Passive systems, limitation examples. – One and multi-dimensional cases

Lars Jonsson<sup>1</sup>

<sup>1</sup>School of Electrical Engineering KTH Royal Institute of Technology, Sweden

January 2015



Passive systems



- 1 Introduction, Passive linear systems
- 2 Limitations of time-passive cases
- 3 Multi-dimensional Kramers-Kronig relations
- Passive properties in higher dimensions.
- **5** Open questions and conclusions

## Introduction



### Plan of the talk.

- Review 1D physical limitations. Key feature is that the Laplace transform g yields a **Herglotz** function.
- Define multi-dimensional passivity with respect to a cone  $\Gamma$ . Here g is holomorphic and have  $\operatorname{Re} g > 0$ .
- Passivity gives a representation theorem in higher dimensions.
- A holomorphic function with a norm-bound is an alternative method to obtain an integral relation. Multidimensional Kramers-Kronig relations.
- This is work in progress; Review of known tools.

Note: A function h(z) is a **Herglotz function** if h(z) is holomorphic for Im z > 0 and  $\text{Im } h \ge 0$ .

Refs: Vladimirov, Methods of the theory of Generalized Functions, 2002 Bernland, Luger, Gustafsson 2011.

## Linear system



### Definition of linear system [Vladimirov 2002]

Input:  $u(x) = (u_1(x), \dots, u_N(x))$ . Output:  $f(x) = (f_1, \dots, f_N)$ .

- Linearity. If  $u_a$  generates  $f_a$ , and  $u_b$  generates  $f_b$  then  $\alpha u_a + \beta u_b$  generates  $\alpha f_a + \beta f_b$ .
- Reality: If u is real, then f is real-valued.
- Continuity: If  $u_j \to 0$  for all  $j \in [1, N]$  in  $\mathcal{E}'$  then  $f_k \to 0$  in  $\mathcal{D}'$  for all k.
- Translational invariance: If f(x) is associated with u(x) then for any translation  $h \in \mathbb{R}^n$  to the original perturbed u(x + h) there corresponds a response perturbation f(x + h)

There exists a unique  $N \times N$  matrix Z(x), with  $Z_{jk} \in \mathcal{D}'(\mathbb{R}^n)$  such that f = Z \* u.

 $\mathcal D$  is smooth functions of compact support.  $\mathcal D'$  is the space of generalized functions.  $\mathcal E'$  is the space of generalized functions with compact support one of the space of generalized functions.

Passivity



#### Admittance-passivity

A function Z is admittance passive relative to the cone  $\Gamma$  if for any  $\phi(x)\in \mathcal{D}^{\times N}$  then

$$\operatorname{Re} \int_{-\Gamma} (Z * \phi) \cdot \bar{\phi} \, \mathrm{d}x = \operatorname{Re} \int_{-\Gamma} \int (Z(x - y)\phi(y)) \cdot \bar{\phi}(x) \, \mathrm{d}y \, \mathrm{d}x \ge 0$$

**Theorem** Every passive Z\* defines, via the formula

$$S* = (Z + I\delta)^{-1} * (Z - I\delta)*$$

an abstract scatting operator:  $\operatorname{supp} Z \subset \Gamma$ ,  $\int (S * \phi) \cdot S * \phi \, \mathrm{d}x \leq \int \phi \cdot \phi \, \mathrm{d}x$ .

Remark 1: Scattering passivity 1d: 
$$\int_{-\infty}^{T} |f|^2 - |u|^2 dt > 0 \ \forall T \in \mathbb{R}$$
.  
Remark 2:  
Linear passive system without translational invariance are studied in  
Drozhzhinov 1981.

Jonsson (KTH Royal Institute of Technolog

Passive systems

# Spectral function is holomorphic

#### Theorem see Vladimirov 20.2.7

The Laplace transform Z(z) = L[Z](z) (where s = -iz) of a passive linear system matrix Z(z) is holomorphic in for  $z \in T^C$  where  $T^C = \mathbb{R}^n + iC$ ,  $C = int\Gamma^*$ , furthermore  $\operatorname{Re} L(Z) \ge 0 \Rightarrow (L(Z)a + \overline{L(Z)}^T a) \cdot \overline{a} \ge 0$  in  $T^C$ .



**Note** in 1 dimension we have that  $iq(\zeta)$  is a Herglotz-function. Here, if  $s = \sigma - i\omega = -iz$ , then  $z = \omega + i\sigma$ .

January 2015 6 / 29

### Acute cones



#### Cone

- A cone Γ ⊂ ℝ<sup>n</sup>, with vertex 0 is a set such that if x ∈ Γ, then λx ∈ Γ for all λ > 0.
- A cone is acute if the convex hull of Γ does not contain an integral straight line i.e. x = x<sub>0</sub> + te ∈ Γ for t ∈ (-∞, ∞).
- The conjugate  $\Gamma^*$  to the cone  $\Gamma \subset \mathbb{R}^n$  is the set

$$\Gamma^* = \{ \xi \in \mathbb{R}^n : \xi \cdot x \ge 0, \text{ for all } x \in \Gamma \}$$

• Tubular neighbourhood:  $T^C = \mathbb{R}^n + iC \subset \mathbb{C}^n$ ,  $C = int \Gamma^*$ . (Laplace transform domain).

### Examples of acute cones, Vladimirov 4.4

$$\begin{split} \mathbb{R}^{1}_{+}, & \mathbb{R}^{n}_{+} = \{x : x_{1} > 0, x_{2} > 0, \dots x_{n} > 0\}, \ (\mathbb{R}^{n}_{+})^{*} = \overline{\mathbb{R}^{n}_{+}}, \\ V^{+} = \{x = (x_{0}, \boldsymbol{x}) : x_{0} > |\boldsymbol{x}|\} \subset \mathbb{R}^{4}, \ (V^{+})^{*} = \overline{V^{+}} \\ P_{n} \subset \mathbb{R}^{n^{2}}, \text{ positive hermitian matrices, } P_{n}^{*} = P_{n} \end{split}$$

Jonsson (KTH Royal Institute of Technolog

### Introduction, Passive linear systems

#### 2 Limitations of time-passive cases

- Extinction cross section
- Limits on small and/or negative  $\varepsilon$ .
- Array figure of merit

#### 3 Multi-dimensional Kramers-Kronig relations

- Passive properties in higher dimensions.
- 5 Open questions and conclusions



# Example 1: Extinction cross section

#### Optical theorem, and forward scattering

The extinction cross section  $\sigma_e(\omega, \hat{k})$  with  $\omega = ck$ , is the imaginary part of a Laplace transform of a linear passive operator. We have

$$0 \le \sigma_e(\omega, \hat{\boldsymbol{k}}) = \frac{4\pi}{k} \operatorname{Im} \hat{\boldsymbol{e}}^* \cdot S(k, \hat{\boldsymbol{k}}, \hat{\boldsymbol{k}}) \cdot \hat{\boldsymbol{e}} = \operatorname{Im} h_{\hat{\boldsymbol{k}}}(\omega).$$

Here  $h_{\hat{k}}$  is a **Herglotz** function. We have

$$h_{\hat{k}}(\omega) \to \gamma(\hat{k})k, \text{ as } \omega \to 0, \text{ and } h_{\hat{k}}(\omega) \to 2\mathrm{i}A(\hat{k}) \text{ as } \omega \to \infty.$$

 $\gamma = \hat{\boldsymbol{e}}^* \cdot \boldsymbol{\gamma}_{\rm e} \cdot \hat{\boldsymbol{e}} + \hat{\boldsymbol{k}} \times \hat{\boldsymbol{e}}^* \cdot \boldsymbol{\gamma}_{\rm m} \cdot \hat{\boldsymbol{k}} \times \hat{\boldsymbol{e}}, A \text{ is the projected area in direction } \hat{\boldsymbol{k}}.$ 





# Sum-rule



#### Asymptotic, representation ans sum-rule

For a Herglotz function  $\boldsymbol{h}$  we have that

$$h(\omega) = \sum_{n} a_{2n-1} \omega^{2n-1} + o(\omega^{2N-1}), \ \omega \hat{\to} 0$$
 (1)

$$h(\omega) = \sum_{n} b_{2n-1} \omega^{1-2n} + o(\omega^{1-2N}), \ \omega \hat{\to} \infty$$
<sup>(2)</sup>

and from a representation theorem we obtain the sum-rule:

$$\frac{2}{\pi} \int_0^\infty \frac{\operatorname{Im} h(\omega)}{\omega^{2n}} \, \mathrm{d}\omega = a_{2n-1} - b_{1-2n}$$

Compositions of Herglotz-functions are Herglotz function. Note that

$$h_{\Delta}(z) = \frac{1}{\pi} \ln \frac{z - \Delta}{z + \Delta}, \ \operatorname{Im} z > 0$$

is a Herglotz function.

Jonsson (KTH Royal Institute of Technolog

# Bound on D/Q, Gustafsson etal 2007



Partial Directivity over antenna Quality factor

$$\int_0^\infty \frac{\sigma_e(k)}{k^2} \,\mathrm{d}k = \frac{\pi}{2} \gamma \; \Rightarrow \; \frac{D}{Q} \le \frac{\eta k_0^3}{2\pi} \gamma, \; \eta \in [0,1].$$

where we used that n = 1,  $a_1 = \gamma$ ,  $b_{-1} = 0$  in the sum-rule theorem. Where we have used  $\sigma_e \ge \sigma_a = \pi (1 - |\Gamma|^2)D/k^2$  and a first dominant resonance at  $k = k_0$ .



Jonsson (KTH Royal Institute of Technolog

January 2015 11 / 29



#### Isotropic homogeneous $\varepsilon(t)$ [Gustafsson, Sjöberg 2010]

We have input E and output  $\partial_t D$  through:

$$\boldsymbol{F} = \partial_t \boldsymbol{D}(t) = \partial_t (\varepsilon_0 \varepsilon_\infty \boldsymbol{E}(t) + \varepsilon_0 \int_{\mathbb{R}} \chi(t - t') \boldsymbol{E}(t') \, \mathrm{d}t'), \ \varepsilon_\infty > 0$$

where  $\chi = 0$  for t < 0. The system is passive if  $\int_{-\infty}^{T} \boldsymbol{E} \cdot \partial_t \boldsymbol{D} \, dt \ge 0$ , for all  $T \in \mathbb{R}$ . **Passivity yields** that the holomorphic function in  $T^1$ :

$$g(z) = -\mathrm{i} z \varepsilon(z) = L[\partial_t(\varepsilon \cdot)](z),$$

satisfy  $\operatorname{Re} g \ge 0$  and g(z) is holomorphic for  $\operatorname{Im} z > 0$ . Note: h(z) = ig(z) is a Herglotz function.

イロト イポト イヨト イヨ



Let  $h_{\varepsilon} = \omega(\varepsilon - \varepsilon_m)/\varepsilon_0$ . Given a lossless  $\varepsilon$  and a desired goal value  $\varepsilon_m$ , then since

$$h_{\Delta}(z) = \frac{1}{\pi} \ln \frac{z - \Delta}{z + \Delta}, \quad h_{\Delta}(h_{\varepsilon}(z)) \sim \begin{cases} O(1) & z \stackrel{\sim}{\to} 0\\ \frac{-2\omega_0 \Delta}{\omega \pi(\varepsilon_{\infty} - \varepsilon_m)} & z \stackrel{\sim}{\to} \infty \end{cases}$$

Thus (sum-rule)

$$B \leq \min_{\omega \in B} \operatorname{Im}(h_{\Delta}(h_{\varepsilon}(\omega))) \leq \frac{1}{\omega_0} \int_{\omega_1}^{\omega_2} \operatorname{Im}(h_{\Delta}(h_{\varepsilon}(\omega))) \, \mathrm{d}\omega \leq \frac{\Delta}{(\varepsilon_{\infty} - \varepsilon_m)}$$

where  $B = (\omega_2 - \omega_1)/\omega_0$ . Selecting  $\max_{\omega \in B} |h_{\varepsilon}| = \Delta$  gives [Gustafsson, Sjöberg 2010]

$$\max_{\omega \in B} |\varepsilon - \varepsilon_m| \ge \frac{B}{1 + B/2} (\varepsilon_{\infty} - \varepsilon_m) \begin{cases} 1/2 & \text{lossy case} \\ 1 & \text{lossless} \end{cases}$$

# Example 3: Absorbers and arrays - model



#### Assumptions

- Unit-cell model array is approximated with infinite periodic array
- The element is build of passive linear and time-invariant loss-less materials.
- Impedance bandwidth model: One band or multi-band, with wall-type reflection coefficient.
- For this study we focus on linear polarization, corresponding to the TE-mode (E-orthogonal to the surface normal)



## Absorbers



### Sum-rule result for $\Gamma^{TE}$ . (Rozanov 2000)

Projection of Lowest Floquet mode is scattering passive, hence:

$$I(\theta) := \int_0^\infty \omega^{-2} \ln(|\Gamma^{TE}(\omega, \theta)|^{-1}) \,\mathrm{d}\omega \le q(\theta)$$

Sjöberg and Gustafsson, 2011 showed that

$$q(\theta) = \frac{\pi d}{c} (1 + \frac{\tilde{\gamma}}{2dA}) \cos \theta \le \frac{\pi d\mu_s}{c} \cos \theta$$

 $d\text{-thickness},~A\text{-unit cell area},~\tilde{\gamma}\text{-function of polarizability tensor},~\mu_s,$  maximum relative static permeability.

Herglotz function  $h(z) = -i \ln(\Gamma^{TE}/B(z))$ , where B(z) is a Blaschke product that remove complex zeros  $z_n$  in the upper half-plane, where

$$B(z) = \left(\frac{z-\mathrm{i}}{z+\mathrm{i}}\right)^k \prod_{z_n \neq i} \frac{|z_n^2 + 1|}{z_n^2 + 1} \frac{|z-z_n|}{|z-z_n^*|}.$$

Jonsson (KTH Royal Institute of Technolog

Passive systems

#### Sum-rule result [Jonsson etal 2013]

- For  $\omega < \omega_G$  (grating lobe ansatz) we have  $|\Gamma| = |\Gamma^{TE}|$
- Given M frequency bands  $B_m := [\lambda_{-,m}, \lambda_{+,m}]$ ,
- Define  $|\Gamma_m| := \max_{\lambda \in B_m, \theta \in [\theta_0, \theta_1]} |\Gamma(\lambda, \theta)|.$
- Clearly  $\ln(|\Gamma(\lambda,\theta)|^{-1}) \ge \ln(|\Gamma_m|^{-1})$

Hence:

$$0 \le \eta_M^{TE} := \frac{\sum_{m=1}^M \ln(|\Gamma_m|^{-1})(\lambda_{m,+} - \lambda_{m,-})}{2\pi^2 \mu_s d \cos \theta_1} \le \eta_0 \le 1$$

Here  $\eta_M^{TE}$  is the Array Figure of Merit for a M-band antenna.



# Performance indicator for published antennas



Ref: J, Kolitsidas, Hussain IEEE AWPL, 12(1) p1539-1542, 2013. Ref: Kolitsidas etal 2014

Jonsson (KTH Royal Institute of Technolog



1) Introduction, Passive linear systems

2 Limitations of time-passive cases

3 Multi-dimensional Kramers-Kronig relations

- Kramers-Kronig relations in one dimension
- Cauchy Kernel and Hilbert transform
- Potential applications

Passive properties in higher dimensions.





The Kramers-Kronig relation for an analytic function  $\chi = \chi_1 + i\chi_2$ 

$$\chi_1(\omega) = \frac{1}{\pi} P \int_{\mathbb{R}} \frac{\chi_2(\xi)}{\xi - \omega} d\omega$$
$$\chi_2(\omega) = -\frac{1}{\pi} P \int_{\mathbb{R}} \frac{\chi_1(\xi)}{\xi - \omega} d\omega$$

The cone here is  $\Gamma = R_+$ , the Cauchy kernel is  $\frac{1}{\xi - \omega' - i\omega''}$ .

**Example** for the analytical  $\omega \varepsilon(\omega)$  yields ( $\varepsilon$  continuous, bounded)

$$\operatorname{Re}\varepsilon(\omega) = \varepsilon_{\infty} + \lim_{\varepsilon \to 0} \frac{1}{\pi} \int_{|\xi-\omega| > \varepsilon} \frac{\operatorname{Im}(\varepsilon(\xi))}{\xi - \omega} \, \mathrm{d}\xi, \ \omega \in \mathbb{R}$$

where we have assumed that  $\operatorname{Im} \varepsilon(\omega) \leq C/|\omega|$  as  $\omega \to \pm \infty$ . [Ref: See e.g. Bernland etal 2011, and references there in]

・ロト ・同ト ・ヨト ・ヨト

# Cauchy Kernel and Cauchy-Bochner transform



### Cauchy Kernels $\mathcal{K}_C$ [Vladimirov 10.2]

• Given a connected open cone in  $\mathbb{R}^n$  with vertex 0, then

$$\mathcal{K}_C(z) = \int_{C^*} e^{iz \cdot \xi} d\xi = F[\theta_{C^*} e^{-y \cdot \xi}], \ z = x + iu$$

• 
$$\mathcal{K}_{\mathbb{R}^n_+}(z) = \frac{\mathrm{i}}{z_1 \cdots z_n} \Rightarrow \mathcal{K}_1(x) = \frac{\mathrm{i}}{x + \mathrm{i}0} = \pi \delta(x) + \mathrm{i}P\frac{1}{x}.$$

• 
$$\mathcal{K}_{V^+}(z) = 2^n \pi^{(n-1)/2} \Gamma(\frac{n+1}{2}) (-z^2)^{-\frac{n+1}{2}}, z \in T^{V^+}, z^2 = z_0^2 - z_1^2 - \dots - z_n^2.$$

$$\mathcal{K}_{P^n}(Z) = \pi^{n(n-1)/2} i^{n^2} \frac{1! \dots (n-1)!}{(\det Z)^n}, \ Z \in T^{P_n},$$

Let g = F[f]. If  $g \in L_s^2$ ,  $\Leftrightarrow g(\xi)((1 + |\xi|^2)^{s/2} \in L^2$ , then  $f \in (H_s, \|\cdot\|_s)$ (Sobolev-space). If  $f \in H_s$ , then the transform  $f(z) = \int_{\mathbb{R}^n} \mathcal{K}_C(z - x') f(x') \, dx'$  is called the **Cauchy-Bochner** transform.  $z \in T^C \cup T^{-C}$ .

Jonsson (KTH Royal Institute of Technolog

Passive systems

January 2015 20 / 29



#### Theorem II (V10.6) Generalized Kramers-Kronig relation

Let f(z) be holomorphic in  $T^C$ , and  $\sup_{y \in C} ||f(x + iy)||_s < \infty$ . ( $H^{(s)}$ Banach space). Let  $f_+(x)$  be the boundary value of f(z) as  $y \to 0$ ,  $y \in C$ . The following statements are equivalent

- $f_+(x)$  is a boundary value in  $H_s$  from some function f(z) in  $H^{(s)}(C)$ .
- $f_+$  is in  $H_s$  and

$$\operatorname{Re} f_{+}(x) = \frac{-2}{(2\pi)^{n}} \int_{\mathbb{R}^{n}} (\operatorname{Im} f_{+})(x') (\operatorname{Im} \mathcal{K}_{C})_{+}(x-x') \, \mathrm{d}x',$$
$$\operatorname{Im} f_{+}(x) = \frac{2}{(2\pi)^{n}} \int_{\mathbb{R}^{n}} (\operatorname{Re} f_{+})(x') (\operatorname{Im} \mathcal{K}_{C})_{+}(x-x') \, \mathrm{d}x',$$

•  $f_+$  is in  $H_s$  and  $\operatorname{supp} F^{-1}(f_+) \subset C^*$ .

Note:  $\operatorname{Re} f_+$  and  $\operatorname{Im} f_+$  form a pair of Hilbert-transforms. Here

$$(\operatorname{Im} \mathcal{K}_C)_+(x) = \operatorname{Im} \left( \mathrm{i}^n \Gamma(n) \int_{S^{n-1} \cap C^{*_*}} \frac{\mathrm{d}\sigma}{[x_*, \sigma_{\overline{\sigma}} + \mathrm{i}0]^n} \right)_{*} \ge 1$$

Jonsson (KTH Royal Institute of Technolog



#### Spatial dispersion

Let  $\varepsilon(\omega, \mathbf{k})$  be analytic in  $(\omega, \mathbf{k}) \in T^{V^+}$ , and with boundary value  $\varepsilon_+(\omega, k)$  in  $H_s$  for  $(\omega, \mathbf{k}) \in \mathbb{R}^4$  then

$$\operatorname{Re} \varepsilon_{+}(\omega, \boldsymbol{k}) = \frac{-2}{(2\pi)^{n}} (\operatorname{Im} \mathcal{K}_{V^{+}})_{+} * \operatorname{Im} \varepsilon_{+} = \frac{\Gamma(2)}{\pi^{3}} \int_{\mathbb{R}} \int_{\mathbb{R}^{3}} (\operatorname{Im} \mathcal{K}_{V^{+}})_{+} (\omega - \omega', \boldsymbol{k} - \boldsymbol{k}') \operatorname{Im} \varepsilon(\omega', \boldsymbol{k}') \, \mathrm{d}\omega \, \mathrm{d}V_{k}$$

Note:

- An explicit form of  $(\text{Im} \mathcal{K}_{V^+})_+$ , can be expressed in terms of the generalized functions  $P^{(k)} \frac{1}{\sigma \cdot x}$  and  $\delta^{(n)}(\sigma \cdot x)$ .
- 2 Application to periodic structures.
- **③** Verify the expressions with respect to constants.



Cables and transmission lines have a domain  $\mathbb{R}^2_+$ , i.e.  $(t, x) \in \mathbb{R}^2_+$ .

**Examples** include the transmission line impedance Z(x,t) at  $(x,t) \in \mathbb{R}^2_+$ . If  $Z(\omega,k)$  is in  $H_s$  and it is a boundary value of a holomorphic function in  $T^{\mathbb{R}^2_+}$  we would get the relation

$$\operatorname{Re} Z(\omega, k) = \frac{-1}{2\pi^2} \int_{\mathbb{R}} \int_{\mathbb{R}} (\operatorname{Im} K_{\mathbb{R}^2_+})(\omega - \omega', k - k') \operatorname{Im} Z(\omega', k') \, \mathrm{d}\omega \, \mathrm{d}k,$$

where

$$\operatorname{Im} \mathcal{K}_{\mathbb{R}^2_+}(\omega, k) = \pi \delta(\omega) P \frac{1}{k} + \pi \delta(k) P \frac{1}{\omega}$$



Introduction, Passive linear systems

2 Limitations of time-passive cases

3 Multi-dimensional Kramers-Kronig relations

Passive properties in higher dimensions.

- Representation theorem, Poisson Kernel
- Candidates for applications

Open questions and conclusions



#### Poisson Kernel

• 
$$\mathcal{P}_{C}(x,y) = \frac{\mathcal{K}_{C}(x+iy)}{\pi^{n}\mathcal{K}_{C}(iy)}, \quad (x,y) \in T^{C}$$
  
•  $\mathcal{P}_{\mathbb{R}^{n}_{+}}(x,y) = \frac{y_{1}\cdots y_{n}}{\pi^{n}|z_{1}|^{2}\cdots|z_{n}|^{2}}$   
•  $\mathcal{P}_{V^{+}}(x,y) = \frac{2^{n}\Gamma(\frac{n+1}{2})}{\pi^{\frac{n+3}{2}}}\frac{(y^{2})^{\frac{n+1}{2}}}{|(x+iy)^{2}|^{n+1}}$ 

### Schwartz kernel

• 
$$S_C(z, z^0) = \frac{2\mathcal{K}_C(z)\mathcal{K}_C(-\overline{z^0})}{(2\pi)^n\mathcal{K}_C(z-\overline{z^0})} - \mathcal{P}_C$$
  
•  $S_{\mathbb{R}^n_+} = \frac{2\mathbf{i}^n}{(2\pi)^n} \left(\frac{1}{z_1} - \frac{1}{\overline{z_1^0}}\right) \cdots \left(\frac{1}{z_n} - \frac{1}{\overline{z_n^0}}\right) - \mathcal{P}_{\mathbb{R}^n_+}$   
•  $S_{V^+}$  is also known explicitly.

э

(日)



#### Properties of Holomorphic functions with non-negative imaginary part

Let  $u \in \mathcal{P}_+(T^C)$  then  $0 \le u(x, y) = \text{Im } f \in H_+(T^C)$  and  $\mu = u(x, +0)$  is a non-negative tempered measure, and u have the representation:

$$u(x,y) = \int_{\mathbb{R}^n} \mathcal{P}_C(x-x',y)\mu(\mathrm{d}x') + v_C(y), \ (x,y) \in T^C$$

where  $v_C > 0$  continuous,  $v_C \to 0$ , as  $C \ni y \to 0$ .

Note: 1)  $u \in \mathcal{P}_+$  is pluriharmonic and positive functions, i.e.  $\partial_{z_j}\partial_{\overline{z_k}}u = 0$ .  $H_+$  functions are holomorphic with non-negative imaginary part. 2) If in addition  $\int P_C(x - x')\mu(\mathrm{d}x') \in \mathcal{P}_+$ , then  $v_c = (a, y)$  and

$$f(z) = i \int_{\mathbb{R}^n} \mathcal{S}_C(z - x'; z^+ - x') \mu(dx') + (a, z) + b(z^0), \ z \in T^C$$

where  $b \in \mathbb{R}$ 

3) For  $R_+$  this is Herglotz-Nevanlinna representation theorem.



### **Favorite candidates**

- Spatial dispersion:  $\omega \varepsilon(\omega, k)$ ,  $(\omega, k)$  dual variables to  $(t, x) \in V^+$  the light cone.
- Transmission line impedance and reflection coefficients Z(z,t),  $\Gamma(z,t).$  Cone:  $R^2_+.$  [Transmission line, Cable]
- $\sigma_e(\omega, \hat{k}), \ \omega \in T^1$ ,  $\hat{k} \in S^2$ .  $\hat{k}$  is direction, not Laplace/Fourier transform of space variable.  $(t, \hat{k}) \in \mathbb{R}^+ \times S^2$  is no natural cone, its a subset of  $\mathbb{R}^+ \times \mathbb{R}^3$ , which is not acute. (Complexify?)
- $\Gamma(\omega, \theta, \phi)$ ,  $(\omega, \theta, \phi) \subset T^3 = \mathbb{R}^3 + i\mathbb{R}^3_+$ .  $(\theta, \phi) = (\theta, \phi) + \hat{u}_{\pi, 2\pi}$ .
- Green's functions and the Resolvent of Self-Adjoint operators. Acute cone is equivalent with that  $int\Gamma^* \neq 0$ . I.e. non-acute cones have empty dual cones.

イロト 不得 とうせい かほとう ほ



- Does a sum-rule for any *n* exist for multi-dimensional holomorphic functions with positive imaginary part.
- Given Z(z,t) does  $Z(z=0,\omega)$  obtain additional properties given that  $Z(k,\omega) \in H_+(Z)$ . Generalizations to scattering?
- Matrix-case: Scattering matrix.
- Implicit check if g(z) is in  $H_+$ . (On boundary or Growth conditions).
- Does  $v_C$  the growth-term vanish if u(x, y) have right asymptotic behavior?



- One-dimensional Herglotz-functions have remarkable properties which carry over to matrices.
- A function that is holomorphic and  $\sup_{y \in C} \|f(x + iy)\|_s < \infty$ , have a pair of Hilbert transforms (Generalized Kramers-Kronig relation) [Cauchy Kernel]
- A passive linear system in a cone, have a Laplace-transformed kernel that is holomorphic and with positive real part. Thus we have a representation theorem with Poisson Kernel.