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Complex analysis and passivity with applications

> Why?
» Beautiful and interesting Im /P\ Im
mathematics . s P(s)
» System modeling of EM structures Re Re
» Passivity as a basic assumption
» What? l
» Complex analysis in one and several
varia.bl.es . u(t) —| R — v(t)
» Passivity, Herglotz (PR) functions,

and stored energy
» Convex optimization
» Applications
» Physical bounds
» Optimal design
» Antennas, absorbers, scatterers,
metamaterials, ...
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EM modeling

Electromagnetic (EM) systems can be modeled:

Microscopically Maxwell's equations, quantum mechanics and
QED. Nano technology, physical chemistry, ...

Macroscopically Maxwell's equations together with constitutive
relations (for materials). Can accurately predict the response of
EM devices such as antennas, scatterers (RCS), absorbers,
filters, ... Requires:

» detailed model of the device (geometry, material properties,
and sources)
» accurate numerical solver e.g., FDTD, FEM, or MoM

System level using input-output models (black box)
» properties such as passivity and causality
» parameters such as input impedance and S-parameters

» can be used to analyze properties of all designs
simultaneously
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Passive systems in EM

We focus on passive EM systems J

> |dentify passive systems. How do we determine if a system is
passive? How do we find passive systems?
> Analyze passive systems and construct physical bounds using

» sum rules (integral identities)
> convex optimization
» stored energy

» applications for antennas, absorbers, metamaterials, periodic
structures, ...

» generalizations to several variables

» generalizations to non-passive systems
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Sum rules and physical bounds

Construct identities and physical bounds using basic
properties such as causality, linearity, passivity, and l H "
time invariance to, e.g., analyze: ;

| re 2

» Absorbers and High-impedance surfaces: How
does the bandwidth depend on material and
thickness?

T 0 s
o
Ja-0se
Z

High-impedance surface.

» Extra ordinary transmission: Transmission
through apertures?

» Scattering: How much can an object interact
with an electromagnetic wave? T TR R

Cross sections of nano

» Antennas: How does the performance depend spheres.
on size, geometry, and material?

» Metamaterials: Bandwidth with e(w) ~ —17

» Artificial magnets, cloaking, superluminal /
propagation, matching, filters.... ol
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" T
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A physical bound for absorbers

» A structure (above a ground plane) that
absorbs incident EM waves.

» Pyramids, homogeneous, periodic,
metamaterials, ...

» Often desired to be thin and absorb power
over large bandwidths.

Tradeoff between thickness d fractional
bandwidth B and wavelength \;

2m2dus  172dps
A2 — A1 = B)g < <
2 0= Iyt ~ [loasl

where Iy = maxy, <x<), |[I'(A)| and g is the
maximal static permeability of the absorber.

V.
Rozanov, Ultimate thickness to bandwidth ratio of radar absorbers, IEEE-TAP, 2000.
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Background

There is a considerable amount of literature on modeling of signals and
systems. Some relevant references among many are

Circuit networks: Guillemin Synthesis of passive networks (1957) [9], The
Mathematics of Circuit Analysis (1949) [8], Wing Classical Circuit
Theory (2008) [27].

Analytic functions: Greene and Krantz Function Theory of One Complex
Variable (2006) [7], Garnett Bounded Analytic Functions (2007) [6].

Physics: Nussenzveig Causality and dispersion relations (1972) [22],
Jackson Classical Electrodynamics (1975) [17], Landau & Lifshitz
Electrodynamics of Continuous Media (1984) [21].

LTI systems: . Kailath Linear systems (1980).

Functional analysis: Kreyszig Introductory functional analysis with
applications (1978) [20].

Transforms: Zemanian Distribution Theory and Transform Analysis
(1987) [31], King Hilbert Transforms, vol 1l (2009) [18, 19], Widder
The Laplace Transform (1946) [26].
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@ Signals and systems
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Mathematical modeling of causal signals and passive systems

Signal System

u(t) u(t) —| ® | o)

ANANN

VvV

\V)

» Mathematical tools such as Fourier, Laplace, and Hilbert
transforms and complex analysis are used to analyze and
model signals and systems.

» Assumptions based on physical principles such as linearity,

causality, stability, and passivity restrict the models.

Here, we discuss and review the basic physical assumptions and the
corresponding mathematical tools. We also discuss similarities and
differences between signals and systems.
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Signals and systems: assumptions and applications

u(t)

ANVANN

VIR

AV

Finite energy and causality are
often used for signals. Finite
energy gives u € L? and
causality gives analyticity.
Applications:

> analytic signals

» modulation

> receivers

u(t) —| R [— v(t)

Input output models of systems are
often based on linearity, time
(translational) invariance, and
continuity (LTI). In addition we often
use assumptions of causality, stability,
and passivity. Applications:

v

material modeling
» antenna input impedance

reflection and transmission
coefficients

v

> scattering parameters
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Mathematical modeling of signals and LTI systems

Explicit representation as a
convolution
Explicit representation similar to
the Hilbert Transform

Herglotz
P

functions

Mathematical Trcer i o
modeling based invariant 'Zla;s;‘l’l';y
on fundamental systems eruezlieg)
physical concepts Q) Model

‘reé’.ﬂffon

Sum

PDE theory. Describes the fields

everywhere. Solve using analytic stablllty
methods, mode expansions, .

FDTD, MoM, FEM, .. (not causality and
discussed here).

Applications for:
causality Temporal dispersion
Cross sections.
Antennas
Absorbers

Laplace
transform

Maxwell’s o
BEGELS L Analy
s Paley Wiener theorem
analysis ’ i
Hurwitz matrix

equations

causal
and finite

Applications for:
G Analytic signals
IENEY  Receivers

Laplace
trans-
form,

2
Hardy "

Fourier space H2 Titchmars|

theorem

trans-

form,
a7

High-impedance surfaces
Extraordinary transmission
in C with poles in C_
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© Causal signals with finite energy
Titchmarsh’s theorem
Applications
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Signals with finite energy

Definition (Finite energy (L?))

A signal u(t) has finite energy if it is square integrable

W = / \zdt = HuH2 < 00

» Mathematically the equivalence class of L2-functions
u € L2(R).
» Fourier transform for w € R

T
U(w) = F{u(t)}(w) = lim ey (t) dt
T—o0 -T
There are many conventions for the Fourier transform, here we
use the one corresponding to the time convention e ™.
> Plancherel, Parseval’s theorem, ||u||3 = = 1U]I3.
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Causal signals with finite energy

Definition (Causal signals)

A signal u(t) is causal if u(t) = 0 for t < 0.

Properties (u € L2 and u(t) = 0 for t < 0)
» Fourier transform analytic for Imw > 0 and L? for Imw = 0
Im

Ulw) = Flu(t)}(w) = /R tytydt Y| Re

» Laplace transform (with slight abuse of notation, we use U(s))
Im
s

U(s) = L{u()}(s) = / ety dt ——

analytic for Res > 0. We use s = 0 + jw with j = —i.
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Upper, lower, and right half planes

The Laplace and (analytic) Fourier transform are in principle
identical for causal signals. There are however some technical
differences and there are several common versions of the Fourier
transform, e.g., different placements of 27, signs +i, and j = —i:

R

Ulw) = /R dely(tydt  U(s) = / Temtu(t) dt Ulw) = / ety (1) dt

Fourier transform Laplace transform Fourier transform
analytic for Imw >0 analytic for Res > 0 analytic for Imw < 0

Im Im Im
w Re S Re Re
w

The same notation for the transformed function is used for simplicity.
The variables w and s = jw + o differentiate them when necessary.
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Theorem (Titchmarsh's theorem)

If a square integrable function U(w) (U(w) € L2) fulfills one of the
conditions below it fulfills all of them:
» The inverse Fourier transform u(t) = F~{U(w)}(t) = 0 for t < 0.
» The real and imaginary parts are related by the Hilbert transform
(see also Sokhotski-Plemelj formulas)

Re{U(w)} = —H Im{U}(w) = —~ ][ iU} g, T hmarn

TR W— w’ 1899-1963

Im{U(w)} = H Re{U}(w) = 1][ ReAUW)} 4,y

TR w—w

» The function U(v) is holomorphic in v = w + i for £ > 0. =
Furthermore, there is a constant C such that

/ |U(W + i§)|2 dw<C forall £€>0 .
R

and U(w) = limg_,o+ U(w +i&) for almost all w € R

Titchmarsh (1948) [25], Nussenzveig (1972) [22], King (2009) [18]
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Titchmarsh's theorem 1l

Titchmarsh’s theorem shows that
the conditions

» causality of u(t)

» Hilbert transform relations
ReU = —HImU and .
ImU = HRel. Finite energy,

U= Fuecl?
» U € H? (Hardy space), €68,
are equivalent (imply each other)
for L? signals. There are some
extensions to LP spaces,
1 < p < o0, and distributions.

.
®

Mats Gustafsson, Department of Electrical and Information Technology, Lund University, Sweden (18)



Titchmarsh's theorem: comments

Important (common) application
1. Have a (time domain) causal finite energy signal ().
2. Unitary of the Fourier transform implies U € L2.
3. Satisfies the first condition in Titchmarsh’s theorem.
4. Can use either ReU or Im U to construct U, e.g.,
U=ReU+iHReU.
We note that L? is an essential and very natural assumption.
» Common signal such that u(t) = §(¢) (Dirac delta
distributions) and U(w) = 1/w (poles on the frequency axis)
are not L? functions.

> For signals with infinite energy (u(t) ¢ L?) it is sometimes
possible to decompose the signal u(t) = uq(t) + ua(t) where
uo € L? and wuy(t) is analyzed using other tools.

» There are partial generalizations to other LP spaces and
distributions.
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Analytic (holomorphic) function

We have seen that causality is connected to analyticity in the
Fourier (or Laplace) domain. Some important properties [7]:

» Holomorphic functions are defined in open regions (the domain
of definition). This means that the frequency axis is in general
not part of the domain of definition.

» Values on the boundary (closure) of the region can often but
not always be defined as limits from the domain of definition.

» Cauchy’s integral formula: for a simple closed curve v in the
region where f(z) is analytic and with z in the interior of

16 =5m [ £ ac >
Y €

Im

» Extensions of the Cauchy’s integral formula to curves including
the frequency axis are possible if the function is sufficiently
regular at the frequency axis. The values should be interpreted
as limits from the open interior domain.
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Applications: analytic signals, 1Q signals, modulation,...

Analytic signals extend real valued signals,
u € L? to complex valued signals

ua(t) = ult) + iH{u}(t) = a(t)e,

where a(t), ¢(t), and w = % are the
envelope amplitude and instantaneous phase
and angular frequency, respectively.
Moreover, F{u,(t)}(w) = 2F{u(t)}(w) for
w > 0 and otherwise zero.

Single-sideband modulation (SSB) is a

refinement of amplitude modulation (AM).

Ugsp (1) = Re{ua(t)e*!}
= u(t) cos(wt) — H{u}(t) sin(wt)

baseband signal

AN

AM modulation

N\ w

SSB modulation
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Summary for signals

u(t)

\\f\,t
VARV

\Y

» The assumption of finite energy, L2, is very good.

» Causality of u(t) to get analyticity of U(w) in a half plane and
the Hilbert transform to relate the real and imaginary parts.

» Construct analytic time domain functions to remove negative
frequencies components (causality in the frequency domain).

> There are cases where e.g., bounded signals are useful v € L*°.

Note that L? functions are not point wise defined. Moreover, even if
u1 ~ ug in L? the differentiated signals u} and ), can be unbounded
and very different.
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O Systems
LTI systems
Passive systems
Herglotz and PR functions
Passive systems in EM
Sum rules and integral identities
Systems at fixed frequencies
Poles, point sources, and distributions
Foster’s reactance theorem
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Systems in convolution form (LTI systems)

Input-output system
> input signal u(t)

> output signal uw(t) —| R — v(t
v(t) = R{u(-)}(t) " "

where R is an operator.

Linear and time translational invariant (LTI) systems: the system is

Linear if R{aiui(t) + aoua(t)} = ay R{u1(t)} + a2 R{ua(t)}.
Time-translational invariant if

v(t) = R{u(")} = vt + 1) = R{u(- + 7)} for all 7.
Continuous if u, — ©u = Ru, — Ru.

Representation as convolutions

v(t) =hxu= /Rh(t —7)u(r)dr

The class for the impulse response h(t) includes distributions €61,
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Causal and stable systems

Definition (Causal system)

A system on convolution form is causal if h(t) =0 fort <0 .

The class for the kernel h(t) includes all distributions such that
supp{h} C [0, c0).

Definition (Stable system)

There are many definitions of stability. One common version is
bounded-input bounded-output (BIBO) stabillity that requires
h € L' and hence H € H* (frequency axis in L>°).

Computation o ()
> in the time domain using convolution.

» by Laplace (Fourier) transformation, E{ [[ﬁ_l
multiplication with the transfer H(s)
function, and inverse transformation.
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Systems with signals in L2 (finite energy)

Input and output signals in L? restrict the system. Start in the
Fourier (Laplace) domain V(w) = H(w)U(w) and assume functions

V|2 = / H (@)U (@) dw < sup |H(w)? U]

or use the Holder's inequality to show that ||V||, < || H|| [|U]l5.
Similar estimates for the impulse response h(t).

We note that the assumptions of 'finite energy’ are very different for
signals and systems
signals are square integrable u € L2 and U € L2

systems integrable impulse response i € L' and bounded transfer
function H € H*.

But what does it mean that the signals are in L?? Is it the
"appropriate’ model?
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Example (Resonance circuit)

Consider a series RCL resonance circuit;

! ) =

The output signal (voltage)

v(t) = C’/ "dt' + Ri(t), V(s) = (sL—i—%—i—R)I()

is unbounded in L2, i.e., there are input signals (currents) i € L2
that do not produce output signals (voltages) v(t) that are in L2.
However, the circuit is passive so it cannot produce energy. The
problem is that although ||v|3 and ||i||3 are proportional to the
energy for many cases the pertinent definition of the energy is

[ o(t)i(t) de.
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Passive systems

The concept of finite energy is very powerful to model signals.
What is the corresponding property for systems? One possibility is
passivity.

Definition (Passivity)

A system (v = h % u) is admittance-passive if

T u(t) %
Waam(T) = Re / o* (B)u(t) dt > 0 :
and scatter-passive if e .
u(t
T W(t) z
Wl @) = [ P -t 20, -

(o.)
for all T € R and smooth functions of compact support u.

Zemanian, Distribution theory and transform analysis, 1965 [31]
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Passive systems: transfer function V' (s) = H(s)U(s)

Admittance-passive: H(s) analytic
and Re H(s) > 0 for Re s > 0.

Im H Im
N I
S Re (s) Re

Example: Impedance H(s) = Z(s)
of a passive circuit, V = Z1.

+ T E:'
v Z(s)

Scatter-passive: H(s) analytic and
|H(s)| <1 for Res > 0.

Im H Im
N 1
$  Re H(s) Re

1

Example: Reflection coefficient

H(s) = I'(s) = Z372, V = I'U.

v Z(s)

e

In both cases, H(s) is holomorphic (analytic) for Res > 0, and can be
related to a positive real (PR) (or Herglotz) function.
Youla etal(1959) [29], Zemanian (1963) [30], Wohlers and Beltrami (1965) [28], Zemanian (1965) [31]
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Definition (Herglotz functions, h(z))

A Herglotz (Nevanlinna, Pick, or R-) function h(z) is
holomorphic for Im z > 0 and

Imh(z) >0 for Imz >0

Im h Im
N ,
z Re (Z)

Re

Representation for Im z > 0, cf., the Hilbert
Rolf Nevanlinna
transform R o

o0
1
S () Siorg Alvander

Wilhelm Cauer
1900-1945

h(z):Ah+Lz+/ g_z—m

where A, € R, L >0, and [, ﬁzdu(f) < 00.

The symbol h = h(t) is also used for the impulse response in this presentation (very different).
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Interpretation of the representation

The spectral function is

13
V(&) = lim * / Im{h(z +iy)}de and du() = %Im{h(f)}dﬁ

y—0t T 0

for sufficiently regular cases. The "convergence’ term £/(1 + £2) is odd and
vanishes for symmetric integration intervals. Assume symmetry

Im{h(§)} = Im{h(—¢&)}, then for Imz > 0

h(z):Ah+Lz+/_ ;Z* lfgzdy(@

— Lo+ L lim /R I{PO) ge _ p, 4 % /oo 2O} o

T Rooo |_p E—2 oo 2282

where f]R % d¢ < oo, L > 0, and we assume a symmetric integration

interval in the final equality.
> Reduces to the Hilbert transform (Im — Re) and addition of Lz.
» Not necessary Im{h (&)} € L? or asymptotic decay at co.
» Convergence term ¢/(1 + £2) not needed in many cases.
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Positive real (PR) functions

Definition (Positive real (PR) functions)

A positive real function P(s) is holo- 1 J2)
morphic for Re s > 0 and

Im

P(s)

$  Re Re

ReP(s) >0 for Res>0 ‘ ‘

with P(s) = P*(s*).
PR functions can be represented as

> s 1 [ sRe{P(6)}
L ORE T B

P(s) = Ls+ / ¢

for Res > 0, where L >0, [, ﬁ dv(€) < oo, and we assume a
sufficiently regular P(jw) in the final equality.
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Herglotz functions and positive real functions

Im

Im P
1 P(s)

$  Re Re

Im h Im
N ,
VA Re (Z) R

(5]
T T

Note z = is, h = iP. Here also with h(z) = —h*(—z*) (real-valued
in the time domain).

>

Time conventions: e ™! for Herglotz and /! for PR (Laplace
parameter s = 0 + jw).

Many contributors, Herglotz, Cauer, Nevanlinna, Pick, ...
Also for maps between the unit circles.

An input impedance Z(s) of a passive network is a typical PR
function, see also @74,

Applications: circuit synthesis, filter design, sum rules,
operator theory, moment problem, model order reduction, ...
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Point measures and Dirac delta distributions

The representation theorems admit point measures (can be
interpreted as Dirac delta distributions) that give PR functions of
the form (remember Re s > 0)

Qns

1
P(s)=sL+Y 2 =sL+y ————
o zn:shré% anscnﬂ%,in

where L > 0, o, = C’;l >0, L, = 1/(Cn§%), and we identify the
PR function with the input impedance of a series of parallel LC
resonators, i.e., P(s) = Z(s) and e.g.,

Z(jw)

R

An arbitrary PR function P can be decomposed into a sum of two
PR functions P = P, + P,, where P; only has point measures.
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Passive systems in EM

There are many passive systems (not more energy out than in) in
electromagnetics (EM):
Admittance passive

» Material models such as P(s) = se(s) and h(w) = we(w).
Similar for bi-anisotropic media.

» Antenna input impedance P(s) = Z(s) and h(w) = iZ(w).
» Forward scattering of finite objects.
Scattering passive
» Antenna and material reflection coefficients, I" = Sy1.
» Reflection and transmission coefficients of periodic structures.
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Example (Passive systems: material modeling (Laplace))

The Maxwell equations in the Laplace domain are
sD=VxH-J and sB=-VxE

where J is the current density. Modeling of the interaction between the EM
fields and material is done expressing the electric flux density D and/or the
current density J in the electric field intensity E. More general
bi-anisotropic models are treated similarly. It is also customary to decompose
the current density into one part that is proportional to E and one part that
is forced or controlled (here we suppress this part).
The linear, passive, time translational invariant, continuous, non-magnetic,
and isotropic constitutive relations are:
E — D: D(s) = ege(s)E(s) where sex(s) is a PR function.
E — J: J(s) = o(s)E(s) where o(s) is a PR function
The two models are (basically) equivalent and
> o(s) = seg(e:(s) — 1), note that o(s) assumes a corresponding
high-frequency response €5, > 1 in the €(s) case.
» Similar models for the general bi-anisotropic case using matrix PR
(Herglotz) functions.
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Examples (Passive systems: material modeling (time domain))

The linear, causal, time translational invariant, continuous, non-magnetic,
and isotropic constitutive relations are

D(t):eoeooE(t)+60/]Rx(t—t/)E(t/)dt/ E{t)—| ¢ = D)

where x(t) = 0 for ¢t < 0 and eo, > 0 is the instantaneous response. The
material model is passive if

T T
0< /E(t).algt(t) dtzeg//E(t)-%(6005(t—7')+x(t—7'))E(7')det

—o0 R

for all times T" and smooth compactly supported fields E.

» Similarly for the magnetic fields.

» The presented results are also valid for the diagonal elements of
general bi-anisotropic constitutive relations.

» Fourier transform to get the frequency-domain model
D(w) = eper(w)E(w), where we (w) is a Herglotz function @22,
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Examples (Passive systems: antenna reflection coefficient)
The reflection coefficient of a structure
composed of passive materials is passive
if it is causal, i.e., the reference plane is
placed 'in front’ of the structure.

ref. plane

f-q o_
transmission line!
antenna
UV — &
A —

S-parameter measurements of an
antenna with a VNA.

» Reflection coefficients (or more general scattering parameters)
are defined in transmission lines. We expand the fields in the
transmission line in modes and define the reflection coefficient
as the scattering parameter of the lowest order mode.

» Although the scattering parameters are defined for all
frequencies we are usually only interested in the results where
the transmission line has a single propagating mode.
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Examples (Passive systems: periodic structures)
Consider a linear polarized incident plane
wave B0 = Eqel** on a periodic
structure. Decompose the transmitted
field E® in Floquet modes outside the
structure (z > 0)

0o B

E(t) (]f, ’l“) _ Z E(t) (k) B pelk;z — Periodic structure.
m,n=—o00

where Ky, = m27 /0x& + n27 /lyY, and Ky pn = k2 — |kmnl|? is
the wavenumber in the z direction for the mn mode.
The transmission coefficient for the co-polarized lowest order mode
is T'(k) = Ej - EOO( )/|E2|. The transmission coefficient is
passive if the periodic structure does not increase the wavefront

speed (such as structures in free space) and is composed of passive
material constituents.

Note, the wavefront speed can be increased for structures embedded in high-permittivity media and for

the corresponding acoustic case.
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Applications of PR and Herglotz functions

Circuit synthesis: We can synthesize networks with lumped circuit
elements from rational PR functions [27], e.g., Brune and
Darlington synthesis. The basic procedure is to to reduce the order
of the PR function by iterative subtraction of simple PR functions.
lterate subtraction of: point measures of Z,Y = Z~!, minimal
resistance Ry = min Re Z, negative sL or 1/(sC) (not PR).
Transform the negative elements to ideal transformers.

Filters: Synthesis of filters from the amplitude of the transfer function.

Sum rules: Integral identities for Herglotz and PR functions are
instrumental for the general procedure to construct sum rules for
passive systems [3].

Model order reduction: Reduce the complexity by approximation.
Passivity to compose systems.

Mathematics: Herglotz (and PR) functions appear in many

mathematical problems, e.g., the moment problems [1], operator
theory,
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Integral identities for Herglotz functions

Herglotz functions with the symmetry h(z) = —h*(—z*) (real-valued in
the time domain) have asymptotic expansions (Ny > 0 and N, > 0)

Im

No
h(z) = Zazn_lz%*l +o(z*M71) as 250 B
n=0

D Re

Noo
h(z) = Z bi_onzt 72 4 0(2172V%) as 2500 7
n=0

where = denotes limits in the Stoltz domain 0 < 6 < arg(z) <7 — 6
69). They satisfy the identities (1 — Noo < n < Ny)

—bon_1 n <0
1
2 [feImh i —1—b_ =0
lim lim 2 / Wh(e i) g g gy JO b
e—=0ty—ot T /. xen a1 — by n=1

a2n—1 n>1

Bernland, Luger, Gustafsson, Sum rules and constraints on passive systems, J. Phys. A: Math. Theor., 2011.
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Integral identities for Herglotz functions

Common cases

Known low-frequency expansion (a; > 0):
h(z) ~ {alz as 2?0
b1z as z>00

that gives the n = 1 identity (we drop the limits for simplicity)
2/1/€Imh(x—i—iy)d defZ/OOImh(x)
TP e 2
€ 0

lim lim — 5 — dr =a1-b1 < aq
e—0t y—0t+ T x s x

Known high-frequency expansion (short times) (b_; < 0):

h(z) ~ {al/z as 230

b_1/z as z>o0

that gives the n = 0 identity

2 o0
/ Imh(x)de =a—1 —b_1 < —b_;.
T Jo
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Example (input impedance of circuit networks)

A classical sum rule for linear circuit networks is the
resistance-integral theorem [4],[9],[27].

1.
2.
3.

A circuit network composed of passive elements.
The impedance between two nodes Z(s) is a PR function.

Consider the case with a shunt capacitor at the input terminal

Z1(0) as s=0

u(t) ¢ _— Z Z(S) ~ 1 a
5C as s— o0

where we assume that Z;(0) is finite.

Sum rule (integral identity with n =0, a; =0, by = 1/s)

2 [ 1
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Example (Temporally dispersive permittivity)

1. Linear passive material models with permittivity e(w) @810
2. he(w) = we(w) is a Herglotz function.
3. Consider the case without static conductivity

wes = we(0) as w0

he(w) = we(w) ~ {

Wexo = we(00)  as w300
4. Sum rule (integral identity with n =1, a1 = €, b1 = €x)

2 [*Inlil 2 [~ In{eo)
0 0

: dw = €5 — €
s w T w

Integrated losses are related to the difference €5 — €oo, cf,,
Landau-Lifshitz, Electrodynamics of Continuous Media[21] and
Jackson, Classical Electrodynamics[17].
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Example (Temporally dispersive permeability)

1. Linear passive material models with permeability p(w) satisfy
the corresponding sum rule

2 /°° mir,(w)} , 2 /°° Im{p(w)}

2 S 4, = 2 il Uk e’ §
0 0

D) dw = ps — poo
m w s w

showing that us > oo, [21, 17].

2. Sometimes considered a paradox for diamagnetic materials
(s < 1 and assuming pioo = 1). The paradox is resolved by
considering the refractive index with n., > 1 (due to special
relativity) and hence

€s + s

9 > \€slls = Mg = N

showing that diamagnetic materials (us < 1) have a static
permittivity (and/or conductivity).
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Sum rules and physical bounds on passive systems

General simple approach

Identify a linear and passive system.

2. Construct a Herglotz (or similarly a positive
real) function h(z) that models the
parameter of interest.

3. Investigate the asymptotic expansions of
h(z) as 20 and z-=00.

4. Use integral identities for Herglotz functions
to relate the dynamic properties to the
asymptotic expansions.

5. Bound the integral.

Examples: Matching networks [4, 5], Radar absorbers [23],
Antennas [12, 13, 10], Scattering [24, 2], High-impedance surfaces [15],
Metamaterials [11],Extraordinary transmission [14],Periodic structures [16]

Antenna D/Q.
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Systems for fixed frequency

We are in most cases interested in the system (transfer function)
for fixed (real-valued) frequencies. How do we define, measure, and
use U(w) for w € R?

Definition U(w) = limg_,o+ U(w +i&) if it exists. Analytic
functions are defined in open regions, e.g., Res > 0 or
Imw > 0.

Measure using a finite time-domain pulse, i.e., as
U(w) = limg_,o+ U(w +i&). (VNA??7)

Use in many mathematical proofs of well posedness of the Maxwell
equations, we use the uniqueness for negligible losses (or
equivalently a complex frequency w +i¢ and send £ — 07, i.e.,
U(w) = limg_,o+ U(w +1&). The sum rules (integral
identities) are defined as the limit £ — 0.

In many cases we consider the frequency domain value as the limit
from the complex valued frequency (i.e., from the open half plane).
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Example (Negative refraction, or how to interpret /—1-—1 = —17)

Consider a permittivity €(s) and permeability p(s). Passivity imply that P, = se(s)
and P, = spu(s) are PR functions. The refractive index n(s) can be determined from
the PR function P,(s) = sn(s), i.e., n(s) = Py(s)/s, where we use the square root
with branch cut at the negative real axis

sn(s) = Pa(s) = v/ Pe(s)Pu(s) = v/se(s)spu(s)

Im P.P, Im V- plm
TN SN
Re Re Re
P. P.P, /PP,
P,

The case e = —1, u~ —0.75, and w =~ 1 is depicted in the figure. We have
» P.~ —0.75j and P, = —j giving P.P, ~ —0.75, P, = —0.87i, and n =~ —0.87.
> The values are limits from an open region (e.g., the half plane, Re s > 0).
> Note, the corresponding case without PR functions (the multiplications with s)
requires a square root operator with branch cut at the positive real axis.
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Simple poles at the frequency axis

Im
T +1iy
a3 ay 0] 0 ap O3 a3  Re

& 528 & & & &

Passive transfer functions with simple poles at the frequency axis

are common. The following interpretations are similar:

Point measures with amplitude a,, > 0 at £, for 0 =1,.., N in the
representation theorem of PR (or Herglotz functions) giving

Od|n|8

2 2
S
e~ % T8

P(s) =sL+ for Res > 0.

Dirac delta distributions in the resistance I.e.,
R(w) = Re P(jw) = § > ajp6(w — sign(n)§),|). (neq freq?)
Fourier transform of the unit step is Jiw + 7d(w) that corresponds
to the limit of 1/s as Res — 0.
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Simple poles at the frequency axis |

Consider for simplicity the simple pole —1/z with z = = + iy, i.e,

~1 -1 —a+iy

- - with lim [ ¢(a)——2— dz = 7é(0)

z ::U+iy_:c2+y2 y—0+ x2 + 92
for smooth functions of compact support ¢(z).

Im 1 40Z(0 + jw)
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Are lossless one-ports lossless?

The archetype of lossless one-ports are networks composed of ideal
capacitors and inductors. Obviously there is no dissipation of power
in ideal capacitors and inductors but what happens at resonances?

Consider the LC-circuit

The impedance is lossless away from the resonance frequency, r.e.,
R(w) = Re{Z(jw)} = 0 for w # wo = 1/V/LC. We investigate the
resistance at the resonance frequency using
» absorbed energy in the time domain using the causal input
signal u(t) = sin(wt), t > 0 and u(t) =0, t < 0, see €&,
» sum rules that relate the all spectrum integral of R to the low-
and high-frequency asymptotic expansions.
» limiting value from the open half plane that can be interpreted
as a point measure (Dirac delta distribution) in the resistance.
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Are lossless one-ports lossless |17

v _ sL _ /L s/wo
T T 1+2LC NV C1+s2/w?

Time domain: The causal input current i(t) = Iy sin(wt) for ¢ > 0 and
i(t) = 0 for t < 0 gives the output voltage “JI%—Z" sin(wt)t and an
absorbed energy ~ t2 for w = wy = 1/\/@ see (C84),

Sum rule: The resistance Re Z(jw) = 0 for w # twy and satisfies [3]

2 [ Re{Z( L
lim lim f/ Re{Z(jw+ o)}y, _ \ Zwg P for p=0,41, ...
1>

—Ww
e=0t o0+ T w?p c o

<

that shows that the singularity at w = wp contributes to the resistance.
We can model the contribution as from point sources at +wy that is
similar to the delta distributions R(jw) = 75 (6(w — wo) + d(w + w)).

Limit: The limits from the poles at w = dwq imply a point measure in the
resistance.

Mats Gustafsson, Department of Electrical and Information Technology, Lund University, Sweden (52)



Foster's reactance theorem

Theorem (Foster’s reactance theorem)

The reactance X (w) of a lossless one-port monotonically increases
with frequency, i.e., %—f >0 forw € Q = (wy,ws) if Z=jX for
w € .

X
R~ §(w — wp)

0
dX

The reactance increases in the interval away from the singularity at
w = wp = 1/v/LC. Note that the assumption of no losses is
essential for the Foster's reactance theorem. The reactance
decreases rapidly (or is undefined) if the resistance is singular.

w
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Foster's reactance theorem

Theorem (Foster's reactance theorem)

Foster’s reactance theorem states that the reactance of a passive, lossless one-port
monotonically increases with frequency, i.e., % >0 forw e Q= (wy,wq) if Z=jX
for w e Q.

Proof.
Use the representation
o0

wﬁd'/(f)

P(s) = sL+/

in an open interval Q = (w1, ws) with dv(£) = 0 to get

w

X(w) =Im P(jw) = wL +/ dv(§) for weQ

R\ &2 — w?

We note that X (w) is a smooth function and that we can differentiate X (w) with
respect to w for w € Q = (w1, wa) giving

2 2
d);iw) :L+/R\Q(§2j7:2)2du(§)zo for weQ

O
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Foster's reactance theorem for constitutive relations

A result similar to the Foster's reactance theorem is often used for the permittivity
er(w), see [21, 11]. Using that se,(s) is a PR function and we,(w) is a Herglotz
function. Their corresponding representations give (Im e(w) = 0 for w € Q)

dhe  dwer(w)) £2 4+ w?
1= T et [ O e for weo

This pointwise bound on the derivative is not true when losses are present, even if
the loss (i.e., the imaginary part Im h(w)) is arbitrarily small. Consider, e.g., the
Lorentz model

wl/3/2

he(w) = €cow + with h(1) = eoo + /2 ~ €0

1—w?—ivw
where €., v > 0 and v < 1. However

dhe
dw

2+ iv
Ve

(1) = eno + iv'/? R€o— ——5 = —00 as v— 0.

U172

This simple example shows that it is very difficult to bound the derivative of Herglotz
functions (and hence € and ) pointwise at the frequency axis.
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Outline

@ Conclusions
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Why passive systems?

v

We can often show that we have a passive system from simple
energy arguments and causality.

v

Note that causality is a necessary conditions for passivity.

v

Passivity offers rich and powerful mathematics.

» Composition of two Herglotz functions is a new Herglotz
function.

also the alternatives to passivity can be difficult to show or
insufficient for analysis

» Causality is in general not sufficient to restrict the transfer
function to something useful. We also need some assumptions
of stability and/or restriction to some L space.

» Often 'very hard’ to show that a transfer function of an EM
system belongs to e.g., L? or LP spaces or is stable.
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Conclusions

» Finite energy (L?) and causality are natural
assumptions for signals. Titchmarsh’s

theorem connects causality with analyticity in u(t)
a half plane. /\ "

» Passivity and causality for systems. \/ \/ \,

» Herglotz and PR functions.

» Representation theorem.

> Frequency domain values as limits from the ut) — R | v(t)
interior of the half plane (similar to time
harmonic signals that need ¢ — c0).

» Sum rules.

A prior knowledge (assumption) of passivity is often
very easy to deduce and is very useful as it offers
many powerful mathematical tools.
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O Appendix
Distributions
Fourier- and Laplace transforms
Hardy space
Hilbert transform
Stoltz domain
Herglotz and PR functions
Integral identities
Time-domain representation
Lossless one-ports
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Functions, distributions, and systems

Basic differences between functions, distributions, and systems:

Functions Distributions Systems
Map numbers to Map test functions to Many possibilities, e.g.,
numbers, e.g., R - R, numbers, e.g., D = R, distributions to
C — C, or matrix D—-C, §—>C. distributions D’ — D’
valued. Continuous, or functions to
differentiable, or using functions.

equivalence classes

such as integrable LP.
There are many similarities for LTI systems, v = h * u, where the
impulse response h can be a function or a distribution.
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Distributions

Definition (Test functions)

D is the space of smooth test functions with compact support.

Definition (Distribution)

The elements of the space D’ of continuous linear functionals on D
are distributions.

Linear functionals are often denoted (f, ). We can identify regular
distributions (generated by functions) with the integral

(f.6) = /R F(H(t) dt

We often suppress the difference between functions and
distributions and use the same notation for distributions. In these
cases it is important to realize the symbol [ - - d- is just a notation
for the corresponding linear functional (-, ).
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Tempered distributions

Definition (Test functions of rapid descent)

The space S of smooth testing functions of rapid descent.

Definition (Tempered distribution)

The elements of the space S’ of continuous linear functionals on S
are tempered distributions (or distributions of slow growth).

» Subspace of D.
» The Fourier transform of a tempered distribution is a
tempered distribution.

» The Laplace transform of a casual tempered distribution is
analytic for Res > 0.
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Causality

Definition (Causality)

A distribution u on D(R) is causal if (u, ) = 0 for all test functions ¢(t) such that
¢(t) =0 for t >0, i.e, suppu C [0,00).77

The Laplace transform, U(s) = L{u}(s), of a causal tempered
distribution is analytic for Re s > 0. The limiting distribution at

the frequency axis Im

5 Re
lim (U(oc+-),¢) = lim / U(o + jw)o(w) dw
o0t oc—0t JRr
is a tempered distribution. Causality is hence not a very strong
condition to restrict the class of distributions.

Example

Derivatives (and anti-derivatives) of the Dirac delta distribution are typical examples

of causal distributions, i.e.,

dmé(t)
dtn

u(t) = 6M(t) = with U(s) = s"

where we note that U is bounded for n = 0 and passive for [n| < 1.
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Fourier- and Laplace transforms

The Fourier transform is usually defined for real-valued parameters
(the frequency axis) but can also be considered for complex-valued
parameters (e.g., a half plane). There are also many common
normalizations.

One particular illuminating case is the Fourier- and Laplace
transforms of the unit step, i.e,

FLO(0)Hw) = Ji b ro(w) for weR
and .
L{0(t)}(s) = B for Res >0

where we note that F{6} is a distribution and £{6} is an analytic
function in s = 0 + jw for Res > 0. Moreover, {0} is the limiting
distribution of £{#} at the frequency axis, i.e.,

lim (L£{0},¢) = (F{6},9)
oc—0t+
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Fourier- and Laplace transforms

Consider a causal impulse response
h(t) in the form of a tempered
distribution h € S’

» The Laplace transform
L{h(t)}(s) is analytic for o > 0
with s = o + jw.

» The Fourier transform
F{h(t)}(w) is a tempered
distribution for w € R.

> They are related at the
frequency axis o — 0T,

For the sub class of passive impulse
responses, we can use the
representations for PR (or Herglotz)
functions to restrict the spaces for
the impulse response and transfer
functions.

] F
Causal impulse
response, h € .
S’ (tempered o0
distribution
) L
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Hardy space H?

Definition (Hardy space HP)

The Hardy space HP is the space of holomorphic functions
in the upper (or right) half plane with the norm

Im

l .
lullge = sup (/ fu(z + iy)[? dx>” z+1y|Cs po
y>0 \JR

and the bounded analytic functions

7 Got:lfrey Harold
Hardy 1877-1947

|ul|gee = sup |u(z)| where C; = {z+iy:z € R,y > 0}
zeCy

» Boundary values u € P on the real axis.
» Also for the unit disk.

Frigyes Riesz
1880-1956
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Hilbert transform

Definition (Hilbert transform)

The Hilbert transform is

H{u)o) = +f 1 ar

t—T

where a Cauchy principal value integral is used.

Properties
» Bounded in L? for 1 < p < oo.
» Inverse H{H{u}} = —u. Pl862.1048
» Convolution with the tempered distribution

h(t) = pv.dy, H{u} = hxu.
Relates the real and imaginary parts of boundary

functions in HP for 1 < p < oc.
King, Hilbert Transforms I,11 (2009) [18],[19].

v
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Sokhotski—Plemelj theorem

Theorem (Sokhotski-Plemelj theorem)

The Sokhotski—Plemelj theorem expresses the value of an
analytic function as a Cauchy principal value integral over a
(smooth) closed simple curve

C
L[ f(Q f(z
fu0) = 5 f. L g 12
miJo ¢ — 2 2 ~
where f1(z) is the limit value from the interior/exterior of
the curve C Josip Plemelj
1873-1967
Properties Julian Karol
Sochocki
> Interpreted as the Cauchy formula and half the residue 1847-1927

of the pole.

» Similar to the Hilbert transform for half planes and
sufficiently regular functions (decay at infinity).
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Stoltz domain

The symbol = denotes limits in the Stoltz
domain. For w=0 (upper) and s=0 (right)
half planes, we use any 0 < 6 < 7/2 and

f<argw<m—0 or\args\ﬁ%—@

and similarly for w00 and s>00

Example (time delay)

The time delay I'(s) = e~ 57 is scattering
passive and imply the PR function

1= 1—e7

—1+F—1+e_ST:tanh

Y(s) (5) =1
as s—00 although the limit s — oo for s = jw
does not exist.

upper half plane

Im
w
0
T Re
right half plane
Im
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Hurwitz polynomials

Definition (Hurwitz polynomial)

A Hurwitz polynomial satisfies

1. P(s) = P*(s*) (real valued coefficients)
2. The roots have real parts that are non-positive.

All coefficients have the same sign (usually chosen positive). Divide
P(s) into its even m(s) and odd n(s) parts. A necessary and
sufficient condition that P(s) = m(s) + n(s) is Hurwitz is that the
continued fraction expansion

=Cis+

n(s) o L A
255+ —————— -

C3s +
Cps

has C1, Cs, Cs, ...,Cp > 0.
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PR and Hurwitz polynomials

PR functions are sometimes restricted to be rational

functions [8, 9]. This is common in network analysis and directly
applicable to the input impedance for lumped circuit networks.
Decompose the polynomials of a rational PR function in even,
m1, ms, and odd, nq,no, parts

we have the Hurwitz polynomials

my1 + ni,my + ng, ma + ny, mg + na2, and
mi(s) mi(s) ma(s) ma(s)
ni(s)’ na(s)’ m(s)’ na(s)

are the impedance of LC ladder networks.
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Positive Real lemma

Consider the (controllable) state-space model

dx
e Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
with the transfer function

H(s) =D+ C(sI - A)"'B

Theorem ... H(s) is passive if and only of there exists a symmetric
positive definite matrix K (K = K*, K > 0) such that

~ATK—-KA —-KB+CT -0
-BTK +C D+ DT =
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Herglotz...

There are several alternative to the representation of Herglotz
functions from Imz > 0 — Im z > 0.

unit circle to right half-plane

27 ei@ P
1) = [ G ano)

elf — z
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Herglotz and PR functions: Simple examples

Elementary Herglotz functions, h(z), are

1 h
z, —, 1iV—iz, tan(z) Im  —— Im
z
‘ z ‘ h(z)
with the related PR-functions, P(s) { Re | Re
(2 =1is and h =iP)
Im P Im
! ’ & - Hs)
S
S o Vs, tanh(s) Re e

Also with the Cayley transform ’ ’

14+7r(z)

h(z) = 11—77"(2)’

Re

where |r(z)| <1 and holomorphic for
Im z > 0 (a paSSIVe reﬂectlon Herglotz, PR, and reflection coefficients.
coefficient).
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Herglotz functions: pulse function

& 2*hA<I)
W, h . Hilb Lr Im hy(x)
e can use the representation (Hilbert Re hy(z .
transform) to construct Herglotz i z
functions, e.g., the pulse function T TR A
L
1 1 1., z—A L
hA(z):—/ dé=—1In ) 2l
7T lgl<Aa 5 -z m z+ A Y Im hy(z+iy)

Composition of Herglotz function offers
additional possibilities, e.g.,

ha(tan(z)), and ha(tan(—1/z))

oo

-1.5 -1 -0.5 0 0.5 1 1.5 2

The Herglotz function h 5 (2z) with A = 1.
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Simple examples of integral identities |

tan(z) and tan(—1/z) are Herglotz
functions.
Asymptotic expansions

i, as z=20

tan(—1/z) ~ 1/

as z—00

Note, the limit 220 is for
0 <6 <arg(z) <m—46. The limit for
z =x — 0 is not well defined.

Integral identities for n = ..., 0, e.g.,
n=>0

2 [le ~1
lim lim — / Im{tan }dx
e—=0t y—0t+ T J, 1y

=1

] 02 04 06 08 1

Im{tan(—1/2)}, z = = 4 i0.0001.

WU\

Im{tan( l/z)} z = 17(1 + i0.1).

: 15
1
05
0

0 02 04 06 08 1

Im{tan(—1/z)} with z = = + iy.
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Simple examples of integral identities |l

15

The Herglotz function — cot(—1/z) has Dl:

-05

i, as z=>0 .

—cot(—1/z) = —1/tan(—1/z) ~ {

Z, as Z—A)o(:"sn 0.2 0.4 06 0.8 1

. . Im{hyi(z)} for A = 1/2 in blue with the
Compose with the pulse function area (under the blue curve) A.

0.1 1

. 0.8

. 0.6

. 0.4

. 0.2
00 0.2 0.4 0.6 0.8 1 0

Im{hi(z +iy)} for A=1/2,0< z <1,

hi(z) = hA(—cot(_?l)) ~ {}iﬁg) =3, as 20

Tz

as z—00

Integral identity for n =0

/oo Im{hy(z))} dz = A

0

and 0 < y <0.1.
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Simple examples of integral identities |l

The Herglotz function — cot(—1/z) has 0

i, as z50

—cot(—1/z) = =1/tan(—1/z) ~

0.2 0.4 0.6 08 1

N -1.5,
zZ, as z—oo °

) . Im{hi(z)} for A = 1/2 in blue with the
Compose Wlth the pu|5e 'FUnCtIOﬂ area (under the blue curve) A. cot(1/z2) in

red.

B -1 N ha(i) = 5, as 20 ° !
h1<Z> hA( COt( 2 )) _772ZA7 as 2500 ! 08
. 0.6
Integral identity for n =0 o
o0
/ Im{hi(x))}de=A ' "
0 00 0.2 0.4 0.6 0.8 1 0

Im{h(z +iy)} for A=1/2,0< = <1,

and 0 < y <0.1.
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Time-domain representation of passive systems

The impulse response of a passive system has the representation

h(t) = Lo (8) + 6(t) / cos(€t) du(€)
R
where L >0 and [ ﬁdy(f) < o0 [31]. Also note that
L{cos(&L)0(t)} = ﬁ

Example

The impulse response and transfer function
h(t) = L&' (t) + R10(t) + Ra6(t — 7), H(s) = sL+ Ry + Roe 7

are passive if L,7 > 0 and R; > |Rs|.
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Time-domain representation of passive systems Il

The admittance passivity is (h is a distribution)

W(T)—Re/ ot (Bu(t) dt = Re/ / Yu(r)dr dt > 0

for all u € D. Here, we note that passivity is related to positive
semidefiniteness of the kernel h(t — 7). The impulse response can
be written [31]

h(t) = L&' (t) + ho(t)
where L > 0 and hg(t) is a causal distribution of zero order with a
positive semidefinite even part, i.e., hoe = 5 (ho(t) + ho(—t)) and

(U, hoe * u) = // t)hoe(t — T)u(r)drdt >0 forall uweD

see also Bochner's theorem and positive-definite functions.
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Examples (Passive systems: time-domain material modeling)

The linear, causal, time translational invariant, continuous, non-magnetic,
and isotropic constitutive relations are

D(t):egeooE(t)+eo/Rx(t—t')E(t’)dt’ E(t) — ¢ — D(t)

where x(t) = 0 for t < 0 and e > 0 is the instantaneous response. The
material model is passive if

T
0< /E(t) oD(t

for all times T" and smooth compactly supported fields E. Comparing with
the general passive system, we get the relation

//E(t (€acd(t—T)+x(t—7))E(r)dr dt

—oo R

2 {exB(0) +(0) = 20'0) +0(0) [ costet)au(e

that corresponds to the PR-function se(s) = P(s). We have L = ey, and

t):/oi/Rcos(&')du(@ dr
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Examples (Passive systems: time-domain material modeling)

The linear, causal, time translational invariant, continuous, non-magnetic,
and isotropic constitutive relations are

D(t):eoeooE(t)+60/]Rx(t—t/)E(t/)dt/ E{t)—| ¢ = D)

where x(t) = 0 for ¢t < 0 and eo, > 0 is the instantaneous response. The
material model is passive if

T T
0< /E(t).algt(t) dtzeg//E(t)-%(6005(t—7')+x(t—7'))E(7')det

—o0 R

for all times T" and smooth compactly supported fields E.

» Similarly for the magnetic fields.

» The presented results are also valid for the diagonal elements of
general bi-anisotropic constitutive relations.

» Fourier transform to get the frequency-domain model
D(w) = epe(w) E(w), where we(w) is a Herglotz function.
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Integral identities for PR functions

PR functions have asymptotic expansions (Ny > 0 and N, > 0)

No
P(s) = Z o157 4+ o(s?M7) as 5530

n=0

Noo
P(s) = Z by_ons' 72 4 o(s' 72 V=) as so00
n=0

They satisfy the identities (1 — Noo < n < Np)

(—l)ann_l n <0
2 /1/5 Re P(o + jw) b1 —a—q n =
3

Iim lim — T dw =

e—=0T 0—0+ T w aip — by n =

(—1)”+1a2n_1 n>1

For notational simplicity the limits are (often) omitted.

Bernland, Luger, Gustafsson, Sum rules and constraints on passive systems, J.Phys.A:

Math.Theor.,2011.
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Integral identities for PR functions: Common cases

Known low-frequency expansion (a; > 0):

P(s) ~ {als as sA%O
bis as s>oo

that gives the n = 1 identity (we drop the limits for simplicity)

1

2 (< ReP j 2 [ ReP(j
i i 2 [ RLO LI g 2 [TRPLD) oy <
e=0t y—0t T /o w T Jo w

Known high-frequency expansion (b_; > 0):
P(s) ~ a_1/s as 5?0
b_1/s as s>o0
that gives the n = 0 identity
2 o0
/ Re P(jw)dw =b_1 —a—1 < b_1.
0

™
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Are lossless one-ports lossless? (details time domain)

Consider the causal input current i(t) = Iysin(wt) for ¢ > 0 and i(t) = 0 for ¢ < 0. We have the ODE

d%v +uly 1di
I
a2 TN Cadt
with the impulse response
h(t) = wy ' sin(wot) for £ >0

and h(t)=0 for t<0
and the solution for w = wy = 1/vLC and using Zy = \/L/C

v(t) = Zo /jw

sin(w(t — T))%(T) dr = wlyZo /Ol sin(w(t — 7)) cos(wr) dr =

VA s(wt — 2
— wlzo ; 0 [sin(wt)f - coslwt = 2wr) wT)]

wlyZy

/t (sin(wt) + sin(wt — 2wr)) d7
0

t
whZo (. cos(wt) | cos(wt)\  wloZy .
% T2 (sm(wt)t % % = sin(wt)t,
where it is noted that the amplitude of v(t) increases with ¢ which is consistent with the pole at wy.
The power i(t)v(t) = WI‘;ZU sin?(wt)t > 0 and the energy
wizy [T wizzy [T wi3Zy (2 tsin@wt)]” [T sin(2wt)
T) =" sin?(wt)t dt = 07 /t—t s(2wt) dt = —02 | |~ — == —/ dt
W(T) ) /U sin®(wt) 1 A cos(2wt) ) 3 % , A %
wldZy (1% Tsin(2wT) cos(2wt)
- — 2y
4 2 2w

T 2
_LGL (5 . 1 cos(2wT)

T2 L) =5 (w T° — Twsin(2wT) + 3 2
The corresponding stored energies in the capacitor and inductor are (wZyC' = Zy/(wL) = 1)
2 2 i2 27272 2
We(T) = @ _ szTz sin?(wT), Wi(T) = L) _ %l (/ sin(wt)t dt)? = ﬂ(sin(wT) — wT cos(wT))?
2 3 2 3L o 3
that verifies that the energy is stored in the capacitor and inductor, i.e.,

Wel(T) + WL(T) = %Ig (w*T? — wI2sin(wT) cos(wT) + sin (W) = W(T)
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Problems |

1. Show that v(t) = 4% = +/(t) is a passive system. a) in the

time domain. b) in the frequency domain.

2. Show that v(t) = % = u®)(t) is a causal but not passive. a)

in the time domain. b) in the frequency domain.

3. Show that the Lorentz model ¢,(s) =1+ m with
a, 3,7, > 0 generates a passive material model. a) using
Maxwell's equations in the time domain. b) using the PR
function P(s) = sex(s).
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Problems Il

4. Consider the function h(z) = tan(—1/z) with z =z + iy

4.1 Show that h(z) is a Herglotz function.

4.2 Determine the poles of h(z).

4.3 Plot (Re and Im) of h(z +1iy) for 0 < z < 1, y = 0.001.

4.4 Plot (Re and Im) of h(x) for 0 < z < 1 and investigate the
limit h(z) as z — 0.

4.5 Plot (Re and Im) of h(z) for z = z(1+10.01), 0 <z < 1 and
investigate the limit h(x) as z — 0.

4.6 Determine h(z) for 20 and z—o00. €269

4.7 Evaluate the sum rule (n = 0) from €241,

4.8 Evaluate the integral in the sum rule (n = 0) from €24t
numerically.
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