Lecture on multidimensional passivity with applications to electrodynamics

Lars Jonsson ${ }^{1}$
${ }^{1}$ School of Electrical Engineering
KTH Royal Institute of Technology, Sweden

August 2015

Table of contents

(1) Plan of the Lecture
(2) Passivity and Multidimensional systems
(3) Representation Theorems

4 Representation theorems II - Herglotz
(5) Conclusions

Plan of the lecture

Key ingredients

- First part is to show Analyticity and positivity properties.
- Passive multi-dimensional systems have analytic and positive type kernels.
- Second part we examine types of representation theorems
- Cauchy-type representation theorems (boundedness, dispersion rel.)
- Herglotz-type/Schwartz kernel.
- Parallel to the above investigation we look on a few applications

Most of the material in these lectures are based on the books Vladimirov, Methods of the theory of Generalized Functions, 2002 Reed \& Simon Methods of Modern Mathematical Physics Part II, Fourier Analysis, Self-Adjointness 2003, King, Hilbert Transforms, 2009

Goal: Limitations of measurable quantities

Goal: Limitations of measurable quantities

Table of Contents

(1) Plan of the Lecture
(2) Passivity and Multidimensional systems

- Linear systems
- Passivity
- Cones and some of their properties
- The Laplace transform of system kernels
(3) Representation Theorems

4 Representation theorems II - Herglotz
(5) Conclusions

Linear system

Definition of linear system [Vladimirov 2002]

Input: $u(x)=\left(u_{1}(x), \ldots, u_{N}(x)\right)$. Output: $f(x)=\left(f_{1}, \ldots, f_{N}\right)$.

- Linearity. If u_{a} generates f_{a}, and u_{b} generates f_{b} then $\alpha u_{a}+\beta u_{b}$ generates $\alpha f_{a}+\beta f_{b}$.
- Reality: If u is real, then f is real-valued.
- Continuity: If $u_{j} \rightarrow 0$ for all $j \in[1, N]$ in \mathcal{E}^{\prime} then $f_{k} \rightarrow 0$ in \mathcal{D}^{\prime} for all k.
- Translational invariance: If $f(x)$ is associated with $u(x)$ then for any translation $h \in \mathbb{R}^{n}$ to the original perturbed $u(x+h)$ there corresponds a response perturbation $f(x+h)$

There exists a unique $N \times N$ matrix $Z(x)$, with $Z_{j k} \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$ such that $f=Z * u$.
\mathcal{D} is smooth functions of compact support. \mathcal{D}^{\prime} is the space of generalized functions. \mathcal{E}^{\prime} is the space of generalized functions with compact support.

Passivity

Admittance-passivity

A function Z is admittance passive relative to the cone Γ if for any $\phi(x) \in \mathcal{D}^{\times N}$ then $\left\langle Z, \phi * \phi^{*}\right\rangle \geq 0$, or (if $Z \in L_{l o c}^{1}$ then

$$
\operatorname{Re} \int_{-\Gamma}(Z * \phi) \cdot \bar{\phi} \mathrm{d} x=\operatorname{Re} \int_{-\Gamma} \int(Z(x-y) \phi(y)) \cdot \bar{\phi}(x) \mathrm{d} y \mathrm{~d} x \geq 0
$$

Examples:

- 1-dim, linear 1-port circuit theory $R L C$-nets with zero initial conditions.
- n-dim, linear n-port circuit theory with $R L C$-components, with zero initial conditions.
- All passive Cauchy systems with constant matrices have Z_{j} real symmetric of the form $\sum_{j} Z_{j} \partial_{j}+Z_{0}$, with $\sum_{j} q_{j} Z_{j} \geq 0, \forall q \in \operatorname{int} C^{*}$ and $\operatorname{Re} Z_{0} \geq 0$. (Maxwell, Linear acoustics, light cone) [Vladimirov 20.6 Thm 1]

Physical system and cones

Cones are important for passivity

- The generalization of the half-line support that gives Herglotz functions is a cone.
- Passivity for a N-dimensional linear systems can be defined with respect to some cone.
- Functions with support in a cone (causality) have nice properties when the are Fourier/Laplace transformed.
- Next we examine some basic properties of cones.

Cones

Cone

- A cone $\Gamma \subset \mathbb{R}^{n}$, with vertex 0 is a set such that if $x \in \Gamma$, then $\lambda x \in \Gamma$ for all $\lambda>0$.
- The conjugate Γ^{*} to the cone $\Gamma \subset \mathbb{R}^{n}$ is the set

$$
\Gamma^{*}=\left\{\xi \in \mathbb{R}^{n}: \xi \cdot x \geq 0, \text { for all } x \in \Gamma \subset \mathbb{R}^{n}\right\}
$$

Cones in \mathbb{R} and in \mathbb{R}^{2}.
Other cones: positive hermitian matrices and the functions of positive type, $f: \mathbb{R}^{n} \mapsto \mathbb{C}$ such that $\left\{f\left(\lambda_{i}-\lambda_{j}\right)\right\}_{i j}$ positive matrix in \mathbb{C}^{N} for all $N_{\text {a }}$

Conjugate cones - Quiz

$$
\Gamma^{*}=\left\{\xi \in \mathbb{R}^{n}: \xi \cdot x \geq 0, \text { for all } x \in \Gamma \subset \mathbb{R}^{n}\right\}
$$

Example 1: Determine Γ^{*} for $\Gamma=\mathbb{R}_{+}$

We seek all $\xi \in \mathbb{R}$ such that $\xi x \geq 0$, for $x>0$. Clearly $\Gamma_{R_{+}}^{*}=\{\xi \in \mathbb{R}: \xi \geq 0\}=\bar{\Gamma}_{\mathbb{R}_{+}}$.

Quiz

Determine Γ^{*} for the cone $\Gamma=\mathbb{R}_{+}^{2}$.

Conjugate cones - Quiz

$$
\Gamma^{*}=\left\{\xi \in \mathbb{R}^{n}: \xi \cdot x \geq 0, \text { for all } x \in \Gamma \subset \mathbb{R}^{n}\right\}
$$

Example 1: Determine Γ^{*} for $\Gamma=\mathbb{R}_{+}$

We seek all $\xi \in \mathbb{R}$ such that $\xi x \geq 0$, for $x>0$. Clearly $\Gamma_{R_{+}}^{*}=\{\xi \in \mathbb{R}: \xi \geq 0\}=\bar{\Gamma}_{\mathbb{R}_{+}}$.

Quiz

Determine Γ^{*} for the cone $\Gamma=\mathbb{R}_{+}^{2}$.

Alternatives

(1) $\left\{\left(\xi_{1}, \xi_{2}\right) \in \mathbb{R}^{2}\right\}$ i.e. all ξ_{1} and ξ_{2} in \mathbb{R}
(2) $\left\{\left(\xi_{1}, \xi_{2}\right) \in \mathbb{R}^{2}\right.$, such that $\left.\xi_{1}>0, \xi_{2}>0\right\}$
(3) $\left\{\left(\xi_{1}, \xi_{2}\right) \in \mathbb{R}^{2}\right.$, such that $\xi_{1} \geq 0$ and $\left.\xi_{2} \in \mathbb{R}\right\}$
(4) $\left\{\left(\xi_{1}, \xi_{2}\right) \in \mathbb{R}^{2}\right.$, such that $\xi_{1} \geq 0$ and $\left.\xi_{2} \geq 0\right\}$

Answer

$$
\Gamma^{*}=\left\{\xi \in \mathbb{R}^{n}: \xi \cdot x \geq 0, \text { for all } x \in \Gamma \subset \mathbb{R}^{n}\right\}
$$

Conjugate cone for Γ^{*} for $\Gamma=\mathbb{R}_{+}^{2}$

We seek all $\xi \in \mathbb{R}^{2}$ such that $p=\xi \cdot x \geq 0$, for all $x \in \Gamma_{\mathbb{R}_{+}^{2}}$.

Interior vectors in Γ, i.e. $\boldsymbol{u}_{1}=(1, \varepsilon), \boldsymbol{u}_{2}=(\varepsilon, 1)$.

Acute cones

Example: The cone $\mathbb{R} \times \mathbb{R}_{+}$have int $\Gamma^{*}=\varnothing$

A cone is acute if it does not contain an integral straight line.
Acute cones have int $\Gamma^{*} \neq 0$.

Exercise L.1:

Show that a) that $\left(V_{2}^{+}(c)\right)^{*}=\bar{V}_{2}^{+}(1 / c)$. b) Determine $\left(\mathbb{R} \times \mathbb{R}_{+}\right)^{*}$.

Examples of acute cones, Vladimirov 4.4

$$
\begin{aligned}
& \mathbb{R}_{+}^{1}, \quad \mathbb{R}_{+}^{n}=\left\{x: x_{1}>0, x_{2}>0, \ldots x_{n}>0\right\},\left(\mathbb{R}_{+}^{n}\right)^{*}=\overline{\mathbb{R}_{+}^{n}}, \\
& C= \\
& \quad\left\{x \in \mathbb{R}^{n}: \hat{\boldsymbol{e}}_{i} \cdot x>0 \forall i\right\}, C^{*}=\left\{\xi: \xi=\sum_{k} \lambda_{k} \hat{\boldsymbol{e}}_{k}, \lambda_{k} \geq 0\right\}, \\
& \\
& \quad \text { if }\left\{\hat{\boldsymbol{e}}_{i}\right\} \text { is a } \mathbb{R}^{n} \text { - basis } \\
& V_{4}^{+}=\left\{x=\left(x_{0}, \boldsymbol{x}\right): x_{0}>|\boldsymbol{x}|\right\} \subset \mathbb{R}^{4},\left(V_{4}^{+}\right)^{*}=\bar{V}_{4}^{+} \\
& P_{n} \subset \mathbb{R}^{n^{2}}, \text { positive hermitian matrices, } P_{n}^{*}=P_{n}
\end{aligned}
$$

Consequences of passivity [Vladimirov kap 20.2]

Strong passivity

$$
\begin{equation*}
\operatorname{Re} \int_{-\Gamma}\langle Z * \phi, \phi\rangle \mathrm{d} x \geq 0 \forall \phi \in \mathcal{D}^{\times N} \tag{1}
\end{equation*}
$$

Implies

$$
\begin{equation*}
\int_{-\Gamma+x_{*}}\langle Z * \phi, \phi\rangle \mathrm{d} x \geq 0, \forall \phi \in \mathcal{D}^{\times N}, \forall x_{*} \in \mathbb{R}^{n} \tag{2}
\end{equation*}
$$

Proof: $\phi_{x_{*}}(x)=\phi\left(x+x_{*}\right) \in \mathcal{D}^{\times N}$. Time translational invariance gives:

$$
\begin{array}{r}
0 \leq \operatorname{Re} \int_{-\Gamma}\left\langle Z * \phi_{x_{*}}, \phi_{x_{*}}\right\rangle \mathrm{d} x=\operatorname{Re} \int_{-\Gamma}\left\langle(Z * \phi)\left(x+x_{*}\right), \phi\left(x+x_{*}\right)\right\rangle \mathrm{d} x \\
=\int_{-\Gamma+x_{*}}\langle Z * \phi, \phi\rangle \mathrm{d} x . \square \tag{3}
\end{array}
$$

[Bochner-Schwartz Thm] $f \in \mathcal{D}^{\prime}, f \gg 0 \Leftrightarrow f=\mathcal{F}[\mu]$, and $\mu, f \in \mathcal{S}^{\prime}$, $\mu \geq 0$ measure.

Causality

Passivity yields causality; [Youla, Castriota, Carlin, 1959]

A linear passive system as defined above implies causality, i.e. that

$$
\begin{equation*}
\operatorname{supp} Z(x) \subset \Gamma \tag{4}
\end{equation*}
$$

Proof [Vladimirov]: Given $\phi, \psi \in \mathcal{D}^{\times N}, \lambda \in \mathbb{R}$. Let $\phi \rightarrow \phi+\lambda \psi$. Thus

$$
\begin{equation*}
0 \leq \int_{-\Gamma}\langle\phi, \phi\rangle \mathrm{d} x+\lambda \int_{-\Gamma}\langle Z * \phi, \psi\rangle+\langle Z * \psi, \phi\rangle \mathrm{d} x+\lambda^{2} \int_{-\Gamma}\langle\psi, \psi\rangle \mathrm{d} x \tag{5}
\end{equation*}
$$

We have a quadratic equation in λ that is non-negative this implies:
$\left[\int_{-\Gamma}\langle Z * \phi, \psi\rangle \mathrm{d} x+\int_{-\Gamma}\langle Z * \psi, \phi\rangle \mathrm{d} x\right]^{2} \leq 4 \int_{-\Gamma}\langle Z * \phi, \phi\rangle \mathrm{d} x \int_{-\Gamma}\langle Z * \psi, \psi\rangle \mathrm{d} x$
If $\operatorname{supp} \phi \subset \mathbb{R}^{n} \backslash(-\Gamma)$. Then $\int_{-\Gamma}\langle Z * \phi, \psi\rangle \mathrm{d} x=0$
$\forall \psi \Rightarrow Z * \phi=0, x \in \Gamma$. Let $x=0$ then $\left(Z\left(-x^{\prime}\right), \phi\left(x^{\prime}\right)\right)=0$
$\forall \phi \in \mathcal{D}\left(\mathbb{R}^{n} \backslash(-\Gamma)\right) \Rightarrow Z(-x)=0, \forall x \in \mathbb{R}^{n} \backslash(-\Gamma) . \square$

Remarks on passivity

- Another passivity concepts. 1D (circuit) n-Port passivity:
$E(x)=\sup _{T>0 ; x} \int_{0}^{T}-\langle v(t ; x), i(t ; x)\rangle \mathrm{d} t$. A system is passive if $E(x)<\infty$ for all allowed states x. [Wyatt etal: Energy concepts in state-space 1981]
- Multidimensional (nonlinear) state space passivity: Given a system N, with power $p(\boldsymbol{t})$ supplied to the system, where $\boldsymbol{t} \in \mathbb{R}^{n}$. N is multidimensionally passive system if there exists a stored energy vector \boldsymbol{W}_{s} such that

$$
\begin{equation*}
p(t) \geq \sum_{k} \partial_{t_{k}} \hat{\boldsymbol{W}}_{k}(\boldsymbol{t}), \text { where } \hat{\boldsymbol{W}}_{s}(\boldsymbol{t})=\boldsymbol{W}_{s}(\boldsymbol{q}(\boldsymbol{t}), \boldsymbol{t}) \tag{6}
\end{equation*}
$$

for admissible states \boldsymbol{q}. [A. Fettweis, S. Basu, Multidimensional causality and passivity of linear and nonlinear system arising from physics, 2011]

- Linear passive systems without translational invariance are also studied in Drozhzhinov 1981.

Tubular neighbourhood of a cone

Definition: Tubular neighbourhood

The tubular neighbourhood of a convex cone $\Gamma \subset \mathbb{R}^{n}$ is the set

$$
\begin{equation*}
T^{C}=\mathbb{R}^{n}+\mathrm{j} C, C=\operatorname{int} \Gamma^{*} \tag{7}
\end{equation*}
$$

Thus $z=x+\mathrm{j} y \in T^{C} \Rightarrow x \in \mathbb{R}^{n}, y \in C$.

$$
\begin{array}{cl|l}
z=x+\mathrm{i} y, x \in \mathbb{R}, y \in \mathbb{R}_{+} & & \\
y>0 & z=x+\mathrm{i} y, x \in \mathbb{R}^{2}, y \in \mathbb{R}_{+}^{2}, y_{j}>0
\end{array}
$$

Analyticity and growth condition of $\mathcal{L}[Z]$

Recall: Fourier transforms, functions $-\mathcal{F} u(\xi)=\int_{\mathbb{R}^{n}} u(x) \mathrm{e}^{\mathrm{j} \xi \cdot x} \mathrm{~d} x, \xi \in \mathbb{R}^{n}$. Distributions $\mathcal{F} Z(\phi):=Z(\mathcal{F} \phi) \cdot\left(=\int\left(Z, \mathrm{e}^{\mathrm{j} \xi \cdot x}\right) \hat{\phi}(\xi) \mathrm{d} x Z\right.$ compact support).
(Bilateral) Laplace transform:
$(\mathcal{L} u)(z):=\mathcal{F}\left[u \mathrm{e}^{-\eta \cdot x}\right]=\int \mathrm{e}^{-\eta \cdot x} \mathrm{e}^{\mathrm{j} \xi \cdot x} u(x) \mathrm{d} x, z=\xi+\mathrm{j} \eta$
$\eta \in \Gamma^{*}=\{\eta: \eta \cdot x \geq 0, x \in \Gamma\}$.

Theorem of analyticity [Reed \& Simon II.IX.16]

Let $Z \in \mathcal{S}^{\prime}(\Gamma)$, then $\mathcal{L}(Z)$ is analytic in $T^{C}, C=\operatorname{int} \Gamma^{*}$ (Note interior region). Furthermore

$$
\begin{equation*}
|\mathcal{F}[Z](\xi+\mathrm{j} \eta)| \leq|P(\xi+\mathrm{j} \eta)|\left(1+\left[\operatorname{dist}\left(\eta, \partial \Gamma^{*}\right)\right]^{-N}\right) \tag{8}
\end{equation*}
$$

for a suitable polynomial P and positive integer N.
Note: This is a generalization of the Paley-Wiener theorem, by Schwartz 1934, Gårding and Bros-Epstein-Glaser 1967 and others.
Note: A kind of converse of the theorem exists in R\&S.

Passive linear system in Laplace domain - first goal

Properties

Let $Z \in \mathcal{S}^{\prime}$, and $Z(z):=\mathcal{F}(Z)$, where Z is a passive linear system.

- $Z(z)$ is analytic in T^{C}. Furthermore if $Z \in \mathcal{D}$ and it is linear passive then $Z \in \mathcal{S}$.
- The condition of reality: $Z(z)=\bar{Z}(-\bar{z}), z \in T^{C}$.
- Positivity $\operatorname{Re} Z(z) \geq 0, z \in T^{C}$.
- $Z(z)$ corresponds to a passive operator if Z is a positive real matrix function in T^{C}.
- (Bros-Epstein-Glaser) If Γ is a open convex cone and $Z \in \mathcal{S}^{\prime}$ with support in $\bar{\Gamma}$, Then there exists a polynomially bounded function G with support in $\bar{\Gamma}$ and a partial differential operator $P(D)$ such that $Z=P(D) G$.

Quiz

What role does the conjugate cone play in the Laplace-transform of $Z(\boldsymbol{x})$?

Quiz

What role does the conjugate cone play in the Laplace-transform of $Z(\boldsymbol{x})$?

Alternatives

- Support of $\mathcal{L} Z(\boldsymbol{k})$
- Region of analyticity of $\mathcal{L} Z$
- Region of passivity of $Z(\boldsymbol{x})$

Table of Contents

(1) Plan of the Lecture
(2) Passivity and Multidimensional systems
(3) Representation Theorems

- Titchmarch theorem 1D, (Cauchy-kernel approach)
- Cauchy-kernel and generalized Titchmarch's theorem, n-dim
- Application test - dispersion relations
- Applications con't

4 Representation theorems II - Herglotz
(5) Conclusions

This section - utilize the analyticity

Efforts toward definitions

Definition: Representation theorem [Wikipedia]

"A representation theorem is a theorem that states that every structure with a certain property is isomorphic to another (abstract or concrete) structure."

Isomorphorphic (iso = equal morphe=shape).
Roughly: We search for identifications between two ways (here) to describe system responses, seen as a method to describe a class/set of functions.

Definition Sum-rule [e.g. Bernland 2012]

A sum or integral [of a family of functions] that relates to a 'fixed value'
Note 1: Dispersion relations are an example of representation theorems, they can be made into 'sum-rules' by studying it at origin, or apply transformations.
Note 2: King in Hilbert transform also call some representation theorems for sum-rules, but mostly lean towards the latter description. See examples and discussion in Chapt. 19.

Classes of representation theorems

Classes of representation theorems for systems

- Spectral decomposition. Certain 'nice' (e.g. self-adjoint) operators are fully described through their spectral measure.
- Cauchy-kernel representations (Hilbert-transform pairs; Cauchy-Bochner transform (relations to (Cauchy-)Szegö and Poisson-kernel representations)
- Reproducing kernel Hilbert spaces; Riez representation theorem. E.g. band-limited functions. Centered around the boundedness of the evaluation operator.
- Herglotz representation (1D) of certain holomorphic functions. All Herglotz-functions can be characterized through two constants and a class of positive Borel-measures. (Schwartz-representations).

These categories are not independent. [wikipedia] The spectral representation of Positive symmetric L^{2}-integral operators is also a reproducing kernel hilbert space.

Titchmarsh thm [e.g. Bernland's PhD thesis, Lund '12]

1-dimensional case. Let $g(\omega)=\mathcal{F}(f)(\omega)$ belong to L^{2} for $\omega \in \mathbb{R}$, if $g=\mathcal{F} f$ satisfy one of the below properties then it satisfy all of them and $\mathcal{F} f(\omega)$ is a causal transform

- $f(t)=0$ for $t<0$ (causality)
- 1:st Plemelj formula (Hilbert-transform pair)

$$
\operatorname{Re} g(\omega)=-\frac{1}{\pi} \lim _{\varepsilon \rightarrow 0} \int_{|\omega-\xi|>\varepsilon} \frac{\operatorname{Im} g(\xi)}{\omega-\xi} \mathrm{d} \xi
$$

- 2:nd Plemelj formula

$$
\operatorname{Im} g(\omega)=\frac{1}{\pi} \lim _{\varepsilon \rightarrow 0} \int_{|\omega-\xi|>\varepsilon} \frac{\operatorname{Re} g(\xi)}{\omega-\xi} \mathrm{d} \xi
$$

- $g(\omega+\mathrm{i} \sigma)$ is holomorphic in $\mathbb{C}^{+}=\left\{(\omega, \sigma) \subset \mathbb{R}^{2}: \sigma>0\right\}$ and $\int_{\mathbb{R}} f(x+\mathrm{i} y) \mathrm{d} x<\infty$ and $y>0$
The 1 \& 2:nd Plemelj-formula with symmetry $g(-\omega)=\bar{g}(\omega), \omega \in \mathbb{R}$ yield the Kramers-Kronig relation or a dispersion relation when applied to material coefficients. Cone is $\Gamma=\mathbb{R}_{+}$; Cauchy kernel: i / z

Observations

Note 1: Passive linear system $+\mathrm{L}^{2}$

Note that passivity for (Vladimirov-)linear system $g(t)$ yields causality and thus analyticity of $g(s)$, and hence if $g(\omega) \in \mathrm{L}^{2}$ we can apply Titchmarsh theorem

Note 2: Dispersion relation as representation thm

Titchmars theorem is a 1 dimension a representation theorem of $\operatorname{Re} g$ in terms of $\operatorname{Im} g$, for causal and L^{2}-bounded functions.
Causality or analyticity can be used as assumptions to provide the dispersion relation. The L^{2}-bound can be the limiting.

Note 3: $g(\omega)$ can be seen as the boundary value of a holomorphic $g(s)$, and it is here that the L^{2} assumptions are placed.
Note 4: The signs in the Hilbert-transform pair depend on the definition of the Fourier-transform.

Examples

Refractive index; non-conducting, non-magnetic material [e.g. King]

The complex refractive index $N=n+\mathrm{i} \kappa$ and Titchmarsh theorem yields:

$$
\begin{gather*}
\kappa(\omega)=\frac{1}{\pi} P \int_{\mathbb{R}} \frac{n\left(\omega^{\prime}\right)-1}{\omega-\omega^{\prime}} \mathrm{d} \omega^{\prime} \tag{9}\\
n(\omega)-1=\frac{-1}{\pi} P \int_{\mathbb{R}} \frac{\kappa\left(\omega^{\prime}\right)}{\omega-\omega^{\prime}} \mathrm{d} \omega^{\prime} \tag{10}
\end{gather*}
$$

Using symmetry we can rewrite them into the standard Kramers-Kronig relation for n, κ.

Example: Dielectric constant

Apropriate assumptions on $\varepsilon(\omega)$ (bounded, continuous, asymptotic etc.) we have the dispersion relation [Landau etal; King; Bernland]

$$
\operatorname{Re} \varepsilon(\omega)=\varepsilon_{\infty}+\lim _{\varepsilon \rightarrow 0} \frac{1}{\pi} \int_{|\xi-\omega|>\varepsilon} \frac{\operatorname{Im}(\varepsilon(\xi))}{\xi-\omega} \mathrm{d} \xi, \omega \in \mathbb{R}
$$

Numeric example

Causal, L^{2}, function: $f(t)=t \mathrm{e}^{-2 t} / 2, t>0$, zero elsewere.

Numeric example con't

Mathmatica: $\frac{-1}{\pi}$ NIntegral $\left[\frac{1}{z+I \varepsilon-\omega} \operatorname{Re}(\mathcal{F}(f))(\omega),\{\omega,-\infty, z, \infty\}\right]$
$=\mathcal{H}_{\varepsilon}[\mathcal{F}(f)]$

Homework L. 2

Exercise L. 2 - verify a 1d-dispersion relation

Choose a L^{2}, causal function $f(t)$. We are interested in the Hilbert-transform pair for of $f(\omega)$. Examine the numerical convergence of the Hilbert-transform pair for your choice of function f, similarly to the example above. I.e. regularize the integral kernel of the Hilbert transform with a small imaginary epsilon $\mathcal{H} \rightarrow \mathcal{H}_{\varepsilon}$. How well (as a function of $\varepsilon \rightarrow 0)$ does your numerical algorithm of $\mathcal{H}_{\varepsilon}[\operatorname{Im} \mathcal{F} f]$ converge to the real part? How does this compare if you take the Cauchy-principal value integral with some absence δ around the singularity; does it converge better numerically?

Hints - signs in the Hilbert transform and the sign-convention in the Fourier-transform are closely connected.

Three function spaces

Titchmarch theorem is for L^{2}-functions $g(\omega)$. We need a suitable generalization for n-dimensional functions

Spaces

- $\mathrm{L}_{s}^{2}: g(\xi) \in \mathrm{L}_{s}^{2}$ if
$\|g\|_{(s)}=\int\left(1+|\xi|^{2}\right)^{s}|g(\xi)|^{2} \mathrm{~d} \xi=\left\|g(\xi)\left(1+|\xi|^{2}\right)^{s / 2}\right\|<\infty$.
- $H_{s}=\left\{f \in \mathcal{D}^{\prime}: f=\mathcal{F}(g), g \in \mathrm{~L}_{s}^{2}\right\},\|f\|_{s}=\|g\|_{(s)}$.
- $H^{(s)}=\left\{f \in\right.$ Holomorphic in T^{C} :
$\left.\|f\|^{(s)}=\sup _{y \in C}\|f(x+\mathrm{i} y)\|_{s}<\infty\right\}$, weighted Hardy space

Properties

- $H_{s} \in \bar{C}_{0}^{\ell}, \ell$ integer, $\ell<s-n / 2$.
- H_{s} is the set of functions $f \in H_{s-1}$, where $\partial_{j} f \in H_{s-1}$.

Cauchy Kernel

Cauchy(-Szegö) Kernels \mathcal{K}_{C} [Vladimirov 10.2]

- The Cauchy kernel for a connected open cone in \mathbb{R}^{n} with vertex 0 is:

$$
\mathcal{K}_{C}(z)=\int_{C^{*}} \mathrm{e}^{\mathrm{i} z \cdot \xi} \mathrm{~d} \xi=F\left[\theta_{C^{*}} \mathrm{e}^{-y \cdot \xi}\right], z=x+\mathrm{i} y
$$

Here $\theta_{C^{*}}$ is the characteristic-function of C^{*}, the conjugate cone.

- $\mathcal{K}_{\mathbb{R}_{+}^{n}}(z)=\frac{\mathrm{i}^{n}}{z_{1} \cdots z_{n}} \Rightarrow \mathcal{K}_{1}(x)=\frac{\mathrm{i}}{x+\mathrm{i} 0}=\pi \delta(x)+\mathrm{i} P \frac{1}{x}$.
- $\mathcal{K}_{V^{+}}(z)=2^{n} \pi^{(n-1) / 2} \Gamma\left(\frac{n+1}{2}\right)\left(-z^{2}\right)^{-\frac{n+1}{2}}, z \in T^{V^{+}}$,
$z^{2}=z_{0}^{2}-z_{1}^{2}-\cdots-z_{n}^{2}$.

$$
\mathcal{K}_{P^{n}}(Z)=\pi^{n(n-1) / 2} \mathrm{j}^{n^{2}} \frac{1!\ldots(n-1)!}{(\operatorname{det} Z)^{n}}, Z \in T^{P_{n}}
$$

Properties: $\mathcal{K}_{-C}(x)=(-1)^{n} \mathcal{K}_{C}(x), x \in C \cup(-C)$; $\operatorname{Im} \mathcal{K}_{C}(x)=\frac{1}{2 \mathrm{i}} \mathcal{F}\left(\theta_{C^{*}}-\theta_{-C^{*}}\right) . \mathcal{K}_{C}$ holomorphic in T^{C}

Exercise L. 3

Cauchy-Kernel in higher dimension

Calculate explicitly the Cauchy kernel $\mathcal{K}_{\mathbb{R}_{+}^{n}}$ for \mathbb{R}_{+}^{n} for $n=1,2,3$ and determine its distribution on the boundary when $\Gamma \ni \boldsymbol{y} \rightarrow 0$. A partial solution is given on previous (and later) slides. Be explicit and do the missing steps.

Transform of a boundary function to T^{C}

Cauchy-Bochner tranform [V10.3]

Let $g \in \mathrm{~L}_{s}^{2}$, define $f(x)=\mathcal{F}[g] \in H_{s}, x \in \mathbb{R}^{n}$, the
Cauchy-Bochner-transform is, $z \in T^{C} \cup T^{-C}$:

$$
f(z)=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} \mathcal{K}_{C}\left(z-x^{\prime}\right) f\left(x^{\prime}\right) \mathrm{d} x^{\prime}=\frac{1}{(2 \pi)^{n}}\left(f\left(x^{\prime}\right), \mathcal{K}\left(z-x^{\prime}\right)\right),
$$

Note $f(z)$ holomorphic in $T^{C} \cup T^{-C}$.

Example: The time-cone, \mathbb{R}_{+}

The conjugate cone $C^{*}=\overline{\mathbb{R}}_{+}$. Clearly $\mathcal{K}_{\mathbb{R}^{+}}(z)=\int_{0}^{\infty} \mathrm{e}^{\mathrm{i} z t} \mathrm{~d} t=\frac{\mathrm{i}}{z}$. The Cauchy-Bochner transform becomes:

$$
\begin{equation*}
f(z)=\frac{1}{2 \pi \mathrm{i}} P \int_{\mathbb{R}} \frac{f\left(x^{\prime}\right)}{x^{\prime}-z} \mathrm{~d} x^{\prime}, z \notin \mathbb{R} \tag{11}
\end{equation*}
$$

which looks like a Cauchy-integral over the line.

Generalized Titchmarsh's theorem (n-dimensional)

Theorem II (V10.6) Generalized Hilbert-transform relation

Let $f_{+}=\mathcal{F} g \in H_{s}$, i.e., $g \in \mathrm{~L}_{s}^{2}$ the following things are equivalent:

- $\operatorname{supp} g=\operatorname{supp} F^{-1}\left(f_{+}\right) \subset C^{*}$. [g is causal $]$
- (Hilbert-transform pair)

$$
\begin{aligned}
& \operatorname{Re} f_{+}(x)=\frac{-2}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}}\left(\operatorname{Im} f_{+}\right)\left(x^{\prime}\right)\left(\operatorname{Im} \mathcal{K}_{C}\right)_{+}\left(x-x^{\prime}\right) \mathrm{d} x^{\prime}, \\
& \operatorname{Im} f_{+}(x)=\frac{2}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}}\left(\operatorname{Re} f_{+}\right)\left(x^{\prime}\right)\left(\operatorname{Im} \mathcal{K}_{C}\right)_{+}\left(x-x^{\prime}\right) \mathrm{d} x^{\prime},
\end{aligned}
$$

- f_{+}is a boundary value of some $f \in H^{(s)}\left(T^{C}\right)$. (Holomorphic in T^{C})

Note: $\operatorname{Re} f_{+}$and $\operatorname{Im} f_{+}$form a Hilbert-transform pair. Here

$$
\left(\operatorname{Im} \mathcal{K}_{C}\right)_{+}(x)=\operatorname{Im}\left(\mathrm{i}^{n} \Gamma(n) \int_{S^{n-1} \cap C^{*}} \frac{\mathrm{~d} \sigma}{[x \cdot \sigma+\mathrm{i} 0]^{n}}\right)
$$

Quiz

What type of object is $\left(\operatorname{Im} \mathcal{K}_{C}\right)_{+}\left(x-x^{\prime}\right)$ and why?

- Its an analytic function
- Its a locally integrable function
- Its a distribution

Example A, Theorem II, 1 dim

1-dim case

We have $\mathcal{K}_{\mathbb{R}_{+}}(z)=\frac{i}{z}$. Note that

$$
\begin{equation*}
\lim _{y \rightarrow 0} \mathcal{K}_{\mathbb{R}_{+}}(x+\mathrm{i} y)=\lim _{y \rightarrow 0} \frac{\mathrm{i}}{x+\mathrm{i} y}=\mathrm{i} P \frac{1}{x}+\pi \delta(x) \tag{12}
\end{equation*}
$$

Thus $\operatorname{Im} \mathcal{K}_{\mathbb{R}_{+}}(x)=P \frac{1}{x}$. The theorem II hence become the Hilbert-transform pair, with the first as:

$$
\begin{equation*}
\operatorname{Re} f_{+}(x)=\frac{-1}{\pi} P \int_{\mathbb{R}} \frac{\operatorname{Im} f_{-}\left(x^{\prime}\right)}{x-x^{\prime}} \mathrm{d} x^{\prime} \tag{13}
\end{equation*}
$$

Applications were shown above for $f(t)=t \mathrm{e}^{-2 t}$. As a representation theorem, we note that the real part of all $f \in H_{s}$ yields the imaginary part. We have a representative structure.

Example B, Theorem II 2 dim.

2-dim case

We have $\mathcal{K}_{\mathbb{R}_{+}^{2}}(z)=\frac{-1}{z_{1} z_{2}}$. Note that in distributional sense

$$
\begin{equation*}
\lim _{y \rightarrow 0} \mathcal{K}_{\mathbb{R}_{+}^{2}}(\boldsymbol{x}+\mathrm{i} \boldsymbol{y})=-\left(P \frac{1}{x_{1}}-\mathrm{i} \pi \delta\left(x_{1}\right)\right)\left(P \frac{1}{x_{2}}-\mathrm{i} \pi \delta\left(x_{2}\right)\right) \tag{14}
\end{equation*}
$$

Thus $\operatorname{Im} \mathcal{K}_{\mathbb{R}_{+}^{2}}(x)=\pi P \frac{1}{x_{1}} \delta\left(x_{2}\right)+\pi P \frac{1}{x_{2}} \delta\left(x_{1}\right)$. The theorem II 'Hilbert-transform' pair becomes:

$$
\begin{equation*}
\operatorname{Re} f_{+}(x)=\frac{-1}{2 \pi} P \int_{\mathbb{R}} \frac{\operatorname{Im} f_{+}\left(x^{\prime}, x_{2}\right)}{x_{1}-x^{\prime}}+\frac{\operatorname{Im} f_{+}\left(x_{1}, x^{\prime}\right)}{x_{2}-x^{\prime}} \mathrm{d} x^{\prime} \tag{15}
\end{equation*}
$$

Test case

Consider $g\left(x_{1}, x_{2}\right)=\theta\left(x_{1}\right) \theta\left(x_{2}\right) \mathrm{e}^{-a x_{1}-a x_{2}}$. Fourier-transform: $f=\mathcal{F} g=\frac{1}{\left(a+\mathrm{i} \omega_{1}\right)\left(b+\mathrm{i} \omega_{2}\right)}$. Thus

$$
\begin{equation*}
\operatorname{Im} f=-\frac{b \omega_{1}+a \omega_{2}}{\left(a^{2}+\omega_{1}^{2}\right)\left(b^{2}+\omega_{2}^{2}\right)}, \operatorname{Re} f=\frac{a b-\omega_{1} \omega_{2}}{\left(a^{2}+\omega_{1}^{2}\right)\left(b^{2}+\omega_{2}^{2}\right)} \tag{16}
\end{equation*}
$$

Note that $\mathcal{H} \frac{1}{x^{2}+a^{2}}=\frac{y}{a\left(a^{2}+y^{2}\right)}, \mathcal{H} \frac{x}{x^{2}+a^{2}}=\frac{-a}{\left(a^{2}+y^{2}\right)}$, thus

$$
\begin{align*}
\mathcal{H}_{s \rightarrow \omega_{1}} \operatorname{Im} f\left(s, \omega_{2}\right)=\frac{\omega_{1} \omega_{2}-a b}{\left(\omega_{1}^{2}+a^{2}\right)\left(\omega_{2}^{2}+b^{2}\right)}=\mathcal{H}_{s \rightarrow \omega_{2}} \operatorname{Im} & f\left(\omega_{1}, s\right) \\
& =-\frac{1}{2} \operatorname{Re} f \tag{17}
\end{align*}
$$

We have hence showed that $\operatorname{Re} f$ and $\operatorname{Im} f$ indeed are a 'Hilbert-transform' pair under the Cauchy-kernel.

Exercise L. 4

Exercise L. 4

Verify either numerically or analytically a dispersion relation in 2-dimensions. Choose a 2d-function H_{s}, causal function, or do a step-by-step verification of the above case.

Two classes: Dependent and independent variables

Observation: Real and imaginary part of the kernel $\mathcal{L} Z$ for a passive system are connected with through the Cauchy-kernel \mathcal{K}_{C}, which depends on domain, (cone) Γ of the variables $x \in \Gamma$.

Case 1: Light cone $\Gamma=V_{n}^{+}$

- Dispersion-relations for solutions to Cauchy-problem in homogeneous space, $(t, x) \in V_{n}^{+}$. [Vladimirov 2002].
- Spatial dispersion properties V_{4}^{+}.

Case 2: Cone $\Gamma=\mathbb{R}_{+}^{N}$ - independent variables

Examples:

- Nonlinear susceptibility, variables $\left\{\omega_{k}\right\} \in \mathbb{R}_{+}^{n}$.
- Certain elements of nonlinear circuit theory

Spatial dispersion

$$
\begin{equation*}
\partial_{t} \boldsymbol{D}(\boldsymbol{r}, t)=\partial_{t} \int_{-\infty}^{t} \mathrm{~d} t^{\prime} \int_{\mathbb{R}^{3}} \varepsilon\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}, t-t^{\prime}\right) \boldsymbol{E}\left(\boldsymbol{r}^{\prime}, t^{\prime}\right) \tag{18}
\end{equation*}
$$

Applications:

- Optical activity requires spatial dispersion. Magneto-optic media include weak spatial dispersion $\sim($ molecule diam $) / \lambda$.
- Plasma physics and EM-propagation in metals at low temperatures at radio-frequency. The effects can be strong.
- Graphene sheets (2D) at low THz-frequencies $\sigma=\sigma_{0}+a_{j} \partial_{x_{j}}+b_{j k} \partial_{x_{j} x_{k}}^{2}$ (sum-notation), σ_{0}, a_{j} and $b_{j k}$ are matrices. [Gomez-Diaz etal 2013]
- Periodic structures (homogenisation) $D_{i}=\varepsilon_{i j} E_{j}+\alpha_{j k r} \partial_{x_{r}} E_{j}+\beta_{i j r s} \partial_{x_{r} x_{s}}^{2} E_{j}$ [Ciattoni etal 2015].
- High-impedance surface $\varepsilon=(\hat{\boldsymbol{x}} \hat{\boldsymbol{x}}+\hat{\boldsymbol{y}} \hat{\boldsymbol{y}}) \varepsilon_{t}+\hat{\boldsymbol{z}} \hat{\boldsymbol{z}} \varepsilon_{z z}$, $\varepsilon_{z z}=\left(1-\frac{k_{p}}{\varepsilon_{t} k_{0}^{2}-q_{z}^{2}}\right) \varepsilon_{t}$, where k_{p} is the plasma wave number.
[Luukkonen etal 2008]

Multiple approaches give the same EM-field response

Equivalent representations

Different spatial dispersion representations have equivalent EM-field-response. There are at-least three different models, perhaps the most efficient is $\mu=1$ and

$$
\begin{equation*}
\varepsilon_{i k}(\omega, \boldsymbol{k})=\left(\delta_{i j}-\frac{k_{i} k_{j}}{k^{2}}\right) \varepsilon_{t}(\omega, \boldsymbol{k})+\frac{k_{i} k_{j}}{k^{2}} \varepsilon_{z z}(\omega, \boldsymbol{k}) \tag{19}
\end{equation*}
$$

There are a 1-1 relation between the σ and the $(\varepsilon, \mu=1)$ representations, and between scalar (ε, μ)-representations. These equivalences appear through different models for ρ, \boldsymbol{J} as induced sources.

Boundary conditions: continuous tangential \boldsymbol{E}, and B_{n}. However both tangential B and H may have discontinuity at boundary.
Symmetries: $\varepsilon\left(\omega, \boldsymbol{r}, \boldsymbol{r}^{\prime}\right)=\varepsilon^{*}\left(-\omega, \boldsymbol{r}, \boldsymbol{r}^{\prime}\right), \varepsilon(\omega, \boldsymbol{k})=\varepsilon^{*}(-\omega,-\boldsymbol{k})$.
Key references: [A. A. Rukhadze and V.P. Silin, Electrodynamics of media with spatial dispersion 1961]

What cone Γ is appropriate

Passive operator with no spatial dispersion:

$$
\begin{equation*}
\int_{-\infty}^{T} \boldsymbol{E}(t) \cdot \frac{\partial \boldsymbol{D}(t)}{\mathrm{d} t} \mathrm{~d} t \geq 0 \tag{20}
\end{equation*}
$$

How to generalize this to include spatial dispersion? - we need $\operatorname{Re} \int_{-\Gamma}\left\langle\partial_{t}(\varepsilon * \boldsymbol{E}), \boldsymbol{E}\right\rangle \mathrm{d} x>0$, here $x=\left(x_{0}, \boldsymbol{r}\right)$. That is
$\int_{-\infty}^{0} \mathrm{~d} t \int_{|\boldsymbol{r}| \leq-c t} \mathrm{~d} V \boldsymbol{E}(\boldsymbol{r}, t) \cdot \partial_{t} \int_{-\infty}^{t} \mathrm{~d} t^{\prime} \int_{\mathbb{R}^{3}} \mathrm{~d} V^{\prime}\left(\varepsilon\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}, t-t^{\prime}\right) \boldsymbol{E}\left(\boldsymbol{r}^{\prime}, t^{\prime}\right)\right) \geq 0$
$\boldsymbol{E} \in \mathcal{D}^{\times N}$.
Vacuum light cone, $V^{+}(x) \rightarrow V^{+}(1)$ [change of variables].
Note: dimension of $\varepsilon(\boldsymbol{r}, t)$ and $\varepsilon(t)$ is different.

Application spatial dispersion

Spatial dispersion

Assume that the operator $\varepsilon(\boldsymbol{r}, t)$ is passive and have support in $V^{+}(1)$. Hence $\varepsilon(\boldsymbol{k}, \omega)$ is analytic in T^{C}. If, in addition, $\varepsilon(\boldsymbol{r}, \omega) \in H_{s}$, then by Thm II

$$
\begin{aligned}
& \operatorname{Re} \varepsilon(\omega, \boldsymbol{k})=\frac{-2}{(2 \pi)^{n}}\left(\operatorname{Im} \mathcal{K}_{V^{+}}\right)_{+} * \operatorname{Im} \varepsilon= \\
& \frac{-2}{(2 \pi)^{n}} \int_{\mathbb{R}} \int_{\mathbb{R}^{3}}\left(\operatorname{Im} \mathcal{K}_{V^{+}}\right)_{+}\left(\omega-\omega^{\prime}, \boldsymbol{k}-\boldsymbol{k}^{\prime}\right) \operatorname{Im} \varepsilon\left(\omega^{\prime}, \boldsymbol{k}^{\prime}\right) \mathrm{d} \omega^{\prime} \mathrm{d} V_{k^{\prime}}
\end{aligned}
$$

Note:
(1) An explicit form of $\left(\operatorname{Im} \mathcal{K}_{V^{+}}\right)_{+}$, can be expressed in terms of the generalized functions $P^{(k)} \frac{1}{\sigma \cdot x}$ and $\delta^{(k)}(\sigma \cdot x)$. I.e. we have let $C \ni y \rightarrow 0$.
(2) Application to periodic structures.

Case 2: n -dimensional Hilbert transform on cone \mathbb{R}_{+}^{n}

$$
\left(H_{n} f\right)(x)=\frac{1}{\pi^{n}} P \int_{\mathbb{R}^{n}} f(s) \Pi_{k=1}^{n} \frac{1}{x_{k}-s_{k}} \mathrm{~d} s
$$

Furthermore we have that $\left(H_{n}^{2} f\right)(x)=(-1)^{n} f(x)$

Examples: King 2009

$$
\begin{aligned}
H_{n}[\sin (a \cdot s)](x) & = \begin{cases}(-1)^{(n-1) / 2} \cos (a \cdot x) \Pi_{k} \operatorname{sgn} a_{k} & n \text { odd } \\
(-1)^{n / 2} \sin (a \cdot x) \Pi_{k} \operatorname{sgn} a_{k} & n \text { even }\end{cases} \\
H_{n}[\cos (a \cdot s)](x) & = \begin{cases}(-1)^{(n-1) / 2} \sin (a \cdot x) \Pi_{k} \operatorname{sgn} a_{k} & n \text { odd } \\
(-1)^{n / 2} \cos (a \cdot x) \Pi_{k} \operatorname{sgn} a_{k} & n \text { even }\end{cases} \\
H_{n}\left[\mathrm{e}^{\mathrm{j} a s}\right](x) & =(-1)^{n} \mathrm{e}^{\mathrm{j} a \cdot x} \Pi_{k} \operatorname{sgn} a_{k} \\
H_{n}\left[\mathrm{e}^{-a s^{2}}\right](x) & =(-\mathrm{j})^{n} \mathrm{e}^{-a x^{2}} \Pi_{k} \operatorname{erf}\left(\mathrm{j} x_{k} \sqrt{a}\right)
\end{aligned}
$$

H_{n} is a special case of a Calderón-Zygmund singular operator.

Application, case 2

Nonlinear electric susceptibilities:

$$
\boldsymbol{P}(t)=\sum_{n} \boldsymbol{P}^{(n)}(t)
$$

where

$$
\begin{aligned}
& P_{k}^{(n)}(\omega)=\varepsilon_{0} \int_{\mathbb{R}} \mathrm{d} \omega_{1} E_{\ell_{1}}\left(\omega_{1}\right) \cdots \int_{\mathbb{R}} \mathrm{d} \omega_{n} E_{\ell_{n}}\left(\omega_{n}\right) \\
& \chi_{k \ell_{1} \ell_{2} \cdots \ell_{n}}^{(n)}\left(\omega_{1}, \ldots, \omega_{n}\right) \delta\left(\omega-\omega_{1}-\omega_{2}-\cdots \omega_{n}\right)
\end{aligned}
$$

n-dimensional dispersion relation

Ref: Peiponen 1988 (see also King: Hilbert transforms Chapt 22.9)

$$
\operatorname{Re} \chi^{(n)}\left(\omega_{1}, \ldots, \omega_{n}\right)=\frac{\mathrm{j}^{n+1}}{\pi^{n}} P \int_{\mathbb{R}} \cdots P \int_{\mathbb{R}} \frac{\operatorname{Im} \chi^{(n)}\left(\omega_{1}^{\prime}, \ldots, \omega_{n}^{\prime}\right) \mathrm{d} \omega_{1}^{\prime} \cdots \mathrm{d} \omega_{n}^{\prime}}{\left(\omega_{1}-\omega_{1}^{\prime}\right) \cdots\left(\omega_{n}-\omega_{n}^{\prime}\right)}
$$

Sum-rules, case 2, King (Chapt 22.11) 2009

Using that $\chi^{(n)}\left(\omega_{1}, \ldots, \omega_{k}, \ldots, \omega_{n}\right)=\mathrm{O}\left(\omega_{k}^{-1-\delta}\right)$ as $\omega \rightarrow \infty$, the result:
Sum-rule nonlinear susceptibility [Peiponen 1988]:

$$
\int_{\mathbb{R}} \cdots \int_{\mathbb{R}}\left(\omega_{1} \cdots \omega_{n}\right)^{s-1}\left[\chi^{(n)}\left(\omega_{1}, \ldots, \omega_{n}\right)\right]^{t} \mathrm{~d} \omega_{1} \cdots \mathrm{~d} \omega_{n}=0
$$

where $s=1,2, \ldots, t=1,2, \ldots, s \leq t$.
Observations: There exists N -dim sum-rules, useful in nonlinear optics Analyticity of $\chi^{(n)}$ supplies additional relations, see e.g. King 2009 Note: These the claimed dispersion-relations differ from the passive system approach outlined above if n even. They are discussed in King.

Table of Contents

(1) Plan of the Lecture
(2) Passivity and Multidimensional systems
(3) Representation Theorems
4) Representation theorems II - Herglotz

- Representation theorem, Schwartz kernel
(5) Conclusions

Goal: Limitations of measurable quantities

Poisson Kernel and Schwartz kernel [Vladimirov 11, 12]

Poisson Kernel

- $\mathcal{P}_{C}(x, y)=\frac{\mathcal{K}_{C}(x+\mathrm{i} y)}{\pi^{n} \mathcal{K}_{C}(\mathrm{i} y)}, \quad(x, y) \in T^{C}$
- $\mathcal{P}_{\mathbb{R}_{+}^{n}}(x, y)=\frac{y_{1} \cdots y_{n}}{\left.\pi^{n}\left|z_{1}\right|^{2 \cdots} z_{n}\right|^{2}}$
- $\mathcal{P}_{V^{+}}(x, y)=\frac{2^{n} \Gamma\left(\frac{n+1}{2}\right)}{\pi^{\frac{n+3}{2}}} \frac{\left(y^{2}\right)^{\frac{n+1}{2}}}{\left.(x+\mathrm{i} y)^{2}\right|^{n+1}}$

Schwartz kernel

- $\mathcal{S}_{C}\left(z, z^{0}\right)=\frac{2 \mathcal{K}_{C}(z) \mathcal{K}_{C}\left(-\overline{z^{0}}\right)}{(2 \pi)^{n} \mathcal{K}_{C}\left(z-\overline{z^{0}}\right)}-\mathcal{P}_{C}\left(x_{0}, y_{0}\right)$

$$
\mathcal{S}_{\mathbb{R}_{+}^{n}}=\frac{2 \mathrm{i}^{n}}{(2 \pi)^{n}}\left(\frac{1}{z_{1}}-\frac{1}{\overline{z_{1}^{0}}}\right) \cdots\left(\frac{1}{z_{n}}-\frac{1}{\overline{z_{n}^{0}}}\right)-\mathcal{P}_{\mathbb{R}_{+}^{n}}\left(x^{0}, y^{0}\right)
$$

- $\mathcal{S}_{V^{+}}$is also known explicitly.

generalized Schwartz representation [Vladimirov 12.5]

The generalized Schwartz representation theorem

 If C is an acute regular* cone, then any function f holomorphic and$$
\begin{equation*}
|f(z)| \leq M\left(1+|z|^{2}\right)^{\alpha / 2}\left(1+[\delta(y)]^{-\beta}\right), z \in T^{C} \tag{21}
\end{equation*}
$$

for some M, α, β. Then there exists a boundary value f_{+}such that

$$
\begin{equation*}
f(z)=\mathrm{i}\left(\operatorname{Im} f_{+}\left(x^{\prime}\right), \mathcal{S}_{C}\left(z-x^{\prime}, z^{0}-x^{\prime}\right)\right)+\operatorname{Re} f\left(z_{0}\right), z^{0}, z \in T^{C} \tag{22}
\end{equation*}
$$

* A cone is regular if \mathcal{K}_{C} is a divisor of the algebra $H(C)$. \mathbb{R}_{+}^{n} and $V^{+} \subset \mathbb{R}^{4}$ are regular. $n \leq 3$ every convex acute solid cone is regular.

Representation Theorem [Vladimirov 17.2]

Properties of Holomorphic functions with non-negative imaginary part

Let $u \in \mathcal{P}_{+}\left(T^{C}\right)$ then $0 \leq u(x, y)=\operatorname{Im} f \in H_{+}\left(T^{C}\right)$ and $\mu=u(x,+0)$ is a non-negative tempered measure, and u have the representation:

$$
u(x, y)=\int_{\mathbb{R}^{n}} \mathcal{P}_{C}\left(x-x^{\prime}, y\right) \mu\left(\mathrm{d} x^{\prime}\right)+v_{C}(y),(x, y) \in T^{C}
$$

where $v_{C}>0$ continuous, $v_{C} \rightarrow 0$, as $C \ni y \rightarrow 0$. If the cone also is regular, then it also have a Schwartz representation. For \mathbb{R}_{+}^{n} it is

$$
f(z)=\mathrm{i} \int_{\mathbb{R}^{n}} \mathcal{S}_{\mathbb{R}_{+}^{n}}\left(z-x^{\prime} ; z^{0}-z^{\prime}\right) \mu\left(\mathrm{d} x^{\prime}\right)+(a, z)+b\left(z^{0}\right), z, z^{0} \in T^{C}
$$

where $\mu=\operatorname{Im} f_{+}, b\left(z^{0}\right)=\operatorname{Re}\left(f\left(z^{0}\right)\right)-\left(a, x^{0}\right), a_{j}=\lim _{y_{j} \rightarrow 0} \frac{\operatorname{Im} f(\mathrm{i} y)}{y_{j}}$,
$j=1 \ldots, n, y \in \overline{\mathbb{R}}^{n}$
Note: 1) $u \in \mathcal{P}_{+}$is pluriharmonic and positive functions, i.e. $\partial_{z_{j}} \partial_{\overline{z_{k}}} u=0$, $u \geq 0 . H_{+}$functions are holomorphic with non-negative imaginary part.

Observations

Note 2) [V18.2 Thm I] For $n=1$ this is Nevanlinna representation. With $z^{0}=\mathrm{i}$, we have

$$
\begin{aligned}
& f(z)=b+a z+\mathrm{i} \int \mathcal{S}_{\mathbb{R}^{1}}\left(z-x^{\prime} ; \mathrm{i}-z^{\prime}\right) \mu\left(\mathrm{d} x^{\prime}\right)= \\
& b+a z+\frac{\mathrm{i}}{\pi} \int \mathrm{i}\left(\frac{1}{z-x^{\prime}}-\frac{1}{-\mathrm{i}-x^{\prime}}\right)-\frac{1}{1+\left(x^{\prime}\right)^{2}} \mu\left(\mathrm{~d} x^{\prime}\right)= \\
& \quad b+a z+\frac{1}{\pi} \int \frac{1}{x^{\prime}-z}-\frac{x^{\prime}}{1+\left(x^{\prime}\right)^{2}} \mu\left(\mathrm{~d} x^{\prime}\right)
\end{aligned}
$$

which we recognize as the Herglotz-representation.
Note 3) For $n>1$ there are some questions about the terms a and b raised by Annemarie last time, about their interpretation.

Conclusions

Conclusions

- Linear passive system in a cone have positivity and analyticity in T^{C}.
- Dispersion-relation follows from the Cauchy-Szegö representation, under H_{s}-constraints. (generalized Titchmarch theorems)
- Representations similar to Herglotz follow from the Schwartz-kernel.
- First applications are found. Limitations are still missing

Outlook/question

- Given $f(u, t)$, passive in t, what properties of u enables representations/sum-rules.

