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Introduction

Plan of the talk.

Review 1D physical limitations. Key feature is that the Laplace
transform g yields a Herglotz function.

Define multi-dimensional passivity with respect to a cone Γ. Here g is
holomorphic and have Re g > 0.

Passivity gives a representation theorem in higher dimensions.

A holomorphic function with a norm-bound is an alternative method
to obtain an integral relation. Multidimensional Kramers-Kronig
relations.

This is work in progress; Review of known tools.

Note: A function h(z) is a Herglotz function if h(z) is holomorphic for
Im z > 0 and Imh ≥ 0.

Refs: Vladimirov, Methods of the theory of Generalized Functions, 2002
Bernland, Luger, Gustafsson 2011.
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Linear system

Definition of linear system [Vladimirov 2002]

Input: u(x) = (u1(x), . . . , uN (x)). Output: f(x) = (f1, . . . , fN ).

Linearity. If ua generates fa, and ub generates fb then αua + βub
generates αfa + βfb.

Reality: If u is real, then f is real-valued.

Continuity: If uj → 0 for all j ∈ [1, N ] in E ′ then fk → 0 in D′ for all
k.

Translational invariance: If f(x) is associated with u(x) then for any
translation h ∈ Rn to the original perturbed u(x+ h) there
corresponds a response perturbation f(x+ h)

There exists a unique N ×N matrix Z(x), with Zjk ∈ D′(Rn) such that
f = Z ∗ u.

D is smooth functions of compact support. D′ is the space of generalized
functions. E ′ is the space of generalized functions with compact support.
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Passivity

Admittance-passivity

A function Z is admittance passive relative to the cone Γ if for any
φ(x) ∈ D×N then

Re

∫
−Γ

(Z ∗ φ) · φ̄ dx = Re

∫
−Γ

∫
(Z(x− y)φ(y)) · φ̄(x) dy dx ≥ 0

Theorem Every passive Z∗ defines, via the formula

S∗ = (Z + Iδ)−1 ∗ (Z − Iδ)∗

an abstract scatting operator: suppZ ⊂ Γ,
∫

(S ∗φ) ·S ∗φ dx ≤
∫
φ ·φ dx.

Remark 1: Scattering passivity 1d:
∫ T
−∞ |f |

2 − |u|2 dt > 0 ∀T ∈ R.

Remark 2:

Linear passive system without translational invariance are studied in
Drozhzhinov 1981.
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Spectral function is holomorphic

Theorem see Vladimirov 20.2.7

The Laplace transform Z(z) = L[Z](z) (where s = −iz) of a passive linear
system matrix Z(z) is holomorphic in for z ∈ TC where TC = Rn + iC,

C = intΓ∗, furthermore ReL(Z) ≥ 0⇒ (L(Z)a+L(Z)
T
a) · ā ≥ 0 in TC .

z = x+ iy, x ∈ R, y ∈ R+

Im z

T 1 = R + iR+ Re z

TC , C = R2
+

z = x+ iy, x ∈ R2, y ∈ R2
+

x1

x2

y2

y1

Note in 1 dimension we have that iq(ζ) is a Herglotz-function.
Here, if s = σ − iω = −iz, then z = ω + iσ.
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Acute cones

Cone

A cone Γ ⊂ Rn, with vertex 0 is a set such that if x ∈ Γ, then λx ∈ Γ
for all λ > 0.

A cone is acute if the convex hull of Γ does not contain an integral
straight line i.e. x = x0 + te ∈ Γ for t ∈ (−∞,∞).

The conjugate Γ∗ to the cone Γ ⊂ Rn is the set

Γ∗ = {ξ ∈ Rn : ξ · x ≥ 0, for all x ∈ Γ}

Tubular neighbourhood: TC = Rn + iC ⊂ Cn, C = int Γ∗. (Laplace
transform domain).

Examples of acute cones, Vladimirov 4.4

R1
+, Rn+ = {x : x1 > 0, x2 > 0, . . . xn > 0}, (Rn+)∗ = Rn+,

V + = {x = (x0,x) : x0 > |x|} ⊂ R4, (V +)∗ = V +

Pn ⊂ Rn
2
, positive hermitian matrices, P ∗n = Pn
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Example 1: Extinction cross section

Optical theorem, and forward scattering

The extinction cross section σe(ω, k̂) with ω = ck, is the imaginary part of
a Laplace transform of a linear passive operator. We have

0 ≤ σe(ω, k̂) =
4π

k
Im ê∗ · S(k, k̂, k̂) · ê = Imhk̂(ω).

Here hk̂ is a Herglotz function. We have

hk̂(ω)→ γ(k̂)k, as ω → 0, and hk̂(ω)→ 2iA(k̂) as ω →∞.

γ = ê∗ · γe · ê+ k̂× ê∗ · γm · k̂× ê, A is the projected area in direction k̂.

k̂

Ei = êE0eikk̂·r

S(k, k̂, k̂s) k̂s

Es

k̂s = k̂
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Sum-rule

Asymptotic, representation ans sum-rule

For a Herglotz function h we have that

h(ω) =
∑
n

a2n−1ω
2n−1 + o(ω2N−1), ω→̂0 (1)

h(ω) =
∑
n

b2n−1ω
1−2n + o(ω1−2N ), ω→̂∞ (2)

and from a representation theorem we obtain the sum-rule:

2

π

∫ ∞
0

Imh(ω)

ω2n
dω = a2n−1 − b1−2n

Compositions of Herglotz-functions are Herglotz function. Note that

h∆(z) =
1

π
ln
z −∆

z + ∆
, Im z > 0

is a Herglotz function.
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Bound on D/Q, Gustafsson etal 2007

Partial Directivity over antenna Quality factor∫ ∞
0

σe(k)

k2
dk =

π

2
γ ⇒ D

Q
≤ ηk3

0

2π
γ, η ∈ [0, 1].

where we used that n = 1, a1 = γ, b−1 = 0 in the sum-rule theorem.
Where we have used σe ≥ σa = π(1− |Γ|2)D/k2 and a first dominant
resonance at k = k0.
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Ref:
Gustafsson etal 2009
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Example 2: Limits on small and/or negative ε

Isotropic homogeneous ε(t) [Gustafsson, Sjöberg 2010]

We have input E and output ∂tD through:

F = ∂tD(t) = ∂t(ε0ε∞E(t) + ε0

∫
R
χ(t− t′)E(t′) dt′), ε∞ > 0

where χ = 0 for t < 0.
The system is passive if

∫ T
−∞E · ∂tD dt ≥ 0, for all T ∈ R.

Passivity yields that the holomorphic function in T 1:

g(z) = −izε(z) = L[∂t(ε·)](z),

satisfy Re g ≥ 0 and g(z) is holomorphic for Im z > 0.
Note: h(z) = ig(z) is a Herglotz function.
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Fundamental bound on ε

Let hε = ω(ε− εm)/ε0.
Given a lossless ε and a desired goal value εm, then since

h∆(z) =
1

π
ln
z −∆

z + ∆
, h∆(hε(z)) ∼

{
O(1) z→̂0
−2ω0∆

ωπ(ε∞−εm) z→̂∞

Thus (sum-rule)

B ≤ min
ω∈B

Im(h∆(hε(ω))) ≤ 1

ω0

∫ ω2

ω1

Im(h∆(hε(ω))) dω ≤ ∆

(ε∞ − εm)

where B = (ω2 − ω1)/ω0. Selecting maxω∈B |hε| = ∆ gives [Gustafsson,
Sjöberg 2010]

max
ω∈B
|ε− εm| ≥

B

1 +B/2
(ε∞ − εm)

{
1/2 lossy case
1 lossless
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Example 3: Absorbers and arrays – model

Assumptions

Unit-cell model – array is approximated with infinite periodic array

The element is build of passive linear and time-invariant loss-less
materials.

Impedance bandwidth model: One band or multi-band, with wall-type
reflection coefficient.

For this study we focus on linear polarization, corresponding to the
TE-mode (E-orthogonal to the surface normal)

Ground Plane

Unit Cell &
Periodic Boundary Conditions
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Absorbers

Sum-rule result for ΓTE. (Rozanov 2000)

Projection of Lowest Floquet mode is scattering passive, hence:

I(θ) :=

∫ ∞
0

ω−2 ln(|ΓTE(ω, θ)|−1) dω ≤ q(θ)

Sjöberg and Gustafsson, 2011 showed that

q(θ) =
πd

c
(1 +

γ̃

2dA
) cos θ ≤ πdµs

c
cos θ

d-thickness, A-unit cell area, γ̃-function of polarizability tensor, µs,
maximum relative static permeability.

Herglotz function h(z) = −i ln(ΓTE/B(z)), where B(z) is a Blaschke
product that remove complex zeros zn in the upper half-plane, where

B(z) =

(
z − i

z + i

)k ∏
zn 6=i

|z2
n + 1|
z2
n + 1

z − zn
z − z∗n

.
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Array antenna as a loss-less two-port

Sum-rule result [Jonsson etal 2013]

For ω < ωG (grating lobe ansatz) we have |Γ| = |ΓTE |
Given M frequency bands Bm := [λ−,m, λ+,m],

Define |Γm| := maxλ∈Bm,θ∈[θ0,θ1] |Γ(λ, θ)|.
Clearly ln(|Γ(λ, θ)|−1) ≥ ln(|Γm|−1)

Hence:

0 ≤ ηTEM :=

∑M
m=1 ln(|Γm|−1)(λm,+ − λm,−)

2π2µsd cos θ1
≤ η0 ≤ 1

Here ηTEM is the Array Figure of Merit for a M -band antenna.

Matching
network

Antenna
element

TE or TM-mode

unit cell

Array feed

ẑ

Γ ΓTE,TM

d

See also:

Doane etal 2013
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Performance indicator for published antennas
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Ref: J, Kolitsidas, Hussain IEEE AWPL, 12(1) p1539-1542, 2013. Ref: Kolitsidas

etal 2014
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Kramers-Kronig relations in one dimension

The Kramers-Kronig relation for an analytic function χ = χ1 + iχ2

χ1(ω) =
1

π
P

∫
R

χ2(ξ)

ξ − ω
dω

χ2(ω) = − 1

π
P

∫
R

χ1(ξ)

ξ − ω
dω

The cone here is Γ = R+, the Cauchy kernel is 1
ξ−ω′−iω′′ .

Example for the analytical ωε(ω) yields (ε continuous, bounded)

Re ε(ω) = ε∞ + lim
ε→0

1

π

∫
|ξ−ω|>ε

Im(ε(ξ))

ξ − ω
dξ, ω ∈ R

where we have assumed that Im ε(ω) ≤ C/|ω| as ω → ±∞.
[Ref: See e.g. Bernland etal 2011, and references there in]
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Cauchy Kernel and Cauchy-Bochner transform

Cauchy Kernels KC [Vladimirov 10.2]

Given a connected open cone in Rn with vertex 0, then

KC(z) =

∫
C∗

eiz·ξ dξ = F [θC∗e
−y·ξ], z = x+ iu

KRn
+

(z) = i
z1···zn ⇒ K1(x) = i

x+i0 = πδ(x) + iP 1
x .

KV +(z) = 2nπ(n−1)/2Γ(n+1
2 )(−z2)−

n+1
2 , z ∈ T V +

,
z2 = z2

0 − z2
1 − · · · − z2

n.

KPn(Z) = πn(n−1)/2in
2 1! . . . (n− 1)!

(detZ)n
, Z ∈ TPn ,

Let g = F [f ]. If g ∈ L2
s, ⇔ g(ξ)((1 + |ξ|2)s/2 ∈ L2, then f ∈ (Hs, ‖ · ‖s)

(Sobolev-space). If f ∈ Hs, then the transform
f(z) =

∫
Rn KC(z − x′)f(x′) dx′ is called the Cauchy-Bochner

transform. z ∈ TC ∪ T−C .
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Pair of Hilbert-transforms

Theorem II (V10.6) Generalized Kramers-Kronig relation

Let f(z) be holomorphic in TC , and supy∈C ‖f(x+ iy)‖s <∞. (H(s)

Banach space). Let f+(x) be the boundary value of f(z) as y → 0,
y ∈ C. The following statements are equivalent

f+(x) is a boundary value in Hs from some function f(z) in H(s)(C).

f+ is in Hs and

Re f+(x) =
−2

(2π)n

∫
Rn

(Im f+)(x′)(ImKC)+(x− x′) dx′,

Im f+(x) =
2

(2π)n

∫
Rn

(Re f+)(x′)(ImKC)+(x− x′) dx′,

f+ is in Hs and suppF−1(f+) ⊂ C∗.

Note: Re f+ and Im f+ form a pair of Hilbert-transforms. Here

(ImKC)+(x) = Im

(
inΓ(n)

∫
Sn−1∩C∗

dσ

[x · σ + i0]n

)
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Possible application (periodic structures)

Spatial dispersion

Let ε(ω,k) be analytic in (ω,k) ∈ T V +
, and with boundary value ε+(ω, k)

in Hs for (ω,k) ∈ R4 then

Re ε+(ω,k) =
−2

(2π)n
(ImKV +)+ ∗ Im ε+ =

Γ(2)

π3

∫
R

∫
R3

(ImKV +)+(ω − ω′,k − k′) Im ε(ω′,k′) dω dVk

Note:

1 An explicit form of (ImKV +)+, can be expressed in terms of the
generalized functions P (k) 1

σ·x and δ(n)(σ · x).

2 Application to periodic structures.

3 Verify the expressions with respect to constants.
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Application examples in R2
+. Transmission line

Cables and transmission lines have a domain R2
+, i.e. (t, x) ∈ R2

+.

Examples include the transmission line impedance Z(x, t) at (x, t) ∈ R2
+.

If Z(ω, k) is in Hs and it is a boundary value of a holomorphic function in

TR2
+ we would get the relation

ReZ(ω, k) =
−1

2π2

∫
R

∫
R

(ImKR2
+

)(ω − ω′, k − k′) ImZ(ω′, k′) dω dk,

where

ImKR2
+

(ω, k) = πδ(ω)P
1

k
+ πδ(k)P

1

ω

Jonsson (KTH Royal Institute of Technology) Passive systems January 2015 23 / 29



Table of Contents

1 Introduction, Passive linear systems

2 Limitations of time-passive cases

3 Multi-dimensional Kramers-Kronig relations

4 Passive properties in higher dimensions.
Representation theorem, Poisson Kernel
Candidates for applications

5 Open questions and conclusions

Jonsson (KTH Royal Institute of Technology) Passive systems January 2015 24 / 29



Poisson Kernel and Schwartz kernel [Vladimirov 11, 12]

Poisson Kernel

PC(x, y) = KC(x+iy)
πnKC(iy) , (x, y) ∈ TC

PRn
+

(x, y) = y1···yn
πn|z1|2···|zn|2

PV +(x, y) =
2nΓ(n+1

2
)

π
n+3
2

(y2)
n+1
2

|(x+iy)2|n+1

Schwartz kernel

SC(z, z0) = 2KC(z)KC(−z0)

(2π)nKC(z−z0)
− PC

SRn
+

=
2in

(2π)n

(
1

z1
− 1

z0
1

)
· · ·

(
1

zn
− 1

z0
n

)
− PRn

+

SV + is also known explicitly.
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Representation Theorem [Vladimirov 17.2]

Properties of Holomorphic functions with non-negative imaginary part

Let u ∈ P+(TC) then 0 ≤ u(x, y) = Im f ∈ H+(TC) and µ = u(x,+0) is
a non-negative tempered measure, and u have the representation:

u(x, y) =

∫
Rn

PC(x− x′, y)µ(dx′) + vC(y), (x, y) ∈ TC

where vC > 0 continuous, vC → 0, as C 3 y → 0.

Note: 1) u ∈ P+ is pluriharmonic and positive functions, i.e. ∂zj∂zku = 0.
H+ functions are holomorphic with non-negative imaginary part.
2) If in addition

∫
PC(x− x′)µ(dx′) ∈ P+, then vc = (a, y) and

f(z) = i

∫
Rn

SC(z − x′; z+ − x′)µ(dx′) + (a, z) + b(z0), z ∈ TC

where b ∈ R
3) For R+ this is Herglotz-Nevanlinna representation theorem.
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Generalizations

Favorite candidates

Spatial dispersion: ωε(ω,k), (ω,k) dual variables to (t, x) ∈ V + the
light cone.

Transmission line impedance and reflection coefficients Z(z, t),
Γ(z, t). Cone: R2

+. [Transmission line, Cable]

σe(ω, k̂), ω ∈ T 1, k̂ ∈ S2. k̂ is direction, not Laplace/Fourier
transform of space variable. (t, k̂) ∈ R+ × S2 is no natural cone, its a
subset of R+ × R3, which is not acute. (Complexify?)

Γ(ω, θ, φ), (ω, θ, φ) ⊂ T 3 = R3 + iR3
+. (θ, φ) = (θ, φ) + ûπ,2π.

Green’s functions and the Resolvent of Self-Adjoint operators.

Acute cone is equivalent with that intΓ∗ 6= 0. I.e. non-acute cones have
empty dual cones.
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Open questions

Does a sum-rule for any n exist for multi-dimensional holomorphic
functions with positive imaginary part.

Given Z(z, t) does Z(z = 0, ω) obtain additional properties given that
Z(k, ω) ∈ H+(Z). Generalizations to scattering?

Matrix-case: Scattering matrix.

Implicit check if g(z) is in H+. (On boundary or Growth conditions).

Does vC the growth-term vanish if u(x, y) have right asymptotic
behavior?
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Conclusions

One-dimensional Herglotz-functions have remarkable properties which
carry over to matrices.

A function that is holomorphic and supy∈C ‖f(x+ iy)‖s <∞, have a
pair of Hilbert transforms (Generalized Kramers-Kronig relation)
[Cauchy Kernel]

A passive linear system in a cone, have a Laplace-transformed kernel
that is holomorphic and with positive real part. Thus we have a
representation theorem with Poisson Kernel.
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