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Content:

Our lectures are divided into four sections:

1. Review of complex analysis in one variable
and introduction to complex analysis in several variales.

2. Introduction to the theory of measure and integration.
Lebesgue measure and integral on the real line.
Complex measures and the Riesz representation formula.
Weak convergence of measures.

3. Application of measure theory in complex analysis,
representation formulas and Herglotz functions.

4. A few concepts from distribution theory.



1. Review of complex analysis in one variable and
introduction to several variables

Contents:

1.1 Differentiable maps

1.2 Analytic (holomorphic) functions

1.3 The Cauchy formula

1.4 The Cauchy-formula in a polydisc

1.5 Domains of holomorphy

1.6 Integral representation formulas in several variables

1.7 Complex analysis and potential theory

1.8 Existence theory for the Cauchy Riemann system



1.1 Differentiable maps

Let X ⊂ RN be open, a ∈ X , and f : X → RM be a map.
Definition: The function f is said to be differentiable at a if there
exists a linear map L : RN → RM such that

‖f (a + V )− f (a)− L(V )‖
‖V ‖

→ 0 V → 0.

The linear map L is unique. It is called the differential of f at a
and is denoted by

daf or Df (a).



The differential

Denote the variables by s = (s1, . . . , sN), V = (V1, . . . ,VN) and
write f = (f1, . . . , fM).

The map f is differentiable if and only if each of the real valued
functions fj is differentiable.

Then all the partial derivatives ∂k fj(a) exist and the differential
dafj(V ) acting on the vector V is given as

dafj(V ) =
N∑

k=1

∂k fj(a)Vk =
N∑

k=1

∂fj
∂sk

(a)Vk .

Observe that the value of the differential daf (V ) of the map f is a
vector in RM . We can view it as a function of the point a and the
vector V . For fixed a it is linear in V .



Differentials of the coordinate functions
The coordinate functions s 7→ sk have the differential
dask(V ) = Vk at very point a in RN .
Since they are independent of a we denote them by dsk .

Hence the coordinates of the linear map daf are

dafj =
N∑

k=1

∂fj
∂sk

(a)dsk .

We write
daf = (daf1, . . . , dafM).

Definition The map f is said to be continuously differentiable if it
is differentiable and the partial derivatives ∂fj/∂sk are continuous
functions on X .
We let C 1(X ,RM) denote the set of all continuously differentiable
maps on X with values in RM .
We write C 1(X ) in the special case M = 2 and view the elements
as the complex valued functions.



Differentiable functions of two variables

Now we identify R2 with the complex numbers C.

Let X ⊂ R2 = C, a ∈ X , denote the real coordinates by (x , y) and
introduce the complex coordinates z = x + iy , z̄ = x − iy .

We view a function f : X → C as a map f = u + iv : X → R2.

daf = dau + idav

=

(
∂u

∂x
(a)dx +

∂u

∂y
(a)dy

)
+ i

(
∂v

∂x
(a)dx +

∂v

∂y
(a)dy

)
=

(
∂u

∂x
(a) + i

∂v

∂x
(a)

)
dx +

(
∂u

∂y
(a) + i

∂v

∂y
(a)

)
dy

=
∂f

∂x
(a)dx +

∂f

∂y
(a)dy .



We have dz = dx + idy , dz̄ = dx − idy , which implies that

dx = 1
2

(
dz + dz̄

)
and dy = 1

2i

(
dz − dz̄

)
We continue our calculation

daf =
∂f

∂x
(a)dx +

∂f

∂y
(a)dy

=
∂f

∂x
(a)

1

2

(
dz + dz̄

)
+
∂f

∂y
(a)

1

2i

(
dz − dz̄

)
=

1

2

(
∂f

∂x
(a) +

1

i

∂f

∂y
(a)

)
dz +

1

2

(
∂f

∂x
(a)− 1

i

∂f

∂y
(a)

)
dz̄



Wirtinger derivatives

The Wirtinger derivatives of the function f are defined as

∂f

∂z
=

1

2

(
∂f

∂x
− i

∂f

∂y

)
, and

∂f

∂z̄
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
,

The Wirtinger operators are the corresponding partial differential
operators.

We conclude that

daf =
∂f

∂x
(a)dx +

∂f

∂y
(a)dy =

∂f

∂z
(a)dz +

∂f

∂z̄
(a)dz̄ .



Generalization to higher dimensions

Assume now that X is an open subset of Cn. Every function of n
complex variables z = (z1, . . . , zn), where zj = xj + iyj , can be
considered as a function of N = 2n variables
s = (x1, y1, . . . , xn, yn) and the differential is

daf =
n∑

j=1

∂f

∂xj
(a)dxj +

∂f

∂yj
(a)dyj

=
n∑

j=1

∂f

∂zj
(a)dzj +

∂f

∂z̄j
(a)dz̄j

= ∂af + ∂̄af ,

∂af =
n∑

j=1

∂f

∂zj
(a)dzj and ∂̄af =

n∑
j=1

∂f

∂z̄j
(a)dz̄j .



1.2 Analytic (holomorphic) functions

C-differentiable functions:
Let X be a subset of C and f = u + iv be a function.
Definition: The function f is said to be C differentiable at the
point a ∈ X if the limit

lim
C3h→0

f (a + h)− f (a)

h

exists. The limit is denoted by f ′(a) and is called the
C derivative of the function f at the point a.

Observe that

lim
C3h→0

f (a + h)− f (a)− f ′(a)h

h
= 0.

This shows that if f is C differentiable at a then f is differentiable
and daf (h) = f ′(a)h.

Conversely, if f is differentiable at a and daf (h) = Ah for some
complex number A, then f is C differentiable and f ′(a) = A.



Cauchy-Riemann equation

If f is C differentiable at a, then

f ′(a) = lim
R3h→0

f (a + h)− f (a)

h
=
∂f

∂x
(a)

and

f ′(a) = lim
R3h→0

f (a + ih)− f (a)

ih
=

1

i

∂f

∂y
(a).

Hence we conclude that f satisfies the Cauchy-Riemann equation

∂f

∂z̄
(a) =

1

2

(
∂f

∂x
(a)− 1

i

∂f

∂y
(a)

)
= 0.



Conversely, if f is differentiable at a and
∂f

∂z̄
(a) = 0,

then for h ∈ C
daf (h) =

∂f

∂z
(a)h,

which implies

f (a + h)− f (a)

h
− ∂f

∂z
(a) =

f (a + h)− f (a)− daf (h)

h
→ 0

as h→ 0 and we conclude that f is C differentiable at a with

f ′(a) =
∂f

∂z
(a).



Cauchy-Riemann equations

If we write f (z) = u(x , y) + iv(x , y), then

∂f

∂z̄
(a) =

1

2

(
∂f

∂x
(a)− 1

i

∂f

∂y
(a)

)
=

1

2

(
∂u

∂x
(a)− ∂v

∂y
(a)

)
+

i

2

(
∂u

∂y
(a) +

∂v

∂x
(a)

)
Hence the Cauchy-Riemann equation is equivalent to the system of
equations

∂u

∂x
(a) =

∂v

∂y
(a) and

∂u

∂y
(a) = −∂v

∂x
(a).

They are called Cauchy-Riemann equations.



Analytic (holomorphic) functions

Let X be an open subset of Cn (where of course C1 = C).

Definition:
A function f ∈ C 1(X ) is said to be is analytic if the
Cauchy-Riemann-equations are satisfied:

∂f

∂z̄j
= 0, j = 1, . . . , n.

The set of all analytic functions on X is denoted by O(X ).



Hartogs theorem

It is actually possible to give a weaker definition:

Theorem (Hartogs 1906): Let X be an open subset of Cn and
f : X → C be a function, and assume that for every point a ∈ X
and every j the function

ζ 7→ f (a1, . . . , aj−1, ζ, aj+1, . . . , an)

is analytic in a neighbourhood of aj , then f ∈ O(X )

Observe: There are no a priori regularity conditions on the function
f , like differentiability or continuity.



1.3 The Cauchy formula

Path integrals

Let X be a domain in C and f ∈ C 1(X ) and γ : [a, b]→ X ,
γ(t) = α(t) + iβ(t) be a piecewise smooth path in X .
We define four types of path integrals∫

γ
f dx =

∫ b

a
f (γ(t))α′(t) dt,∫

γ
f dy =

∫ b

a
f (γ(t))β′(t) dt,∫

γ
f dz =

∫ b

a
f (γ(t))γ′(t) dt =

∫
γ

f dx + i

∫
γ

f dy =

∫
γ

f (dx + idy),∫
γ

f d z̄ =

∫ b

a
f (γ(t))γ′(t) dt =

∫
γ

f dx − i

∫
γ

f dy =

∫
γ

f (dx − idy).



Boundary integrals

Let X be a domain in C and f , g ∈ C 1(X ).
Let Ω ⊂ X be a bounded domain with boundary ∂Ω ⊂ X which
can be parametrized by a number of simple piecewise smooth
curves γj = αj + iβj : [aj , bj ]→ X , j = 1, . . . ,N with positive
orientation.

Then we define the boundary integral∫
∂Ω

f dx + g dy =
N∑
j=1

∫
γj

f dx + g dy

We allow the functions to be complex valued, so in general the
values of the integrals are complex numbers.



The Green theorem

Theorem (Green):∫
∂Ω

f dx + g dy =

∫∫
Ω

(∂xg − ∂y f ) dxdy .

It is usually proved for real valued functions, but if we apply it for
real and imaginary parts separately, then we conclude that it even
holds for complex valued functions.



The Cauchy theorem follows from the Green theorem
The Green theorem gives∫

∂Ω
f dz =

∫
∂Ω

f (dx + idy)

=

∫
∂Ω

f dx + if dy

=

∫∫
Ω

(
i∂x f − ∂y f

)
dxdy

= i

∫∫
Ω

(
∂x f + i∂y f

)
dxdy

= 2i

∫∫
Ω
∂z̄ f dxdy .

Theorem (Cauchy):

For every f ∈ O(X ) we have∫
∂Ω

f dz = 0.



Theorem (Cauchy-Pompeiu formula):

For every f ∈ C 1(X ) and every z ∈ Ω that

f (z) =
1

2πi

∫
∂Ω

f (ζ)

ζ − z
dζ − 1

π

∫∫
Ω

∂ζ̄ f (ζ)

ζ − z
dξdη,

where the complex variable in the second integral is ζ = ξ + iη.

Theorem(Cauchy formula):

If f ∈ O(X ), then

f (z) =
1

2πi

∫
∂Ω

f (ζ)

ζ − z
dζ.



The Cauchy formula for derivatives

Assume now that ∂Ω is parametrized by the paths
γj : [aj , bj ]→ C, j = 1, . . . ,N. If we apply the Cauchy formula and
parametrize the integrals, we get

f (x + iy) =
1

2πi

N∑
j=1

∫ bj

aj

f (γj(t))

γj(t)− x − iy
γ′j(t) dt, f ∈ O(X ).

We may differentiate f by taking derivatives under the integral
sign,

f ′(z) = ∂x f (z) =
1

2πi

N∑
j=1

∫ bj

aj

f (γj(t))

(γj(t)− x − iy)2
γ′j(t) dt.



We see that f ′ is an analytic function in X and with the same
argument we may differentiate under the integral sign again and
get

f ′′(z) = ∂2
x f (z) =

2

2πi

N∑
j=1

∫ bj

aj

f (γj(t))

(γj(t)− x − iy)3
γ′j(t) dt.

Continuing in this way we see that f is infinitely differentiable and
each derivative is analytic.

By induction we define higher C derivatives f (n) of f by

f (0) = f , f (n) =
(
f (n−1))′, n ≥ 1.

and arrive at:

Theorem (Cauchy formula for derivatives):

f (n)(z) =
n!

2πi

∫
∂Ω

f (ζ)

(ζ − z)n+1
dζ.



Power series expansions
Let f ∈ O(X ), r > 0 and assume that the closed disc D(a, r) ⊂ X .
Then the Cauchy formula gives

f (z) =
1

2πi

∫
∂D(a,r)

f (ζ)

ζ − z
dζ, z ∈ D(a, r).

Observe that

1

ζ − z
=

1

(ζ − a)− (z − a)
=

1

ζ − a
· 1

1− (z − a)/(ζ − a)

=
1

ζ − a

∞∑
n=0

(z − a)n

(ζ − a)n
=
∞∑
n=0

(z − a)n

(ζ − a)n+1

We put the series into the Cauchy formula and interchange the
order of the sum and the integral

f (z) =
∞∑
n=0

(
1

2πi

∫
∂D(a,r)

f (ζ)

(ζ − a)n+1
dζ

)
(z−a)n =

∞∑
n=0

f (n)(a)

n!
(z−a)n



1.4 The Cauchy-formula in a polydisc

Multi-index notation
Let N = {0, 1, 2, . . . } be the set of natural numbers including 0.
A multi-index is an element

α = (α1, . . . , αn) ∈ Nn.

For each multi-index α we define the length of α by

|α| = α1 + · · ·+ αn,

the factorial of α by,

α! = α1! · · ·αn!,

for z = (z1, . . . , zn) ∈ Cn the monomial

zα = zα1
1 · · · z

αn
n ,

and the differential operator ∂α by

∂α = ∂α1
1 · · · ∂

αn
n =

∂|α|

∂zα1
1 · · · ∂zαn

n
.



Polydics

A set of the form

D = D(a, r) = D(a1, r1)× · · · × D(an, rn)

where a = (a1, . . . , an) ∈ Cn and r = (r1, . . . , rn) ∈ (R∗+)n is called
a polydisc with center a and multi-radius r .
The distinguished boundary of D is the product of the boundaries
of the discs

∂0D = ∂D(a1, r1)× · · · × ∂D(an, rn).



A Cauchy formula in a polydisc

Let f ∈ O(X ) be an analytic function on an open subset X of Cn,
for n ≥ 2, and assume that D ⊂ X . By the Cauchy formula in the
first variable gives

f (z) =
1

(2πi)

∫
∂D(a1,r1)

f (ζ1, z2, . . . , zn)

(ζ1 − z1)
dζ1, z = (z1, . . . , zn) ∈ D.

We iterate this formula and get the Cauchy formula

f (z) =
1

(2πi)n

∫
∂0D

f (ζ1, . . . , ζn)

(ζ1 − z1) · · · (ζn − zn)
dζ1 · · · dζn, z ∈ D.



A Cauchy formula for partial derivatives in a polydisc

From the Cauchy formula we see that f is infinitely differentiable
each partial derivative is analytic, and by differentiating with
respect to the variables zj we get:

Theorem (Cauchy formula for partial derivatives):

∂αf (z) =
α!

(2πi)n

∫
∂0D

f (ζ1, . . . , ζn)

(ζ1 − z1)α1+1 · · · (ζn − zn)αn+1
dζ1 · · · dζn.



Power series expansion:

In the Cauchy formula each of the factors has a power series
expansion

1

ζj − zj
=
∑
αj∈N

(zj − aj)
αj

(ζj − aj)αj+1

We can expand this in a power series

1

(ζ1 − z1) · · · (ζn − zn)
=
∑
α∈Nn

(z − a)α

(ζ − a)α+1

where α + 1 = (α1 + 1, . . . , αn + 1).
In the same way as above we arrive at the power series expansion

f (z) =
∑
α∈Nn

∂αf (a)

α!
(z − a)α, z ∈ D.



1.5 Domains of holomorphy

Holomorphic maps:

Let X be open in Cn. A map F = (F1, . . . ,Fm) : X → Cm is said
to be holomorphic if Fj ∈ O(X ) for all j .

If m = n and F is bijective onto its image Y = F (X ), then we say
that F is biholomorphic.

We say that two domains X and Y are biholomorphically
equivalent if there exists a biholomorphic map on X with
Y = F (X ).

The Riemann Mapping Theorem:

If X is a simply connected domain in C, ∅ 6= X and X 6= C, then
X is biholomorphically equivalent to D the unit disc in C.

This does not generalize to higher dimensions:

Theorem: If n > 1, then the unit ball

Bn = {z ∈ Cn ; |z1|2 + · · ·+ |zn|n < 1}

in Cn is not biholomorphically equivalent to a polydisc.



Domains of holomorphy

With the aid of the Weierstrass product theorem it is possible to
show that for every open X in C there exits f ∈ O(X ), which can
not be extended to a holomorphic function in a neighbourhood of
a boundary point of X .

Theorem (Hartogs 1906): Let X be an open subset of Cn, n > 1,
K be a compact subset of X such that X \ K is connected. Then
every function f ∈ O(X \ K ) extends uniquely to a function
F ∈ O(X ).

We have a little bit technical definition:

Definition: An open set X is said to be a domain of holomorphy if
there do not exist non-empty open sets X1 and X2 with X2 is
connected, X2 6⊂ X , and X1 ⊂ X ∩ X2, such that for every
f ∈ O(X ) there exists F ∈ O(X2) such that f = F on X1.

There exist many equivalent characterizations of domains of
holomorphy: (Oka, Cartan, Bremermann, and Norguet,
c.a. 1937-1954).



1.6 Integral representation formulas in several variables

Cauchy-Fantappiè-Leray formula

Let Ω be a domain in X with smoooth boundary ∂Ω in X and
assume that Ω is defined by the function % in the sense that

Ω = {z ∈ X ; %(z) < 0}

and the gradient

%′ = (∂%/∂z1, . . . , ∂%/∂zn)

is non-zero at every boundary point.

Then for every f ∈ O(X ) we have

f (z) =
1

(2πi)n

∫
∂Ω

f (ζ) ∂% ∧ (∂̄∂%)n−1

〈%′(ζ), ζ − z〉n
, z ∈ Ω.



1.7 Complex analysis and potential theory

Let X be and open subset of Rn.

The Laplace operator:

∇2 = ∆ =
∂2

∂x2
1

+ · · ·+ ∂2

∂x2
n

Definition:
A function u : X → R is said to be harmonic if it is in C 2(X ) and
satisfies the Laplace equation,

∆u = 0.

We let H(X ) denote the set of all harmonic funtions on X .



Properties of harmonic functions

(i) The set H(X ) is a real vector space.

(ii) Every function u ∈ H(X ) satiesfies the mean value property,

u(a) =
1

cnrn−1

∫
∂B(a,r)

u(y) dS(y),

where cn is the area of the unit sphere Sn−1 in Rn.

(iii) In two variables the Laplace operator is

∇2 = ∆ =
∂2

∂x2
+

∂2

∂y 2
= 4

∂2

∂z∂z̄
.

This implies that Ref , Imf ∈ H(X ) for every f ∈ O(X ).

Conversely, if X is simply connected then every u ∈ H(X ) is
of the form u = Ref for some f ∈ O(X ).



Subharmonic functions

Definition
A function u : X → R ∪ {0}, where X is an open subset of Rn is
said to be subharmonic if

(i) u is upper-semicontinuous, which means that it can be written
as a limit of a decreasing sequence of continuous functions,
and

(ii) u satisfies the sub-mean value property, which means that for
every a ∈ X such that B(a, r) ⊂ X we have

u(a) ≤ 1

cnrn−1

∫
∂B(a,r)

u(y) dS(y).

We denote the set of all subharmonic functions on X by SH(X ).



Properties of subharmonic functions:

Elementary properties:

I Every convex function u : X → R is subharmonic.

I If u ∈ SH(X ) and ϕ : I → R is convex and increasing on an
interval I containing the image of u, then ϕ ◦ u ∈ SH(X ).

Theorem (The maximum principle)

An upper semi-continuous function u on X is subharmonic if and
only if it has the property:
For every compact K ⊂ X and h ∈ C (K ) ∩H(intK ), with u ≤ h
on ∂K it follows u ≤ h on K .

Theorem
A function u ∈ C 2(X ) is subharmonic if and only if

∆u ≥ 0.



Subharmonic functions in the plane

Assume now that X ⊂ R2 = C.

Examples:

I Convex functions on convex domains X .

I ϕ = log |f |, f ∈ O(X ).

I ϕ = log(|f1|p1 + · · ·+ |fm|pm), fj ∈ O(X ), pj ≥ 0.

The sub-mean value property:

u(a) ≤ 1

2π

∫ 2π

0
u(a + re iθ) dθ, a ∈ X , 0 < r < d(a, ∂X )



Plurisubharmonic functions
Let X be an open subset of Cn.

Definition:
A function u : X → R ∪ {−∞}, where X is said to be
plurisubharmonic if

(i) u is upper semicontinuous, and

(ii) for every point a ∈ X and every w ∈ Cn the function

Ωa,w 3 τ 7→ u(a + τw)

is subharmonic in the open subset

Ωa,w = {τ ∈ C ; a + τw ∈ X}.

We denote the set of all plurisubharmonic functions on X by
PSH(X ).

Remark: On can say that an upper semicontinuous function is said
to plurisubharmonic if it is subharmonic along every complex line.

Theorem
A real valued function u ∈ C 2(X ) is in PSH(X ) if and only if its
Levi form is positive semi-definite, i.e.,∑

j ,k

∂2u

∂zj∂z̄k
wj w̄k ≥ 0, z ∈ X , w ∈ Cn.



1.8 Existence theory for the Cauchy Riemann system

The inhomogeneous Cauchy-Riemann equations

Assume that we have a function g ∈ C∞(X ) and that we want to
modify g , so that it becomes holomorphic, i.e., we want to find
u ∈ C∞(X ) such that

F = g − u ∈ O(X ).

Then u has to satisfy the inhomogeneous Cauchy-Riemann
equations

∂u

∂z̄j
= fj , with fj =

∂g

∂z̄j



Hörmander’s existence theorem
Let X be a domain of holomorphy, fj ∈ C 1(X ) be functions on X
satisfying

∂fj
∂z̄k

=
∂fk
∂z̄j

.

and let ϕ : X → R ∪ {−∞} be a plurisubharmonic function. Then
there exists a function u on X satisfying the Cauchy-Riemann
equations

∂u

∂z̄j
= fj ,

with the L2-estimate of u in terms of f = (f1, . . . , fn),∫
X
|u|2(1 + |z |2)−2e−ϕ dλ ≤

∫
X
|f |2e−ϕ dλ
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2. Measure and integration

2.1 Sets, algebras and σ-algebras

2.2 Measures

2.3 Measurable maps and measurable functions

2.4 Integrals

2.5 The Lebesgue measure and integral on the real line

2.6 Few concepts from functional analysis

2.7 Real and complex measures and duality



Summary:
We are going to give a meaning to expressions like∫

X
f dµ

which we read as the integral of the function f on the set X with
respect to the measure µ.

The steps in this process are the following:

(i) On the set X we have a σ-algebra X of subsets.

(ii) We look at functions f : X → R such that for every a, b ∈ R

{x ∈ X ; f (x) ∈]a, b[} ∈ X

and call them X -measurable functions.

(iii) We look at characteristic functions χA of subsets A of X ,

χA(x) =

{
1, x ∈ A,

0, x ∈ X \ A.

and observe that they are measurable if and only if A ∈ X .



(iv) On the σ-algebra X we define the measure µ.

(v) We define the integral of the X -measurable functions in such
a way that

f 7→
∫
X

f dµ

is a linear operation over R and∫
X
χA dµ = µ(A).

(vi) We extend the integral to complex valued functions so that
the operation of integrating functions becomes C-linear.



Motivation for the integrals:

The Riemann integral is incomplete and too strict

It is hard to tell when we may shift the operations like:

I lim
n→∞

∫ b

a
fn(x) dx =

∫ b

a
lim
n→∞

fn(x) dx .

I

∞∑
n=1

∫ b

a
fn(x) dx =

∫ b

a

∞∑
n=1

fn(x) dx .

I lim
t→t0

∫ b

a
f (x , t) dx =

∫ b

a
lim
t→t0

f (x , t) dx .

I
∂

∂t

∫ b

a
f (x , t) dx =

∫ b

a

∂f

∂t
(x , t) dx .

and this is even worse for intergrals over infinite intervals.

A larger class of integrable functions is needed and a more flexible
definition of integral!



Motivation for measures

I We need a uniform approach to deal with concepts like,
length, area, and volume and treat them as functions which
associate to sets A positive real value which interpreted as
length, area or volume.

I We need a uniform approach to the concept of probability.

The solution to the first problem is to introduce the Lebesgue
measure on Rn. (Lebesgue, 1904.)

The solution to the second problem is the introduction of a
probability space (Ω,F ,P) where

I Ω is a set and its elements ar called outcomes.

I F is a collection of subsets of Ω and its elements are called
events.

I P is a function which associates to every event E a number in
P(E ) ∈ [0, 1], the probability of the event E .

(Kolmogorov, 1932.)



2.1 Sets, algebras and σ-algebras

Let X be any set and let P(X ) be the power set of X consisting of
all subsets of X . For every A ∈ P(X ) we let Ac and X \ A denote
the complement of A which is defined as the set of all elements in
X that are not in A,

Ac = {x ∈ X ; x 6∈ A}.

If A and B are subsets of X , then we define their union by

A ∪ B = {x ∈ X ; x ∈ A or x ∈ B}

and their intersection by

A ∩ B = {x ∈ X ; x ∈ A and x ∈ B}.



... more generally

if I is a set and Aα ∈ P(X ) for all α ∈ I , then we define the union
of (Aα)α∈I by⋃

α∈I
Aα = {x ∈ X ; x ∈ Aα for some α ∈ I}

and the intersection of (Aα)α∈I as⋂
α∈I

Aα = {x ∈ X ; x ∈ Aα for all α ∈ I}.

In particular, for I = ∅ we have⋃
α∈∅

Aα = ∅ and
⋂
α∈∅

Aα = X .



De Morgan’s rules

for the complements of unions and intersections are( ⋃
α∈I

Aα
)c

=
⋂
α∈I

Ac
α and

( ⋂
α∈I

Aα
)c

=
⋃
α∈I

Ac
α

for any set I .



Algebras of sets

Definition: Let X be a set and let X ⊆ P(X ) be a collection of
subsets of X . We say that X is an algebra of subsets of X if it
satisfies

(i) ∅ ∈ X .

(ii) If A ∈ X , then Ac ∈ X .

(iii) If A,B ∈ X , then A ∪ B ∈ X .

An immediate consequence of (i) and (ii) is that X ∈ X . From (iii)
it follows by induction that if A1, . . . ,An ∈ X then

⋃n
j=1 Aj ∈ X

and de Morgan’s rules give that

n⋂
j=1

Aj =
( n⋃
j=1

Ac
j

)c ∈ X .



σ-algebras

Defintion Let X be a set and X ⊆ P(X ) be a collection of subsets
of X . We say that X is a σ-algebra on X if it is an algebra of
subsets of X and satisfies

(iii)′ If Aj ∈ X , for j = 1, 2, 3, . . . , then
⋃∞

j=1 Aj ∈ X .
A pair (X ,X ) where X is a set and X is a σ- algebra on X is
called a measurable space.
The sets in X are called measurable sets.

Observe: (iii)′ implies (iii), for if A,B ∈ X and we set
A1 = A,A2 = B, and Aj = ∅ for j ≥ 3, then
A ∪ B =

⋃∞
j=1 Aj ∈ X . We also have for every Aj ∈ X , j = 1, 2, . . .

∞⋂
j=1

Aj =
( ∞⋃
j=1

Ac
j

)c ∈ X .



Natural σ-algebras

(i) On every set X we have the smallest σ-algebra, {∅,X}, and
the largest σ- algebra, P(X ).

(ii) If {Xα}α∈I is a collection of σ-algebras on X , then
⋂
α∈I Xα is

a σ-algebra on X . A similar result holds for algebras of
subsets of X .

(iii) If A ⊆ P(X ) is any collection of subsets of X , then the
intersection of all σ-algebras containing A, is a σ-algebra and
it is the smallest σ-algebra containing A. We call it the
σ-algebra generated by A and denote it by Aσ.

(iv) The Borel algebra on Rn is the smallest σ-algebra containing
all the open subsets.
We can write it as BRn = Aσ, where
A = {B(a, r) ; a ∈ Rn, r > 0}.
The class A can be chosen in various other ways, for example
as the set of all closed n-rectangles.



2.2 Measures

A collection {Aα}α∈I of sets is said to be disjoint if Aα ∩ Aβ = ∅
for α 6= β.
Definition Let X be a set and let X be an algebra of subsets of X .
A measure on X is a function µ : X → [0,+∞] = R+ satisfying

(i) µ(∅) = 0 and

(ii) if (Aj)
∞
j=1 is a disjoint collection in X and

⋃∞
j=1 Aj ∈ X , then

µ
( ∞⋃
j=1

Aj

)
=
∞∑
j=1

µ(Aj).

If X is a σ-algebra on X and µ is a measure on X , then the triple
(X ,X , µ) is called a measure space.



The measure µ is said to be finite if µ(X ) < +∞ and it is said to
be σ-finite if there exist Xj ∈ X for j = 1, 2, 3, . . . such that
X =

⋃∞
j=1 Xj and µ(Xj) < +∞.

The measure µ is called a probability measure if X is a σ-algebra
and µ(X ) = 1.
A set E ∈ X is called a null set or a µ-null set if µ(E ) = 0.
If X is a σ-algebra then the measure space (X ,X , µ) is said to be
complete if every subset of a null set is measurable, i.e. if E ∈ X ,
µ(E ) = 0, and F ⊆ E , then F ∈ X .

Remarks: (i) If X is a σ-algebra, the condition
⋃∞

j=1 Aj ∈ X is
superfluous.

(ii) If (Aj)
n
j=1 is a finite collection of sets in X which are disjoint,

then we set Aj = ∅ for j > n and get
⋃n

j=1 Aj =
⋃∞

j=1 Aj ∈ X and

µ
( n⋃
j=1

Aj

)
=

n∑
j=1

µ(Aj).



Examples of measures
Our main example will be the Lebesgue measure defined on the
Lebesgue algebra on the real line. It takes quite a lot of work until
we get there.
Examples: (i) The counting measure on a set X is

τX : P(X )→ [0,+∞], τX (A) = #A = number of elements in A, A ∈ P(X ).

(ii) The Dirac measure at the point a in a set X 6= ∅ is

δa : P(X )→ [0,+∞], δa(A) = χA(a) =

{
1, a ∈ A,

0, a 6∈ A,
A ∈ P(X ).

(iii) Let X be any set, f : X → [0,+∞] be function, and set
X = P(X ). Then

µ(A) =
∑
x∈A

f (x) = sup

{∑
x∈B

f (x) ; B ⊆ A,B finite

}
, A ∈ P(X ),

is a measure on X . Here the sum over the empty set has to be
taken as 0. If f is the constant function 1, then µ is the counting
measure on X . If f = χ{a}, i.e. f (x) = 1 for x = a and f (x) = 0
for all x 6= a, then µ is the Dirac measure at a.



Some properties of measures
Theorem:Let (X ,X , µ) be a measure space.

(i) If A,B ∈ X and A ⊆ B, then µ(A) ≤ µ(B) and if
µ(A) < +∞, then µ(B \ A) = µ(B)− µ(A).

(ii) If (Aj)
∞
j=1 is an increasing sequence in X then

µ
( ∞⋃
j=1

Aj

)
= lim

j→∞
µ(Aj).

(iii) If (Aj)
∞
j=1 is a decreasing sequence in X and µ(A1) < +∞,

then

µ
( ∞⋂
j=1

Aj

)
= lim

j→∞
µ(Aj).

(iv) If (Aj)
∞
j=1 is a sequence in X , then

µ
( ∞⋃
j=1

Aj

)
≤
∞∑
j=1

µ(Aj).



2.3 Measurable maps and measurable functions
Image and preimage

Let X and Y be sets and f : X → Y be a map. Then f generates
two maps, the image map

f : P(X )→ P(Y ), f (A) = {y ∈ Y ; y = f (x), x ∈ A},
and the preimage map

f −1 : P(Y )→ P(X ), f −1(B) = {x ∈ X ; f (x) ∈ B}.
If A ⊆ P(X ), then we define the image f (A) ⊆ P(Y ) of A by

f (A) = {f (A) ; A ∈ A}
and if B ⊆ P(Y ), then we define the preimage f −1(B) ⊆ P(X ) of
B by

f −1(B) = {f −1(B) ; B ∈ B}.
If A ∈ P(Y ), I is a set, and (Aα)α∈I is a collection in P(Y ), then

f −1(Ac) = f −1(A)c , f −1(
⋃
α∈I

Aα) =
⋃
α∈I

f −1(Aα),

and f −1(
⋂
α∈I

Aα) =
⋂
α∈I

f −1(Aα).



Properties of the preimage map

Proposition Let X and Y be sets and f : X → Y be a map.

(i) If Y is a σ-algebra on Y , then f −1(Y) is a σ-algebra on X .

(ii) If X is a σ-algebra on X , then
Y = {B ∈ P(Y ) ; f −1(B) ∈ X} is a σ-algebra on Y .

(iii) If A ⊆ P(Y ), then f −1(A)σ = f −1(Aσ).



Measurable functions

Theorem and definition: Let (X ,X ) and (Y ,Y) be measurable
spaces and f : X → Y be a map. Then the following are
equivalent:

(i) f −1(Y) ⊆ X .

(ii) f −1(A) ⊆ X for every A ⊆ P(Y ) with Aσ = Y.

(iii) f −1(A) ⊆ X for some A ⊆ P(Y ) with Aσ = Y.

We say that f is measurable or more precisely (X ,Y)-measurable if
these conditions hold. In particular, we say that a function
f : X → R is measurable or X -measurable if it is measurable with
BR in the role of Y.



Descriptions of BR
Proposition:

We have BR = Aσ if A is one of the classes

(i) A = {]α,+∞[ ; α ∈ R}, (v) A = {]α, β[ ; α, β ∈ R, α ≤ β},
(ii) A = {[α,+∞[ ; α ∈ R}, (vi) A = {[α, β] ; α, β ∈ R, α ≤ β}.
(iii) A = {]−∞, α[ ; α ∈ R}, (vii) A = {]α, β] ; α, β ∈ R, α ≤ β},
(iv) A = {]−∞, α] ; α ∈ R}, (viii) A = {[α, β[ ; α, β ∈ R, α ≤ β}.

In all these cases we can replace R by Q.

A small part of the proof: Denote the sets in (i)-(viii) by
A1,A2, . . . ,A8. It is clear that Aσ5 = BR. Observe that

A6 3 [α, β] =
∞⋂
j=1

]αj , βj [∈ Aσ5 , where αj ↗ α and βj ↘ β.

This implies Aσ6 ⊆ Aσ5 . We also have

A5 3]α, β[=
∞⋃
j=1

[αj , βj ] ∈ Aσ6 , where αj ↘ α and βj ↗ β.

This implies Aσ5 ⊆ Aσ6 . Hence Aσ6 = Aσ5 = BR.



Characteristic functions

Definition: For every A is a subset of we define the characteristic
function χA of A in X by

χA(x) =

{
1, x ∈ A,

0, x ∈ X \ A.

Proposition: Let (X ,X ) be a measurable space and A ⊆ X . Then
the characteristic function χA of A is measurable if and only if A is
measurable.
Proof: Let α ∈ R. Then

χ−1
A (]α,+∞[) = {x ∈ X ; χA(x) > α} =


∅, α ≥ 1,

A, 0 ≤ α < 1,

X , α < 0.

The statement follows from Theorem and Proposition (i) above.



The extended real line

If we let +∞ and −∞ be two symbols which are not real numbers
and add them to the real line, then we get the extended real line

R = R ∪ {−∞,+∞}.

We define a topology on R by saying that U ⊆ R is open if it is a
union of intervals of the type

[−∞, α[, ]β, γ[, ]δ,+∞], α, β, γ, δ ∈ R.

This topology generates the Borel algebra BR on R.

Defintion: Let (X ,X ) be a measurable space and f : X → R be a
function. We say that f is measurable or X -measurable if it is
(X ,BR)-measurable. We denote by MR(X ,X ) the set of all
measurable functions f : X → R and by M+

R (X ,X ) the set of all
measurable functions f : X → [0,+∞].



Extension of the operations on R

a + (+∞) = +∞, a ∈ R
a + (−∞) = −∞, a ∈ R

(+∞) + (+∞) = +∞
(−∞) + (−∞) = −∞

a ·+∞ =


+∞ a > 0

0 a = 0

−∞ a < 0

a · (−∞) =


−∞ a > 0

0 a = 0

+∞ a < 0

(−∞)(+∞) = −∞
(+∞)(+∞) = +∞
(−∞)(−∞) = +∞.



The Borel algebra BR

We have a similar description for the Borel algebra BR as for BR.
Proposition We have BR = Aσ where A is one of the sets

(i) A = {]α,+∞] ; α ∈ R}, (v) A = {[α, β] ; α, β ∈ R, α ≤ β},
(ii) A = {[α,+∞] ; α ∈ R}, (vi) A = {]α, β] ; α, β ∈ R, α ≤ β}.
(iii) A = {[−∞, α[ ; α ∈ R}, (vii) A = {[α, β[ ; α, β ∈ R, α ≤ β},
(iv) A = {[−∞, α] ; α ∈ R}.

In all these cases R may be replaced by Q.



Comparison of functions with values in R and in R

Proposition: Let (X ,X ) be a measurable space and f : X → R be
a function. Then f is measurable if and only if the function
g : X → R defined by

g(x) =

{
f (x), f (x) ∈ R
0, f (x) ∈ {−∞,+∞}

is measurable and the sets f −1({−∞}) and f −1({+∞}) are
measurable.

Theorem: If (fn)n∈N is a sequence in MR(X ,X ), then

inf
n∈N

fn, sup
n∈N

fn, lim inf
n→∞

fn and lim sup
n→∞

fn

are measurable. If fn is convergent at every point x ∈ X , then
lim
n→∞

fn is measurable.



Theorem: Let (X ,X ) be a measurable space, MR(X ,X ) denote
the set of all measurable functions with values in R, and add the
values +∞ and −∞ according to the rule
(+∞) + (−∞) = (−∞) + (+∞) = 0.

(i) If f , g ∈ MR(X ,X ), then f + g , fg ∈ MR(X ,X ).

(ii) If ϕ :]α, β[→ R is a continuous function which extends
continuously to a function [α, β]→ R, f ∈ MR(X ,X ), and
f (X ) ⊆ [α, β], then ϕ ◦ f ∈ MR(X ,X ).

(iii) If f , g , h ∈ MR(X ,X ) then the intermediate function
midfunction{f , g , h} is in MR(X ,X ).

(iv) If f ∈ MR(X ,X ), then the functions f+, f−, |f |p for p ∈ R,
and log |f | are in MR(X ,X ), where we take |0|p = +∞ for
p < 0, | ±∞| = +∞, log 0 = −∞ and log +∞ = +∞.



Simple functions

Let X be a set and f : X → R be a function. We say that f is
simple if it only takes finitely many values. If we let a1, . . . , an be
the different values of f and set Ej = f −1({aj}), then the sets Ej

are disjoint, their union is X , and

f =
n∑

j=1

ajχEj
.

This is called the standard representation of the simple function f .

Theorem: Let (X ,X ) be a measurable space. Every measurable
function f : X → R+ = [0,+∞] is the limit of an increasing
sequence of real valued simple measurable functions on X . If f is
bounded, then the convergence is uniform.



2.4 Integrals
Let (X ,X , µ) be a measure space.

(i) For every E ∈ X we define the integral of the characteristic
function χE of E with respect to the measure µ by∫

X
χE dµ = µ(E ).

(ii) For every simple measurable function ϕ : X → R+ with
standard representation

ϕ =
n∑

j=1

ajχEj

we define the integral of ϕ with respect to the measure µ by∫
X
ϕ dµ =

n∑
j=1

ajµ(Ej).



(iii) For every measurable function f : X → R+,
i.e. f ∈ M+

R (X ,X ), we define the integral of f with respect to
the measure µ by∫
X

f dµ = sup{
∫
X
ϕ dµ ; ϕ ∈ M+

R (X ,X ), ϕ is simple, ϕ ≤ f }.

We say that f is integrable with respect to µ if
∫
X f dµ < +∞

(iv) If f : X → R is measurable, i.e. f ∈ MR(X ,X ), then we say
that f is integrable with respect to µ if both f+ and f− are
integrable and we define the integral of f with respect to µ by∫

X
f dµ =

∫
X

f+ dµ−
∫
X

f− dµ.



(v) We say that a measurable function f : X → C is integrable
with respect to µ if both Ref and Imf are integrable with
respect to µ and we define the integral of f with respect to µ
by ∫

X
f dµ =

∫
X

Ref dµ+ i

∫
X

Imf dµ.

(vi) If E is a measurable set and f : X → R or f : X → C is a
measurable function, then we say that f is integrable on E
with respect to µ if f χE is an integrable function and then we
define the integral of f on E by∫

E
f dµ =

∫
X

f χE dµ.



Null sets

Let (X ,X , µ) be a measure space.

Definition:

(i) A µ-null set is a measurable set E such that µ(E ) = 0.

(ii) We say that two functions f and g on X with values in R or
C are equal µ-almost everywhere or almost everywhere with
respect to µ, if {x ∈ X ; f (x) 6= g(x)} is contained in a µ-null
set.

(iii) Let Q(x) be a statement depending on x ∈ X . We say that
Q(x) holds µ-almost everywhere if {x ∈ X ; Q(x) is not true}
is contained in a µ-null set.

We abbreviate the term µ-almost everywhere as µ-a.e.. When
there is no ambiguity about the measure we are referring to we
drop the prefix µ-.



Monotone convergence and Fatou lemma

Monotone convergence theorem:

For every increasing sequence (fn) of functions in M+
R (X ,X ) we

have

lim
n→∞

∫
X

fn dµ =

∫
X

lim
n→∞

fn dµ.

Corollary:

If (fn) is a sequence in M+
R (X ,X ), then

∞∑
n=1

∫
X

fn dµ =

∫
X

( ∞∑
n=1

fn

)
dµ.

The Fatou Lemma:
If (fn) is a sequence in M+

R (X ,X ), then∫
X

lim inf
n→∞

fn dµ ≤ lim inf
n→∞

∫
X

fn dµ.



The Lebesgue dominated convergence theorem

Dominated convergence theorem:

Let (X ,X , µ) be a measure space, (fn) be a sequence of integrable
functions, and f a measurable function such that fn → f a.e. and
let g be an integrable function such that |fn| ≤ g a.e. for all n.
Then f is integrable and

lim
n→∞

∫
X

fn dµ =

∫
X

f dµ.



Integrals depending continuously on a parameter

Theorem:
Let (X ,X , µ) be a measure space, T ⊆ Rd .
If f : X × T → R or f : X × T → C is a function such that

(i) for every t ∈ T the function X 3 x 7→ f (x , t) is integrable,

(ii) there exists a neighbourhood V of t0 and an integrable
function g : X → R+ such that |f (x , t)| ≤ g(x) for all t ∈ V
and almost all x ∈ X (outside a null set N(t) which may
depend on t), and

(iii) t0 ∈ T , and T 3 t 7→ f (x , t) is continuous at t0 for almost all
x ∈ X .

Then

lim
T3t→t0

∫
X

f (x , t) dµ(x) =

∫
X

f (x , t0) dµ(x).



Differentiation under the integral sign

Theorem:
Let (X ,X , µ) be a measure space, T ⊆ R be an interval, t0 ∈ T ,
and f : X × T → R or f : X × T → C be a function such that

(i) for every t ∈ T the function X 3 x 7→ f (x , t) is integrable,

(ii) for almost all x ∈ X the function T 3 t 7→ f (x , t) has a
continuous partial derivative ∂f (x , t)/∂t, and

(iii) there exists a neighbourhood V of t0 and an integrable
function g : X → R such that

∣∣∂f (x , t)/∂t
∣∣ ≤ g(x) for almost

all x ∈ X (outside a null set N(t) which may depend on t).

Then the function F (t) =
∫
X f (x , t) dµ(x) is differentiable at the

point t0 and

F ′(t0) =

∫
X

∂f

∂t
(x , t0) dµ(x).



Integrals depending analytically on a parameter

Theorem:
Let (X ,X , µ) be a measure space, T ⊆ C be an open set, and
f : X × T → C be a function such that

(i) for every z ∈ T the function X 3 x 7→ f (x , z) is integrable,

(ii) for almost all x ∈ X the function T 3 z 7→ f (x , z) is analytic,
and

(iii) every point z0 ∈ T has a neighbourhood V and an integrable
function g : X → R such that

∣∣f (x , z)
∣∣ ≤ g(x) for almost all

x ∈ X (outside a null set N(z) which may depend on z) and
all z ∈ V .

Then the function F (z) =
∫
X f (x , z) dµ(x) analytic in T and

F ′(z) =

∫
X

∂f

∂z
(x , z) dµ(x).



2.5 The Lebesgue measure and integral on the real line

How do we measure length of A ⊂ R?

It is clear at least if A is a finite interval, which can be open, half
open or closed,

]a, b[, [a, b[, ]a, b], or [a, b].

In all these cases we set

`(A) = b − a.

If A is an infinite interval

[a,+∞[, ]a,+∞[, ]−∞, b] or ]−∞, b[

we set
`(A) = +∞.



An algebra of intervals

Definition:
The set AR of all finite unions of intervals of the form

]a, b], ]a,+∞[, ]−∞, b], and ]−∞,+∞[= R

is called an interval algebra.

Extension of the length function ` to AR

It is easy to see that every A ∈ A can be written uniquely as a
union of finitely many disjoint intervals I1, . . . , IN in AR. We define

`(A) =
N∑
j=1

`(Ij).

Proposition:

The function ` is a measure on AR.



Extension of measures on set algebras
Let A be a algebra of subsets of X and µ a measure on A.

Definition:
The outer measure µ∗ of µ is a set function defined on P(X ) by

µ∗(B) = inf
{∑

j=1

µ(Aj) ; B ⊂
∞⋃
j=1

Aj ,Aj ∈ A
}
.

Basic properties of the outer measure:

(i) µ∗(∅) = 0

(ii) µ∗(B) ≥ 0 for all B ∈ P(X ).

(iii) If A ⊆ B the µ∗(A) ≤ µ∗(B).

(iv) A ∈ A, then µ∗(A) = µ(A).

(v) For every sequence (Bj) in P(X ), µ∗
( ∞⋃

j=1

Bj

)
≤
∞∑
j=1

µ∗(Bj).



Definition:
A E ∈ P(X ) is said to be µ∗-measurable if

µ∗(A) = µ∗(A ∩ E ) + µ∗(A \ E ), A ∈ P(X ).

The collection A∗ of all µ∗-measurable sets is denoted by A∗.

Carathéodory extension theorem:

A∗ is a σ-algebra containing A.

If (Ej) is a disjoint sequence in A∗, then µ∗
( ∞⋃

j=1

Ej

)
=
∞∑
j=1

µ∗(Ej).

Hahn extension theorem:
If µ is σ-finite, then µ∗ is a unique extension of µ to a measure on
A∗.



Lebesgue measure and lebesgue integral

Definition:

I The σ-algebra A∗R is called the Lebesgue algebra on the real
line and we denote it by M.

I The measure `∗ on M is called the Lebesgue measure on R
and we denote it by λ

Theorem: (i) AR ( BR = AσR (M ( P(R).

(ii) If f : [a, b]→ C is Riemann integrable and if we continue f as
0 outside [a, b], then f is a Lebesgue intrgrable function and∫ b

a
f (x) dx =

∫
R

f dλ.

(iii) The Lebesgue algebra is complete in the sense that every
subset of a null set is measurable and consequently a null set.



2.6 Few concepts from functional analysis

Vector spaces

Recall that a vector space V is a set with two operations, addition
and multiplicaton with scalars. We only look scalars is R or C.
The elemets in V are called vectors and one of them is the zero
vector denoted by 0.
The following properties are assumed to hold:

(i) x + y = y + x

(ii) x + (y + z) = (x + y) + z

(iii) x + 0 = x

(iv) for every x there exists an y such that x + y = 0

(v) c(x + y) = cx + cy

(vi) a(bx) = (ab)x

(vii) (a + b)x = ax + bx

(viii) 1x = x



Norm

Recall that a function x 7→ ‖x‖ on a vector space V over R or C
taking values in the set of positive numbers R+ = {x ∈ R ; x ≥ 0}
is a norm if it satisfies

(i) ‖x‖ = 0 if and only if x = 0.

(ii) ‖ax‖ = |a|‖x‖.
(iii) ‖x + y‖ ≤ ‖x‖+ ‖y‖
A vector space V with a norm ‖ · ‖ is called a normed space.
We often say that normed space is a pair (V , ‖ · ‖) where V is a
vector space and ‖ · ‖ is a norm on V .
A subspace W of a normed space V is automatically a normed
space with the norm that is given on V .



Examples of normed spaces – Rn and Cn with various
norms.

(i) The number fields R and C are normed spaces with the
absolute value norm, ‖x‖ = |x |.

(ii) The spaces Rn and Cn are normed spaces with the usual

euclidean norm ‖x‖ =
(
|x1|2 + · · ·+ |xn|2

)1
2 .

(iii) For 1 ≤ p < +∞ the spaces `np(R) and `np(C) are defined as
the vector spaces Rn and Cn, respectively, with the p-norm

‖x‖p =
(
|x1|p + · · ·+ |xn|p

) 1
p .

(iv) The spaces `n∞(R) and `np(C) are defined as the vectors spaces
Rn and Cn, respectively, with the ∞-norm, which is also
called the supremum norm, ‖x‖∞ = max{|x1|, . . . , |xn|}.



Examples of normed spaces – spaces of sequences.

(v) For 1 ≤ p < +∞ the spaces `p(R) and `p(C) are defined as
the vectors spaces of all sequences (xj) with xj ∈ R and
xj ∈ C, respectively, such that

∑∞
j=1 |xj |p < +∞, with the

p-norm ‖x‖p =

(∑∞
j=1 |xj |p

) 1
p

.

(vi) The spaces `∞(R) and `∞(C) are defined as the vectors
spaces of all sequences (xj) with xj ∈ R and xj ∈ C,
respectively, such that supj |xj | < +∞, with the supremum
norm ‖x‖∞ = supj |xj |.

(vii) We let c(R) and c(C) denote the subspaces of `∞(R) and
`p(C), respectively, consisting of all convergent sequences.

(viii) We let c0(R) and c0(C) denoting the supspaces of `∞(R) and
`p(C), respectively, consisting of all convergent sequences
tending to zero.



Examples of normed spaces – function spaces.

(ix) C ([a, b]) consisting of all continuous complex valued on the
interval [a, b] with the maximum norm

‖f ‖∞ = sup
x∈[a,b]

|f (x)|.

(x) More generally, for every compact (closed and bounded)
subset K of we define C (K ) as the space of all continuous
complex valued functions on K with maximum norm

‖f ‖∞ = sup
x∈K
|f (x)|.



Banach spaces

Definition Let (V , ‖ · ‖) be a normed vector space.

(i) A sequence (xn) in V is said to be convergent if there exists x
in V such that ‖xn − x‖ → 0 as n→∞. The vector x is
unique and called the limit of the sequence (xn). This means
that for every ε > 0 there exists Nε such that ‖xn − x‖ < ε for
every n ≥ Nε.

(ii) A sequence (xn) in V is said to be a Cauchy sequence if for
every ε > 0 there exists Nε such that ‖xn − xm‖ < ε for every
n,m ≥ Nε.

(iii) The normed space (V , ‖ · ‖) is said to be complete if every
Cauchy sequence in V is convergent.

(iv) A complete normed space (V , ‖ · ‖) is called a Banach space.

All the normed spaces in the examples above are Banach spaces.



Lp-spaces

Let (X ,X , µ) be measure space and 1 ≤ p < +∞.

We let L̃p(µ) denote the set of all measurable functions f : X → C
such that ∫

X
|f |p dµ < +∞.

and define ‖ · ‖p on L̃p(µ) by

‖f ‖p =

(∫
X
|f |p dµ

) 1
p



We observe that ‖f ‖p = 0 if and only if f = 0 almost everywhere.
If there are null sets E 6= ∅, then ‖f ‖p = 0 does not necessarily
imply that f = 0. Hence

We let Lp(µ) denote the set of all functions in f ∈ L̃p(µ) where we
identify two functions as equal if they are equal almost everywhere.

With this identification of functions every function which is 0
almost everywhere is considered as equal to the null element in
Lp(µ).

Theorem:
Lp(µ) is a Banach space for every measure µ and every
1 ≤ p < +∞.



Inner product spaces
An inner product on real vector space is a function V × V → R,
(x , y) 7→ 〈x , y〉 satisfying

(i) 〈ax + by , z〉 = a〈x , z〉+ b〈y , z〉
(ii) 〈x , y〉 = 〈y , x〉.
(iii) 〈x , x〉 ≥ 0
(iv) 〈x , x〉 = 0 if and only if 0.

As a consequence of (i) and (ii) we get

〈x , ay + bz〉 = a〈x , y〉+ b〈x , z〉.
An inner product on complex vector space is a function
V × V → C, (x , y) 7→ 〈x , y〉 satisfying the conditions above,
except that (ii) is replcaed by

(ii)’ 〈x , y〉 = 〈y , x〉.
As a consequence of (i) and (ii)’ we get

〈x , ay + bz〉 = ā〈x , y〉+ b̄〈x , z〉.
A vector space with an inner product is called an inner product
space



Hilbert spaces
Every inner product induces a norm by the formula

‖x‖ =
√
〈x , x〉, x ∈ V .

and it is called a Hilbert space if it is a Banach space with the
induced norm.
Examples:

(i) The space Rn with the usual inner product
〈x , y〉 =

∑n
k=1 xkyk is a Hilbert space.

(ii) The space Cn with the usual complex inner product
〈x , y〉 =

∑n
k=1 xk ȳk is a Hilbert space.

(iii) The space C ([a, b]) with

〈f , g〉 =

∫ b

a
f (x)g(x) dx

is an inner product space, but it is not a Hilbert space,
because it is easy to find a Cauchy sequence in this space,
which is convergent in the induced norm, but the limit is not
a continuous function.



The Hilbert space L2(µ)

On L2(µ) we have a natural form (f , g) 7→ 〈f , g〉,

〈f , g〉 =

∫
X

f g dµ.

The Cauchy-Schwarz inequality implies that the right hand side is
a well defined complex numer for every f and g in L̃2(µ).
The form satisfies (i) 〈af + bg , h〉 = a〈f , h〉+ b〈g , h〉
(ii)’ 〈f , g〉 = 〈g , f 〉, and
(iii) 〈f , f 〉 ≥ 0,

In L2(µ) we identify functions that are equal almost everywhere, so
we also have

(iv) 〈f , f 〉=0 if and only if f = 0.

Theorem:
L2(µ)) is a Hilbert space.



Bounded linear operators

Now we look at two normed spaces (V , ‖ · ‖V ) and (W , ‖ · ‖W ). A
map T : V →W is said to be linear if

T (c1v1 + c2v2) = c1T (v1) + c2T (v2).

We let L(V ,W ) denote the set of all linear maps T : V →W .

The linear map T is said to be bounded if

sup
‖v‖V =1

‖T (v)‖W < +∞.

We let B(V ,W ) denote the set of all bounded T ∈ L(V ,W ).

If W is a Banach space, then B(V ,W ) is a Banach space with the
norm

‖T‖V ,W = sup
‖v‖V =1

‖T (v)‖W .

This norm is called the operator norm on B(X ,Y ).



Bounded linear functionals – Dual spaces.

If V is a vector space over R, then we set of V ∗ = B(V ,R) and if
V is a vector space over C then we set V ∗ = B(V ,C).
In both cases we call V ∗ the dual space of V .
In functional analysis it is very important to give descriptions of
the the dual space V ∗ of a given vector space.



Duality in Hilbert spaces

Theorem (Riesz-Fréchet, 1907) Let H be a Hilbert space. Then for
every y ∈ H the function fy defined by

fy (x) = 〈x , y〉, x ∈ H,

is an element of H∗. The operator

T : H → H∗, y 7→ fy ,

satisfies

(i) T is conjugate-linear, i.e., fy+z = fy + fz and fay = āfy ,

(ii) T is bijective, i.e., for every f ∈ H∗ there is a unique y ∈ H
such that f = fy

(iii) T is an isometry, i.e., ‖fy‖H∗ = ‖y‖H .



Convergence issues – functions

Let X be any set and fn : X → C, n = 0, 1, 2, . . . , and f : X → C
be complex valued functions on X .

There are several convergence concepts for sequences of functions:

(i) Pointwise convergence: For every x ∈ X , fn(x)→ f (x).

(ii) Uniform convergence: supx∈X |fn(x)− f (x)| → 0



2.7 Real and complex measures and duality
Let (X ,X ) be a measureable space.

Real measures
A set function λ : X → R is called a real measure (or a signed
measure or a charge) on X if it satisfies

(i) λ(∅) = 0,

(ii) λ
( ∞⋃
j=1

Aj

)
=
∑∞

j=1 λ(Aj), if (Aj)
∞
j=1 is disjoint in X , and

(iii) λ assumes at most one of the values +∞ and −∞.

λ is said to be finite valued if it only takes finite values.

Examples:

If µ is a measure on X , f ∈ MR(X ,X ) is a function such that one
of the functions f + or f − is integrable with respect to µ, then we
have a real measure µf

µf (A) =

∫
A

f dµ =

∫
A

f + dµ−
∫
A

f − dµ, A ∈ X .



Decomposition of real measures

Definition:
Let λ be a real measure on X . A set E ∈ X is said to be

(i) positive with respect to λ if λ(A) ≥ 0 for all A ∈ X , A ⊆ E ,

(ii) negative with respect to λ if λ(A) ≤ 0 for all A ∈ X , A ⊆ E ,
and

(iii) null set with respect to λ or a λ-null set if λ(A ∩ P) = 0 for
all A ∈ X , A ⊆ E .

Hahn decomposition theorem:

Then there exists P ∈ X such that P is positive with respect to λ
and N = Pc is negative with respect to λ.



The positive, negative and total variations of λ
With the aid of Hahn decomposition theorem we can associate to
each real measure, three positive measures, λ+, λ−, and |λ|,
Definition:

(i) positive variation: λ+(A) = λ(A ∩ P).

(ii) negative variation: λ−(A) = λ(A ∩ N).

(iii) total variation: |λ|(A) = λ+(A) + λ−(A).

Observe that λ = λ+ − λ−.
For every real measure λ we have:

(i) |λ(E )| ≤ |λ|(E ).

(ii) If λ = µ− ν where µ and ν are measures, then λ+ ≤ µ and
λ− ≤ ν.

(iii) If λ is finite valued, then |λ| is a finite measure.

(iv) If λ and τ are real measures and λ+ τ is a well defined real
measure, then

|λ+ τ | ≤ |λ|+ |τ |



The Banach space of finite real valued measures

Let MR(X ,X ) set of all finite valued real measures. It is a vector
space with the usual addition and multiplication by scalars

(λ+ ν)(A) = λ(A) + ν(A), (cλ)(A) = cλ(A).

The function ‖ · ‖ on MR(X ,X ) defined

‖λ‖ = |λ|(X )

is a norm on MR(X ,X ).

Theorem
(MR(X ,X ), ‖ · ‖) is a Banach space.



A few more properties of real measures

For every real measure λ we have

(i) |λ(E )| ≤ |λ|(E ).

(ii) If λ = µ− ν where µ and ν are measures, then λ+ ≤ µ and
λ− ≤ ν.

(iii) If λ is a finite valued, then |λ| is a finite measure.

(iv) If λ and τ are real measures and λ+ τ is a well defined real
measure, then

|λ+ τ | ≤ |λ|+ |τ |



Integrals with respect to real measures

If f is integrable with respect to both λ+ and λ−, then we define
the integral of f with respect to λ by∫

X
f dλ =

∫
X

f dλ+ −
∫
X

f dλ−.

We have ∣∣ ∫
X

f dλ
∣∣ ≤ ∫

X
|f | d |λ|.

For a fixed λ ∈MR(X ,X ) we have a linear functional

L1(λ+) ∩ L1(λ−) 3 f 7→
∫
X

f dλ.

and for a fixed f ∈ L1(λ+) ∩ L1(λ−) we have a linear functional

MR(X ,X ) 3 λ 7→
∫
X

f dλ.



Bounded linear functionals on BCR(X )

Let X be an open subset of Rn and let BCR(X ) denote the set of
all bounded real valued continuous functions on X .

BCR(X ) is a Banach space over R with the ‖ · ‖∞-norm.

Every finite valued real measure λ ∈MR(X ,BX ) defines a linear
functional

Λ(f ) =

∫
X

f dλ, f ∈ BC (X ),

and we have

|Λ(f )| ≤
∫
X
|f | d |λ| ≤ ‖f ‖∞

∫
X

d |λ| = ‖f ‖∞‖λ‖,

which shows that Λ is a bounded linear functional on BCR(X ).

Riesz representation theorem: Every bounded linear functional Λ
on BC (X ) is of this form and we have ‖Λ‖ = ‖λ‖.



Complex measures

Definition:
A set function λ : X → C is said to be a complex measure if it
satisfies

(i) λ(∅) = 0,

(ii) λ
(⋃∞

j=1 Aj

)
=
∑∞

j=1 λ(Aj) if (Aj)
∞
j=1 is disjoint sequence in X

and the series is absolutely convergent.

Every complex valued function har a real and imaginary part, so we
get two finite valueed real measures Reλ and Imλ.
The decompositon gives us a decompostion of λ into four
(positive) measures

λ = ((Reλ)+ − (Reλ)−) + i((Imλ)+ − (Imλ)−).

For every measurable f : X → C which is integrable with respect
to all the four measures we define∫

X
f dλ =

∫
X

f d(Reλ) + i

∫
X

f d(Imλ)



Elementary properties

The complex measures form a vector space over the complex
numbers with the usual addition and multiplication

(κ+ λ)(A) = κ(A) + λ(A), (cλ)(A) = cλ(A), A ∈ X .

We denote this space by MC(X ,X ).

Total variation:
The set function

|λ|(A) = sup{
∞∑
j=1

|λ(Aj)| ; (Aj)
∞
j=1 is a partition of A}.

is a finite measure on X .

Theorem MC(X ,C(X ,BX ) with the norm λ 7→ |λ|(X ) is a Banach
space.



Riesz representation theorem

Every complex measure λ ∈MC(X ,BX ) defines a linear functional
over C

Λ(f ) =

∫
X

f dλ, f ∈ BC (X ),

and we have

|Λ(f )| ≤
∫
X
|f | d |λ| ≤ ‖f ‖∞

∫
X

d |λ| = ‖f ‖∞‖λ‖,

which shows that Λ is a bounded linear functional on BC (X ).

Riesz representation theorem: Every bounded linear functional Λ
on BC (X ) is of this form and we have ‖Λ‖ = ‖λ‖.
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3. Integral representations and Herglotz functions

3.1 Poisson integral formulas

3.2 Herglotz functions



Definiton of a Herglotz function

Definition: An analytic function h that maps the complex upper
half plane C+ into the closed upper half plane C+ is called a
Herglotz function (or a Nevanlinna function or Pick function or
R-function).
Examples:

(i) h(z) = a + bz , a ∈ R, b ≥ 0.

(ii) h(z) = i , z ∈ C+.

(iii) h(z) =
√

z , where z 7→
√

z denotes the principal branch of the

square root function,
√

z = |z |
1
2 e

i
2 Argz and Argz ∈ [−π, π[

(iv) h(z) = − m

z − α
, α ∈ R, m ≥ 0.

(v) h(z) = − log(1 + z)

z
, where log is the principal branch of the

logarithm.



Elementary properties of Herglotz functions

(i) If h1 and h2 are Herglotz functions, then h1 + h2 and h1 ◦ h2

are Herglotz functions.

(ii) If h is a Herglotz function then (i) gives that z 7→ −1/h(z),
z 7→ h(

√
z), and z 7→ h(−1/z) are Herglotz functions.

(iii) If (hn) is a sequence of Herglotz functions which converges
locally uniformly to h, then h is a Herglotz function.

(iv) If (hn) is a sequence of Herglotz functions which is bounded at
one point z0 ∈ C+, i.e., supn |hn(z0)| < +∞, then there exists
a subsequence (hnj ), which converges locally uniformly in C+.

(v) If h is a Herglotz function and h(z0) = a ∈ R for some
z0 ∈ C+, then h is the constant function h(z) = a for all z .
(This is a direct consequence of the maximum principle.)



Integral representation of Herglotz functions

Theorem: An analytic function h ∈ O(C+) is a Herglotz function if
and only if it can be written in the form

h(z) = a + bz +

∫
R

(
1

t − z
− t

1 + t2

)
dµ(t),

where a ∈ R, b ≥ 0, and µ is a positive Borel measure such that∫
R

1

1 + t2
dµ(t) < +∞.

Remark: The term
t

1 + t2
is needed to ensure the convergence of

the integral.



Back to the examples

h(z) = a + bz +

∫
R

(
1

t − z
− t

1 + t2

)
dµ(t),

(i) For h(z) = a + bz .

(ii) For h(z) = i , we have a = 0, b = 0 and µ = 1
πλ, where λ is

the Lebesgue measure.

(iii) For h(z) =
√

z , we have dµ(t) =
√
−t χR−(t) dt.

(iv) For h(z) = − m

z − α
, µ = mδα, the point measure at the point

α with mass m.



Symmetry issues

Note that the integral representation

h(z) = a + bz +

∫
R

(
1

t − z
− t

1 + t2

)
dµ(t),

defines h even for z ∈ C−. Then we have the symmetry relation

h(z̄) = h(z), z ∈ C \ R

Example: h(z) =

{
i , z ∈ C+,

−i , z ∈ C−.



A possible analytic continuation of h might not coincide with the
symmetric continuation.

Example: The function h(z) = − 1

z + i
has an analytic

continuation to a rational function given by the same formula on
C \ {−i}.
The symmetric continuation to C \ R is given by

h(z) = h(z̄) = − 1

z − i
, z ∈ C−,

and thus has a jump across the real line.



How to recover a, b and µ?

h(z) = a + bz +

∫
R

(
1

t − z
− t

1 + t2

)
dµ(t)

(i) a = Re h(i).

(ii) b = lim
y→+∞

h(iy)

iy
.

(iii) The Stieltjes inversion formula is

µ([α, β]) + 1
2µ({α}) + 1

2µ({β}) = lim
ε↘0

1

2πi

∫
γε

h(z) dz

where the integration is counter clockwise along the closed
rectangular path γε, with vertices α− iε, β − iε, β + iε, and
α + iε.



Remark: By using the symmetry we can write the integral in (iii) as

µ([α, β]) + 1
2µ({α}) + 1

2µ({β}) = lim
ε↘0

1

2π

∫ β

α
Im h(x + iε) dx

The behaviour of h close to the real line reflects properties of the
measure µ. More prcisely, µ is the weak limit as ε↘ 0 of the
family of measures

dµε(x) = Im h(x + iε) dx

which means that∫
R
ϕ dµ = lim

ε↘0

∫
R
ϕ(x) Im h(x + iε) dx ,

for every continuous function ϕ on R with compact support.



More on the behaviour “at” the real line

h(z) = a + bz +

∫
R

(
1

t − z
− t

1 + t2

)
dµ(t)

Then for N ≥ 0 the following statements are equivalent

(i) Asymptotic expansion with real constants aj ,

h(z) =
a−1

z
+a0+a1z+· · ·+a2N−1z2N−1+o(z2N−1) as z→̂0.

(ii) Moments of the measure µ0 = µ− µ({0}) δ0 are finite, i.e.,∫
R

1

t2N

dµ0(t)

1 + t2
< +∞.

In this case

a0 = a +

∫
R

1

t

dµ0(t)

1 + t2
,

a1 = b +

∫
R

dµ0(t)

t2
,

an =

∫
R

dµ0(t)

tn+1
, n = 2, 3, . . . , 2N − 1.

Similar results for z→̂∞



Sum rules

lim
ε↘0+

lim
y↘0+

1

π

∫
ε<|x |<1/ε

1

xp
Im h(x + iy) dx = ap−1 − bp−1

for p = 2− 2M, 2− 2M, . . . , 2N,

h(z) =
a−1

z
+ a0 + a1z + · · ·+ a2N−1z2N−1 + o(z2N−1) as z→̂0,

h(z) = b1z + b0 +
b1

z
+ · · ·+

b−(2M−1)

z2M−1
+ o(

1

z2M−1
) as z→̂∞.



Nevanlinna-Pick interpolation problem

Classical problem:

For given z1, . . . , zN ∈ C+ and w1, . . . ,wN ∈ C+ find a (or all)
Herglotz functions h with h(zj) = wj for j = 1, . . . ,N.

Theorem:
This problem has a solution if and only if the matrix
P = (Pjk)Nj ,k=1 with entries

Pjk =
wj − w̄k

zj − z̄k

is non-negative (positive semi-definite).

Remark:
If there is a solution, then it is either unique or there exist infinitely
many.



Real interpolation points
Even real interpolation points can be included. For each such point
xj a real number dj is given and the condition becomes

h(xj) = wj , lim
z→̂xj

Imh(z)

Imz
≤ dj .

The corresponding elements of the Pick matrix become

Pjk =


wj − w̄k

zj − z̄k
, zj 6= z̄k ,

dj , zj = xj ∈ R.

Observe:

The limit lim
z→x

Imh(z)

Imz
is a kind of symmetric derivative.

At points x of analyticity of h is equal to h′(x).

Example:

For h(z) = − 1

z + i
we have lim

z→̂x

Imh(z)

Imz
= +∞.



Other representations

Theorem
A h : C+ → C+ is a Herglotz function if and only if there exists a
Hilbert space H, a self-adjoint operator A = A∗, and an element
v ∈ H such that with some z0 ∈ C+ it holds

h(z) = h(z̄0) + (z− z̄0)
(
(I + (z−z0)(A−zI )−1v , v

)
, z ∈ C\R.

Hence there are many – unitarily equivalent – representations.
If A is the multiplication operator in L2(µ), then the integral
representation formula is recovered.



4. Elements of distribution theory

Content:

4.1

4.2



4.1 Motivation and basic definitions

Basic idea
Let X be an open subset of Rn. Every f ∈ L1

loc(X ) defines a linear
functional uf

C0(X ) 3 ϕ 7→
∫
X

f ϕ dx

The space C0(X ) is the subspace of C (X ) consisting of all
continuous functions on Rn which vanish outside a compact subset
of X .

The idea of distribution theory is to view the functions f , or rather
the functionals uf , as elements of a larger space D′(X ) of
continuous linear functionals on the space D(X ) = C∞0 (X ) of
infinitely differentiable functions in C0(X ), and to extend the
operations of analysis of functions to this larger space D′(X ).



Defintion of a distribution

Definition: A distribution u on an open subset X of Rn is a
functional operating on D(X ) which is linear,

u(ϕ+ψ) = u(ϕ)+u(ψ), u(cϕ) = cu(ϕ), γ, ψ ∈ D(X ), c ∈ C,

and continuous in the sense that u(ϕj)→ u(ϕ) as j →∞ if
ϕj → ϕ in D(X ).

The set of all distributions on X is denoted by D′(X ).

Convergence in D(X ):

ϕj → ϕ in D(X ) means that there exists a compact K ⊂ X such
that suppϕj ⊂ K for all j , ϕj → ϕ and all partial derivatives
∂αϕj → ∂αϕ unformly as j →∞.



Examples:

I uf , f ∈ L1(X ).

I Every complex measure µ defines a distribution

µ(ϕ) =

∫
X
ϕ dµ, ϕ ∈ D(X ).

in particular a Dirac-measure of a point a ∈ X ,

δa(ϕ) = ϕ(a), ϕ ∈ D(X ).

I Let (aj) be a sequence and assume that {aj ; aj} is a discrete
subset of X . Take multi-indices αj and complex numbers cj .
Then

u(ϕ) =
∑
j

cj∂
αjϕ(aj)

is a distribution on X .



The order of a distribution

Theorem: A linear functional u on D(X ) is a distribution if and
only if for every compact subset K of X there exist constants
C > 0 and k ∈ N, such that

|u(ϕ)| ≤ C
∑
|α|≤k

sup
x∈Rn
|∂αϕ(x)| ϕ ∈ C∞0 (K ).

Definition: If it is possible to choose the same number k for every
compact subset K of X , then we say that the distribution u is of
finite order and we define the order of u as the minimal such
number.
Examples: The distributions uf defined by f ∈ L1

loc(X ) and by
complex measures are of order 0.



The principal value distribution

The function f (x) = 1/x is infinitely differentiable in R \ {0} but
not locally integrable near 0.
The function f extends to a distribution on R. The extension is
called the principal value of the function x 7→ 1/x .
It is defined by the formula

PV

(
1

x

)
(ϕ) = lim

ε→0

∫
|x |≥ε

ϕ(x)

x
dx , ϕ ∈ C∞0 (R).

This distribution is of order 1.



The vector space D′(X )

The set of all distributions D′(X ) on X is a vector space with
addition of two distributions u and v defined by(

u + v
)
(ϕ) = u(ϕ) + v(ϕ),

and the product of α ∈ C and u is defined by(
αu
)
(ϕ) = αu(ϕ).



The support of a distribution

If f ∈ C (X ) then the support supp f of f is defined as the closure
of {x ∈ X ; f (x) 6= 0} in X .

The set Y = X \ supp f is open and

uf (ϕ) = 0, ϕ ∈ C∞0 (Y ).

We define the support of a distribution by describing its
complement.
Definition: The support supp u of u ∈ D′(X ) is defined as the
complement of the union of all open subsets U of X such that

u(ϕ) = 0, ϕ ∈ C∞0 (U).

It is clear that supp uf = supp f for all f ∈ C (X ).



Sequences of distributions

Let (uj) be a sequence in D′(X ).

Definition: We say that (uj) converges to u ∈ D′(X ) and denote it
by uj → u and limj→+∞ uj = u, if

lim
j→+∞

uj(ϕ) = u(ϕ), ϕ ∈ C∞0 (X ).

If all the distributions uj are of the form ufj , where fj are locally
integrable in X , then we say that (fj) converges to u, weakly or in
a weak sense or in the sense of distributions.
This means that∫

X
fj(x)ϕ(x) dx → u(ϕ), ϕ ∈ C∞0 (X ).

We write fj → u and lim
j→+∞

fj = u.



Two results on weak convergence

Theorem: Let X be an open subset of Rn and let (uj) be a
sequence in D′(X ). If the sequence (uj(ϕ)) of complex numbers is
convergent for every ϕ ∈ C∞0 (X ), then the sequence (uj) has a
limit u in D′(X ).
Proposition: Assume that f ∈ L1(Rn),

∫
Rn f (x) dx = 1, and define

fε(x) = ε−nf ((x − a)/ε).
Then fε tends to δa in the sense of distributions as ε→ 0.



Examples:

I The probability density function for the standard normal
distribution is

f (x) =
1√
2π

e−
1
2
x2

and the density function for the normal distribution with mean
µ and variance σ2 is

fµ,σ(x) = σ−1f ((x − µ)/σ).

By Proposition fµ,σ → δµ as σ → 0.

I Poisson kernel for the upper half plane is

PC+(x , y) =
y

π(x2 + y 2)
, (x , y) ∈ R2 \ {(0, 0)}.

If we set f (x) = 1/π(x2 + 1), then f satisfies the conditions in
Proposition and fy (x) = PC+(x , y). Hence

PC+(·, y)→ δ0, y → 0 + .



Limits of analytic functions

Theorem:
Let I be an open interval, γ > 0 and set

Z = {z ∈ C ; Rez ∈ I , 0 < Imz < γ}.

If f ∈ O(Z ) and for some N ∈ N and C > 0 we have

|f (z)| ≤ C |Imz |−N ,

Then f (·+ iy) has a limit f0 ∈ D′(I ) of order ≤ N + 1 as y → 0,
i.e.,

lim
y→0

∫
f (x + iy)ϕ(x) dxf0(ϕ), ϕ ∈ D(I ).

A similar result holds in higher dimensions.



4.2 Multiplication of distributions by functions

Take f ∈ L1
loc(X ), ψ ∈ C∞(X ), and ϕ ∈ C∞0 (X ).

Then ψf ∈ L1
loc(X ), ψϕ ∈ C∞0 (X ), and we get

uψf (ϕ) =

∫
X

(ψ(x)f (x))ϕ(x) dx =

∫
X

f (x)(ψ(x)ϕ(x)) dx = uf (ψϕ).

Definition: For ψ ∈ C∞(X ) and u ∈ D(X ) we define the product
of ψu of ψ and u by (

ψu)(ϕ) = u(ψϕ).

If (ϕj)ϕ in D(X ) then the sequence (ψϕj)→ ψϕ in D(X ).
Hence ψu is a distribution on X .



Examples:

I x PV

(
1

x

)
= 1.

In fact, for every ϕ ∈ C∞0 (R) we have

(x PV

(
1

x

)
)(ϕ) = (PV

(
1

x

)
)(xϕ)

= lim
ε→0

∫
|x |≥ε

xϕ(x)

x
dx =

∫
R

1ϕ(x) dx = u1(ϕ).

I (x − a)δa = 0.

In fact, for every ϕ ∈ C∞0 (R) we have(
(x − a)δa

)
(ϕ) = ((x − a)ϕ)(a) = 0.



4.3 Differentiaton of distributions

Motivation:
Let f ∈ C 1(R). Then

uf ′(ϕ) =

∫ +∞

−∞
f ′(x)ϕ(x) dx =

[
f (x)ϕ(x)

]+∞

−∞
−
∫ +∞

−∞
f (x)ϕ′(x) dx

= −
∫ +∞

−∞
f (x)ϕ′(x) dx = −uf (ϕ′).

It is clear that ϕ 7→ −uf (ϕ′) is a linear functional on C∞0 (R) and
that it defines a distribution. If f ∈ C k(R), then we get by
induction

uf (k)(ϕ) = (−1)kuf (ϕ(k)). (1)

This formula is the basis for our definition of the derivative of a
distribution:



Differentiaton of distributions - definition

Definition: Let u ∈ D′(X ) be a distribution on X in R.
Then its derivative is defined as the distribution

u′(ϕ) = −u(ϕ′), ϕ ∈ C∞0 (X ),

and for every natural number k > 0 we define the k-th derivative
u(k) of u as the distribution

u(k)(ϕ) = (−1)ku(ϕ(k)), ϕ ∈ C∞0 (X ).

If u = uf , where f ∈ L1
loc(X ), then (uf )′ is called the weak

derivative of f or the derivative of f in the sense of distributions
and we then write f ′ for (uf )′, when it is obvious that we are
referring to the weak derivative.

The weak k-th derivative of f ∈ C k(X ) is simply the distribution
that f (k) defines, i.e.

(uf )(k) = uf (k) .



Partial derivatives of distributions - motivation

Let X be an open subset of Rn and f ∈ C 1(X ). Then the
distribution u∂j f acting on ϕ ∈ C∞0 (Rn) is calculated by
performing a partial integration with respect to the variable xj ,

u∂j f (ϕ) =

∫
Rn

∂j f (x)ϕ(x) dx = −
∫
Rn

f (x)∂jϕ(x) dx = −uf (∂jϕ).

It is clear that the linear functional ϕ 7→ −uf (∂jϕ) is a distribution.
If f ∈ C k(Rn), then by induction on k we get

u∂αf (ϕ) = (−1)|α|uf (∂αϕ),



Partial derivatives of distributions - definition

Definition: Let u be a distribution on an open subset X of Rn.
Then the partial derivative ∂ju is defined by

∂ju(ϕ) = −u(∂jϕ), ϕ ∈ C∞0 (X ),

and for every multi-index α we define the partial derivative ∂αu of
u as the distribution

∂αu(ϕ) = (−1)|α|u(∂αϕ), ϕ ∈ C∞0 (X ).



The Leibniz rule

Proposition: If X is open in Rn, u ∈ D′(X ), and ψ ∈ C∞(X ), then
we have Leibniz’ rule

∂j
(
ψu) = (∂jψ)u + ψ∂ju



Examples:

I Let H = χR+ denote the Heaviside-function,

(
uH

)′
(ϕ) = −

∫ +∞

−∞
H(x)ϕ′(x) dx

= −
∫ +∞

0
ϕ′(x) dx = −

[
ϕ(x)

]+∞

0

= ϕ(0) = δ0(ϕ)

The conclusion is
H ′ = δ0.



I The natural logarithm f (x) = ln |x | is is locally integrable on
R and infinitely differentiable on R \ {0} with derivative
f ′(x) = 1/x . Its weak derivative is

〈(ln | · |)′, ϕ〉 = −
∫
R

ln |x |ϕ′(x) dx

= lim
ε→0
−
∫ +∞

ε
ln x(ϕ′(x) + ϕ′(−x)) dx

= lim
ε→0

(
− ln ε(ϕ(ε)− ϕ(−ε)) +

∫
|x |≥ε

ϕ(x)

x
dx

)
.

By Taylor’s formula ϕ(ε)− ϕ(−ε) = 2ϕ′(0)ε+ O(ε2), so the
first term in the right hand side tends to 0 as ε→ 0. Hence
we have

〈(ln | · |)′, ϕ〉 = lim
ε→0

∫
|x |≥ε

ϕ(x)

x
dx = PV

(
1

x

)
(ϕ)

which tells us that (ln |x |)′ = PV(1/x) in the sense of
distributions.



Partial differential equations

Linear partial differential operator:

with coefficients aα ∈ C∞(X ) is of the from

P(∂) =
∑
|α|≤m

aα∂
α

Partial differential equations for distributions:

For a given finD(X ) we look for distributions f ∈ D(X ) satisfying

P(∂)u = f .

A distribution solution or a weak solution is a distribution u in
D′(X ) satisfying the equation.

If all the coefficients are constant functions, then we say that the
operator P(∂) has constant coefficients.



Fundamental solutions

Definition:
u ∈ D′(Rn) is called a fundamental solution of P(∂) if

P(∂)u = δ0.

Examples:

I The Cauchy kernel E (z) =
1

π
=

1

π(x + iy)
is a fundamental

solution of the Cauchy-Riemann operator

P(∂x , ∂y ) = 1
2

(
∂x + i∂y

)
I The function E (z) =

1

2π
log |z | is a fundamental solution of

the Laplace operator

∆ = ∂2
x + ∂2

y = 4∂z∂z̄ .



4.4 Convolution of distributions

Convolution of functions:
If f , ϕ : Rn → C are two functions and y 7→ f (x − y)ϕ(y) is an
integrable function for every x ∈ Rn, then the convolution f ∗ ϕ is
well defined by

f ∗ϕ(x) =

∫
Rn

f (x−y)ϕ(y) dy =

∫
Rn

f (y)ϕ(x−y) dy , x ∈ Rn.

If f ∈ L1
loc(Rn) and ϕ ∈ C∞0 (Rn),

f ∗ ϕ(x) = uf (ϕ(x − ·)), x ∈ Rn,

where ϕ(x − ·) denotes the function y 7→ ϕ(x − y).

Convolution of a distribution and a function:
For u ∈ D′(Rn) and ϕ ∈ C∞0 (Rn) or u ∈ E ′(Rn) and ϕ ∈ C∞(Rn),

u ∗ ϕ(x) = u(ϕ(x − ·)), x ∈ Rn.



Theorem:
We have u ∗ ϕ ∈ C∞(Rn)

∂α(u ∗ ϕ) = (∂αu) ∗ ϕ = u ∗ (∂αϕ).

Furthermore,
supp u ∗ ϕ ⊆ supp u + suppϕ.

Convolution of two distributions:
Let u and v be two distributions and assume that one of them has
compact support. Then the convolution is defined in such a way
that u ∗ v ∈ D′(Rn),

((u ∗ v) ∗ ϕ)(x) = (u ∗ (v ∗ ϕ))(x), ϕ ∈ D(Rn).

One proves that there exists a unique such distribution.



Properties of convolutions

Let u1, u2, u3 ∈ D′(Rn) and assume that two have compact
support.

(u1 ∗ u2) ∗ u3 = u1 ∗ (u2 ∗ u3)

u1 ∗ u2 = u2 ∗ u1

We observe that δ is a unity for convolution

δ ∗ u = u ∗ δ = u, u ∈ D′(Rn).

∂α(u1 ∗ u2) = (∂αu1) ∗ u2 = u1 ∗ (∂αu2).

For every partial differential operator P =
∑
|α|≤m aα∂

α with
constant coefficients we have

P(u1 ∗ u2) = (Pu1) ∗ u2 = u1 ∗ (Pu2).



The role of fundamental solutions

If P(∂) is a partial differential operator and E ∈ D′(Rn) is a
fundamental solution and f ∈ E ′(Rn), then u = E ∗ f satisfies

P(∂)u = P(∂)(E ∗ f ) = (P(∂)E ) ∗ f ) = (δ ∗ f ) = f .



4.4 Fourier transform

For f ∈ L1(Rn) we define

f̂ (ξ) =

∫
R

e−i〈x ,ξ〉f (x) dx , ξ ∈ Rn,

where 〈x , ξ〉 = x1ξ1 + · · ·+ xnξn.



Observation

We look for a possible formula for a Fourier-transform of a
distribution:

u
f̂
(ϕ) =

∫
Rn

f̂ (y)ϕ(y) dy =

∫
Rn

(∫
Rn

e−i〈x ,y〉f (x) dx

)
ϕ(y) dy

=

∫
Rn

f (x)

(∫
Rn

e−i〈x ,y〉ϕ(y) dy

)
dx =

∫
Rn

f (x)ϕ̂(x) dx

= uf (ϕ̂).

Now the problem is that if ϕ is in D(Rn) = C∞0 (Rn) then ϕ̂ is not
in D(Rn).



The Schwartz space S(Rn)

If ϕ ∈ D(Rn), then from the basic properties of the Fourier
transform wee get

F{xβ∂αϕ}(ξ) = i |α|+|β|∂βξ (ξαFϕ(ξ))

and
ξβ∂αF{ϕ}(ξ) = (−i)|α|+|β|F{∂βx (xαϕ(x))}(ξ).

Hence for Laplace operator ∆ we get F{∆ϕ}(ξ) = −|ξ|2F{ϕ}(ξ)
and consequently for every k ∈ N

F{(1−∆)kϕ}(ξ) = (1 + |ξ|2)kF{ϕ}(ξ).



This formula gives us the estimate

|ϕ̂(ξ)| ≤ ‖(1−∆)kϕ‖1

(1 + |ξ|2)k
,

where ‖ · ‖1 is the L1(Rn)-norm.

If we apply it with (−ix)αϕ(x) in the role of ϕ, then we get

|ξβ∂αξ ϕ̂(ξ)| ≤ |ξ
β|‖(1−∆)k(xαϕ(x))‖1

(1 + |ξ|2)k
.



The Schwartz space of functions

Definition:
We let S(Rn) denote the space of all ϕ ∈ C∞(Rn) such that for
every multi-indices α and β we have

sup
x∈Rn
|xβ∂αϕ(x)| < +∞.

Definition
A sequence (ϕj) in S(Rn) is said to converge to ϕ in S(Rn) if for
every multi-indices α and β we have

sup
x∈Rn
|xβ(∂αϕj(x)− ∂αϕ(x))| → 0 j →∞.

We have C∞0 (Rn) ⊂ S(Rn) and the inclusion is continuous, i.e. if a
sequence (ϕj) converges to ϕ in C∞0 (Rn) then it converges to ϕ in
S(Rn). The inclusion S(Rn) ⊂ C∞(Rn) is also continuous.



Theorem
The Fourier transformation F is a bijective continuous map on
S(Rn) with continuous inverse

F−1ϕ(x) =
1

(2π)n
Fϕ(−x) =

1

(2π)n

∫
Rn

e i〈x ,ξ〉ϕ(ξ) dξ.



The Schwartz space of distributions

Definition
A linear functional u : S(Rn)→ C called a Schwartz distribution or
a temperate distribution if it is continuous in the sense that
u(ϕj)→ u(ϕ) for every sequence ϕj → ϕ in S(Rn).

We let S ′(Rn) denote the space of all Schwartz distributions. A
sequence (uj) of Schwartz distributions is said to converge to u in
S ′(Rn) if uj(ϕ)→ u(ϕ) for all ϕ ∈ S(Rn).



Various spaces of distributions

We have

D(Rn) = C∞0 (Rn) ⊂ S(Rn) ⊂ E(Rn) = C∞(Rn).

and that the inclusions are continuous.
This implies that every restriction of a distribution in S ′(Rn) to
D(Rn) is an element of D′(Rn) and every restriction of a
distribution in E ′(Rn) to S(Rn) is an element of S ′(Rn), i.e.,

E ′(Rn) ⊂ S ′(Rn) ⊂ D′(Rn).



Fourier transformation on S ′(Rn)

Definition:
We define the Fourier transformation F : S ′(Rn)→ S ′(Rn) by

〈Fu, ϕ〉 = 〈u,Fϕ〉, ϕ ∈ S(Rn).

The distribution Fu is called the Fourier transform of u and is also
denoted û and F{u}.
The Fourier inversion formula gives that

FFϕ = (2π)nϕ̌, for all ϕ ∈ S(Rn), where ϕ̌(x) = ϕ(−x), x ∈ Rn.

This implies that for every u ∈ S ′(Rn) we have

〈FFu, ϕ〉 = 〈u,FFϕ〉 = (2π)n〈u, ϕ̌〉 = (2π)n〈ǔ, ϕ〉,

where ǔ is the pull-back of u by the map ι̌ : Rn → Rn, x 7→ −x .



Fourier transforms of derivatives

From the rules F{∂jϕ}(ξ) = iξjF{ϕ}(ξ) and
F{xjϕ}(ξ) = i∂jF{ϕ}(ξ) which hold for all ϕ ∈ S(Rn) we get

〈F{∂ju}, ϕ〉 = 〈u,−∂jFϕ〉 = 〈u,F{iξjϕ(ξ)}〉 = 〈iξjFu, ϕ(ξ)〉.

and

〈F{xju}, ϕ〉 = 〈u, xjF{ϕ}〉 = 〈u,F{−i∂jϕ}〉 = 〈i∂jFu, ϕ〉

These formulas are equivalent to

F{∂ju} = iξjFu and F{xju} = i∂jFu



This generalizes by induction

F{∂αu} = (iξ)αFu and F{xβu} = (i∂)βFu, u ∈ S ′(Rn).

If P(∂) =
∑
|α|≤m aα∂

α is a partial differential operator with
constant coefficients, then

F{P(∂)u} = P(iξ)Fu, u ∈ S ′(Rn),

So the partial differential equation P(∂)u = f with f ∈ S ′(Rn) is
transformed into the equation P(iξ)û = f̂ . If it is possible to
define the quotient f̂ /P(iξ) as a distribution in S ′(Rn), then the
solution u is its inverse Fourier transform.



Fourier transforms of convolutions

Theorem
If ψ ∈ C∞(Rn) satisfies a growth bound of the form

|∂αψ(x)| ≤ Cα(1 + |x |)Nα , x ∈ Rn

and u ∈ S ′(Rn) then the product ψu is in S ′(Rn).

Theorem:
If u1 ∈ E ′(Rn) and u2 ∈ S ′(Rn), then u1 ∗ u2 ∈ S ′(Rn) and

û1 ∗ u2 = û1û2.



Fundamental solutions

Recall that a distribution E ∈ D′(Rn) is said to be a fundamental
solution of the partial differential operator P(∂) =

∑
|α|≤m aα∂

α

with constant coefficients if

P(∂)E = δ.

The existence of a fundamental solution for every operator P(∂)
was first proved independently by Ehrenpreis and Maglgrange
around 1954.

If E ∈ S ′(Rn) then we have seen that P(iξ)Ê = 1, for δ̂ = 1.

Hence E is in some sense the inverse Fourier transform of
Rn 3 ξ 7→ 1/P(iξ).

Lojasiewicz and Hörmander proved independently around 1958
that every partial differential operator with constant coefficients
has a fundamental solution E ∈ S ′(Rn).
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