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Plan of the lecture

Key ingredients

First part is to show Analyticity and positivity properties.

Passive multi-dimensional systems have analytic and positive type
kernels.

Second part we examine types of representation theorems

Cauchy-type representation theorems (boundedness, dispersion rel.)
Herglotz-type/Schwartz kernel.

Parallel to the above investigation we look on a few applications

Most of the material in these lectures are based on the books
Vladimirov, Methods of the theory of Generalized Functions, 2002
Reed & Simon Methods of Modern Mathematical Physics Part II, Fourier
Analysis, Self-Adjointness 2003,
King, Hilbert Transforms, 2009
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Linear system

Definition of linear system [Vladimirov 2002]

Input: u(x) = (u1(x), . . . , uN (x)). Output: f(x) = (f1, . . . , fN ).

Linearity. If ua generates fa, and ub generates fb then αua + βub
generates αfa + βfb.

Reality: If u is real, then f is real-valued.

Continuity: If uj → 0 for all j ∈ [1, N ] in E ′ then fk → 0 in D′ for all
k.

Translational invariance: If f(x) is associated with u(x) then for any
translation h ∈ Rn to the original perturbed u(x+ h) there
corresponds a response perturbation f(x+ h)

There exists a unique N ×N matrix Z(x), with Zjk ∈ D′(Rn) such that
f = Z ∗ u.

D is smooth functions of compact support. D′ is the space of generalized
functions. E ′ is the space of generalized functions with compact support.
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Passivity

Admittance-passivity

A function Z is admittance passive relative to the cone Γ if for any
φ(x) ∈ D×N then 〈Z, φ ∗ φ∗〉 ≥ 0, or (if Z ∈ L1

loc then

Re

∫
−Γ

(Z ∗ φ) · φ̄ dx = Re

∫
−Γ

∫
(Z(x− y)φ(y)) · φ̄(x) dy dx ≥ 0

Examples:

1-dim, linear 1-port circuit theory RLC-nets with zero initial
conditions.

n-dim, linear n-port circuit theory with RLC-components, with zero
initial conditions.

All passive Cauchy systems with constant matrices have Zj real
symmetric of the form

∑
j Zj∂j + Z0, with

∑
j qjZj ≥ 0, ∀q ∈ intC∗

and ReZ0 ≥ 0. (Maxwell, Linear acoustics, light cone) [Vladimirov
20.6 Thm 1]
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Physical system and cones

Cones are important for passivity

The generalization of the half-line support that gives Herglotz
functions is a cone.

Passivity for a N-dimensional linear systems can be defined with
respect to some cone.

Functions with support in a cone (causality) have nice properties
when the are Fourier/Laplace transformed.

Next we examine some basic properties of cones.
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Cones

Cone

A cone Γ ⊂ Rn, with vertex 0 is a set such that if x ∈ Γ, then λx ∈ Γ
for all λ > 0.

The conjugate Γ∗ to the cone Γ ⊂ Rn is the set

Γ∗ = {ξ ∈ Rn : ξ · x ≥ 0, for all x ∈ Γ ⊂ Rn}

R+

z

x

y

{x > 0, y > 0}

R2
+

x

y

R× R+

{y > 0}

ct = x

x

t

V +
2 (c)

{ct > |x|}
Cones in R and in R2.
Other cones: positive hermitian matrices and the functions of positive
type, f : Rn 7→ C such that {f(λi−λj)}ij positive matrix in CN for all N .
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Conjugate cones – Quiz

Γ∗ = {ξ ∈ Rn : ξ · x ≥ 0, for all x ∈ Γ ⊂ Rn}

Example 1: Determine Γ∗ for Γ = R+

We seek all ξ ∈ R such that ξx ≥ 0, for x > 0. Clearly
Γ∗R+

= {ξ ∈ R : ξ ≥ 0} = Γ̄R+ .

Quiz

Determine Γ∗ for the cone Γ = R2
+.

Alternatives

1 {(ξ1, ξ2) ∈ R2} i.e. all ξ1 and ξ2 in R
2 {(ξ1, ξ2) ∈ R2, such that ξ1 > 0, ξ2 > 0}
3 {(ξ1, ξ2) ∈ R2, such that ξ1 ≥ 0 and ξ2 ∈ R}
4 {(ξ1, ξ2) ∈ R2, such that ξ1 ≥ 0 and ξ2 ≥ 0}
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Answer

Γ∗ = {ξ ∈ Rn : ξ · x ≥ 0, for all x ∈ Γ ⊂ Rn}

Conjugate cone for Γ∗ for Γ = R2
+

We seek all ξ ∈ R2 such that p = ξ · x ≥ 0, for all x ∈ ΓR2
+

.

x

y

R2
+

ξ1

ξ2

x = 1

p > 0

ξ1

ξ2

y = 1

p > 0

∩

ξ1

ξ2

Γ∗ = R̄2
+

⇒

{ξ1 ≥ 0, ξ2 ≥ 0}

Interior vectors in Γ, i.e. u1 = (1, ε), u2 = (ε, 1).
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Acute cones

Example: The cone R× R+ have int Γ∗ = ∅

A cone is acute if it does not contain an integral straight line.
Acute cones have int Γ∗ 6= 0.

Exercise L.1:

Show that a) that (V +
2 (c))∗ = V̄ +

2 (1/c). b) Determine (R× R+)∗.

Examples of acute cones, Vladimirov 4.4

R1
+, Rn+ = {x : x1 > 0, x2 > 0, . . . xn > 0}, (Rn+)∗ = Rn+,

C ={x ∈ Rn : êi · x > 0 ∀i}, C∗ = {ξ : ξ =
∑
k

λkêk, λk ≥ 0},

if {êi} is a Rn − basis

V +
4 = {x = (x0,x) : x0 > |x|} ⊂ R4, (V +

4 )∗ = V̄ +
4

Pn ⊂ Rn
2
, positive hermitian matrices, P ∗n = Pn
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Consequences of passivity [Vladimirov kap 20.2]

Strong passivity

Re

∫
−Γ
〈Z ∗ φ, φ〉 dx ≥ 0 ∀ φ ∈ D×N (1)

Implies ∫
−Γ+x∗

〈Z ∗ φ, φ〉dx ≥ 0, ∀φ ∈ D×N ,∀x∗ ∈ Rn (2)

Proof: φx∗(x) = φ(x+ x∗) ∈ D×N . Time translational invariance gives:

0 ≤ Re

∫
−Γ
〈Z ∗ φx∗ , φx∗〉dx = Re

∫
−Γ
〈(Z ∗ φ)(x+ x∗), φ(x+ x∗)〉 dx

=

∫
−Γ+x∗

〈Z ∗ φ, φ〉dx. � (3)

[Bochner-Schwartz Thm] f ∈ D′, f � 0 ⇔ f = F [µ], and µ, f ∈ S ′,
µ ≥ 0 measure.
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Causality

Passivity yields causality; [Youla, Castriota, Carlin, 1959]

A linear passive system as defined above implies causality, i.e. that

suppZ(x) ⊂ Γ (4)

Proof [Vladimirov]: Given φ, ψ ∈ D×N , λ ∈ R. Let φ→ φ+ λψ. Thus

0 ≤
∫
−Γ
〈φ, φ〉 dx+λ

∫
−Γ
〈Z ∗φ, ψ〉+ 〈Z ∗ψ, φ〉 dx+λ2

∫
−Γ
〈ψ,ψ〉dx (5)

We have a quadratic equation in λ that is non-negative this implies:[ ∫
−Γ
〈Z∗φ, ψ〉 dx+

∫
−Γ
〈Z∗ψ, φ〉 dx

]2
≤ 4

∫
−Γ
〈Z∗φ, φ〉 dx

∫
−Γ
〈Z∗ψ,ψ〉 dx

If suppφ ⊂ Rn\(−Γ). Then
∫
−Γ〈Z ∗ φ, ψ〉 dx = 0

∀ψ ⇒ Z ∗ φ = 0, x ∈ Γ. Let x = 0 then (Z(−x′), φ(x′)) = 0
∀φ ∈ D(Rn\(−Γ)) ⇒ Z(−x) = 0, ∀x ∈ Rn\(−Γ).�
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Remarks on passivity

Another passivity concepts. 1D (circuit) n-Port passivity:

E(x) = supT>0;x

∫ T
0 −〈v(t;x), i(t;x)〉 dt. A system is passive if

E(x) <∞ for all allowed states x. [Wyatt etal: Energy concepts in
state-space 1981]

Multidimensional (nonlinear) state space passivity: Given a system N ,
with power p(t) supplied to the system, where t ∈ Rn. N is
multidimensionally passive system if there exists a stored energy
vector W s such that

p(t) ≥
∑
k

∂tkŴ k(t), where Ŵ s(t) = W s(q(t), t). (6)

for admissible states q. [A. Fettweis, S. Basu, Multidimensional
causality and passivity of linear and nonlinear system arising from
physics, 2011]

Linear passive systems without translational invariance are also
studied in Drozhzhinov 1981.
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Tubular neighbourhood of a cone

Definition: Tubular neighbourhood

The tubular neighbourhood of a convex cone Γ ⊂ Rn is the set

TC = Rn + jC, C = int Γ∗ (7)

Thus z = x+ jy ∈ TC ⇒ x ∈ Rn, y ∈ C.

z = x+ iy, x ∈ R, y ∈ R+

Im z

y > 0

T 1 = R + iR+ Re z

TC , C = R2
+x1

z = x+ iy, x ∈ R2, y ∈ R2
+, yj > 0

x2

y2

y1
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Analyticity and growth condition of L[Z]
Recall: Fourier transforms, functions - Fu(ξ) =

∫
Rn u(x)ejξ·x dx, ξ ∈ Rn.

Distributions FZ(φ) := Z(Fφ).(=
∫

(Z, ejξ·x)φ̂(ξ) dx Z compact
support).
(Bilateral) Laplace transform:
(Lu)(z) := F [ue−η·x] =

∫
e−η·xejξ·xu(x) dx, z = ξ + jη

η ∈ Γ∗ = {η : η · x ≥ 0, x ∈ Γ}.

Theorem of analyticity [Reed & Simon II.IX.16]

Let Z ∈ S ′(Γ), then L(Z) is analytic in TC , C = int Γ∗ (Note interior
region). Furthermore

|F [Z](ξ + jη)| ≤ |P (ξ + jη)|(1 + [dist(η, ∂Γ∗)]−N ) (8)

for a suitable polynomial P and positive integer N .

Note: This is a generalization of the Paley-Wiener theorem, by Schwartz
1934, Gårding and Bros-Epstein-Glaser 1967 and others.
Note: A kind of converse of the theorem exists in R&S.
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Passive linear system in Laplace domain – first goal

Properties

Let Z ∈ S ′, and Z(z) := F(Z), where Z is a passive linear system.

Z(z) is analytic in TC . Furthermore if Z ∈ D and it is linear passive
then Z ∈ S.

The condition of reality: Z(z) = Z̄(−z̄), z ∈ TC .

Positivity ReZ(z) ≥ 0, z ∈ TC .

Z(z) corresponds to a passive operator if Z is a positive real matrix
function in TC .

(Bros-Epstein-Glaser) If Γ is a open convex cone and Z ∈ S ′ with
support in Γ̄, Then there exists a polynomially bounded function G
with support in Γ̄ and a partial differential operator P (D) such that
Z = P (D)G.

Jonsson (KTH) Multidimensional passivity, sum-rules August 2015 18 / 54



Quiz

What role does the conjugate cone play in the Laplace-transform of Z(x)?

Alternatives

Support of LZ(k)

Region of analyticity of LZ
Region of passivity of Z(x)
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Efforts toward definitions

Definition: Representation theorem [Wikipedia]

“A representation theorem is a theorem that states that every structure
with a certain property is isomorphic to another (abstract or concrete)
structure.”

Isomorphorphic (iso = equal morphe=shape).
Roughly: We search for identifications between two ways (here) to describe
system responses, seen as a method to describe a class/set of functions.

Definition Sum-rule [e.g. Bernland 2012]

A sum or integral [of a family of functions] that relates to a ‘fixed value’

Note 1: Dispersion relations are an example of representation theorems,
they can be made into ‘sum-rules’ by studying it at origin, or apply
transformations.
Note 2: King in Hilbert transform also call some representation theorems
for sum-rules, but mostly lean towards the latter description. See examples
and discussion in Chapt. 19.
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Classes of representation theorems

Classes of representation theorems for systems

Spectral decomposition. Certain ‘nice’ (e.g. self-adjoint) operators
are fully described through their spectral measure.

Cauchy-kernel representations (Hilbert-transform pairs;
Cauchy-Bochner transform (relations to (Cauchy-)Szegö and
Poisson-kernel representations)

Reproducing kernel Hilbert spaces; Riez representation theorem. E.g.
band-limited functions. Centered around the boundedness of the
evaluation operator.

Herglotz representation (1D) of certain holomorphic functions. All
Herglotz-functions can be characterized through two constants and a
class of positive Borel-measures. (Schwartz-representations).

These categories are not independent. [wikipedia] The spectral
representation of Positive symmetric L2-integral operators is also a
reproducing kernel hilbert space.
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Titchmarsh thm [e.g. Bernland’s PhD thesis, Lund ’12]
1-dimensional case. Let g(ω) = F(f)(ω) belong to L2 for ω ∈ R, if
g = Ff satisfy one of the below properties then it satisfy all of them and
Ff(ω) is a causal transform

f(t) = 0 for t < 0 (causality)

1:st Plemelj formula (Hilbert-transform pair)

Re g(ω) = − 1

π
lim
ε→0

∫
|ω−ξ|>ε

Im g(ξ)

ω − ξ dξ

2:nd Plemelj formula

Im g(ω) =
1

π
lim
ε→0

∫
|ω−ξ|>ε

Re g(ξ)

ω − ξ dξ

g(ω + iσ) is holomorphic in C+ = {(ω, σ) ⊂ R2 : σ > 0} and∫
R f(x+ iy) dx <∞ and y > 0

The 1 & 2:nd Plemelj-formula with symmetry g(−ω) = ḡ(ω), ω ∈ R yield
the Kramers-Kronig relation or a dispersion relation when applied to
material coefficients. Cone is Γ = R+; Cauchy kernel: i/z
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Observations

Note 1: Passive linear system + L2

Note that passivity for (Vladimirov-)linear system g(t) yields causality and
thus analyticity of g(s), and hence if g(ω) ∈ L2 we can apply Titchmarsh
theorem

Note 2: Dispersion relation as representation thm

Titchmars theorem is a 1 dimension a representation theorem of Re g in
terms of Im g, for causal and L2-bounded functions.
Causality or analyticity can be used as assumptions to provide the
dispersion relation. The L2-bound can be the limiting.

Note 3: g(ω) can be seen as the boundary value of a holomorphic g(s),
and it is here that the L2 assumptions are placed.
Note 4: The signs in the Hilbert-transform pair depend on the definition
of the Fourier-transform.
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Examples

Refractive index; non-conducting, non-magnetic material [e.g. King]

The complex refractive index N = n+ iκ and Titchmarsh theorem yields:

κ(ω) =
1

π
P

∫
R

n(ω′)− 1

ω − ω′ dω′ (9)

n(ω)− 1 =
−1

π
P

∫
R

κ(ω′)

ω − ω′ dω
′ (10)

Using symmetry we can rewrite them into the standard Kramers-Kronig
relation for n, κ.

Example: Dielectric constant

Apropriate assumptions on ε(ω) (bounded, continuous, asymptotic etc.)
we have the dispersion relation [Landau etal; King; Bernland]

Re ε(ω) = ε∞ + lim
ε→0

1

π

∫
|ξ−ω|>ε

Im(ε(ξ))

ξ − ω dξ, ω ∈ R
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Numeric example

Causal, L2, function: f(t) = te−2t/2, t > 0, zero elsewere.

2 4

5 · 10−2

0.1

0.15

0.2

t

f(t)

−4 −2 2 4

−0.2

−0.1

0.1

0.2

ω

ReFf, ImFf
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Numeric example con’t

Mathmatica: −1
π NIntegral[ 1

z+Iε−ω Re(F(f))(ω), {ω,−∞, z,∞}]
= Hε[F(f)]

−5 −4 −3 −2 −1 1 2 3 4 5

−0.3

−0.2

−0.1

0.1

0.2

0.3

ω

Reconstr. ε = 0, ε = 0.01
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Homework L.2

Exercise L.2 – verify a 1d-dispersion relation

Choose a L2, causal function f(t). We are interested in the
Hilbert-transform pair for of f(ω). Examine the numerical convergence of
the Hilbert-transform pair for your choice of function f , similarly to the
example above. I.e. regularize the integral kernel of the Hilbert transform
with a small imaginary epsilon H → Hε. How well (as a function of
ε→ 0) does your numerical algorithm of Hε[ImFf ] converge to the real
part? How does this compare if you take the Cauchy-principal value
integral with some absence δ around the singularity; does it converge
better numerically?

Hints – signs in the Hilbert transform and the sign-convention in the
Fourier-transform are closely connected.
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Three function spaces

Titchmarch theorem is for L2-functions g(ω). We need a suitable
generalization for n-dimensional functions

Spaces

L2
s: g(ξ) ∈ L2

s if
‖g‖(s) =

∫
(1 + |ξ|2)s|g(ξ)|2 dξ = ‖g(ξ)(1 + |ξ|2)s/2‖ <∞.

Hs = {f ∈ D′ : f = F(g), g ∈ L2
s}, ‖f‖s = ‖g‖(s).

H(s) = {f ∈ Holomorphic in TC :
‖f‖(s) = supy∈C ‖f(x+ iy)‖s <∞}, weighted Hardy space

Properties

Hs ∈ C̄`0, ` integer, ` < s− n/2.

Hs is the set of functions f ∈ Hs−1, where ∂jf ∈ Hs−1.
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Cauchy Kernel

Cauchy(-Szegö) Kernels KC [Vladimirov 10.2]

The Cauchy kernel for a connected open cone in Rn with vertex 0 is:

KC(z) =

∫
C∗

eiz·ξ dξ = F [θC∗e
−y·ξ], z = x+ iy

Here θC∗ is the characteristic-function of C∗, the conjugate cone.

KRn
+

(z) = in

z1···zn ⇒ K1(x) = i
x+i0 = πδ(x) + iP 1

x .

KV +(z) = 2nπ(n−1)/2Γ(n+1
2 )(−z2)−

n+1
2 , z ∈ T V +

,
z2 = z2

0 − z2
1 − · · · − z2

n.

KPn(Z) = πn(n−1)/2jn
2 1! . . . (n− 1)!

(detZ)n
, Z ∈ TPn ,

Properties: K−C(x) = (−1)nKC(x), x ∈ C ∪ (−C);
ImKC(x) = 1

2iF(θC∗ − θ−C∗). KC holomorphic in TC
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Exercise L.3

Cauchy-Kernel in higher dimension

Calculate explicitly the Cauchy kernel KRn
+

for Rn+ for n = 1, 2, 3 and
determine its distribution on the boundary when Γ 3 y → 0. A partial
solution is given on previous (and later) slides. Be explicit and do the
missing steps.

Jonsson (KTH) Multidimensional passivity, sum-rules August 2015 32 / 54



Transform of a boundary function to TC

Cauchy-Bochner tranform [V10.3]

Let g ∈ L2
s, define f(x) = F [g] ∈ Hs, x ∈ Rn, the

Cauchy-Bochner-transform is, z ∈ TC ∪ T−C :

f(z) =
1

(2π)n

∫
Rn

KC(z − x′)f(x′) dx′ =
1

(2π)n
(f(x′),K(z − x′)),

Note f(z) holomorphic in TC ∪ T−C .

Example: The time-cone, R+

The conjugate cone C∗ = R̄+. Clearly KR+(z) =
∫∞

0 eizt dt = i
z . The

Cauchy-Bochner transform becomes:

f(z) =
1

2πi
P

∫
R

f(x′)

x′ − z dx′, z /∈ R (11)

which looks like a Cauchy-integral over the line.
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Generalized Titchmarsh’s theorem (n-dimensional)

Theorem II (V10.6) Generalized Hilbert-transform relation

Let f+ = Fg ∈ Hs, i.e., g ∈ L2
s the following things are equivalent:

supp g = suppF−1(f+) ⊂ C∗. [g is causal]

(Hilbert-transform pair)

Re f+(x) =
−2

(2π)n

∫
Rn

(Im f+)(x′)(ImKC)+(x− x′) dx′,

Im f+(x) =
2

(2π)n

∫
Rn

(Re f+)(x′)(ImKC)+(x− x′) dx′,

f+ is a boundary value of some f ∈ H(s)(TC). (Holomorphic in TC)

Note: Re f+ and Im f+ form a Hilbert-transform pair. Here

(ImKC)+(x) = Im

(
inΓ(n)

∫
Sn−1∩C∗

dσ

[x · σ + i0]n

)
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Quiz

What type of object is (ImKC)+(x− x′) and why?

Its an analytic function

Its a locally integrable function

Its a distribution
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Example A, Theorem II, 1 dim

1-dim case

We have KR+(z) = i
z . Note that

lim
y→0
KR+(x+ iy) = lim

y→0

i

x+ iy
= iP

1

x
+ πδ(x) (12)

Thus ImKR+(x) = P 1
x . The theorem II hence become the

Hilbert-transform pair, with the first as:

Re f+(x) =
−1

π
P

∫
R

Im f−(x′)

x− x′ dx′. (13)

Applications were shown above for f(t) = te−2t.
As a representation theorem, we note that the real part of all f ∈ Hs

yields the imaginary part. We have a representative structure.

Jonsson (KTH) Multidimensional passivity, sum-rules August 2015 36 / 54



Example B, Theorem II 2 dim.

2-dim case

We have KR2
+

(z) = −1
z1z2

. Note that in distributional sense

lim
y→0
KR2

+
(x + iy) = −(P

1

x1
− iπδ(x1))(P

1

x2
− iπδ(x2)) (14)

Thus ImKR2
+

(x) = πP 1
x1
δ(x2) + πP 1

x2
δ(x1). The theorem II

‘Hilbert-transform’ pair becomes:

Re f+(x) =
−1

2π
P

∫
R

Im f+(x′, x2)

x1 − x′
+

Im f+(x1, x
′)

x2 − x′
dx′ (15)
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Test case

Consider g(x1, x2) = θ(x1)θ(x2)e−ax1−ax2 . Fourier-transform:
f = Fg = 1

(a+iω1)(b+iω2) . Thus

Im f = − bω1 + aω2

(a2 + ω2
1)(b2 + ω2

2)
, Re f =

ab− ω1ω2

(a2 + ω2
1)(b2 + ω2

2)
(16)

Note that H 1
x2+a2

= y
a(a2+y2)

, H x
x2+a2

= −a
(a2+y2)

, thus

Hs→ω1 Im f(s, ω2) =
ω1ω2 − ab

(ω2
1 + a2)(ω2

2 + b2)
= Hs→ω2 Im f(ω1, s)

= −1

2
Re f (17)

We have hence showed that Re f and Im f indeed are a
‘Hilbert-transform’ pair under the Cauchy-kernel.
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Exercise L.4

Exercise L.4

Verify either numerically or analytically a dispersion relation in
2-dimensions. Choose a 2d-function Hs, causal function, or do a
step-by-step verification of the above case.
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Two classes: Dependent and independent variables

Observation: Real and imaginary part of the kernel LZ for a passive
system are connected with through the Cauchy-kernel KC , which depends
on domain, (cone) Γ of the variables x ∈ Γ.

Case 1: Light cone Γ = V +
n

Dispersion-relations for solutions to Cauchy-problem in homogeneous
space, (t, x) ∈ V +

n . [Vladimirov 2002].

Spatial dispersion properties V +
4 .

Case 2: Cone Γ = RN
+ – independent variables

Examples:

Nonlinear susceptibility, variables {ωk} ∈ Rn+.

Certain elements of nonlinear circuit theory
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Spatial dispersion

∂tD(r, t) = ∂t

∫ t

−∞
dt′
∫
R3

ε(r − r′, t− t′)E(r′, t′) (18)

Applications:

Optical activity requires spatial dispersion. Magneto-optic media
include weak spatial dispersion ∼(molecule diam)/λ.

Plasma physics and EM-propagation in metals at low temperatures at
radio-frequency. The effects can be strong.

Graphene sheets (2D) at low THz-frequencies
σ = σ0 + aj∂xj + bjk∂

2
xjxk

(sum-notation), σ0, aj and bjk are
matrices. [Gomez-Diaz etal 2013]

Periodic structures (homogenisation)
Di = εijEj + αjkr∂xrEj + βijrs∂

2
xrxsEj [Ciattoni etal 2015].

High-impedance surface ε = (x̂x̂ + ŷŷ)εt + ẑẑεzz,

εzz = (1− kp
εtk20−q2z

)εt, where kp is the plasma wave number.

[Luukkonen etal 2008]
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Multiple approaches give the same EM-field response

Equivalent representations

Different spatial dispersion representations have equivalent
EM-field-response. There are at-least three different models, perhaps the
most efficient is µ = 1 and

εik(ω,k) = (δij −
kikj
k2

)εt(ω,k) +
kikj
k2

εzz(ω,k). (19)

There are a 1-1 relation between the σ and the (ε, µ = 1) representations,
and between scalar (ε, µ)-representations. These equivalences appear
through different models for ρ,J as induced sources.

Boundary conditions: continuous tangential E, and Bn. However both
tangential B and H may have discontinuity at boundary.
Symmetries: ε(ω, r, r′) = ε∗(−ω, r, r′), ε(ω,k) = ε∗(−ω,−k).
Key references: [A. A. Rukhadze and V.P. Silin, Electrodynamics of media
with spatial dispersion 1961]
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What cone Γ is appropriate

Passive operator with no spatial dispersion:∫ T

−∞
E(t) · ∂D(t)

dt
dt ≥ 0, (20)

How to generalize this to include spatial dispersion? – we need
Re
∫
−Γ〈∂t(ε ∗E),E〉 dx > 0, here x = (x0, r). That is∫ 0

−∞
dt

∫
|r|≤−ct

dVE(r, t)·∂t
∫ t

−∞
dt′
∫
R3

dV ′(ε(r−r′, t−t′)E(r′, t′)) ≥ 0

E ∈ D×N .
Vacuum light cone, V +(x)→ V +(1) [change of variables].
Note: dimension of ε(r, t) and ε(t) is different.
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Application spatial dispersion

Spatial dispersion

Assume that the operator ε(r, t) is passive and have support in V +(1).
Hence ε(k, ω) is analytic in TC . If, in addition, ε(r, ω) ∈ Hs, then by
Thm II

Re ε(ω,k) =
−2

(2π)n
(ImKV +)+ ∗ Im ε =

−2

(2π)n

∫
R

∫
R3

(ImKV +)+(ω − ω′,k − k′) Im ε(ω′,k′) dω′ dVk′

Note:

1 An explicit form of (ImKV +)+, can be expressed in terms of the
generalized functions P (k) 1

σ·x and δ(k)(σ · x). I.e. we have let
C 3 y → 0.

2 Application to periodic structures.
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Case 2: n-dimensional Hilbert transform on cone Rn
+

(Hnf)(x) =
1

πn
P

∫
Rn

f(s)Πn
k=1

1

xk − sk
ds

Furthermore we have that (H2
nf)(x) = (−1)nf(x)

Examples: King 2009

Hn[sin(a · s)](x) =

{
(−1)(n−1)/2 cos(a · x)Πk sgn ak n odd

(−1)n/2 sin(a · x)Πk sgn ak n even

Hn[cos(a · s)](x) =

{
(−1)(n−1)/2 sin(a · x)Πk sgn ak n odd

(−1)n/2 cos(a · x)Πk sgn ak n even

Hn[eja·s](x) = (−1)neja·xΠk sgn ak

Hn[e−as
2
](x) = (−j)ne−ax

2
Πk erf(jxk

√
a)

Hn is a special case of a Calderón-Zygmund singular operator.
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Application, case 2

Nonlinear electric susceptibilities:

P (t) =
∑
n

P (n)(t),

where

P
(n)
k (ω) = ε0

∫
R

dω1E`1(ω1) · · ·
∫
R

dωnE`n(ωn)·

χ
(n)
k`1`2···`n(ω1, . . . , ωn)δ(ω − ω1 − ω2 − · · ·ωn)

n-dimensional dispersion relation

Ref: Peiponen 1988 (see also King: Hilbert transforms Chapt 22.9)

Reχ(n)(ω1, . . . , ωn) =
jn+1

πn
P

∫
R
· · ·P

∫
R

Imχ(n)(ω′1, . . . , ω
′
n) dω′1 · · · dω′n

(ω1 − ω′1) · · · (ωn − ω′n)
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Sum-rules, case 2, King (Chapt 22.11) 2009

Using that χ(n)(ω1, . . . , ωk, . . . , ωn) = O(ω−1−δ
k ) as ω →∞, the result:

Sum-rule nonlinear susceptibility [Peiponen 1988]:∫
R
· · ·
∫
R

(ω1 · · ·ωn)s−1[χ(n)(ω1, . . . , ωn)]t dω1 · · · dωn = 0

where s = 1, 2, . . ., t = 1, 2, . . ., s ≤ t.

Observations: There exists N-dim sum-rules, useful in nonlinear optics
Analyticity of χ(n) supplies additional relations, see e.g. King 2009 Note:
These the claimed dispersion-relations differ from the passive system
approach outlined above if n even. They are discussed in King.
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Goal: Limitations of measurable quantities

Linear system
and N-dim
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Herglotz-like
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and auxiliary
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dimensional
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Poisson Kernel and Schwartz kernel [Vladimirov 11, 12]

Poisson Kernel

PC(x, y) = KC(x+iy)
πnKC(iy) , (x, y) ∈ TC

PRn
+

(x, y) = y1···yn
πn|z1|2···|zn|2

PV +(x, y) =
2nΓ(n+1

2
)

π
n+3
2

(y2)
n+1
2

|(x+iy)2|n+1

Schwartz kernel

SC(z, z0) = 2KC(z)KC(−z0)

(2π)nKC(z−z0)
− PC(x0, y0)

SRn
+

=
2in

(2π)n

(
1

z1
− 1

z0
1

)
· · ·
(

1

zn
− 1

z0
n

)
− PRn

+
(x0, y0)

SV + is also known explicitly.
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generalized Schwartz representation [Vladimirov 12.5]

The generalized Schwartz representation theorem

If C is an acute regular∗ cone, then any function f holomorphic and

|f(z)| ≤M(1 + |z|2)α/2(1 + [δ(y)]−β), z ∈ TC (21)

for some M , α, β. Then there exists a boundary value f+ such that

f(z) = i(Im f+(x′),SC(z − x′, z0 − x′)) + Re f(z0), z0, z ∈ TC , (22)

∗ A cone is regular if KC is a divisor of the algebra H(C). Rn
+ and V + ⊂ R4 are

regular. n ≤ 3 every convex acute solid cone is regular.
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Representation Theorem [Vladimirov 17.2]

Properties of Holomorphic functions with non-negative imaginary part

Let u ∈ P+(TC) then 0 ≤ u(x, y) = Im f ∈ H+(TC) and µ = u(x,+0) is
a non-negative tempered measure, and u have the representation:

u(x, y) =

∫
Rn

PC(x− x′, y)µ(dx′) + vC(y), (x, y) ∈ TC

where vC > 0 continuous, vC → 0, as C 3 y → 0. If the cone also is
regular, then it also have a Schwartz representation. For Rn+ it is

f(z) = i

∫
Rn

SRn
+

(z − x′; z0 − z′)µ(dx′) + (a, z) + b(z0), z, z0 ∈ TC ,

where µ = Im f+, b(z0) = Re(f(z0))− (a, x0), aj = limyj→0
Im f(iy)
yj

,

j = 1 . . . , n, y ∈ R̄n

Note: 1) u ∈ P+ is pluriharmonic and positive functions, i.e. ∂zj∂zku = 0,
u ≥ 0. H+ functions are holomorphic with non-negative imaginary part.
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Observations

Note 2) [V18.2 Thm I] For n = 1 this is Nevanlinna representation. With
z0 = i, we have

f(z) = b+ az + i

∫
SR1(z − x′; i− z′)µ(dx′) =

b+ az +
i

π

∫
i(

1

z − x′ −
1

−i− x′ )−
1

1 + (x′)2
µ(dx′) =

b+ az +
1

π

∫
1

x′ − z −
x′

1 + (x′)2
µ(dx′)

which we recognize as the Herglotz-representation.

Note 3) For n > 1 there are some questions about the terms a and b
raised by Annemarie last time, about their interpretation.
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Conclusions

Conclusions

Linear passive system in a cone have positivity and analyticity in TC .

Dispersion-relation follows from the Cauchy-Szegö representation,
under Hs-constraints. (generalized Titchmarch theorems)

Representations similar to Herglotz follow from the Schwartz-kernel.

First applications are found. Limitations are still missing

Outlook/question

Given f(u, t), passive in t, what properties of u enables
representations/sum-rules.

Jonsson (KTH) Multidimensional passivity, sum-rules August 2015 54 / 54


	Plan of the Lecture
	Outline
	Motivation and possibilities

	Passivity and Multidimensional systems
	Linear systems
	Passivity
	Cones and some of their properties
	The Laplace transform of system kernels

	Representation Theorems
	Titchmarch theorem 1D, (Cauchy-kernel approach)
	Cauchy-kernel and generalized Titchmarch's theorem, n-dim
	Application test – dispersion relations
	Applications con't

	Representation theorems II – Herglotz
	Representation theorem, Schwartz kernel

	Conclusions

