Passive approximation and optimization

Sven Nordebo
*Mats Gustafsson and *Daniel Sjöberg

Department of Physics and Electrical Engineering
Linnæus University, Växjö, Sweden

*Department of Electrical and Information Technology
Lund University, Lund, Sweden
Outline

- A brief summary on convex optimization
 - Definition of convex sets and convex functions
 - Disciplined convex programming using CVX
 - Exercises: Prove the given statements.
 * simple proofs. ** more advanced proofs.
- Approximation of Herglotz functions
 - A brief review of Herglotz functions and sum rules
 - A general approximation problem
 - Discretization and convex optimization
 - Exercises
 - Analytic interpolation and continuation of \(\tan(\omega) \) and \(\tan(-1/\omega) \) based on finite data
 - Approximation of metamaterials

Convex sets: A set \(S \subset \mathbb{R}^n \) is **convex** if

\[
x_1, x_2 \in S \Rightarrow (1 - t)x_1 + tx_2 \in S,
\]

for all \(0 < t < 1 \). Geometrically this means that the straight line between any two points in a convex set remains in the set.
Convex combinations: Let $S \subset \mathbb{R}^n$ be an arbitrary set. A **convex combination** of the elements $x_i \in S$ is a positive linear combination

$$z = \sum_{i=1}^{m} t_i x_i \quad \text{where} \quad t_i \geq 0 \quad \text{and} \quad \sum_{i=1}^{m} t_i = 1.$$

If S is a convex set, it can be shown (by induction) that any convex combination of elements of S belongs to S.

Proof: Suppose that x_1, x_2 and x_3 belong to the convex set S. Let

$$z = t_1 x_1 + t_2 x_2 + t_3 x_3,$$

where $t_1 + t_2 + t_3 = 1$ and $t_3 \neq 1$ (otherwise $z = x_3 \in S$). Then

$$z = (1 - t_3) \left(\frac{t_1}{1 - t_3} x_1 + \frac{t_2}{1 - t_3} x_2 \right) + t_3 x_3 \in S \quad \text{since} \quad \frac{t_1}{1 - t_3} + \frac{t_2}{1 - t_3} = 1$$
Intersection of convex sets(*):

The intersection $\cap_\alpha S_\alpha$ of convex sets S_α is a convex set.

Convex hull(*):

Let $S \subset \mathbb{R}^n$ be an arbitrary set. The convex hull $\text{conv}(S)$ of S is the set of all convex combinations of elements in S. It can be shown that $\text{conv}(S)$ is the smallest convex set containing S, i.e.,

$$\text{conv}(S) = \cap_\alpha T_\alpha$$

where the intersection is taken over all convex sets T_α containing S, i.e., $S \subset T_\alpha$.
A brief summary on convex optimization

Convex functions: Let f be a function defined on the convex set $S \subset \mathbb{R}^n$. The function f is said to be a *convex function* if

\[x_1, x_2 \in S \Rightarrow f((1 - t)x_1 + tx_2) \leq (1 - t)f(x_1) + tf(x_2), \quad (1) \]

for all $0 < t < 1$. If the function f satisfies a strict inequality in (1), it is said to be a *strictly convex function*. A function f is said to be *concave* if $-f$ is convex.

a) A convex function on \mathbb{R}

b) A non-convex function on \mathbb{R}
A brief summary on convex optimization

Linear functions(*):
A linear (or affine) function f is both convex and concave (but it is not strictly convex). In particular, if f is linear (or affine), both f and $-f$ are convex.

Positive linear combinations of convex functions(*):
Let f_1 and f_2 be convex functions defined on a convex set S. Then the positive linear combination

$$f = \alpha_1 f_1 + \alpha_2 f_2$$

(with $\alpha_1 > 0$ and $\alpha_2 > 0$) is a convex function. If any one of f_1 and f_2 is strictly convex, then the function f is strictly convex.
Differentiable convex functions(**):

Let f be a two times differentiable continuous function defined on the open convex set $S \subset \mathbb{R}^n$ ($f \in C^2(S)$). It can then be shown that f is a convex function if and only if the Hessian $H_{ij}(x) = \partial_{x_i} \partial_{x_j} f(x)$ is a positively semidefinite matrix for all $x \in S$, i.e.,

$$H(x) \succeq 0 \forall x \in S \iff f \text{ convex}.$$

If the Hessian $H(x)$ is positively definite for all $x \in S$ then f is strictly convex, i.e.,

$$H(x) > 0 \forall x \in S \Rightarrow f \text{ strictly convex},$$

but the converse is not true (take e.g., $f(x) = x^4$).
Quadratic forms(**):

Let

\[f(x) = \frac{1}{2} x^T Ax + b^T x + c \]

be a quadratic form where \(A \) is an \(n \times n \) matrix, \(x \) and \(b \) are \(n \times 1 \) vectors, \(c \) a constant and \((\cdot)^T\) denotes the transpose. The function \(f \) is convex if and only if the Hessian matrix \(A \) is positively semidefinite, \(i.e., \)

\[A \geq 0 \iff f \text{ convex}. \]

The function \(f \) is strictly convex if and only if the Hessian matrix \(A \) is positively definite, \(i.e., \)

\[A > 0 \iff f \text{ strictly convex}. \]
Level set(*):

Let g be a convex function defined on the convex set $S \subset \mathbb{R}^n$ and α an arbitrary real number. Then the level set

$$S_\alpha = \{ x \in S | g(x) \leq \alpha \}$$

is a convex set.

Continuity(**):

Let f be a convex function defined on the convex set $S \subset \mathbb{R}^n$. Then f is a continuous function on the interior of S.
Convex optimization:

A convex optimization problem in general is a problem of the form

\[
\begin{align*}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad x \in S, \\
\end{align*}
\]

(2)

where \(f \) is a convex function defined on the convex set \(S \).

It is common that the convex set \(S \) is given in the form

\[
S = \{ x \in \mathbb{R}^n | g_i(x) \leq 0 \}
\]

where \(\{ g_i(x) \}_{i=1}^M \) is a set of convex functions representing the \emph{convex constraints}.
A brief summary on convex optimization

A local minimum is also a global minimum:

Below are given some definitions and a proof.

Consider the convex optimization problem (2) where \(f \) is a convex function defined on the convex set \(S \).

- If \(x \in S \) it is called a feasible point.
- The function \(f \) has a global minimum at \(x \) if
 \[
 f(x) \leq f(\xi), \quad \forall \xi \in S
 \]
- The function \(f \) has a local minimum at \(x \) if
 \[
 f(x) \leq f(\xi), \quad \forall \xi \in S_r = \{ \xi \in S \mid \|\xi - x\| < r \}
 \]
 for some \(r \)-neighbourhood \(S_r \) with radius \(r > 0 \), and where \(\| \cdot \| \) is a suitable norm.
Proof: Let \(x \in S \) be a local minimum and \(S_r \) a corresponding \(r \)-neighbourhood. Suppose now that \(x \) is not a global minimum, then there is a feasible \(y \in S \) with minimum value \(f(y) < f(x) \). Since \(x \) is a local minimum it follows that \(y \not\in S_r \) and hence \(\|y - x\| \geq r \). Define the point

\[
z = (1 - t)x + ty \quad \text{where} \quad t = \frac{r}{2\|y - x\|} \leq \frac{1}{2},
\]

so that

\[
\|z - x\| = t\|y - x\| = \frac{r}{2},
\]

and hence \(z \in S_r \). On the other hand, it follows by the convexity of \(f \) that

\[
f(z) = f((1 - t)x + ty) \leq (1 - t)f(x) + tf(y) < f(x),
\]

which contradicts the assumption that \(x \) is a local minimum.
If \(f \) is strictly convex then a minimum is also a unique minimum:

Proof: Let \(x \in S \) be a minimum so that \(f(x) \leq f(\xi) \) for all \(\xi \in S \). Suppose that \(y \in S \) where \(y \neq x \) is also a minimum so that \(f(y) = f(x) \). Let \(z = (1 - t)x + ty \) where \(0 < t < 1 \) and hence \(z \in S \). Then by the strict convexity

\[
f(z) = f((1 - t)x + ty) < (1 - t)f(x) + tf(y) = f(x),
\]

which contradicts the assumption that \(x \) is a minimum.
A brief summary on convex optimization

The norm:

Any norm $f(x) = \|x\|$ is a convex function on \mathbb{R}^n since by the triangle inequality

$$f((1 - t)x_1 + tx_2) = \|(1 - t)x_1 + tx_2\| \leq (1 - t)\|x_1\| + t\|x_2\|$$

$$= (1 - t)f(x_1) + tf(x_2),$$

where $0 < t < 1$.

Comments: It follows from the properties of the norm that the minimum of $f(x) = \|x\|$ is the unique vector $x = 0$. Note however that $f(x) = \|x\|$ is not a strictly convex function. To see this, choose e.g., $x_2 = \alpha x_1$ where $\alpha > 1$ and verify that

$$f((1 - t)x_1 + tx_2) = (1 - t)f(x_1) + tf(x_2)$$

for all $0 < t < 1$. Note however that the function $f(x) = \|x\|^2 = x^T x$ is strictly convex.
A brief summary on convex optimization

Norm of a linear (or affine) form:

The norm of a linear (or affine) form is a convex function on \(\mathbb{R}^n \). Consider e.g., the function \(f(x) = \|Ax - b\| \) where \(A \) is an \(m \times n \) matrix, \(x \) an \(n \times 1 \) vector and \(b \) an \(m \times 1 \) vector. The function \(f(x) \) is convex since by the triangle inequality

\[
\begin{align*}
 f((1 - t)x_1 + tx_2) &= \|A((1 - t)x_1 + tx_2) - b\| \\
 &= \|(1 - t)(Ax_1 - b) + t(Ax_2 - b)\| \\
 &\leq (1 - t)\|Ax_1 - b\| + t\|Ax_2 - b\| \\
 &= (1 - t)f(x_1) + tf(x_2),
\end{align*}
\]

where \(0 < t < 1 \).
A brief summary on convex optimization

Norm of a linear (or affine) form:

Comments: Note that if the Euclidean norm $\| \cdot \|_2$ is used, if $m > n$ and if the rank of the matrix A is $\text{rank}\{A\} = n$, then the minimum of f (the least squares solution) is unique (even though the function f is not strictly convex).

It is evident that the well-posedness of the minimization of $f(x) = \|Ax - b\|$ depends on the properties of the matrix (or operator) A. If the matrix A is not full rank and has a non-trivial null space, then the optimization problem can be regularized by adding a strictly convex penalty term as e.g.,

$$f(x) = \|Ax - b\|_2 + \alpha \|x\|_2^2$$

where $\alpha > 0$ (cf., Tikhonov regularization). Now the new function f is strictly convex, and if α is sufficiently small the optimal solution will coincide with the pseudo-inverse.
Disciplined convex programming in Matlab:

As an example, consider the following convex optimization problem related to the normed error

$$\text{minimize} \quad \|Ax - b\|_p$$

subject to

$$Bx \leq c$$

$$Cx = d,$$ (3)

where the $n \times 1$ vector x is the unknown optimization variable and A, B and C are given matrices and b, c and d are given vectors of suitable dimensions. Here, $\| \cdot \|_p$ denotes that a p-norm is used where $p \geq 1$. The max-norm is denoted $\| \cdot \|_\infty$.
Disciplined convex programming in Matlab:

Once formulated on a standard form the problem (3) can be solved efficiently by using the CVX Matlab software for disciplined convex programming which is available via the link http://cvxr.com/cvx/. Here, the following lines in Matlab may be used

```matlab
cvx_begin
variable x(n)
minimize(norm(A * x - b, p))
subject to
B * x <= c
C * x == d

cvx_end
```

where n, p ($p \geq 1$ or $p = \text{Inf}$), A, B, C, b, c and d have been defined in the preamble.
Herglotz functions

Analytic functions with the property

\[\text{Im } h(\omega) \geq 0 \quad \text{for} \quad \omega \in \mathbb{C}_+ = \{ \omega \in \mathbb{C} | \text{Im } \omega > 0 \} \]

Integral representation

\[h(\omega) = b_1 \omega + \alpha + \int_{-\infty}^{\infty} \left(\frac{1}{\xi - \omega} - \frac{\xi}{1 + \xi^2} \right) d\beta(\xi) \]

Here, \(b_1 \geq 0, \alpha \in \mathbb{R} \)

\(d\beta(\xi) \) is a positive Borel measure with \(\int_{\mathbb{R}} d\beta(\xi)/(1 + \xi^2) < \infty \)

Notation: \(d\beta(\xi) = \beta'(\xi) \, d\xi = \frac{1}{\pi} \text{Im } h(\xi + i0) \, d\xi \equiv \frac{1}{\pi} \text{Im } h(\xi) \, d\xi \)
Symmetric Herglotz functions

Conjugate symmetry and symmetric measure

\[h(\omega) = -h^*(-\omega^*) \iff \begin{align*}
\text{Im } h(-\xi) &= \text{Im } h(\xi) \\
\text{Re } h(-\xi) &= -\text{Re } h(\xi)
\end{align*} \]

Integral representation for \(\omega \in \mathbb{C}_+ \)

\[h(\omega) = b_1 \omega + \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{1}{\xi - \omega} \text{Im } h(\xi) \, d\xi \]

Distributional limit on the real line \(\omega \in \mathbb{R} \)

\[\frac{1}{\xi - \omega} \rightarrow \frac{1}{\xi - \omega} + i\pi \delta(\xi - \omega) \quad \text{as} \quad \text{Im } \omega \rightarrow 0+ \]

\[\text{Re } h(\omega) = b_1 \omega + \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{1}{\xi - \omega} \text{Im } h(\xi) \, d\xi \]

where the integral is a Cauchy principal value integral
Suppose that the following asymptotic properties are valid

\[
h(\omega) = \begin{cases}
 a_{-1} \omega^{-1} + a_1 \omega + \ldots + a_{2N_0 - 1} \omega^{2N_0 - 1} + o(\omega^{2N_0 - 1}) & \text{as } \omega \to 0 \\
 b_1 \omega + b_{-1} \omega^{-1} + \ldots + b_{1 - 2N_\infty} \omega^{1 - 2N_\infty} + o(\omega^{1 - 2N_\infty}) & \text{as } \omega \to \infty
\end{cases}
\]

then the following integral identities (sum rules) hold

\[
\frac{2}{\pi} \int_0^\infty \frac{\text{Im} \, h(\xi)}{\xi^{2n}} \, d\xi \overset{\text{def}}{=} \lim_{\varepsilon \to 0^+} \lim_{y \to 0^+} \frac{2}{\pi} \int_{\varepsilon}^{1/\varepsilon} \frac{\text{Im} \, h(\xi + iy)}{\xi^{2n}} \, d\xi = a_{2n - 1} - b_{2n - 1}
\]

for \(n = 1 - N_\infty, \ldots, N_0 \)
A general approximation problem

minimize \[\| h(\xi) - f(\xi) \|_\Omega \]
subject to \[f(\xi) \text{ continuous on } \Omega \]
\[h(\xi) \overset{\text{def}}{=} h(\xi + i0) \text{ continuous on } \Omega \]

Approximation domain \(\Omega \) is a closed and bounded subset of \(\mathbb{R} \)
\(h(\omega) \) is a symmetric Herglotz function regular in a neighbourhood of \(\mathbb{C}^+ \cup \Omega \)

A non-trivial example

\(-f(\xi)\) can be continued to a Herglotz function \(h_0(\omega) \) which is analytic in a neighbourhood of \(\mathbb{C}^+ \cup \Omega \)

Large argument asymptotics: \(h_0(\omega) = b_1^0 \omega + o(\omega) \) as \(\omega \to \infty \)

Then \(\sup_{\xi \in \Omega} |h(\xi) - f(\xi)| \geq b_1^0 \frac{1}{2} |\Omega| \)

Derivation of sum rule and non-trivial bound

Following [1] above, employ the auxiliary Herglotz function

\[h_\Delta(z) = \frac{1}{\pi} \int_{-\Delta}^{\Delta} \frac{1}{\xi - z} \, d\xi = \frac{1}{\pi} \ln \frac{z - \Delta}{z + \Delta} = \begin{cases} i + o(1) & \text{as } z \to 0 \\ \frac{-2\Delta}{\pi z} + o(z^{-1}) & \text{as } z \to \infty \end{cases} \]

where \(\text{Im} \, h_\Delta(z) \geq \frac{1}{2} \) for \(|z| \leq \Delta \) and \(\text{Im} \, z \geq 0 \)

Composite Herglotz function

\[\tilde{h}(\omega) = h_\Delta(h(\omega) + h_0(\omega)) \]

where \(h(\omega) + h_0(\omega) = (b_1 + b_1^0)\omega + o(\omega) \) as \(\omega \to \infty \)

\[\tilde{h}(\omega) = \begin{cases} o(\omega^{-1}) & \text{as } \omega \to 0 \\ \frac{-2\Delta}{\pi (b_1 + b_1^0)} \omega^{-1} + o(\omega^{-1}) & \text{as } \omega \to \infty \end{cases} \]

Sum rule for \(n = 0 \)

\[\frac{2}{\pi} \int_{0}^{\infty} \text{Im} \, \tilde{h}(\xi) \, d\xi = a_{-1} - b_{-1} = \frac{2\Delta}{\pi (b_1 + b_1^0)} \]
Derivation of sum rule and non-trivial bound

Sum rule for $n = 0$

$$\frac{2}{\pi} \int_0^\infty \text{Im} \tilde{h}(\xi) \, d\xi = a_{-1} - b_{-1} = \frac{2\Delta}{\pi(b_1 + b_0^0)}$$

Let $\Delta = \sup_{\xi \in \Omega} |h(\xi) + h_0(\xi)|$, the following integral inequalities hold

$$\frac{1}{\pi} |\Omega| \leq \frac{2}{\pi} \int_\Omega \text{Im} \tilde{h}(\xi) \, d\xi \leq \frac{2}{\pi} \int_0^\infty \text{Im} \tilde{h}(\xi) \, d\xi = \frac{2}{\pi(b_1 + b_0^0)} \sup_{\xi \in \Omega} |h(\xi) + h_0(\xi)|$$

or

$$\sup_{\xi \in \Omega} |h(\xi) + h_0(\xi)| \geq (b_1 + b_0^0) \frac{1}{2} |\Omega| \quad \text{where} \quad |\Omega| = \int_\Omega d\xi$$

Permittivity functions: If $h(\omega) = \omega \epsilon(\omega)$ and $h_0(\omega) = -f(\omega) = -\omega \epsilon_t$ with $\epsilon_t < 0$, then $b_1 = \epsilon_\infty$ and $b_0^1 = -\epsilon_t$ and

$$\sup_{\xi \in \Omega} |\epsilon(\xi) - \epsilon_t| \geq \frac{(\epsilon_\infty - \epsilon_t) \frac{1}{2} B}{1 + \frac{B}{2}}$$

where $\Omega = \omega_0[1 - \frac{B}{2}, 1 + \frac{B}{2}]$ and where ω_0 is the center frequency and $0 < B < 2$, see also [1].
Discretization

Discretization of positive measure on \(\Omega_1 = [\omega_1, \omega_4] \), \(\Delta \omega = \frac{\omega_4 - \omega_1}{N-1} \)

\[
\text{Im } h(\omega) = \sum_{n=0}^{N-1} x_n [p(\omega - (n + n_1)\Delta \omega) + p(\omega + (n + n_1)\Delta \omega)], \quad x_n \geq 0
\]

Triangular basis functions

\[
p(\omega) = \begin{cases}
1 - \frac{|\omega|}{\Delta \omega} & |\omega| \leq \Delta \omega \\
0 & |\omega| > \Delta \omega
\end{cases}
\]

Hilbert transform on approximation domain \(\Omega = [\omega_2, \omega_3] \subset \Omega_1 \)

\[
\text{Re } h(\omega) = b_1 \omega + \sum_{n=0}^{N-1} x_n [\hat{p}(\omega - (n + n_1)\Delta \omega) + \hat{p}(\omega + (n + n_1)\Delta \omega)]
\]

\[
\hat{p}(\omega) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{1}{\xi - \omega} p(\xi) \, d\xi
\]

\[
= \frac{1}{(\pi \Delta \omega)} \left(2\omega \ln |\omega| - (\omega - \Delta \omega) \ln |\omega - \Delta \omega| - (\omega + \Delta \omega) \ln |\omega + \Delta \omega| \right)
\]
Approximation problem

\[
\begin{align*}
\text{minimize} & \quad \| h(\xi) - f(\xi) \|_\Omega \\
\text{subject to} & \quad f(\xi) \text{ continuous on } \Omega \\
& \quad h(\xi) \overset{\text{def}}{=} h(\xi + i0) \exists \text{ continuous on } \Omega
\end{align*}
\]

Disciplined convex programming in MATLAB [2]

\[
A = H + 1i \ast I \\
cvx_begin \\
\quad \text{variable } x(N) \\
\quad \text{minimize}(\text{norm}(A \ast x - f, \text{Inf})) \\
\quad \text{subject to} \\
\quad x \geq 0 \\
cvx_end
\]

Approximation of $\tan(\omega)$

$$h(\xi) \overset{\text{def}}{=} h(\xi + i0) = \tan(\xi) + i\pi \sum_{l=-\infty}^{\infty} \delta(\xi - \frac{\pi}{2} + l\pi)$$

(a) Approximating measure $\text{Im } h(\omega)$

(b) Approximation of Herglotz function $\tan(\omega)$

Ω and Ω_1: $\Omega = [\omega_2, \omega_3]$ and $\Omega_1 = [\omega_1, \omega_4]$. Here, $\omega_0 = \pi$, $B = 0$.4, $\omega_1 = 0$ and $\omega_4 = 10$.

Acknowledgment
This work was supported in part by the Swedish Foundation for Strategic Research (SSF).
Approximation of \(\tan\left(-\frac{1}{\omega}\right) \)

\[
h(\xi) \overset{\text{def}}{=} h(\xi + i0) = \tan\left(-\frac{1}{\xi}\right) + i\pi \sum_{l=-\infty}^{\infty} \frac{1}{(l\pi - \frac{\pi}{2})^2} \delta\left(\xi - \frac{1}{l\pi - \frac{\pi}{2}}\right)
\]

Figure 2: Approximation of the Herglotz function \(\tan\left(-\frac{1}{\omega}\right) \).

a) The approximating measure \(\text{Im} h(\omega) \) based on \(N = 500 \) variables.

b) The real part \(\text{Re} h(\omega) \) on \(\omega \in [0.2, 0.3] \) and \(\omega \in [0.1, 0.4] \). Here, \(\omega_0 = 0.4 \), \(B = 0.4 \), \(\omega_1 = 0 \) and \(\omega_4 = 1.2 \).
Approximation of metamaterial

Herglotz function \(h(\omega) = \omega \epsilon(\omega) \) with \(\epsilon_\infty = 1 \) (and \(\epsilon_s \overset{\text{def}}{=} \epsilon(0) \))

Metamaterial \(f(\omega) = \omega \epsilon_t \) for \(\omega \in \Omega \) and where \(\epsilon_t = -1 \)

Convex optimization problem

\[
\begin{align*}
\text{minimize} & \quad \sup_{\xi \in \Omega} \frac{1}{\xi} |h(\xi) - f(\xi)| \\
\text{subject to} & \quad \frac{2}{\pi} \int_0^{\infty} \frac{\text{Im} h(\xi)}{\xi^2} \, d\xi \leq \epsilon_s^{\text{max}} - \epsilon_\infty
\end{align*}
\]

Discretization of sum rule

\[
\frac{2}{\pi} \int_0^{\infty} \frac{\text{Im} h(\xi)}{\xi^2} \, d\xi = \frac{2}{\pi \Delta \omega} \sum_{n=0}^{N-1} x_n \ln \left(\frac{(n + n_1)^2}{(n + n_1 - 1)(n + n_1 + 1)} \right)
\]

assuming that \(n_1 > 1 \) where \(\omega_1 = n_1 \Delta \omega \) (\(\text{Im} h(\xi) = o(\xi) \))
Approximation of metamaterial

Disciplined convex programming in MATLAB [2]

\[\text{Omega;} \quad \% \text{ Approximation domain} \]
\[A = H + 1i \ast I; \quad \% \text{ Representation of Herglotz function} \]
\[B; \quad \% \text{ Representation of sum rule} \]
\[b = \text{epss} - \text{epsinf}; \quad \% \text{ Static and optical responses} \]

```matlab
cvx_begin
    variable x(N)
    minimize(norm((epsinf \ast Omega + A \ast x - f)./Omega, Inf))
    subject to
    x >= 0
    B \ast x <= b

    cvx_end
```

Approximation of metamaterial

Herglotz function \(h(\omega) = \omega \epsilon(\omega) \) with \(\epsilon_\infty = 1 \)

Metamaterial \(f(\omega) = \omega \epsilon_t \) for \(\omega \in \Omega \) and where \(\epsilon_t = -1 \)

![Graph of approximating measure \(\text{Im} h(\omega) \)]

![Graph of approximation of metamaterial \(\omega \epsilon_t \) on \(\Omega \) and where \(\epsilon_t = -1 \)]
Approximation of metamaterial (permittivity)

Note that $\omega \epsilon(\omega) = -\frac{1}{\pi} \frac{1}{\omega} + i \delta(\omega) = \omega \left(-\frac{1}{\pi} \frac{1}{\omega^2} - i \delta'(\omega) \right)$
Convergence of approximation (metamaterial)

Figure 4: Approximation of metamaterial with target permittivity t.

Figure 5: Approximation error $\max_{\Omega} |\epsilon(\omega) - \epsilon_t|$ as a function of the number of variables N.

Here, the relative bandwidth is $B = 0.4$.
Approximation of metamaterial with static permittivity

Herglotz function \(h(\omega) = \omega \epsilon(\omega) \) with \(\epsilon_\infty = 1 \) and \(\epsilon_{s}^{\text{max}} = 5 \)

Metamaterial \(f(\omega) = \omega \epsilon_t \) for \(\omega \in \Omega \) and where \(\epsilon_t = -1 \)

Figure 6: Approximation of metamaterial with target permittivity \(\epsilon_t \) = 1, optical response \(\epsilon_1 = 1 \) and static permittivity \(\epsilon_s = 5 \).

a) Approximating measure \(\text{Im} \ h(\omega) \) based on \(N = 1000 \) variables.

b) The real part \(\text{Re} \ h(\omega) \) on \(\Omega = [\omega_2, \omega_3] \) and \(\Omega_1 = [\omega_1, \omega_4] \). Here, \(\omega_0 = 1 \), \(B = 0.4 \), \(\omega_1 = 0.01 \) and \(\omega_4 = 3 \).
Approximation of metamaterial (permittivity)

Note that $\omega\epsilon(\omega) = \omega \left(-\frac{2}{\pi} \frac{1}{(\omega-\omega_0)(\omega+\omega_0)} + \frac{i}{\omega_0} \delta(\omega - \omega_0) - \frac{i}{\omega_0} \delta(\omega + \omega_0) \right)$
Summary and future work

- A general approximation problem has been formulated based on the class of symmetric Herglotz functions.
- The approximation problem can be discretized and solved by using a disciplined convex programming in MATLAB which facilitates a straightforward addition of auxiliary convex constraints.
- Future work aims at
 - Rigorous mathematical formulation and proof of convergence
 - Further applications of dispersion analysis and optimization of passive materials and structures
 - Optimization of matrix valued Herglotz functions for complex materials

Sven Nordebo, Department of Physics and Electrical Engineering, Linnaeus University, Sweden. 37(37)