g Summer School on Complex Analysis and
| Passivity with Applications:

A -4

Applications of sum rules and physical bounds
for passive systems

Daniel Sjoberg and Mats Gustafsson

Department of Electrical and Information Technology

Lund University, Sweden

Stockholm, August 2015



Outline

@ Sum rules and physical bounds

@ Tools for obtaining physical bounds
Composition of Herglotz (positive real) functions
Variational principles

© Applications
Scattering
Antennas
Absorbers
Transmission blockage
High-impedance surfaces
Metamaterials

O Exercises

© References

N

74



Outline

@ Sum rules and physical bounds

74



Sum rules and physical bounds on passive systems

1. ldentify a linear and passive system.

2. Construct a Herglotz (or similarly a positive
real) function h(z) that models the
parameter of interest.

3. Investigate the asymptotic expansions of
h(z) as z=0 and z-00.

4. Use integral identities for Herglotz functions
to relate the dynamic properties to the
asymptotic expansions.

5. Bound the integral.

Examples: Matching networks [2, 3], Radar absorbers [13], Antennas [8, 9, 5],
Scattering [16, 1], High-impedance surfaces [7], Metamaterials [6],Extraordinary
transmission [4],Periodic structures [11]
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Integral identities for Herglotz functions

Herglotz functions with the symmetry h(z) = —h*(—2*) (real-valued
in the time domain) have asymptotic expansions (Ny > 0 and
Ny > 0)

No
h(z) = Z azn—12"""t oz as 250
n=0

Noo
h(z) = Z bionz' ™2 +o(217HV=)  as 2500
n=0

where = denotes limits in the Stoltz domain 0 < 6 < arg(z) <m —6.
They satisfy the identities (1 — Ny < n < Np)

—bon—1 n <0

1

2 [<Imh i 1—b_ =

lim lim 7/ wdxzagn_l—bgn_l = a-1 rn
€

e—=0t y—0t+t T xn

al—bl n=1
a9p—1 n>1

Bernland, Luger, Gustafsson, Sum rules and constraints on passive systems, J. Phys. A: Math. Theor., 2011.
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Special cases

In the applications to follow, we will only use the following sum
rules. For Herglotz functions with the asymptotics

h(z) =a_127 ' + a1z +o(z) as 230
h(z) =biz4+b 127 +o(z7') as 2300

the following sum rules apply:
2 oo
/ Imh(zx)de =a—1 — by
™ Jo

2/ Imh(:z:) dx:al—bl
0

T x2

where the integrals are understood as the limits on the previous
slide. Often, the variable x is identified as (angular) frequency w.
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Change of variables

With x = w = 27mc/ ), the second integral can be transformed into

[t ()] 4(3)

1 o
=— [ Imhy(\)dX

m2c Ja=o

where hy(A) = h(2mc/A\) = h(w). We often abuse notation and
write only h(X). This implies the sum rules

2 (0.9}
/ Imh(w)dw =a—1 —b_y
T Jo

1 e}
E o Imh()\) d)\:a]_ —b]_

These are purely mathematical identities, which can be given
physical interpretation.
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Physical bounds

Given that Im h > 0, we can estimate the integrals as

) A2
/ Tm h(\) d\ > / Imh(\)dA > (A — A1) min Tmh())
0 A1 )\E[)q,)\z]

This implies
A2 — A in Imh()\) < n°cla; — b
(A2 1)A€r[riigz] m h(A) < m7c(ay — b1)
With the interpretations
» Ay — A1 = bandwidth

» min Imh(\) = performance level
)\E[)\L)\Q}

we see that a physical interpretation of the sum rule is that

the product of bandwidth and performance level is bounded
from above by low- and high-frequency asymptotics

Further interpretation is possible when h and the application are
specified.
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Different time conventions

In applications there is often a legacy of previous work to relate to.

Therefore, we need to be able to handle analytic mappings in at
least three complex half planes, and transform the results between
them.
» Upper half plane to itself (passive systems with time
convention e~ Herglotz functions h(w)).
» Right half plane to itself (passive systems with time
convention e*, positive real functions p(s)).
> Lower half plane to itself (passive systems with time
convention ™, (do they have a name?) functions g(w)).

h(w) =jp(jw*)" & p(s) =jh(js")"
g(w) = —jp(jw) & p(s) =]g(-is)
gw) = hw")" & hw)=gw)

74



Outline

@ Tools for obtaining physical bounds
Composition of Herglotz (positive real) functions
Variational principles

10/74



Outline

@ Tools for obtaining physical bounds
Composition of Herglotz (positive real) functions

11 /74



Composition of Herglotz (positive real) functions

A useful property of Herglotz/PR functions is that they can be
composed to find new Herglotz/PR functions. For instance, with
p1(s) and pa(s) being positive real functions, the following
combinations are also positive real:

p2(p1(s)) p1(s)p2(s) p1(s)/p2(s))

1/p1(s) p1(1/s) p1(s) + pa(s)

A typical case can be an investigation of negative refractive index,
n(s) =~ —1. The positive real function

p(s) = s(n(s) +1)

is then close to zero when n(s) ~ —1. The function

2 e ()

can be shown to have a real part close to unity when |p(s)| < A.
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Computation of polarizability

€0, Mo

(e—eo)-EdV+?{ rn - DdS

pZGOFYe'E():/
[2)9]

R3\Q

m:MEI’Ym‘BOZ/

1
(ugl—u—l)-BdVJr]{ r x (f x H)dS
R3\Q 2

o0
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Two ways of solving the electrostatic equations

The electrostatic problem can be solved using two different
potentials:

VxE=0 = E=E),— Vo
V-D=0 = D=Dy+VxF

This provides two different expressions for the energy:
T Bo) = [ [(Bo= V) - elr) - (Bo - V) ~ ol Bo] aV
K(F,Dy) = / [(Do+V x F)-€(r)™t (Dy+V x F) — ¢, |Do|*] dV

It can be shown [14] that for all test functions ¢ and F' (they do
not need to solve the electrostatic equations), we have
60E0'7e'E0§J(@7E0)7 _ealDO'Ve'DOSK(FvDO)

There exist unique minimizing potentials g and F'g, which are the
solutions to the electrostatic equations.
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Two ways of solving the electrostatic equations

The electrostatic problem can be solved using two different
potentials:

VxE=0 = E=E),— Vo
V-D=0 = D=Dy+VxF

This provides two different expressions for the energy:
T Bo) = [ [(Bo= V) - elr) - (Bo - V) ~ ol Bo] aV

K(F,Dy) = / [(Do+V x F)-€(r)™t (Dy+V x F) — ¢, |Do|*] dV

It can be shown [14] that for all test functions ¢ and F' (they do
not need to solve the electrostatic equations), we have
60E0'7e'E0§J(@7E0)7 _ealDO'Ve'DOSK(FvDO)

There exist unique minimizing potentials g and F'g, which are the
solutions to the electrostatic equations.
If we can guess solutions ¢ and F', we can bound ~,! e



Example: the Wiener bounds

Introduce the relative permittivity matrix as €,(r) = €(r)/ey. The
simplest guess is ¢ = 0 and F = 0. We then have

J(O, EQ) = EoEo . /(Er(T) - I) dav - Eo
K(0, Do) = —5' Dy - /(1 —e(r)1)dV - Dy

Setting Do = €9 Ey, this implies (known as the Wiener bounds in
homogenization theory)

/(1 — e(r)1)dV <, < /(er('r) _Dav

where the inequalities are interpreted in terms of quadratic forms,
that is, v, > 0 means Ey - v, - Eg > 0 for all Ej.

16
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Slightly more advanced: with PEC inclusions

Let Q2 be a PEC region. The set of admissible potentials A, must
then be restricted as follows:

T ) = [ [(Ba= ) elr) - (Bo = Vi) — alBof!] aV

Ap = {80 € Hi(R*\ Q)

Ey— V=0 recQ
nx(Ey—Vp)=0 recdQ

and the polarizability is the minimum

€0 Yo Eo = (pﬁelgl J (¢, Eq)
)

Similar reasoning applies to the dual functional K (F', D), but we

mostly use the functional J since it corresponds to an upper bound.

17 /74



Variational result for permittivity

Consider two objects with different material properties:

61("') 62(1‘)

Assuming that e2(r) > €;1(r) everywhere, we have

Tae, Bo) =i, Bo) = [ (Bo-Vo)ea(r)—er(r))-(Eo-Vip) AV
R

which is nonnegative for all ¢ and Ejy. Choosing ¢ = @9, where

(p2 minimizes Js, this means

€0E0 : (7632 - 7e1) : EO > JQ(SD%EO) - J1(¢23E0> >0
This is summarized as the variational result

If the permittivity is increased, the polarizability
can not decrease.

18 /74



High-contrast polarizability

We often want to estimate the polarizability of any structure
contained in a certain region 2.

e(r) | €— 00 !

The region ' contains €, and they can coincide. The variational
principle provides the upper bound

Ve = Vs

Example: the polarizability of a metal sphere with radius a is
Yoo = 4ma3. Any structure contained in a sphere with radius a
then has 7, < 4ma3.

19 /74
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Sum rules in scattering theory

Scattering theory is a nice application for sum rules. We will
discuss scattering in 3, 2, and 1 spatial dimensions, and show that
in each of them the following sum rule applies:

/ o™t (\) d\ = 72y
0

where the extinction cross section o is the sum of the absorption

and scattering cross sections, and -y is the sum of the electric and
magnetic static polarizabilities of the scatterer.

This means the total electromagnetic interaction,
summed over all wavelengths, is determined by a prop-
erty that can be computed from a static problem.



Scattering in 3D

A plane wave E(r) = Ege %7, Hi(r) = %I;: x E'(r), impinges
on a scattering object enclosed by a surface S.

Scattered power:

Absorbed power:

23/74



Extinct power

The extinct power is the sum of scattered and absorbed power:
P™t = ps 4 pr = 2Re/ﬁ-(Es x H™ — E x H*)dS
s

:;Re/ﬁ-(EstS*—(Ei—i—Es) x (H'+ H®)*)dS
S

1 . .
:—QRe/ﬁ-(Eles*—ESle*)dS
S

Here, we used 3 Re [(# - (E' x H™)dS = 0. When the incident
field is a plane wave this becomes (E® ~ Fe ¥ /1 1 — 00)

1 1. .
PeXt_Re{EE‘;-/ [ﬁst—i—kx(ﬂxEs)] eJk"“dS}
2 s 1o

:1Re{—%E* Jkkx/[l&x(ﬁxnoﬂs)+Esxﬁ} ej””dS}
S

2 ikno a7
1 471' N
= — Re k
2 { Jkno F )}

24 /74



Optical theorem in 3D

With the incident power flux S' = we obtain the extinction

cross section

|E0|
2no

pext At B, - F(k)
ext _ 0"
G = o= Re { i —| NE }

This is remarkable since the (extinct) power, a quadratic quantity,
depends linearly on the scattered field through F'(k). The forward
scattering far field is analytic in a half plane due to causality.

Our prototype Herglotz function is then (switching to time
convention e~ 1%t)
Am B - F(k; k)

h‘3D(k) ]{7 ‘EOP

where Im h = ot > (.

25 /74



Scattering in 2D

The baseline geometry is translational invariant along z:

n
// \\
// y \\S
— \
i \
\ z /
\ /
\ /
AN ™ ES

But it can also be a geometry periodic in z, for instance realized
between two parallel plates:

TEM Horn antenna
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Optical theorem in 2D

In a two-dimensional geometry we only need to change the
definition of the far field amplitude (E° ~ f,/ %e‘jk”, p — 00)

1 1. .
PeXt:Re{EE’;./ [fszS+k:><(fz><Es)] eJ’”dS}
2 s 10

1 4b ik » b - R L] ik
—-Rel{-——E; Tk ki H) + E° r
2Re{ PR X/o 7{0{ x (7o x noH®) ><n}eJ dfdz

1 4b .
s Re{ =B £
The extinction cross section is then (with incident power flux

i _ |Eol?
St = 2n0 )

WLPM_G{%%fw} (k) = D EFH)

S W AT ~ % |EP

27 /74



Scattering in 1D

The baseline geometry is translational invariant along = and y:

Ei
Et
E* o

B PN

28/74



Optical theorem in 1D

The different powers are (where T is the transmission coefficient
for the fundamental mode, Pf is the transmitted power in
remaining modes, and P" is the total reflected power)

Incident power: Pl = AS' = A|Eo|*/(2n0)
Scattered power: PS=P'+[1-T)?P 4 P}
Absorbed power: P* =P — P —|T|?P' - P!

The extinct power is

Pt — pS 4 pa = P* 4|1 -T*P' + P! + P'— P* — |T|>P' — P}

= (1 —2ReT + |T]*)P' + P' — |T|*P' = 2Re{l — T} P
The extinction cross section per unit cell with area A is then

ext

oS — Ps—i —2Re{l-T}A4 hp(k) = 2i(1 — T(k))A

29 /74



Low frequency asymptotics

In the low frequency limit, the forward scattering amplitudes are
hnp(k) =kv+o(k), n=1,2,3

where 7 is the sum of the (static) electric and magnetic
polarizabilities
L BiyeBo | Hivy - Ho
[ Eo|? [Ho|?

defined by solving the static Maxwell's equations and relating the
incident field to the induced dipole moments:

pZEO’Ye'E07 m:7mH0

Note: this excludes cases where a net current flows through the
structures in the low frequency limit, that is, we only consider
disconnected conducting regions.
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High frequency asympotics

In the high frequency limit the forward scattering is expected to be
proportional to the projected area of the scatterer, implying

where n =1, 2, 3.

31/74



Sum rules for extinction cross section

With the asymptotics

hnp (k)
hnp (k)

ky + o(k) k—0
o1 k — oo

we have the sum rule (where 0®* = Im(h,p))
oo A
/ o™ (N k, Ey)d\ = %y
0
for all dimensions n = 1,2, 3. This implies the physical bound
(A2 = Aot < 7%y < 0

where v is the high-contrast polarizability for any shape
containing the scatterer.

32/74



Experimental results 3D [17]
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Forward measurement

antenna \/ W
Receiving -
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Experimental results parallel plate [18]

E— Object
_ Absorbers

Styrofoam
i

=8 mm 50 mm
t=0.5 fim R 121.3 mm
flm _*g . o Fem /=18 myp
Re )
15 Re =04 g .
f(GHz) 1
20 05

Im T
g J(GHz)
12 14 16 18 20

I: max and min

0
0 2 4 6 8
=05

Estimates of 7. Left (2D) | Right (1D)

L 20 (A\)dX /em® | 275 | 0.111 (0.208)
7e from capacitor / cm? 3.65 0.196
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|dentification of antenna parameters

The scattering sum rule
oo
/ o™ (\) d\ = 7y
0

can be put in terms of antenna parameters after observing [8]

1
0% > 0% = (1= |T)af = (1~ [T)ND()
™
Here, we used reciprocity to relate the absorption cross section to
the directivity, including mismatch losses. Since the gain G < D,
we have
1 > 2 2 * ext 2
— (1= |I"")GA)AdAX < o (N)dA = 7y
47 0 0

36
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Estimating the integral

Introduce the minimum partial realized gain in the interval
A =[A1, o] as

Ga = min(1 —|I'(A )IHGA)

to find the estimate [8]
00 A2
/ (1— TGN dX > GA/ M dX\ > GABAS
0 A1

where \g = (A1 + A2)/2 and B = (A2 — A\1)/Xo. This implies the
physical bound

4 3
BGA < )\3 ~3 V= kO k()’yoo

where v is the high-contrast polarizability of any shape enclosing
the antenna.
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lllustrations of the bound [9]

In terms of the directivity D and quality factor (Q, we have

D n .3 fooo o®(A) dA >
— < —k h =
Q =2t (W T ey ax
D/Q/(koa)B Chu bound, kpak1

01 1 10 100 1000
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Rozanov's bound for absorbers

The typical case of an absorber is a metal backed structure with
thickness d.

Eil IEY:FEi

1 - - reference plane

Rozanov [13] showed that

()\2 — )\1)F0 < 172d s

where I is the minimum allowed return loss in dB for A € [A1, Ag],
and g is the static relative permeability. For wide band absorbers
we have A\pax = Ao > A1, and

AmaxTb < 172d s
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Rozanov's bound

Im Im

I'(s)

— A

*

Re Re

The reflection coefficient maps the right half plane to the unit
circle. In case I'(s;,) = 0 for some {s,}_, in the right half plane,
we introduce the function (which satisfies [I"(jw)| = |I'(jw)|)

(s+s7) - (s+sy)
(s—s1)--(s—snN)
where the (possible) zeros of I'(s) have been reflected in the

imaginary axis. I"”(s) has neither zeros nor poles for s in the right
half plane. Then, log(1/I”(s)) is a positive real function.

I'(s)=1(s)

41/74



Behavior of the Blaschke product

The logarithm is

1 1 (s—s1) - (s—snN)
2 me T8 T )+10g<(8+87)-~(8+8}‘v)>

and since

(s—sn) { 2sRe L -+ 0O(s 2) s—=0
log =

s+ s} 28Resn+0(1/s) s — 00
we have
1 log F%S) 25sRe 32 | 51 s —0
log — 1 1 N
F(s) log 7757 — 25 sRed 80 5= 00
On the frequency axis s = jw we have ifii = ’j:tﬁ =1, which
implies
1 1 1
Re < log - }zln‘ - ‘:ln : ‘
{ I (jw) I (jw) I(jw)
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Visualization of the transformations

Im Im Im
1/’ log(1/1")
Re Re Re

The origin I" = 0 has now been transformed to a region with a
large real part.
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Low- and high-frequency asympotics

The low- and high-frequency asymptotics are

I(s) = —14+ 221+ 2m) 4 O(s?) s—0
T ) e (oo 1)2ds/c+o(1/8) s — 00

where 7y, /A is the magnetic polarizability per unit area of the
absorber. This implies

g J A+ 3 —2sRe )L, L+ 0(s2) 50
sl = {(noo —1)2ds/c — 21 Re Zln: sn+O(1) s =00

and we immediately have the sum rule
Relog —— ¢ d\ = n°2d 1+——2 -1
| re{oe ( Z o )>
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Simplifications

Since Re {log ﬁ} In |F()\)| Re > 0 for s, in the right half
plane, and ny, > 1 due to special relat|V|ty, we have

1 <722d 1+ 2
/0 n]F()\)|d)\ T d< +Ad)

Define the static permeability by ps = 1+ ym/(Ad), and the
dB-scale return loss by In i = In(10)|I'yp|/20. We can then

=
estimate the integral by

20
(A2 — AT < mw22dus = 172d s

where Iy = minyg(x, ) [TaB(A)| is the minimum allowed return
loss in the band (A1, A2).
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Salisbury screen

Probably the simplest absorber is the Salisbury screen,

EiJ ]E =I'E'
- - resistive sheet G = 1/n
1 + 2jtan(kd)

Reflection level

w

0 ' Iy =20dB was
N b : chosen. Black dashed
-3 / \ / line is Rozanov's
£ 10 Do | bound, blue dashed line
\ achieved bandwidth

—19 x E/ E ()\2 — )\1) ~ 0.25)\0.
_ ] : This gives

20

o0 s o 152025 30 0‘21}# = 12%.
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Close to optimal absorber

A more wide band absorber was
presented in [12], based on
multilayer, capacitive patches.

» Total thickness

d = 14.5mm, target level
Iy =20dB.

> Lower frequency f1, =
3.26 GHz = Ay = 9.20 cm.

» Upper frequency
fu=3465GHz = A\ =
8.65 mm.

Product of longest wavelength
and reflection level
Aoly/(172d) = 74%.
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A similar bound for transmission blockage

Consider transmission through a periodic structure, designed to
block electromagnetic waves at some frequency [10, 15].

For a low pass structure (7(0) = 1), we can bound the
transmission blockage much in the same way as the absorption of
an absorber:

1 0
(A2 —)\1)111?0 < 27;122/(()8)9 (\/ngo—siHQO—c059> d

49 /74



Sum rule

With unconnected metal structures, we have asympotics

k
T(k) — L - ;AZE)S)O + O(kz) k=0
e—J(noo—l)deOSG + O(l/k) k= 00

where the angle-dependent polarizability is
7(9) o Vexx COS2 0 + Vezz Sin2 0 + Ymyy > ™
VYeyy + Ymzz c08? 0 + Yinz» sin’?d, TE
As with the absorber case, we need to eliminate possible zeros:
(k—ki)---(k—ky)
(k= k1) (k—kn)
The sum rule for transmission blockage is then

o1 () /
< _ 2 _«inlp
/0 In |T()\)|d>\_2ACOSH < nZ, —sin“0 Cosﬁ)d

2(,\2—,\1)1nTi0

T'(k) = T(k)

50 /74



Angle-dependent polarizability

The angle-dependent polarizability

~(0) = Yewz COS2 0 + Yo sin? O + Ymyy, TM
Yeyy T Ymazz cos? 0 + Ymzz sin? 0, TE

is a combination of in-plane polarizabilities (zy-components), and
normal polarizabilities (z-components). The in-plane
polarizabilities can typically be estimated by the polarizability of
enclosing patches, due to the variational principle:

@
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Experimental verification of transmission blockage

The sum rule has been experimentally verified. Split-ring patterns
were designed, manufactured, and measured.

2.50 mm

2.22mm

1.74 mm

0mm

-~ 0.75mm
o /Copper

. 0527 my

- Copper

ubstrate

30 35 40 B 5 10

0 5 10
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Results for different angles

Define the blockage by (the actual integration interval is bounded)

cosG/ n 1 QA
0

2
™ TN

4.0 T T T T T T T T

3.5
E 300
=
0w 2.5
o
v}
%]
o 2.0
£
E=
o 1.5
o
c e o TM measurement \
8 1.0f|= = TE measurement RN
o ®-® TM simulation

0.5H *-% TE simulation

|| — T™ bound
— TE bound
0'00 10 20 30 40 50 60 70 80 90

angle of incidence [degrees]

Note the significant decrease with angle for TM polarization. 53/74
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High-impedance surfaces

A metal ground plane has reflection coefficient I" = —1. In order
to stop surface waves or reduce the thickness of planar antennas, it
is desirable with I" = +1.

Ix

Loading the ground plane with a structure like patches on vias can
do the trick, but with limited bandwidth [7]:
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Low frequency asymptotic

For analysis, the ground plane 2) 2 £ b) 'z é
can be removed by mirroring k k

the geometry and adding an e(z,0,2) e(@,,2)
extra incident field from w(z,y,2) (@,
below. Note that the static

. . . ) N S N
applied field then is PEC
— iz f(l":y,'z)
E - 2Ezz 2d )u’(w7y)_z)
H = 2ny = <71 ,;[r)

€

The low frequency asympotic for the reflection coefficient is

_ 2sd 7(8) 2
I'(s) = 1—1—7 (COSQ—FMOSQ) +0(s?), s—0

where
7(9) _ Yezz Sin2;9 + Ymyy ™
Ymzz COS® 0 TE

56
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Transformation of the reflection coefficient

We want to characterize when I' &~ +1, or when the normalized

surface admittance

Y(s) 1-1I'(s)

Yi(6) 1+ 1(s)

%O’ Y;::{

cos

1/cosf® TM

TE

We observe that Y'(s) is a positive real function, and apply the

composition

The function Re P, is
an indicator of when its

argument is smaller
than A.

2
PA(Y (s)) = - arctan

(A

Y (s)

)

FAiw)

Re Py(jw)

0.5

L w/A

-1.5

1
-0.5

-0.5 |

-15

1.5 2

Im Py(jw)
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Sum rule for the composite function

Using the low frequency asymptotic of I'(s), and that Y'(s) grows
at most linearly with s, we obtain

PA(Y(s)) = {cnme) <COS T 2Acos9) +o(s) s—
o(s) s — 00

This gives the sum rule

/OOORePA(Y()\))d)\z (dcosg+ v(6) ) 2 A

2Acos0 ) Yi(0)

For nonmagnetic, lossless structures and A = 1/2, the right hand
side can be estimated by 7d, and we have the physical bound

A2 — A1 ”
—g =

™
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Example: quarter-wavelength slab

The simplest realization of a
high-impedance surface is by
simply shifting the reference
plane one quarter wavelength.

The figures illustrate the behavior
of Re PA(Y') as function of both
frequency and wavelength.
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Example: mushroom surface

Lo
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Example: dependence on angle of incidence
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Metamaterials

Typical frequency dependence for dielectrics:

e=¢€ —je’ Lo

€(0) t N

vibration |
rotation \
conduction + ~
9 v transition

relaxation

103 106 109 102 105 f(Hz)
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Metamaterials

Typical frequency dependence for dielectrics:

e=¢ —je’ JEEEN

€(0) t / ° \

vibration | f

rotation \ S 2 ,
\ /
. N 7
conduction 4= ~ _

@ v transition

relaxation

103 106 109 102 105 f(Hz)

It is difficult to create materials with a response outside the region

[e(o0), €(0)].

63 /74



Physical bounds on metamaterials [6]

With no knowledge of €5 (typically, a conductor), and target
permittivity e, < €5, We have

max |€(w) — €m| =2 ——57-(€c0 — €
le(w) m|—1+B/2(°° m) 1 lossless case

B 1/2  lossy case
weB

For an insulator (where € is well defined), when €, < €

weB |e(w) —€oo| — 1+ B/2€ — €0

e le(w) — €m]| B e —eéen | 1/2 lossy case
X
1 lossless case

When ¢, > ¢g:

le(w) — €m| - B ey — € {1/2 lossy case
max

weB |e(w) —€x| ~ 1+ B/2€s—€x |1 lossless case
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Exercises

The following exercises can with advantage be solved using
matlab, python, or similar software. Some hints are available in the
references of this presentation.
Exercise 1
Consider two absorber designs, a Salisbury screen and a
Daillenbach absorber (a homogeneous lossy dielectric slab). How
close do they come to Rozanov's bound? lllustrate the results with
some graphs.
» Salisbury screen: I' = —1/(1 + 2j tan(kd)) with
k = w/c = 2w /X being the wave number in free space, and d
is the thickness of the absorber.
» Dallenbach absorber: I'=(1—-Y)/(1+Y), where the
relative surface admittance is Y = n/(j tan(nkd)) with
n = /& being the refractive index. The relative permittivity
€r(w) needs to be lossy and depend on frequency, one choice
can be ¢, =1+ 1.76/(jkd), but feel free to try other.
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Exercises

Exercise 2

Consider a dielectric slab with thickness 0.3 mm, with either
constant relative permittivity 4.35, or frequency-dependent
e(w) =1+3.35/(1 + jw/we) with we = 27c/(1 um), where c is
the speed of light in vacuum. Compute the angle-dependent
polarizability per unit area and thickness, v(0)/(Ad), and
high-frequency refractive index n.,. Compare the integrated
transmission blockage with the bound in the two cases.
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