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Abstract

An approximation problem is formulated where it is required to approximate a gen-
eral “well-behaved” function on an interval of the real axis based on the set of Herglotz
functions.

1 Introduction

An approximation problem is formulated where it is required to approximate a general “well-
behaved” function on an interval of the real axis based on the set of Herglotz functions.
Applications are e.g., with the optimal realizations of passive structures presented in [12].

2 Basic properties of Herglotz functions

2.1 Integral representation

A Herglotz function h(ω) is an analytic function with the property Imh(ω) ≥ 0 for ω ∈ C+ =
{ω ∈ C| Imω > 0}. It can be shown that h(ω) is a Herglotz function if and only if it can be
represented as

h(ω) = b1ω + α +

∫ ∞
−∞

1 + ξω

ξ − ω
dσ(ξ), (1)

where b1 ≥ 0, α ∈ R is a real valued constant and σ(ξ) a nondecreasing function of bounded
variation, or equivalently, that dσ(ξ) is a finite positive Borel measure, see e.g., [1, 9, 13]. It
is also useful to introduce the positive Borel measure dβ(ξ) = (1 + ξ2) dσ(ξ) so that

h(ω) = b1ω + α +

∫ ∞
−∞

(
1

ξ − ω
− ξ

1 + ξ2

)
dβ(ξ), (2)

∗Department of Physics and Electrical Engineering, Linnæus University, 351 95 Växjö, Sweden. Phone:
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where
∫
R dβ(ξ)/(1+ξ2) <∞. The spectral function β(ξ), or equivalently, the positive measure

dβ(ξ) is uniquely defined by the Herglotz function h(ω) from the following properties
β(ξ2)− β(ξ1) = lim

y→0+

1

π

∫ ξ2

ξ1

Imh(ξ + iy) dξ,

β(ξ) =
β(ξ + 0) + β(ξ − 0)

2
,

β(0) = 0,

(3)

and which motivates the simplified notation dβ(ξ) = 1
π

Imh(ξ + i0) dξ, see e.g., [9, 13]. The
following notation will also be used here where dσ(ξ) = σ′(ξ) dξ and dβ(ξ) = β′(ξ) dξ and
where the measures consist of measurable functions multiplied by the Lebesgue measure plus
point measures and hence that σ′(ξ) and β′(ξ) can be understood in the sense of distributional
derivatives of the spectral functions σ(ξ) and β(ξ), respectively. It follows immediately that
β′(ξ) = (1 + ξ2)σ′(ξ).

Let h(ξ) denote the distributional (or weak) limit of the Herglotz function h(ω) as Imω →
0+ and ξ ∈ R. It can then be shown that

Imh(ξ) = πβ′(ξ), (4)

see e.g., [2]. Formally, the relationship (4) is readily obtained from the representation (1) or
(2) by applying the distributional limit

lim
Imω→0+

1

ξ − ω
=

1

ξ − ω′
+ iπδ(ξ − ω′), (5)

where (the distribution) 1
ξ−ω′ denotes the Cauchy principal value integral (cf., the Hilbert

transform) and ω′ = Reω, see e.g., [10, 13].
In the sequel, the notation Imh(ξ) with ξ ∈ R will be used synonymously to denote the

measure π dβ(ξ) as well as the distributional limit Imh(ξ + i0).

2.1.1 Symmetric Herglotz functions

Symmetric Herglotz functions satisfy the symmetry requirement

h(ω) = −h∗(−ω∗), (6)

where ω ∈ C+ and dβ(ξ) is an even measure with dβ(−ξ) = dβ(ξ). The even symmetry of
the measure can also be expressed as

Imh(ξ) = Imh(−ξ), (7)

where ξ ∈ R. For symmetric Herglotz functions, α = 0 in (1) and (2) and the representation
formula (2) can furthermore be simplified as

h(ω) = b1ω +
1

π

∫ ∞
−∞

1

ξ − ω
Imh(ξ) dξ, (8)

where ω ∈ C+. Formally, the distributional limit (5) immediately yields the following repre-
sentation of the real part of h(ω) in terms of its imaginary part

Reh(ω) = b1ω +
1

π
−
∫ ∞
−∞

1

ξ − ω
Imh(ξ) dξ, (9)
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where ω ∈ R, b1 ≥ 0 and where the notation −
∫

indicates a distributional convolution which
can be interpreted in the sense of the Cauchy principal value integral for all ω where Reh(ω)
is point-wise defined (e.g., on intervals in R where h(ω) is regular).

It should be noted that the Hilbert transform relationship (9), which is derived from
the properties of the Herglotz function and its representation formulas displayed in (1), (2)
and (8), is only a one-way Hilbert transform relationship taking Imh(ξ) to Reh(ξ). This is
in contrast to the general Lp cases (1 < p < ∞) where the Hilbert transform operator H
satisfies H2 = −I where I is the identity operator on Lp [10]. Further, the Hilbert transform
Hf acting on a function f ∈ L1 is not necessarily in L1, and the operator H is unbounded on
L∞ [10]. It is therefore interesting to note that the Hilbert transform relationship (9), which
is derived directly from the properties of passivity, is not directly related to any Lp spaces
which is the common practice in most literature on causalily, cf., the Plemelj formulas or the
Kramers-Kronig relations [10, 13].

Note that the typical feature of a Herglotz function representing a passive system, is that
the measure is positive with Imh(ξ) ≥ 0. It is finally noted that the real part of h(ξ) is odd
symmetric with Reh(−ξ) = −Reh(ξ).

2.2 Asymptotic properties and sum rules

Let o(·) denote the order symbol as defined in [14], and let ω→̂0 mean that |ω| → 0 in the
cone ϕ ≤ argω ≤ π − ϕ for any ϕ ∈ (0, π/2], and similarly for ω→̂∞. Symmetric Herglotz
functions have the general asymptotic behavior h(ω) = a−1ω

−1 + o(ω−1) as ω→̂0 and where
a−1 ≤ 0, and h(ω) = b1ω + o(ω) as ω→̂∞ and where b1 ≥ 0.

Suppose now that the small and large argument asymptotic behavior of a symmetric
Herglotz function h(ω) is given by a partial expansion based on odd order coefficents as
follows

h(ω) =

{
a−1ω

−1 + a1ω + . . .+ a2N0−1ω
2N0−1 + o(ω2N0−1) as ω→̂0,

b1ω + b−1ω
−1 + . . .+ b1−2N∞ω

1−2N∞ + o(ω1−2N∞) as ω→̂∞,
(10)

where N0 and N∞ are non-negative integers (or possibly infinity) and where 1−N∞ ≤ N0. It
is noted that all the odd order coefficients {a2n−1}N0

n=0 and {b1−2n}N∞n=0 above are real valued
due to the symmetry assumption. In this case, it is possible to show that the following integral
identities (sum rules) hold

2

π

∫ ∞
0+

Imh(ξ)

ξ2n
dξ

def
= lim

ε→0+
lim
y→0+

2

π

∫ 1/ε

ε

Imh(ξ + iy)

ξ2n
dξ = a2n−1 − b2n−1, (11)

for n = 1 − N∞, . . . , N0, see e.g., [1, 3]. It is noted that point masses should be included
in the sum rule (11) above, except for the point mass at 0. In particular, consider the case
with dβ(ξ) = δ(ξ) dξ and h(ω) = −ω−1 and where a−1 = b−1 = −1. The n = 0 sum rule in
this case is 2

∫∞
0+
δ(ξ) dξ = a−1 − b−1 = 0. It is finally observed that a combination such as

N0 = N∞ = 0 is not valid in (10) and (11).

2.3 The class Carathéodory

The class Carathéodory [1] consists of all analytic functions defined on the unit disc and which
have positive real part. The representation of this class is given by the formula

hd(z) = −iα +
1

2π

∫ π

−π

eiθ + z

eiθ − z
dσd(θ), (12)
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where α = Re{ihd(0)}, σd(θ) is a finite positive Borel measure (
∫ π
−π dσd(θ) < ∞) and |z| <

1. Here, the following notation is used dσd(θ) = σ′d(θ) dθ where the measure consists of a
measurable function multiplied by the Lebesgue measure plus a point measure and hence that
σ′d(θ) can be understood in the sense of a distributional derivative of the spectral function
σd(θ). Symmetric Carathéodory functions have the properties hd(z) = h∗d(z∗) and dσd(θ) =
dσd(−θ) and hence that α = 0.

Let hd(eiθ) denote the distributional (or weak) limit of the Carathéodory function hd(reiθ)
as r → 1− and θ ∈ [−π, π]. It can then be shown that

Rehd(eiθ) = σ′d(θ), (13)

see e.g., [2].
The relation between the representations (1) and (12) is readily obtained by identifying

h(ω) = ihd(z) via the Cayley transform
z =

ω − i

ω + i

ω = i
1 + z

1− z


eiθ =

ξ − i

ξ + i

ξ = i
1 + eiθ

1− eiθ
= − cot

θ

2
,

(14)

which leads to the following relationships between the measures

dσ(ξ) =
1

2π
dσd(−2 cot−1 ξ), (15)

or

β′(ξ) =
1

π
σ′d(−2 cot−1 ξ), (16)

and where β′(ξ) = (1 + ξ2)σ′(ξ), θ = −2 cot−1 ξ and dθ = 2
1+ξ2

dξ have been used. Obviously,

it is also seen that Imh(ξ) = Rehd(eiθ) where θ = −2 cot−1 ξ.
A formal derivation of (13) can be obtained from the following distributional limit

lim
r→1−

eiθ + z

eiθ − z
= −i cot(

θ − θ′

2
) + 2πδ(θ − θ′), (17)

where z = reiθ′ and cot( θ−θ
′

2
) denotes the corresponding Cauchy principal value integral. In

the sequel and unless otherwise is stated, the notation δ(θ − θ′) is to be understood in the
sense of a 2π-periodic delta-distribution if θ is an angle representing the unit circle. The
result (17) can be derived directly from (5) by using (14) together with eiθ′ = (ω′− i)/(ω′+ i),
ω′ = − cot θ′

2
, as well as the distributional identity

δ(f(x)− f(x0)) =
1

|f ′(x0)|
δ(x− x0), (18)

which is valid for sufficiently regular functions f(x) with f ′(x0) 6= 0.
By employing (14), (16) and (18), the following canonical relationships regarding point

masses can be obtained

σ′d(θ) ⇔ σ′(ξ) ⇔ ihd(z) = h(ω),

σ′d(θ) = 2πδ(θ − θ0) ⇔ σ′(ξ) = δ(ξ − ξ0) ⇔ i
eiθ0 + z

eiθ0 − z
=

1 + ξ0ω

ξ0 − ω
,

σ′d(θ) = 2πδ(θ) ⇔ σ′(ξ) = δ(ξ − ξ0)|ξ0=±∞ ⇔ i
1 + z

1− z
= ω,

σ′d(θ) = 2πδ(θ − π) ⇔ σ′(ξ) = δ(ξ) ⇔ i
1− z
1 + z

= − 1

ω
,

(19)

where ξ = − cot(θ/2) and ξ0 = − cot(θ0/2).
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3 Examples of Herglotz functions

3.1 Canonical examples

Compositions of two Herglotz functions h1(ω) and h2(ω) can be used to generate a new
Herglotz function h(ω) = h2(h1(ω)). Another useful composition is based on the Carathéodory
functions hd(z) with the property that Rehd(z) ≥ 0 when |z| < 1. Let h1(ω) denote a Herglotz
function satisfying the strict inequality Imh1(ω) > 0 when Imω > 0. Then |eih1(ω)| < 1 for
Imω > 0, and the composition h(ω) = ihd(eih1(ω)) generates a new Herglotz function.

3.1.1 The Herglotz function tan(ω)

Let the Carathéodory function hd(z) be defined by

hd(z) =
1− z
1 + z

, (20)

where the spectral measure is Rehd(eiθ) = σ′d(θ) = 2πδ(θ − π). Then it is found that the
Herglotz function

h(ω) = ihd(ei2ω) = i
1− ei2ω

1 + ei2ω
= tan(ω), (21)

has the spectral measure

Imh(ξ) = Rehd(ei2ξ) = 2π
∞∑

l=−∞

δ(2ξ − π + l2π), (22)

or

Imh(ξ) = π
∞∑

l=−∞

δ(ξ − π

2
+ lπ). (23)

It is noted that the amplitudes of the delta-distributions in (23) are the negative residues at
the poles of the meromorphic function tan(ω).

The asymptotic expansions of the Herglotz function in (21) are given by

tan(ω) =

{
ω + o(ω) as ω→̂0,

i + o(1) = o(ω) as ω→̂∞,
(24)

and the sum rule (11) for n = 1 yields

2

π

∫ ∞
0+

Imh(ξ)

ξ2
dξ =

1

π2

∞∑
l=−∞

1

(1
2
− l)2

= 1. (25)

3.1.2 The Herglotz function tan(−1/ω)

In the same way as above with hd(z) defined as in (20), the Herglotz function

h(ω) = ihd(e
i2
−ω ) = i

1− e
i2
−ω

1 + e
i2
−ω

= tan(−1/ω), (26)

is found to have the spectral measure

Imh(ξ) = Rehd(e
i2
−ξ ) = 2π

∞∑
l=−∞

δ(
2

−ξ
− π + l2π), (27)
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or

Imh(ξ) = π
∞∑

l=−∞

1

(lπ − π
2
)2
δ(ξ − 1

lπ − π
2

), (28)

where (18) has been used. It is noted that the amplitudes of the delta-distributions in (28) are
the negative residues at the poles of the meromorphic function tan(−1/ω) where the domain
of meromorphicity is C \ {0}. It also is noted that the point ω = 0 is not a singular point of
tan(−1/ω), but it is a limit point of the sequence of poles.

The asymptotic expansions of the Herglotz function in (26) are given by

tan(−1/ω) =


i + o(1) = o(ω−1) as ω→̂0,

− 1

ω
+ o(ω−1) as ω→̂∞,

(29)

and the sum rule (11) for n = 0 yields

2

π

∫ ∞
0+

Imh(ξ) dξ =
1

π2

∞∑
l=−∞

1

(l − 1
2
)2

= 1, (30)

which gives the same series as in (25).

3.2 Passive material models

In electromagnetics, the response of a linear, time translation invariant and isotropic electric
material to an applied electric field intensity E(t) is given in terms of a time domain con-
stitutive relation D(t) = ε0εr(t) ∗ E(t) where D(t) is the electric flux density, εr(t) the real
valued relative permittivity convolution kernel and ε0 the permittivity of vacuum, see e.g., [8].
Based on Poyntings theorem [8] and according to the definitions made in [15], the material
(or more precisely, the convolution operator εr(t)) is said to be passive if∫ T

−∞
E(t) · ∂D

∂t
dt ≥ 0, (31)

for all T , and for all electric fields that are testing functions with compact support. If the
passive convolution operator is of slow growth (a Schwartz distribution), then this energy
expression is valid also for the testing functions of rapid descent [15]. It can be shown that
this passivity condition is equivalent to the condition that

h(ω) = ωε(ω), (32)

is a Herglotz function where ε(ω) is the analytic Fourier transform of the convolution kernel
εr(t)

ε(ω) =

∫ ∞
0

εr(t)e
iωt dt, (33)

and where ω ∈ C+, see e.g., [7, 15].

3.2.1 Derivation of the Herglotz condition for a passive system

To derive the passivity condition (32) we proceed as follows, see also [15]. Consider a linear
and time translation invariant (LTI) system based on a time domain derivative and a real
valued convolution kernel εr(t) of slow growth, and where x(t) and y(t) are any valid and
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possibly complex valued input and output signals, respectively. In general, we write the
input-output relationship as

x(t) 7→ y(t) =
d

dt
{εr(t) ∗ x(t)}, (34)

where ∗ denotes the time domain convolution. For complex valued signals it is seen that{
Rex(t) 7→ Re y(t) = d

dt
{εr(t) ∗ Rex(t)}

Imx(t) 7→ Im y(t) = d
dt
{εr(t) ∗ Imx(t)}.

(35)

A characterization of passivity for all possible input signals (testing functions of rapid descent)
is now given by the equivalent statements

Re

∫ T

−∞
x∗(t)y(t) dt ≥ 0⇔

{ ∫ T
−∞Rex(t) Re y(t) dt ≥ 0∫ T
−∞ Imx(t) Im y(t) dt ≥ 0.

(36)

To derive the Herglotz condition, let x(t) = e−iωt for −∞ < t < a, where T < a <∞ and
Imω > 0. Then

Re

{∫ T

−∞
x∗(t)y(t) dt

}
= Re

{∫ T

−∞
eiω∗t d

dt

∫ ∞
0

εr(τ)e−iω(t−τ) dτ dt

}
= Re

{∫ T

−∞
e−i(ω−ω∗)t dt(−iω)

∫ ∞
0

εr(τ)eiωτ dτ

}
=

e2 ImωT

2 Imω
Im {ωε(ω)} .

Hence, for a passive material (system) it follows that Im {ωε(ω)} ≥ 0. It can also be shown
that any Herglotz function can represent a realization of a passive LTI system [15].

In the following, the well known and frequently used conductivity, Debye, Lorentz’ and
Drude material models will be described. As will be seen, the corresponding Herglotz functions
have a very high degree of regularity since they can all be continued to analytic functions that
are regular in a neighbourhood of the real line R. However, there is no guarantee that this is
a property that will hold for a physical system in general. In particular, it can be shown that
there exist Herglotz functions that can not be continued outside C+.

3.2.2 Conductivity model

The conductivity model is used to model electrical conductivity and is given by

ε(ω) = ε∞ + i
σ

ωε0
, (37)

where ε∞ > 0 is the optical response and σ ≥ 0 the conductivity. The corresponding time
domain response is given by

εr(t) = ε∞δ(t) +
σ

ε0
H(t), (38)

where H(t) is the Heaviside unit step function. It is noted that the Fourier transform of εr(t)
is a distribution ε(ξ) = ε∞ + i σ

ε0
1
ξ

+ σ
ε0
πδ(ξ) and where i 1

ω
7→ i1

ξ
+ πδ(ξ) as Imω → 0+. The

corresponding Herglotz function and its asymptotics are given by

h(ω) = ωε∞ + i
σ

ε0
=

{
o(ω−1) as ω→̂0,

ωε∞ + o(ω) as ω→̂∞.
(39)
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The Herglotz function h(ω) can be continued to an analytic function regular in C. The
spectral measure is given by

Imh(ξ) =
σ

ε0
, (40)

for all ξ ∈ R. There are no sum rules (11) that can be applied to a Herglotz function h(ω)
with asymptotics as in (39).

3.2.3 Debye model

The Debye model is used to model the response of dielectric media and is given by

ε(ω) = ε∞ +
εs − ε∞
1− iωτ

, (41)

where ε∞ > 0 is the optical response, εs > 0 the static response and τ > 0 the relaxation
time. The corresponding time domain response is given by

εr(t) = ε∞δ(t) +
εs − ε∞

τ
e−t/τH(t). (42)

The corresponding Herglotz function and its asymptotics are given by

h(ω) = ωε∞ + ω
εs − ε∞
1− iωτ

=

{
ωεs + o(ω) as ω→̂0,

ωε∞ + o(ω) as ω→̂∞.
(43)

The Herglotz function h(ω) can be continued to a function meromorphic in C \ {−i 1
τ
} with a

single pole at ω = −i 1
τ
. The spectral measure is given by

Imh(ξ) =
ξ2τ(εs − ε∞)

1 + ξ2τ 2
, (44)

where ξ ∈ R. There is a sum rule (11) for n = 1 yielding

2

π

∫ ∞
0+

Imh(ξ)

ξ2
dξ =

2

π

∫ ∞
0+

Im ε(ξ)

ξ
dξ = εs − ε∞. (45)

It is noted that the sum rule (45) reveals a general feature for all passive materials having
the same asymptotic expansion as in (43), namely that εs ≥ ε∞, and if εs = ε∞ then Imh(ξ) =
0 for all ξ ∈ R and the material is loss-less.

3.2.4 Lorentz’ model

The Lorentz’ model is used to model the response of a plasma and is given by

ε(ω) = ε∞ −
ω2

p

ω2 + iων − ω2
0

(46)

where ε∞ > 0 is the optical response, ωp > 0 the plasma frequency, ω0 > 0 the resonance
frequency and ν > 0 the collision frequency. The corresponding time domain response is given
by

εr(t) = ε∞δ(t) +
ω2

p

ν0

e−νt/2 sin(ν0t)H(t), (47)
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where ν0 =
√
ω2

0 − ν2/4 and ω0 ≥ ν/2. The corresponding Herglotz function and its asymp-
totics are given by

h(ω) = ωε∞ −
ωω2

p

ω2 + iων − ω2
0

=

{
ωεs + o(ω) as ω→̂0,

ωε∞ − ω−1ω2
p + o(ω−1) as ω→̂∞,

(48)

where εs = ε∞+ω2
p/ω

2
0 and ω0 6= 0. The Herglotz function h(ω) can be continued to a function

meromorphic in C \ {ω1, ω2} with two poles at ω1,2 = −iν/2 ±
√
−ν2/4 + ω2

0. The spectral
measure is given by

Imh(ξ) =
ξ2ω2

pν

(ξ2 − ω2
0)2 + ξ2ν2

, (49)

where ξ ∈ R. When ω0 6= 0 there is a sum rule (11) for n = 1 just as in (45). There is also a
sum rule (11) for n = 0 yielding

2

π

∫ ∞
0+

Imh(ξ) dξ = ω2
p, (50)

and which is valid also when ω0 = 0 (see the Drude model below).

3.2.5 Drude model

The Drude model is used to model the conduction of charges in metals and is a special case
of the Lorent’z model with ω0 = 0. Hence

ε(ω) = ε∞ −
ω2

p

ω(ω + iν)
= ε∞ + i

σ0

ωε0

1

1− iω/ν
, (51)

where ε∞ > 0 is the optical response, ωp > 0 the plasma frequency, ν > 0 the collision

frequency and σ0 =
ω2
pε0
ν

the static conductivity. The corresponding time domain response is
given by

εr(t) = ε∞δ(t) +
σ0

ε0
(1− e−νt)H(t). (52)

The corresponding Herglotz function and its asymptotics are given by

h(ω) = ωε∞ + i
σ0

ε0

1

1− iω/ν
=

{
iσ0/ε0 + o(1) = o(ω−1) as ω→̂0,

ωε∞ − ω−1ω2
p + o(ω−1) as ω→̂∞,

(53)

where ω2
p = σ0ν/ε0. The Herglotz function h(ω) can be continued to a function meromorphic

in C \ {−iν} with a single pole at ω = −iν. The spectral measure is given by

Imh(ξ) =
σ0

ε0

1

1 + ξ2/ν2
, (54)

where ξ ∈ R. There is no sum rule (11) for n = 1 as in (45). However, the sum rule (11) for
n = 0, and hence (50) is valid also when ω0 = 0. Note that (50) can also be written

2

π

∫ ∞
0

ξ Im ε(ξ) = ω2
p. (55)

Hence, a measurement (or a priori knowledge) of the static conductivity σ0 as well as the
mean value (first moment) of Im ε(ξ) will completely determine the Drude model through

(55) and finally that the collision frequency is given by ν =
ω2
pε0
σ0

.
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3.3 Pulse functions

In [10] can be found a large number of useful examples of various functions and their Hilbert
transforms. Below is given two important examples, the rectangular and the triangular pulse
functions. It is left as an exercise for the reader to verify the integrals given below.

−4 −2 0 2 4

−1

0

1

Frequency ω (rad/s)

a) Rectangular pulse function

Imh(ω)
Reh(ω)

−4 −2 0 2 4
−1

0

1

Frequency ω (rad/s)

b) Triangular pulse function

Imh(ω)
Reh(ω)

Figure 1: Pulse functions Imh(ω) = pa(ω) and their (negative) Hilbert transforms Reh(ω) =
1
π
−
∫

1
ξ−ωpa(ξ) dξ. a) Rectangular pulse function (parameter a = 1) and its (negative) Hilbert

transform. Note that the rectangular pulse is discontinuous and its Hilbert transform has
logarithmic singularities at ±a. b) Triangular pulse function (parameter a = 1) and its
(negative) Hilbert transform.

3.3.1 Rectangular pulse

A symmetric and positive measure is given by the rectangular pulse function pa(ξ)

Imh(ξ) = pa(ξ) =

{
1 |ξ| ≤ a,

0 |ξ| > a,
(56)

where ξ ∈ R and a > 0. The corresponding Herglotz function h(ω) is obtained by evaluating
the standard (Lebesgue) integral

h(ω) =
1

π

∫ ∞
−∞

1

ξ − ω
pa(ξ) dξ =

1

π
(ln(ω − a)− ln(ω + a)), (57)

where Imω > 0. The distributional limit on the real axis is obtained by evaluating the
corresponding Cauchy principal value integral

h(ω) =
1

π
−
∫ ∞
−∞

1

ξ − ω
pa(ξ) dξ + ipa(ω) =

1

π
(ln |ω − a| − ln |ω + a|) + ipa(ω), (58)

where ω ∈ R.

3.3.2 Triangular pulse

A symmetric and positive measure is given by the triangular pulse function pa(ξ)

Imh(ξ) = pa(ξ) =

 1− |ξ|
a
|ξ| ≤ a

0 |ξ| > a,

(59)
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where ξ ∈ R and a > 0. The corresponding Herglotz function h(ω) is obtained by evaluating
the standard (Lebesgue) integral

h(ω) =
1

π

∫ ∞
−∞

1

ξ − ω
pa(ξ) dξ =

1

πa
(2ω lnω − (ω − a) ln(ω − a)− (ω + a) ln(ω + a)), (60)

where Imω > 0. The distributional limit on the real axis is obtained by evaluating the
corresponding Cauchy principal value integral

h(ω) =
1

π
−
∫ ∞
−∞

1

ξ − ω
pa(ξ) dξ + ipa(ω)

=
1

πa
(2ω ln |ω| − (ω − a) ln |ω − a| − (ω + a) ln |ω + a|) + ipa(ω), (61)

where ω ∈ R.

4 A brief summary on convex optimization

Below is given a brief summary on some of the central concepts in convex optimization. Most
of the properties stated below are rather simple and can be proven directly by the reader by
employing the definitions of convex sets and convex functions. References have been given
for the more advanced properties. For a more complete treatise on convex optimization and
related algorithms, see e.g., [4, 5, 11].

• Convex sets: A set S ⊂ Rn is convex if

x1,x2 ∈ S ⇒ (1− t)x1 + tx2 ∈ S, (62)

for all 0 < t < 1. Geometrically this means that the straight line between any two points
in a convex set remains in the set, see Figure 2 for an illustration of the two-dimensional
case.

a) A convex set b) A non-convex set

x1

x2

x1

x2

Figure 2: Illustration of a) A convex set in R2. b) A non-convex set in R2.

• Intersection of convex sets: The intersection ∩αSα of convex sets Sα is a convex set.

• Convex combinations: Let S ⊂ Rn be an arbitrary set. A convex combination of the
elements xi ∈ S is a positive linear combination

z =
m∑
i=1

tixi where ti ≥ 0 and
m∑
i=1

ti = 1.

If S is a convex set, it can be shown (by induction) that any convex combination of
elements of S belongs to S.
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Proof: Suppose that x1, x2 and x3 belong to the convex set S. Let

z = t1x1 + t2x2 + t3x3,

where t1 + t2 + t3 = 1 and t3 6= 1 (otherwise z = x3 ∈ S). Then

z = (1− t3)

(
t1

1− t3
x1 +

t2
1− t3

x2

)
︸ ︷︷ ︸

∈ S since
t1

1− t3
+

t2
1− t3

= 1

+t3x3 ∈ S.

• Convex hull: Let S ⊂ Rn be an arbitrary set. The convex hull conv(S) of S is the
set of all convex combinations of elements in S. It can be shown that conv(S) is the
smallest convex set containing S, i.e.,

conv(S) = ∩αTα

where the intersection is taken over all convex sets Tα containing S, i.e., S ⊂ Tα.

• Convex functions: Let f be a function defined on the convex set S ⊂ Rn. The
function f is said to be a convex function if

x1,x2 ∈ S ⇒ f((1− t)x1 + tx2) ≤ (1− t)f(x1) + tf(x2), (63)

for all 0 < t < 1. Geometrically this means that a convex function f is always less then
or equal to a corresponding linear (or affine) function passing through the values f(x1)
and f(x2) where x1 and x2 are any two points in the convex set S, see Figure 3 for an
illustration of the one-dimensional case.

If the function f satisfies a strict inequality in (63), it is said to be a strictly convex
function. A function f is said to be concave if −f is convex.

a) A convex function b) A non-convex function

f(x)

x1 x2 x

f(x)

x1 x2 x

Figure 3: Illustration of a) A convex function on S ⊂ R. b) A non-convex function on S ⊂ R.

• Linear functions: A linear (or affine) function f is both convex and concave (but it is
not strictly convex). In particular, if f is linear (or affine), both f and −f are convex.

• Positive linear combinations of convex functions: Let f1 and f2 be convex func-
tions defined on a convex set S. Then the positive linear combination

f = α1f1 + α2f2

(with α1 > 0 and α2 > 0) is a convex function. If any one of f1 and f2 is strictly convex,
then the function f is strictly convex.
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• Differentiable convex functions: Let f be a two times differentiable continuous
function defined on the open convex set S ⊂ Rn (f ∈ C2(S)). It can then be shown
that f is a convex function if and only if the Hessian Hij(x) = ∂xi∂xjf(x) is a positively
semidefinite matrix for all x ∈ S, i.e.,

H(x) ≥ 0 ∀x ∈ S ⇔ f convex.

If the Hessian H(x) is positively definite for all x ∈ S, then f is strictly convex, i.e.,

H(x) > 0 ∀x ∈ S ⇒ f strictly convex,

but the converse is not true (take e.g., f(x) = x4), see e.g., [4].

• Quadratic forms: Let f(x) = 1
2
xTAx + bTx + c be a quadratic form where A is an

n × n matrix, x and b are n × 1 vectors, c a constant and (·)T denotes the transpose.
The function f is convex if and only if the Hessian matrix A is positively semidefinite,
i.e.,

A ≥ 0⇔ f convex.

The function f is strictly convex if and only if the Hessian matrix A is positively definite,
i.e.,

A > 0⇔ f strictly convex.

• Level set: Let g be a convex function defined on the convex set S ⊂ Rn and α an
arbitrary real number. Then the level set Sα = {x ∈ S|g(x) ≤ α} is a convex set.

• Continuity: Let f be a convex function defined on the convex set S ⊂ Rn. Then f is
a continuous function on the interior of S [4].

• Convex optimization: A convex optimization problem in general is a problem of the
form

minimize f(x)

subject to x ∈ S,
(64)

where f is a convex function defined on the convex set S. It is common that the convex
set S is given in the form S = {x ∈ Rn|gi(x) ≤ 0} where {gi(x)}Mi=1 is a set of convex
functions representing the convex constraints.

• A local minimum is also a global minimum: One of the most important properties
of a convex optimization problem is that any local minimum is also a global minimum1.
Below are given some definitions and a proof.

Consider the convex optimization problem (64) where f is a convex function defined on
the convex set S.

– If x ∈ S it is called a feasible point.

– The function f has a global minimum at x if

f(x) ≤ f(ξ), ∀ξ ∈ S
1Here the term “minimum” refer to the minimizing point x and the term “minimum value” to the corre-

sponding minimum value f(x).
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– The function f has a local minimum at x if

f(x) ≤ f(ξ), ∀ξ ∈ Sr = {ξ ∈ S|‖ξ − x‖ < r}

for some r-neighbourhood Sr with radius r > 0, and where ‖ · ‖ is a suitable norm.

Proof: Let x ∈ S be a local minimum and Sr a corresponding r-neighbourhood. Sup-
pose now that x is not a global minimum, then there is a feasible y ∈ S with minimum
value f(y) < f(x). Since x is a local minimum it follows that y /∈ Sr and hence
‖y − x‖ ≥ r. Define the point

z = (1− t)x + ty where t =
r

2‖y − x‖
≤ 1

2
,

so that
‖z− x‖ = t‖y − x‖ =

r

2
,

and hence z ∈ Sr. On the other hand, it follows by the convexity of f that

f(z) = f((1− t)x + ty) ≤ (1− t)f(x) + tf(y) < f(x),

which contradicts the assumption that x is a local minimum.

• If f is strictly convex then a minimum is also a unique minimum:
Proof: Let x ∈ S be a minimum so that f(x) ≤ f(ξ) for all ξ ∈ S. Suppose that
y ∈ S where y 6= x is also a minimum so that f(y) = f(x). Let z = (1− t)x+ ty where
0 < t < 1 and hence z ∈ S. Then by the strict convexity

f(z) = f((1− t)x + ty) < (1− t)f(x) + tf(y) = f(x),

which contradicts the assumption that x is a minimum.

• The norm: Any norm f(x) = ‖x‖ is a convex function on Rn since by the triangle
inequality

f((1− t)x1 + tx2) = ‖(1− t)x1 + tx2‖ ≤ (1− t)‖x1‖+ t‖x2‖ = (1− t)f(x1) + tf(x2),

where 0 < t < 1.

Comments: It follows from the properties of the norm that the minimum of f(x) =
‖x‖ is the unique vector x = 0. Note however that f(x) = ‖x‖ is not a strictly
convex function. To see this, choose e.g., x2 = αx1 where α > 1 and verify that
f((1 − t)x1 + tx2) = (1 − t)f(x1) + tf(x2) for all 0 < t < 1. Note however that the
function f(x) = ‖x‖2

2 = xTx is strictly convex.

• Norm of a linear (or affine) form: The norm of a linear (or affine) form is a convex
function on Rn. Consider e.g., the function f(x) = ‖Ax − b‖ where A is an m × n
matrix, x an n× 1 vector and b an m× 1 vector. The function f(x) is convex since by
the triangle inequality

f((1− t)x1 + tx2) = ‖A((1− t)x1 + tx2)− b‖
= ‖(1− t)(Ax1 − b) + t(Ax2 − b)‖ ≤ (1− t)‖Ax1 − b‖+ t‖Ax2 − b‖

= (1− t)f(x1) + tf(x2).
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Comments: Note that if the Euclidean norm ‖ · ‖2 is used, if m > n and if the rank of
the matrix A is rank{A} = n, then the minimum of f (the least squares solution) is
unique (even though the function f is not strictly convex).

It is evident that the well-posedness of the minimization of f(x) = ‖Ax− b‖ depends
on the properties of the matrix (or operator) A. If the matrix A is not full rank
and has a non-trivial null space, then the optimization problem can be regularized by
adding a strictly convex penalty term as e.g., f(x) = ‖Ax− b‖2 + α‖x‖2

2 where α > 0
(cf., Tikhonov regularization). Now the new function f is strictly convex, and if α is
sufficiently small the optimal solution will coincide with the pseudo-inverse.

• Disciplined convex programming in Matlab: As an example, consider the follow-
ing convex optimization problem related to the normed error

minimize ‖Ax− b‖p
subject to Bx ≤ c

Cx = d,

(65)

where the n × 1 vector x is the unknown optimization variable and A, B and C are
given matrices and b, c and d are given vectors of suitable dimensions. Here, ‖ · ‖p
denotes that a p-norm is used where p ≥ 1. The max-norm is denoted ‖ · ‖∞.

Once formulated on a standard form the problem (65) can be solved efficiently by using
the CVX Matlab software for disciplined convex programming [6] which is available via
the link http://cvxr.com/cvx/. Here, the following lines in Matlab may be used

cvx_begin

variable x(n)

minimize( norm(A*x-b,p) )

subject to

B*x<=c

C*x==d

cvx_end

where n, p (p ≥ 1 or p = Inf), A, B, C, b, c and d have been defined in the preamble.

5 Approximation of Herglotz functions

Consider the following general approximation problem

minimize ‖h(ξ)− f(ξ)‖Ω

subject to f(ξ) continuous on Ω

h(ξ)
def
= h(ξ + i0)∃ continuous on Ω

(66)

where the approximation domain Ω is a closed and bounded subset of R. Here, the objective
is to find an approximating symmetric Herglotz function h(ω) which is regular in a neigh-
bourhood of C+ ∪ Ω and which approximates a given (generally complex valued) function
f(ξ) which is continuous on Ω. The norm ‖ · ‖Ω can be any norm defined on the interval
Ω, such as with Lp-norms (p ≥ 1), the L∞-norm, and the corresponding weighted variants,
etc. Since h(ξ) = (−H + iI) Imh(ξ) (where H denotes the Hilbert transform operator and I
the identity operator) is a linear form operating on Imh(ξ), and any norm of a linear form
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yields a convex function, the problem (66) is a convex optimization problem. In particular,
if Imh(ξ) ≥ 0 is treated as a linear constraint on the optimization variable Imh(ξ), it is a
convex constraint. Additional convex constraints can also be added to (66), such as additional
sum rule constraints, etc.

It can be readily shown that (66) can have non-trivial solutions. Suppose for example that

f(ω) = −h0(ω), (67)

is the negative of a Herglotz function h0(ω) which can be continued analytically to a neigh-
bourhood of C+ ∪ Ω, and which has the high-frequency asymptotic expansion

h0(ω) = b0
1ω + o(ω), (68)

as ω→̂∞. It can then be shown that the following non-trivial bound holds

sup
ξ∈Ω
|h(ξ)− f(ξ)| ≥ b0

1

1

2
|Ω|, (69)

where |Ω| is the length of the interval Ω, see also [7].

5.1 Derivation of a non-trivial bound

To prove (69) we follow the technique outlined in [7] which is based on a composition using the
auxiliary Herglotz function h∆(z), defined by the square pulse p∆(ξ) as a generating measure
(as in (56) above), and its associated sum rules. The auxiliary Herglotz function and its
asymptotics are given by

h∆(z) =
1

π

∫ ∆

−∆

1

ξ − z
dξ =

1

π
ln
z −∆

z + ∆
=


i + o(1) as z→̂0,

−2∆

πz
+ o(z−1) as z→̂∞,

(70)

where Imh∆(z) ≥ 1
2

for |z| ≤ ∆ and Im z ≥ 0.

Next, the composite Herglotz function h̃(ω) is defined by

h̃(ω) = h∆(h(ω) + h0(ω)), (71)

where h(ω) + h0(ω) = (b1 + b0
1)ω + o(ω) as ω→̂∞, yielding the asymptotics of h̃(ω)

h̃(ω) =


o(ω−1) as ω→̂0,

−2∆

π(b1 + b0
1)
ω−1 + o(ω−1) as ω→̂∞.

(72)

The sum rule (11) for n = 0 is given by

2

π

∫ ∞
0

Im h̃(ξ) dξ = a−1 − b−1 =
2∆

π(b1 + b0
1)
. (73)

Let ∆ = supξ∈Ω |h(ξ) + h0(ξ)|, then the following integral inequalities follow

1

π
|Ω| ≤ 2

π

∫
Ω

Im h̃(ξ)︸ ︷︷ ︸
≥ 1

2

dξ ≤ 2

π

∫ ∞
0

Im h̃(ξ) dξ =
2

π(b1 + b0
1)

sup
ξ∈Ω
|h(ξ) + h0(ξ)|, (74)

or

sup
ξ∈Ω
|h(ξ) + h0(ξ)| ≥ (b1 + b0

1)
1

2
|Ω|, (75)

where |Ω| =
∫

Ω
dξ. The non-trivial bound (69) is obtained by chosing b1 = 0.
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5.1.1 Permittivity functions and metamaterials

A passive dielectric material where the real part of the permittivity function is negative
over a frequency interval is sometimes regarded a metamaterial, cf., [7]. Let h(ω) = ωε(ω)
with optical response b1 = ε∞, and let f(ω) = ωεt with target permittivity εt < 0. Then
h0(ω) = −f(ω) = −ωεt with asymptotic coefficient b0

1 = −εt. It follows from (75) that the
following lower bound must hold when approximating a metamaterial over a bandwidth

sup
ξ∈Ω
|ε(ξ)− εt| ≥

(ε∞ − εt)1
2
B

1 + B
2

, (76)

where Ω = ω0[1− B
2
, 1+ B

2
], and where ω0 is the center frequency and B the relative bandwidth

with 0 < B < 2, see also [7].

5.2 Discretization and optimization

In the following, we will let ω denote the frequency variable on the real line, ω ∈ R, and
h(ω) the analytic continuation of the approximating Herglotz function which is assumed to
be regular in a neighbourhood of C+ ∪ Ω.

5.2.1 Discretization

Consider the general approximation problem (66) where the positive and symmetric measure
Imh(ω) is supported on Ω1 ∪ −Ω1 where Ω1 is the right-sided interval Ω1 = [ω1, ω4] and
−Ω1 = [−ω4,−ω1]. The approximation domain (where the norm ‖ · ‖Ω is defined) is Ω =
[ω2, ω3] ⊂ Ω1, and where 0 ≤ ω1 < ω2 < ω3 < ω4. In the limit, the upper boundary ω4 may
approach infinity.

A simple discretization of the intervals Ω and Ω1 is defined based on M and N (M < N)
uniformly sampled frequency points, respectively, in such a way that the sampling interval
is ∆ω = ω4−ω1

N−1
, and ω1 = n1∆ω, ω2 = n2∆ω, ω3 = n3∆ω and ω4 = n4∆ω and where

0 ≤ n1 < n2 < n3 < n4 are integers.
A discretization of the positive and symmetric measure Imh(ω) is defined by the following

piece-wise linear (roof-top) approximation

Imh(ω) =
N−1∑
n=0

xn
(2− δn+n1,0)

2
[p(ω − (n+ n1)∆ω) + p(ω + (n+ n1)∆ω)] , (77)

where xn ≥ 0 are non-negative optimization variables and p(ω) the triangular pulse function
given by

p(ω) =

 1− |ω|
∆ω

|ω| ≤ ∆ω,

0 |ω| > ∆ω,

(78)

see also (59).
The real part Reh(ω) is given by (9) and yields the following linear form

Reh(ω) = b1ω +
N−1∑
n=0

xn
(2− δn+n1,0)

2
[p̂(ω − (n+ n1)∆ω) + p̂(ω + (n+ n1)∆ω)] , (79)
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where b1 ≥ 0 and xn ≥ 0 are the non-negative optimization variables and p̂(ω) the (negative)
Hilbert transform of the triangular pulse function given by

p̂(ω) =
1

π
−
∫ ∞
−∞

1

ξ − ω
p(ξ) dξ

= (2ω ln |ω| − (ω −∆ω) ln |ω −∆ω| − (ω + ∆ω) ln |ω + ∆ω|) /(π∆ω), (80)

with p̂(±∆ω) = ∓(2 ln 2)/π and p̂(0) = 0.
Based on the triangular (roof-top) approximation (77), the sum rule in (11) can similarly

be represented by a linear form. In particular, the following case will be useful here

2

π

∫ ∞
0

Imh(ξ)

ξ2
dξ =

2

π∆ω

N−1∑
n=0

xn ln
(n+ n1)2

(n+ n1 − 1)(n+ n1 + 1)
, (81)

assuming that n1 > 1. Note that convergence of the integral in (81) requires that Imh(ξ) =
o(ξ) when ξ → 0, and hence that ω1 > 0 when a piece-wise linear approximation is employed.

5.2.2 Disciplined convex programming in Matlab

Based on the discretization of the domains Ω and Ω1, as well as the discretization of the
function h(ω) given by (77) and (79), the “Herglotz function”2

h(ω) = Reh(ω) + i Imh(ω), (82)

can now be represented in matrix form as

h = (H + iI)x (83)

where h is an M × 1 vector defined on the approximation domain Ω, x an N × 1 vector of
elements xn representing the unknown measure defined on Ω1, H an M×N matrix represent-
ing the (negative) Hilbert transform as in (79) and I an identity matrix of suitable dimension
giving the restriction of the measure x on Ω. Note that the rows of the matrices H and I
correspond to the approximation domain Ω and the columns to the measure domain Ω1.

In (83), the matrices can easily be defined to include the variable b1 as well as the variables
xn defined in (79). For numerical reasons it may be important to scale the factor b1ω = b̃1

ω
ω0

when b1 is an unknown, so that the scaled variable b̃1 = b1ω0 has the same physical dimension
as the xn variables, in particular when the center frequency ω0 is large.

The general approximation problem (66) can now be written in the standard form

minimize ‖Ax− f‖Ω

subject to x ≥ 0,
(84)

where A = H+iI is described above and f is an M×1 vector representing the function f(ξ)|Ω
to be approximated. Once formulated on standard form, the convex optimization problem
(84) can be solved efficiently by using the CVX Matlab software [6] for disciplined convex
programming which is available via the link http://cvxr.com/cvx/. Here, the following lines
in Matlab may be used

2A more correct phrasing would be: “the analytic continuation of the Herglotz function evaluated on
Ω ⊂ R”.
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cvx begin

variable x(N)

minimize(norm(A ∗ x− f, Inf))

subject to

x >= 0

cvx end

(85)

where N, A = H + 1i ∗ I and f (corresponding to N , A = H + iI and f) have been defined in
the preamble, and where the L∞ (supremum) norm has been chosen.

5.2.3 Approximation of metamaterials

To illustrate some possible generalizations of the convex optimization formulation given above,
we consider the problem

minimize sup
ξ∈Ω

1

ξ
|h(ξ)− f(ξ)|

subject to
2

π

∫ ∞
0

Imh(ξ)

ξ2
dξ ≤ εmax

s − ε∞,
(86)

where the objective is to approximate a given metamaterial with target permittivity εt < 0 as
represented by the function f(ω) = ωεt, and where the approximation is based on a passive
dielectric material with h(ω) = ωε(ω). The additional constraint in (86) corresponds to
the sum rule given in (11) and where the maximum static permittivity εmax

s and the optical
response ε∞ have been prescribed. Note also that the weighted norm sup 1

ξ
|h(ξ) − f(ξ)| =

sup |ε(ξ)− εt| is used in (86), as well as in (76). The optimization formulation (86) (with or
without the sum-rule constraint) can be used to study the realizability of a metamaterial and
the ultimate bound given by (76).

The approximation problem (86) can now be written in the standard form

minimize ‖ε∞ω + Ax− f‖Ω

subject to x ≥ 0,

Bx ≤ b,

(87)

where A = H + iI and f have been defined as described in section 5.2.2 above, ω is an M × 1
vector of frequency samples corresponding to the approximation domain Ω, B an 1×N vector
representing the discretized sum-rule (81) and b = εmax

s − ε∞.
A disciplined convex programming [6] to solve (87) can now be formulated based on the

following lines in Matlab

cvx begin

variable x(N)

minimize(norm((epsinf ∗ Omega + A ∗ x− f)./Omega, Inf))

subject to

x >= 0

B ∗ x <= b

cvx end

(88)

where N, A, f, epsinf, Omega, B and b (corresponding to N , A, f , ε∞, ω, B and b) have been
defined in the preamble.
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6 Exercises

6.1 Approximation of tan(ω)

A detailed study of the Herglotz function h(ω) = tan(ω) is given in section 3.1.1 Note in
particular that the distributional limit of h(ω) = tan(ω) as Imω → 0+ is given by

h(ξ)
def
= h(ξ + i0) = tan(ξ) + iπ

∞∑
l=−∞

δ(ξ − π

2
+ lπ). (89)

Develop a Matlab code that specifies and solves the optimization problem (66) discretized
and reformulated as in (84) and solved numerically based on disciplined convex programming
as in (85), and where the function to be approximated is given by

f(ξ) = tan(ξ), (90)

comprising N data points for ξ ∈ Ω . Let the approximating Herglotz function be represented
as in (77) and (79) without high-frequency coefficient, i.e., b1 = 0.

This problem formulation can be interpreted as a study of the properties of a passive
analytic continuation based on the finite input data defined by (90).

In sections 6.4.1 and 6.4.2 are given Matlab codes as an example implementation of this
problem generating the results illustrated in Figure 4 below.

0 1 2 3 4 5 6 7 8 9 10
0
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300

Frequency ω (rad/s)

a) Approximating measure Imh(ω)

0 1 2 3 4 5 6 7 8 9 10
−10

−5

0

5

10

Frequency ω (rad/s)

b) Approximation of Herglotz function tan(ω)

tan(ω)
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Figure 4: Approximation of the Herglotz function tan(ω). a) The approximating measure
Imh(ω) based on N = 200 variables. b) The real part Reh(ω) on Ω = [ω2, ω3] = ω0[1− B

2
, 1+

B
2

] and Ω1 = [ω1, ω4]. Here, ω0 = π, B = 0.4, ω1 = 0 and ω4 = 10.
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6.2 Approximation of tan(−1/ω)

A detailed study of the Herglotz function h(ω) = tan(−1/ω) is given in section 3.1.2 Note in
particular that the distributional limit of h(ω) = tan(−1/ω) as Imω → 0+ is given by

h(ξ)
def
= h(ξ + i0) = tan(−1/ξ) + iπ

∞∑
l=−∞

1

(lπ − π
2
)2
δ(ξ − 1

lπ − π
2

). (91)

Develop a Matlab code that specifies and solves the optimization problem (66) discretized
and reformulated as in (84) and solved numerically based on disciplined convex programming
as in (85), and where the function to be approximated is given by

f(ξ) = tan(−1/ξ), (92)

comprising N data points for ξ ∈ Ω . Let the approximating Herglotz function be represented
as in (77) and (79) without high-frequency coefficient, i.e., b1 = 0.

This problem formulation can be interpreted as a study of the properties of a passive
analytic continuation based on the finite input data defined by (92).

Some input data and results of an example implementation of this problem is illustrated
in Figure 5 below.
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Figure 5: Approximation of the Herglotz function tan(−1/ω). a) The approximating measure
Imh(ω) based on N = 500 variables. b) The real part Reh(ω) on Ω = [ω2, ω3] = ω0[1− B

2
, 1+

B
2

] and Ω1 = [ω1, ω4]. Here, ω0 = 0.4, B = 0.4, ω1 = 0 and ω4 = 1.2. The “random” behavior
of the plotted tan(−1/ω) in [0, 0.1] is only due to undersampling.
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6.3 Approximation of metamaterials

Consider the approximation of metamaterials as described in section 5.2.3. Develop a Matlab
code that specifies and solves the optimization problem (86) discretized and reformulated as
in (87) and solved numerically based on disciplined convex programming as in (88). The
function to be approximated is given by

f(ξ) = ξεt, (93)

comprising N data points for ξ ∈ Ω and where the target permittivity is εt = −1. Let
the approximating Herglotz function be represented as in (77) and (79) with high-frequency
coefficient b1 = ε∞ = 1.

• Solve the problem (86) without the sum-rule constraint, and compare with the theoret-
ical lower bound given by (76). Some input data and results of an example implemen-
tation of this problem are illustrated in Figures 6, 7 and 8.

Comment: for a Herglotz function with a point-mass at ξ = 0, it is noted that the
distributional limit for ω ∈ R is given by

ωε(ω) = − 1

π

1

ω
+ iδ(ω) = ω

(
− 1

π

1

ω2
− iδ′(ω)

)
,

where the permittivity function ε(ω) is identified in the last line.

• Solve the problem (86) including the sum-rule constraint based on εmax
s , e.g., with

εmax
s = 5. Some input data and results of an example implementation of this problem

are illustrated in Figures 9 and 10.

Comment: for a Herglotz function with point-masses at ξ = ±ω0, it is noted that the
distributional limit for ω ∈ R is given by

ωε(ω) = − 1

π

(
1

ω − ω0

+
1

ω + ω0

)
+ i (δ(ω − ω0) + δ(ω + ω0))

= ω

(
− 2

π

1

(ω − ω0)(ω + ω0)
+ i

(
1

ω0

δ(ω − ω0)− 1

ω0

δ(ω + ω0)

))
,

where the permittivity function ε(ω) is identified in the last line.
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Figure 6: Approximation of metamaterial with target permittivity εt = −1 and optical re-
sponse ε∞ = 1. a) The approximating measure Imh(ω) based on N = 1000 variables. b) The
real part Reh(ω) on Ω = [ω2, ω3] = ω0[1− B

2
, 1 + B

2
] and Ω1 = [ω1, ω4]. Here, ω0 = 1, B = 0.4,

ω1 = 0 and ω4 = 3.

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

Frequency ω (rad/s)

a) Permittivity function Im ε(ω)

0 0.5 1 1.5 2 2.5 3
−10

−5

0

Frequency ω (rad/s)

b) Permittivity function Re ε(ω)

Re ε(ω)
εt

Figure 7: Approximation of metamaterial with target permittivity εt = −1 and optical re-
sponse ε∞ = 1. a) The imaginary part Im ε(ω) based on N = 1000 variables. b) The real part
Re ε(ω) on Ω = [ω2, ω3] = ω0[1− B

2
, 1 + B

2
] and Ω1 = [ω1, ω4]. Here, ω0 = 1, B = 0.4, ω1 = 0

and ω4 = 3. The approximation error is maxΩ |ε(ω)− εt| = 0.40.
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Figure 8: Approximation error maxΩ |ε(ω)− εt| as a function of the number of variables N in
the optimization problem to approximate a metamaterial with target permittivity εt over an
interval Ω. Here, ω0 = 1, B = 0.4, ω1 = 0 and ω4 = 3.
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Figure 9: Approximation of metamaterial with target permittivity εt = −1, optical response
ε∞ = 1 and static permittivity εs = 5. a) The approximating measure Imh(ω) based on
N = 1000 variables. b) The real part Reh(ω) on Ω = [ω2, ω3] = ω0[1 − B

2
, 1 + B

2
] and

Ω1 = [ω1, ω4]. Here, ω0 = 1, B = 0.4, ω1 = 0.01 and ω4 = 3.
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Figure 10: Approximation of metamaterial with target permittivity εt = −1, optical response
ε∞ = 1 and static permittivity εs = 5. a) The imaginary part Im ε(ω) based on N = 1000
variables. b) The real part Re ε(ω) on Ω = [ω2, ω3] = ω0[1− B

2
, 1+ B

2
] and Ω1 = [ω1, ω4]. Here,

ω0 = 1, B = 0.4, ω1 = 0.01 and ω4 = 3. The approximation error is maxΩ |ε(ω)− εt| = 0.59.
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6.4 Matlab codes

The CVX Matlab software for disciplined convex programming [6] can be downloaded by
following this link: http://cvxr.com/cvx/.

6.4.1 A Matlab subroutine to compute p̂(ω)

Below is given a Matlab subroutine to compute the (negative) Hilbert transform p̂(ω) of the
triangular pulse function p(ω) as defined in (78) and (80).

function [ph]=phat(omega ,a)

index0=find(omega ==0);

indexa=find(omega ==a);

indexma=find(omega==-a);

if ~isempty(index0)

omega(index0)=2*a;

end

if ~isempty(indexa)

omega(indexa)=2*a;

end

if ~isempty(indexma)

omega(indexma)=2*a;

end

ph=2* omega.*log(abs(omega)) -(omega -a).*log(abs(omega -a))...

-(omega+a).*log(abs(omega+a));

ph=ph/(pi*a);

if ~isempty(index0)

ph(index0)=0;

end

if ~isempty(indexa)

ph(indexa)=-2*log(2)/pi;

end

if ~isempty(indexma)

ph(indexma)=2*log(2)/pi;

end

6.4.2 A Matlab code to approximate the function tan(ω)

Below is given a Matlab code to approximate the function tan(ω) based on partial data
according to the optimization problem formulated in section 6.1.

% Approximation of tan(omega)

clear

% Problem parameters
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omega0=pi; % center frequency

B=0.4; % Relative bandwidth , B<2

% Frequency domain for measure , Omega1

N=200; % Number of optimization variables (measure)

omega1 =0; % Lower frequency limit

omega4 =10; % Upper frequency limit

a=(omega4 -omega1)/(N-1); % Frequency step

n1=round(omega1/a);

n4=round(omega4/a);

Omega1 =(n1:n4) '*a; % Frequency domain for measure

% Frequency domain for approximation , Omega

omega2=omega0 *(1-B/2); % Lower frequency limit

omega3=omega0 *(1+B/2); % Upper frequency limit

n2=round(omega2/a);

n3=round(omega3/a);

Omega=(n2:n3)'*a; % Frequency domain for approximation

M=length(Omega);

figure (1),clf

plot(Omega1 ,tan(Omega1))

hold on

plot(Omega ,tan(Omega),'r*')
axis ([0 omega4 -10 10])

hold off

% Build constraint matrices for Omega (Hilbert transform H)

H=zeros(M,N);

for n=0:N-1

if n+n1==0

H(:,n+1)=phat(Omega ,a);

else

H(:,n+1)=phat(Omega -(n+n1)*a,a)+phat(Omega+(n+n1)*a,a);

end

end

A=H+1i*[ zeros(M,n2-n1),eye(M),zeros(M,n4-n3)];

f=tan(Omega);

% Solve convex optimization problem using CVX

cvx_begin

variable x(N)

minimize( norm(A*x-f,Inf) )

subject to

x>=0

cvx_end
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h=A*x;

% Build complete matrices for Omega1 (Hilbert transform H1)

H1=zeros(N,N);

for n=0:N-1

if n+n1==0

H1(:,n+1)=phat(Omega1 ,a);

else

H1(:,n+1)=phat(Omega1 -(n+n1)*a,a)+phat(Omega1 +(n+n1)*a,a);

end

end

A1=H1+1i*eye(N);

h1=A1*x;

figure (2),clf

plot(Omega1 ,tan(Omega1))

hold on

plot(Omega ,real(h),'k*--')
plot(Omega1 ,real(h1),'k--')
axis ([0 omega4 -10 10])

hold off

xlabel('Frequency (rad/s)')
ylabel('Herglotz function tan(omega)')
title(['Approximation of Herglotz function tan(omega), N=' ...

num2str(N)])

legend('tan(omega)','Re h','Re h1')

[sortx ,sortindx ]=sort(x,'descend ');
figure (3)

plot(Omega1 ,x)

hold on

plot(Omega1(sortindx (1:3)),x(sortindx (1:3)),'o')
hold off

axis ([0 omega4 0 max(x)+10])

xlabel('Frequency (rad/s)')
ylabel('Measure Im h')
title(['Approximating measure Im h, N=' num2str(N)])
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