An Overview of Microkernel, Hypervisor and
Microvisor Virtualization Approaches for
Embedded Systems

Asif Igbal, Nayeema Sadeque and Rafika Ida Mutia

Department of Electrical and Information Technology
Lund University
Sweden

Abstract—This paper addresses an essential application of
microkernels; its role in virtualization for embedded systems.
Virtualization in embedded systems and microkernel-based
virtualization are topics of intensive research today. As
embedded systems specifically mobile phones are evolving
to do everything that a PC does, employing virtualization in
this case is another step to make this vision a reality. Hence,
recently, much time and research effort have been employed
to validate ways to host virtualization on embedded
system processors i.e., the ARM processors. This paper
reviews the research work that have had significant impact
on the implementation approaches of virtualization in
embedded systems and how these approaches additionally
provide security features that are beneficial to equipment
manufacturers, carrier service providers and end users.

Index Terms—microkernel, hypervisor, microvisor, virtual-
ization, embedded systems

I. INTRODUCTION

Virtualization has bought overwhelming changes in
IT sector, since it allows multiple operating systems to
run on a single computer there by consolidating servers,
reducing captial costs, increasing energy efficiency and
offering other significant advantages. The next big step
is to implement virtualization on embedded systems,
especially on mobile phones where the same benefits can
translate to saving $5 to $10 per phone as estimated by
Open Kernel Labs. [1] At present, programmers need
to develop OS-specific applications, rewriting the same
applications for different OSes. This can take months.
With virtualization, features on a mobile phone can
be added regardless of the operating system, making
applications more accessible, reducing the number of
processor chips required thereby cutting costs. Further-
more, virtualization on mobile phones can help carriers
respond to security changes since operators will then be
able to allocate access and bandwidth variably between
untrusted and trusted applications.

Virtualization on embedded processors such as ARM
processors are generally tested on top of a microkernel or
a hypervisor; the L4 microkernel and Xen are examples

of each. However, Open Kernel Labs, a world leading
provider of mobile phone virtualization solutions have
implemented and marketed the first virtualized mobile
phone in April 2009 called The Motorola Evoke QA4.
The software architecture for Evoke uses two virtual
machines, one running Linux and the other running
BREW(Binary Runtime Environment for Wireless) on top
of the OKL4 microvisor which hosts features from both
the traditional microkernel and hypervisor. [2]

However, the market for virtualization for embedded
systems including mobile phones are still in its early
stages, as the technology is not widespread. This pa-
per focuses on the microkernel-based virtualization ap-
proaches for embedded systems. Comparisons with the
hypervisor approach are discussed, with performance
evaluation of the different approaches. The paper also
addresses the issue of security of microkernel-based
virtualization.

This paper is organized as follows. Section II starts
off with a brief introduction on virtualization and the
two kinds of virtualization related to this paper. It
includes comparisons between microkernels and hy-
pervisors, two competing platforms for virtualization
in embedded systems. A detailed description of the
three basic approaches to implementing virtualization
in embedded systems is presented in Section III and
Section IV. Section IV provides detailed description of
a sucessful implementation of the OKL4 microvisor on
the Motorola Evoke QA4 mobile phone. In Section V
practical implementations of the different approaches
i.e., microkernel and hypervisor and their performance
comparisons are reviewed. Before concluding, Section VI
looks into the security advantage provided by virtual-
ization and outlines how both the microkernel and the
hypervisor achieves this objective.

II. BACKGROUND

This section provides an overview of virtualization
and the types of virtualization that are related to this
paper. Virtualization in embedded systems is introduced

and the difference between the two approaches that is
used to carry out virtualization, the microkernel ap-
proach and the hypervisor approach, are investigated.

A. Virtualization

Virtualization refers to providing a software envi-
ronment on which programs and complete operating
systems can run as if they were running directly on
the hardware. The software layer providing this envi-
ronment is called Virtual Machine Monitor (VMM). [3]

In order to provide this illusion, VMM has three
important characteristics: [4]

1) The VMM provides an environment to the software
that is essentially identical with the original ma-
chine.

2) Programs running in this environment show minor
decrease in speed.

3) VMM has the complete control of the system’s
resources.

All the three characteristics are important and make
virtualization highly useful in practice. The first point
ensures that software makes sure that software that
runs on a real machine will also run on the VM and
vice versa. The second guarantees that virtualization is
implemented while keeping high performance in mind,
and the third ensures that only hypervisor or VMM is
running on the hardware and no other software can con-
trol any of the system’s resources without authorization
from the VMM.

Virtualization is provided mainly in two ways, Para-
Virtualization and Native/Full Virtualization [5]. Both
will be explained such as followed.

o Para-virtualization

This technique requires modifications into the kernel
of the guest operating system so that it calls the
underlying virtualization software instead of relying
on the complete emulation of system’s hardware.
This kind of virtualization is provided by Xen
and L4 with modified OS running on top of the
microkernel.[5]

o Native Virtualization

This technique requires no modifications to the
guest operating systems, it relies on the hypervisor
to emulate the low level features of the hardware
as expected by the kernel of the guest OS. As a
result, full operating systems like Linux, UNIX and
windows can run inside the virtual machines with
no changes. Native Virtualization is usually realized
either by Dynamic Binary Translation (DBT) (e.g.
VMware ESX) or by hardware assistance (e.g. Xen).
[5]

B. Virtualization on Embedded Systems

Modern embedded systems are increasingly moving
towards general purpose systems. Their functionality is

r N N
Ul Legacy
Software Software
\ AN J
4 N Y
Application Real-Time
oS oS
\ VAN /
Hypervisor
Processor
Fig. 1. Virtualization Architecture in Embedded Systems

growing rapidly and as a result, the complexity and the
size of the software needed is also growing. The software
stack on a Smartphone is already 5-7Mloc(Million Lines
Of Code) and growing. Also embedded systems are run-
ning applications which were developed for the PC, as
well as the applications written by programmers without
embedded system expertise. As a result, the demand for
high-level application-oriented operating systems with
commodity APIs like Linux, Windows, Mac OS, has
increased. [6]

Still, embedded systems have some differences to
general-purpose systems. Embedded systems are still
real-time systems. They are still resource constrained like
the power availability in the form of a battery, resulting
in tight energy budgets. Also, the memory is still a cost
factor in addition to being a consumer of energy.

The relevance of virtualization in embedded systems
comes from their ability to address some of the new
challenges posed by them [6], such as explained in the
next paragraphs.

Mainstream operating systems lack the support for
true real-time responsiveness required from a RTOS
and they are also unsuitable for supporting the legacy
firmware running on the current devices. Virtualization
can help here by providing Heterogeneous operating
system environments with a RTOS and an application
OS (Linux, Windows, Symbian, etc) running on the
same processor, as shown in Figure 1, given that the
underlying hypervisor can deliver interrupts reliably
fast to the RTOS. As a result, the legacy stack can
continue providing device’s real-time functionality and
the application OS can provide the required commodity
API and high level functionality suitable for application
programming.

The above problem can also be addressed by using a
multi-core processor with application OS running on one

and the RTOS running on another core provided that
there is some hardware support for securely partition-
ing memory. The virtualization supports architectural
abstraction, as the same software architecture can be
migrated essentially unchanged between a multicore and
a virtualized single core processor.

The strongest motivation for virtualization is the secu-
rity. With the trend towards open systems, the probabil-
ity of an application operating system getting compro-
mised increases significantly, resulting in a system wide
security breach. This can be minimized by running such
an OS in a virtual machine, thus limiting access to the
rest of the system. Also the downloaded code may be
restricted to run in a virtual machine environment, or
services which can be accessed remotely could be placed
in a VM. This use, however, is only valid if:

e The underlying hypervisor/VMM is considerably
more secured than the guest OS, meaning that the
hypervisor must be smaller to keep TCB smaller.

o Critical functionalities can be isolated into VMs
different from the exposed user- or network-facing
ones. [6]

If these conditions are not met, the hypervisor will
increase the TCB size which is not good in security point
of view. Now in order to tackle the challenges posed
by modern embedded systems, virtualization software
should meet the following criteria:

o capability to provide strongly encapsulated
VMs/components, which is required for security
isolation and fault containment as well as it should
be able to run isolated guest OS instances and their
application stacks (unmodified). This must be done
while preserving real-time responsiveness for the
time critical subsystems.

« capability to provide controlled low-latency, high-
bandwidth communication between components,
including shared memory, controlled by a system-
wide security policy, imposed by a small and
trustworthy TCB. The components should be
lightweight enough so that the encapsulation of
individual threads is possible in order to enforce a
global scheduling policy.

These requirements exceed the capabilities of a hyper-
visor and require more general-purpose OS mechanisms.
High performance microkernels seem to provide the
right capabilities required for this job. Various members
of L4 microkernel family feature extremely low overhead
message passing (IPC), provide encapsulation by having
lightweight address spaces, memory mapping mecha-
nisms and high performance user level device drivers.

The efficient and fast IPC mechanism is the key for
a high performance microkernel based system including
virtual machines. Virtualization traps are caught by the

microkernel and converted into corresponding exception
messages sent to a user-level VMM. It, together with
lightweight address spaces, is key enabler of encapsu-
lated lightweight components. [7]

C. Microkernels vs. Hypervisors

There are many literature arguing the ease of practi-
cality of microkernels and hypervisors. While all claim
that the two kinds of systems are common in their archi-
tecture, the differences lie in their technical implementa-
tions. [8] and [9] are two papers that vies for the feasibil-
ity of adopting virtualization by implementing these two
architectures. One of the advantageous characteristics of
hypervisors proposed by [8] is that although VMM acts
as an additional layer between the hardware and the
user, it does not degrade the performance noticeably
while keeping the overhead small.

In addition, since VMM are out-of-the-applications,
the code can simply be run on regular desktop machines
without requiring modifications to existing applications.
[8] further suggests that the external pagers used by
microkernels for memory management can have signifi-
cant impact on performance, as the kernel may need to
wait for a long time for a pager to evict before other
executions can proceed.

VMMs on the other hand strictly partitions memory
between VMs and does not employ pagers. Conse-
quently, failure of a VM is isolated, thus it does not
compromise the stability of the system. Moreover, the
developers of hypervisors need not deal with improving
IPC performance, which is an issue for microkernels.

Finally, another important difference lies in the granu-
larity of compartmentalization of Xen(a hypervisor) and
a microkernel. Since microkernels changes the API visi-
ble to applications, considerable effort must be spent to
implement emulation interface layers on existing OSes.
A characteristic of Xen including other VMMs is that
existing OSes can be run on top of it, allowing VMMs
to be easily adaptable to feature sets of existing OSes
while providing a familiar development environment
and using existing tools extensively such as, networking
routing, disk management, etc.

[9]refutes the claims put forth by [8]. First it lists the
three core primitives of the IPC in microkernels followed
by a subset of the primitives in VMMs. Combining
the three primitives of the IPC into a single primitive
results in reduced number of security mechanisms, code
complexity and code size. A reduced code size in turn
means reduced number of errors in the privileged kernel
including reduced footprint.

In contrast, the rich variety of primitives for VMMs
requires a dedicated set of mechanisms, resources and
kernel code. While [8] suggests that employing VMM:s to
carry out virtualization requires minimal modifications
to existing operating systems, [9] insists that the recent
redirection of VMM s to adopt para-virtualization instead

of pure virtualization means that this advantage is un-
countable. VMM s has a diversity of interfaces that leads
to structural compromises. While super-VMs can be used
to combine and co-locate critical system functionality, it
introduces a large number of software bugs. A VMM
interface is structured to be close to the underlying
architecture thus making it inherently unportable across
architectures. The same is not true for microkernels since
it uses a common set of abstractions to hide peculiarities
of the platform. With microkernels, it is possible to reuse
system components across a wide variety of platforms,
minimizing porting and maintenance overhead as a re-
sult.

In addressing the issue of external pagers, [9] states
that Parallax, which is a cluster volume manager for
virtual disks, also uses external pager to provide file
service. Like in the case of L4 microkernel, a failure
of the Parallax server only effects its clients. Lastly, the
use of a separate virtual machine Domg including Xen
means that VMs have to communicate with Domg via
simple asynchronous unidirectional event mechanism.
This is analogous to a form of asynchronous IPC. An
examination of CPU overhead of Domg drivers under
high load shows that the CPU load generated by Dom,g
accounts for approximately all of the CPU load. Hence
under high load, the IPC dominates the driver overhead
in Xen. [9] also cites another paper that concludes that
the IPC operations carried out by an Xen-based system
and a comparable microkernel are the same.

Before [10] presents the OKL4 microvisor, a system
employing specific characteristics of both VMMs and
microkernels, it discusses the main differences between
the two approaches, which are listed below:

o Abstractions, While developing a VMM, the goal is to
abstract resources that look much like the real ones
without considering the implementation size. For a
microkernel, the size is significant, however, the gap
between the physical and the abstract should not be
so large that it violates the minimality principle.

o Memory, A VMM virtualizes the Memory Manage-
ment Unit (MMUSs) software interface and page
tables thereby providing virtual MMUs (VMMUs).
Microkernels on the other hand uses network-like
communication mechanisms to manage its address
spaces via operations of grant, map and flush.

o Execution, The VMM provides each VM with a
virtual CPU (vCPU) and multiplexes between them.
Multiple privilege levels are retained and commu-
nication includes priorities and time slices. The
second generation microkernels uses threads (as in
L4) or scheduler activations (as in K42) to abstract
execution time. This minimal abstractions allows
for scheduling activities and also enforces priorities
and time slices. Microkernels treats all user-level
activities as peers.

o I/O, The hypervisor uses multiplexing and virtual-

izes devices by exporting a device interface to the
guest OS while the actual device drivers resides in
the hypervisor itself. In contrast, since device drivers
are implemented at user level by microkernels, the
drivers are run as user-level processes and commu-
nicates with the rest of the system via IPC.

o Communication, Virtual Machines (VMs) communi-
cate like individual machines would via networks.
This mechanism is provided by the hypervisor
implementing virtual networks running on stan-
dard networking stacks. Microkernels use highly-
optimized message-based IPC to communicate be-
tween VMs. This mechanism minimizes overhead
by utilizing synchronous IPC.

III. BASIC IMPLEMENTATION OF VIRTUALIZATION

This section provides details of the three approaches
to carry out virtualization. The first is the microkernel
approach where the main focus is on porting Linux
in para-virtualized form on top of the L4 microkernel,
also known as L4Linux. The second is the hypervisor
approach, where the focus is on Xen and its performance
evaluation for embedded systems. Finally, the microvisor
approach is introduced which is said to be the conver-
gence point of microkernels and hypervisors, employing
features of both approaches.

A. The Microkernel Approach

Security in embedded systems has received renewed
interest with the increase of personal computing devices
like Personal Digital Assistants (PDAs), Smartphones,
and the likes. Embedded systems vendors apart from
balancing the “apparent” power, features and flexibility
the software platform provides to mobile device users,
also have to take steps against the possibility of mobile
devices being compromised either by users themselves
or other third-party software. In 2004, a Symbian ”cabir”
worm showed that the embedded system environment is
not safe from the viruses and worms which are currently
present in the desktop PC world.[11]

One of the major approaches to address the security
and other problems discussed above is the use of small
kernel, small components and small interfaces approach
named Microkernel approach. This approach uses the
"Principle of least privilege” and the ”Principle of econ-
omy of mechanism” [12]. The current main stream OS
kernels have full privilege on the system hardware it
supervises. The above mentioned principles are applied
in the microkernel by keeping it as small as possible still
providing the basic mechanisms needed to implement
an OS on it. These mechanisms include low-level ad-
dress space management, thread management and inter-
process communication.

The other important software like device drivers, pro-
tocol stacks, file-systems and user interface code etc are
provided in the user space with no direct access to the

L

i Linux
Linux
User
Server

User Mode

Process Process

| |
1 1
i Linux i
| |
[|
| |

|
|
i
User i
I
|

Kernel Mode

L4 Microkernel

Fig. 2. L4Linux Architecture [15]

hardware. So a small kernel with proper mechanisms
enabling security-policy enforcement can provide a sys-
tem basis that guarantees a high degree of confidence in
operation.

A small kernel doesn’t necessarily provide a secure
system, but security can be provided by isolating the
system services, provided above the microkernel, into
cells. The security policy could then be enforced by the
microkernel regarding the communication between these
cells. So the security critical software placed in a cell
could be assured by not allowing any other cell to gain
access to the address space of the secured cell resulting
in a secured system.

In order to place an existing OS on top of a micro-
kernel, many modifications of the kernel of the guest
OS are required to make it de-privileged. These changes
include modification of system call interface, memory
management, and interrupt handling. The examples of
this virtualization approach are Xen and L4 microkernel
based virtualization of Linux (L4Linux). [13]

L4Linux is a para-virtualized Linux on top of L4
microkernel with Linux completely modified according
to the virtual machine interfaces given by L4. Linux was
first ported to L4 in 1996 at TU Dresden [14]. Since
then, it has been continuously updated to the latest
Linux version. Current versions also support embedded
processor architectures, e.g. ARM processors. The latest
L4Linux version, at the time of writing this report, is
L4Linux 2.6.34.

Architecture and Model

L4Linux is implemented with client-server approach
(as in data communication) shown in Figure 2.

From the figure, all the servers and user applications
are placed inside the isolated cells with isolated address
spaces. User applications and processes can only com-
municate with Linux servers via IPC, one of the most
important solutions provided by the L4 microkernel. As
a consequence to this, L4 servers are isolated from the
untrusted user processes and the rest of the system. Due
to this virtualization approach, security of the system is
enhanced. Due to the isolation of user processes from the

Linux-User Process

©

Linux-Server

A /'

Linux syscall

() ()

Redirection

L4 Microkernel

Fig. 3. System Call on L4Linux

rest of the system, even when guest OS in a VM is com-
promised, the rest of the system is protected. This is an
important aspect of isolation, e.g. even if a downloaded
virus takes control of the guest OS, telephone calls still
can be made as the modem software is protected from
the attack.

System Calls & Signaling

As the Linux-server is isolated from the user processes,
they can’t communicate directly as they could do in
native Linux. The communication is supported by a
mechanism called syscall redirection. Whenever a user
process triggers a Linux system call, L4 treats this as
an exception and redirects the call to the Linux-server.
Upon receiving the redirected system call, performs the
required job and replies to the user process by IPC. Page
faults and interrupts are also handled in the same way
i.e. by passing them to the user-level Linux server via
IPC. The complete process is shown in Figure 3.

B. The Hypervisor Approach

System virtualization means creating virtual machine
by virtualizing a full set of hardware resources, including
a processor, memory, storage resources and peripheral
devices [16]. And virtualization by its own increase se-
curity of the system by running isolated multiple virtual
machines under hypervisor, so that any compromised
guest OS cannot be propagated to other guest OS do-
mains. It also provides interfaces, called hypercalls, to
isolate guest OSes in a secure way.

The approach of using a hypervisor to provide vir-
tualized environment in embedded system that will be
analyzed in this paper is by using Xen hypervisor that
is embedded to ARM CPU which is called Xen on ARM.
Xen has an implementation of architecture independent
common components of VMM such as hypercall inter-
face, VM scheduling, VM controls and memory man-
agement. Xen makes a privileged VM, called domain0
or Domg in order to manage other guest VMs, called
domainU or DomU [17].

Xen provisions VCPUs per domain, including infor-
mation of scheduling and event channel. Xen also uti-
lizes hardware protection mechanisms to isolate guest
OS kernels and its applications. Figure 4 shows the Xen
on ARM implementation between underlying physical
layer and VM interface in Xen architecure.

Dom 0 Dom U
Applications
‘ || Comain
Xen on ARM

T BT BT v

Fig. 4. Xen architecture with Xen On ARM [17]

Porting Xen to ARM

Xen could not be directly ported to ARM because of
limitation in ARM’s virtualization support compared to
x86. The x86 has rich function designed for desktop and
servers. And compared to x86’s virtualization capability
[18], ARM CPU has only one unprivileged mode, i.e.,
user mode and six privileged mode, ie., FIQ, IRQ,
Supervisor, Abort, Undef, System. However, [19] solves
this problem with several steps to port Xen hypervisor
and associated Linux guest OS to ARM processors.
First, repeatably install Linux distribution on QEMU
ARM emulator which compiles Linux kernel to the
applied Xen patches. It follows by booting Xen VMM
under QEMU. And last step is load the Linux guest OS
under Xen VMM on QEMU.

Virtualization Approach by Xen

To allow full resource control by VMM and de-
privilege guest OS, VMM runs in supervisor mode
while guest OS runs in user mode, together with user
applications. It causes difficulty to protect guest OS
kernel from user applications since they run in the same
mode. Hence both of them should be isolated in the
kernel’s CPU context and kernel memory context.

o CPU virtualization
Since paravirtualization requires OS modification,
providing an abstract supervisor mode to guest OS
kernel can be done to minimize the modification.
User mode is split to two logical modes, i.e., user
process mode and kernel mode, and virtual banked
register for those virtual privilege modes. Xen on
ARM do the switching between user process mode

and kernel modes. The transition is called VCPU
mode transition. Figure 5 illustrate the VCPU mode
transition diagram and Figure 6 depicts the process
of exception handling.

o Sz : User mode
' A siikernelmode |
AT 7,
b So: VMM mode f

Fig. 5. VCPU mode transitions. t10: on in-
terrupts/faults/aborts/hypercalls, t20: on inter-
rupts/faults/aborts/systen calls, t01: upcall or return from exception,
t02: return from exception [17]

| User Process | | Kernel | |

l _Exception
e

Save context
Deliver virtual exception
Handle J¢&— | |
virtual
exception

Return to prévious context Restore context

Fig. 6. Exception Handling [17]

VMM mode of the system kernel is activated when
exceptions such as interrupt, fault, abort and soft-
ware interrupt occurs. On entry to VMM mode,
ARM CPU’s SPSR (Saved Program Status Register)
is saved in its virtual system, VSPSR (Virtual SPSR)
which will be restored later when the guest OS re-
turns from the exception. The stack pointer register
is also saved in the VSP register for later restoration.
Xen invokes an upcall to deliver exceptions to
kernel mode as virtual exception events. On upcall,
the VSPSR information is put on kernel’s stack in
order for the kernel to perceive the last running
virtual processor mode. The upcall mechanism
corresponds to hardware level exception handling
that makes CPU to jump into exception vector
table. The Xen on ARM provides virtual FAR (Fault
Address Register) and virtual FSR (Fault Status
Register) to guest OS due to limitation of sensitive
register access to those files in the kernel. All
sensitive instructions contained in guest OS will
be replaced with proper hypercalls. Guest OS then
invokes hypercall to return from the exception and

Xen restores the saved context.

o Memory virtualization

Xen on ARM ensures isolation between guest do-
mains by creating guest domain’s memory mapping
and is only updated by Xen. To modify memory
mapping, guest OS should invoke hypercall to up-
date page table. Any access to memory area that is
not granted for the guest OS will be denied.

Guest OS should run in user mode and does not
have privilege to manipulate MMU. To do this,
guest OS invoke hypercalls to control MMU which
is the validated by Xen on ARM. Any attempt to
access other domain’s memory page is prohibited
by VMM. Though a domain is compromised by
malicious software, it cannot attack other domain
as far as VMM is not compromised.

C. The Microvisor Approach

An explanation of the microvisor design is provided
in the section below. It also includes a detailed look at
a successful implementation of the OKL4 microvisor in
the Motorola Evoke QA4 mobile phone which has been
in the market since 2009.

IV. THE MICROVISOR

In [10], an approach that implements features from
both the hypervisor and the microkernel approaches
is proposed. One of its important features is that it is
designed to be portable across a range of architectures
including ARM processors for effective use in embedded
systems. Keeping the trend to employ virtualization
which can support legacy device drivers and legacy
OS environments while providing security, the goal of
the microvisor is to be a single kernel that can provide
platform virtualization with the benefits of both worlds;
the efficiency of the best hypervisor and the generality
and minimality of the microkernel.

Developed by Open Kernel Labs, the aim of the OKL4
microvisor is to serve as the hypervisor as well as
the microkernel of performance sensitive and memory-
constrained embedded systems. Inspired by the sel4,
it also allows for access control of all resources and a
mechanism for formal verification.[10] Unlike the Xen,
the OKL4 has a much smaller trusted computing base
(TCB) and accounts for nearly 1/10"" of the size of the
Xen hypervisor in terms of LOC. [20]

The microvisor hosts a number of advantages some of
which include the following[21]:

o A small microkernel base provides easier manage-
bility.

A verifiable correct implementation of the L4 con-
cepts. The OKL4 microvisor’s code is based on sel4,
which has been verified in June 2010. Having sel4
as its base, the OKL4 is impenetrable.

o User-space virtualization of guest OSes, network
stacks, etc.

o Secured implementation of device drivers, stacks
and other privileged code.

o Implementation of fast and secured IPC threads
for communication among Guest OSes and other
partitions.

A look at the resulting architecture of the OKL4 mi-
crovisor is presented by the following model. [10]

e Execution, The execution abstraction of the OKL4
microvisor is that of a VMM. It employs one or more
virtual CPUs (vCPUs) with the guest scheduling
activities discussed earlier.

o Memory, Like that of a VMM, the OKL4 microvisor
implements virtual MMUs(vMMUs) with a virtual
TLB(vTLB) that is larger than the real TLB. The TLB
is implemented as a page table and is traversed by
the microkernel incase of a page fault. The guest
uses the vMMUs to map virtual to physical memory.

e I/O, The I/O abstraction consists of memory
mapped virtual device registers and virtual inter-
rupts(vIRQs).

o Communication, The vIRQs (for synchronization) and
channels are used. The OKL4 microvisor imple-
ments the asynchronous IPC model since it adopts
better to large, real-world embedded systems com-
pared to the traditional L4’s synchronous IPC. This
is because embedded devices hosts multi-MLOC
modern stacks and mobile device application envi-
ronments.

The OKL4 microvisor has been succesfully imple-
mented in the Motorola Evoke QA4 mobile phone which
has been in the market since 1 April 2009. It uses the
same OKL4 microvisor that has been described above
and hosts unique aspects and designs that would not be
supported by traditional hypervisors. The Evoke runs
Linux as the operating system(OS) supporting the user
interface(UI). The baseband stack runs outside of the
Linux and components from the BREW [Qualcomm]
Ul framework that were needed to be reused were
not ported on to the Linux. Virtualization was used
to make all of these features possible. The Linux runs
on a separate VM from the baseband stack and BREW,
on top of the OKL4 microvisor. Interaction between
the two virtual machines takes place via the OKL4
using message-passing IPC and shared memory. Both the
complete Linux system and the AMSS/BREW baseband
stack and OS are de-privileged and runs in user mode.
The architecture used for the Evoke is depicted in Figure
7.

The virtualization overhead is insignificant due to the
high-performance of the OKL4 Microvisor and is better
than that of the Native Linux[2]. This is due to the
fast-context-switching technology provided by OK labs.
In contrast to the previous reservation that the lack of

Linux VM BREW VM
Linux BREW
applications applications

User mode

Privileged |
mode

ARM926ejs

Fig. 7. Software architecture of Evoke [2]

1 T
g 0 ;.(_)_KEEE—————'—’____—‘ :
7 200F A
M
= 100 -
0 P |
2 4 6 8 16
Number of processes
Fig. 8. Context-switch latency as measured by LMbench for native

and virtualized Linux [2]

address-space ID (ASID) tag in the TLB of ARM9 pro-
cessors means that the ARM9 flushes TLBs and caches
on each context-switch leading to poor performance,
the smart management of the address space and the
utilization of the ARM9 MMUs avoids this without
sacrificing performance. This can further be validated
from Figure 8. As can be seen, the context-switch la-
tencies in OK:Linux are greatly reduced compared to
the native Linux. This difference is more pronounced
when the active processors are small which is a common
scenario for mobile phones. This is an advantage for
the Evoke’s user-interface. All the user-interface func-
tionalities including the touch screen is owned by the
Linux apps while video rendering uses a rendering
engine running on BREW. When a user requests a BREW
app, Linux communciates with BREW in the other VM
to start up the app. The BREW obtains access to the
screen by using a frame buffer from a shared-memory
mapping as shown in Figure 9. This integration of the
two subsystems is seamless and is possible because of
the two critical features of the OKL4; quickly establishing
and sharing memory between the VMs and the fast
message-passing based IPC. All these amenities were
made possible only because of the integration of the
OKL4 microvisor.

The table in Figure 10 compares the main features
of microkernels, hypervisors and microvisors. This com-

Linux VM

BREW VM

Ul application

Framg .buffer

<

Rendering engine

Frame

buffer map

| > >
-—ﬂm”—

High-pe;ormance IPC

e

Fig. 9. Memory sharing and IPC across virtual machines|[2]
MICROKERNEL | HYPERVISOR MICROVISOR
MEMORY OS-like concept of | Uses vMMUSs and | Similarto the hypervisor
address space virtual Page Tables uses vVMMUSs which
contains vTLBs
EXECUTION Uses threads or Each VM is assigned | Similar to the hypervisor
scheduler a vCPU and the uses VCPUs with guest
activations to VMM multiplexes scheduling
abstraction between them
execution time
/0 Run device drivers | Uses virtual devices Similar to the

as user level
processes,
communicate with
rest of system via
IPC

by exporting device
interface to guest
05, with actual
device driver resides
inside hypervisor

microkernel. Uses
memory-mapped virtual
device registers and
vIRQs

COMMUNICATION

Uses synchronous
IPCto communicate

Virtual networks
based on existing

Uses IPC like the
microkernel but

COMPUTING BASE

between VMs. virtual-device implements
abstraction asynchronous IPC unlike
the microkernel
ABSTRACTION API L4 API Abstract hardware OKL4 API
machine
DEVICE DRIVERS Qutside kernel, in Separate VM QOutside kernel, in user
user space (DOMO) space
SECURITY Capability-based Mandatory Access | Capability-based Access
Access Control Control Control with Secure
HyperCell Technology
TRUSTED selL4 None seld

Fig. 10. Table of Comparison between Microkernels, Hypervisor and

Microvisor

parison represents a summary of the discussion above
and detailed explanations of the security aspects and
the features of the Trusted Computing Base(TCB) are
described in Section VI

V. PERFORMANCE COMPARISON

Benchmark defines as the test performance of certain

parameters on a computer program or a set of programs
by running a number of standard tests and trials against
it. There are two categories of benchmarks; micro-
benchmarks and macro-benchmarks. Micro-benchmarks
measure very small and specific units of work, e.g.
latencies of executing specific Linux system calls or
how a system is able to switch between two processes.
On the other hand, macro-benchmarks measure more

Fig. 11. System Latencies Comparison of Native Linux and Paravir-
tualized Linux on L4Linux [15]

substantial and high-level units of work that are more
closely aligned with real-world workloads.

In the subsections below, both benchmarking types
will be analyzed, for native Linux and paravirtualized
Linux with different virtualization approach, i.e., Xen,
L4Linux and OKLA4.

A. Micro Benchmarks

Comparison of Native Linux and Paravirtualized
Linux on L4(L4Linux)[15]

The test is run by using LMbench analysis tool. From
the Figure 11, there is significant overhead noticeable
in simple syscall benchmark on L4Linux compared to
native Linux, i.e.,, about 30 times slower than the one
in native Linux. The reason for the significant overhead
is as follows. On native Linux, both user tasks and
kernel share same address pace. Each system calls costs
nothing but a CPU mode change. On the other hand, on
L4Linux, Linux server and user processes are isolated
from each other in different address space where each
system call costs 2 kernel entry/exit pairs plus 2 address
space switches which are time consuming procedures.

The significantly large overhead of the address space
switches and the kernel entry/exit are a direct contribu-
tion from three mechanisms: pure kernel instruction ex-
ecutions, cache and TLB flushing. The ARM1176]ZS pro-
cessor where this evaluation is carried out, the processor
uses physically indexed cache and hence flushing is not
necessary during address space switches. In addition,
frequent TLB flushing is not necessary on the current
version of L4Linux, since the Address Space Identifier
(ASID) is used. Consequently, the TLB can be retained

Test Cases Native Linux L4Linux Test Cases Native Linux L4Linux
(in microsecond) | (in microsecond) (in microsec) | (in microsec)
Simple syscall 0.7158 22,3718 2p Ok 40.02 132.9
Simple read 3.6399 34.3318 Sp 0k 69.53 180.04
S;rnphle Wtritte 13é 12733488 13006-90644716 2p 4k 63.29 169.1
imple sta : :
Sim|§|e fstat 4.2553 44.4267 Bp Ak 121.33 235,16
Simple open/close 39.0611 208.7772 2p 8k 100.10 196.84
Select on 10 fd's 4.3945 50.335 8p 8k 158.13 263.18
Select on 100 fd’s 28.5861 82.4257 2p 16k 158.94 231.11
Select on 250 fd's 68.8872 122.4306 8p 16k 189.60 276
Select on 500 fd’s 136.3443 221.5062 2p 32k 107.83 176.37
SISigr}a}l hacr;IdIer ins:]all - 92.8651493 133562023235 8p 32k 136.71 225.43
ignal handler overhea : ;
Protection fault 4.0656 43.9095 ;S 22: 123?3 22232
Pipe 127.8178 698.4668 ' &
AU_UNIX sock stream 205.9367 876.9344
Process fork+exit 5313.2701 54736.8421 Fig. 12. Context Switch Latencies Comparison of Native Linux and
Process fork+execve 15915.493 110000 Paravirtualized Linux on L4Linux [15]
Process fork+bin/sh-c 45000 232000
pagefaults 46.0907 307.4131

across all the address spaces. Therefore the significant
overhead results because of executing all the additional
kernel instructions when kernel entry/exit and address
spaces switches are executed with the system calls.

In L4Linux a signal-handler is implemented to avoid
direct inter-thread manipulation in signal handling,
making it more expensive than the signal handling
implemented on native Linux. In the table in Figure 11
the benchmarks, fork, fork+execv and fork+sh are re-
lated to process creation and execution. These processes
need to update the shadow page tables in L4Linux.
Implementing shadow page tables and mapping guest
virtual addresses to host physical addresses, adds a lot
of overhead to these operations.

Furthermore, [15] analyzes the context switch latencies
both on native Linux and L4Linux which are displayed
on Figure 12. The values on the table shows that without
cache footprint, one context switch on L4Linux takes
approximately 3 times longer than on native Linux.
For longer processes, the context switch overhead is
dominated by the cache interference, hence the overhead
becomes lower as the size of the processes increases. It
can be also noted that the context switch on L4Linux will
always be longer than on native Linux.

[15] also investigates performance of memory access
which is shown in Figure 13 where there is only slightly
difference between native Linux curve with L4Linux
curve. This is because for this evaluation, a loop that
adds a set of integers is executed. This process does not
require kernel service, hence no overhead is added to
the system. L4Linux does not emulate or intercept any
instructions, the performance is close to the native Linux
when the user process executes computing intensive
tasks. This is an advantage of the L4 virtualization
approach.

The cache on the ARMI1176JZS processor is read al-
locate. This is the reason why the memory write band-

400 . .

T T T T T T T

Native Linux Read Bandwidth ——

Native Linux Write Bandwidth ---x---
Ld4Linux Read Bandwidth ---%--
L4Linux Write Bandwidth - |

Bandwidth (MB/s)
s
3
g
.
R
.

200 \\

150 \‘

50 L L L L L L L L L L L L L
05k 1k 2K 4k 8k 16k 32k 64k 128k 256k 512k 1M 2M 4M 8M
Block Size (bytes)

Fig. 13. Memory Access Latencies Comparison of Native Linux and
Paravirtualized Linux on L4Linux [15]

width curve for the L4Linux and native Linux are flat,
as data accessed in the write bandwidth benchmark are
not cached during execution; hence it is not affected by
cache size. In contrast, a sharp decrease can be seen for
the memory write bandwidth for the block size of 16k
bytes. Since the level 1 cache for ARM11 is 16k bytes, the
read bandwidth plummets when the accessing memory
block is larger than 16k bytes.

Since LMbench only measures the performance of
basic system operations and does not provide measures
for real application scenarios, it is necessary to carry
out a similar evaluation under more realistic environ-
ments. Hence, a series of application specific benchmarks
from MiBench have been investigated in [15] to evalu-
ate L4Linux. These benchmarks cater to three different
groups of applications: multimedia applications, office
automation and telecommunications. The benchmarks
are executed and timed both on L4Linux and native
Linux. The virtualization overhead of specific applica-
tions are shown in Figure 14 and Figure 15. In contrast
to the performance from LMbench, the performance here
are very close to the Native Linux for most of the
benchmarks here. The overhead for lame and mplayer
is only about 3%, since these two applications are CPU
bounded where systems calls are not often triggered.
Hence, large overhead due to system calls are not an
issue here.

Furthermore, like in the LMbench performance for
memory access bandwidth, the CPU does not emulate or
intercept instructions and hence most of the instructions
are executed on the CPU reducing the virtualization
overhead even more. Other computing intensive appli-
cations such as jpeg and mad small have much larger
overhead than lame and mplayer. It is also seen from
Figure 16 that benchmarks with high overhead has short
execution times compared with benchmarks with low
overhead. This is because the absolute time for creating

typeset ONativel Linux

:— e

tiffmedian
tiffdither
tiff2bw

ipeg

mplayer

mad larger

mad large

mad small

lame

(s] 0.5 1 1.5 2 2.5 3

Fig. 14. Virtualization Overhead of Multimedia Applications [15]

GSM

O Native Linux

™ L4Lintx
CRC32

FFT

adpcm

stringsearch

rsynth

ispell

ghostscript

T iiu

o

1 2 3 4 5

Fig. 15. Virtualization Overhead of Office Automation and Telecom-
munications Applications [15]

process and destroying process dominates when execu-
tion time is short. This results in decreased overhead
when a larger input file is used to extend the execution
time of the benchmarks. This trend is clearly illustrated
in Figure 14 for the three mad benchmarks.

From all the observations put forth by [15], it
is concluded that the virtualization overhead of
L4 microkernel varies from system calls to real
application scenarios. While the virtualization overhead
for system calls are large, they are insignificant for
computing intensive applications. This is a result
of the virtualization approach followed by L4Linux.
Applications that implement a lot of system calls incur
large overhead while applications with few system calls

Benchmarks \ Native Linux (s) \ L4Linux (s)
Multimedia Applications

lame 78.69 B
mad (small MP3 file) | 0.232 0.598
mad (large MP3 file) 1.828 2.506
mad (larger MP3 file) | 7.842 9.012
mplayer 5512 5712
ipeg 0.84 1.44
tiff2bw 0.64 1.814
tiffdither 1.44 1.892
tiffmedian 1.742 3.52
typeset 7.86 9.118
Office Automation

ghostscript 6.188 7.7354
ispell 6.658 8.71
stringsearch 0.07 0.332
rsynth 24.75 25.642
Telecommunications

CRC32 0.7 1.088
FFT 10.794 11.63
GSM 9.8 10.61
adpem 0.37 1.088

Fig. 16. Application Specific Benchmark Results [15]

will perform more efficiently.

Comparison of Native Linux and Paravirtualized
Linux on Xen Hypervisor[16]

Figure 17 shows the result of test comparison for band-
width measure and latencies measure for native Linux
and paravirtualized Linux. The paravirtualized Linux
is compared with native Linux running on bare metal
hardware without VMM. Latencies of most OS services
are actually not higher than twice of the performance in
native Linux. The reason process creation takes longer
times than native Linux is the large number of page table
updates occur when creating a new process and hyper
call is invoked for every page table entry update.

Another test on context switching latency is shown
in the Figure 18 where there are four cases, i.e., native
Linux, paravirtualized Linux with the TLB lockdown,
paravirtualized Linux without TLB lockdown and page
table separation scheme. From the observation on the
figure, paravirtualized Linux context switch time has
about 50 microseconds additional overhead which
is appended by virtualization and considered to be
moderate compared to separate page table scheme.
Furthermore, TLB lockdown optimization shows slight
contribution when context size is larger than 8 Kbytes.

Comparison of Native Linux and Paravirtualized
Linux on OKL4 and Relative Performance of OKL4
and Xen[22][10]

Along with introducing the OKL4 with a description
of its model, [10] also provide performance evaluation

Bandwidth measured in Mbps

Tests Native Linux |Paravirtualized Ratio
Linux

bw_pipe 42.79 38.21 0.893

bw_unix 44.52 39.18 0.880

bw_mem 512 rd 1033.42 1075.79 1.041

bw_mem 512 wr 1034.67 1019.27 0.985

bw_mem 512 rdwr 1034.67 1019.27 0.985

Latencies measured in microseconds

Test Native Linux |Paravirtualized Ratio
Linux
Lat_pipe 135.13 234.42 1.735
Fork+exit 2891.75 10021.0 3.465
Fork+execve 3109.25 10524 3.385
SysV semaphore 45,974 81.42 1.77
Lat_unix 251.41 431.85 1.70
Signal handler 11.23 20.43 1.82
Null syscall 1.13 2.83 2.50
Read syscall 2.60 4,94 1.90
Write syscall 2.25 4,16 1.85

Fig. 17. Bandwidth and Latencies Measure for Comparison of Native
Linux and Paravirtualized Linux on Xen Hypervisor [16]

527 Context Switch Latency
—4— Native = w/ TLB lockdown
4 wfo TLB lockdown —#— Cache Flush on mode switch

F

!

/x/\f\

[/\/\J\ |
RN m;{ff‘f;

Y

microseconds

32' oy
16[32

IG‘jZ 2
4 ‘4

[the number of concurrent tasks, task size (KB}]

2
0

4
o

3
a

16
1

32
[t}

204 52 4

2

a
2

16[32
2|2

2
4

4
4

8
1

2
El

4
g

8 |16 32|
gl8 (8 [15]

4
3

4
32

g
32

16|32
32|32

I
@ ‘\E

8 ‘Ih
1616

Fig. 18. Context Switch Latency in Xen [16]

of an implementation of the OKL4 microkernel on a
processor based on ARM v7 architecture. The LmBench
results are presented in Figure 19.

The majority of the benchmarks require a single Linux
system call, which needs a single OKL4 hypercall to
virtualize. The basic overhead is around 0.3us per hy-
percall. On the other hand, since the IPC and process
creation benchmarks are complex, they require multiple
hypercalls and hence incur larger overhead. [10] com-
pares the LmBench results of Xen on a ARM v5 proces-
sor from [16] and the OKL4 microkernel on the same
processor. An overhead of 35% and 27% was observed
for fork and fork+execv. The corresponding values on
Xen were around 250%). The negative overhead values
for open/close and signal handling and high values for
protection fault in Figure 19 are as a change in the layout
of the virtualized system and are thus of no significant
concern.

Figure 20 shows the result of running Netperf on both

Benchmark Native | Virtualized Overhead
null syscall 0.6 us 096pus | 036pus 60%
read 1.14 ps 131ps | O17us 15%
write 0.98 us 1.22pus | 0.24pus 24 %
stat 4.73 us 505us | 032us 7%
fstat 1.58 us 224pus | O66pus 42%
open/close 9.12 us 823 pus | 0.89us -10%
select(10) 2.62us 298us | 036us 14%
select(100) 16.24 us l6.44pus | 0.20pus 1%
sig. install 1.77 ps 205pus | 028us 16%
sig. handler 6.81 us 583pus | 098us -14%
prot. fault 1.27 us 215pus | 0.88us 67%
pipe latency | 41.56 us 5445pus | 12.89us 31%
UNIX socket | 52.76 us 8090 us | 28.14us 53 %
fork 1,106 us 1,190 ps 84 s 8%
fork+execve | 4.710 us 4,933 ps 223 ps 5 %
system 1,583 us 7.796 us 213 us 3%

Fig. 19. LmBench results for OKL4 [10]

Type | Benchmark Native | Virt. | O/H
TCP | Xput [Mib/s] 651 630 | 3%
Load [%e] 99 01 0%
Cost [us/KiB] 125 | 129 | 3%
UDP | Xput [Mib/s] 537 | 516 | 4%
Load [%o] 99% | 9% | 0%
Cost [us/KiB] 152 | 158 4%

Fig. 20. Netperf results for OKL4 [10]

the Native Linux and Virtualized Linux on OKL4 for an
ARM v7 processor. Both systems show a fully-loaded
CPU and the throughput degradation of the virtualized
was only 3% and 4%. The paper claims that these values
are the lowest overhead on a virtualized Linux system,
even when compared to figures available of virtualized
Linux on other architectures.

Another test on the comparison of native Linux and
paravirtualized Linux on OKL4 is shown in Figure 21.
The test is run with OKL4 3.0 release and OK Linux
2.6.23 on Xscale PXA255 platform at 255 MHz. Mean-
while, Xen used 266 MHz ARM926 processor and has
different memory architecture. In the latencies perfor-
mance, the smaller values shows better performance
while in relative performance, the higher value shows
better performance.

B. Macro Benchmarks

Comparison of Native Linux and Paravirtualized
Linux on Xen Hypervisor[16]

The result for comparison test for latencies on native
and paravirtualized Linux on Xen hypervisor is shown
in Figure 22. The Ul loading test is run on Qtopia PDA
Edition and binaries are installed at NOR flash memory.
For image file saving test, 200 files are distributed
evenly from 20 kB to 90 kB, and the time taken to save
all those files from NFS server to NAND flash memory

Latencies Relative
(in microseconds) Performance
Benchmark Native Paravirtualized OKL4 Xen
Linux (on OKL4)

Pipe 756.59 84.84 8.92 0.58

Fork 6469 8742 0.74 0.29

Fork+exec 59715 75515 0.79 0.30

Semaphore 261.6 21.08 12.41 0.56

Unix 1292.2 115.01 11.24 0.59

Signal handler 14.26 54.76 0.26 0.55

Null syscall 1.14 5.40 0.21 0.40

Read syscall 3.34 8.45 0.40 0.52
Fig. 21. Benchmark Performance of OKL4 and Xen [22]

Benchmark Native | Paravirtualized | Ratio

Linux Linux

Ul Loading Time (in sec) 14.48 14.54 1.004

Image Saving Time (in sec) 52.71 53.81 1.020

Encoding Rate (fps) 5.71 5.63 0.986

Decoding Rate (fps) 24.54 24.41 0.995

Fig. 22. Macro Benchmark Performance Difference for XEN [16]

is measured. And for the codec test, Xvid MPEG4
stream encoder/decoder is used.

Comparison of Native Linux and Paravirtualized
Linux on OKL4[22]

The result for comparison test on native and paravirtu-
alized Linux on OKL4 is shown in Figure 23. The bench-
mark used is ReAIM. The test is run on PXA22 at 400
MHz. The ratio shows slight difference in performance.
On ARM processor, the IPC performance for a one-
way message passing operation is less than 200 cycles.
This high performance provides efficient mechanism for
setting up shared memory regions.

VI. SECURITY PERFORMANCE
A. Security provided by Virtualization and Isolation

The most important aspect of virtualization is security,
which is provided by isolating different applications and
sub-systems from each other i.e., by placing them inside
secured cells. As a result of this isolation, the security
policy can be implemented in the microkernel and then
enforced globally. The communication between cells will
then take place only when the security policy of the
microkernel allows it.

In order to ensure security further, minimum software
should run in the privileged mode of the system, as

Benchmark Native Paravirtualized Ratio
Linux Linux (on OKL4)
1Task 45.2 43.6 0.96
2 Task 23.6 22.6 0.95
3 Task 15.8 15.3 0.96
Fig. 23. The Performance Comparison Between Native Linux and

Linux on OKL4 [22]

in privilege mode, this software has complete control
over the application’s resources. So apart from being
small, this software should also be the most trusted and
most secured component of the entire system because
its security places a limit on the overall security of the
complete system. By reducing its size, one can assure
its security and reliability to a much higher level. So by
using a secured microkernel, one can build the rest of the
system on top of it according to the established security
principles like principle of least authority which states:

”Any Piece of code should not have any more access rights
capabilities/authority than it's absolutely required to do its
job”

This principle means as the access rights to other
subsystem are implemented via “capabilities”, so if a
service running inside a secured cell doesn’t need access
to some other subsystem (e.g., sound driver) to complete
its assigned job, then it shouldn’t be given access rights
capability for that subsystem.

All the subsystems can then be encapsulated in their
own hardware address space and can be allowed to
communicate with other parts of the systems in accor-
dance with the implemented system wide security policy
described in a security module and enforced by the
microkernel.

Currently, the most secure microkernel present in the
market is Open Kernel Lab’s SelL4 which has been
mathematically verified to be completely fault-free and
impossible to crack [23]. OK labs have used this micro-
kernel as the building block of its well known industrial
strength OKL4 Microvisor.

OKL4 microvisor is a clean, from-scratch design
and implementation. It shares code modules with the
presently available OKL4 microkernel and Sel4. It's
designed to support a mixture of real-time and non-real-
time software running on top. Current implementation
consists of about 8.6 kLOC of ANSI C and about 1.2
kLOC of assembler compiling to about 35 KiB of text
[10].

B. Security on OKL4 Microkernel

The Open Kernel Labs has a solution named OK
Labs Secure Hypercell Technology. This technology en-
ables systems engineers to design-in software to ease
development, maintenance, deployment, security and
reliability of mobile devices by fulfilling the requirement
of infrastructure to build complex software systems from
multiple simpler subsystems with fine-grained control
over resource allocation, communication and security.

Secure HyperCell Technology supports flexibility of
security policy implementations that offer highly secure
environment for subsystems requiring one. Fault isola-
tion created by dividing complex software across mul-
tiple cells could also increase reliability of the system,
while integrity is assured by limiting privileged-mode
code to OKL4 Microvisor. It reduces the fault chances

Application
Application
Application
Driver Driver
Driver Driver 2 2
o o
De-privileged 'y .
Privileged fI__D_ —_— - ﬁ hﬂ
JI\L --u--‘u--n-—--v I}
it
ARM Flash Video Audio Network

Fig. 24. OKL4 Architecture with capabilities [OK-Labs]

since operating system kernels and device drivers are
moved to user level where any faults or security breaches
are better contained.

OKL4 microvisor provides encapsulation of subsys-
tems into separate cells having their own address spaces
which are not accessible to any other cell. Cells are able
to host multiple types of subsystems, including complete
OS and application environments (i.e., traditional vir-
tual machines), individual functional subsystems (e.g.,
authentication code, mobile payment services or media
processing), as well as device drivers. OKL4 provides
resource control by kernel-protected capabilities. A ca-
pability is a kind of key or token of authorization for
access between different subsystems residing in separate
cells. These capabilities are subject to system-wide secu-
rity and resource-management policies defined by the
system designer. Also, capabilities are static and can’t
be changed on the run-time. OKL4 doesn’t provide any
services or policies and operate in the privileged mode
of the system. [24]

OKL4 servers, residing in the user level cells, provide
services and policies. They are responsible for system
libraries, device drivers, resource management (memory,
threads & address spaces) and operate in de-privileged
or user mode. The OKL4 microvisor architecture is
shown in the Figure 24.

The figure shows a typical use of OKL4 microvisor
with two application OSes, running in separate protected
domains/cells, one application running directly on top
of microvisor and drivers placed in different cells. Now
capabilities being keys to access other cells, a system
designer can use them to implement security or access
rights policies in the system. In the above figure, the
application can only access the device driver that it has
capability for and no other cell can communicate with
it.

Furthermore, OKL4 provides:

o User-level cells containing system components com-

pletely isolated, as a result of hardware-enforced
address space isolation. Components may include
complete OSes, lightweight execution environments,
device drivers, applications, etc.

o Complete control over communication between cells,
which is required for mandatory access control.

o Capability based protection mechanism, i.e. giving ap-
plications fine-grained control over access to data
and code, where OKL4 operates as a security mon-
itor controlling access to memory and controls any
communication between the subsystems and en-
sures that they can only be in accordance to the
system-wide security policy established by the de-
veloper.

o Bullet-Proof Firewalls between subsystems due to the
correctness of the underlying virtualization soft-
ware, proven to be fault-free and impossible to
crack. OKL4, being unpenetrable and as reliable
as hardware itself, allows separation of user level
components into fire-walled cells/boxes.

o Separation into cells allows independent verification
of components and fault containment thus helping
in debugging the component with pinpointing the
problem area.

o Fast context switching & high performance IPC.

o Trustworthy Computing Base being small due to the
componentization of system, leads to higher robust-
ness against failures as a small TCB is a requirement
for devices where failure is not an option.

The performance of OKL4 is often close to the hard-
ware limit as it features OK Fast Address Space Switch-
ing Technology (FASS) taking advantages of ARM do-
mains and Fast-Context-Switch Extension (FCSE) pro-
viding “Faster than native” virtualized Linux context
switching performance on ARMv5 [25]. OKL4 imple-
ments IPC mechanisms in assembly “fastpaths” to
achieve zero-copy overhead, thus providing low latency
interrupt handling. The high performance inter-cell com-
munication is provided by communication channels
built over shared memory and lightweight OKL4 IPC
allowing highly cooperative yet modular systems with-
out sacrificing performance. OKL4 microvisor design
also provides strong real-time guarantees by providing
lightweight primitives backed by short kernel execution
paths which enables consolidation of real-time and non-
real-time components on a single processor core.

C. Security on Xen

Xen, as the hypervisor, has potential to become solu-
tion for trusted computing by its own properties, such
as open source VMM, small size in terms of code size
(about 40KLoc in 2.0 version and reduced to 20KLoC in
3.0 version), high performance implementation, and its
ability to run existing application software and support
isolated security services.

In order to enhance its security, Xen has launched
XenSE (Xen Security Enchanced). XenSE aims to sup-
ports wide range of uses such as firewall / IDS do-
mains, Virtual Private Machines (VPMs), conventional
MLS systems. The work areas of XenSE are explained as
followed.

o Mandatory Access Control, such as adding MAC to
Xen subjects or objects and IBM sHype patch great
start

o TPM support, such as trusted or secured boot and
TPM virtualization

o Minimizing the TCB, includes reviewing the Domain
(domO0 kernel, dom0 root), adding fine-grained ac-
cess control, and refactoring domain0.

o Devices performance and devices” security, this is done
since the device drivers are a major cause of insta-
bility in OSes.

o Other issues with user-interface, such as dilemma be-
tween user convenience and security.

In [26], secure Xen on ARM for beyond 3G mobile
phones is explained, in which Xen implements drivers
separation to guarantee its security. The goal is to pro-
duce light-weight secure virtualization technology for
3G mobile phone by several approaches. approach se-
curity design by secure boot, secure software installa-
tion, multi-layer fine-grained access control. By imple-
menting Xen on ARM architecture, the performance ia
improved and applications are separated into separate
domains. From security point of view, the improvement
is achieved by having 5 access control modules and visu-
alization supported, as well as access control mechanism
for applications to prevent the phishing attacks.

Furthermore, the architecture is taken into one step ex-
tension, i.e., the device driver separation. Device driver
domain is separated from DomO(security applications
running on Domyg in secure Xen on ARM) kernel. Mod-
ifications for this architecture includes: RAMFS used for
driver domain during booting, Xenbus,Xenstore and Xen
tools modifications and modification on booting proce-
dure, i.e., booting Dom0, followed by creating Device
Driver Domain and initializing split device driver.

VII. CONCLUSION

In this paper we elaborate three different approach to
implements virtualization, i.e., by using microkernels,
hypervisors and the latest technology from OK labs,
microvisor. By general requirement, microkernel sup-
ports implementation of a hypervisor. However, hyper-
visor and micorkernels by their functions have different
purposes, structures and APIs. The OKL4 microvisor
solves the problem by combining both of them, i.e.,
fulfill the hypervisor objective of minimal overhead for
virtualization and microkernel objective of minimal size.

Furthermore, as virtualization is introduced into em-
bedded system application, security assurance will get

more complex. But virtualization properties itself actu-
ally provides security requirement for mobile devices
such as help secure mobile platforms, applications and
services by carefully chosen additional components and
strict isolation from one VM to another and hence reduce
the risk from potential threats. Microkernels, on the other
hand, assure security by isolation and keeping trusted
software to a bare minimum. With this combination,
OKL4 provides Secure Hypercell technology which has
performance close to the hardware limit as it features
OK FASS taking advantage of the ARM domains and
FCSE provides speed faster than native virtualized Linux
context switching.

And with its benefits and high performance, OKL4
microvisor technology could be a promising technology
to be implemented in embedded system in order to fulfill
the rapid growth of demand for secure mobile phone.

ACKNOWLEDGEMENTS

We would like to thank our supervisor Martin Hell
for his guidance, support and suggestions and also to
Christopher Jamthagen for overseeing our work.

REFERENCES

[1] O.Kharif, “Virtualization goes mobile,” Bloomberg Businessweek:
Technology, 2008.

[2] G. Heiser, “The motorola evoke QA4: A case study in mobile
virtualization,” Technology White Paper: Open Kernel Labs, 2009.

[3] G.Heiser, “Virtualization for embedded systems,” 2007.

[4] G.]. Popek and R. p. Goldberg, “Formal requirements to virtu-
alize third generation architectures,” Communications of the ACM,
17(7), pp. 413421, 1974.

[5] F. Armand and M. Gien, “A practical look at microkernels and
virtual machine monitors,” 2009.

[6] G. Heiser, “The role of virtualization in embedded systems,” First
workshop on Isolation and Integration in Embedded Systems, 2008.

[7] L Kuz, Y. Liu, I. Gorton, and G. Heiser, “Camkes: A component
model for secure microkernel-based embedded systems,” Journal
of Systems and Software Special Edition on Component-Based Software
Engineering of Trustworthy Embedded Systems 80(5), pp. 687-699,
2007.

[8] S. Hand, A. Warfeld, K. Fraser, E. Kotsovinos, and D. Ma-
genheimery, “Are virtual machine monitors microkernels done
right?” 2005.

[9] G. Heiser, V. Uhlig, and]. LeVasseur, “Are virtual machine mon-
itors microkernels done right?” NICTA Technical Report PA005103,
2005.

[10] G. Heiser and B. Leslie, “The OKL4 microvisor: Convergence
point of microkernels and hypervisors,” 2010 ACM 978-1-4503-
0195-4/10/08, 2010.

[11] Website, http:/ /en.wikipedia.org/wiki/Caribe_(computer_
worm).

[12]]J.Saltzer and M.Schroeder, “The protection in information in
computer systems,” Proceedings of the IEEE, 63(9), 1975.

[13]]J. Brakensiek, A. Droge, M. Botteck, H. Hartig, and A. Lack-
orzynski, “Virtualization as an enabler for security in mobile
devices,” Proceedings of the 1st Workshop on Isolation and Integration
in Embedded Systems, 2008.

[14] M.Hohmuth, “Linux-emulation auf einem mikrokern,” Master’s
thesis, TU-Dresden, 1996.

[15] Y.Xu, EBruns, E.Gonzalez, S.Traboulsi, and A. B. K.Mott, “Perfor-
mance evaluation of para-virtualization on modern mobile phone
platform,” Proceedings of International Conference on Computer, Elec-
trical, and Systems Science and Engineering, Penang Malaysia, Feb
2010.

[16] e. Young Hwang, “Xen on arm: System virtualization using xen
hypervisor for arm-based secure mobile phones,” 5th IEEE Con-
sumer Communications and Networking Conference and Networking
Conference, pp. 257-261, 2008.

[17] S. Seo, “Research on system virtualization using xen hypervisor
for arm based secure mobile phones,” Seminar ’Security in Telecom-
munications’ of Berlin University of Technology, January 14 2010.

[18] J.S.Robin and C. Irvine, “Analysis of the intel pentium’s ability
to support a secure virtual machine monitor,” Proc.9th USENIX
Security Symposium, Denver, Colorado, USA, August 2000.

[19] M. Lemay, D. Jin, S.Reddy, and B. Schoudel, “Porting the xen
hypervisor to arm,” Technical Report in UIUC, 2009.

[20] G. Heiser, “Microkernels vs hypervisors.”

[21] “The OKL4 microvisor advantage,” Website: Open
Kernel Labs, http:/ /www.ok-labs.com/solutions/
the-okl4-microkernel-advantage.

[22] M. Bylund, “Evaluation of OKL4,” Bachelor Thesis in Computer
Science, Mlardalens University, April 2009.

[23] G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock,
P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish,
T. Sewell, H. Tuch, and S. Winwood, “sel4: Formal verification
of an OS kernel,” Communications of the ACM, pp. 107-115, 2010.

[24] O. K. Labs, OKL4 Library Reference Manual, 2008.

[25] C. van Schaik and G. Heiser, “High-performance microkernels
and virtualization on arm and segmented architectures,” 2008.

[26] S. B. Suh, “Secure xen on arm : Status and domain driver
separation,” Xen Summit Autumn 2007, Sun Microsystems, 2007.

