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Motivation

Passive systems can be represented by Herglotz functions h(w) (or
positive real functions p(s), where s = —iw = jw), for instance

» Refractive index: h(w) = wn(w), p(s) = sn(s).
> Permittivity: h(w) = we(w), p(s) = se(s).
» Impedance: h(w) = X (w) +1R(w), p(s) = R(s) +jX(s).
It is often interesting to consider non-standard values, like n ~ —1

orn=0.
Im(h(w))

Im(w)
» Herglotz functions: N SN {

‘ Re(w) ‘ Re('h(m))

Im(s) Im(p(s))

» Positive real functions: ‘ Re(s) ‘ Re(p(s))




Example: negative refractive index
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negative refraction

> Snel's law nsinf = n/sin @’
n' = —n implies §' = —6.
» A slab of n’ = —1 has been

discussed as a “perfect lens”.

and
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Consequences of deviations from design value

Evanescent waves (k, > ko) are amplified in a negative index slab.
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Figures from Orfanidis, Electromagnetic Waves and Antennas.
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Asymptotics and sum rules

With knowledge of the low and high frequency asymptotics of a
Herglotz function,

a_ 1wt aiw+ ...+ aan,—1w?NoTL 4 o(w?No 1) as w0
h(w) = 1 1—2N, 12N, -
biw+b_jwt + ..+ ban w > + o(w =) as w00

the following sum rules can be derived

2 [ Imh
/ m7(@‘))(10«1 = agp—1 — bap—1,
0

2n
Y + w

formn=1— Ng,..., Np.

When the integral and the asymptotics can be given physical
interpretation, the sum rule represents a physical bound.
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Physical bounds for bounded regions

Some examples of physical bounds for electromagnetic interaction
developed in Lund.

» JPA 2007: Extinction cross section for finite scatterers

= = 2A. .
/0 Oext(A)dA=7m"€e-v-é 4 /) S

» TAP 2009: Directivity and Q for antennas (best paper 2009)
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Physical bounds for surfaces and materials

In all cases the bandwidth is B = (A2 — A1)/ Xo.
» EPL 2009/10: Band stop for low pass films (|7'] < Tp):

> NJP 2010: Metamaterials designed for € & €, < € (€m = —1):

(W)

» TAP 2011: Reflection from high impedance surfaces (|Z| > Zy/A):

g‘AO (4+ 25) ﬁ
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Representation of positive real functions

An impedance or admittance is a positive real function, that is,
» P(s) is an analytic mapping of the right half plane to itself,
with symmetry P(s) = P*(s*).
There is a general representation formula for positive real functions

Im(s)

1 [ sRe{P(j
P(s) = sC + — /_ STOVNS)S ;{Jr(sjf)}dg .

On the frequency axis s = jw the integral is

N 1 [ jwRe{P(E} . . 1 /°° Re{P(j§)}
P(Jw)—JwC+7—T/_OO o2 dg—‘]wC’—kj7T L wo¢ d¢
which shows the real and imaginary parts are related by the Hilbert
transform. However, the evaluation on the frequency axis requires

close attention to poles, and P(jw) is not necessarily in L.



Some Hilbert transform pairs
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There's plenty more where that came from!

Appendix 1 of Frederick W. King's book on Hilbert transforms has

80 pages of transform pairs.

Number

S

* f(©)ds

) x—s

@24)
@25
@26
@27

& (2:28)

229)
(2.30)

@30

232

(233

a’ +b yox+d
(1+x%

a’ + b yox+d
x(1 —x%)

e
Tr@ et 47

s a>0

1
(8 +ab)
1
@ray 70
1
FraerrE 7% 00

___x

D+’

[ + ) (2 + B (2 + ],
>0, b>0, c>0

a>0

x
@&y

a>0

x
et

(6" + D21 (P @ +d) —x*a—¢) —x(b—d) —a —c)

20+ B +d) + ¥ e —3a) +xGd —b) —a —c}

a?

@ -2n2+1
x(2x* + a2 + 24Y)
3d5 (6 + d)
x(3x% + 10a%x2 + 154%)
BT
[2a°b(a* + b0t +a*) (P + 827 e 2d + V@) 2B + /(@) bO)x
+b/(2) (@ + b2 + Q2a® — S(2) b + J(2) b))
V222 ) -t
202 + D + 1)
[abe(a+ b)(b+ c)(c +a)(x® 4+ a®) (2 + (2 + A xl(a + b+ oxt
+(a +3 +alb+dle + Pa+ e+ da+t b+ abe)x? + a’b?
+a352 +5%a + P+ c3a2 + b + a¥be + bac + Aab + 2(abe
+&b+ Veta))
x* 4242 - 24"
3a3(x6 + af)
x* +6a2x? —3a*
8a3(:2 +a2)3

22



Expansion of causal signals

A causal signal F(w) = Fy(w) + jFi(w) satisfies F; = —HF,. By
expanding the real part in pulse functions, the imaginary part is
also given:
N N
Fw)= Y wnplw/dw —n), Bw)=— Y wn[Hpl(w/do - n)
n=—N n=—N
The x,, are pointwise samples of the real part, z,, = F;(nAw).
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Representation of causal systems

Using an expansion in Hilbert transform pairs together with a
constant conductance and poles at infinity and zero (capacitance
and inductance), we can represent an admittance function

Y(w) = G(w) +jB(w) as

N

G(w) =Go+ Z Zn {p(w/Aw — n) + p(w/Aw + n)}
n=0

N
B(w) = Cw — i =S i {[Hp) (] Aw — ) + [Hp] (] Aw + )}
n=0

where we used the symmetry G(w) = G(—w), and Aw is the
spacing. This gives us a parameterized representation formula
Y (w;z), where x = (Go, C, L1, {z, })_,).

Note that using L~! as parameter makes Y (w; ) linear in z.
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Convex optimization

Using Y (w; z), we can set up the convex optimization problem
(convex functional and convex constraints)

minimize Y (w;z) — Y (w)||
subject to Go,C, L™ >0
anO, n:O,l,...,N

for any target admittance Y;(w). More specific constraints can be

made on G, C, and L~! when they can be interpreted physically.

Very powerful methods exist for convex optimization. Once the
problem is formulated as above, it can be considered as solved.

In the following, the optimization frequencies and expansion
constants are scaled to a center frequency, w — w/wgy, C — Cwy
etc. The design band in the examples is w/wp € 2 = [0.75,1.25].
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Metamaterials, negative refractive index

v

v

v

v

Refractive index n(w) = n/(w) — jn”(w) = Y (w) = jun(w).
Target admittance: Y;(w) = —jw for w € Q.

n(0) either finite or ~ 1/y/w implies Y(0) =0 = L1=0.

C = neo > 1 due to special relativity.
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v

Refractive index n(w) = n/(w) — jn”(w) = Y (w) = jun(w).
Target admittance: Y;(w) = —jw for w € Q.

n(0) either finite or ~ 1//w implies Y(0) =0 = L~! = 0.
C = neo > 1 due to special relativity.

v

v

v

minimize  ||Y(w; ) +jw||oo,§2
subject to Y (0;2) = Gy + 2x9 =0
Go,z, >0
Lt=0
c>1

G (w; 2) /]l 0 < 1y

— max
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Metamaterials, negative refractive index

v

Refractive index n(w) = n/(w) — jn”(w) = Y (w) = jun(w).
Target admittance: Y;(w) = —jw for w € Q.

n(0) either finite or ~ 1//w implies Y(0) =0 = L~! = 0.
C = neo > 1 due to special relativity.
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minimize  [[Y(w;z) +jwll o o
subject to Y (0;2) = Go + 220 =0 o.z e Q\
Go,zn >0 o s .
L7 =0
c>1 »
1G(w; ) /Wl a0 < Timax 2 o 2

» Solid blue line: lossless case (nf .. = 0).
» Dashed red line: constrained losses (n.,. = 0.2).
» Dash-dotted green line: unconstrained losses (nlr .. = 1).

Acceptable loss levels can be specified. 19/22



High impedance surfaces, PEC backing

» High impedance < low admittance = Y;(w) =0 for w € Q.
» PEC backing nonmagnetic = r = —1 + 2jkd + O((kd)?)

= Y =L = —j/(kd) + O(1) = L =2md/Xo.

» For a maximal allowed d/\g, we have L1> q.
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High impedance surfaces, PEC backing

» High impedance < low admittance = Y;(w) =0 for w € Q.
» PEC backing nonmagnetic = r = —1 + 2jkd + O((kd)?)

= Y =L = —j/(kd) + O(1) = L =2md/Xo.

» For a maximal allowed d/\g, we have L1> q.

minimize  ||Y (w; )|/ q
subject to Go,C,z, >0
L™ >¢q

1G(w; ) |00 < Gmax

00,0 =
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High impedance surfaces, PEC backing

» High impedance < low admittance = Y;(w) =0 for w € Q.

» PEC backing nonmagnetic = r = —1 + 2jkd + O((kd)?)
= Y = 7% = —j/(kd) + O(1) = L = 2nd/Xo.

» For a maximal allowed d/\g, we have L1> q.
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> Solid blue line: lossless case (Gmax = 0).
» Dashed red line: constrained losses (Gmax = 0.2).
» Dash-dotted green line: unconstrained losses (Gpax = 10). 20/22
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» Solid blue line: lossless case (Gpax = 0).

» Dashed red line: constrained losses (Gax = 0.2).
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High impedance surfaces, PEC backing

» High impedance < low admittance = Y;(w) =0 for w € Q.
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» Dash-dotted green line: unconstrained losses (Gpax = 10).

Maximal thickness and acceptable loss level can be specified. 20/22
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Conclusions

Sum rules can be used to derive physical bounds.

A parameterized representation based on Hilbert transform
pairs can be used for positive real functions.

Convex optimization was applied to characterize the behavior
in circumstances unavailable for sum rule methods.

The convex optimization approach allows significant freedom
in the problem formulation.
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