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A brief summary on convex optimization

Main ref: S. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge University Press, 2004.

Convex sets: A set S ⊂ Rn is convex if

x1,x2 ∈ S ⇒ (1− t)x1 + tx2 ∈ S,

for all 0 < t < 1. Geometrically this means that the straight line
between any two points in a convex set remains in the set.

a) A convex set in R2 b) A non-convex set in R2

x1

x2

x1

x2
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A brief summary on convex optimization

Convex combinations: Let S ⊂ Rn be an arbitrary set. A convex
combination of the elements xi ∈ S is a positive linear combination

z =

m∑
i=1

tixi where ti ≥ 0 and
m∑
i=1

ti = 1.

If S is a convex set, it can be shown (by induction) that any convex
combination of elements of S belongs to S.
Proof: Suppose that x1, x2 and x3 belong to the convex set S.
Let

z = t1x1 + t2x2 + t3x3,

where t1 + t2 + t3 = 1 and t3 6= 1 (otherwise z = x3 ∈ S). Then

z = (1− t3)

(
t1

1− t3
x1 +

t2
1− t3

x2

)
︸ ︷︷ ︸

∈ S since
t1

1− t3
+

t2
1− t3

= 1

+t3x3 ∈ S.
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A brief summary on convex optimization

Intersection of convex sets(*):

The intersection ∩αSα of convex sets Sα is a convex set.

Convex hull(*):

Let S ⊂ Rn be an arbitrary set. The convex hull conv(S) of S is
the set of all convex combinations of elements in S. It can be
shown that conv(S) is the smallest convex set containing S, i.e.,

conv(S) = ∩αTα

where the intersection is taken over all convex sets Tα containing
S, i.e., S ⊂ Tα.
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A brief summary on convex optimization

Convex functions: Let f be a function defined on the convex set
S ⊂ Rn. The function f is said to be a convex function if

x1,x2 ∈ S ⇒ f((1− t)x1 + tx2) ≤ (1− t)f(x1) + tf(x2), (1)

for all 0 < t < 1. If the function f satisfies a strict inequality in
(1), it is said to be a strictly convex function. A function f is said
to be concave if −f is convex.

a) A convex function on R b) A non-convex function on R

f(x)

x1 x2 x

f(x)

x1 x2 x
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A brief summary on convex optimization

Linear functions(*):

A linear (or affine) function f is both convex and concave (but it is
not strictly convex). In particular, if f is linear (or affine), both f
and −f are convex.

Positive linear combinations of convex functions(*):

Let f1 and f2 be convex functions defined on a convex set S. Then
the positive linear combination

f = α1f1 + α2f2

(with α1 > 0 and α2 > 0) is a convex function. If any one of f1

and f2 is strictly convex, then the function f is strictly convex.
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A brief summary on convex optimization

Differentiable convex functions(**):

Let f be a two times differentiable continuous function defined on
the open convex set S ⊂ Rn (f ∈ C2(S)). It can then be shown
that f is a convex function if and only if the Hessian
Hij(x) = ∂xi∂xjf(x) is a positively semidefinite matrix for all
x ∈ S, i.e.,

H(x) ≥ 0 ∀x ∈ S ⇔ f convex.

If the Hessian H(x) is positively definite for all x ∈ S then f is
strictly convex, i.e.,

H(x) > 0 ∀x ∈ S ⇒ f strictly convex,

but the converse is not true (take e.g., f(x) = x4).
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A brief summary on convex optimization

Quadratic forms(**):

Let
f(x) =

1

2
xTAx + bTx + c

be a quadratic form where A is an n× n matrix, x and b are n× 1
vectors, c a constant and (·)T denotes the transpose. The function
f is convex if and only if the Hessian matrix A is positively
semidefinite, i.e.,

A ≥ 0⇔ f convex.

The function f is strictly convex if and only if the Hessian matrix
A is positively definite, i.e.,

A > 0⇔ f strictly convex.
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A brief summary on convex optimization

Level set(*):

Let g be a convex function defined on the convex set S ⊂ Rn and
α an arbitrary real number. Then the level set

Sα = {x ∈ S|g(x) ≤ α}

is a convex set.

Continuity(**):

Let f be a convex function defined on the convex set S ⊂ Rn.
Then f is a continuous function on the interior of S.
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A brief summary on convex optimization

Convex optimization:

A convex optimization problem in general is a problem of the form

minimize f(x)

subject to x ∈ S, (2)

where f is a convex function defined on the convex set S.

It is common that the convex set S is given in the form

S = {x ∈ Rn|gi(x) ≤ 0}

where {gi(x)}Mi=1 is a set of convex functions representing the
convex constraints.
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A brief summary on convex optimization

A local minimum is also a global minimum:

Below are given some definitions and a proof.

Consider the convex optimization problem (2) where f is a convex
function defined on the convex set S.

I If x ∈ S it is called a feasible point.
I The function f has a global minimum at x if

f(x) ≤ f(ξ), ∀ξ ∈ S

I The function f has a local minimum at x if

f(x) ≤ f(ξ), ∀ξ ∈ Sr = {ξ ∈ S|‖ξ − x‖ < r}

for some r-neighbourhood Sr with radius r > 0, and where
‖ · ‖ is a suitable norm.
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A brief summary on convex optimization

Proof: Let x ∈ S be a local minimum and Sr a corresponding
r-neighbourhood. Suppose now that x is not a global minimum,
then there is a feasible y ∈ S with minimum value f(y) < f(x).
Since x is a local minimum it follows that y /∈ Sr and hence
‖y − x‖ ≥ r. Define the point

z = (1− t)x + ty where t =
r

2‖y − x‖ ≤
1

2
,

so that
‖z− x‖ = t‖y − x‖ =

r

2
,

and hence z ∈ Sr. On the other hand, it follows by the convexity of
f that

f(z) = f((1− t)x + ty) ≤ (1− t)f(x) + tf(y) < f(x),

which contradicts the assumption that x is a local minimum.
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A brief summary on convex optimization

If f is strictly convex then a minimum is also a unique
minimum:

Proof: Let x ∈ S be a minimum so that f(x) ≤ f(ξ) for all
ξ ∈ S. Suppose that y ∈ S where y 6= x is also a minimum so that
f(y) = f(x). Let z = (1− t)x + ty where 0 < t < 1 and hence
z ∈ S. Then by the strict convexity

f(z) = f((1− t)x + ty) < (1− t)f(x) + tf(y) = f(x),

which contradicts the assumption that x is a minimum.
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A brief summary on convex optimization

The norm:

Any norm f(x) = ‖x‖ is a convex function on Rn since by the
triangle inequality

f((1− t)x1 + tx2) = ‖(1− t)x1 + tx2‖ ≤ (1− t)‖x1‖+ t‖x2‖
= (1− t)f(x1) + tf(x2),

where 0 < t < 1.

Comments: It follows from the properties of the norm that the
minimum of f(x) = ‖x‖ is the unique vector x = 0. Note however
that f(x) = ‖x‖ is not a strictly convex function. To see this,
choose e.g., x2 = αx1 where α > 1 and verify that
f((1− t)x1 + tx2) = (1− t)f(x1) + tf(x2) for all 0 < t < 1. Note
however that the function f(x) = ‖x‖22 = xTx is strictly convex.
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A brief summary on convex optimization

Norm of a linear (or affine) form:

The norm of a linear (or affine) form is a convex function on Rn.
Consider e.g., the function f(x) = ‖Ax− b‖ where A is an m× n
matrix, x an n× 1 vector and b an m× 1 vector. The function
f(x) is convex since by the triangle inequality

f((1− t)x1 + tx2) = ‖A((1− t)x1 + tx2)− b‖
= ‖(1−t)(Ax1−b)+t(Ax2−b)‖ ≤ (1−t)‖Ax1−b‖+t‖Ax2−b‖

= (1− t)f(x1) + tf(x2),

where 0 < t < 1.
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A brief summary on convex optimization

Norm of a linear (or affine) form:

Comments: Note that if the Euclidean norm ‖ · ‖2 is used, if
m > n and if the rank of the matrix A is rank{A} = n, then the
minimum of f (the least squares solution) is unique (even though
the function f is not strictly convex).

It is evident that the well-posedness of the minimization of
f(x) = ‖Ax− b‖ depends on the properties of the matrix (or
operator) A. If the matrix A is not full rank and has a non-trivial
null space, then the optimization problem can be regularized by
adding a strictly convex penalty term as e.g.,
f(x) = ‖Ax− b‖2 + α‖x‖22 where α > 0 (cf., Tikhonov
regularization). Now the new function f is strictly convex, and if α
is sufficiently small the optimal solution will coincide with the
pseudo-inverse.
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A brief summary on convex optimization

Disciplined convex programming in Matlab:

As an example, consider the following convex optimization problem
related to the normed error

minimize ‖Ax− b‖p
subject to Bx ≤ c

Cx = d,

(3)

where the n× 1 vector x is the unknown optimization variable and
A, B and C are given matrices and b, c and d are given vectors of
suitable dimensions. Here, ‖ · ‖p denotes that a p-norm is used
where p ≥ 1. The max-norm is denoted ‖ · ‖∞.
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A brief summary on convex optimization

Disciplined convex programming in Matlab:

Once formulated on a standard form the problem (3) can be solved
efficiently by using the CVX Matlab software for disciplined convex
programming which is available via the link http://cvxr.com/cvx/.
Here, the following lines in Matlab may be used

cvx_begin
variable x(n)

minimize(norm(A ∗ x− b, p))

subject to

B ∗ x <= c

C ∗ x == d

cvx_end

where n, p (p ≥ 1 or p = Inf), A, B, C, b, c and d have been
defined in the preamble.

Sven Nordebo, Department of Physics and Electrical Engineering, Linnæus University, Sweden. 19(37)



Herglotz functions

Analytic functions with the property

Imh(ω) ≥ 0 for ω ∈ C+ = {ω ∈ C| Imω > 0}

Integral representation

h(ω) = b1ω + α+

∫ ∞
−∞

(
1

ξ − ω −
ξ

1 + ξ2

)
dβ(ξ)

Here, b1 ≥ 0, α ∈ R

dβ(ξ) is a positive Borel measure with
∫
R dβ(ξ)/(1 + ξ2) <∞

Notation: dβ(ξ) = β′(ξ) dξ = 1
π Imh(ξ + i0) dξ

def
= 1

π Imh(ξ) dξ
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Symmetric Herglotz functions

Conjugate symmetry and symmetric measure

h(ω) = −h∗(−ω∗) ⇔ Imh(−ξ) = Imh(ξ)
Reh(−ξ) = −Reh(ξ)

Integral representation for ω ∈ C+

h(ω) = b1ω +
1

π

∫ ∞
−∞

1

ξ − ω Imh(ξ) dξ

Distributional limit on the real line ω ∈ R

1

ξ − ω →
1

ξ − ω + iπδ(ξ − ω) as Imω → 0+

Reh(ω) = b1ω +
1

π
−
∫ ∞
−∞

1

ξ − ω Imh(ξ) dξ

where the integral is a Cauchy principal value integral
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Symmetric Herglotz functions and related sum rules

Suppose that the following asymptotic properties are valid

h(ω) =

{
a−1ω

−1 + a1ω + . . .+ a2N0−1ω
2N0−1 + o(ω2N0−1) as ω→̂0

b1ω + b−1ω
−1 + . . .+ b1−2N∞ω

1−2N∞ + o(ω1−2N∞) as ω→̂∞

then the following integral identities (sum rules) hold

2

π

∫ ∞
0+

Imh(ξ)

ξ2n
dξ

def
= lim

ε→0+
lim
y→0+

2

π

∫ 1/ε

ε

Imh(ξ + iy)

ξ2n
dξ = a2n−1−b2n−1

for n = 1−N∞, . . . , N0
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A general approximation problem

minimize ‖h(ξ)− f(ξ)‖Ω
subject to f(ξ) continuous on Ω

h(ξ)
def
= h(ξ + i0)∃ continuous on Ω

Approximation domain Ω is a closed and bounded subset of R
h(ω) is a symmetric Herglotz function regular in a neighbourhood
of C+ ∪ Ω

A non-trivial example
−f(ξ) can be continued to a Herglotz function h0(ω) which is
analytic in a neighbourhood of C+ ∪ Ω

Large argument asymptotics: h0(ω) = b01ω + o(ω) as ω→̂∞
Then supξ∈Ω |h(ξ)− f(ξ)| ≥ b01 1

2 |Ω|
[1] M. Gustafsson and D. Sjöberg. Sum rules and physical bounds on passive
metamaterials. New Journal of Physics, 12, 043046, 2010.
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Derivation of sum rule and non-trivial bound

Following [1] above, employ the auxiliary Herglotz function

h∆(z) =
1

π

∫ ∆

−∆

1

ξ − z dξ =
1

π
ln
z −∆

z + ∆
=


i + o(1) as z→̂0

−2∆

πz
+ o(z−1) as z→̂∞

where Imh∆(z) ≥ 1
2 for |z| ≤ ∆ and Im z ≥ 0

Composite Herglotz function h̃(ω) = h∆(h(ω) + h0(ω))

where h(ω) + h0(ω) = (b1 + b01)ω + o(ω) as ω→̂∞

h̃(ω) =


o(ω−1) as ω→̂0

−2∆

π(b1 + b01)
ω−1 + o(ω−1) as ω→̂∞

Sum rule for n = 0

2

π

∫ ∞
0

Im h̃(ξ) dξ = a−1 − b−1 =
2∆

π(b1 + b01)
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Derivation of sum rule and non-trivial bound

Sum rule for n = 0

2

π

∫ ∞
0

Im h̃(ξ) dξ = a−1 − b−1 =
2∆

π(b1 + b01)

Let ∆ = supξ∈Ω |h(ξ) + h0(ξ)|, the following integral inequalities hold

1

π
|Ω| ≤ 2

π

∫
Ω

Im h̃(ξ)︸ ︷︷ ︸
≥ 1

2

dξ ≤ 2

π

∫ ∞
0

Im h̃(ξ) dξ =
2

π(b1 + b01)
sup
ξ∈Ω
|h(ξ)+h0(ξ)|

or
sup
ξ∈Ω
|h(ξ) + h0(ξ)| ≥ (b1 + b01)

1

2
|Ω| where |Ω| =

∫
Ω

dξ

Permittivity functions: If h(ω) = ωε(ω) and h0(ω) = −f(ω) = −ωεt
with εt < 0, then b1 = ε∞ and b01 = −εt and

sup
ξ∈Ω
|ε(ξ)− εt| ≥

(ε∞ − εt) 1
2B

1 + B
2

where Ω = ω0[1− B
2 , 1 + B

2 ] and where ω0 is the center frequency and
0 < B < 2, see also [1].
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Discretization

Discretization of positive measure on Ω1 = [ω1, ω4], ∆ω = ω4−ω1

N−1

Imh(ω) =

N−1∑
n=0

xn [p(ω − (n+ n1)∆ω) + p(ω + (n+ n1)∆ω)] , xn ≥ 0

Triangular basis functions

p(ω) =

 1− |ω|
∆ω

|ω| ≤ ∆ω

0 |ω| > ∆ω

Hilbert transform on approximation domain Ω = [ω2, ω3] ⊂ Ω1

Reh(ω) = b1ω +

N−1∑
n=0

xn [p̂(ω − (n+ n1)∆ω) + p̂(ω + (n+ n1)∆ω)]

p̂(ω) =
1

π

∫ ∞
−∞

1

ξ − ωp(ξ) dξ

= (2ω ln |ω| − (ω −∆ω) ln |ω −∆ω| − (ω + ∆ω) ln |ω + ∆ω|) /(π∆ω)
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Convex optimization

Approximation problem

minimize ‖h(ξ)− f(ξ)‖Ω
subject to f(ξ) continuous on Ω

h(ξ)
def
= h(ξ + i0)∃ continuous on Ω

Disciplined convex programming in MATLAB [2]

A = H + 1i ∗ I
cvx_begin

variable x(N)

minimize(norm(A ∗ x− f, Inf))

subject to

x >= 0

cvx_end
[2] M. Grant and S. Boyd. CVX: A system for disciplined convex programming,
release 2.0, c©2012 CVX Research, Inc., Austin, TX.
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Approximation of tan(ω)

h(ξ)
def
= h(ξ + i0) = tan(ξ) + iπ

∞∑
l=−∞

δ(ξ − π

2
+ lπ)

15

• Is it necessary to know a priori the positions ⇠m of possible point masses in
the optimization, or can the piece-wise linear function �0(⇠) approximate also
these contributions in a limiting sense?

• Is it su�cient to represent Im ĥ(⇠) = ⇡�0(⇠) as in (78) and Re ĥ(⇠) as in (80),
or are there any other aspects of the measure d�(⇠) that is missed by using
the approximation strategy with a piece-wise linear function �0(⇠) as above?

• Is it possible to extend the problem above to a situation where f(⇠) is not reg-
ular in the interval of interest (such as with pole and logarithmic singularities),
and define ⌦ as the set of points where f(⇠) is regular?

6 Examples

0 1 2 3 4 5 6 7 8 9 10
0

100

200

300

Frequency ! (rad/s)

a) Approximating measure Im h(!)

0 1 2 3 4 5 6 7 8 9 10
�10

�5

0

5

10

Frequency ! (rad/s)

b) Approximation of Herglotz function tan(!)

tan(!)

Re h(!) on ⌦

Re h(!) on ⌦1

Figure 1: Approximation of the Herglotz function tan(!). a) The approximating
measure Im h(!) based on N = 200 variables. b) The real part Re h(!) on ⌦ =
[!2,!3] and ⌦1 = [!1,!4]. Here, !0 = ⇡, B = 0.4, !1 = 0 and !4 = 10.

Acknowledgment

This work was supported in part by the Swedish Foundation for Strategic Research
(SSF).

Sven Nordebo, Department of Physics and Electrical Engineering, Linnæus University, Sweden. 28(37)



Approximation of tan(−1/ω)

h(ξ)
def
= h(ξ + i0) = tan(−1/ξ) + iπ

∞∑
l=−∞

1

(lπ − π
2 )2

δ(ξ − 1

lπ − π
2

)16
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0

2

4

6

8

10

Frequency ! (rad/s)

a) Approximating measure Im h(!)
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b) Approximation of Herglotz function tan(�1/!)

tan(�1/!)

Re h(!) on ⌦

Re h(!) on ⌦1

Figure 2: Approximation of the Herglotz function tan(�1/!). a) The approximating
measure Im h(!) based on N = 500 variables. b) The real part Re h(!) on ⌦ =
[!2,!3] and ⌦1 = [!1,!4]. Here, !0 = 0.4, B = 0.4, !1 = 0 and !4 = 1.2.
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Approximation of metamaterial

Herglotz function h(ω) = ωε(ω) with ε∞ = 1 (and εs
def
= ε(0))

Metamaterial f(ω) = ωεt for ω ∈ Ω and where εt = −1

Convex optimization problem

minimize sup
ξ∈Ω

1

ξ
|h(ξ)− f(ξ)|

subject to
2

π

∫ ∞
0

Imh(ξ)

ξ2
dξ ≤ εmax

s − ε∞

Discretization of sum rule

2

π

∫ ∞
0

Imh(ξ)

ξ2
dξ =

2

π∆ω

N−1∑
n=0

xn ln
(n+ n1)2

(n+ n1 − 1)(n+ n1 + 1)

assuming that n1 > 1 where ω1 = n1∆ω (Imh(ξ) = o(ξ))
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Approximation of metamaterial

Disciplined convex programming in MATLAB [2]

Omega; % Approximation domain

A = H + 1i ∗ I; % Representation of Herglotz function

B; % Representation of sum rule

b = epss− epsinf; % Static and optical responses

cvx_begin
variable x(N)

minimize(norm((epsinf ∗ Omega + A ∗ x− f)./Omega, Inf))

subject to

x >= 0

B ∗ x <= b

cvx_end

[2] M. Grant and S. Boyd. CVX: A system for disciplined convex programming,
release 2.0, c©2012 CVX Research, Inc., Austin, TX.
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Approximation of metamaterial

Herglotz function h(ω) = ωε(ω) with ε∞ = 1

Metamaterial f(ω) = ωεt for ω ∈ Ω and where εt = −1
17
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Figure 3: Approximation of metamaterial with target permittivity ✏t = �1 and
optical response ✏1 = 1. a) The approximating measure Im h(!) based on N = 1000
variables. b) The real part Re h(!) on ⌦ = [!2,!3] and ⌦1 = [!1,!4]. Here, !0 = 1,
B = 0.4, !1 = 0 and !4 = 3.
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Approximation of metamaterial (permittivity)
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Figure 4: Approximation of metamaterial with target permittivity ✏t = �1 and op-
tical response ✏1 = 1. a) The imaginary part Im ✏(!) based on N = 1000 variables.
b) The real part Re ✏(!) on ⌦ = [!2,!3] and ⌦1 = [!1,!4]. Here, !0 = 1, B = 0.4,
!1 = 0 and !4 = 3. The approximation error is max⌦ |✏(!) � ✏t| = 0.40.
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Figure 5: Approximation error max⌦ |✏(!) � ✏t| as a function of the number of
variables N in the optimization problem to approximate a metamaterial with target
permittivity ✏t over an interval ⌦. Here, !0 = 1, B = 0.4, !1 = 0 and !4 = 3.

Note that ωε(ω) = − 1
π

1
ω + iδ(ω) = ω

(
− 1
π

1
ω2 − iδ′(ω)

)
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Convergence of approximation (metamaterial)
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Figure 5: Approximation error max⌦ |✏(!) � ✏t| as a function of the number of
variables N in the optimization problem to approximate a metamaterial with target
permittivity ✏t over an interval ⌦. Here, !0 = 1, B = 0.4, !1 = 0 and !4 = 3.

Here, the relative bandwidth is B = 0.4
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Approximation of metamaterial with static permittivity

Herglotz function h(ω) = ωε(ω) with ε∞ = 1 and εmax
s = 5

Metamaterial f(ω) = ωεt for ω ∈ Ω and where εt = −1
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Figure 6: Approximation of metamaterial with target permittivity ✏t = �1, optical
response ✏1 = 1 and static permittivity ✏s = 5. a) The approximating measure
Im h(!) based on N = 1000 variables. b) The real part Re h(!) on ⌦ = [!2,!3] and
⌦1 = [!1,!4]. Here, !0 = 1, B = 0.4, !1 = 0.01 and !4 = 3.
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Approximation of metamaterial (permittivity)
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Figure 7: Approximation of metamaterial with target permittivity ✏t = �1, optical
response ✏1 = 1 and static permittivity ✏s = 5. a) The imaginary part Im ✏(!)
based on N = 1000 variables. b) The real part Re ✏(!) on ⌦ = [!2,!3] and ⌦1 =
[!1,!4]. Here, !0 = 1, B = 0.4, !1 = 0.01 and !4 = 3. The approximation error is
max⌦ |✏(!) � ✏t| = 0.59.

Note that ωε(ω) = ω
(
− 2
π

1
(ω−ω0)(ω+ω0) + i

ω0
δ(ω − ω0)− i

ω0
δ(ω + ω0)

)
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Summary and future work

I A general approximation problem has been formulated based
on the class of symmetric Herglotz functions.

I The approximation problem can be discretized and solved by
using a disciplined convex programming in MATLAB which
facilitates a straightforward addition of auxiliary convex
constraints.

I Future work aims at
� Rigorous mathematical formulation and proof of convergence
� Further applications of dispersion analysis and optimization of

passive materials and structures
� Optimization of matrix valued Herglotz functions for complex

materials
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