Passive approximation and optimization

Sven Nordebo
*Mats Gustafsson and *Daniel Sjöberg

Department of Physics and Electrical Engineering Linnæus University, Växjö, Sweden
*Department of Electrical and Information Technology
Lund University, Lund, Sweden

Outline

- A brief summary on convex optimization
- Definition of convex sets and convex functions
- Disciplined convex programming using CVX
- Exercises: Prove the given statements.
=simple proofs. ${ }^{ *}=$ more advanced proofs.
- Approximation of Herglotz functions
- A brief review of Herglotz functions and sum rules
- A general approximation problem
- Discretization and convex optimization
- Exercises
\diamond Analytic interpolation and continuation of $\tan (\omega)$ and $\tan (-1 / \omega)$ based on finite data
\diamond Approximation of metamaterials

A brief summary on convex optimization

Main ref: S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

Convex sets: A set $S \subset \mathbb{R}^{n}$ is convex if

$$
\mathbf{x}_{1}, \mathbf{x}_{2} \in S \Rightarrow(1-t) \mathbf{x}_{1}+t \mathbf{x}_{2} \in S,
$$

for all $0<t<1$. Geometrically this means that the straight line between any two points in a convex set remains in the set.

b) A non-convex set in \mathbb{R}^{2}

A brief summary on convex optimization

Convex combinations: Let $S \subset \mathbb{R}^{n}$ be an arbitrary set. A convex combination of the elements $\mathbf{x}_{i} \in S$ is a positive linear combination

$$
\mathbf{z}=\sum_{i=1}^{m} t_{i} \mathbf{x}_{i} \quad \text { where } \quad t_{i} \geq 0 \quad \text { and } \quad \sum_{i=1}^{m} t_{i}=1
$$

If S is a convex set, it can be shown (by induction) that any convex combination of elements of S belongs to S. Proof: Suppose that $\mathbf{x}_{1}, \mathbf{x}_{\mathbf{2}}$ and $\mathbf{x}_{\mathbf{3}}$ belong to the convex set S. Let

$$
\mathbf{z}=t_{1} \mathbf{x}_{1}+t_{2} \mathbf{x}_{2}+t_{3} \mathbf{x}_{3}
$$

where $t_{1}+t_{2}+t_{3}=1$ and $t_{3} \neq 1$ (otherwise $\mathbf{z}=\mathbf{x}_{3} \in S$). Then

$$
\begin{aligned}
\mathbf{z}=\left(1-t_{3}\right) & \underbrace{\left(\frac{t_{1}}{1-t_{3}} \mathbf{x}_{1}+\frac{t_{2}}{1-t_{3}} \mathbf{x}_{2}\right)}+t_{3} \mathbf{x}_{3} \in S . \\
& \in S \text { since } \frac{t_{1}}{1-t_{3}}+\frac{t_{2}}{1-t_{3}}=1
\end{aligned}
$$

A brief summary on convex optimization

Intersection of convex sets(*):

The intersection $\cap_{\alpha} S_{\alpha}$ of convex sets S_{α} is a convex set.

Convex hull(*):
Let $S \subset \mathbb{R}^{n}$ be an arbitrary set. The convex hull $\operatorname{conv}(S)$ of S is the set of all convex combinations of elements in S. It can be shown that $\operatorname{conv}(S)$ is the smallest convex set containing S, i.e.,

$$
\operatorname{conv}(S)=\cap_{\alpha} T_{\alpha}
$$

where the intersection is taken over all convex sets T_{α} containing S, i.e., $S \subset T_{\alpha}$.

A brief summary on convex optimization

Convex functions: Let f be a function defined on the convex set $S \subset \mathbb{R}^{n}$. The function f is said to be a convex function if

$$
\begin{equation*}
\mathbf{x}_{1}, \mathbf{x}_{2} \in S \Rightarrow f\left((1-t) \mathbf{x}_{1}+t \mathbf{x}_{2}\right) \leq(1-t) f\left(\mathbf{x}_{1}\right)+t f\left(\mathbf{x}_{2}\right) \tag{1}
\end{equation*}
$$

for all $0<t<1$. If the function f satisfies a strict inequality in (1), it is said to be a strictly convex function. A function f is said to be concave if $-f$ is convex.
a) A convex function on \mathbb{R}

b) A non-convex function on \mathbb{R}

A brief summary on convex optimization

Linear functions(*):

A linear (or affine) function f is both convex and concave (but it is not strictly convex). In particular, if f is linear (or affine), both f and $-f$ are convex.

Positive linear combinations of convex functions(*):

Let f_{1} and f_{2} be convex functions defined on a convex set S. Then the positive linear combination

$$
f=\alpha_{1} f_{1}+\alpha_{2} f_{2}
$$

(with $\alpha_{1}>0$ and $\alpha_{2}>0$) is a convex function. If any one of f_{1} and f_{2} is strictly convex, then the function f is strictly convex.

A brief summary on convex optimization

Differentiable convex functions(**):

Let f be a two times differentiable continuous function defined on the open convex set $S \subset \mathbb{R}^{n}\left(f \in C^{2}(S)\right)$. It can then be shown that f is a convex function if and only if the Hessian $\mathbf{H}_{i j}(\mathbf{x})=\partial_{x_{i}} \partial_{x_{j}} f(\mathbf{x})$ is a positively semidefinite matrix for all $\mathbf{x} \in S$, i.e.,

$$
\mathbf{H}(\mathbf{x}) \geq 0 \forall \mathbf{x} \in S \Leftrightarrow f \text { convex. }
$$

If the Hessian $\mathbf{H}(\mathbf{x})$ is positively definite for all $\mathbf{x} \in S$ then f is strictly convex, i.e.,

$$
\mathbf{H}(\mathbf{x})>0 \forall \mathbf{x} \in S \Rightarrow f \text { strictly convex }
$$

but the converse is not true (take e.g., $f(x)=x^{4}$).

A brief summary on convex optimization

Quadratic forms(**):

Let

$$
f(\mathbf{x})=\frac{1}{2} \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}+\mathbf{b}^{\mathrm{T}} \mathbf{x}+c
$$

be a quadratic form where \mathbf{A} is an $n \times n$ matrix, \mathbf{x} and \mathbf{b} are $n \times 1$ vectors, c a constant and $(\cdot)^{\mathrm{T}}$ denotes the transpose. The function f is convex if and only if the Hessian matrix \mathbf{A} is positively semidefinite, i.e.,

$$
\mathbf{A} \geq 0 \Leftrightarrow f \text { convex. }
$$

The function f is strictly convex if and only if the Hessian matrix \mathbf{A} is positively definite, i.e.,

$$
\mathbf{A}>0 \Leftrightarrow f \text { strictly convex. }
$$

A brief summary on convex optimization

Level $\operatorname{set}\left({ }^{*}\right)$:

Let g be a convex function defined on the convex set $S \subset \mathbb{R}^{n}$ and α an arbitrary real number. Then the level set

$$
S_{\alpha}=\{\mathbf{x} \in S \mid g(\mathbf{x}) \leq \alpha\}
$$

is a convex set.

Continuity (**):

Let f be a convex function defined on the convex set $S \subset \mathbb{R}^{n}$. Then f is a continuous function on the interior of S.

A brief summary on convex optimization

Convex optimization:

A convex optimization problem in general is a problem of the form

$$
\begin{array}{ll}
\operatorname{minimize} & f(\mathbf{x}) \tag{2}\\
\text { subject to } & \mathbf{x} \in S
\end{array}
$$

where f is a convex function defined on the convex set S.

It is common that the convex set S is given in the form

$$
S=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid g_{i}(\mathbf{x}) \leq 0\right\}
$$

where $\left\{g_{i}(\mathbf{x})\right\}_{i=1}^{M}$ is a set of convex functions representing the convex constraints.

A brief summary on convex optimization

A local minimum is also a global minimum:
Below are given some definitions and a proof.
Consider the convex optimization problem (2) where f is a convex function defined on the convex set S.

- If $\mathrm{x} \in S$ it is called a feasible point.
- The function f has a global minimum at \mathbf{x} if

$$
f(\mathbf{x}) \leq f(\boldsymbol{\xi}), \quad \forall \boldsymbol{\xi} \in S
$$

- The function f has a local minimum at \mathbf{x} if

$$
f(\mathbf{x}) \leq f(\boldsymbol{\xi}), \quad \forall \boldsymbol{\xi} \in S_{r}=\{\boldsymbol{\xi} \in S\|\boldsymbol{\xi}-\mathbf{x}\|<r\}
$$

for some r-neighbourhood S_{r} with radius $r>0$, and where $\|\cdot\|$ is a suitable norm.

A brief summary on convex optimization

Proof: Let $\mathbf{x} \in S$ be a local minimum and S_{r} a corresponding r-neighbourhood. Suppose now that \mathbf{x} is not a global minimum, then there is a feasible $\mathbf{y} \in S$ with minimum value $f(\mathbf{y})<f(\mathbf{x})$. Since \mathbf{x} is a local minimum it follows that $\mathbf{y} \notin S_{r}$ and hence $\|\mathbf{y}-\mathbf{x}\| \geq r$. Define the point

$$
\mathbf{z}=(1-t) \mathbf{x}+t \mathbf{y} \quad \text { where } \quad t=\frac{r}{2\|\mathbf{y}-\mathbf{x}\|} \leq \frac{1}{2}
$$

so that

$$
\|\mathbf{z}-\mathbf{x}\|=t\|\mathbf{y}-\mathbf{x}\|=\frac{r}{2}
$$

and hence $\mathbf{z} \in S_{r}$. On the other hand, it follows by the convexity of f that

$$
f(\mathbf{z})=f((1-t) \mathbf{x}+t \mathbf{y}) \leq(1-t) f(\mathbf{x})+t f(\mathbf{y})<f(\mathbf{x})
$$

which contradicts the assumption that x is a local minimum.

A brief summary on convex optimization

If f is strictly convex then a minimum is also a unique minimum:

Proof: Let $\mathbf{x} \in S$ be a minimum so that $f(\mathbf{x}) \leq f(\boldsymbol{\xi})$ for all $\boldsymbol{\xi} \in S$. Suppose that $\mathbf{y} \in S$ where $\mathbf{y} \neq \mathbf{x}$ is also a minimum so that $f(\mathbf{y})=f(\mathbf{x})$. Let $\mathbf{z}=(1-t) \mathbf{x}+t \mathbf{y}$ where $0<t<1$ and hence $\mathbf{z} \in S$. Then by the strict convexity

$$
f(\mathbf{z})=f((1-t) \mathbf{x}+t \mathbf{y})<(1-t) f(\mathbf{x})+t f(\mathbf{y})=f(\mathbf{x})
$$

which contradicts the assumption that x is a minimum.

A brief summary on convex optimization

The norm:

Any norm $f(\mathbf{x})=\|\mathbf{x}\|$ is a convex function on \mathbb{R}^{n} since by the triangle inequality

$$
\begin{array}{r}
f\left((1-t) \mathbf{x}_{1}+t \mathbf{x}_{2}\right)=\left\|(1-t) \mathbf{x}_{1}+t \mathbf{x}_{2}\right\| \leq(1-t)\left\|\mathbf{x}_{1}\right\|+t\left\|\mathbf{x}_{2}\right\| \\
=(1-t) f\left(\mathbf{x}_{1}\right)+t f\left(\mathbf{x}_{2}\right)
\end{array}
$$

where $0<t<1$.

Comments: It follows from the properties of the norm that the minimum of $f(\mathbf{x})=\|\mathbf{x}\|$ is the unique vector $\mathbf{x}=\mathbf{0}$. Note however that $f(\mathbf{x})=\|\mathbf{x}\|$ is not a strictly convex function. To see this, choose e.g., $\mathbf{x}_{2}=\alpha \mathbf{x}_{1}$ where $\alpha>1$ and verify that $f\left((1-t) \mathbf{x}_{1}+t \mathbf{x}_{2}\right)=(1-t) f\left(\mathbf{x}_{1}\right)+t f\left(\mathbf{x}_{2}\right)$ for all $0<t<1$. Note however that the function $f(\mathbf{x})=\|\mathbf{x}\|_{2}^{2}=\mathbf{x}^{T} \mathbf{x}$ is strictly convex.

A brief summary on convex optimization

Norm of a linear (or affine) form:

The norm of a linear (or affine) form is a convex function on \mathbb{R}^{n}. Consider e.g., the function $f(\mathbf{x})=\|\mathbf{A x}-\mathbf{b}\|$ where \mathbf{A} is an $m \times n$ matrix, \mathbf{x} an $n \times 1$ vector and \mathbf{b} an $m \times 1$ vector. The function $f(\mathbf{x})$ is convex since by the triangle inequality

$$
\begin{aligned}
& \quad f\left((1-t) \mathbf{x}_{1}+t \mathbf{x}_{2}\right)=\left\|\mathbf{A}\left((1-t) \mathbf{x}_{1}+t \mathbf{x}_{2}\right)-\mathbf{b}\right\| \\
& =\left\|(1-t)\left(\mathbf{A} \mathbf{x}_{1}-b\right)+t\left(\mathbf{A} \mathbf{x}_{2}-\mathbf{b}\right)\right\| \leq(1-t)\left\|\mathbf{A} \mathbf{x}_{1}-\mathbf{b}\right\|+t\left\|\mathbf{A} \mathbf{x}_{2}-\mathbf{b}\right\| \\
& =(1-t) f\left(\mathbf{x}_{1}\right)+t f\left(\mathbf{x}_{2}\right),
\end{aligned}
$$

where $0<t<1$.

A brief summary on convex optimization

Norm of a linear (or affine) form:

Comments: Note that if the Euclidean norm $\|\cdot\|_{2}$ is used, if $m>n$ and if the rank of the matrix \mathbf{A} is $\operatorname{rank}\{\mathbf{A}\}=n$, then the minimum of f (the least squares solution) is unique (even though the function f is not strictly convex).

It is evident that the well-posedness of the minimization of $f(\mathbf{x})=\|\mathbf{A} \mathbf{x}-\mathbf{b}\|$ depends on the properties of the matrix (or operator) A. If the matrix \mathbf{A} is not full rank and has a non-trivial null space, then the optimization problem can be regularized by adding a strictly convex penalty term as e.g., $f(\mathbf{x})=\|\mathbf{A x}-\mathbf{b}\|_{2}+\alpha\|\mathbf{x}\|_{2}^{2}$ where $\alpha>0$ (cf., Tikhonov regularization). Now the new function f is strictly convex, and if α is sufficiently small the optimal solution will coincide with the pseudo-inverse.

A brief summary on convex optimization

Disciplined convex programming in Matlab:

As an example, consider the following convex optimization problem related to the normed error

$$
\begin{array}{ll}
\operatorname{minimize} & \|\mathbf{A x}-\mathbf{b}\|_{p} \\
\text { subject to } & \mathbf{B x} \leq \mathbf{c} \tag{3}\\
& \mathbf{C x}=\mathbf{d}
\end{array}
$$

where the $n \times 1$ vector \mathbf{x} is the unknown optimization variable and \mathbf{A}, \mathbf{B} and \mathbf{C} are given matrices and \mathbf{b}, \mathbf{c} and \mathbf{d} are given vectors of suitable dimensions. Here, $\|\cdot\|_{p}$ denotes that a p-norm is used where $p \geq 1$. The max-norm is denoted $\|\cdot\|_{\infty}$.

A brief summary on convex optimization

Disciplined convex programming in Matlab:

Once formulated on a standard form the problem (3) can be solved efficiently by using the CVX Matlab software for disciplined convex programming which is available via the link http://cvxr.com/cvx/. Here, the following lines in Matlab may be used

$$
\begin{array}{ll}
\text { cvx_begin } & \\
\qquad & \text { variable } \mathrm{x}(\mathrm{n}) \\
& \text { minimize }(\operatorname{norm}(\mathrm{A} * \mathrm{x}-\mathrm{b}, \mathrm{p})) \\
& \mathrm{subject} \text { to } \\
& \mathrm{B} * \mathrm{x}<=\mathrm{c} \\
& \mathrm{C} * \mathrm{x}==\mathrm{d} \\
\text { cvx_end } &
\end{array}
$$

where $\mathrm{n}, \mathrm{p}(\mathrm{p} \geq 1$ or $\mathrm{p}=\operatorname{Inf}), \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{b}, \mathrm{c}$ and d have been defined in the preamble.

Herglotz functions

Analytic functions with the property

$$
\operatorname{Im} h(\omega) \geq 0 \quad \text { for } \quad \omega \in \mathbb{C}_{+}=\{\omega \in \mathbb{C} \mid \operatorname{Im} \omega>0\}
$$

Integral representation

$$
h(\omega)=b_{1} \omega+\alpha+\int_{-\infty}^{\infty}\left(\frac{1}{\xi-\omega}-\frac{\xi}{1+\xi^{2}}\right) \mathrm{d} \beta(\xi)
$$

Here, $b_{1} \geq 0, \alpha \in \mathbb{R}$
$\mathrm{d} \beta(\xi)$ is a positive Borel measure with $\int_{\mathbb{R}} \mathrm{d} \beta(\xi) /\left(1+\xi^{2}\right)<\infty$
Notation: $\mathrm{d} \beta(\xi)=\beta^{\prime}(\xi) \mathrm{d} \xi=\frac{1}{\pi} \operatorname{Im} h(\xi+\mathrm{i} 0) \mathrm{d} \xi \stackrel{\text { def }}{=} \frac{1}{\pi} \operatorname{Im} h(\xi) \mathrm{d} \xi$

Symmetric Herglotz functions

Conjugate symmetry and symmetric measure

$$
\begin{aligned}
& h(\omega)=-h^{*}\left(-\omega^{*}\right) \quad \Leftrightarrow \quad \operatorname{Im} h(-\xi)=\operatorname{Im} h(\xi) \\
& \operatorname{Re} h(-\xi)=-\operatorname{Re} h(\xi)
\end{aligned}
$$

Integral representation for $\omega \in \mathbb{C}_{+}$

$$
h(\omega)=b_{1} \omega+\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{1}{\xi-\omega} \operatorname{Im} h(\xi) \mathrm{d} \xi
$$

Distributional limit on the real line $\omega \in \mathbb{R}$

$$
\begin{gathered}
\frac{1}{\xi-\omega} \rightarrow \frac{1}{\xi-\omega}+\mathrm{i} \pi \delta(\xi-\omega) \quad \text { as } \quad \operatorname{Im} \omega \rightarrow 0+ \\
\operatorname{Re} h(\omega)=b_{1} \omega+\frac{1}{\pi} f_{-\infty}^{\infty} \frac{1}{\xi-\omega} \operatorname{Im} h(\xi) \mathrm{d} \xi
\end{gathered}
$$

where the integral is a Cauchy principal value integral

Symmetric Herglotz functions and related sum rules

Suppose that the following asymptotic properties are valid
$h(\omega)= \begin{cases}a_{-1} \omega^{-1}+a_{1} \omega+\ldots+a_{2 N_{0}-1} \omega^{2 N_{0}-1}+o\left(\omega^{2 N_{0}-1}\right) & \text { as } \omega \hat{\rightarrow} 0 \\ b_{1} \omega+b_{-1} \omega^{-1}+\ldots+b_{1-2 N_{\infty}} \omega^{1-2 N_{\infty}}+o\left(\omega^{1-2 N_{\infty}}\right) & \text { as } \omega \hat{\rightarrow} \infty\end{cases}$
then the following integral identities (sum rules) hold

$$
\begin{aligned}
& \frac{2}{\pi} \int_{0+}^{\infty} \frac{\operatorname{Im} h(\xi)}{\xi^{2 n}} \mathrm{~d} \xi \stackrel{\text { def }}{=} \lim _{\varepsilon \rightarrow 0+} \lim _{y \rightarrow 0+} \frac{2}{\pi} \int_{\varepsilon}^{1 / \varepsilon} \frac{\operatorname{Im} h(\xi+\mathrm{i} y)}{\xi^{2 n}} \mathrm{~d} \xi=a_{2 n-1}-b_{2 n-1} \\
& \text { for } n=1-N_{\infty}, \ldots, N_{0}
\end{aligned}
$$

A general approximation problem

$$
\begin{array}{ll}
\operatorname{minimize} & \|h(\xi)-f(\xi)\|_{\Omega} \\
\text { subject to } & f(\xi) \text { continuous on } \Omega \\
& h(\xi) \stackrel{\text { def }}{=} h(\xi+\mathrm{i} 0) \exists \text { continuous on } \Omega
\end{array}
$$

Approximation domain Ω is a closed and bounded subset of \mathbb{R} $h(\omega)$ is a symmetric Herglotz function regular in a neighbourhood of $\mathbb{C}^{+} \cup \Omega$

A non-trivial example
$-f(\xi)$ can be continued to a Herglotz function $h_{0}(\omega)$ which is analytic in a neighbourhood of $\mathbb{C}^{+} \cup \Omega$
Large argument asymptotics: $h_{0}(\omega)=b_{1}^{0} \omega+o(\omega)$ as $\omega \hat{\rightarrow} \infty$
Then $\sup _{\xi \in \Omega}|h(\xi)-f(\xi)| \geq b_{1}^{0} \frac{1}{2}|\Omega|$
[1] M. Gustafsson and D. Sjöberg. Sum rules and physical bounds on passive metamaterials. New Journal of Physics, 12, 043046, 2010.

Derivation of sum rule and non-trivial bound

Following [1] above, employ the auxiliary Herglotz function
$h_{\Delta}(z)=\frac{1}{\pi} \int_{-\Delta}^{\Delta} \frac{1}{\xi-z} \mathrm{~d} \xi=\frac{1}{\pi} \ln \frac{z-\Delta}{z+\Delta}=\left\{\begin{array}{l}\mathrm{i}+o(1) \text { as } z \hat{\rightarrow} 0 \\ \frac{-2 \Delta}{\pi z}+o\left(z^{-1}\right) \quad \text { as } z \hat{\rightarrow} \infty\end{array}\right.$
where $\operatorname{Im} h_{\Delta}(z) \geq \frac{1}{2}$ for $|z| \leq \Delta$ and $\operatorname{Im} z \geq 0$
Composite Herglotz function $\widetilde{h}(\omega)=h_{\Delta}\left(h(\omega)+h_{0}(\omega)\right)$ where $h(\omega)+h_{0}(\omega)=\left(b_{1}+b_{1}^{0}\right) \omega+o(\omega)$ as $\omega \hat{\rightarrow} \infty$

$$
\widetilde{h}(\omega)=\left\{\begin{array}{l}
o\left(\omega^{-1}\right) \quad \text { as } \omega \hat{\rightarrow} 0 \\
\frac{-2 \Delta}{\pi\left(b_{1}+b_{1}^{0}\right)} \omega^{-1}+o\left(\omega^{-1}\right) \quad \text { as } \omega \hat{\rightarrow} \infty
\end{array}\right.
$$

Sum rule for $n=0$

$$
\frac{2}{\pi} \int_{0}^{\infty} \operatorname{Im} \tilde{h}(\xi) \mathrm{d} \xi=a_{-1}-b_{-1}=\frac{2 \Delta}{\pi\left(b_{1}+b_{1}^{0}\right)}
$$

Derivation of sum rule and non-trivial bound

Sum rule for $n=0$

$$
\frac{2}{\pi} \int_{0}^{\infty} \operatorname{Im} \widetilde{h}(\xi) \mathrm{d} \xi=a_{-1}-b_{-1}=\frac{2 \Delta}{\pi\left(b_{1}+b_{1}^{0}\right)}
$$

Let $\Delta=\sup _{\xi \in \Omega}\left|h(\xi)+h_{0}(\xi)\right|$, the following integral inequalities hold

$$
\frac{1}{\pi}|\Omega| \leq \frac{2}{\pi} \int_{\Omega} \underbrace{\operatorname{Im} \widetilde{h}(\xi)}_{\geq \frac{1}{2}} \mathrm{~d} \xi \leq \frac{2}{\pi} \int_{0}^{\infty} \operatorname{Im} \widetilde{h}(\xi) \mathrm{d} \xi=\frac{2}{\pi\left(b_{1}+b_{1}^{0}\right)} \sup _{\xi \in \Omega}\left|h(\xi)+h_{0}(\xi)\right|
$$

or

$$
\sup _{\xi \in \Omega}\left|h(\xi)+h_{0}(\xi)\right| \geq\left(b_{1}+b_{1}^{0}\right) \frac{1}{2}|\Omega| \quad \text { where } \quad|\Omega|=\int_{\Omega} \mathrm{d} \xi
$$

Permittivity functions: If $h(\omega)=\omega \epsilon(\omega)$ and $h_{0}(\omega)=-f(\omega)=-\omega \epsilon_{\mathrm{t}}$ with $\epsilon_{\mathrm{t}}<0$, then $b_{1}=\epsilon_{\infty}$ and $b_{1}^{0}=-\epsilon_{\mathrm{t}}$ and

$$
\sup _{\xi \in \Omega}\left|\epsilon(\xi)-\epsilon_{\mathrm{t}}\right| \geq \frac{\left(\epsilon_{\infty}-\epsilon_{\mathrm{t}}\right) \frac{1}{2} B}{1+\frac{B}{2}}
$$

where $\Omega=\omega_{0}\left[1-\frac{B}{2}, 1+\frac{B}{2}\right]$ and where ω_{0} is the center frequency and $0<B<2$, see also [1].

Discretization

Discretization of positive measure on $\Omega_{1}=\left[\omega_{1}, \omega_{4}\right], \Delta \omega=\frac{\omega_{4}-\omega_{1}}{N-1}$

$$
\operatorname{Im} h(\omega)=\sum_{n=0}^{N-1} x_{n}\left[p\left(\omega-\left(n+n_{1}\right) \Delta \omega\right)+p\left(\omega+\left(n+n_{1}\right) \Delta \omega\right)\right], \quad x_{n} \geq 0
$$

Triangular basis functions

$$
p(\omega)= \begin{cases}1-\frac{|\omega|}{\Delta \omega} & |\omega| \leq \Delta \omega \\ 0 & |\omega|>\Delta \omega\end{cases}
$$

Hilbert transform on approximation domain $\Omega=\left[\omega_{2}, \omega_{3}\right] \subset \Omega_{1}$

$$
\begin{aligned}
& \operatorname{Re} h(\omega)=b_{1} \omega+\sum_{n=0}^{N-1} x_{n}\left[\hat{p}\left(\omega-\left(n+n_{1}\right) \Delta \omega\right)+\hat{p}\left(\omega+\left(n+n_{1}\right) \Delta \omega\right)\right] \\
& \hat{p}(\omega)=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{1}{\xi-\omega} p(\xi) \mathrm{d} \xi \\
& =(2 \omega \ln |\omega|-(\omega-\Delta \omega) \ln |\omega-\Delta \omega|-(\omega+\Delta \omega) \ln |\omega+\Delta \omega|) /(\pi \Delta \omega)
\end{aligned}
$$

Convex optimization

Approximation problem

$$
\begin{array}{ll}
\operatorname{minimize} & \|h(\xi)-f(\xi)\|_{\Omega} \\
\text { subject to } & f(\xi) \text { continuous on } \Omega \\
& h(\xi) \stackrel{\text { def }}{=} h(\xi+\mathrm{i} 0) \exists \text { continuous on } \Omega
\end{array}
$$

Disciplined convex programming in MATLAB [2]

$$
\begin{aligned}
& \mathrm{A}=\mathrm{H}+1 \mathrm{i} * \mathrm{I} \\
& \text { cvx_begin } \\
& \begin{array}{l}
\text { variable } x(N) \\
\operatorname{minimize}(\operatorname{norm}(A * x-f, \operatorname{Inf})) \\
\text { subject to } \\
x>=0
\end{array} \\
& \text { cvx end }
\end{aligned}
$$

[2] M. Grant and S. Boyd. CVX: A system for disciplined convex programming, release 2.0, © 2012 CVX Research, Inc., Austin, TX.

Approximation of $\tan (\omega)$

$$
h(\xi) \stackrel{\text { def }}{=} h(\xi+\mathrm{i} 0)=\tan (\xi)+\mathrm{i} \pi \sum_{l=-\infty}^{\infty} \delta\left(\xi-\frac{\pi}{2}+l \pi\right)
$$

a) Approximating measure $\operatorname{Im} h(\omega)$

b) Approximation of Herglotz function $\tan (\omega)$

Approximation of $\tan (-1 / \omega)$

$$
h(\xi) \stackrel{\text { def }}{=} h(\xi+\mathrm{i} 0)=\tan (-1 / \xi)+\mathrm{i} \pi \sum_{l=-\infty}^{\infty} \frac{1}{\left(l \pi-\frac{\pi}{2}\right)^{2}} \delta\left(\xi-\frac{1}{l \pi-\frac{\pi}{2}}\right)
$$

a) Approximating measure $\operatorname{Im} h(\omega)$

b) Approximation of Herglotz function $\tan (-1 / \omega)$

Approximation of metamaterial

Herglotz function $h(\omega)=\omega \epsilon(\omega)$ with $\epsilon_{\infty}=1$ (and $\epsilon_{\mathrm{s}} \stackrel{\text { def }}{=} \epsilon(0)$)
Metamaterial $f(\omega)=\omega \epsilon_{\mathrm{t}}$ for $\omega \in \Omega$ and where $\epsilon_{\mathrm{t}}=-1$

Convex optimization problem

$$
\begin{array}{ll}
\operatorname{minimize} & \sup _{\xi \in \Omega} \frac{1}{\xi}|h(\xi)-f(\xi)| \\
\text { subject to } & \frac{2}{\pi} \int_{0}^{\infty} \frac{\operatorname{Im} h(\xi)}{\xi^{2}} \mathrm{~d} \xi \leq \epsilon_{\mathrm{s}}^{\max }-\epsilon_{\infty}
\end{array}
$$

Discretization of sum rule

$$
\frac{2}{\pi} \int_{0}^{\infty} \frac{\operatorname{Im} h(\xi)}{\xi^{2}} \mathrm{~d} \xi=\frac{2}{\pi \Delta \omega} \sum_{n=0}^{N-1} x_{n} \ln \frac{\left(n+n_{1}\right)^{2}}{\left(n+n_{1}-1\right)\left(n+n_{1}+1\right)}
$$

assuming that $n_{1}>1$ where $\omega_{1}=n_{1} \Delta \omega(\operatorname{Im} h(\xi)=o(\xi))$

Approximation of metamaterial

Disciplined convex programming in MATLAB [2]

Omega;
\% Approximation domain
$\mathrm{A}=\mathrm{H}+1 \mathrm{i} * \mathrm{I} ; \quad$ \% Representation of Herglotz function
B;
$\mathrm{b}=\mathrm{epss}-\mathrm{epsinf} ;$
\% Representation of sum rule
\% Static and optical responses
cvx_begin

$$
\begin{aligned}
& \text { variable } x(N) \\
& \text { minimize }(\text { norm }((\operatorname{epsinf} * \text { Omega }+A * x-f) . / \text { Omega, Inf })) \\
& \text { subject to } \\
& x>=0 \\
& B * x<=b
\end{aligned}
$$

cvx end
[2] M. Grant and S. Boyd. CVX: A system for disciplined convex programming, release 2.0, © 2012 CVX Research, Inc., Austin, TX.

Approximation of metamaterial

Herglotz function $h(\omega)=\omega \epsilon(\omega)$ with $\epsilon_{\infty}=1$
Metamaterial $f(\omega)=\omega \epsilon_{\mathrm{t}}$ for $\omega \in \Omega$ and where $\epsilon_{\mathrm{t}}=-1$

Approximation of metamaterial (permittivity)

a) Permittivity function $\operatorname{Im} \epsilon(\omega)$

b) Permittivity function $\operatorname{Re} \epsilon(\omega)$

Note that $\omega \epsilon(\omega)=-\frac{1}{\pi} \frac{1}{\omega}+\mathrm{i} \delta(\omega)=\omega\left(-\frac{1}{\pi} \frac{1}{\omega^{2}}-\mathrm{i} \delta^{\prime}(\omega)\right)$

Convergence of approximation (metamaterial)

Here, the relative bandwidth is $B=0.4$

Approximation of metamaterial with static permittivity

Herglotz function $h(\omega)=\omega \epsilon(\omega)$ with $\epsilon_{\infty}=1$ and $\epsilon_{\mathrm{s}}^{\max }=5$
Metamaterial $f(\omega)=\omega \epsilon_{\mathrm{t}}$ for $\omega \in \Omega$ and where $\epsilon_{\mathrm{t}}=-1$

Approximation of metamaterial (permittivity)

a) Permittivity function $\operatorname{Im} \epsilon(\omega)$

b) Permittivity function $\operatorname{Re} \epsilon(\omega)$

Note that $\omega \epsilon(\omega)=\omega\left(-\frac{2}{\pi} \frac{1}{\left(\omega-\omega_{0}\right)\left(\omega+\omega_{0}\right)}+\frac{\mathrm{i}}{\omega_{0}} \delta\left(\omega-\omega_{0}\right)-\frac{\mathrm{i}}{\omega_{0}} \delta\left(\omega+\omega_{0}\right)\right)$

Summary and future work

- A general approximation problem has been formulated based on the class of symmetric Herglotz functions.
- The approximation problem can be discretized and solved by using a disciplined convex programming in MATLAB which facilitates a straightforward addition of auxiliary convex constraints.
- Future work aims at
\diamond Rigorous mathematical formulation and proof of convergence
\diamond Further applications of dispersion analysis and optimization of passive materials and structures
\diamond Optimization of matrix valued Herglotz functions for complex materials

