Passive systems, limitation examples.
 - One and multi-dimensional cases

Lars Jonsson ${ }^{1}$
${ }^{1}$ School of Electrical Engineering
KTH Royal Institute of Technology, Sweden

January 2015

Table of contents

(1) Introduction, Passive linear systems
(2) Limitations of time-passive cases
(3) Multi-dimensional Kramers-Kronig relations

4 Passive properties in higher dimensions.
(5) Open questions and conclusions

Introduction

Plan of the talk.

- Review 1D physical limitations. Key feature is that the Laplace transform g yields a Herglotz function.
- Define multi-dimensional passivity with respect to a cone Γ. Here g is holomorphic and have $\operatorname{Re} g>0$.
- Passivity gives a representation theorem in higher dimensions.
- A holomorphic function with a norm-bound is an alternative method to obtain an integral relation. Multidimensional Kramers-Kronig relations.
- This is work in progress; Review of known tools.

Note: A function $h(z)$ is a Herglotz function if $h(z)$ is holomorphic for $\operatorname{Im} z>0$ and $\operatorname{Im} h \geq 0$.

Refs: Vladimirov, Methods of the theory of Generalized Functions, 2002 Bernland, Luger, Gustafsson 2011.

Linear system

Definition of linear system [Vladimirov 2002]

Input: $u(x)=\left(u_{1}(x), \ldots, u_{N}(x)\right)$. Output: $f(x)=\left(f_{1}, \ldots, f_{N}\right)$.

- Linearity. If u_{a} generates f_{a}, and u_{b} generates f_{b} then $\alpha u_{a}+\beta u_{b}$ generates $\alpha f_{a}+\beta f_{b}$.
- Reality: If u is real, then f is real-valued.
- Continuity: If $u_{j} \rightarrow 0$ for all $j \in[1, N]$ in \mathcal{E}^{\prime} then $f_{k} \rightarrow 0$ in \mathcal{D}^{\prime} for all k.
- Translational invariance: If $f(x)$ is associated with $u(x)$ then for any translation $h \in \mathbb{R}^{n}$ to the original perturbed $u(x+h)$ there corresponds a response perturbation $f(x+h)$

There exists a unique $N \times N$ matrix $Z(x)$, with $Z_{j k} \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$ such that $f=Z * u$.
\mathcal{D} is smooth functions of compact support. \mathcal{D}^{\prime} is the space of generalized functions. \mathcal{E}^{\prime} is the space of generalized functions with compact support.

Passivity

Admittance-passivity

A function Z is admittance passive relative to the cone Γ if for any $\phi(x) \in \mathcal{D}^{\times N}$ then

$$
\operatorname{Re} \int_{-\Gamma}(Z * \phi) \cdot \bar{\phi} \mathrm{d} x=\operatorname{Re} \int_{-\Gamma} \int(Z(x-y) \phi(y)) \cdot \bar{\phi}(x) \mathrm{d} y \mathrm{~d} x \geq 0
$$

Theorem Every passive $Z *$ defines, via the formula

$$
S *=(Z+I \delta)^{-1} *(Z-I \delta) *
$$

an abstract scatting operator: $\operatorname{supp} Z \subset \Gamma, \int(S * \phi) \cdot S * \phi \mathrm{~d} x \leq \int \phi \cdot \phi \mathrm{d} x$.
Remark 1: Scattering passivity 1d: $\int_{-\infty}^{T}|f|^{2}-|u|^{2} \mathrm{~d} t>0 \forall T \in \mathbb{R}$.

Remark 2:

Linear passive system without translational invariance are studied in Drozhzhinov 1981.

Spectral function is holomorphic

Theorem see Vladimirov 20.2.7

The Laplace transform $Z(z)=L[Z](z)$ (where $s=-\mathrm{i} z$) of a passive linear system matrix $Z(z)$ is holomorphic in for $z \in T^{C}$ where $T^{C}=\mathbb{R}^{n}+\mathrm{i} C$, $C=\operatorname{int} \Gamma^{*}$, furthermore $\operatorname{Re} L(Z) \geq 0 \Rightarrow\left(L(Z) a+\overline{L(Z)}^{T} a\right) \cdot \bar{a} \geq 0$ in T^{C}.

$z=x+\mathrm{i} y, x \in \mathbb{R}, y \in \mathbb{R}_{+}$

$$
z=x+\mathrm{i} y, x \in \mathbb{R}^{2}, y \in \mathbb{R}_{+}^{2}
$$

Note in 1 dimension we have that $\mathrm{i} q(\zeta)$ is a Herglotz-function.
Here, if $s=\sigma-\mathrm{i} \omega=-\mathrm{i} z$, then $z=\omega+\mathrm{i} \sigma$.

Acute cones

Cone

- A cone $\Gamma \subset \mathbb{R}^{n}$, with vertex 0 is a set such that if $x \in \Gamma$, then $\lambda x \in \Gamma$ for all $\lambda>0$.
- A cone is acute if the convex hull of Γ does not contain an integral straight line i.e. $x=x_{0}+t e \in \Gamma$ for $t \in(-\infty, \infty)$.
- The conjugate Γ^{*} to the cone $\Gamma \subset \mathbb{R}^{n}$ is the set

$$
\Gamma^{*}=\left\{\xi \in \mathbb{R}^{n}: \xi \cdot x \geq 0, \text { for all } x \in \Gamma\right\}
$$

- Tubular neighbourhood: $T^{C}=\mathbb{R}^{n}+\mathrm{i} C \subset \mathbb{C}^{n}, C=\operatorname{int} \Gamma^{*}$. (Laplace transform domain).

Examples of acute cones, Vladimirov 4.4

$$
\begin{aligned}
& \mathbb{R}_{+}^{1}, \mathbb{R}_{+}^{n}=\left\{x: x_{1}>0, x_{2}>0, \ldots x_{n}>0\right\},\left(\mathbb{R}_{+}^{n}\right)^{*}=\overline{\mathbb{R}_{+}^{n}}, \\
& V^{+}=\left\{x=\left(x_{0}, \boldsymbol{x}\right): x_{0}>|\boldsymbol{x}|\right\} \subset \mathbb{R}^{4},\left(V^{+}\right)^{*}=\overline{V^{+}} \\
& P_{n} \subset \mathbb{R}^{n^{2}}, \text { positive hermitian matrices, } P_{n}^{*}=P_{n}
\end{aligned}
$$

Examples in one dimension.

(1) Introduction, Passive linear systems
(2) Limitations of time-passive cases

- Extinction cross section
- Limits on small and/or negative ε.
- Array figure of merit
(3) Multi-dimensional Kramers-Kronig relations
(4) Passive properties in higher dimensions.
(5) Open questions and conclusions

Example 1: Extinction cross section

Optical theorem, and forward scattering

The extinction cross section $\sigma_{e}(\omega, \hat{\boldsymbol{k}})$ with $\omega=c k$, is the imaginary part of a Laplace transform of a linear passive operator. We have

$$
0 \leq \sigma_{e}(\omega, \hat{\boldsymbol{k}})=\frac{4 \pi}{k} \operatorname{Im} \hat{\boldsymbol{e}}^{*} \cdot S(k, \hat{\boldsymbol{k}}, \hat{\boldsymbol{k}}) \cdot \hat{\boldsymbol{e}}=\operatorname{Im} h_{\hat{\boldsymbol{k}}}(\omega)
$$

Here $h_{\hat{\boldsymbol{k}}}$ is a Herglotz function. We have

$$
h_{\hat{\boldsymbol{k}}}(\omega) \rightarrow \gamma(\hat{\boldsymbol{k}}) k, \text { as } \omega \rightarrow 0, \text { and } h_{\hat{\boldsymbol{k}}}(\omega) \rightarrow 2 \mathrm{i} A(\hat{\boldsymbol{k}}) \text { as } \omega \rightarrow \infty .
$$

$\gamma=\hat{\boldsymbol{e}}^{*} \cdot \boldsymbol{\gamma}_{\mathrm{e}} \cdot \hat{\boldsymbol{e}}+\hat{\boldsymbol{k}} \times \hat{\boldsymbol{e}}^{*} \cdot \boldsymbol{\gamma}_{\mathrm{m}} \cdot \hat{\boldsymbol{k}} \times \hat{\boldsymbol{e}}, A$ is the projected area in direction $\hat{\boldsymbol{k}}$.

Sum-rule

Asymptotic, representation ans sum-rule

For a Herglotz function h we have that

$$
\begin{align*}
& h(\omega)=\sum_{n} a_{2 n-1} \omega^{2 n-1}+o\left(\omega^{2 N-1}\right), \omega \hat{\rightarrow} 0 \tag{1}\\
& h(\omega)=\sum_{n} b_{2 n-1} \omega^{1-2 n}+o\left(\omega^{1-2 N}\right), \omega \hat{\rightarrow} \infty \tag{2}
\end{align*}
$$

and from a representation theorem we obtain the sum-rule:

$$
\frac{2}{\pi} \int_{0}^{\infty} \frac{\operatorname{Im} h(\omega)}{\omega^{2 n}} \mathrm{~d} \omega=a_{2 n-1}-b_{1-2 n}
$$

Compositions of Herglotz-functions are Herglotz function. Note that

$$
h_{\Delta}(z)=\frac{1}{\pi} \ln \frac{z-\Delta}{z+\Delta}, \operatorname{Im} z>0
$$

is a Herglotz function.

Bound on D / Q, Gustafsson etal 2007

Partial Directivity over antenna Quality factor

$$
\int_{0}^{\infty} \frac{\sigma_{e}(k)}{k^{2}} \mathrm{~d} k=\frac{\pi}{2} \gamma \Rightarrow \frac{D}{Q} \leq \frac{\eta k_{0}^{3}}{2 \pi} \gamma, \eta \in[0,1]
$$

where we used that $n=1, a_{1}=\gamma, b_{-1}=0$ in the sum-rule theorem.
Where we have used $\sigma_{e} \geq \sigma_{a}=\pi\left(1-|\Gamma|^{2}\right) D / k^{2}$ and a first dominant resonance at $k=k_{0}$.

Ref:
Gustafsson etal 2009

Example 2: Limits on small and/or negative ε

Isotropic homogeneous $\varepsilon(t)$ [Gustafsson, Sjöberg 2010]

We have input \boldsymbol{E} and output $\partial_{t} \boldsymbol{D}$ through:

$$
\boldsymbol{F}=\partial_{t} \boldsymbol{D}(t)=\partial_{t}\left(\varepsilon_{0} \varepsilon_{\infty} \boldsymbol{E}(t)+\varepsilon_{0} \int_{\mathbb{R}} \chi\left(t-t^{\prime}\right) \boldsymbol{E}\left(t^{\prime}\right) \mathrm{d} t^{\prime}\right), \varepsilon_{\infty}>0
$$

where $\chi=0$ for $t<0$.
The system is passive if $\int_{-\infty}^{T} \boldsymbol{E} \cdot \partial_{t} \boldsymbol{D} \mathrm{~d} t \geq 0$, for all $T \in \mathbb{R}$.
Passivity yields that the holomorphic function in T^{1} :

$$
g(z)=-\mathrm{i} z \varepsilon(z)=L\left[\partial_{t}(\varepsilon \cdot)\right](z),
$$

satisfy $\operatorname{Re} g \geq 0$ and $g(z)$ is holomorphic for $\operatorname{Im} z>0$.
Note: $h(z)=\mathrm{i} g(z)$ is a Herglotz function.

Fundamental bound on ε

Let $h_{\varepsilon}=\omega\left(\varepsilon-\varepsilon_{m}\right) / \varepsilon_{0}$.
Given a lossless ε and a desired goal value ε_{m}, then since

$$
h_{\Delta}(z)=\frac{1}{\pi} \ln \frac{z-\Delta}{z+\Delta}, \quad h_{\Delta}\left(h_{\varepsilon}(z)\right) \sim \begin{cases}O(1) & z \hat{\rightarrow} 0 \\ \frac{-2 \omega_{0} \Delta}{\omega \pi\left(\varepsilon_{\infty}-\varepsilon_{m}\right)} & z \hat{\rightarrow} \infty\end{cases}
$$

Thus (sum-rule)

$$
B \leq \min _{\omega \in B} \operatorname{Im}\left(h_{\Delta}\left(h_{\varepsilon}(\omega)\right)\right) \leq \frac{1}{\omega_{0}} \int_{\omega_{1}}^{\omega_{2}} \operatorname{Im}\left(h_{\Delta}\left(h_{\varepsilon}(\omega)\right)\right) \mathrm{d} \omega \leq \frac{\Delta}{\left(\varepsilon_{\infty}-\varepsilon_{m}\right)}
$$

where $B=\left(\omega_{2}-\omega_{1}\right) / \omega_{0}$. Selecting $\max _{\omega \in B}\left|h_{\varepsilon}\right|=\Delta$ gives [Gustafsson, Sjöberg 2010]

$$
\max _{\omega \in B}\left|\varepsilon-\varepsilon_{m}\right| \geq \frac{B}{1+B / 2}\left(\varepsilon_{\infty}-\varepsilon_{m}\right) \begin{cases}1 / 2 & \text { lossy case } \\ 1 & \text { lossless }\end{cases}
$$

Example 3: Absorbers and arrays - model

Assumptions

- Unit-cell model - array is approximated with infinite periodic array
- The element is build of passive linear and time-invariant loss-less materials.
- Impedance bandwidth model: One band or multi-band, with wall-type reflection coefficient.
- For this study we focus on linear polarization, corresponding to the TE-mode (E-orthogonal to the surface normal)

Absorbers

Sum-rule result for $\Gamma^{T E}$. (Rozanov 2000)

Projection of Lowest Floquet mode is scattering passive, hence:

$$
I(\theta):=\int_{0}^{\infty} \omega^{-2} \ln \left(\left|\Gamma^{T E}(\omega, \theta)\right|^{-1}\right) \mathrm{d} \omega \leq q(\theta)
$$

Sjöberg and Gustafsson, 2011 showed that

$$
q(\theta)=\frac{\pi d}{c}\left(1+\frac{\tilde{\gamma}}{2 d A}\right) \cos \theta \leq \frac{\pi d \mu_{s}}{c} \cos \theta
$$

d-thickness, A-unit cell area, $\tilde{\gamma}$-function of polarizability tensor, μ_{s}, maximum relative static permeability.

Herglotz function $h(z)=-\mathrm{i} \ln \left(\Gamma^{T E} / B(z)\right)$, where $B(z)$ is a Blaschke product that remove complex zeros z_{n} in the upper half-plane, where

$$
B(z)=\left(\frac{z-\mathrm{i}}{z+\mathrm{i}}\right)^{k} \prod_{z_{n} \neq i} \frac{\left|z_{n}^{2}+1\right|}{z_{n}^{2}+1} \frac{z-z_{n}}{z-z_{n}^{*}}
$$

Array antenna as a loss-less two-port

Sum-rule result [Jonsson etal 2013]

- For $\omega<\omega_{G}$ (grating lobe ansatz) we have $|\Gamma|=\left|\Gamma^{T E}\right|$
- Given M frequency bands $B_{m}:=\left[\lambda_{-, m}, \lambda_{+, m}\right]$,
- Define $\left|\Gamma_{m}\right|:=\max _{\lambda \in B_{m}, \theta \in\left[\theta_{0}, \theta_{1}\right]}|\Gamma(\lambda, \theta)|$.
- Clearly $\ln \left(|\Gamma(\lambda, \theta)|^{-1}\right) \geq \ln \left(\left|\Gamma_{m}\right|^{-1}\right)$

Hence:

$$
0 \leq \eta_{M}^{T E}:=\frac{\sum_{m=1}^{M} \ln \left(\left|\Gamma_{m}\right|^{-1}\right)\left(\lambda_{m,+}-\lambda_{m,-}\right)}{2 \pi^{2} \mu_{s} d \cos \theta_{1}} \leq \eta_{0} \leq 1
$$

Here $\eta_{M}^{T E}$ is the Array Figure of Merit for a M-band antenna.

Performance indicator for published antennas

Ref: J, Kolitsidas, Hussain IEEE AWPL, 12(1) p1539-1542, 2013. Ref: Kolitsidas etal 2014

Table of Contents

(1) Introduction, Passive linear systems
(2) Limitations of time-passive cases
(3) Multi-dimensional Kramers-Kronig relations

- Kramers-Kronig relations in one dimension
- Cauchy Kernel and Hilbert transform
- Potential applications
(4) Passive properties in higher dimensions.
(5) Open questions and conclusions

Kramers-Kronig relations in one dimension

The Kramers-Kronig relation for an analytic function $\chi=\chi_{1}+\mathrm{i} \chi_{2}$

$$
\begin{aligned}
& \chi_{1}(\omega)=\frac{1}{\pi} P \int_{\mathbb{R}} \frac{\chi_{2}(\xi)}{\xi-\omega} \mathrm{d} \omega \\
& \chi_{2}(\omega)=-\frac{1}{\pi} P \int_{\mathbb{R}} \frac{\chi_{1}(\xi)}{\xi-\omega} \mathrm{d} \omega
\end{aligned}
$$

The cone here is $\Gamma=R_{+}$, the Cauchy kernel is $\frac{1}{\xi-\omega^{\prime}-\mathrm{i} \omega^{\prime \prime}}$.
Example for the analytical $\omega \varepsilon(\omega)$ yields (ε continuous, bounded)

$$
\operatorname{Re} \varepsilon(\omega)=\varepsilon_{\infty}+\lim _{\varepsilon \rightarrow 0} \frac{1}{\pi} \int_{|\xi-\omega|>\varepsilon} \frac{\operatorname{Im}(\varepsilon(\xi))}{\xi-\omega} \mathrm{d} \xi, \omega \in \mathbb{R}
$$

where we have assumed that $\operatorname{Im} \varepsilon(\omega) \leq C /|\omega|$ as $\omega \rightarrow \pm \infty$.
[Ref: See e.g. Bernland etal 2011, and references there in]

Cauchy Kernel and Cauchy-Bochner transform

Cauchy Kernels \mathcal{K}_{C} [Vladimirov 10.2]

- Given a connected open cone in \mathbb{R}^{n} with vertex 0 , then

$$
\mathcal{K}_{C}(z)=\int_{C^{*}} \mathrm{e}^{\mathrm{i} z \cdot \xi} \mathrm{~d} \xi=F\left[\theta_{C^{*}} \mathrm{e}^{-y \cdot \xi}\right], z=x+\mathrm{i} u
$$

- $\mathcal{K}_{\mathbb{R}_{+}^{n}}(z)=\frac{\mathrm{i}}{z_{1} \cdots z_{n}} \Rightarrow \mathcal{K}_{1}(x)=\frac{\mathrm{i}}{x+\mathrm{i} 0}=\pi \delta(x)+\mathrm{i} P \frac{1}{x}$.
- $\mathcal{K}_{V^{+}}(z)=2^{n} \pi^{(n-1) / 2} \Gamma\left(\frac{n+1}{2}\right)\left(-z^{2}\right)^{-\frac{n+1}{2}}, z \in T^{V^{+}}$, $z^{2}=z_{0}^{2}-z_{1}^{2}-\cdots-z_{n}^{2}$.

$$
\mathcal{K}_{P^{n}}(Z)=\pi^{n(n-1) / 2} \mathrm{i}^{n^{2}} \frac{1!\ldots(n-1)!}{(\operatorname{det} Z)^{n}}, Z \in T^{P_{n}}
$$

Let $g=F[f]$. If $g \in L_{s}^{2}, \Leftrightarrow g(\xi)\left(\left(1+|\xi|^{2}\right)^{s / 2} \in L^{2}\right.$, then $f \in\left(H_{s},\|\cdot\|_{s}\right)$ (Sobolev-space). If $f \in H_{s}$, then the transform $f(z)=\int_{\mathbb{R}^{n}} \mathcal{K}_{C}\left(z-x^{\prime}\right) f\left(x^{\prime}\right) \mathrm{d} x^{\prime}$ is called the Cauchy-Bochner transform. $z \in T^{C} \cup T^{-C}$.

Pair of Hilbert-transforms

Theorem II (V10.6) Generalized Kramers-Kronig relation

Let $f(z)$ be holomorphic in T^{C}, and $\sup _{y \in C}\|f(x+\mathrm{i} y)\|_{s}<\infty$. $\left(H^{(s)}\right.$ Banach space). Let $f_{+}(x)$ be the boundary value of $f(z)$ as $y \rightarrow 0$, $y \in C$. The following statements are equivalent

- $f_{+}(x)$ is a boundary value in H_{s} from some function $f(z)$ in $H^{(s)}(C)$.
- f_{+}is in H_{s} and

$$
\operatorname{Re} f_{+}(x)=\frac{-2}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}}\left(\operatorname{Im} f_{+}\right)\left(x^{\prime}\right)\left(\operatorname{Im} \mathcal{K}_{C}\right)_{+}\left(x-x^{\prime}\right) \mathrm{d} x^{\prime}
$$

$$
\operatorname{Im} f_{+}(x)=\frac{2}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}}\left(\operatorname{Re} f_{+}\right)\left(x^{\prime}\right)\left(\operatorname{Im} \mathcal{K}_{C}\right)_{+}\left(x-x^{\prime}\right) \mathrm{d} x^{\prime}
$$

- f_{+}is in H_{s} and $\operatorname{supp} F^{-1}\left(f_{+}\right) \subset C^{*}$.

Note: $\operatorname{Re} f_{+}$and $\operatorname{Im} f_{+}$form a pair of Hilbert-transforms. Here

$$
\left(\operatorname{Im} \mathcal{K}_{C}\right)_{+}(x)=\operatorname{Im}\left(\mathrm{i}^{n} \Gamma(n) \int_{S^{n-1} \cap C^{*},} \frac{\mathrm{~d} \sigma}{\left[x \cdot \sigma_{\rho}+\mathrm{i} 0\right]^{n}}\right)
$$

Possible application (periodic structures)

Spatial dispersion

Let $\varepsilon(\omega, \boldsymbol{k})$ be analytic in $(\omega, \boldsymbol{k}) \in T^{V^{+}}$, and with boundary value $\varepsilon_{+}(\omega, k)$ in H_{s} for $(\omega, \boldsymbol{k}) \in \mathbb{R}^{4}$ then

$$
\begin{aligned}
& \operatorname{Re} \varepsilon_{+}(\omega, \boldsymbol{k})=\frac{-2}{(2 \pi)^{n}}\left(\operatorname{Im} \mathcal{K}_{V^{+}}\right)_{+} * \operatorname{Im} \varepsilon_{+}= \\
& \frac{\Gamma(2)}{\pi^{3}} \int_{\mathbb{R}} \int_{\mathbb{R}^{3}}\left(\operatorname{Im} \mathcal{K}_{V^{+}}\right)_{+}\left(\omega-\omega^{\prime}, \boldsymbol{k}-\boldsymbol{k}^{\prime}\right) \operatorname{Im} \varepsilon\left(\omega^{\prime}, \boldsymbol{k}^{\prime}\right) \mathrm{d} \omega \mathrm{~d} V_{k}
\end{aligned}
$$

Note:
(1) An explicit form of $\left(\operatorname{Im} \mathcal{K}_{V^{+}}\right)_{+}$, can be expressed in terms of the generalized functions $P^{(k)} \frac{1}{\sigma \cdot x}$ and $\delta^{(n)}(\sigma \cdot x)$.
(2) Application to periodic structures.
(3) Verify the expressions with respect to constants.

Application examples in \mathbb{R}_{+}^{2}. Transmission line

Cables and transmission lines have a domain \mathbb{R}_{+}^{2}, i.e. $(t, x) \in \mathbb{R}_{+}^{2}$.
Examples include the transmission line impedance $Z(x, t)$ at $(x, t) \in \mathbb{R}_{+}^{2}$. If $Z(\omega, k)$ is in H_{s} and it is a boundary value of a holomorphic function in $T^{\mathbb{R}_{+}^{2}}$ we would get the relation

$$
\operatorname{Re} Z(\omega, k)=\frac{-1}{2 \pi^{2}} \int_{\mathbb{R}} \int_{\mathbb{R}}\left(\operatorname{Im} K_{\mathbb{R}_{+}^{2}}\right)\left(\omega-\omega^{\prime}, k-k^{\prime}\right) \operatorname{Im} Z\left(\omega^{\prime}, k^{\prime}\right) \mathrm{d} \omega \mathrm{~d} k,
$$

where

$$
\operatorname{Im} \mathcal{K}_{\mathbb{R}_{+}^{2}}(\omega, k)=\pi \delta(\omega) P \frac{1}{k}+\pi \delta(k) P \frac{1}{\omega}
$$

Table of Contents

(1) Introduction, Passive linear systems
(2) Limitations of time-passive cases
(3) Multi-dimensional Kramers-Kronig relations

4 Passive properties in higher dimensions.

- Representation theorem, Poisson Kernel
- Candidates for applications
(5) Open questions and conclusions

Poisson Kernel and Schwartz kernel [Vladimirov 11, 12]

Poisson Kernel

- $\mathcal{P}_{C}(x, y)=\frac{\mathcal{K}_{C}(x+\mathrm{i} y)}{\pi^{n} \mathcal{K}_{C}(\mathrm{i} y)}, \quad(x, y) \in T^{C}$
- $\mathcal{P}_{\mathbb{R}_{+}^{n}}(x, y)=\frac{y_{1} \cdots y_{n}}{\pi^{n}\left|z_{1}\right|^{\prime \cdots} \cdots\left|z_{n}\right|^{2}}$
- $\mathcal{P}_{V^{+}}(x, y)=\frac{2^{n} \Gamma\left(\frac{n+1}{2}\right)}{\pi^{\frac{n+3}{2}}} \frac{\left(y^{2}\right)^{\frac{n+1}{2}}}{\left.(x+\mathrm{i} y)^{2}\right|^{n+1}}$

Schwartz kernel

- $\mathcal{S}_{C}\left(z, z^{0}\right)=\frac{2 \mathcal{K}_{C}(z) \mathcal{K}_{C}\left(-\overline{z^{0}}\right)}{(2 \pi)^{n} \mathcal{K}_{C}\left(z-\overline{z^{0}}\right)}-\mathcal{P}_{C}$

$$
\mathcal{S}_{\mathbb{R}_{+}^{n}}=\frac{2 \mathrm{i}^{n}}{(2 \pi)^{n}}\left(\frac{1}{z_{1}}-\frac{1}{\overline{z_{1}^{0}}}\right) \cdots\left(\frac{1}{z_{n}}-\frac{1}{\overline{z_{n}^{0}}}\right)-\mathcal{P}_{\mathbb{R}_{+}^{n}}
$$

- $\mathcal{S}_{V^{+}}$is also known explicitly.

Representation Theorem [Vladimirov 17.2]

Properties of Holomorphic functions with non-negative imaginary part

Let $u \in \mathcal{P}_{+}\left(T^{C}\right)$ then $0 \leq u(x, y)=\operatorname{Im} f \in H_{+}\left(T^{C}\right)$ and $\mu=u(x,+0)$ is a non-negative tempered measure, and u have the representation:

$$
u(x, y)=\int_{\mathbb{R}^{n}} \mathcal{P}_{C}\left(x-x^{\prime}, y\right) \mu\left(\mathrm{d} x^{\prime}\right)+v_{C}(y),(x, y) \in T^{C}
$$

where $v_{C}>0$ continuous, $v_{C} \rightarrow 0$, as $C \ni y \rightarrow 0$.
Note: 1) $u \in \mathcal{P}_{+}$is pluriharmonic and positive functions, i.e. $\partial_{z_{j}} \partial_{\overline{z_{k}}} u=0$. H_{+}functions are holomorphic with non-negative imaginary part.
2) If in addition $\int P_{C}\left(x-x^{\prime}\right) \mu\left(\mathrm{d} x^{\prime}\right) \in \mathcal{P}_{+}$, then $v_{c}=(a, y)$ and

$$
f(z)=\mathrm{i} \int_{\mathbb{R}^{n}} \mathcal{S}_{C}\left(z-x^{\prime} ; z^{+}-x^{\prime}\right) \mu\left(\mathrm{d} x^{\prime}\right)+(a, z)+b\left(z^{0}\right), z \in T^{C}
$$

where $b \in \mathbb{R}$
3) For R_{+}this is Herglotz-Nevanlinna representation theorem.

Generalizations

Favorite candidates

- Spatial dispersion: $\omega \varepsilon(\omega, \boldsymbol{k}),(\omega, \boldsymbol{k})$ dual variables to $(t, x) \in V^{+}$the light cone.
- Transmission line impedance and reflection coefficients $Z(z, t)$, $\Gamma(z, t)$. Cone: R_{+}^{2}. [Transmission line, Cable]
- $\sigma_{e}(\omega, \hat{k}), \omega \in T^{1}, \hat{k} \in S^{2} . \hat{k}$ is direction, not Laplace/Fourier transform of space variable. $(t, \hat{k}) \in \mathbb{R}^{+} \times S^{2}$ is no natural cone, its a subset of $\mathbb{R}^{+} \times \mathbb{R}^{3}$, which is not acute. (Complexify?)
- $\Gamma(\omega, \theta, \phi),(\omega, \theta, \phi) \subset T^{3}=\mathbb{R}^{3}+\mathrm{i} \mathbb{R}_{+}^{3} .(\theta, \phi)=(\theta, \phi)+\hat{u}_{\pi, 2 \pi}$.
- Green's functions and the Resolvent of Self-Adjoint operators.

Acute cone is equivalent with that $\operatorname{int} \Gamma^{*} \neq 0$. I.e. non-acute cones have empty dual cones.

Open questions

- Does a sum-rule for any n exist for multi-dimensional holomorphic functions with positive imaginary part.
- Given $Z(z, t)$ does $Z(z=0, \omega)$ obtain additional properties given that $Z(k, \omega) \in H_{+}(Z)$. Generalizations to scattering?
- Matrix-case: Scattering matrix.
- Implicit check if $g(z)$ is in H_{+}. (On boundary or Growth conditions).
- Does v_{C} the growth-term vanish if $u(x, y)$ have right asymptotic behavior?

Conclusions

- One-dimensional Herglotz-functions have remarkable properties which carry over to matrices.
- A function that is holomorphic and $\sup _{y \in C}\|f(x+\mathrm{i} y)\|_{s}<\infty$, have a pair of Hilbert transforms (Generalized Kramers-Kronig relation) [Cauchy Kernel]
- A passive linear system in a cone, have a Laplace-transformed kernel that is holomorphic and with positive real part. Thus we have a representation theorem with Poisson Kernel.

