots, F_{m}\right): X \rightarrow \mathbb{C}^{m}$ is said to be holomorphic if $F_{j} \in \mathcal{O}(X)$ for all j.
If $m=n$ and F is bijective onto its image $Y=F(X)$, then we say that F is biholomorphic.
We say that two domains X and Y are biholomorphically equivalent if there exists a biholomorphic map on X with $Y=F(X)$
The Riemann Mapping Theorem: If X is a simply connected domain in $\mathbb{C}, \varnothing \neq X$ and $X \neq \mathbb{C}$, then X is biholomorphically equivalent to \mathbb{D} the unit disc in \mathbb{C}.
This does not generalize to higher dimensions:
Theorem: If $n>1$, then the unit ball

$$
\mathbb{B}_{n}=\left\{z \in \mathbb{C}^{n} ;\left|z_{1}\right|^{2}+\cdots+\left|z_{n}\right|^{n}<1\right\}
$$

in \mathbb{C}^{n} is not biholomorphically equivalent to a polydisc.

4. Domains of holomorphy

With the aid of the Weierstrass product theorem it is possible to show that for every open X in \mathbb{C} there exits $f \in \mathcal{O}(X)$, which can not be extended to a holomorphic function in a neighbourhood of a boundary point of X.

4. Domains of holomorphy

With the aid of the Weierstrass product theorem it is possible to show that for every open X in \mathbb{C} there exits $f \in \mathcal{O}(X)$, which can not be extended to a holomorphic function in a neighbourhood of a boundary point of X.
Theorem (Hartogs 1906): Let X be an open subset of $\mathbb{C}^{n}, n>1$, K be a compact subset of X such that $X \backslash K$ is connected. Then every function $f \in \mathcal{O}(X \backslash K)$ extends uniquely to a function $F \in \mathcal{O}(X)$.

4. Domains of holomorphy

With the aid of the Weierstrass product theorem it is possible to show that for every open X in \mathbb{C} there exits $f \in \mathcal{O}(X)$, which can not be extended to a holomorphic function in a neighbourhood of a boundary point of X.
Theorem (Hartogs 1906): Let X be an open subset of $\mathbb{C}^{n}, n>1$, K be a compact subset of X such that $X \backslash K$ is connected. Then every function $f \in \mathcal{O}(X \backslash K)$ extends uniquely to a function $F \in \mathcal{O}(X)$.
We have a little bit technical definition:
Definition: An open set X is said to be a domain of holomorphy if there do not exist non-empty open sets X_{1} and X_{2} with X_{2} is connected, $X_{2} \not \subset X$, and $X_{1} \subset X \cap X_{2}$, such that for every $f \in \mathcal{O}(X)$ there exists $F \in \mathcal{O}\left(X_{2}\right)$ such that $f=F$ on X_{1}.

4. Domains of holomorphy

With the aid of the Weierstrass product theorem it is possible to show that for every open X in \mathbb{C} there exits $f \in \mathcal{O}(X)$, which can not be extended to a holomorphic function in a neighbourhood of a boundary point of X.
Theorem (Hartogs 1906): Let X be an open subset of $\mathbb{C}^{n}, n>1$, K be a compact subset of X such that $X \backslash K$ is connected. Then every function $f \in \mathcal{O}(X \backslash K)$ extends uniquely to a function $F \in \mathcal{O}(X)$.
We have a little bit technical definition:
Definition: An open set X is said to be a domain of holomorphy if there do not exist non-empty open sets X_{1} and X_{2} with X_{2} is connected, $X_{2} \not \subset X$, and $X_{1} \subset X \cap X_{2}$, such that for every $f \in \mathcal{O}(X)$ there exists $F \in \mathcal{O}\left(X_{2}\right)$ such that $f=F$ on X_{1}.
There exist many equivalent characterizations of domains of holomorphy: (Oka, Cartan, Bremermann, and Norguet, c.a. 1937-1954).

5. Integral representations

The Cauchy-Fantappiè-Leray formula: Let ω be a domain in X with smoooth boundary $\partial \omega$ in X and assume that ω is defined by the function ϱ in the sense that

$$
\omega=\{z \in X ; \varrho(z)<0\}
$$

and the gradient

$$
\varrho^{\prime}=\left(\partial \varrho / \partial z_{1}, \ldots, \partial \varrho / \partial z_{n}\right)
$$

is non-zero at every boundary point.

5. Integral representations

The Cauchy-Fantappiè-Leray formula: Let ω be a domain in X with smoooth boundary $\partial \omega$ in X and assume that ω is defined by the function ϱ in the sense that

$$
\omega=\{z \in X ; \varrho(z)<0\}
$$

and the gradient

$$
\varrho^{\prime}=\left(\partial \varrho / \partial z_{1}, \ldots, \partial \varrho / \partial z_{n}\right)
$$

is non-zero at every boundary point.
Then for every $f \in \mathcal{O}(X)$ we have

$$
f(z)=\frac{1}{(2 \pi i)^{n}} \int_{\partial \omega} \frac{f(\zeta) \partial \varrho \wedge(\bar{\partial} \partial \varrho)^{n-1}}{\left\langle\varrho^{\prime}(\zeta), \zeta-z\right\rangle^{n}}, \quad z \in \omega
$$

6. Plurisubharmonic functions

A function $\varphi: X \rightarrow \mathbb{R} \cup\{-\infty\}$ is said to be plurisubharmonic if

$$
\sum_{j, k} \frac{\partial^{2} \varphi}{\partial z_{j} \partial \bar{z}_{k}} w_{j} \bar{w}_{k} \geq 0
$$

6. Plurisubharmonic functions

A function $\varphi: X \rightarrow \mathbb{R} \cup\{-\infty\}$ is said to be plurisubharmonic if

$$
\sum_{j, k} \frac{\partial^{2} \varphi}{\partial z_{j} \partial \bar{z}_{k}} w_{j} \bar{w}_{k} \geq 0
$$

Examples:
(i) Convex functions on convex domains X.
(ii) $\varphi=\log |f|, f \in \mathcal{O}(X)$.
(iii) $\varphi=\log \left(\left|f_{1}\right|^{p_{1}}+\cdots+\left|f_{m}\right|^{p_{m}}\right), f_{j} \in \mathcal{O}(X)$.

6. Plurisubharmonic functions

A function $\varphi: X \rightarrow \mathbb{R} \cup\{-\infty\}$ is said to be plurisubharmonic if

$$
\sum_{j, k} \frac{\partial^{2} \varphi}{\partial z_{j} \partial \bar{z}_{k}} w_{j} \bar{w}_{k} \geq 0
$$

Examples:
(i) Convex functions on convex domains X.
(ii) $\varphi=\log |f|, f \in \mathcal{O}(X)$.
(iii) $\varphi=\log \left(\left|f_{1}\right|^{p_{1}}+\cdots+\left|f_{m}\right|^{p_{m}}\right), f_{j} \in \mathcal{O}(X)$.

The class of $\mathcal{P S H}(X)$ of plurisubharmonic functions has many good properties which enables us to construct functions, e.g.,

$$
\varphi=\sup \left\{\varphi_{1}, \ldots, \varphi_{m}\right\} \in \mathcal{P S H}(X), \quad \text { if } \quad \varphi_{j} \in \mathcal{P S H}(X)
$$

7. The inhomogeneous Cauchy-Riemann equations

Assume that we have a function $g \in C^{\infty}(X)$ and that we want to modify g, so that it becomes holomorphic, i.e., we want to find $u \in C^{\infty}(X)$ such that

$$
F=G-u .
$$

Then u has to satisfy the inhomogeneous Cauchy-Riemann equations

$$
\frac{\partial u}{\partial \bar{z}_{j}}=f_{j}, \quad \text { with } \quad f_{j}=\frac{\partial G}{\partial \bar{z}_{j}}
$$

Hörmander's existence theorem

Let X be a domain of holomorphy, $f_{j} \in C^{1}(X)$ be functions on X satisfying

$$
\frac{\partial f_{j}}{\partial \bar{z}_{k}}=\frac{\partial f_{k}}{\partial \bar{z}_{j}}
$$

and let $\varphi: X \rightarrow \mathbb{R} \cup\{-\infty\}$ be a plurisubharmonic function.

Hörmander's existence theorem

Let X be a domain of holomorphy, $f_{j} \in C^{1}(X)$ be functions on X satisfying

$$
\frac{\partial f_{j}}{\partial \bar{z}_{k}}=\frac{\partial f_{k}}{\partial \bar{z}_{j}}
$$

and let $\varphi: X \rightarrow \mathbb{R} \cup\{-\infty\}$ be a plurisubharmonic function. Then there exists a function u on X satisfying the Cauchy-Riemann equations

$$
\frac{\partial u}{\partial \bar{z}_{j}}=f_{j}
$$

with the L^{2}-estimate of u in terms of $f=\left(f_{1}, \ldots, f_{n}\right)$,

$$
\int_{X}|u|^{2}\left(1+|z|^{2}\right)^{-2} e^{-\varphi} d \lambda \leq \int_{X}|f|^{2} e^{-\varphi} d \lambda
$$

